WO2012073639A1 - 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法 - Google Patents

水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法 Download PDF

Info

Publication number
WO2012073639A1
WO2012073639A1 PCT/JP2011/075188 JP2011075188W WO2012073639A1 WO 2012073639 A1 WO2012073639 A1 WO 2012073639A1 JP 2011075188 W JP2011075188 W JP 2011075188W WO 2012073639 A1 WO2012073639 A1 WO 2012073639A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
carbon catalyst
catalyst
carbon
gas
Prior art date
Application number
PCT/JP2011/075188
Other languages
English (en)
French (fr)
Inventor
純一 尾崎
里江子 小林
千弘 藤井
Original Assignee
国立大学法人群馬大学
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学, 日清紡ホールディングス株式会社 filed Critical 国立大学法人群馬大学
Priority to KR1020137013378A priority Critical patent/KR101335712B1/ko
Priority to CA2819092A priority patent/CA2819092C/en
Priority to US13/988,609 priority patent/US9050583B2/en
Priority to CN201180057398.7A priority patent/CN103249482B/zh
Priority to EP11844573.3A priority patent/EP2647428B1/en
Publication of WO2012073639A1 publication Critical patent/WO2012073639A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons

Definitions

  • the present invention relates to a carbon catalyst for producing hydrogen, a method for producing the same, and a method for producing hydrogen using the same, and particularly relates to the provision of a carbon catalyst for producing hydrogen that exhibits excellent catalytic activity.
  • metal catalysts such as nickel and iron are mainly used for the thermal decomposition reaction of methane.
  • carbon is deposited on the metal catalyst as hydrogen is generated, and as a result, the metal catalyst is deactivated.
  • Patent Document 1 Patent Document 1
  • Patent Document 2 Patent Document 2
  • Non-Patent Document 1 Since the carbon catalyst itself is a carbon material, it is difficult to deactivate even if carbon deposition occurs due to decomposition of methane.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a carbon catalyst for hydrogen generation exhibiting excellent catalytic activity, a method for producing the same, and a method for producing hydrogen using the same. I will.
  • a carbon catalyst for hydrogen generation according to an embodiment of the present invention for solving the above problems is a carbon catalyst obtained by carbonization of a raw material containing an organic substance and a transition metal, and is a hydrocarbon compound and / or oxygen-containing It is used for hydrogen production by thermal decomposition of organic compounds.
  • ADVANTAGE OF THE INVENTION According to this invention, the carbon catalyst for hydrogen production which shows the outstanding catalyst activity can be provided.
  • the carbon catalyst for hydrogen generation may be obtained by supporting an alkaline earth metal on the carbonized material generated by the carbonization.
  • the hydrogen generating carbon catalyst is a mixed gas of hydrogen gas, deuterium gas, and argon gas (hydrogen) in a hydrogen-deuterium exchange reaction using a reaction tube filled with a predetermined weight of the carbon catalyst for hydrogen generation.
  • Flow rate 10 mL / min
  • deuterium flow rate 10 mL / min
  • argon flow rate 30 mL / min
  • the hydrogen dissociation activity calculated by dividing the total decrease by the predetermined weight may be 10 mmol / g or more.
  • a method for producing a hydrogen generation catalyst includes carbonization of a raw material containing an organic substance and a transition metal, and the carbonized material generated by the carbonization is alkaline earth. It is characterized by carrying a metal. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the carbon catalyst for hydrogen production which shows the outstanding catalyst activity can be provided.
  • a method according to an embodiment of the present invention for solving the above-mentioned problem is to generate hydrogen by thermally decomposing a hydrocarbon compound and / or an oxygen-containing organic compound using any one of the above-described carbon catalysts for hydrogen generation. It is characterized by doing.
  • ADVANTAGE OF THE INVENTION According to this invention, the method of producing
  • the carbon catalyst for hydrogen generation according to the present embodiment (hereinafter referred to as “the present catalyst”) is a carbon catalyst obtained by carbonization of a raw material containing an organic substance and a transition metal, and is a hydrocarbon compound and / or oxygen-containing material. It is a carbon catalyst used for hydrogen production by thermal decomposition of organic compounds.
  • the organic substance used as a raw material for the catalyst is not particularly limited as long as it can be carbonized, and any one or more kinds can be used.
  • an organic substance containing a nitrogen atom can be preferably used.
  • an organic compound containing a nitrogen atom can be used.
  • the nitrogen-containing organic compound is not particularly limited as long as it contains a nitrogen atom in its molecule.
  • a high molecular weight organic compound for example, a resin such as a thermosetting resin or a thermoplastic resin
  • a low molecular weight organic compound One or both of these can be used. Biomass can also be used.
  • a ligand capable of coordinating with a metal can be preferably used. That is, in this case, an organic compound containing one or more coordination atoms in the molecule is used. More specifically, for example, an organic compound containing, as a coordination atom, one or more selected from the group consisting of a nitrogen atom, a phosphorus atom, an oxygen atom, and a sulfur atom in the molecule can be used. In addition, for example, an organic compound containing one or more selected from the group consisting of an amino group, a phosphino group, a carboxyl group, and a thiol group in the molecule can also be used as a coordination group.
  • the organic substance can also contain, for example, one or more selected from the group consisting of a boron atom, a phosphorus atom, an oxygen atom, and a sulfur atom as a component that improves the activity of the catalyst.
  • organic substances include phenol resin, polyfurfuryl alcohol, furan, furan resin, phenol formaldehyde resin, melamine, melamine resin, epoxy resin, chelate resin, polyamideimide resin, pyrrole, polypyrrole, polyvinylpyrrole, 3- Methyl polypyrrole, acrylonitrile, polyacrylonitrile, polyacrylonitrile-polymethacrylic acid copolymer, polyvinylidene chloride, thiophene, oxazole, thiazole, pyrazole, vinylpyridine, polyvinylpyridine, pyridazine, pyrimidine, piperazine, pyran, morpholine, imidazole, 1- Methylimidazole, 2-methylimidazole, quinoxaline, aniline, polyaniline, succinic acid dihydrazide, adipic acid dihydrazide Polysulfone, polyamino bismaleimide, polyimide,
  • the transition metal is not particularly limited as long as it does not inhibit the activity of the present catalyst, and any one or more of transition metals (Group 3 to Group 12 in the periodic table) can be used. Transition metals belonging to the 4th period of group 12 to group 12 can preferably be used.
  • the transition metal can be used as a simple substance of the transition metal or a compound of the metal.
  • the metal compound include metal salts, metal oxides, metal hydroxides, metal nitrides, metal sulfides, metal carbides, metal complexes, metal salts, metal oxides, metal sulfides, Metal complexes can be preferably used.
  • a metal complex is formed in the raw material.
  • the total amount of the transition metal relative to the raw material is not particularly limited as long as the present catalyst has a desired characteristic, and can be, for example, 0.1 to 50% by mass, and 0.5 to 30% by mass. 1 to 20% by mass.
  • the raw material may further contain other components. That is, the raw material may include, for example, a carbon material.
  • the carbon material is not particularly limited, and any one or more kinds can be used. That is, as the carbon material, for example, a carbon material having no catalytic activity by itself can be used.
  • carbon black, carbon nanotube, carbon nanohorn, carbon fiber, carbon fibril, graphite powder, activated carbon, glassy carbon, mesoporous carbon, carbon fiber, fullerene, onion-like carbon, graphene, charcoal, coal char, biomass One or more selected from the group consisting of char, organic substances and carbonized substances can be used.
  • the raw materials containing the organic substance and the transition metal described above are mixed.
  • the method for mixing the raw materials is not particularly limited, and for example, a mortar or a stirring device can be used.
  • one or more mixing methods such as powder mixing in which an organic substance and a transition metal are mixed in powder form, or solvent mixing in which a solvent is added and mixed can also be used.
  • this catalyst is obtained by carbonizing the raw material prepared as mentioned above.
  • carbonization a raw material is heated and held at a predetermined temperature (carbonization temperature) at which the raw material can be carbonized.
  • the carbonization temperature is not particularly limited as long as the raw material can be carbonized, and can be, for example, 300 ° C. or higher. More specifically, the carbonization temperature can be, for example, 300 ° C. or higher and 1500 ° C. or lower, preferably 400 ° C. or higher and 1200 ° C. or lower, more preferably 500 ° C. or higher and 1100 ° C. or lower. It can be.
  • the heating rate when heating the raw material to the carbonization temperature is not particularly limited and can be, for example, 0.5 ° C./min or more and 300 ° C./min or less.
  • the time for holding the raw material at the carbonization temperature is not particularly limited as long as the raw material can be carbonized, and can be, for example, 5 minutes or longer. More specifically, the carbonization time can be, for example, 5 minutes or more and 240 minutes or less, preferably 20 minutes or more and 180 minutes or less.
  • Carbonization is preferably performed under an inert gas such as nitrogen (for example, under the flow of an inert gas).
  • a carbonized material produced by carbonization of the raw material may be obtained as it is as the present catalyst.
  • the present catalyst may be a fine particle carbon catalyst obtained by pulverizing a carbonized material.
  • the method for pulverizing the carbonized material is not particularly limited, and for example, a pulverizing apparatus such as a ball mill or a bead mill can be used.
  • the average particle size of the carbonized material after pulverization can be, for example, 150 ⁇ m or less, and preferably 100 ⁇ m or less.
  • the present catalyst may be a carbon catalyst obtained by supporting an alkaline earth metal on a carbonized material generated by carbonization. That is, the present catalyst is produced by carbonizing a raw material containing an organic substance and a transition metal, and supporting an alkaline earth metal on the carbonized material generated by the carbonization.
  • the catalyst contains an alkaline earth metal supported after carbonization.
  • This alkaline earth metal is mainly supported on the surface of the present catalyst.
  • the activity of the catalyst can be effectively improved as compared with the case where the alkaline earth metal is not supported.
  • the improvement of the catalytic activity by the support of the alkaline earth metal is a result of repeated investigations by the inventors of the present invention, and as a result, focusing on the hydrogen dissociation activity of the carbon catalyst as shown in the examples described later. It is what I found.
  • the method for supporting the alkaline earth metal on the carbonized material is not particularly limited.
  • the carbon supported on the alkaline earth metal by mixing the powdered carbonized material and the powdered alkaline earth metal.
  • the present catalyst comprising the chemical material can be obtained.
  • a mortar or a stirring device can be used.
  • the present catalyst can be obtained by supporting an alkaline earth metal on a carbonized material by an impregnation supporting method, an ion exchange supporting method, a sol-gel method, or a coprecipitation method.
  • the alkaline earth metal is not particularly limited, and one or more selected from the group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) can be used.
  • Be beryllium
  • Mg magnesium
  • Ca calcium
  • Sr strontium
  • Ba barium
  • One or more selected from the group consisting of magnesium (Mg), calcium (Ca) and barium (Ba) can be preferably used.
  • the amount of the alkaline earth metal supported by the catalyst is not particularly limited as long as the activity of the catalyst is improved. That is, the amount of the alkaline earth metal contained in the catalyst is, for example, 0.1 to 50% by weight with respect to the carbonized material supporting the alkaline earth metal (alkaline earth metal with respect to 100 parts by weight of the carbonized material). Metal) of 0.1 to 50 parts by weight, preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight.
