WO2012071893A1 - 一种制取丙烯的方法 - Google Patents

一种制取丙烯的方法 Download PDF

Info

Publication number
WO2012071893A1
WO2012071893A1 PCT/CN2011/076649 CN2011076649W WO2012071893A1 WO 2012071893 A1 WO2012071893 A1 WO 2012071893A1 CN 2011076649 W CN2011076649 W CN 2011076649W WO 2012071893 A1 WO2012071893 A1 WO 2012071893A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
reaction zone
methanol
secondary reaction
propylene
Prior art date
Application number
PCT/CN2011/076649
Other languages
English (en)
French (fr)
Inventor
齐越
刘中民
田鹏
李冰
王贤高
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EA201390763A priority Critical patent/EA024284B1/ru
Publication of WO2012071893A1 publication Critical patent/WO2012071893A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for producing propylene. Background technique
  • Low-carbon olefins including ethylene and propylene
  • the main applications are raw materials for important chemicals such as plastics, synthetic resins, fibers, and rubber.
  • Propylene is an important organic chemical raw material that is second only to ethylene.
  • downstream derivatives such as polypropylene production has exceeded polyethylene and polyvinyl chloride, global demand for propylene has risen sharply.
  • Propylene is an important basic raw material for petrochemicals. Its main downstream products include polypropylene, phenol, acetone, butanol, octanol, acrylonitrile, propylene oxide, acrylic acid and isopropanol. At present, the main raw material for propylene production is petroleum hydrocarbons. There are two main production processes for propylene: one is co-production from steam cracking to ethylene; the other is exhaust gas from refinery catalytic cracking unit. Steam cracking remains the main source of propylene supply.
  • Hydrocarbon steam pyrolysis technology has evolved over the decades and, despite the development of innovative technologies that are constantly improving, are still the largest energy consuming devices in the olefins industry.
  • the yields of propylene from different cracking feedstocks vary widely.
  • the propylene/ethylene yield ratio of ethylene cracking using a naphtha liquid raw material is 0.5-0.65.
  • the raw materials used in the new olefin plant are mostly ethane-based gas materials, which means that the propylene/ethylene yield ratio is reduced.
  • the growth rate of propylene has continued to exceed the growth rate of ethylene, and people have further improved the propylene yield by continuously improving the traditional propylene production process.
  • Ethylene is fed together with an alkylating agent (e.g., methanol and/or dimethyl ether) to cause a thiolation reaction on the catalyst to produce a hydrocarbon product including propylene.
  • an alkylating agent e.g., methanol and/or dimethyl ether
  • This process converts a portion of the ethylene product to propylene which can be used to adjust the propylene/ethylene ratio of the low carbon olefin production plant product.
  • it provides an efficient way to convert low-cost feedstocks containing ethylene (such as cracked dry gas) and methanol (and/or dimethyl ether) from non-petroleum resources to propylene.
  • the olefin can be thiolated with methanol on a solid acid catalyst to increase the carbon number of the olefin. See Svelle et al, J. Catal. 224 (2004), 115-123, J. Catal. 234 (2005), 385-400:
  • alkylation reactions can also occur between other alkylating agents such as olefins and dimethyl ether.
  • one molecule of ethylene can form one molecule of propylene by alkylation with methanol, dimethyl ether or the like.
  • This reaction provides a new way to produce propylene.
  • the advantage of this approach is that one carbon atom of propylene is derived from relatively inexpensive methanol and/or dimethyl ether, which reduces the cost of propylene production and can be used to adjust the propylene/ethylene ratio of the product of the conventional olefin production process. If low-value ethylene raw materials such as catalytic cracking dry gas are used, the economics of the method can be further improved.
  • U.S. Patent No. 3,906,054 discloses a process for olefin thiolation in which an olefin is contacted with a catalyst in the presence of a thiolation reagent.
  • the catalyst is a zeolite having a silica to alumina ratio of at least 12, modified by P, with a P content of at least 0.78%.
  • the olefins which can be thiolated include ethylene, propylene, butene-2 and isobutylene, and the alkylating agents which can be used are methanol, dimethyl ether and methyl chloride.
  • Chinese Patent Application No. 200610112555.0 discloses a process for preparing propylene, which is characterized in that: a raw material containing ethylene is in the presence of a methylating agent under a specific reaction condition and a molecular sieve having a micropore diameter of 0.3-0.5 nm. The catalyst contacts to form a product containing propylene. The propylene selectivity in the product can reach more than 65%.
  • Chinese Patent Application No. 200710064232.3 discloses a process for converting methanol and/or dimethyl ether to lower olefins, namely: using at least three separate reaction zones and at least one separation zone, all of the methanol and/or dimethyl ether feedstock
  • the above three separate reaction zones are fed separately, and changing the feed ratio of each reaction zone can adjust the proportion of various olefins in the final product, including: (a) Acidity of methanol and/or dimethyl ether in the first reaction zone Converting the catalyst to a mixed hydrocarbon stream comprising ethylene, propylene and a C4 or higher olefin, the stream entering the separation zone; (b) separating all of the streams from the three reaction zones in the separation zone, wherein the C3 component flows out of the separation After the zone is further separated to form a propylene product; at least a portion of the carbon number of not more than 2 components enters the second reaction zone, wherein at least a portion of the carbon number of not less than 4 components
  • the mixed material enters the above separation zone; (d) methanol and/or dimethyl ether is contacted with an acidic catalyst in a third reaction zone with at least a portion of the carbon number from the above separation zone and having a carbon number of not less than 4 A mixture of ethylene and propylene is fed to the separation zone.
  • Chinese Patent Application No. 200780035608.6 discloses a process for preparing propylene, which comprises at least one of methanol and dimethyl ether and ethylene as a raw material to produce propylene.
  • methanol and dimethyl ether is reacted with ethylene under specific conditions to obtain a fluid having an olefin having 4 or more carbon atoms
  • at least a part of the olefin having 4 or more carbon atoms is reacted with methanol under specific conditions. Reacting with at least one of dimethyl ether to obtain propylene.
  • Chinese Patent Application No. 200780030317.8 discloses a method and an apparatus for preparing propylene, wherein at least one of methanol and dimethyl ether is sent to a reactor to be reacted in the presence of a catalyst; and the obtained product is sent to a separator.
  • a separator In the separator, a low boiling point compound having a boiling point of -50 ° C or less at atmospheric pressure is separated from the product, and the low boiling point compound having an amount of 70% or more of the total low boiling point compound separated is contained.
  • the boiling point under reflux atmospheric pressure is -5 (the volume ratio of the low boiling point compound to the dimethyl ether feed amount below TC is close to 1 or greater than 1, the total yield of the propylene produced by dimethyl ether can be 70 %the above.
  • Chinese Patent Application No. 200710037230.5 discloses a method for increasing the yield of propylene by using at least one of methanol and dimethyl ether and ethylene as a raw material, and the raw materials are separated from the bottom distributor of the fluidized bed reactor or axially along the reaction zone. At least one feed position enters the reaction zone and contacts the catalyst to form an effluent containing ethylene and propylene, which is separated to obtain ethylene or propylene, wherein the ethylene raw material is derived from fresh ethylene or isolated ethylene or a mixture thereof.
  • the methanol conversion rate is more than 98%, the propylene yield can reach 18%.
  • the consumption of more methanol and/or dimethyl ether in the MTO conversion process greatly reduces the concentration of the thiolation reagents available for ethylene conversion, namely methanol and/or dimethyl ether. Conducive to the competition of ethylene thiolation reaction. These factors limit the yield of propylene in the thiolation reaction of ethylene with methanol and/or dimethyl ether. Increasing the ratio of ethylene/methanol and/or dimethyl ether in the raw material can strengthen the alkylation reaction of ethylene and inhibit the conversion of hydrazine, but it will result in a low methanol concentration in the raw material, a small amount of treatment, and ethylene/methanol and/or in the raw material.
  • the object of the present invention is to provide a process for preparing propylene, which can be used for the process of preparing propylene by using methanol and/or dimethyl ether and ethylene as raw materials, and also for separately using methanol and/or methanol.
  • the process of preparing propylene from dimethyl ether as a raw material is to provide a process for preparing propylene, which can be used for the process of preparing propylene by using methanol and/or dimethyl ether and ethylene as raw materials, and also for separately using methanol and/or methanol.
  • the method comprises the following steps: 1) mixing a gaseous material containing ethylene with a gaseous material containing methanol and/or dimethyl ether, entering a first secondary reaction zone, reacting with a catalyst to obtain a first secondary reaction zone effluent
  • the first secondary reaction zone effluent contains ethylene, propylene, an olefin having a carbon number of not less than 4, and other hydrocarbons; and 2) causing the m-th secondary reaction zone effluent to contain methanol and/or two
  • WHSV m and WHSV ⁇ are the secondary weight hourly space velocity of the mth secondary reaction zone and the m-1th secondary reaction zone, respectively, defined as the weight of all organic matter flowing into the secondary reaction zone per hour divided by The weight of the catalyst in the secondary reaction zone.
  • the solid acidic catalyst comprises at least one of the following: an aluminosilicate molecular sieve or a silicoaluminophosphate molecular sieve having an acidity, or the silicic aluminum molecular sieve or the silico-alumina molecular sieve having an acidity
  • an aluminosilicate molecular sieve or a silicoaluminophosphate molecular sieve having an acidity or the silicic aluminum molecular sieve or the silico-alumina molecular sieve having an acidity
  • the acidic silica-alumina molecular sieve or the silica-alumina molecular sieve has a pore diameter of from 0.3 nm to 0.5 nm.
  • the acidic silicoalumino molecular sieve or the silicoaluminophosphate molecular sieve, or the acid-modified silica-alumina molecular sieve or the silicoaluminophosphate molecular sieve is modified by an element other than the skeleton constituent element.
  • the ammonia-saturated adsorption amount of the mixture or their mixture at 20 CTC is from 0.8 mmol/g to 2.0 mmol/g.
  • the acidic silicoalumino molecular sieve or the silicoaluminophosphate molecular sieve, or the acid-modified silica-alumina molecular sieve or the silicoaluminophosphate molecular sieve is modified by an element other than the skeleton constituent element.
  • the total content of the mixture in the solid acidic catalyst is from 10% by weight to 90% by weight.
  • the solid acidic catalyst is bonded and formed by any one or any of several substances including silica, alumina or clay.
  • the reactor form of any one or more of the secondary reaction zones is a fixed bed. In a more preferred aspect of the invention, the reactor form of any one or more of the secondary reaction zones is a fluidized bed. In a preferred aspect of the invention, each of the secondary reaction zones is a zone of the fluidized bed or fixed bed reactor which is disposed within the same catalyst bed and which is distributed in the direction of flow of the material and which is separated by a plurality of feed locations.
  • the ethylene/(methanol + 2 times dimethyl ether) molar ratio is 0.05-5 based on the total amount of ethylene and methanol and/or dimethyl ether entering the reaction zone.
  • reaction conditions of each of the secondary reaction zones respectively comprise: a reaction temperature of 300. C-600 ° C.
  • reaction conditions of each of the secondary reaction zones respectively comprise: a reaction pressure of
  • reaction conditions of each of the secondary reaction zones respectively comprise: a secondary weight hourly space velocity of 0.1 hours - '-so hours -
  • At least a portion of the ethylene-containing gaseous material entering the first secondary reaction zone is separated from the effluent of the nth secondary reaction zone.
  • the method further comprises: separating the nth secondary reaction zone effluent to obtain propylene, a gaseous material containing ethylene, and a material containing an olefin having a carbon number of not less than 4.
  • At least a portion of the gaseous material containing ethylene is derived from an ethylene-containing material obtained by subjecting a separated material having an olefin having a carbon number of not less than 4 to a cracking reaction in the presence of a cracking catalyst. Gaseous material.
  • the cracking catalyst is the same as the solid acid catalyst.
  • n is an integer of 3 or greater.
  • n is an integer of 5 or greater.
  • n is an integer of 10 or less.
  • the method provided by the invention can be used for the process of preparing propylene by using methanol and/or dimethyl ether and ethylene as raw materials, and also for preparing propylene by using methanol and/or dimethyl ether as raw materials.
  • the utilization rate of raw materials can be improved, the load of the device can be reduced, the formation of by-products can be reduced, and a high propylene yield can be obtained, thereby saving investment, reducing energy consumption, and improving the economics of the entire process.
  • ethylene and methanol and/or dimethyl ether (hereinafter, methanol and/or dimethyl ether are also referred to as thiolation reagents) are co-fed in the same reaction zone, and the reaction is divided into n series.
  • n is 2 or more, preferably 3 or more, more preferably 5 or more, and preferably an integer of 10 or less, and each of the secondary reaction zones is doped with the same solid acidic catalyst, including: 1) a gaseous state containing ethylene The material is mixed with the gaseous material containing the thiolation reagent and then enters the first secondary reaction zone, reacts with the catalyst, and the alkylating agent is completely converted, and only a part of the ethylene in the raw material is converted, thereby obtaining a kind of ethylene, An effluent of propylene, an olefin having a carbon number of not less than 4, and other hydrocarbons; the effluent is mixed with a gaseous material containing a thiolation reagent and then passed to a second secondary reaction zone where it reacts with the catalyst to form an alkylating agent.
  • the rnth of the rn-1th secondary reaction zone (m is an integer of 2 to n) is mixed with the gaseous material containing the thiolation reagent and then enters the mth secondary reaction zone to be in contact with the catalyst. The reaction is carried out to obtain an effluent containing ethylene, propylene, an olefin having a carbon number of not less than 4, and other hydrocarbons.
  • ethylene, propylene and carbon are not less than that obtained from the nth secondary reaction zone.
  • WHSV m and WHSV ⁇ are the mth secondary reaction zone and the m-1th secondary reaction zone, respectively.
  • the stage weight hourly space velocity that is, the weight of all organic matter flowing into the secondary reaction zone per hour divided by the weight of the catalyst in the secondary reaction zone).
  • the above technical solution can ensure the complete conversion of the thiolation reagent, and the obtained propylene yield (based on the total methanol/dimethyl ether added to the raw material) is higher than the propylene yield obtained by:
  • the secondary reaction zone is not provided in the reaction zone; or the relationship between the secondary weight hourly space velocity of each secondary reaction zone does not conform to the above relation 1.
  • the solid acidic catalyst used in each of the secondary reaction zones may contain at least one silica-alumina molecular sieve or a silico-aluminophosphate molecular sieve having an acidity, or a product obtained by modifying a molecular sieve having the above characteristics by elements other than the skeleton constituent elements, or a plurality of A mixture of molecular sieves meeting the above characteristics.
  • propylene may be alkylated with methanol/dimethyl ether to form butene, or further reacted with methanol/dimethyl ether to form c 5 or more hydrocarbons.
  • shape selectivity of the molecular sieve pores by selecting a molecular sieve catalyst with a certain pore size, larger molecules in the product mixture, such as hydrocarbons above C4, are difficult to form or diffuse in the molecular sieve pores, thereby inhibiting further thiolation of propylene. The hydrocarbons having a higher carbon number are produced, thereby increasing the yield of propylene.
  • a high propylene yield can be obtained by co-feeding ethylene and a thiolation reagent.
  • Molecular sieves having the above pore size range usually have eight-membered ring channels.
  • the available molecular sieves are linde A, erionite, chabazite, ZK-5, ZK-4, ZK-2, ZK-22, SAPO-34, SAPO-18. , SAPO-35, SAPO-44, SAPO-47, etc.
  • the above molecular sieves have a total content of the catalyst of 10% by weight to 90% by weight, preferably 20% by weight to 85% by weight.
  • the above solid acidic catalyst is bonded and formed by any one or any of several substances including silica, alumina or clay.
  • silica and alumina may be added in the form of an aluminum sol and a silica sol, respectively.
  • the components of the catalyst may be prepared into a fixed bed catalyst by a method such as kneading or kneading, or the groups may be firstly distributed into a slurry and then spray dried to prepare a microsphere catalyst suitable for a fluidized bed process.
  • the method of elemental modification of the molecular sieve includes: impregnating the molecular sieve or the molded catalyst with a solution containing the modifying element, or mixing the modifying element into the slurry for preparing the catalyst.
  • the calcination can be carried out in an inert or oxygen-containing atmosphere such as air.
  • the calcination temperature is from 150 ° C to 750 ° C, preferably from 300 ° C to 650 ° C. Typical firing times range from 0.5 hours to 5 hours.
  • a thiolation reagent such as methanol or dimethyl ether can be directly converted by an MTO process, which competes with the above-described thiolation process and additionally generates more ethylene, thereby reducing the table of ethylene raw materials. View transformation.
  • the proper acidity distribution of the catalyst can reduce the direct conversion of the thiolation reagent through the MTO process, which is beneficial to strengthen the competition of the alkylation reaction of ethylene, improve the utilization ratio of the raw materials and the selectivity of propylene in the product.
  • the principle is that the MTO process of the alkylating agent on the acidic catalyst occurs through the "carbon pool mechanism".
  • the pores or cages of the catalyst form highly reactive polysubstituted aromatic hydrocarbons (i.e., "carbon pools") which rapidly react with the alkylating agent to liberate ethylene or propylene molecules.
  • the rate and number of carbon pool formation on the catalyst determines the rate of direct conversion of the thiolation reagent.
  • the formation of carbon pools involves reactions such as hydrogen transfer, cyclization, etc., and therefore can only occur on adjacent acid centers.
  • the formation of the carbon pool can be reduced, thereby inhibiting the direct conversion of the thiolation reagent and enhancing the alkylation reaction of ethylene.
  • the above needs can only be met if the number of acid centers of the catalyst is controlled within a certain range.
  • the amount of basic molecular adsorption under certain conditions is an effective indicator for characterizing the number of molecular sieve acid centers.
  • the number of acid centers of the catalyst is represented by the amount of ammonia saturated adsorption per unit weight of molecular sieve at 200 °C.
  • the above-mentioned silica-alumina molecular sieve or silicon-phosphorus-aluminum molecular sieve, or a product obtained by modifying a molecular sieve having the above characteristics by a component other than the skeleton constituent element, or a mixture of a plurality of molecular sieves satisfying the above characteristics has an ammonia saturated adsorption amount at 200 ° C.
  • a higher propylene yield can be obtained at 0.8 mmol/g to 2.0 mmol/g.
  • the reactor form of any one or more of the secondary reaction zones is a fixed bed.
  • the reactor form of any one or more of the secondary reaction zones is in the form of a fluidized bed.
  • the type of fluidized bed can be a dense bed, a riser, or the like.
  • Each of the secondary reaction zones is a zone separated by a plurality of feed locations distributed in the flow direction of the material in the same catalyst bed in the fluidized bed or fixed bed reactor.
  • the molar ratio of acetonitrile / (methanol + 2 times dimethyl ether) calculated according to the total amount of ethylene and alkylating agent entering the reaction zone is 0.05-5, preferably 0.1-1.
  • the reaction temperature is 30 CTC - 600 ° C, preferably 350 ° C - 550 ° C ; the reaction pressure is O.OlMPa -0.8MPa, preferably O. lMPa -0.5MPa;
  • the secondary weight hourly space velocity is 0.1 hours, 50 hours, preferably 0.5 hours ! -20 hours.
  • At least a portion of the gaseous material comprising ethylene entering the first secondary reaction zone is separated from the effluent of the last secondary reaction zone.
  • the material obtained by separating the effluent of the last secondary reaction zone and having an olefin having a carbon number of not less than 4 may be subjected to a cracking reaction to form a propylene product and a gaseous material containing ethylene on the cracking catalyst.
  • a cracking reaction to form a propylene product and a gaseous material containing ethylene on the cracking catalyst.
  • at least a portion of the gaseous material comprising ethylene entering the first secondary reaction zone is derived from the gaseous material comprising ethylene produced by the catalytic cracking reaction.
  • the cracking catalyst can be various solid acidic catalysts.
  • the above cracking reaction may use the same catalyst as each of the secondary reaction zones of the above-mentioned co-feed reaction zone.
  • the ratio of the MTO conversion pathway and the thiolation pathway can be controlled, and the ethylene content in the effluent of the reaction zone is adjusted to be less than ', equal to Or more than the weight content of ethylene in the raw material. This result can be approximated as "apparent consumption, constant or generation of ethylene in the reaction".
  • the process provided by the present invention can be used in a process for producing propylene from a mixture of methanol and ethylene, i.e., apparently consuming ethylene.
  • the yield of the propylene product can be increased, or the amount of recirculation of the unconverted ethylene raw material can be reduced, the load on the apparatus can be reduced, and the energy consumption can be reduced.
  • the process provided by the present invention can also be used in the process of preparing propylene from methanol and/or dimethyl ether alone.
  • the reaction conditions favoring the above "apparent ethylene formation" are employed to make the ethylene content in the effluent of the reaction zone high.