  • the present catalyst may be a carbon catalyst obtained by subjecting a carbonized material generated by carbonization to further treatment. That is, the present catalyst may be a carbon catalyst obtained by subjecting the carbonized material to a metal removal treatment, for example. Furthermore, in this case, the present catalyst may be a carbon catalyst obtained by, for example, supporting an alkaline earth metal on a carbonized material that has been subjected to metal removal treatment. By subjecting the carbonized material to a metal removal treatment, the transition metal can be removed from the carbonized material, and the active points of the carbon structure can be exposed.
  • the metal removal process is a process for removing transition metals contained in the carbonized material.
  • the metal removal treatment is not particularly limited as long as it can remove the transition metal contained in the carbonized material or reduce the amount of the transition metal, and for example, an acid cleaning treatment or an electrolytic treatment can be performed.
  • the acid used for the acid cleaning treatment is not particularly limited as long as the effect of the metal removal treatment can be obtained, and any one or more of them can be used. That is, for example, one or more selected from the group consisting of hydrochloric acid (for example, concentrated hydrochloric acid), nitric acid (for example, concentrated nitric acid), and sulfuric acid (for example, concentrated sulfuric acid) can be used.
  • hydrochloric acid for example, concentrated hydrochloric acid
  • nitric acid for example, concentrated nitric acid
  • sulfuric acid for example, concentrated sulfuric acid
  • a mixed acid prepared by mixing at a volume ratio can be used.
  • the method of the acid cleaning treatment is not particularly limited, and for example, a method of immersing and holding the carbonized material in a solution containing an acid can be used.
  • this catalyst when this catalyst is obtained through a metal removal process, this catalyst may be substantially free of transition metals or may contain residual transition metals.
  • the transition metal remaining in the catalyst can be confirmed by a method such as elemental analysis.
  • the present catalyst may be a carbon catalyst obtained by introducing (doping) a nitrogen atom or a boron atom into a carbonized material generated by carbonization of a raw material.
  • the carbonized material can be doped with nitrogen atoms or boron atoms in any step.
  • a gas phase doping method such as an ammoxidation method or a CVD method, a liquid phase doping method, or a gas phase-liquid phase doping method can be used.
  • a nitrogen source such as ammonia, melamine, or acetonitrile or a boron source such as boric acid or sodium borohydride is mixed with a carbonized material, and the resulting mixture is an inert gas such as nitrogen, argon, or helium.
  • Nitrogen atoms can be introduced into the surface of the carbonized material by holding at a temperature of 550 ° C. or more and 1200 ° C. or less for 5 minutes or more and 180 minutes or less in an atmosphere.
  • the present catalyst is applied to a carbonized material produced by carbonization of raw materials, activation treatment such as carbon dioxide activation, phosphoric acid activation, alkali activation, hydrogen activation, ammonia activation, nitric oxide activation, electrolytic activation, and / or It is good also as a carbon catalyst obtained by performing liquid phase oxidation, such as nitric acid oxidation, mixed acid oxidation, and hydrogen peroxide oxidation.
  • activation treatment such as carbon dioxide activation, phosphoric acid activation, alkali activation, hydrogen activation, ammonia activation, nitric oxide activation, electrolytic activation, and / or It is good also as a carbon catalyst obtained by performing liquid phase oxidation, such as nitric acid oxidation, mixed acid oxidation, and hydrogen peroxide oxidation.
  • the specific surface area determined by the nitrogen adsorption BET method of the present catalyst can be, for example, 10 m 2 / g or more, preferably 100 m 2 / g or more. More specifically, the specific surface area of the present catalyst can be, for example, 200 m 2 / g or more and 3000 m 2 / g or less, preferably 300 m 2 / g or more and 3000 m 2 / g or less.
  • this catalyst is used for hydrogen generation by thermal decomposition of hydrocarbon compounds and / or oxygen-containing organic compounds. That is, this catalyst has an activity of catalyzing a reaction in which a hydrocarbon compound and / or an oxygen-containing organic compound is thermally decomposed to generate hydrogen.
  • the hydrogen dissociation activity calculated by dividing the total decrease by the predetermined weight may be 10 mmol / g or more.
  • the method according to this embodiment is a method for generating hydrogen by thermally decomposing a hydrocarbon compound and / or an oxygen-containing organic compound using the present catalyst.
  • the hydrocarbon compound and the oxygen-containing organic compound are not particularly limited as long as they generate hydrogen by thermal decomposition. That is, as the hydrocarbon compound, for example, one or more selected from the group consisting of aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons can be used.
  • aliphatic hydrocarbon for example, those having 1 to 20 carbon atoms can be preferably used, and those having 1 to 12 carbon atoms can be particularly preferably used. Specifically, for example, one or more selected from the group consisting of methane, ethane, ethylene, propane, propylene, and butane can be used.
  • alicyclic hydrocarbon for example, those having 3 to 12 carbon atoms can be preferably used. Specifically, for example, one or more selected from the group consisting of cyclopropane, cyclobutane, cyclopentane and cyclohexane can be used.
  • aromatic hydrocarbon for example, those having 5 to 16 carbon atoms can be preferably used. Specifically, for example, one or more selected from the group consisting of benzene, toluene, xylene, ethylbenzene, and tetralin can be used.
  • oxygen-containing organic compound for example, one or more selected from the group consisting of alcohols, ethers, esters and ketones can be used.
  • alcohols for example, those having 1 to 12 carbon atoms can be preferably used.
  • ethers for example, those having 2 to 12 carbon atoms can be preferably used.
  • dimethyl ether, ethyl methyl ether, diethyl ether, oxacyclopentane, and crown ether can be used.
  • esters for example, those having 2 to 12 carbon atoms can be preferably used. Specifically, for example, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, methyl butyrate, ethyl butyrate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, butyl methacrylate
  • One or more selected from the group can be used.
  • ketones for example, those having 3 to 6 carbon atoms can be preferably used. Specifically, for example, one or more selected from the group consisting of propanone, pentanone, butanone and cyclohexanone can be used.
  • hydrogen is generated by thermally decomposing a hydrocarbon compound and / or an oxygen-containing organic compound in the presence of the present catalyst. That is, in this method, the hydrocarbon compound and / or the oxygen-containing organic compound and the present catalyst are brought into contact under heating.
  • the hydrocarbon compound and / or the oxygen-containing organic compound those that are gaseous or liquid can be preferably used, and the gaseous carbon-hydrogen compound and / or oxygen-containing organic compound can be particularly preferably used.
  • a mixture of a hydrocarbon compound and / or an oxygen-containing organic compound and other components may be brought into contact with the present catalyst. That is, when a gaseous hydrocarbon compound and / or oxygen-containing organic compound is used, for example, a mixture containing the hydrocarbon compound and / or oxygen-containing organic compound and an inert gas such as argon, nitrogen, and helium It is good also as making gas contact with this catalyst.
  • the present catalyst may be brought into contact with a biomass gas containing a hydrocarbon compound and / or an oxygen-containing organic compound.
  • the biomass gas may contain other components such as moisture and carbon dioxide, for example.
  • Organic pyrolysis obtained by pyrolyzing organic substances such as synthetic resin (polyethylene, polystyrene, polyester, thermosetting resin, phenol resin, epoxy resin, bakelite resin, polycarbonate, etc.), petroleum, kerosene, heavy oil, etc. It is good also as making gas and this catalyst contact.
  • synthetic resin polyethylene, polystyrene, polyester, thermosetting resin, phenol resin, epoxy resin, bakelite resin, polycarbonate, etc.
  • petroleum kerosene, heavy oil, etc. It is good also as making gas and this catalyst contact.
  • the temperature at which the present catalyst is brought into contact with the hydrocarbon compound and / or the oxygen-containing organic compound is not particularly limited as long as the hydrocarbon compound and / or the oxygen-containing organic compound is thermally decomposed to generate hydrogen. 300 ° C. or higher, preferably 500 ° C. or higher. More specifically, this temperature can be, for example, 300 to 1100 ° C., preferably 500 to 1000 ° C., and more preferably 600 to 1000 ° C.
  • Carbon catalyst CA (Fe) 0.4 g of polyvinyl pyridine, 0.45 g of iron (III) chloride hexahydrate, and 0.5 g of ketjen black (ECP600JD, manufactured by Lion Corporation) are put in a mortar and mixed uniformly.
  • the raw material was prepared.
  • the obtained raw material was put into a horizontal image furnace, heated in a nitrogen gas atmosphere at a heating rate of 50 ° C./min, held at a carbonization temperature of 900 ° C. for 1 hour, and carbonized. And the carbonization material produced
  • the carbon catalyst CA (Fe) had a BET specific surface area of 630 m 2 / g.
  • Carbon catalyst CA (Fe) AW Carbon catalyst CA (Fe) AW
  • the metal removal treatment by acid cleaning was performed on the carbon catalyst CA (Fe). That is, 100 mL of concentrated hydrochloric acid was added to 1 g of the carbon catalyst CA (Fe) and stirred for 1 hour. After precipitating the carbon catalyst and removing the solution, 100 mL of a solution prepared by mixing concentrated hydrochloric acid and distilled water at 1: 1 (volume ratio) was added and stirred for 1 hour. After the carbon catalyst was precipitated and the solution was removed, 100 mL of distilled water was added and stirred for 1 hour.
  • the solution containing the carbon catalyst was filtered using a filtration membrane (pore size: 1.0 ⁇ m, manufactured by Millipore), and washed with distilled water until the filtrate became neutral.
  • the collected carbon catalyst was vacuum-dried at 60 ° C. for 12 hours.
  • a carbon catalyst CA (Fe) AW subjected to the metal removal treatment was obtained.
  • the carbon catalyst CA (Fe) AW had a BET specific surface area of 690 m 2 / g.
  • Carbon catalyst CA (Co) A carbon catalyst CA (Co) was obtained in the same manner as the above-described carbon catalyst CA (Fe) except that cobalt chloride hexahydrate was used instead of iron (III) chloride hexahydrate.
  • the carbon catalyst CA (Co) had a BET specific surface area of 670 m 2 / g.
  • Carbon catalyst CA (Ni) A carbon catalyst CA (Ni) was obtained in the same manner as the above-described carbon catalyst CA (Fe) except that nickel chloride hexahydrate was used instead of iron (III) chloride hexahydrate.
  • the carbon catalyst CA (Ni) had a BET specific surface area of 650 m 2 / g.
  • Carbon catalyst CA (Mn) 1.5 g of polyacrylonitrile-polymethacrylic acid copolymer was dissolved in 30 g of dimethylformamide. Thereafter, 1.25 g of manganese chloride tetrahydrate and 1.5 g of 2-methylimidazole were added and stirred for 2 hours to obtain a solution.
  • Ketjen black (EC600JD, manufactured by Lion Corporation) was added to the obtained solution so that the content in the precursor composition described later was 67% by weight, and mixed using a mortar. Further, this mixture was dried under reduced pressure at 60 ° C. and 6.4 ⁇ 10 ⁇ 2 Pa for 12 hours to remove dimethylformamide. A precursor composition was thus obtained.
  • the precursor composition was set in a forced circulation dryer. Then, in the atmosphere, the temperature in the dryer was raised from room temperature to 150 ° C. over 30 minutes, and then raised from 150 ° C. to 220 ° C. over 2 hours. Thereafter, the precursor composition was held at 220 ° C. for 3 hours. Thus, the precursor composition was infusible to obtain a carbonization raw material.
  • the carbonization material was pulverized. That is, a silicon nitride ball having a diameter of 10 mm was set in a planetary ball mill (P-7, manufactured by Fritsch Japan Co., Ltd.), and the carbonized material was pulverized for 50 minutes at a rotational speed of 650 rpm. The pulverized carbonized material was taken out and classified with a sieve having an aperture of 106 ⁇ m. The carbonized material that passed through the sieve was obtained as the carbon catalyst CA (Mn). The carbon catalyst CA (Mn) had a BET specific surface area of 900 m 2 / g.
  • Comparative sample KB A commercially available ketjen black (ECP600JD, manufactured by Lion Corporation), which was also used as a raw material for the carbon catalyst, was used as a comparative sample KB.
  • the comparative sample KB had a BET specific surface area of 1200 m 2 / g.
  • Comparative sample BP Commercially available carbon black (Black Pearls 2000, manufactured by CABOT) was used as a comparative sample BP.
  • the comparative sample BP had a BET specific surface area of 1500 m 2 / g.
  • Comparative sample Fe / BP was prepared by supporting iron on comparative sample BP. That is, first, about 0.1 g of iron (III) nitrate nonahydrate was placed in a recovery flask and dissolved in 100 mL of distilled water. Subsequently, the comparative sample BP was added to this iron nitrate aqueous solution. Furthermore, about 5 mL of methanol was added, and it stirred for 10 minutes with the ultrasonic wave. After stirring, the eggplant flask was placed on an evaporator and rotated under reduced pressure for 20 minutes, and then placed in a 60 ° C. hot water bath and dried under reduced pressure.
  • pretreatment (reduction treatment) was performed at a heating rate of 50 ° C./min in a hydrogen atmosphere and held at 350 ° C. for 1 hour. )
  • the reaction tube was heated from room temperature to 900 ° C. at a rate of temperature increase of 10 ° C./min to carry out a thermal decomposition reaction of methane. After the temperature reached 900 ° C., the reaction tube was kept at 900 ° C. for 20 minutes while continuing to flow the mixed gas.
  • a blank was measured. That is, a quartz reaction tube not filled with a carbon catalyst and a comparative sample is installed in a catalyst analyzer (manufactured by Nippon Bell Co., Ltd.), and argon gas is circulated at a flow rate of 50 mL / min for 30 minutes, so that the gas phase in the system Was replaced with argon. Furthermore, the pretreatment which heated the reaction tube at the temperature increase rate of 50 degree-C / min in argon atmosphere and hold
  • the hydrogen gas concentration during the temperature rising process was analyzed by a quadrupole mass spectrometer (Q-mass), and the amount of hydrogen gas decreased at each temperature was determined.
  • reaction tube was installed in a commercially available catalyst analyzer (manufactured by Nippon Bell Co., Ltd.), and argon gas was circulated at a flow rate of 50 mL / min for 30 minutes to replace the gas phase in the system with argon. Furthermore, the pretreatment which heated the reaction tube at the temperature increase rate of 50 degree-C / min in argon atmosphere and hold
  • the hydrogen gas concentration during the temperature rising process was analyzed by a quadrupole mass spectrometer (Q-mass), and the amount of hydrogen gas decreased at each temperature was determined. Then, at each temperature, a value obtained by subtracting the hydrogen gas reduction amount obtained by the blank measurement from the hydrogen gas reduction amount obtained by using the sample was obtained by actually using the sample. Calculated as the amount of decrease in hydrogen gas.
  • Q-mass quadrupole mass spectrometer
  • the calculated hydrogen gas decrease amount was plotted against the temperature, and a curve showing the correlation between the hydrogen gas decrease amount and the temperature was created. From the prepared curve, the total reduction amount of hydrogen gas from 40 ° C. to 600 ° C. was calculated. Then, the value obtained by dividing the total reduction amount of hydrogen gas thus calculated by the weight of the used carbon catalyst or comparative sample (20 mg) is the hydrogen dissociation activity (mmol / g) per weight of the carbon catalyst or comparative sample. ).
  • FIG. 1 shows the result of evaluating the hydrogen generation rate in hydrogen generation by thermal decomposition of methane using any of the carbon catalyst and the comparative sample described above.
  • the horizontal axis indicates the temperature (° C.) at which methane was thermally decomposed
  • the vertical axis indicates the hydrogen production rate ( ⁇ mol / (min ⁇ m 2 )) per specific surface area of the carbon catalyst or the comparative sample at each temperature. Indicates.
  • black circles indicate carbon catalyst CA (Fe)
  • black triangles indicate carbon catalyst CA (Co)
  • black diamonds indicate carbon catalyst CA (Ni)
  • black squares indicate carbon catalyst CA (Mn).
  • Half-black diamonds are carbon catalyst CA (Fe) AW
  • white circles are comparative samples Fe / BP
  • white squares are comparative samples BP
  • white diamonds are comparative samples KB. Each is shown.
  • the hydrogen generation rate at least at 600 to 900 ° C. in the presence of the carbon catalyst is equal to or higher than that in the presence of the comparative sample.
  • the carbon catalyst CA (Fe) the carbon catalyst CA ( The rate of hydrogen production when using Co) and the carbon catalyst CA (Ni) was significantly higher.
  • FIG. 2 shows the amount of hydrogen produced ( ⁇ mol) in 20 minutes when the reaction temperature is maintained at 900 ° C., the rate of decrease in catalyst activity (when the carbon catalyst CA (Fe) or the comparative sample Fe / BP is used). %), And the results of evaluating the amount of hydrogen production ( ⁇ mol /%) per catalyst activity reduction rate are shown.
  • the amount of hydrogen produced was calculated as the amount of hydrogen gas produced between the time when the temperature reached 900 ° C. and the time when 20 minutes had passed since the temperature was maintained at 900 ° C.
  • the rate of decrease in catalyst activity is the difference between the hydrogen generation rate when the temperature reaches 900 ° C. and the hydrogen generation rate when 20 minutes have passed after maintaining the temperature at 900 ° C., and the former hydrogen generation rate is 100 Calculated as a percentage.
  • the hydrogen production amount per catalyst activity reduction rate was calculated by dividing the hydrogen production amount calculated as described above by the catalyst activity reduction rate.
  • the amount of hydrogen generated per catalyst activity decrease rate represents the amount of hydrogen generated while the catalyst activity decreases by 1%. Therefore, the larger the amount of hydrogen generated per catalyst activity decrease rate, the more hydrogen is generated before the catalyst activity of the carbon catalyst or comparative sample decreases by a predetermined percentage, that is, the carbon catalyst or comparative sample is deactivated. The amount of hydrogen produced until this is large.
  • the amount of hydrogen produced when the carbon catalyst CA (Fe) was used was significantly larger than that when the comparative sample Fe / BP was used.
  • the rate of decrease in the catalytic activity of the carbon catalyst CA (Fe) was smaller than that of the comparative sample Fe / BP. That is, the catalytic activity of the carbon catalyst CA (Fe) was less likely to be lower than that of the comparative sample Fe / BP.
  • the hydrogen production amount per catalyst activity decreasing rate of the carbon catalyst CA (Fe) was significantly larger than that of the comparative sample Fe / BP.
  • FIG. 3 shows hydrogen dissociation activity (mmol) in a hydrogen-deuterium exchange reaction using any one of the carbon catalyst CA (Fe), the carbon catalyst CA (Fe) AW, the carbon catalyst CA (Mn), and the comparative sample Fe / BP. / G) shows the result of evaluation.
  • the hydrogen dissociation activities of the three types of carbon catalysts were all higher than that of the comparative sample. Although not shown, it was also confirmed that when a carbon catalyst was used, dissociation of hydrogen began to occur at a lower temperature than when a comparative sample was used.
  • the carbon catalyst was considered to have higher catalytic activity for dissociating hydrogen than the comparative sample. Based on this result, the inventors of the present invention have come up with the idea of supporting an alkaline earth metal such as magnesium or calcium suitable for hydrogen storage on a carbon catalyst, as will be described later.
  • Carbon catalyst Mg / CA (Fe) Carbon catalyst CA (Fe) and magnesium hydroxide were placed in an agate mortar and mixed. Thus, a carbon catalyst Mg / CA (Fe) supporting 3% by weight of magnesium (3 parts by weight of magnesium with respect to 100 parts by weight of the carbon catalyst CA (Fe)) with respect to the carbon catalyst CA (Fe) was obtained.
  • Carbon catalyst Mg / CA (Fe) AW for the carbon catalyst CA (Fe) AW in the same manner as the above-mentioned carbon catalyst Mg / CA (Fe) except that the carbon catalyst CA (Fe) AW was used instead of the carbon catalyst CA (Fe).
  • a carbon catalyst Mg / CA (Fe) AW carrying magnesium by weight was obtained.
  • Carbon catalyst Mg / CA (Mn) 3% by weight with respect to the carbon catalyst CA (Mn) in the same manner as the above-mentioned carbon catalyst Mg / CA (Fe) except that the carbon catalyst CA (Mn) was used instead of the carbon catalyst CA (Fe).
  • a carbon catalyst Mg / CA (Mn) supporting magnesium was obtained.
  • Carbon catalyst Ca / CA (Mn) Carbon carrying 3% by weight of calcium with respect to the carbon catalyst CA (Mn) in the same manner as the above-mentioned carbon catalyst Ca / CA (Mn) except that calcium hydroxide was used instead of magnesium hydroxide. Catalyst Ca / CA (Mn) was obtained.
  • FIG. 4 shows the results of evaluating the hydrogen production rate in hydrogen production by thermal decomposition of methane using either a carbon catalyst supporting an alkaline earth metal or a comparative sample.
  • the horizontal axis represents the temperature (° C.) at which methane was thermally decomposed
  • the vertical axis represents the hydrogen production rate ( ⁇ mol / (min ⁇ m 2 )) per specific surface area of the carbon catalyst or comparative sample at each temperature. Indicates.
  • Black triangles indicate carbon catalyst Mg / CA (Mn), black squares indicate carbon catalyst Ca / CA (Mn), black reverse triangles indicate carbon catalyst Mg / CA (Fe), and black diamonds indicate carbon catalyst Mg / CA (Fe) AW
  • white triangles indicate the results of using the comparative sample Mg / Fe / BP
  • white squares indicate the results of using the comparative sample Mg / BP.
  • the results of using the comparative sample Fe / BP not supporting the alkaline earth metal shown in FIG. 1 are indicated by white circles.
  • FIG. 5 shows the hydrogen production rate ( ⁇ mol / (min ⁇ m) at 900 ° C. for each of the carbon catalyst CA (Fe), the carbon catalyst CA (Fe) AW, the carbon catalyst CA (Mn), and the comparative sample Fe / BP. 2 )) shows the result of comparing before and after loading of magnesium.
  • the hydrogen production rate in the presence of the carbon catalyst supporting magnesium or calcium was significantly higher than that in the presence of the comparative sample. Further, as is apparent from comparison between FIG. 5 and FIG. 4 and FIG. 1, the hydrogen production rate when the carbon catalyst was used was remarkably increased by loading magnesium on the carbon catalyst.
  • the carbon catalyst having higher hydrogen dissociation activity in FIG. 3 improves the catalytic activity by loading magnesium (in the “after Mg loading / before Mg loading” column in FIG. 5). The increase rate (%) of the hydrogen production rate shown was also large.
  • the hydrogen production rate in the presence of the comparative sample Mg / Fe / BP was lower than that in the presence of the comparative sample Fe / BP. That is, as shown in FIG. 5, the hydrogen generation rate when the comparative sample Fe / BP was used was decreased by loading magnesium on the comparative sample Fe / BP. Further, even when magnesium was supported on the carbon catalyst BP not supporting iron, the hydrogen generation rate was hardly changed compared to before supporting magnesium (see FIGS. 1 and 4).
  • the high catalytic activity of the carbon catalyst supporting the alkaline earth metal is such that the specific carbon structure of the carbon catalyst obtained by carbonization of the raw material containing the organic substance and the transition metal, and the alkaline earth metal This was thought to be due to a specific synergistic effect of the properties possessed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 優れた触媒活性を示す水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法を提供する 本発明に係る水素生成用炭素触媒は、有機物と遷移金属とを含む原料の炭素化により得られる炭素触媒であって、炭化水素化合物及び/又は含酸素有機化合物の熱分解による水素生成に使用される。また、前記水素生成用炭素触媒は、前記炭素化により生成された炭素化材料にアルカリ土類金属を担持して得られることとしてもよい。