  • the ethylene obtained from the above effluent, except for a small amount as a product effluent device, is recycled as a component of the co-feed with the thiolation reagent (methanol and/or dimethyl ether).
  • Ethylene, butene and butenes can be reconverted to propylene by appropriate reactions (such as alkylation and catalytic cracking), while terpene hydrocarbons are difficult to re-convert; Accumulating with the recycling of incompletely converted raw materials will increase the amount of material circulation throughout the process and bring higher energy consumption.
  • methanol as a raw material
  • using this method to produce propylene by "apparently forming ethylene” can reduce the amount of by-products of hydrazine hydrocarbons, increase the overall yield of propylene products, and increase methanol and/or dimethyl ether. The utilization rate of raw materials.
  • the method provided by the present invention can reduce the utilization of raw materials, reduce the load on the device, reduce the formation of by-products, and obtain a higher yield of propylene, thereby saving investment, reducing energy consumption, and improving the economics of the entire process. .
  • Reaction zone 100 comprises three secondary reaction zones, namely a first secondary reaction zone 10, a second secondary reaction zone 20 and a third secondary reaction zone 30.
  • the gaseous material 11 containing ethylene from the reaction zone 100 is mixed with the gaseous material 12 containing methanol and/or dimethyl ether to form a gaseous material 13 and enters the first secondary reaction zone 10 for reaction conversion to form ethylene.
  • the stream 21 is mixed with the gaseous material 22 containing methanol and/or dimethyl ether from the reaction zone 100 to form a gaseous material 23, and enters the second secondary reaction zone 20 for reaction conversion to form ethylene, propylene, carbon number.
  • the stream 31 is mixed with the gaseous material 32 containing methanol and/or dimethyl ether from the reaction zone 100 to form a gaseous material 33, and enters the third secondary reaction zone 30 for reaction conversion to form ethylene, propylene, carbon number.
  • Example 1 The invention is described in detail below by means of examples, but the invention is not limited to the examples.
  • Example 1 The invention is described in detail below by means of examples, but the invention is not limited to the examples.
  • Catalyst A used SAPO-34 molecular sieve (Dalian Institute of Chemical Physics, Chinese Academy of Sciences, microporous pore size about 0.43nm, ammonia saturated adsorption capacity of 1.36mmol/g at 200 °C) and silica sol (purchased from Zhejiang Yuda Chemical Co., Ltd.)
  • SAPO-34 molecular sieve Korean Institute of Chemical Physics, Chinese Academy of Sciences, microporous pore size about 0.43nm, ammonia saturated adsorption capacity of 1.36mmol/g at 200 °C
  • silica sol purchasedd from Zhejiang Yuda Chemical Co., Ltd.
  • the ammonia saturation adsorption measurement procedure of the above SAPO-34 at 200 ° C is as follows:
  • the instruments used are Microchem's Autochem 2910 chemisorption analyzer and the Swiss PFeiffer Omnistar 300 online mass spectrometer. Catalyst 0.2 g, activated at 600 ° C for 40 min in He atmosphere for 30 min, then cooled to 200 ⁇ to adsorb ammonia to saturation, purged for 30 min, then desorbed to 600 at a rate of 10 ° C / min °C, TCD and mass spectrometry simultaneously detect the ammonia gas released by the catalyst during the heating process, and the amount of ammonia removed by the integration is the ammonia saturated adsorption amount of the molecular sieve at 200 °C.
  • the ethylene and methanol co-feed reaction was carried out in a microreactor equipped with two fixed bed secondary reactors in series, each having a diameter of 20 mm.
  • the catalyst used was Catalyst A, and the raw material was ethylene-containing gas (using ethylene with a purity of 99.5% and then mixed with 10% of the total content of formazan and acetamidine, various gases were purchased from the Ministry of Chemical Industry, Guangming Special Gas Research Institute) and concentration. It is an aqueous solution of 80% by weight of methanol (analytically pure, Shenyang Federal Reagent Factory).
  • the reaction conditions are as follows: The total ethylene/methanol molar ratio calculated based on the total amount of all the additional raw materials (ethylene and methanol) entering the two secondary reactors is 0.23, and the reaction temperatures of both secondary reactors are both 450 ° C. Pressure is 0.1 MPa.
  • the first secondary reactor has a catalyst loading of 4.5 g.
  • the above ethylene-containing gas is mixed with vaporized methanol and then passed to the first secondary reactor for reaction;
  • the second secondary reactor has a catalyst loading of 5.5. g, the effluent of the first secondary reactor is mixed with vaporized methanol and passed to a second secondary reactor for reaction.
  • the reaction time was 40 minutes, and the second secondary reactor effluent was carried out.
  • the reaction products were analyzed by Varian CP-3800 gas chromatography, Plot column and hydrogen flame detector.
  • the ethylene and methanol co-feed reaction was carried out in a microreactor equipped with three fixed bed secondary reactors in series, each having a diameter of 20 mm.
  • the catalyst used was Catalyst A, and the catalyst and raw materials used were the same as in Example 1.
  • the reaction conditions were as follows: The total ethylene/methanol molar ratio was 0.23 based on the total amount of all the additional raw materials (ethylene and methanol) entering the three secondary reactors, and the reaction temperature of each of the three secondary reactors was 450 ° C. The pressure is 0.1 MPa.
  • the first secondary reactor has a catalyst loading of 3.5 g.
  • the above ethylene-containing gas is mixed with vaporized methanol and then passed to the first secondary reactor for reaction; the second secondary reactor has a catalyst loading of 5 g.
  • the effluent from the first secondary reactor is combined with vaporized methanol and passed to a second secondary reactor for reaction.
  • the third secondary reactor has a catalyst loading of 6.5 g, and the effluent of the second secondary reactor is mixed with vaporized methanol and passed to a third secondary reactor for reaction.
  • the third secondary reactor effluent was subjected to on-line sampling analysis at a reaction time of 40 minutes. Reaction product analysis method is the same as in the first embodiment
  • the ethylene and methanol co-feed reaction was carried out in a microreactor equipped with only one fixed bed reactor having a diameter of 20 mm.
  • the catalyst and raw materials used were the same as in Example 1.
  • the reaction conditions were as follows: The ethylene/methanol molar ratio of the feed was 0.23, the reaction temperature was 450 Torr, and the reaction pressure was 0.1 MPa.
  • the reactor charge was 10 g, and the weight hourly space velocity of the feed in methanol was 1.0 hr - the product was subjected to on-line sampling analysis at a reaction time of 40 minutes.
  • Reaction product analysis method is the same as in the first embodiment
  • Catalyst B uses SAPO-34 molecular sieve (Dalian Institute of Chemical Physics, Chinese Academy of Sciences, micropore size)
  • ammonia saturated adsorption at 200 ° C is 1.05 mmol / gram) mixed with clay, aluminum sol and silica sol (both purchased from Zhejiang Yuda Chemical Co., Ltd.) and dispersed in water to form a slurry, after spray molding Microspheres with a particle size distribution of 20-100 microns.
  • the above microspheres were calcined at 600 ° C for 4 hours to be the catalyst B.
  • the SAPO-34 content in the catalyst was 35 wt%.
  • the ammonia saturation adsorption amount measurement step of the above SAPO-34 at 200 ° C is the same as in the first embodiment.
  • the ethylene and dimethyl ether co-feed reaction was carried out in a microreactor equipped with three fluidized bed secondary reactors in series, each having a diameter of 20 mm.
  • the catalyst used was Catalyst B, the raw material was dimethyl ether (product of the reaction of methanol with H-ZSM-5 catalyst, collected under low temperature and stored in a cylinder) and ethylene (purity of 99.5%, purchased from chemical industry). Ministry of Bright Special Gas Research Institute).
  • the reaction conditions were as follows: The total molar ratio of ethylene / (2 dimethyl ether) calculated according to the total amount of all the additional raw materials (ethylene and dimethyl ether) entering the three secondary reactors was 0.55, and the reaction of three secondary reactors The temperature was 400 ° C and the reaction pressure was 0.3 MPa.
  • the first secondary reactor has a catalyst loading of 8.6 g.
  • the above ethylene-containing gas is mixed with dimethyl ether and then passed to the first secondary reactor for reaction; the second secondary reactor has a catalyst loading of 10 g.
  • the effluent of the first secondary reactor is mixed with dimethyl ether and passed to a second secondary reactor for reaction.
  • the third secondary reactor had a catalyst loading of 11.4 g.
  • the second secondary reactor effluent was mixed with dimethyl ether and passed to a third secondary reactor for reaction.
  • On-line sampling analysis was performed at a reaction time of 14 minutes. Reaction product analysis method is the same as in the first embodiment
  • the reaction apparatus, catalyst and raw materials were the same as in Example 2.
  • the reaction conditions are as follows: The total molar ratio of ethylene / (2 dimethyl ether) calculated according to the total amount of all the additional raw materials (ethylene and dimethyl ether) entering the three secondary reactors is 0.55, and the reaction of three secondary reactors The temperature was 400 ° C and the reaction pressure was 0.3 MPa.
  • the first secondary reactor has a catalyst loading of 5 g, and the above-mentioned ethylene-containing gas and dimethyl ether are mixed and then passed to the first secondary reactor for reaction; the second secondary reactor has a catalyst loading of 8 g.
  • the effluent from the first secondary reactor is mixed with methanol and passed to a second secondary reactor for reaction.
  • the third secondary reactor has a catalyst loading of 17 g, and the effluent of the second secondary reactor is mixed with methanol and passed to a third secondary reactor for reaction.
  • On-line sampling analysis was performed at a reaction time of 14 minutes.
  • the reaction product analysis method was the same as in Example 1.
  • the ethylene and methanol co-feed reaction the catalyst used for the catalyst is catalyst B, the raw material is methanol (analytically pure, Shenyang Federal Reagent Factory, formulated into an 80% by weight aqueous solution) and ethylene (purity is 99.5%, purchased from the Ministry of Chemical Industry) Specialty Gas Institute).
  • the reaction is carried out in a medium circulating fluidized bed reactor (reactor diameter of 125 mm), the dense phase bed of which is arranged with a bottom feed distributor, an intermediate feed level and an upper feed position in the axial direction. .
  • the reaction conditions were as follows: The total ethylene/methanol ratio was 0.23 based on the total amount of all added raw materials (ethylene and methanol) entering the three feed positions, the reactor temperature was 400 ° C, and the regenerator temperature was 650 ° C. The pressure is approximately 0.1 MPa.
  • the catalyst bed had an average residence time of 40 minutes.
  • the catalyst reserves in the region between the bottom distributor and the middle distributor are 0.33 kg, the catalyst reserves in the region between the middle distributor and the upper distributor are 0.49 kg, and the catalyst reserves above the upper distributor are 0.68 kg. .
  • the above ethylene-containing gas is mixed with vaporized methanol and then enters the bottom distributor; the two methanol feedstocks are vaporized and then enter the central distributor. And the upper distributor.
  • the reaction product was sampled and analyzed in an online manner, and the analytical method was the same as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