Description

水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法
 本発明は、水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法に関し、特に、優れた触媒活性を示す水素生成用炭素触媒の提供に関する。
 水素は、その燃焼によってエネルギーを取り出す際に水しか排出しないため、環境負荷の少ないエネルギー源として注目されている。そこで、近年、メタンを原料として水素を製造する方法が注目されている。メタンは、化石燃料に頼らない次世代エネルギーであるバイオマスガスから得ることができる。
 メタンの分解には非常に多くのエネルギーが必要であることから、メタンの熱分解反応にはニッケルや鉄等の金属触媒が主に用いられている。しかしながら、金属触媒を使用したメタンの熱分解反応においては、水素の発生とともに、当該金属触媒上への炭素の析出が起こり、その結果、当該金属触媒の失活が引き起こされる。
 そこで、従来、炭素触媒を使用して水素を製造することが提案されている(例えば、特許文献1、特許文献2及び非特許文献1)。炭素触媒は、それ自身が炭素材料であるため、メタンの分解に伴う炭素析出が起こっても失活しにくい。
特開平8-165101号公報 特開2003-146606号公報
N. Muradov et al. Catalysis Today, 102-103, (2005), 225-233
 しかしながら、従来の炭素触媒の活性は十分なものではなかった。また、従来の炭素触媒の活性を安定して維持することは困難であった。
 本発明は、上記課題に鑑みて為されたものであり、優れた触媒活性を示す水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法を提供することをその目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係る水素生成用炭素触媒は、有機物と遷移金属とを含む原料の炭素化により得られる炭素触媒であって、炭化水素化合物及び/又は含酸素有機化合物の熱分解による水素生成に使用されることを特徴とする。本発明によれば、優れた触媒活性を示す水素生成用炭素触媒を提供することができる。
 また、前記水素生成用炭素触媒は、前記炭素化により生成された炭素化材料にアルカリ土類金属を担持して得られることとしてもよい。また、前記水素生成用炭素触媒は、所定重量の前記水素生成用炭素触媒を充填した反応管を用いた水素-重水素交換反応において、水素ガスと重水素ガスとアルゴンガスとの混合ガス(水素流量=10mL/分、重水素流量=10mL/分、アルゴン流量=30mL/分)下で前記反応管を10℃/分の昇温速度で40℃から600℃まで加熱した際の前記水素ガスの総減少量を前記所定重量で除して算出される水素解離活性が10mmol/g以上であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る水素生成用触媒の製造方法は、有機物と遷移金属とを含む原料を炭素化し、前記炭素化により生成された炭素化材料にアルカリ土類金属を担持することを特徴とする。本発明によれば、優れた触媒活性を示す水素生成用炭素触媒の製造方法を提供することができる。
 上記課題を解決するための本発明の一実施形態に係る方法は、前記いずれかの水素生成用炭素触媒を使用して、炭化水素化合物及び/又は含酸素有機化合物を熱分解して水素を生成することを特徴とする。本発明によれば、優れた触媒活性を示す水素生成用炭素触媒を用いて効率的に水素を生成する方法を提供することができる。
 本発明によれば、優れた触媒活性を示す水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法を提供することができる。
本発明の一実施形態に係る実施例において炭素触媒の水素生成速度を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において炭素触媒の水素生成量及び触媒活性低下率を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において炭素触媒の水素解離活性を評価した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において炭素触媒の水素生成速度を評価した結果の他の例を示す説明図である。 本発明の一実施形態に係る実施例において炭素触媒の水素生成速度をアルカリ土類金属の担持前後で比較した結果の一例を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は本実施形態で示す例に限られない。
 本実施形態に係る水素生成用炭素触媒(以下、「本触媒」という。)は、有機物と遷移金属とを含む原料の炭素化により得られる炭素触媒であって、炭化水素化合物及び/又は含酸素有機化合物の熱分解による水素生成に使用される炭素触媒である。
 本触媒の原料に使用される有機物は、炭素化できるものであれば特に限られず、任意の1種以上を使用することができる。有機物としては、例えば、窒素原子を含む有機物を好ましく使用することができる。含窒素有機物としては、例えば、窒素原子を含む有機化合物を使用することができる。含窒素有機化合物は、その分子内に窒素原子を含むものであれば特に限られず、例えば、高分子量の有機化合物(例えば、熱硬化性樹脂や熱可塑性樹脂等の樹脂)及び低分子量の有機化合物の一方又は両方を使用することができる。また、バイオマスを使用することもできる。
 有機化合物としては、例えば、金属に配位可能な配位子を好ましく使用することができる。すなわち、この場合、その分子内に1又は複数個の配位原子を含む有機化合物を使用する。より具体的に、例えば、配位原子として、その分子内に窒素原子、リン原子、酸素原子、硫黄原子からなる群より選択される1種以上を含む有機化合物を使用することができる。また、例えば、配位基として、その分子内にアミノ基、フォスフィノ基、カルボキシル基及びチオール基からなる群より選択される1種以上を含む有機化合物を使用することもできる。有機物は、例えば、本触媒の活性を向上させる成分として、ホウ素原子、リン原子、酸素原子及び硫黄原子からなる群より選択される1種以上を含むこともできる。
 有機物としては、具体的に、例えば、フェノール樹脂、ポリフルフリルアルコール、フラン、フラン樹脂、フェノールホルムアルデヒド樹脂、メラミン、メラミン樹脂、エポキシ樹脂、キレート樹脂、ポリアミドイミド樹脂、ピロール、ポリピロール、ポリビニルピロール、3-メチルポリピロール、アクリロニトリル、ポリアクリロニトリル、ポリアクリロニトリル-ポリメタクリル酸共重合体、ポリ塩化ビニリデン、チオフェン、オキサゾール、チアゾール、ピラゾール、ビニルピリジン、ポリビニルピリジン、ピリダジン、ピリミジン、ピペラジン、ピラン、モルホリン、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾ-ル、キノキサリン、アニリン、ポリアニリン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリスルフォン、ポリアミノビスマレイミド、ポリイミド、ポリビニルアルコール、ポリビニルブチラール、ベンゾイミダゾ-ル、ポリベンゾイミダゾ-ル、ポリアミド、ポリエステル、ポリ乳酸、ポリエ-テル、ポリエ-テルエ-テルケトン、セルロ-ス、カルボキシメチルセルロース、リグニン、キチン、キトサン、ピッチ、褐炭、絹、毛、ポリアミノ酸、核酸、DNA、RNA、ヒドラジン、ヒドラジド、尿素、サレン、ポリカルバゾール、ポリビスマレイミド、トリアジン、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリメタクリル酸、ポリウレタン、ポリアミドアミン及びポリカルボジイミドからなる群より選択される1種以上を使用することができる。
 遷移金属としては、本触媒の活性を阻害しないものであれば特に限られず、遷移金属(周期表の3族から12族)のうち任意の1種以上を使用することができ、周期表の3族から12族の第4周期に属する遷移金属を好ましくは使用することができる。
 具体的に、例えば、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、ランタノイド系列の元素(セリウム(Ce)等)、及びアクチノイド系列の元素からなる群より選択される1種以上を好ましく使用することができる。
 遷移金属は、当該遷移金属の単体又は当該金属の化合物として使用することができる。金属化合物としては、例えば、金属塩、金属酸化物、金属水酸化物、金属窒化物、金属硫化物、金属炭化物、金属錯体を使用することができ、金属塩、金属酸化物、金属硫化物、金属錯体を好ましく使用することができる。なお、上述の有機化合物として配位子を使用する場合には、原料中において金属錯体が形成されることとなる。
 原料に対する遷移金属の合計量は、本触媒が所望の特性を備える範囲であれば特に限られず、例えば、0.1~50質量%とすることができ、0.5~30質量%とすることができ、1~20質量%とすることもできる。
 原料は、さらに他の成分を含むこととしてもよい。すなわち、原料は、例えば、炭素材料を含むこととしてもよい。炭素材料としては、特に限られず、任意の1種以上を使用することができる。すなわち、炭素材料としては、例えば、それ自身では触媒活性を有しない炭素材料を使用することができる。
 具体的に、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、カーボンフィブリル、黒鉛粉末、活性炭、ガラス状カーボン、メソポーラスカーボン、炭素繊維、フラーレン、オニオンライクカーボン、グラフェン、木炭、石炭チャー、バイオマスチャー、有機物及び炭素化物からなる群より選択される1種以上を使用することができる。
 本触媒の製造においては、まず上述した有機物と遷移金属とを含む原料を混合する。原料を混合する方法は特に限られず、例えば、乳鉢や攪拌装置を使用することができる。また、有機物及び遷移金属を粉末状で混合する粉体混合や、溶媒を添加して混合する溶媒混合等、1種以上の混合方法を使用することもできる。
 そして、本触媒は、上述のように調製した原料を炭素化することにより得られる。炭素化においては、原料を加熱して、当該原料を炭素化できる所定温度(炭素化温度)で保持する。
 炭素化温度は、原料を炭素化できる温度であれば特に限られず、例えば、300℃以上とすることができる。より具体的に、炭素化温度は、例えば、300℃以上、1500℃以下とすることができ、好ましくは400℃以上、1200℃以下とすることができ、より好ましくは500℃以上、1100℃以下とすることができる。
 原料を炭素化温度まで加熱する際の昇温速度は、特に限られず、例えば、0.5℃/分以上、300℃/分以下とすることができる。原料を炭素化温度で保持する時間(炭素化時間)は、原料を炭素化できる時間であれば特に限られず、例えば、5分以上とすることができる。より具体的に、炭素化時間は、例えば、5分以上、240分以下とすることができ、好ましくは20分以上、180分以下とすることができる。また、炭素化は、窒素等の不活性ガス下(例えば、不活性ガスの流通下)で行うことが好ましい。
 このような製造方法においては、原料の炭素化により生成された炭素化材料をそのまま本触媒として得ることとしてもよい。また、本触媒は、炭素化材料を粉砕して得られた微粒子状の炭素触媒であることとしてもよい。炭素化材料を粉砕する方法は、特に限られず、例えば、ボールミルやビーズミル等の粉砕装置を使用することができる。粉砕後の炭素化材料の平均粒径は、例えば、150μm以下とすることができ、好ましくは100μm以下とすることができる。
 また、本触媒は、炭素化により生成された炭素化材料にアルカリ土類金属を担持して得られる炭素触媒であることとしてもよい。すなわち、本触媒は、有機物と遷移金属とを含む原料を炭素化し、当該炭素化により生成された炭素化材料にアルカリ土類金属を担持することにより製造される。
 この場合、本触媒は、炭素化後に担持されたアルカリ土類金属を含む。このアルカリ土類金属は、主に本触媒の表面に担持される。アルカリ土類金属を担持することにより、当該アルカリ土類金属を担持しない場合に比べて、本触媒の活性を効果的に向上させることができる。なお、このアルカリ土類金属の担持による触媒活性の向上は、本発明の発明者らが鋭意検討を重ねた結果、後述の実施例で示すような炭素触媒の水素解離活性に着目して独自に見出したものである。
 炭素化材料にアルカリ土類金属を担持する方法は特に限られず、例えば、粉末状の炭素化材料と粉末状のアルカリ土類金属とを混合することにより、当該アルカリ土類金属を担持した当該炭素化材料からなる本触媒を得ることができる。この混合には、例えば、乳鉢や攪拌装置を使用することができる。また、例えば、含浸担持法、イオン交換担持法、ゾルゲル法、共沈法によっても、炭素化材料にアルカリ土類金属を担持して本触媒を得ることができる。
 アルカリ土類金属は、特に限られず、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)からなる群より選択される1種以上を使用することができ、マグネシウム(Mg)、カルシウム(Ca)及びバリウム(Ba)からなる群より選択される1種以上を好ましく使用することができる。
 本触媒が担持するアルカリ土類金属の量は、本触媒の活性を向上させる範囲であれば特に限られない。すなわち、本触媒に含まれるアルカリ土類金属の量は、例えば、当該アルカリ土類金属を担持する炭素化材料に対して0.1~50重量%(炭素化材料100重量部に対してアルカリ土類金属0.1~50重量部)とすることができ、0.5~30重量%とすることが好ましく、1~20重量%とすることがより好ましい。
 また、本触媒は、炭素化により生成された炭素化材料に、さらなる処理を施して得られる炭素触媒であることとしてもよい。すなわち、本触媒は、例えば、炭素化材料に金属除去処理を施して得られた炭素触媒であることとしてもよい。さらに、この場合、本触媒は、例えば、金属除去処理が施された炭素化材料にアルカリ土類金属を担持して得られた炭素触媒であることとしてもよい。炭素化材料に金属除去処理を施すことにより、当該炭素化材料から遷移金属を除去し、その炭素構造の活性点を露出させることができる。
 金属除去処理は、炭素化材料に含まれる遷移金属を除去する処理である。金属除去処理は、炭素化材料に含まれる遷移金属を除去し、又は当該遷移金属の量を低減できる処理であれば特に限られず、例えば、酸による洗浄処理や電解処理を実施することができる。
 酸による洗浄処理に使用する酸は、金属除去処理の効果が得られるものであれば特に限られず、任意の1種以上を使用することができる。すなわち、例えば、塩酸(例えば、濃塩酸)、硝酸(例えば、濃硝酸)及び硫酸(例えば、濃硫酸)からなる群より選択される1種以上を使用することができる。2種以上の酸を使用する場合には、例えば、濃塩酸と濃硝酸とを所定の体積比で混合して調製された混酸(例えば、王水)や、濃硝酸と濃硫酸とを所定の体積比で混合して調製された混酸を使用することができる。酸による洗浄処理の方法は、特に限られず、例えば、酸を含有する溶液中に炭素化材料を浸漬して保持する方法を使用することができる。
 なお、本触媒が金属除去処理を経て得られる場合、本触媒は、実質的に遷移金属を含有しないこととしてもよいし、残存した遷移金属を含むこととしてもよい。本触媒に残存する遷移金属は、元素分析等の方法により確認することができる。
 また、本触媒は、原料の炭素化により生成された炭素化材料に窒素原子又はホウ素原子を導入(ドープ)して得られた炭素触媒であることとしてもよい。この場合、本触媒の製造においては、任意の工程で炭素化材料に窒素原子又はホウ素原子をドープすることができる。窒素原子又はホウ素原子を導入する方法としては、例えば、アンモオキシデーション法やCVD法等の気相ドープ法、液相ドープ法又は気相-液相ドープ法を使用することができる。具体的に、例えば、アンモニア、メラミン、アセトニトリル等の窒素源又はホウ酸、水素化ホウ素ナトリウム等のホウ素源を炭素化材料と混合し、得られた混合物を窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で550℃以上、1200℃以下の温度で、5分以上、180分以下の時間保持することにより、当該炭素化材料の表面に窒素原子を導入することができる。
 また、本触媒は、原料の炭素化により生成された炭素化材料に、二酸化炭素賦活、リン酸賦活、アルカリ賦活、水素賦活、アンモニア賦活、酸化窒素による賦活、電解賦活等の賦活処理及び/又は硝酸酸化、混酸酸化、過酸化水素酸化等の液相酸化を施して得られた炭素触媒であることとしてもよい。
 本触媒の窒素吸着BET法により求めた比表面積は、例えば、10m/g以上とすることができ、好ましくは100m/g以上とすることができる。より具体的に、本触媒の比表面積は、例えば、200m/g以上、3000m/g以下とすることができ、好ましくは300m/g以上、3000m/g以下とすることができる。
 そして、本触媒は、炭化水素化合物及び/又は含酸素有機化合物の熱分解による水素生成に使用される。すなわち、本触媒は、炭化水素化合物及び/又は含酸素有機化合物を熱分解して水素を生成する反応を触媒する活性を有する。
 この触媒活性に関連して、本触媒は、所定の水素解離活性を有する。すなわち、本触媒は、例えば、所定重量(例えば、20mg)の本触媒を充填した反応管を用いた水素-重水素交換反応において、水素ガスと重水素ガスとアルゴンガスとの混合ガス(水素流量=10mL/分、重水素流量=10mL/分、アルゴン流量=30mL/分)下で、当該反応管を10℃/分の昇温速度で40℃から600℃まで加熱した際の当該水素ガスの総減少量を当該所定重量で除して算出される水素解離活性が10mmol/g以上であることとしてもよい。
 そして、本実施形態に係る方法(以下、「本方法」という。)は、本触媒を使用して、炭化水素化合物及び/又は含酸素有機化合物を熱分解して水素を生成する方法である。
 炭化水素化合物及び含酸素有機化合物は、その熱分解によって水素を生成するものであれば特に限られない。すなわち、炭化水素化合物としては、例えば、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素からなる群より選択される1種以上を使用することができる。
 脂肪族炭化水素としては、例えば、炭素数が1~20のものを好ましく使用することができ、炭素数が1~12のものを特に好ましく使用することができる。具体的には、例えば、メタン、エタン、エチレン、プロパン、プロピレン及びブタンからなる群より選択される1種以上を使用することができる。脂環式炭化水素としては、例えば、炭素数が3~12のものを好ましく使用することができる。具体的に、例えば、シクロプロパン、シクロブタン、シクロペンタン及びシクロヘキサンからなる群より選択される1種以上を使用することができる。芳香族炭化水素としては、例えば、炭素数が5~16のものを好ましく使用することができる。具体的に、例えば、ベンゼン、トルエン,キシレン、エチルベンゼン及びテトラリンからなる群より選択される1種以上を使用することができる。
 含酸素有機化合物としては、例えば、アルコール類、エーテル類、エステル類及びケトン類からなる群より選択される1種以上を使用することができる。アルコール類としては、例えば、炭素数が1~12のものを好ましく使用することができる。具体的には、例えば、メタノール、エタノール、プロパノール及びブタノールからなる群より選択される1種以上を使用することができる。エーテル類としては、例えば、炭素数が2~12のものを好ましく使用することができる。具体的には、例えば、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、オキサシクロペンタン及びクラウンエーテルからなる群より選択される1種以上を使用することができる。エステル類としては、例えば、炭素数が2~12のものを好ましく使用することができる。具体的には、例えば、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、酪酸メチル、酪酸エチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸ブチルからなる群より選択される1種以上を使用することができる。ケトン類としては、例えば、炭素数が3~6のものを好ましく使用することができる。具体的には、例えば、プロパノン、ペンタノン、ブタノン及びシクロヘキサノンからなる群より選択される1種以上を使用することができる。