种制取丙烯的方法 技术领域
本发明涉及一种制取丙烯的方法。 背景技术
包括乙烯和丙烯在内的低碳烯烃是化学工业中重要的基本有机石油化工原料, 主 要用途是作为塑料、 合成树脂、 纤维、 橡胶等重要化学品的原材料。
丙烯是产量仅次于乙烯的一种重要有机化工基本原料。 近几年, 受下游衍生物快 速增长的驱动, 例如聚丙烯产量已经超过聚乙烯和聚氯乙烯, 全球丙烯需求量大幅攀 升。
1991-2007年, 全球丙烯年均增长率达到 5%以上, 打破了传统的以乙烯为中心的 烯烃供需格局。 丙烯是一种重要的石油化工基础原材料, 其主要的下游产品包括聚丙 烯、 苯酚、 丙酮、 丁醇、 辛醇、 丙烯腈、 环氧丙烷、 丙烯酸以及异丙醇等。 目前, 丙 烯的主要生产原料为石油烃类。 丙烯的生产工艺主要有两种: 一是来自蒸汽裂解制乙 烯的联产; 二是来自炼厂催化裂化装置的排放气。 蒸汽裂解仍然是丙烯供应的主要来 源。 烃类蒸汽热裂解技术经过几十年的发展, 尽管开发了各种革新技术, 使之不断完 善, 但仍是烯烃工业的第一大耗能装置。 另外, 不同裂解原料的丙烯的收率差别很大。 一般来说, 采用石脑油类液体原料的乙烯裂解所得丙烯 /乙烯收率比为 0.5-0.65。 近年 新增烯烃装置所用原料以乙烷类的气体原料为多, 这就意味着丙烯 /乙烯的收率比减 少。 ώ于近年来丙烯增长率持续高于乙烯增长率, 人们因此通过不断改进传统的丙烯 生产工艺来进一步提高丙烯产率。
然而, 在现有装置上增产丙烯的技术受到原料组成、 装置处理能力、 装置改造和 操作费用的限制。 因此, 只有开发新的丙烯生产工艺并进一步拓宽丙烯生产原料的范 围, 才能满足日益增长的丙烯需求。
近年来, 人们开发了多种釆用不同原料制取丙烯的新工艺。 这些工艺包括丙垸脱 氢制丙烯、乙烯和丁烯反歧化制丙烯、高碳数烃类裂解制低碳烯烃、甲醇制烯烃 (ΜΤΟ)、 甲醇制丙烯 (ΜΤΡ)、 乙烯与烷基化试剂共进料制丙烯等。 所用的原料包括丙垸、 裂解 干气、 丁烯、 含烯烃高碳混合物料 (如含混合丁烯的液化气或 C4-C5混合物、 高烯烃汽 油等)、 以及来自非石油资源的甲醇和二甲醚等。
乙烯与烷基化试剂 (如甲醇和 /或二甲醚等)共进料, 在催化剂上发生垸基化反应, 可以生成包括丙烯在内的烃类产品。 这一方法可将一部分乙烯产品转化为丙烯, 可用 于调整低碳烯烃生产装置产品的丙烯 /乙烯比例。 特别值得注意的是, 它提供了一条将 含有乙烯的廉价原料 (如裂解干气等)和来自非石油资源的甲醇 (和 /或二甲醚) 同时转化 生成丙烯的有效途径。 这一方法的基本原理是: 烯烃可与甲醇在固体酸催化剂上发生 垸基化反应,使得烯烃的碳数增加。参见 Svelle等, J. Catal. 224(2004), 115-123, J. Catal. 234(2005), 385-400:
CH3OH + CnH2n = Cn+,H2n+2 +¾0
以上类型的烷基化反应, 也可以在烯烃和二甲醚等其它烷基化试剂之间发生。 特 别地, 一分子乙烯通过与甲醇、 二甲醚等的烷基化反应可生成一分子丙烯。 该反应为 丙烯的生产提供了一条新的途径。 这一途径的优点在于: 生成丙烯的一个碳原子来自 于相对便宜的甲醇和 /或二甲醚, 降低了丙烯生产的成本, 并可以这种方法调整传统烯 烃生产工艺的产品丙烯 /乙烯比例。 如果采用催化裂解干气等低价值乙烯原料, 则该方 法的经济性可进一步提高。
美国专利 US3906054公幵了一种烯烃垸基化的工艺, 将烯烃在垸基化试剂存在下 与催化剂接触, 催化剂为硅铝比至少为 12的沸石, 采用 P改性, P含量最低为 0.78%。 可进行垸基化的烯烃包括乙烯、 丙烯、 丁烯 -2和异丁烯, 可用的烷基化试剂为甲醇、 二甲醚和氯甲烷。
国际专利申请 WO2005/056504 A1和中国专利申请 200480037104.4公开了一种从 乙烯和甲醇和 /或二甲醚出发, 高效制备丙烯的方法,其中将乙烯和甲醇和 /或二甲醚在 催化剂存在下进行反应而生成丙烯。 其中, 由反应体系中流出的乙烯量少于向反应体 系中加入的乙烯量。 同时, 以进入反应体系的甲醇的摩尔数或 2倍的二甲醚摩尔数计 算, 丙烯收率可达 40mol%以上。
中国专利申请 200610112555.0公开了一种制取丙烯的方法, 该方法的特征在于: 含有乙烯的原料在甲基化试剂存在下, 在特定的反应条件下与含有微孔孔径为 0.3-0.5nm的分子筛的催化剂接触, 生成含有丙烯的产物。产物中丙烯选择性可达 65% 以上。
中国专利申请 200710064232.3 公开了一种甲醇和 /或二甲醚转化为低碳烯烃的方 法, 即: 釆用至少三个独立的反应区和至少一个分离区, 全部甲醇和 /或二甲醚原料在 上述三个独立的反应区分别进料, 改变各反应区进料比例可以调节最终产品中各种烯 烃的比例, 包括: (a) 甲醇和 /或二甲醚在第一个反应区中的酸性催化剂上转化为包含 乙烯、 丙烯和 C4 以上烯烃的混合烃物流, 该物流进入上述分离区; (b)上述三个反应 区流出的全部物流在上述分离区进行分离, 其中 C3 组分流出该分离区后经进一歩分 离形成丙烯产品; 其中至少一部分碳数不大于 2的组分进入第二个反应区, 其中至少 一部分碳数不小于 4的组分进入第三个反应区, 未进入第二反应区的碳数不大于 2的 组分可以经进一歩分离得到乙烯产品, 未进入第三反应区的碳数不小于 4的组分可以 经进一步分离得到丁烯产品;(c)甲醇和 /或二甲醚在第二个反应区中与来自上述分离区 的至少一部分碳数不大于 2的组分共同与酸性催化剂接触,得到含有丙烯的混合物料, 该混合物料进入上述分离区;(d)甲醇和 /或二甲醚在第三个反应区中与来自上述分离区 的至少一部分碳数不小于 4的组分与酸性催化剂接触, 得到含有一定浓度乙烯和丙烯 的混合物料, 该混合物料进入上述分离区。
中国专利申请 200780035608.6公开了一种丙烯的制备方法, 将甲醇和二甲醚中的 至少一种与乙烯为原料制取丙烯。 当在特定条件下将甲醇和二甲醚中的至少一种与乙 烯反应而获得碳原子数 4以上的烯烃的流体以后, 在特定条件下使碳原子数 4以上的 烯烃中的至少一部分与甲醇和二甲醚中的至少一种反应, 从而获得丙烯。
中国专利申请 200780030317.8公开了一种制备丙烯的方法及装置, 其中将甲醇和 二甲醚中的至少 1种送至反应器, 使其在催化剂存在下反应; 将得到的产物送至分离 器, 在上述分离器中从上述产物中分离出在大气压下的沸点为 -50°C以下的低沸点化合 物, 将分离出的上述低沸点化合物中占其总量的 70%以上的量的上述低沸点化合物回 流至上述反应器中。 当回流的大气压下的沸点为 -5(TC以下的低沸点化合物与二甲醚的 进料量的体积比接近 1或大于 1时,由二甲醚生成的丙烯全流程总收率可在 70%以上。
中国专利申请 200710037230.5公开了一种提高丙烯收率的方法, 将甲醇和二甲醚 中的至少一种和乙烯为原料, 原料从流化床反应器的底部分布器或沿反应区轴向隔开 的至少一个进料位置进入反应区与催化剂接触, 反应生成含有乙烯、 丙烯的流出物, 经分离得到乙烯、 丙烯, 其中乙烯原料来源于新鲜的乙烯或分离得到的乙烯或其混合 物。 在甲醇转化率大于 98%时, 丙烯收率可达 18%。
在甲醇和 /或二甲醚与乙烯共进料体系中,还存在甲醇 /二甲醚在酸性催化剂上直接 转化为烯烃的反应, 这就是人们熟知的 MTO 转化过程, 由于固体酸性催化剂上甲醇 和 /或二甲醚的 MTO过程的反应速度很快, 因此对乙烯与甲醇和 /或二甲醚的烷基化反 应形成强烈的竞争。 MTO转化过程生成了较多的乙烯, 很大程度抵消了垸基化反应对 乙烯的消耗。 同时, ώ于 MTO转化过程中消耗了较多的甲醇和 /或二甲醚, 又很大程 度减小了可供乙烯转化的垸基化试剂即甲醇和 /或二甲醚的浓度, 从而不利于乙烯垸基 化反应的竞争。 以上这些因素限制了乙烯与甲醇和 /或二甲醚的垸基化反应中丙烯的收 率。 提高原料中乙烯 /甲醇和 /或二甲醚比例, 可以强化乙烯的烷基化反应、 抑制 ΜΤΟ 转化, 但会造成原料中甲醇浓度低、 处理量小, 而且在原料中乙烯 /甲醇和 /或二甲醚比 例较高的情况下, 由于乙烯的转化率降低, 只能增加循环转化的乙烯原料的回炼量来 提高丙烯收率, 从而增加了能耗、 降低了过程的经济性。 发明内容
本发明的目的在于提供一种制取丙烯的方法, 该方法既可以用于以甲醇和 /或二甲 醚和乙烯两种原料共同制取丙烯的过程, 也可以用于单独以甲醇和 /或二甲醚为原料制 取丙烯的过程。
在大量深入细致研究的基础上, 发明人提出了以下制取丙烯的方法: 含有乙烯的 气态物料与含有甲醇和 /或二甲醚的气态物料在同一个反应区进行反应转化, 且该反应 区由采用同一种固体酸性催化剂的 η个串联的次级反应区组成, 即由第一个次级反应 区至第 η个次级反应区组成,其中 η为 2或更大的整数,所述方法包括以下步骤: 1)使 含有乙烯的气态物料与含有甲醇和 /或二甲醚的气态物料混合后进入第一个次级反应 区, 与催化剂接触发生反应而得到第一次级反应区流出物, 所述第一次级反应区流出 物含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类; 和 2) 使第 m- 1 个次级反应区 流出物与含有甲醇和 /或二甲醚的气态物料混合后进入第 m个次级反应区,与催化剂接 触发生反应而得到第 m个次级反应区流出物,所述第 m个次级反应区流出物含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类, 其中 m为 2至 n的整数; 其中上述各个次级 反应区的次级重时空速符合以下关系:
0.8<WHSVm/WHSVm.i<1.2
其中, WHSVm和 WHSV^分别为第 m个次级反应区和第 m-1个次级反应区的次级重 时空速, 定义为每小时流入该次级反应区的全部有机物的重量除以该次级反应区内的 催化剂重量。
在本发明的一个优选方面, 所述的固体酸性催化剂含有下列中的至少一种: 具有 酸性的硅铝分子筛或硅磷铝分子筛、 或所述具有酸性的硅铝分子筛或硅磯铝分子筛经 骨架组成元素以外的元素改性得到的产物、 或它们混合物。
在本发明的一个更优选方面, 所述的具有酸性的硅铝分子筛或硅磯铝分子筛的微 孔孔径为 0.3nm-0.5nm。
在本发明的一个更优选方面, 所述的具有酸性的硅铝分子筛或硅磷铝分子筛、 或 所述具有酸性的硅铝分子筛或硅磷铝分子筛经骨架组成元素以外的元素改性得到的产 物、 或它们混合物在 20CTC下的氨饱和吸附量为 0.8毫摩尔 /克- 2.0毫摩尔 /克。
在本发明的一个更优选方面, 所述的具有酸性的硅铝分子筛或硅磷铝分子筛、 或 所述具有酸性的硅铝分子筛或硅磷铝分子筛经骨架组成元素以外的元素改性得到的产 物、 或它们混合物在所述的固体酸性催化剂的总含量为 10重量%- 90重量%。
在本发明的一个优选方面, 所述的固体酸性催化剂釆用包括氧化硅、 氧化铝或粘 土中的任意一种或任意几种物质粘结成型。
在本发明的一个优选方面, 任意一个或多个次级反应区的反应器形式为固定床。 在本发明的一个更优选方面,任意一个或多个次级反应区的反应器形式为流化床。 在本发明的一个优选方面, 各个次级反应区为流化床或固定床反应器中处于同一 催化剂床层内的、 沿物料流动方向分布的、 由多个进料位置所分隔出的区域。
在本发明的一个优选方面, 按照进入所述反应区的乙烯与甲醇和 /或二甲醚总量 计, 乙烯 /(甲醇 +2倍的二甲醚)摩尔比为 0.05-5。
在本发明的一个优选方面, 各个次级反应区的反应条件分别包括: 反应温度为 300。C-600°C。
在本发明的一个优选方面, 各个次级反应区的反应条件分别包括: 反应压力为
O.OlMPa -0.8MPa。
在本发明的一个优选方面, 各个次级反应区的反应条件分别包括: 次级重时空速 为 0.1小时— '-so小时—
在本发明的一个优选方面, 进入第一个次级反应区的含有乙烯的气态物料中至少 有一部分是从所述的第 n个次级反应区的流出物中经分离得到的。
在本发明的一个优选方面, 所述方法还包括: 将第 n个次级反应区流出物分离, 得到丙烯、 含有乙烯的气态物料和含有碳数不小于 4的烯烃的物料。
在本发明的一个更优选方面, 所述含有乙烯的气态物料中至少有一部分来自经分 离得到的含有碳数不小于 4的烯烃的物料在裂解催化剂存在下, 经过裂解反应而生成 的含有乙烯的气态物料。 在本发明的一个再优选方面, 所述的裂解催化剂与所述固体酸性催化剂相同。 在本发明的一个优选方面, n为 3或更大的整数。
在本发明的一个再优选方面, n为 5或更大的整数。
在本发明的一个优选方面, n为 10或更小的整数。
在本发明的一个优选方面, 0.9≤WHSVm/WHSVn 1≤l .1。
在本发明的一个再优选方面,
Figure imgf000008_0001
.05。
本发明所提供的方法, 既可以用于以甲醇和 /或二甲醚和乙烯两种原料共同制取丙 烯的过程, 也可以用于单独以甲醇和 /或二甲醚为原料制取丙烯的过程, 通过上述方法 可以提高原料的利用率、 降低装置负荷、 减少副产物的生成、 得到较高的丙烯收率, 因此可以节省投资、 降低能耗、 提高整个过程的经济性。 具体实施方式
根据本发明的方法, 将乙烯和甲醇和 /或二甲醚 (以下, 甲醇和 /或二甲醚又称为垸 基化试剂)在同一个反应区共进料, 该反应区分成 n个串联的次级反应区, 其中 n为 2 以上, 优选 3以上, 更优选 5以上, 并且优选 10以下的整数, 并且各个次级反应区釆 用同一种固体酸性催化剂, 包括: 1)含有乙烯的气态物料与含有垸基化试剂的气态物 料混合后进入第一个次级反应区, 与催化剂接触发生反应, 烷基化试剂完全转化, 而 原料中的乙烯只有一部分转化, 从而得到一种含有乙烯、 丙烯、 碳数不小于 4的烯烃 和其它烃类的流出物; 该流出物与含有垸基化试剂的气态物料混合后进入第二个次级 反应区, 与催化剂接触发生反应, 烷基化试剂完全转化, 而进料中的乙烯只有一部分 转化, 得到的流出物中含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类; 以如上方 式, 第 rn-1个次级反应区 (m为 2至 n的整数)的流出物与含有垸基化试剂的气态物料 混合后进入第 m个次级反应区, 与催化剂接触发生反应而得到含有乙烯、 丙烯、 碳数 不小于 4的烯烃和其它烃类的流出物。
按照上述的反应方式, 从第 n个次级反应区可得到含有乙烯、 丙烯、 碳数不小于
4 的烯烃和其它烃类的流出物。 对该流出物进行分离可得到丙烯产品。 除丙烯外, 还 可得到含有乙烯的物料和含有碳数不小于 4的烯烃的物料。
当上述各个次级反应区的次级重时空速之间的关系符合关系式 1时:
0.8<WHSVm/WHSVm-I<l .2 关系式 1,
其中 WHSVm和 WHSV^分别为第 m个次级反应区和第 m-1个次级反应区的次 级重时空速, 即每小时流入该次级反应区的全部有机物的重量除以该次级反应区内的 催化剂重量)。
上述技术方案既可以保证垸基化试剂的完全转化, 又可使得到的丙烯收率 (以原料 中加入的全部的甲醇 /二甲醚为基准)高于以下情况得到的丙烯收率:共进料反应区中未 设置次级反应区; 或各个次级反应区的次级重时空速之间的关系不符合上述关系式 1。
在上述关系式 1 中, 更优选地,
Figure imgf000009_0001
, 并且特别优选地, 0.95<WHSVm/WHSVm.,<l .05。
各个次级反应区所采用的固体酸性催化剂可含有至少一种具有酸性的硅铝分子筛 或硅磷铝分子筛、 或符合上述特征的分子筛经骨架组成元素以外的元素改性得到的产 物、 或多种符合上述特征的分子筛的混合物。
在固体酸性催化剂上, 丙烯也可以与甲醇 /二甲醚发生烷基化反应而生成丁烯, 或 进一歩与甲醇 /二甲醚反应而生成 c5以上烃类。 利用分子筛孔道的择形性, 通过选择 一定孔道尺寸的分子筛催化剂, 使产物混合物中较大的分子, 如 C4 以上烃类, 难于 在分子筛孔道生成或向外扩散, 因此可以抑制丙烯进一步垸基化而生成更高碳数的烃 类, 从而提高丙烯的收率。 采用微孔孔径处于 0.3nm-0.5nm范围的具有酸性的硅铝分 子筛或硅憐铝分子筛、 或符合上述特征的分子筛经骨架组成元素以外的元素改性得到 的产物、 或多种符合上述特征的分子筛的混合物作催化剂时, 乙烯和垸基化试剂共进 料反应可获得较高的丙烯收率。 具有上述孔径范围的分子筛通常具有八元环孔道, 可 选用的分子筛有 linde A、 毛沸石、 菱沸石、 ZK-5、 ZK-4、 ZK-2、 ZK-22、 SAPO-34、 SAPO-18、 SAPO-35, SAPO-44、 SAPO-47等。
上述分子筛在催化剂的总含量为 10重量% - 90重量%, 最好为 20重量%-85重量
%。
上述固体酸性催化剂釆用包括氧化硅、 氧化铝或粘土中的任意一种或任意几种物 质粘结成型。 制备过程中, 氧化硅和氧化铝可以分别以铝溶胶和硅溶胶等形式加入。 可以将催化剂的各组分采用混捏挤条等方法制成固定床催化剂, 或先将各组分配制成 浆料、 再进行喷雾干燥制成适用于流化床工艺的微球催化剂。 对分子筛进行元素改性 的方法包括: 用含有改性元素的溶液浸渍分子筛或成型后的催化剂、 或将改性元素混 入制备催化剂的浆料。 催化剂成型后需经过千燥和焙烧。 焙烧可在惰性或含氧气氛 (如 空气)中进行。 焙烧温度为 150°C-750°C , 最好为 300°C-650°C。 典型的焙烧时间为 0.5 小时- 5小时。 在固体酸催化剂上, 甲醇或二甲醚等垸基化试剂可以通过 MTO 过程直接转化, 该转化过程与上述垸基化过程形成竞争, 并额外生成较多的乙烯, 从而降低了乙烯原 料的表观转化。 合适的催化剂酸性分布, 可以减少垸基化试剂通过 MTO 过程直接转 化, 有利于强化乙烯烷基化反应的竞争, 提高原料利用率和产物中丙烯选择性。 其原 理在于:烷基化试剂在酸性催化剂上 MTO过程是通过"碳池机理"发生的。催化剂的孔 道或笼中先生成高活性的多取代芳烃 (即"碳池"),这些多取代芳烃快速地与烷基化试剂 发生反应, 再释放出乙烯或丙烯分子。 催化剂上碳池的生成速率与数目决定了垸基化 试剂的直接转化速率。 碳池的生成涉及到氢转移、 环化等反应, 因此只能在相邻的多 个酸中心上发生。 通过降低催化剂的酸中心密度, 增加酸中心之间的距离, 可以减少 碳池的生成, 从而抑制垸基化试剂的直接转化、 强化乙烯的烷基化反应。 只有当催化 剂的酸中心数目控制在一定范围内, 才能满足上述需要。 在分子筛研究领域, 一定条 件下碱性分子吸附量, 是表征分子筛酸中心数目的有效指标。 本发明中, 催化剂的酸 中心数目由单位重量分子筛在 200°C的氨饱和吸附量表示。 上述硅铝分子筛或硅磷铝 分子筛、 或符合上述特征的分子筛经骨架组成元素以外的元素改性得到的产物、 或多 种符合上述特征的分子筛的混合物在 200°C下的氨饱和吸附量为 0.8毫摩尔 /克- 2.0毫摩 尔 /克时, 可得到较高的丙烯收率。