 本方法においては、本触媒の存在下で炭化水素化合物及び/又は含酸素有機化合物を熱分解して水素を生成する。すなわち、本方法においては、炭化水素化合物及び/又は含酸素有機化合物と本触媒とを加熱下で接触させる。炭化水素化合物及び/又は含酸素有機化合物としては、気体状又は液体状であるものを好ましく使用することができ、気体状の炭素水素化合物及び/又は含酸素有機化合物を特に好ましく使用することができる。
 炭化水素化合物及び/又は含酸素有機化合物と他の成分との混合物を本触媒と接触させることとしてもよい。すなわち、気体状の炭化水素化合物及び/又は含酸素有機化合物を使用する場合、例えば、当該炭化水素化合物及び/又は含酸素有機化合物と、アルゴン、窒素、ヘリウム等の不活性ガスと、を含む混合ガスを本触媒と接触させることとしてもよい。また、炭化水素化合物及び/又は含酸素有機化合物を含むバイオマスガスと本触媒とを接触させることとしてもよい。バイオマスガスは、例えば、水分、二酸化炭素等の他の成分を含んでいてもよい。また、合成樹脂(ポリエチレン、ポリスチレン、ポリエステル、熱硬化性樹脂、フェノール樹脂、エポキシ樹脂、ベークライト樹脂、ポリカーボネート等)、石油、灯油、重質油等の有機物を熱分解することで得られる有機熱分解ガスと本触媒とを接触させることとしてもよい。
 本触媒と炭化水素化合物及び/又は含酸素有機化合物とを接触させる温度は、当該炭化水素化合物及び/又は含酸素有機化合物が熱分解して水素が生成される範囲であれば特に限られず、例えば、300℃以上とすることができ、500℃以上とすることが好ましい。より具体的に、この温度は、例えば、300~1100℃とすることができ、500~1000℃とすることが好ましく、600~1000℃とすることがより好ましい。
 次に、本実施形態に係る具体的な実施例について説明する。
[炭素触媒CA(Fe)]
 0.4gのポリビニルピリジンと、0.45gの塩化鉄(III)六水和物と、0.5gのケッチェンブラック(ECP600JD、ライオン株式会社製)と、を乳鉢に入れ、均一に混合し、原料を調製した。得られた原料を横型イメージ炉に入れ、窒素ガス雰囲気下、50℃/分の昇温速度で加熱し、炭素化温度900℃にて1時間保持し、炭素化した。そして、炭素化により生成された炭素化材料を炭素触媒CA(Fe)として得た。この炭素触媒CA(Fe)のBET比表面積は630m/gであった。
[炭素触媒CA(Fe)AW]
 炭素触媒CA(Fe)に、酸洗浄による金属除去処理を施した。すなわち、炭素触媒CA(Fe)1gに100mLの濃塩酸を加え、1時間攪拌した。炭素触媒を沈殿させ、溶液を除去した後、濃塩酸と蒸留水とを1:1(体積比)で混合した溶液を100mL加え、1時間攪拌した。炭素触媒を沈殿させ、溶液を除去した後、蒸留水を100mL加え、1時間攪拌した。この炭素触媒を含有する溶液を、ろ過膜(孔径1.0μm、Millipore製)を使用してろ過し、ろ液が中性になるまで蒸留水で洗浄した。回収された炭素触媒を60℃で12時間、真空乾燥させた。こうして、金属除去処理が施された炭素触媒CA(Fe)AWを得た。この炭素触媒CA(Fe)AWのBET比表面積は690m/gであった。
[炭素触媒CA(Co)]
 塩化鉄(III)六水和物に代えて、塩化コバルト六水和物を使用したこと以外は、上述の炭素触媒CA(Fe)と同様にして、炭素触媒CA(Co)を得た。この炭素触媒CA(Co)のBET比表面積は670m/gであった。
[炭素触媒CA(Ni)]
 塩化鉄(III)六水和物に代えて、塩化ニッケル六水和物を使用したこと以外は、上述の炭素触媒CA(Fe)と同様にして、炭素触媒CA(Ni)を得た。この炭素触媒CA(Ni)のBET比表面積は650m/gであった。
[炭素触媒CA(Mn)]
 1.5gのポリアクリロニトリル-ポリメタクリル酸共重合体を30gのジメチルホルムアミドに溶解させた。その後、1.25gの塩化マンガン四水和物と1.5gの2-メチルイミダゾールとを加え、2時間攪拌して溶液を得た。得られた溶液に、ケッチェンブラック(EC600JD、ライオン株式会社製)を、後述の前駆体組成物における含有量が67重量%となるように加え、乳鉢を用いて混合した。さらに、この混合物を、60℃、6.4×10-2Paで12時間減圧乾燥し、ジメチルホルムアミドを除去した。こうして前駆体組成物を得た。
 次に、前駆体組成物の不融化処理を行った。すなわち、前駆体組成物を強制循環式乾燥機内にセットした。そして、大気中にて、乾燥機内の温度を、30分間かけて室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、前駆体組成物を220℃で3時間保持した。こうして前駆体組成物を不融化し、炭素化の原料を得た。
 そして、原料の炭素化を行った。すなわち、上述のようにして得られた原料を石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、当該石英管に20分間窒素パージした。次いで、加熱を開始し、ゴールドイメージ炉の温度を、50℃/分の昇温速度で室温から900℃まで昇温した。その後、この石英管を900℃で1時間保持した。こうして原料が炭素化されることにより生成された炭素化材料を得た。
 さらに、炭素化材料の粉砕処理を行った。すなわち、遊星ボールミル(P-7、フリッチュジャパン株式会社製)内に10mm径の窒化ケイ素ボールをセットし、炭素化材料を回転速度650rpmで50分間粉砕した。粉砕した炭素化材料を取り出し、目開き106μmの篩で分級した。篩を通過した炭素化材料を炭素触媒CA(Mn)として得た。この炭素触媒CA(Mn)のBET比表面積は900m/gであった。
[比較試料KB]
 炭素触媒の原料にも使用した市販のケッチェンブラック(ECP600JD、ライオン株式会社製)を比較試料KBとして使用した。この比較試料KBのBET比表面積は1200m/gであった。
[比較試料BP]
 市販のカーボンブラック(Black Pearls 2000、CABOT社製)を比較試料BPとして使用した。この比較試料BPのBET比表面積は1500m/gであった。
[比較試料Fe/BP]
 比較試料BPに鉄を担持させることにより比較試料Fe/BPを調製した。すなわち、まず、約0.1gの硝酸鉄(III)九水和物をナスフラスコへ入れて100mLの蒸留水に溶解した。次いで、この硝酸鉄水溶液に比較試料BPを加えた。さらに、約5mLのメタノールを加え、超音波で10分間攪拌した。攪拌後、ナスフラスコをエバポレーターに設置して減圧下で20分間回転させ、次いで60℃の湯浴につけて減圧乾燥させた。
 こうして、比較試料BPに対して10重量%の鉄を担持した比較試料Fe/BPを得た。この比較試料Fe/BPのBET比表面積は1365m/gであった。
[メタンの熱分解による水素生成]
 炭化水素化合物としてメタンを使用し、上述した炭素触媒及び比較試料のいずれかの存在下で、メタンの熱分解による水素の生成を実施した。すなわち、30mgの炭素触媒又は比較試料を内径1cmの石英製反応管に充填した。次いで、この反応管を縦型イメージ炉へ設置し、アルゴン雰囲気下で10℃/分の昇温速度で加熱し、700℃で1時間保持する前処理を行った。なお、比較試料Fe/BPを使用した場合には、上述の前処理に代えて、水素雰囲気下で50℃/分の昇温速度で加熱し、350℃で1時間保持する前処理(還元処理)を行った。
 そして、十分に反応管が冷めた後、メタンとアルゴンとの混合ガス(メタン流量=23mL/分、アルゴン流量=27mL/分)を30分間流通させて装置内のガス濃度を安定化させた。続いて、反応管を10℃/分の昇温速度で室温から900℃まで加熱し、メタンの熱分解反応を行った。温度が900℃に到達した後は、引き続き混合ガスを流通させながら、反応管を900℃で20分間保持した。
 昇温の過程における各温度及び900℃に到達した後のガス成分の分析は、高速・小型ガス分析計(マイクロGC 490-GC、VARIAN社製)により行った。そして、昇温の過程における分析結果に基づき、各温度における、比表面積あたりの水素生成速度(μmol/(min・m))を算出した。
[水素-重水素交換反応]
 炭素触媒及び比較試料の特性の一つとして、水素分子を水素原子に解離させる触媒活性を、水素(H)-重水素(D)交換反応に基づき評価した。すなわち、水素ガス(H)及び重水素ガス(D)を含む混合ガスを炭素触媒又は比較試料と接触させた場合における解離した水素ガスの量を、TPR(Temperature Programmed Reaction)法にて評価した。
 具体的に、まず、ブランクの測定を行った。すなわち、炭素触媒及び比較試料を充填していない石英反応管を触媒分析装置(日本ベル株式会社製)に設置し、アルゴンガスを50mL/分の流量で30分間流通させて、系内の気相をアルゴンに置換した。さらに、アルゴン雰囲気下で、反応管を50℃/分の昇温速度で加熱し、700℃で1時間保持する前処理を行った。
 そして、反応管を40℃まで自然放冷した後、水素ガスと重水素ガスとアルゴンガスとの混合ガス(水素流量=10mL/分、重水素流量=10mL/分、アルゴン流量=30mL/分)を10分間流通させた。その後、この混合ガスを流通させながら、反応管を10℃/分の昇温速度で900℃まで加熱した。
 昇温の過程における水素ガス濃度を四重極型質量分析計(Quadrupole Mass Spectrometer:Q-mass)により分析し、各温度における水素ガスの減少量を求めた。