所述的次级反应区中的任意一个或多个的反应器形式为固定床。
所述的次级反应区中的任意一个或多个的反应器形式为流化床。 流化床的类型可 为密相床、 提升管等。
所述的各个次级反应区为流化床或固定床反应器中处于同一催化剂床层内的、 沿 物料流动方向分布的、 ώ多个进料位置所分隔出的区域。
按照进入所述反应区的乙烯与烷基化试剂总量计算的乙炼 /(甲醇 +2倍的二甲醚)摩 尔比为 0.05-5 , 最好为 0.1-1。
所述的各个次级反应区的反应条件分别包括: 反应温度为 30CTC - 600°C , 最好为 350°C-550°C ; 反应压力为 O.OlMPa -0.8MPa, 最好为 O. lMPa -0.5MPa; 次级重时空速 为 0.1小时 50小时 最好为 0.5小时 !-20小时 。
作为本发明的一个优选方面, 进入上述第一个次级反应区的含有乙烯的气态物料 的至少一部分是从上述最后一个次级反应区的流出物中分离得到的。
上述最后一个次级反应区的流出物分离后得到的、 含有碳数不小于 4的烯烃的物 料可以在裂解催化剂上、 通过裂解反应生成丙烯产品和含有乙烯的气态物料。 作为本 发明的另一个优选方面, 进入上述第一个次级反应区的含有乙烯的气态物料的至少一 部分来自该催化裂解反应生成的含有乙烯的气态物料。
所述的裂解催化剂可以为各种固体酸性催化剂。 作为本发明的一个优选方面, 上 述裂解反应可以与上述共进料反应区的各个次级反应区使用同一催化剂。
在采用所述的催化剂和技术方案的基础上, 通过改变反应条件, 可以控制 MTO 转化途径和垸基化途径发生的比例, 将上述反应区流出物中的乙烯重量含量调整为少 于'、 等于或多于原料中的乙烯重量含量。这种结果可以近似地描述为 "反应中乙烯表观 上消耗、 不变或生成"。
本发明所提供的方法可用于以甲醇和乙烯两种原料共同制取丙烯的过程, 即表观 上消耗乙烯。 釆用本发明所提供的方法, 可以提高丙烯产品的收率, 或者减少未转化 的乙烯原料的回炼循环量, 减少装置负荷、 降低能耗。
本发明所提供的方法也可用于单独以甲醇和 /或二甲醚为原料制取丙烯的过程。 在 垸基化试剂 (甲醇和 /或二甲醚) 与乙烯的共进料反应中, 采用有利于上述 "表观上生 成乙烯" 的反应条件, 使反应区的流出物中的乙烯重量含量高于反应原料中的乙烯重 量含量。 从上述流出物中得到的乙烯, 除了少量作为产品流出装置外, 其它部分作为 与垸基化试剂 (甲醇和 /或二甲醚) 共进料的组成部分进行循环使用。 这种情况下, 无 须引入外来的乙烯原料; 与烷基化试剂 (甲醇和 /或二甲醚) 共进料的乙烯全部来自最 后一个次级反应区的流出物中分离得到的、 循环使用的含有乙烯的气体。 上述 "表观 上生成乙烯" 的方法, 可使在保持较高的丙烯收率的同时, 有效地减少烷烃副产物的 生成。 上述共进料反应除生成丙烯产品外, 还生成包括乙烯、 丁烯及丁烯以上多种高 碳烯烃, 以及烷烃类副产物 (如甲垸、 乙垸、 丙烷和丁垸)等。 乙烯、 丁烯及丁烯以上 多种高碳烯烃经适当的反应 (如烷基化和催化裂解等)可以重新转化成丙烯, 而垸烃则 很难重新转化; 而且, 垸烃类副产物若随着未完全转化原料的循环使用而不断累积, 将加大全过程的物料循环量、并带来较高的能耗。单独以甲醇为原料,利用本方法以 "表 观上生成乙烯 "的方式制取丙烯, 可以减少垸烃副产物的生成量, 增加丙烯产品的全过 程产率, 提高甲醇和 /或二甲醚原料的利用率。
总之, 采用本发明提供的方法, 可以减少提高原料的利用率、 降低装置负荷、 减 少副产物的生成、 得到较高的丙烯收率, 因此可以节省投资、 降低能耗、 提高整个过 程的经济性。
图 1是根据本发明一个实施方案用于本发明制备丙烯方法的工艺流程图。 反应区 100包含了三个次级反应区, 即第一个次级反应区 10, 第二个次级反应区 20和第三个 次级反应区 30。 来自反应区 100以外的含有乙烯的气态物料 11与含有甲醇和 /或二甲 醚的气态物料 12经混合后形成气态物料 13,进入第一个次级反应区 10进行反应转化, 生成含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类的流出物流 21。 物流 21与来 自反应区 100以外的含有甲醇和 /或二甲醚的气态物料 22经混合后形成气态物料 23, 进入第二个次级反应区 20进行反应转化, 生成含有乙烯、 丙烯、 碳数不小于 4的烯烃 和其它烃类的流出物流 31。 物流 31与来自反应区 100以外的含有甲醇和 /或二甲醚的 气态物料 32经混合后形成气态物料 33, 进入第三个次级反应区 30进行反应转化, 生 成含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类的流出物流 41, 物流 41流出反 应区 100。 实施例:
以下通过实施例对本发明做出详细描述, 但本发明并不局限于这些实施例。 实施例 1
催化剂 A釆用 SAPO-34 分子筛 (中国科学院大连化学物理研究所, 微孔孔径约 0.43nm, 200°C下氨饱和吸附量为 1.36毫摩尔 /克)和硅溶胶 (购自浙江宇达化工有限公 司)作为粘结剂成型,并经 550°C焙烧 4小时,成型后催化剂中 SAPO-34的含量为 80%。
上述 SAPO-34 在 200°C下氨饱和吸附量测量步骤如下: 使用的仪器为美国 Micrometric 公司的 Autochem2910 化学吸附分析仪和瑞士 PFeiffer 公司的 Omnistar 300 在线质谱仪。催化剂 0.2 g, 在 600°C下 40 ml/min 的 He气氛下活化 30 min, 然后 降温至 200Ό吸附氨气至饱和,吹扫 30 min,然后以 10°C/min 的速率升温脱附至 600 °C, TCD和质谱同时检测升温过程中催化剂释放的氨气, 经积分得到的脱除氨气量即为该 分子筛在 200°C下氨饱和吸附量。
乙烯与甲醇共进料反应在微型反应装置内进行, 该反应装置配置了 2个串联的固 定床次级反应器, 其直径均为 20mm。 采用的催化剂为催化剂 A, 原料为含乙烯的气 体 (采用纯度为 99.5%的乙烯再混入总含量 10%的甲垸和乙垸, 各种气体均购自化工 部光明特种气体研究所) 和浓度为 80重量%的甲醇 (分析纯, 沈阳联邦试剂厂)水溶液。 反应条件如下: 按照进入二个次级反应器的全部外加原料 (乙烯和甲醇)总量计算的乙 烯 /甲醇总摩尔比为 0.23, 两个次级反应器的反应温度均为 450°C, 反应压力均为 0.1MPa。 第一个次级反应器的催化剂装填量为 4.5g, 上述含有乙烯的气体与汽化的甲 醇混合后进入第一个次级反应器进行反应;第二个次级反应器的催化剂装填量为 5.5g, 第一个次级反应器的流出物与汽化的甲醇混合后进入第二个次级反应器进行反应。 两 个次级反应器的次级重时空速分别为 1.56 hf1禾口 1.67hr"' , KiJ WHSV2/WHSV,=1.07 o反 应时间为 40 分钟时刘第二个次级反应器流出物进行在线取样分析。 反应产物采用 Varian CP-3800气相色谱、 Plot柱和氢焰检测器分析。
乙烯与甲醇共进料的原料组成和反应结果如表 1所示。 甲醇转化率为 100%。扣除 原料中的乙烯、 甲垸和乙烷后, 产物中还额外生成少量的乙烯。 以原料中甲醇扣除一 分子水的重量 (碳基重量)为基准计算各产物的收率 (重量%;)。 丙烯的收率为 57.01 重量 %, 乙烯的收率为 6.75重量%, C4-C5烯烃收率为 20.30重量0 /0。 表 1 实施例 1中乙烯与甲醇共进料的反应结果 (扣除额外加入的烃类)
外加原料乙烯 /甲醇总摩尔比: 0.23
WHSV2/WHSVi=1.07
收率 (重量%, CH4 C2H4 C2H6 C3H6 C3¾ C4-C5 c4-c5 其它 以甲醇扣除 烯烃 垸烃
一分子水计) 0.72 6.75 2.11 57.01 7.37 20.30 1.94 3.80 甲醇转化率
(%) 100
实施例 2 '
乙烯与甲醇共进料反应在微型反应装置内进行, 该反应装置配置了 3个串联的固 定床次级反应器, 其直径均为 20mm。 釆用的催化剂为催化剂 A, 采用的催化剂和原 料同实施例 1。 反应条件如下: 按照进入三个次级反应器的全部外加原料 (乙烯和甲醇) 总量计算的乙烯 /甲醇总摩尔比为 0.23, 三个次级反应器的反应温度均为 450°C, 反应 压力均为 0.1MPa。 第一个次级反应器的催化剂装填量为 3.5g, 上述含有乙烯的气体与 汽化的甲醇混合后进入第一个次级反应器进行反应; 第二个次级反应器的催化剂装填 量为 5g, 第一个次级反应器的流出物与汽化的甲醇混合后进入第二个次级反应器进行 反应。 第三个次级反应器的催化剂装填量为 6.5g, 第二个次级反应器的流出物与汽化 的甲醇混合后进入第三个次级反应器进行反应。 三个次级反应器的次级重时空速分别 为 2.2 hr- ' 2-O hr-1和 1.9111--1, 则 WHSV2/WHSV!=0.9 WHSV3/WHSV2=0.95。 反应时 间为 40分钟时对第三个次级反应器流出物进行在线取样分析。反应产物分析方法同实 施例 1
乙烯与甲醇共进料的原料组成和反应结果如表 2所示。 甲醇转化率为 100%。扣除 原料中的乙烯、 甲烷和乙垸后, 产物中还额外生成少量的乙烯。 以原料中甲醇扣除一 分子水的重量 (碳基重量)为基准计算各产物的收率 (重量%;)。 丙烯的收率为 59.47重量 %, 乙烯的收率为 4.64重量%, C4-C5烯烃收率为 24.24重量0 /0。 表 2 实施例 2中乙烯与甲醇共进料的反应结果 (扣除额外加入的烃类)
外加原料乙烯 /甲醇总摩尔比: 0.23
WHSV2/WHSV!=0.89, WHSV3/WHSV2= -0.95 收率 (重量%, CH4 C2H4 Q2¾ Cj¾ C.3 C4-C5 C4-C5 其它 以甲醇扣除 烯烃 垸烃
一分子水计) 0.45 24.24 1.27 2.76 甲醇转化率
(%) 100
对比例 1
乙烯与甲醇共进料反应在微型反应装置内进行, 该反应装置只配置 1个固定床反 应器, 其直径均为 20mm。 采用的催化剂和原料同实施例 1。 反应条件如下: 进料的乙 烯 /甲醇摩尔比为 0.23, 反应温度均为 450Ό , 反应压力均为 0.1MPa。 反应器的催化剂 装填量为 10g, 以甲醇计的进料的重时空速为 l .O hr— 反应时间为 40分钟时对产物进 行在线取样分析。 反应产物分析方法同实施例 1
乙烯与甲醇共进料的原料组成和反应结果如表 3所示。 甲醇转化率为 100%。扣除 原料中的乙烯、 甲垸和乙垸后, 产物中还额外生成少量的乙烯。 以原料中甲醇扣除一 分子水的重量 (碳基重量)为基准计算各产物的收率 (重量%)。 丙烯的收率为 55.70重量 %, 乙烯的收率为 14.73重量%, C4- C5烯烃收率为 14.90重量%。 表 3 对比例 1中乙烯与甲醇共进料的反应结果 (扣除额外加入的烃类)
外加原料乙烯 /甲醇总摩尔比: 0.23
收率 (重量%, CH4 C2H4 C2H6 C3H6 C3H8 C4-C5 C4-C5 其它 以甲醇扣除 o 烯烃 烷烃
一分子水计) 14.90 2.29 3.48 甲醇转化率
(%) 100
实施例 3
催化剂 B 采用 SAPO-34 分子筛 (中国科学院大连化学物理研究所, 微孔孔径约 o
0.4nm, 200°C下氨饱和吸附量为 1.05毫摩尔 /克)与粘土、 铝溶胶和硅溶胶 (均购自浙江 宇达化工有限公司)混合并在水中分散成浆料, 喷雾成型后为粒径分布为 20-100 微米 的微球。 上述微球经 600°C焙烧 4小时, 即为催化剂 B。 催化剂中 SAPO-34含量为 35 重量%。
上述 SAPO-34在 200°C下氨饱和吸附量测量步骤同实施例 1
乙烯与二甲醚共进料反应在微型反应装置内进行, 该反应装置配置了 3个串联的 流化床次级反应器, 其直径均为 20mm。 采用的催化剂为催化剂 B, 原料为二甲醚 (釆 用甲醇在 H-ZSM-5催化剂上反应的生成产物, 低温条件下收集并储存于钢瓶中)和乙 烯 (纯度为 99.5%, 购自化工部光明特种气体研究所)。 反应条件如下: 按照进入三个次 级反应器的全部外加原料 (乙烯和二甲醚)总量计算的乙烯 /(2 倍二甲醚)总摩尔比为 0.55 , 三个次级反应器的反应温度均为 400°C, 反应压力均为 0.3MPa。 第一个次级反 应器的催化剂装填量为 8.6g, 上述含有乙烯的气体和二甲醚混合后进入第一个次级反 应器进行反应; 第二个次级反应器的催化剂装填量为 10g, 第一个次级反应器的流出 物和二甲醚混合后进入第二个次级反应器进行反应。 第三个次级反应器的催化剂装填 量为 11.4g,第二个次级反应器的流出物和二甲醚混合后进入第三个次级反应器进行反 应。 三个次级反应器的次级重时空速分别为 2.8hr-' 3.0hr 和 3.2hr— 1 , 则 WHSV2/WHSV!=1.07^ WHSV3/WHSV2=1.07。 反应时间为 14分钟时进行在线取样分 析。 反应产物分析方法同实施例 1
乙烯与二甲醚共进料的原料组成和反应结果如表 4所示。 二甲醚转化率为 100%, 乙烯转化率为 28.55%。 以原料中碳数为基准计算得到丙烯的收率为 61.34碳数%。 表 4 实施例 3中乙烯与二甲醚共进料的反应结果
乙烯 /(2倍二甲醚)总摩尔比: 0.55
WHSV2/WHSV,=1.07, WHSV3/WHSV2=1.07
原料组成 (碳数%) 流出物组成 (碳数%)
CH4 0.24
C2H4 52.59 37.58
C2H6 0.01 0.59
C3H6 29.26
C3¾ 3.89
二甲醚 47.40 0.00
C4-C5烯烃 23.35
C4-C5院经 2.99
其它 2.10
二甲醚转化率(%) 100
乙烯转化率 (%) 28.55
丙烯收率 (碳数%, 以原料中二甲醚为基准): 61.34 对比例 2
乙烯与二甲醚的共进料反应。 反应装置、 催化剂和原料同实施例 2。 反应条件如 下: 按照进入三个次级反应器的全部外加原料 (乙烯和二甲醚)总量计算的乙烯 /(2倍二 甲醚)总摩尔比为 0.55,三个次级反应器的反应温度均为 400°C,反应压力均为 0.3MPa。 第一个次级反应器的催化剂装填量为 5g, 上述含有乙烯的气体和二甲醚混合后进入第 一个次级反应器进行反应; 第二个次级反应器的催化剂装填量为 8g, 第一个次级反应 器的流出物和甲醇混合后进入第二个次级反应器进行反应。 第三个次级反应器的催化 剂装填量为 17g, 第二个次级反应器的流出物和甲醇混合后进入第三个次级反应器进 行反应。 三个次级反应器的次级重时空速分别为 5hr— 1、 3.7hr-' 和 2.0hf ' , 则 WHSV2/WHSV,=0.74, WHSV.3/WHSV2=0.54。 反应时间为 14分钟时进行在线取样分 析。 反应产物分析方法同实施例 1。
乙烯与二甲醚共进料的原料组成和反应结果如表 5所示。 二甲醚转化率为 100%, 乙烯转化率为 7.09%。 以原料中碳数为基准计算得到丙烯的收率为 57.46碳数%。 表 5 对比例 2中乙烯与二甲醚共进料的反应结果
乙烯 /(2倍二甲醚)总摩尔比: 0.55
WHSV2/WHSV,=0.74, WHSV3/WHSV2=0.54
原料组成 (碳数%) 流出物组成 (碳数%)
CH4 0.21
C2H4 52.59 48.86
C2H6 0.01 0.44
C3¾ 27.41
c3¾ 1.69
二甲醚 47.40 0.00
C4-C5烯烃 18.08
C4-C5院径 2.08
其它 1.23
二甲醚转化率(%) 100
乙烯转化率(%;) 7.09
丙烯收率 (碳数%, 以原料中二甲醚为基准): 57.46 实施例 4
乙烯与甲醇共进料反应, 釆用的催化剂为催化剂 B, 原料为甲醇 (分析纯, 沈阳联 邦试剂厂, 配制成浓度 80重量%的水溶液)和乙烯 (纯度为 99.5%, 购自化工部光明特 种气体研究所)。 反应在中型循环流化床反应装置(反应器直径为 125mm) 内进行, 该 反应装置的密相床层沿轴向配置了一个底部进料分布器、 一个中间进料位和一个上部 进料位。 反应条件如下: 按照进入三个进料位置的全部外加原料 (乙烯和甲醇)总量计 算的乙烯 /甲醇总摩尔比为 0.23, 反应器温度为 400°C , 再生器温度为 650°C, 系统压 力约为 0.1 MPa。 反应器床层的催化剂平均停留时间为 40分钟。 底部的分布器与中部 分布器之间区域内的催化剂藏量为 0.33公斤, 中部分布器与上部分布器之间区域内的 催化剂藏量为 0.49公斤, 上部分布器以上的催化剂藏量为 0.68公斤。上述含有乙烯的 气体和汽化的甲醇混合后进入底部分布器; 两股甲醇原料汽化后分别进入中部分布器 和上部分布器。 三段密相床层的次级重时空速分别为 2.0 --1、 2.01^禾卩 1.9hr-' , 则 WHSV2/WHSV,=1.0, WHSV3/WHSV2=0.95。 反应产物以在线方式取样分析, 分析方 法同实施例 1。
乙烯与甲醇共进料的原料组成和反应结果如表 6所示。 甲醇转化率为 100%。扣除 原料中的乙烯、 甲垸和乙垸后, 产物中还额外生成少量的乙烯。 以原料中甲醇扣除一 分子水的重量 (碳基重量)为基准计算各产物的收率 (重量%)。 丙烯的收率为 57.40重量 %, 乙烯的收率为 3.42重量%, C4-C5烯烃收率为 23.71重量%。 表 6 实施例 4中乙烯与甲醇共进料的反应结果
外加原料乙烯 /甲醇总摩尔比: 0.23
WHSV2/WHSVi=0.89, WHSV3/WHSV 0.95 收率 (重量%, CH4 C2¾ C2H6 C.3¾ C3H8 C4-C6 C4-C6 其它 以甲醇扣除 烯烃 垸烃
一分子水计) 0.58 3.42 1.64 57.40 4.20 23.71 6.09 2.96 甲醇转化率
(%) 100