 次に、炭素触媒及び比較試料を使用して同様の分析を行った。すなわち、まず、炭素触媒CA(Fe)、炭素触媒CA(Fe)AW、炭素触媒CA(Mn)及び比較試料Fe/BPのいずれかの試料を20mg量りとり、石英反応管へ充填した。このとき、石英ウールを試料の上下に詰めることにより、反応中における当該試料の飛散を防止した。
 その後、反応管を市販の触媒分析装置(日本ベル株式会社製)に設置し、アルゴンガスを50mL/分の流量で30分間流通させて、系内の気相をアルゴンに置換した。さらに、アルゴン雰囲気下で、反応管を50℃/分の昇温速度で加熱し、700℃で1時間保持する前処理を行った。
 そして、反応管を40℃まで自然放冷した後、水素ガスと重水素ガスとアルゴンガスとの混合ガス(水素流量=10mL/分、重水素流量=10mL/分、アルゴン流量=30mL/分)を10分間流通させた。その後、この混合ガスを流通させながら、反応管を10℃/分の昇温速度で900℃まで加熱した。
 昇温の過程における水素ガス濃度を四重極型質量分析計(Quadrupole Mass Spectrometer:Q-mass)により分析し、各温度における水素ガスの減少量を求めた。そして、各温度において、試料を使用して得られた水素ガスの減少量から、ブランク測定で得られた水素ガスの減少量を減じた値を、実際に当該試料を使用することにより得られた水素ガスの減少量として算出した。
 さらに、この算出された水素ガス減少量を温度に対してプロットして、水素ガスの減少量と温度との相関関係を示す曲線を作成した。作成された曲線から、40℃から600℃までにおける水素ガスの総減少量を算出した。そして、こうして算出された水素ガスの総減少量を、使用された炭素触媒又は比較試料の重量(20mg)で除した値を、当該炭素触媒又は比較試料の重量あたりの水素解離活性(mmol/g)として評価した。
[評価結果]
 図1には、上述した炭素触媒及び比較試料のいずれかを使用したメタンの熱分解による水素生成において、水素生成速度を評価した結果を示す。図1において、横軸はメタンの熱分解を行った温度(℃)を示し、縦軸は各温度における炭素触媒又は比較試料の比表面積あたりの水素生成速度(μmol/(min・m))を示す。
 図1において、黒塗り丸印は炭素触媒CA(Fe)、黒塗り三角印は炭素触媒CA(Co)、黒塗り菱形印は炭素触媒CA(Ni)、黒塗り四角印は炭素触媒CA(Mn)、半黒塗り菱形印は炭素触媒CA(Fe)AW、白抜き丸印は比較試料Fe/BP、白抜き四角印は比較試料BP、及び白抜き菱形印は比較試料KBを使用した結果をそれぞれ示す。
 図1に示すように、炭素触媒の存在下における少なくとも600~900℃での水素生成速度は、比較試料の存在下におけるそれと同等以上であり、特に、炭素触媒CA(Fe)、炭素触媒CA(Co)及び炭素触媒CA(Ni)を使用した場合の水素生成速度は顕著に大きかった。
 図2には、炭素触媒CA(Fe)及び比較試料Fe/BPのいずれかを使用した場合において、反応温度を900℃に保持した20分間での水素生成量(μmol)、触媒活性低下率(%)、及び触媒活性低下率あたりの水素生成量(μmol/%)を評価した結果を示す。
 水素生成量は、温度が900℃に到達した時点から、温度を900℃に保持して20分が経過した時点までの間に生成された水素ガスの量として算出された。触媒活性低下率は、温度が900℃に到達した時点における水素生成速度と、温度を900℃に保持して20分が経過した時点における水素生成速度との差分を、前者の水素生成速度を100%として算出した。
 さらに、触媒活性低下率あたりの水素生成量は、上述のように算出された水素生成量を触媒活性低下率で除することにより算出した。この触媒活性低下率あたりの水素生成量は、触媒活性が1%低下する間に生成される水素の量を表わす。したがって、触媒活性低下率あたりの水素生成量が大きいほど、炭素触媒又は比較試料の触媒活性が所定%低下するまでに生成される水素の量が多い、すなわち、当該炭素触媒又は比較試料が失活するまでの水素生成量が大きいこととなる。
 図2に示すように、炭素触媒CA(Fe)を使用した場合の水素生成量は、比較試料Fe/BPを使用した場合のそれに比べて顕著に大きかった。一方、炭素触媒CA(Fe)の触媒活性低下率は、比較試料Fe/BPのそれに比べて小さかった。すなわち、炭素触媒CA(Fe)の触媒活性は、比較試料Fe/BPのそれに比べて低下し難かった。そして、炭素触媒CA(Fe)の触媒活性低下率あたりの水素生成量は、比較試料Fe/BPのそれに比べて顕著に大きくなった。
 このように、炭素触媒CA(Fe)の触媒活性は、比較試料Fe/BPのそれに比べて高いのみならず、比較的高い温度での水素生成反応においても効果的に維持されることが確認された。
 図3には、炭素触媒CA(Fe)、炭素触媒CA(Fe)AW、炭素触媒CA(Mn)及び比較試料Fe/BPのいずれかを使用した水素-重水素交換反応における水素解離活性(mmol/g)を評価した結果を示す。
 図3に示すように、3種類の炭素触媒の水素解離活性はいずれも、比較試料に比べて高かった。また、図示はしていないが、炭素触媒を使用した場合には、比較試料を使用した場合に比べて、より低い温度で水素の解離が発生し始めることも確認された。
 すなわち、炭素触媒は、比較試料に比べて、水素を解離させる触媒活性が高いと考えられた。この結果に基づき、本発明の発明者らは、後述のとおり、水素貯蔵に適したマグネシウムやカルシウム等のアルカリ土類金属を炭素触媒に担持するという発想を得た。
[炭素触媒Mg/CA(Fe)]
 炭素触媒CA(Fe)と、水酸化マグネシウムと、をメノウ乳鉢へ入れて混合した。こうして、炭素触媒CA(Fe)に対して3重量%のマグネシウム(炭素触媒CA(Fe)100重量部に対して3重量部のマグネシウム)を担持した炭素触媒Mg/CA(Fe)を得た。
[炭素触媒Mg/CA(Fe)AW]
 炭素触媒CA(Fe)に代えて、炭素触媒CA(Fe)AWを使用したこと以外は、上述の炭素触媒Mg/CA(Fe)と同様にして、炭素触媒CA(Fe)AWに対して3重量%のマグネシウムを担持した炭素触媒Mg/CA(Fe)AWを得た。
[炭素触媒Mg/CA(Mn)]
 炭素触媒CA(Fe)に代えて、炭素触媒CA(Mn)を使用したこと以外は、上述の炭素触媒Mg/CA(Fe)と同様にして、炭素触媒CA(Mn)に対して3重量%のマグネシウムを担持した炭素触媒Mg/CA(Mn)を得た。
[炭素触媒Ca/CA(Mn)]
 水酸化マグネシウムに代えて、水酸化カルシウムを使用したこと以外は、上述の炭素触媒Ca/CA(Mn)と同様にして、炭素触媒CA(Mn)に対して3重量%のカルシウムを担持した炭素触媒Ca/CA(Mn)を得た。
[比較試料Mg/BP]
 炭素触媒CA(Fe)に代えて、比較試料BPを使用したこと以外は、上述の炭素触媒Mg/CA(Fe)と同様にして、比較試料BPに対して3重量%のマグネシウムを担持した比較試料Mg/BPを得た。
[比較試料Mg/Fe/BP]
 比較試料BPに代えて、比較試料Fe/BPを使用したこと以外は、上述の比較試料Mg/BPと同様にして、比較試料Fe/BPに対して3重量%のマグネシウムを担持した比較試料Mg/Fe/BPを得た。
[メタンの熱分解による水素生成]
 上述の実施例1と同様にして、アルカリ土類金属を担持した炭素触媒及び比較試料のいずれかの存在下で、メタンの熱分解による水素生成を実施した。なお、前処理としては、上述の実施例1における前処理に代えて、炭素触媒又は比較試料を水素雰囲気下で50℃/分の昇温速度で加熱し、650℃で1時間保持する前処理(還元処理)を行った。
[評価結果]
 図4には、アルカリ土類金属を担持した炭素触媒及び比較試料のいずれかを使用したメタンの熱分解による水素生成において、水素生成速度を評価した結果を示す。図4において、横軸はメタンの熱分解を行った温度(℃)を示し、縦軸は各温度における炭素触媒又は比較試料の比表面積あたりの水素生成速度(μmol/(min・m))を示す。
 黒塗り三角印は炭素触媒Mg/CA(Mn)、黒塗り四角印は炭素触媒Ca/CA(Mn)、黒塗り逆三角印は炭素触媒Mg/CA(Fe)、黒塗り菱形印は炭素触媒Mg/CA(Fe)AW、白抜き三角印は比較試料Mg/Fe/BP、及び白抜き四角印は比較試料Mg/BPを使用した結果をそれぞれ示す。なお、参考として、図1にも示したアルカリ土類金属を担持していない比較試料Fe/BPを使用した結果を白抜き丸印にて示す。
 図5には、炭素触媒CA(Fe)、炭素触媒CA(Fe)AW、炭素触媒CA(Mn)及び比較試料Fe/BPのそれぞれについて、900℃での水素生成速度(μmol/(min・m))を、マグネシウムを担持する前と後とで比較した結果を示す。
 図4に示すように、マグネシウム又はカルシウムを担持した炭素触媒の存在下における水素生成速度は、比較試料の存在下におけるそれより顕著に高かった。また、図5、及び図4と図1との比較により明らかなとおり、炭素触媒を使用した場合における水素生成速度は、当該炭素触媒にマグネシウムを担持することによって顕著に増加した。この点、図5に示すように、図3において水素解離活性が高かった炭素触媒ほど、マグネシウムを担持することによって触媒活性が向上する程度(図5の「Mg担持後/Mg担持前」欄に示す水素生成速度の増加率(%))も大きかった。
 一方、比較試料Mg/Fe/BPの存在下における水素生成速度は、比較試料Fe/BPの存在下におけるそれよりも小さかった。すなわち、図5に示すように、比較試料Fe/BPを使用した場合における水素生成速度は、当該比較試料Fe/BPにマグネシウムを担持することによって却って減少した。また、鉄を担持していない炭素触媒BPにマグネシウムを担持しても、マグネシウムを担持する前に比べて、水素生成速度はほとんど変化しなかった(図1及び図4参照)。
 このように、アルカリ土類金属を担持した炭素触媒が示す高い触媒活性は、有機物と遷移金属とを含む原料の炭素化により得られる炭素触媒が有する特有の炭素構造と、当該アルカリ土類金属が有する特性と、の特異的な相乗効果によるものと考えられた。