Claims

权 利 要 求
1. —种制取丙烯的方法,其中含有乙烯的气态物料与含有甲醇和 /或二甲醚的气态 物料在同一个反应区进行反应转化, 且该反应区 采用同一种固体酸性催化剂的 η个 串联的次级反应区组成, 即由第一个次级反应区至第 η个次级反应区组成, 其中 η为 2或更大的整数, 所述方法包括以下步骤:
1) 使含有乙烯的气态物料与含有甲醇和 /或二甲醚的气态物料混合后进入第一个 次级反应区, 与固体酸催化剂接触发生反应而得到第一次级反应区流出物, 所述第一 次级反应区流出物含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类; 和
2) 使第 m-1 个次级反应区流出物与含有甲醇和 /或二甲醚的气态物料混合后进入 第 m个次级反应区, 与固体酸催化剂接触发生反应而得到第 m个次级反应区流出物, 所述第 m个次级反应区流出物含有乙烯、 丙烯、 碳数不小于 4的烯烃和其它烃类, 其 中 m为 2至 n的整数; 其中
上述各个次级反应区的次级重时空速符合以下关系:
0.8<WHSVm/WHSVm-i<l .2
其中, WHSVm禾卩 WHSV,^分别为第 m个次级反应区和第 m-1个次级反应区的次级重 时空速, 定义为每小时流入该次级反应区的全部有机物的重量除以该次级反应区内的 催化剂重量。
2. 权利要求 1所述的方法, 其中所述的固体酸性催化剂含有下列中的至少一种: 具有酸性的硅铝分子筛或硅磷铝分子筛、 或所述具有酸性的硅铝分子筛或硅磷铝分子 筛经骨架组成元素以外的元素改性得到的产物、 或它们混合物。
3. 权利要求 2所述的方法, 其中所述的具有酸性的硅铝分子筛或硅磷铝分子筛的 微孔孔径为 0.3nm-0.5nm。
4. 权利要求 2所述的方法, 其中所述的具有酸性的硅铝分子筛或硅磷铝分子筛、 或所述具有酸性的硅铝分子筛或硅磷铝分子筛经骨架组成元素以外的元素改性得到的 产物、 或它们混合物在 200Ό下的氨饱和吸附量为 0.8毫摩尔 /克 -2.0毫摩尔 /克。
5. 权利要求 2所述的方法, 其中所述的具有酸性的硅铝分子筛或硅磷铝分子筛、 或所述具有酸性的硅铝分子筛或硅磷铝分子筛经骨架组成元素以外的元素改性得到的 产物、 或它们混合物在所述的固体酸性催化剂的总含量为 10重量% - 90重量%。
6. 权利要求 1所述的方法, 其中所述的固体酸性催化剂采用包括氧化硅、 氧化铝 或粘土中的任意一种或任意几种物质粘结成型。
7. 权利要求 1所述的方法, 其中, 任意一个或多个次级反应区的反应器形式为固 定床。
8. 权利要求 1所述的方法, 其中, 任意一个或多个次级反应区的反应器形式为流 化床。
9. 权利要求 1所述的方法, 其中, 各个次级反应区为流化床或固定床反应器中处 于同一催化剂床层内的、 沿物料流动方向分布的、 由多个进料位置所分隔出的区域。
10. 权利要求 1所述的方法, 其中按照进入所述反应区的乙烯与甲醇和 /或二甲醚 总量计, 乙烯 /(甲醇 +2倍的二甲醚)摩尔比为 0.05-5。
1 1. 权利要求 1 所述的方法, 其中各个次级反应区的反应条件分别包括: 反应温 度为 300°C-600°C。
12. 权利要求 1 所述的方法, 其中各个次级反应区的反应条件分别包括: 反应压 力为 O.OlMPa -0.8MPa。
13. 权利要求 1 所述的方法, 其中各个次级反应区的反应条件分别包括: 次级重 时空速为 0.1小时 小时- '。
14. 权利要求 1 所述的方法, 其中进入第一个次级反应区的含有乙烯的气态物料 中至少有一部分是从所述的第 n个次级反应区的流出物中经分离得到的。
15. 权利要求 1所述的方法, 所述方法还包括: 将第 n个次级反应区流出物分离, 得到丙烯、 含有乙烯的气态物料和含有碳数不小于 4的烯烃的物料。
16. 权利要求 15所述的方法, 其中所述含有乙烯的气态物料中至少有一部分来自 所述的经分离得到的含有碳数不小于 4的烯烃的物料在裂解催化剂存在下, 经过裂解 反应而生成的含有乙烯的气态物料。
17. 权利要求 16所述的方法,其中所述的裂解催化剂与所述固体酸性催化剂相同。
18. 权利要求 1所述的方法, 其中 n为 3或更大的整数。
19. 权利要求 1所述的方法, 其中 n为 5或更大的整数。
20. 权利要求 1所述的方法, 其中 n为 10或更小的整数。
21. 权利要求 1所述的方法, 其中
22. 权利要求 1所述的方法, 其中
Figure imgf000020_0001
PCT/CN2011/076649 2010-11-29 2011-06-30 一种制取丙烯的方法 WO2012071893A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201390763A EA024284B1 (ru) 2010-11-29 2011-06-30 Способ производства пропилена

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010562334 2010-11-29
CN201010562334.X 2010-11-29
CN201110178238.X 2011-06-29
CN201110178238.XA CN102285858B (zh) 2010-11-29 2011-06-29 一种制取丙烯的方法

Publications (1)

Publication Number Publication Date
WO2012071893A1 true WO2012071893A1 (zh) 2012-06-07

Family

ID=45332640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076649 WO2012071893A1 (zh) 2010-11-29 2011-06-30 一种制取丙烯的方法

Country Status (3)

Country Link
CN (1) CN102285858B (zh)
EA (1) EA024284B1 (zh)
WO (1) WO2012071893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530639A4 (en) * 2016-10-19 2020-04-22 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences FAST FLUIDIZED BED REACTOR, DEVICE AND METHOD USING AN OXYGEN CONTAINING COMPOUND FOR THE MANUFACTURE OF C4 PROPENE OR HYDROCARBON

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422617B (zh) * 2017-08-31 2023-09-29 中国石油化工股份有限公司 反应-再生装置及其用途
CN111482196B (zh) * 2019-01-25 2021-11-16 中国石油化工股份有限公司 一种固体酸烷基化催化剂的制备方法
CN111302878B (zh) * 2020-04-18 2022-09-16 云南正邦科技有限公司 一种由醇脱水连续制备烯烃的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239867A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 提高丙烯收率的方法
CN101516812A (zh) * 2006-09-26 2009-08-26 三菱化学株式会社 丙烯的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081799B (zh) * 2006-05-31 2011-08-10 中国石油化工股份有限公司 一种由含氧化合物制取小分子烯烃的方法
CN101362668B (zh) * 2007-11-15 2011-09-14 陕西煤化工技术工程中心有限公司 一种制取丙烯的方法
CN101585747B (zh) * 2009-06-25 2013-03-20 浙江大学 一种将含氧化合物转化为丙烯的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516812A (zh) * 2006-09-26 2009-08-26 三菱化学株式会社 丙烯的制备方法
CN101239867A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 提高丙烯收率的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530639A4 (en) * 2016-10-19 2020-04-22 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences FAST FLUIDIZED BED REACTOR, DEVICE AND METHOD USING AN OXYGEN CONTAINING COMPOUND FOR THE MANUFACTURE OF C4 PROPENE OR HYDROCARBON
US10702841B2 (en) 2016-10-19 2020-07-07 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Fast fluidized-bed reactor, device, and method using oxygen-containing compound for manufacturing propene or C4 hydrocarbon

Also Published As

Publication number Publication date
EA024284B1 (ru) 2016-09-30
CN102285858A (zh) 2011-12-21
CN102285858B (zh) 2014-07-23
EA201390763A1 (ru) 2013-12-30

Similar Documents

Publication Publication Date Title
KR101217915B1 (ko) 에탄올로부터의 올레핀의 제조 방법
US9061954B2 (en) Dehydration of alcohols on crystalline silicates
US9284235B2 (en) Process for methanol coupled catalytic cracking reaction of naphtha using a modified ZSM-5 molecular sieve catalyst
KR101227221B1 (ko) 에탄올로부터의 올레핀의 제조 방법
CN101157593B (zh) 由甲醇或/和二甲醚生产低碳烯烃的方法
US9079159B2 (en) Olefin metathesis process using a treated tungsten oxide catalyst
TWI385140B (zh) A method for producing olefins and a manufacturing apparatus thereof
JP2013522270A (ja) 酸触媒上でのイソブタノールの同時脱水・骨格異性化
EP2796197B1 (en) Method for preparing ethylene and propylene by using methyl alcohol and/or dimethyl ether,
US8686207B2 (en) Process for preparing ethylene and propylene
WO2012071893A1 (zh) 一种制取丙烯的方法
CN101362668B (zh) 一种制取丙烯的方法
TWI342306B (zh)
CN101367699B (zh) 一种制取丙烯的方法
EP2108634A1 (en) Dehydration of alcohols on crystalline silicates
WO2019115627A1 (en) Catalyst composition and process for the production of 1,3-butadiene
Wang et al. Methanol to lower olefins and methanol to propylene
WO2009055997A1 (fr) Procédé permettant de produire du propylène à partir d&#39;éthylène et de méthanol (et/ou d&#39;éther de diméthyle)
EP2108635A1 (en) Process to make olefins from ethanol
AU2012360938A1 (en) Process for preparing ethylene and/or propylene
JP7090471B2 (ja) p-キシレンの製造方法
US20120142990A1 (en) procress for the preparation of an olefinic product, process for the manufacture of an oxygenate conversion catalyst and an oxygenate conversion catalyst
JP2019077637A (ja) 芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201390763

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 11845982

Country of ref document: EP

Kind code of ref document: A1