Claims (5)

  1.  有機物と遷移金属とを含む原料の炭素化により得られる炭素触媒であって、
     炭化水素化合物及び/又は含酸素有機化合物の熱分解による水素生成に使用される
     ことを特徴とする水素生成用炭素触媒。
  2.  前記炭素化により生成された炭素化材料にアルカリ土類金属を担持して得られる
     ことを特徴とする請求項1に記載された水素生成用炭素触媒。
  3.  所定重量の前記水素生成用炭素触媒を充填した反応管を用いた水素-重水素交換反応において、水素ガスと重水素ガスとアルゴンガスとの混合ガス(水素流量=10mL/分、重水素流量=10mL/分、アルゴン流量=30mL/分)下で前記反応管を10℃/分の昇温速度で40℃から600℃まで加熱した際の前記水素ガスの総減少量を前記所定重量で除して算出される水素解離活性が10mmol/g以上である
     ことを特徴とする請求項1又は2に記載された水素生成用炭素触媒。
  4.  有機物と遷移金属とを含む原料を炭素化し、
     前記炭素化により生成された炭素化材料にアルカリ土類金属を担持する
     ことを特徴とする水素生成用炭素触媒の製造方法。
  5.  請求項1又は2に記載された水素生成用炭素触媒を使用して、炭化水素化合物及び/又は含酸素有機化合物を熱分解して水素を生成する
     ことを特徴とする方法。
PCT/JP2011/075188 2010-11-29 2011-11-01 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法 WO2012073639A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137013378A KR101335712B1 (ko) 2010-11-29 2011-11-01 수소 생성용 탄소 촉매 및 그 제조방법, 그리고 이것을 이용해서 수소를 생성하는 방법
CA2819092A CA2819092C (en) 2010-11-29 2011-11-01 Carbon catalyst for hydrogen production, method for producing catalyst, and method for producing hydrogen using catalyst
US13/988,609 US9050583B2 (en) 2010-11-29 2011-11-01 Carbon catalyst for hydrogen production, method for producing catalyst, and method for producing hydrogen using catalyst
CN201180057398.7A CN103249482B (zh) 2010-11-29 2011-11-01 用于氢气生产的碳催化剂、制备催化剂的方法、和采用催化剂生产氢气的方法
EP11844573.3A EP2647428B1 (en) 2010-11-29 2011-11-01 Use of a carbon catalyst for hydrogen production, carbon catalyst and method for producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010265334A JP5193274B2 (ja) 2010-11-29 2010-11-29 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法
JP2010-265334 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073639A1 true WO2012073639A1 (ja) 2012-06-07

Family

ID=46171589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075188 WO2012073639A1 (ja) 2010-11-29 2011-11-01 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法

Country Status (7)

Country Link
US (1) US9050583B2 (ja)
EP (1) EP2647428B1 (ja)
JP (1) JP5193274B2 (ja)
KR (1) KR101335712B1 (ja)
CN (1) CN103249482B (ja)
CA (1) CA2819092C (ja)
WO (1) WO2012073639A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079955A1 (ja) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 固体塩基触媒並びにこれに関する方法及び反応装置
CN110813311A (zh) * 2019-11-08 2020-02-21 成都理工大学 一种催化NaBH4水解制氢的高效率Ru/Co催化剂的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193274B2 (ja) 2010-11-29 2013-05-08 国立大学法人群馬大学 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法
JP5889613B2 (ja) * 2011-11-25 2016-03-22 国立大学法人群馬大学 金属担持用担体、金属担持触媒、メタネーション反応装置及びこれらに関する方法
US11465113B2 (en) * 2015-02-13 2022-10-11 Thermo Fisher Scientific (Bremen) Gmbh Use of a reactor, methods, and device for quantitatively obtaining molecular hydrogen from substances
CN105289614B (zh) * 2015-03-06 2017-11-17 深圳市国创新能源研究院 一种用于制氢的镍‑碳基催化剂材料的制备方法
KR102079120B1 (ko) 2018-06-18 2020-02-19 한국과학기술연구원 칼슘염에 담지된 금속 촉매, 이의 제조방법 및 이를 이용한 함산소 화합물의 수첨탈산소 반응방법
CN110538629A (zh) * 2019-08-06 2019-12-06 广东工业大学 一种利用手机保护膜粘合剂制备吸附材料的方法及其制得的吸附材料和应用
CN110649272A (zh) * 2019-09-29 2020-01-03 先进储能材料国家工程研究中心有限责任公司 质子交换膜燃料电池用催化剂的制备工艺
WO2021087405A1 (en) * 2019-10-30 2021-05-06 West Virginia University Methods and compositions for production of co2-free hydrogen and carbon nanomaterials by methane decomposition
CN111689466A (zh) * 2020-05-27 2020-09-22 深圳市中科纳米科技有限公司 有机废弃物的综合处理方法及其处理系统
CN114570429B (zh) * 2020-11-30 2023-09-05 浙江工业大学 一种单原子负载共价有机框架材料及其制备与在光解水制氢中的应用
JP7408614B2 (ja) 2021-12-01 2024-01-05 日清紡ホールディングス株式会社 水素製造用触媒及び水素製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165101A (ja) 1994-12-14 1996-06-25 Agency Of Ind Science & Technol 水素の製造方法
JP2009521387A (ja) * 2005-12-21 2009-06-04 ヴァイレント エナジー システムズ インク. 触媒、および含酸素化合物の製造方法
JP2010083789A (ja) * 2008-09-30 2010-04-15 Hokkaido Univ 固体塩基触媒、その製造方法及びこれを使用する方法
JP2010184906A (ja) * 2009-02-13 2010-08-26 Tokyo Institute Of Technology 芳香族アルコールの酸化方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689711B2 (en) * 2001-10-09 2004-02-10 Metallic Power, Inc. Methods of producing oxygen reduction catalyst
JP3798300B2 (ja) 2001-11-13 2006-07-19 東邦瓦斯株式会社 水素の製造方法
CA2476255C (en) * 2002-02-14 2012-07-31 Monsanto Technology Llc Oxidation catalyst and process for its preparation and process for oxidation using it
AU2003289357A1 (en) * 2002-12-17 2004-07-09 Asahi Kasei Chemicals Corporation Electrode catalyst for oxygen reduction and gas diffusion electrode
JP4174564B2 (ja) * 2003-03-04 2008-11-05 株式会社日本製鋼所 無担持炭化水素直接分解触媒の製造方法ならびに炭化水素直接分解による水素と炭素の製造方法
PL1623957T3 (pl) * 2005-02-10 2008-06-30 Bestrong Int Ltd Sposób i urządzenie do wytwarzania wodoru
JP5481646B2 (ja) 2008-06-04 2014-04-23 清蔵 宮田 炭素触媒、燃料電池、蓄電装置
WO2010064556A1 (ja) * 2008-12-02 2010-06-10 日清紡ホールディングス株式会社 炭素触媒及びその製造方法、これを用いた電極及び電池
US8372781B2 (en) * 2009-11-05 2013-02-12 Nisshinbo Holdings, Inc. Carbon catalyst and use thereof
JP5193274B2 (ja) 2010-11-29 2013-05-08 国立大学法人群馬大学 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165101A (ja) 1994-12-14 1996-06-25 Agency Of Ind Science & Technol 水素の製造方法
JP2009521387A (ja) * 2005-12-21 2009-06-04 ヴァイレント エナジー システムズ インク. 触媒、および含酸素化合物の製造方法
JP2010083789A (ja) * 2008-09-30 2010-04-15 Hokkaido Univ 固体塩基触媒、その製造方法及びこれを使用する方法
JP2010184906A (ja) * 2009-02-13 2010-08-26 Tokyo Institute Of Technology 芳香族アルコールの酸化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. MURADOV ET AL., CATALYSIS TODAY, vol. 102-103, 2005, pages 225 - 223
See also references of EP2647428A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079955A1 (ja) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 固体塩基触媒並びにこれに関する方法及び反応装置
CN110813311A (zh) * 2019-11-08 2020-02-21 成都理工大学 一种催化NaBH4水解制氢的高效率Ru/Co催化剂的制备方法

Also Published As

Publication number Publication date
US9050583B2 (en) 2015-06-09
EP2647428A1 (en) 2013-10-09
CA2819092C (en) 2014-01-21
JP2012115725A (ja) 2012-06-21
JP5193274B2 (ja) 2013-05-08
EP2647428A4 (en) 2014-06-11
CN103249482A (zh) 2013-08-14
CA2819092A1 (en) 2012-06-07
KR20130077894A (ko) 2013-07-09
KR101335712B1 (ko) 2013-12-04
US20130243687A1 (en) 2013-09-19
CN103249482B (zh) 2014-11-26
EP2647428B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
JP5193274B2 (ja) 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法
Zhu et al. Carbon‐supported single metal site catalysts for electrochemical CO2 reduction to CO and beyond
Bulut et al. MnO x-promoted PdAg alloy nanoparticles for the additive-free dehydrogenation of formic acid at room temperature
JP5889613B2 (ja) 金属担持用担体、金属担持触媒、メタネーション反応装置及びこれらに関する方法
Pendem et al. Zeolitic imidazolate framework-mediated synthesis of Co3O4 nanoparticles encapsulated in N-doped graphitic carbon as an efficient catalyst for selective oxidation of hydrocarbons
JP4890623B2 (ja) 水素吸蔵炭素材料
Fang et al. Sacrificial sucrose strategy achieved enhancement of ammonia synthesis activity over a ceria-supported Ru catalyst
Saka Very efficient dehydrogenation of methanolysis reaction with nitrogen doped Chlorella Vulgaris microalgae carbon as metal-free catalysts
Bai et al. Preparation of nitrogen doped biochar-based iron catalyst for enhancing gasoline-range hydrocarbons production
Luan et al. Effect of oxygen vacancy of lignite-char-supported Co catalysts doped with In on efficient dry reforming of methane
Jiang et al. Molybdenum Carbide for Catalytic De/hydrogenation Process: Synthesis, Modulation and Applications
Zhang et al. Carbon modified active pairs of Co-Co2C for CO2 hydrogenation to alcohols
Cheng et al. Enhanced hydrogen storage and CO2 capture capacities on carbon aerogels from Ni-N co-doping
WO2023100626A1 (ja) 水素製造用触媒及び水素製造方法
Du et al. Nitrogen Defective Engineering of a Metal-Free Carbon Catalyst for Ammonia Electrosynthesis from Nitrate
Luan et al. Construction of metal-anchored and defect-rich N-doped lignite-char supported cobalt catalysts for pressurized dry reforming of methane
Wang et al. Defect-Domianted Intrinsic Activity of Carbon Governs Pd Nanoparticles for Boosted Formic Acid Dehydrogenation
Galallah et al. Optimizing Mo2C-based Catalytic System for Efficient CO2 Conversion and CO Selectivity through Carbon-nitrogen Supporting and Potassium Promotion
Krishan et al. Functionalized Metal-Free Carbon Nanosphere Catalyst for the Selective C–N Bond Formation under Open-Air Conditions
CN116669847A (zh) 再生碳和再活化催化剂的方法
Rivera‐Cárcamo et al. Preparation of Supported Metal Single‐Atom Catalysts on Carbon Supports

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988609

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137013378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2819092

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE