WO2012071848A1 - 一种多输入多输出天线系统 - Google Patents

一种多输入多输出天线系统 Download PDF

Info

Publication number
WO2012071848A1
WO2012071848A1 PCT/CN2011/073565 CN2011073565W WO2012071848A1 WO 2012071848 A1 WO2012071848 A1 WO 2012071848A1 CN 2011073565 W CN2011073565 W CN 2011073565W WO 2012071848 A1 WO2012071848 A1 WO 2012071848A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna system
antenna
radiating
inductor
radiating element
Prior art date
Application number
PCT/CN2011/073565
Other languages
English (en)
French (fr)
Inventor
艾浩
江晖
张璐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/641,759 priority Critical patent/US9590297B2/en
Priority to JP2013505327A priority patent/JP5504377B2/ja
Priority to EP11845163.2A priority patent/EP2549590A4/en
Publication of WO2012071848A1 publication Critical patent/WO2012071848A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a MIMO (Multiple Input Multiple Output) antenna system.
  • MIMO Multiple Input Multiple Output
  • MIMO technology is a major breakthrough in the field of wireless mobile communications. It is a multi-antenna technology, in which multiple antennas are provided at the receiving end and the transmitting end of a wireless communication system, creating multiple parallel spatial channels, and multiple information flows. The channels are simultaneously transmitted in the same frequency band, which can multiply the system capacity and improve the spectrum utilization efficiency.
  • the core idea of the MIMO system is space-time signal processing, that is, on the basis of the original time dimension, by using multiple antennas to increase the spatial dimension, multi-dimensional signal processing is realized, and spatial multiplexing gain or spatial diversity gain is obtained.
  • MIMO technology has received great attention and is considered as one of the key technologies for the next generation of mobile communication systems (4G). Therefore, in recent years, it has received extensive research and attention.
  • MIMO technology has rarely been commercially implemented in cellular mobile communication systems, and applications in 3G are also limited by some factors.
  • An important factor is the antenna problem.
  • the antenna's electrical performance and array configuration are important factors affecting the performance of the MIMO system.
  • the number of array elements, the array structure, the way the array is placed, the design of the antenna elements, etc. directly affect the spatial correlation of the MIMO channel.
  • MIMO systems require small correlations between antenna elements in the array to ensure that the MIMO channel response matrix is close to full rank.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the existing low-coupling multi-antenna, and to propose a novel closely-arranged, low-coupling miniaturized antenna system that can be used in a MIMO system.
  • the present invention provides a multiple input multiple output antenna system including a first radiating element, a second radiating element, a radiant floor, a dielectric plate, and a parasitic element, the first radiating element, the second radiating element, and the parasitic a embossed floor printed on an upper surface of the dielectric plate, the radiant floor printed on a lower surface of the dielectric plate; the first radiating element and the second radiating element being a planar monopole antenna, the parasitic The element is located between the first radiating element and the second radiating element.
  • the antenna system further includes a matching network
  • the matching network includes a first matching circuit and/or a second matching circuit
  • the first matching circuit is connected to the first radiating unit
  • the second matching circuit and the second The radiating elements are connected
  • the first matching circuit and the second matching circuit are each composed of one or more lumped elements.
  • the first matching circuit includes an inductor J, and one end of the inductor J is connected to the first radiating unit, and the other end is a feeding point;
  • the second matching circuit includes capacitors connected in sequence (:, inductor J 2 and inductor J 3 , wherein the capacitor (: one end is connected to the second radiating unit, the other end is connected to the inductor J 2 , the inductor J 3 end is connected to the inductor ⁇ Even Connected, and the end is the feed point and the other end is grounded.
  • the first radiating element and the second radiating element are distributed on a diagonal position of a surface of the medium plate, and each consists of a meandering microstrip line.
  • the radiant floor is a rectangular shape having a chamfered corner and is made of a copper foil printed at a position intermediate the lower surface of the dielectric plate.
  • the parasitic element is rectangular and consists of microstrip lines printed on the surface of the dielectric board.
  • the dielectric plate is a FR-4 rectangular dielectric plate having a dielectric constant of 4.4.
  • the invention has the following advantages:
  • the antenna unit (radiation unit) adopts a meander-shaped structure to realize miniaturization of the antenna
  • the arrangement of the antennas is diagonally placed on the same side of the dielectric board to ensure that the two ports of the antenna have a high degree of isolation while maintaining good radiation performance;
  • the lumped element is used to complete the matching in a limited space.
  • FIG. 1 is a top plan view of a MIMO antenna system according to an embodiment of the present invention.
  • FIG. 2 is a bottom view of a MIMO antenna system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first radiating unit and a first matching circuit of a MIMO antenna system according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a second radiating unit and a second matching circuit of a MIMO antenna system according to an embodiment of the present invention
  • 5 is a structural diagram of a parasitic element of a MIMO antenna system according to an embodiment of the present invention
  • FIG. 6 is a structural diagram of a radiant floor of a MIMO antenna system according to an embodiment of the present invention
  • FIG. 7 is a graph showing an operating frequency-voltage standing wave ratio of a first radiating element of a MIMO antenna system according to an embodiment of the present invention.
  • FIG. 8 is a graph showing an operating frequency-voltage standing wave ratio of a second radiating element of a MIMO antenna system according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the isolation between two radiating elements of a MIMO antenna system according to an embodiment of the present invention.
  • FIG. 10 is a far field gain pattern of a MIMO antenna system according to an embodiment of the present invention, wherein (a) is an xy plane far field pattern, (b) is a xz plane far field pattern, and (c) is a yz plane far field direction.
  • the present invention replaces the conventional method of increasing the isolation in a multi-antenna system by placing a parasitic element between adjacent antennas as a reflection unit to reduce the coupling between the two.
  • the monopole antenna structure is widely used in various communication antenna designs, and the present invention uses a monopole antenna of a meander structure to realize miniaturization of the MIMO antenna.
  • the load impedance of the antenna affects the standing wave of the antenna port. Therefore, after adding the decoupling unit to the multi-antenna system, the antenna needs to be impedance matched.
  • the present invention uses a lumped element to match the antenna, which is more advantageous for miniaturization of the multi-antenna system than the conventional microstrip line matching.
  • the shape of the floor also affects the matching of the antenna unit. Therefore, the present invention achieves matching of the antenna by the combination of the lumped element and the floor.
  • the monopole is used as the radiating element of the multi-antenna system, and the parasitic element structure is introduced to improve the isolation between adjacent antenna elements, and the impedance matching is realized by the lumped element.
  • a MIMO antenna system includes a first radiating element 1, a second radiating element 2, a radiant floor 9, a dielectric plate 4, and a parasitic element 3, and the first radiating element 1 a second radiating element 2 and a parasitic element 3 printed on an upper surface of the dielectric plate 4, the radiant floor 9 being printed on a lower surface of the dielectric plate; the first radiating element 1 and the second radiating element 2 is A planar monopole antenna, the parasitic element 3 being located between the first radiating element 1 and the second radiating element 2.
  • the first radiating element 1 and the second radiating element 2 are distributed at diagonal positions on the upper surface of the dielectric plate 4, and each consists of a meandering microstrip line.
  • the antenna system of the present invention includes a matching network
  • the matching network includes a first matching circuit and a second matching circuit, or may include only one of the matching circuits.
  • the first matching circuit is connected to the first radiating unit
  • the second matching circuit is connected to the second radiating unit
  • the first matching circuit and the second matching circuit are each composed of one or more lumped elements to implement Load matching.
  • the first matching circuit comprises a lumped element 5
  • the second matching circuit comprises lumped elements 6, 7, 8.
  • the first radiating element 1 is composed of a meandering microstrip line printed on the surface of the dielectric plate, and the lumped element 6 (i.e., the inductance A) is used for impedance matching.
  • the lumped element 6 i.e., the inductance A
  • One end of the inductor A is connected to the first radiating element 1, and the other end is a feeding point.
  • the second radiating element 2 is composed of a zigzag microstrip line printed on the surface of the dielectric plate, and the lumped element 6 is used (ie, capacitance (:), 7 (inductance L 2 ), and 8 (inductor J). 3 ) Perform impedance matching.
  • One end of the capacitor is connected to the second radiating element, the other end is connected to the inductor J 2 , and the end of the inductor J 3 is connected to the inductor 2 , and the end is a feeding point, and the other end is grounded.
  • the parasitic element 3 has a rectangular shape and is composed of a microstrip line printed on the upper surface of the dielectric plate 4.
  • the radiant floor 9 is a rectangular shape having a chamfered corner and is made of a copper foil printed at a position intermediate the lower surface of the dielectric plate 4.
  • the dielectric plate 4 is rectangular and is typically a FR-4 dielectric plate having a dielectric constant of 4.4 and may be 60 mm X 20 mm x 0.8 mm.
  • the two radiating elements are spatially separated to reduce the correlation, and the relative positions between the units ensure the performance of the antenna system of the present invention.
  • the present invention has the following characteristics:
  • the multi-antenna system is composed of two antennas, and the total size is 60 mm x 20 mm x 0.8 mm, which meets the requirements of the antenna system for miniaturization of the antenna.
  • the correlation between the two antennas is small, which is in accordance with the use requirements of MIMO.
  • the present invention provides a specific application example of a multi-antenna system composed of two antennas for a MIMO system as follows:
  • the lumped component is used, and the specific component and the selection of the component resistance are determined according to the actual impedance. change.
  • Both antennas in the embodiment of the present invention operate in the 2.4 GHz band, and changing the size of the monopole antenna can change the operating frequency.
  • Figure 7 is the operating frequency-voltage standing wave ratio of the first radiating element
  • Figure 8 is the operating frequency-voltage standing wave ratio of the second radiating element. It can be seen from Fig. 7 and Fig. 8 that the reflection loss is small in the operating frequency band of 2.3 GHz to 2.5 GHz, and particularly covers the working frequency band of 2.4 GHz.
  • Figure 9 shows the isolation between two radiating elements. As can be seen from Fig. 9, the coupling between the radiating elements in the antenna system of the present invention is effectively suppressed in the operating frequency band.
  • Figure 10 is a far field gain pattern of multiple antennas, where (a) is the x-y plane far field pattern, (b) is the x-z plane far field pattern, and (c) is the y-z plane far field pattern.
  • the antenna system of the present invention has a good omnidirectionality.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the multi-antenna system of the present invention is composed of two antennas and has a total size of 60 mm x 20 mm x 0.8 mm, which meets the requirements for miniaturization of the antenna in the MIMO system; the correlation between the two antennas is small, conforming to MIMO Requirements for use; Two planar monopole antennas are printed on the dielectric board and are inexpensive to manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

一种多输入多输出天线系统
技术领域
本发明涉及无线通信领域, 尤其涉及一种 MIMO ( Multiple Input Multiple Output , 多输入多输出)天线系统。
背景技术
随着无线通信技术的快速发展, 频率资源的严重不足日益成为遏制无线 通信事业发展的瓶颈。 无线通信正朝着大容量、 高传输率和高可靠性方向发 展, 这使得针对有限的频谱资源, 如何最大限度的提高频谱利用率, 成为当 前研究的一个热门课题。 随着 LTE ( Long Term Evolution, 长期演进 )产业的 推进, 目前 4G所必需的 MIMO天线系统对终端天线的设计与评估又提出了 新的挑战: 一方面用户要求小型化高质量的用户体验, 另一方面 MIMO天线 系统要求各个天线具有平衡的射频和电磁性能的同时, 具有高隔离度和低相 关性系数。 多方面的矛盾在 LTE终端天线的设计和系统方案阶段已经凸显。 总结过去二十多年人们在无线通信技术方面的研究成果, 无论是釆用常规发 射分集或者接收分集, 还是智能天线技术, 都不足以满足现今对大信道容量 和高质量通信的需求, 提高频谱效率或者增加通信容量所釆用的最重要的技 术就是多天线高隔离度技术。
MIMO技术是无线移动通信领域的重大突破, 是一种多天线技术, 即在 无线通信系统的接收端和发射端都配备有多个天线, 创造出多个并行空间信 道, 多个信息流经过多个信道在同一频带同时传输, 可以成倍的增加系统容 量, 提高频谱的利用效率。 MIMO系统的核心思想是空时信号处理, 即在原 来时间维的基础上, 通过使用多副天线来增加空间维, 从而实现多维信号处 理, 获得空间复用增益或空间分集增益。 MIMO技术作为提高数据传输率的 重要手段得到人们的极大的关注, 被认为是未来新一代移动通信系统 (4G)的 备选关键技术之一。 因此, 近几年受到了广泛的研究与关注。
然而, 迄今为止, MIMO技术在蜂窝移动通信系统中还很少进行商业实 现, 在 3G中的应用也受到一些因素的限制。 一个重要的因素就是天线问题。 天线作为 MIMO无线通信系统中的接收和发射装置, 其电气性能及阵列配置 是影响 MIMO系统性能的重要因素。 阵列单元的数目、 阵列结构、 阵列放置 的方式、 天线单元的设计等因素直接影响 MIMO信道的空间相关性。 MIMO 系统要求阵列中各天线单元具有较小的相关性, 这样才能保证 MIMO信道响 应矩阵接近满秩。 但是由于受到接收机或发射机尺寸及结构的限制, 往往要 在有限的空间尽可能多的布置天线单元, 这就使得天线的小型化和多个天线 之间的耦合问题成为迫切需要解决的问题之一。
目前关于减小天线间耦合有多种方法, 如: 增大天线间距; 引入 EBG ( Electromagnetic Band Gap, 磁场带隙)结构; 地板刻槽。 而增大天线间距 在实际应用中往往受到天线安装体积的限制; 引入 EBG结构及地板刻槽都需 要较大的地板, 同样不利于天线的小型化。
发明内容
本发明的目的是克服上述已有的低耦合的多天线体积大的缺点, 提出一 种可用于 MIMO 系统的新型的紧密排列、 低耦合的小型化天线系统。
为了解决上述问题, 本发明提供一种多输入多输出天线系统, 包括第一 辐射单元、 第二辐射单元、 辐射地板、 介质板和寄生元, 所述第一辐射单元、 第二辐射单元和寄生元印制在所述介质板的上表面, 所述辐射地板印制在所 述介质板的下表面; 所述第一辐射单元和第二辐射单元为平面型的单极子天 线, 所述寄生元位于所述第一辐射单元和第二辐射单元之间。
优选地, 上述天线系统还包括匹配网络, 所述匹配网络包括第一匹配电 路和 /或第二匹配电路, 所述第一匹配电路与第一辐射单元连接, 所述第二匹 配电路与第二辐射单元连接, 所述第一匹配电路和第二匹配电路均由一个或 多个集总元件组成。
优选地, 所述第一匹配电路包括电感 J, , 所述电感 J,的一端与第一辐射 单元连接, 另一端为馈电点;
所述第二匹配电路包括依次连接的电容 (:、 电感 J2和电感 J3 , 其中, 电 容 (:的一端连接第二辐射单元, 另一端连接电感 J2 , 电感 J3—端与电感 ^连 接, 且该端为馈电点, 另一端接地。
优选地, 所述第一辐射单元和第二辐射单元分布在所述介质板上表面的 对角线位置, 均由曲折的微带线组成。
优选地, 所述辐射地板为含切角的矩形, 由印制在所述介质板下表面中 间位置的铜箔制成。
优选地, 所述寄生元为矩形, 由印制在所述介质板上表面的微带线组成。 优选地, 所述介质板为介电常数为 4.4的 FR-4矩形介质板。
本发明与现有技术相比具有如下优点:
1、 天线单元(辐射单元)釆用曲折形结构, 实现了天线的小型化;
2、 天线排列方式为对角放置在介质板同侧, 保证天线两端口具有较高隔 离度的同时保持良好的辐射性能;
3、 引入寄生元作为去耦单元, 不仅有效地解决了天线单元之间的耦合问 题, 并且使得远离所述寄生元的那一辐射单元在所要求的频段具有较宽的带 宽, 同时在该频段除中心频率点外的其他频点处耦合同样较小;
4、釆用含切角结构的辐射地板, 实现了在有限空间内釆用集总元件完成 匹配。
理论计算结果表明, 上述诸项技术使得该发明可以广泛使用于各类 MIMO系统。 附图概述
图 1为本发明实施例的 MIMO天线系统的俯视图;
图 2为本发明实施例的 MIMO天线系统的仰视图;
图 3为本发明实施例的 MIMO天线系统的第一辐射单元和第一匹配电路 的结构示意图;
图 4为本发明实施例的 MIMO天线系统的第二辐射单元和第二匹配电路 的结构示意图; 图 5为本发明实施例的 MIMO天线系统的寄生元结构图; 图 6为本发明实施例的 MIMO天线系统的辐射地板的结构图;
图 7为本发明实施例的 MIMO天线系统的第一辐射单元的工作频率一电 压驻波比曲线图;
图 8为本发明实施例的 MIMO天线系统的第二辐射单元的工作频率一电 压驻波比曲线图;
图 9为本发明实施例的 MIMO天线系统的两个辐射单元间的隔离度曲线 图;
图 10为本发明实施例的 MIMO天线系统的远场增益方向图, 其中 ( a ) 为 x-y面远场方向图, (b )为 x-z面远场方向图, ( c )为 y-z面远场方向图。
本发明的较佳实施方式
多天线系统中, 单个天线激励时产生辐射 , 由于天线单元之间间距小, 相邻天线单元之间相互作用而产生散射, 因此天线间的隔离度低。 本发明一 改传统的增加多天线系统中隔离度的方法, 釆用在相邻天线间放置一寄生元 作为反射单元来降低两者间的耦合。
单极子天线结构广泛应用于各种通讯天线设计中, 本发明釆用曲折结构 的单极子天线来实现 MIMO天线的小型化。 天线的负载阻抗影响着天线端口 的驻波, 因此在多天线系统中增加去耦单元后, 需要对天线进行阻抗匹配。 本发明釆用集总元件对天线进行匹配, 相比传统的微带线匹配, 更有利于多 天线系统的小型化, 同时, 地板的形状也影响着天线单元的匹配。 因此, 本 发明通过集总元件和地板共同作用来实现天线的匹配。
根据上述原理本发明釆用单极子作为多天线系统的辐射单元, 引入寄生 元结构提高相邻天线单元间的隔离度, 阻抗匹配釆用集总元件来实现。
如图 1和图 2所示, 本发明实施例的 MIMO天线系统, 包括第一辐射单 元 1、 第二辐射单元 2、 辐射地板 9、 介质板 4和寄生元 3 , 所述第一辐射单 元 1、第二辐射单元 2和寄生元 3印制在所述介质板 4的上表面,所述辐射地 板 9印制在所述介质板的下表面; 所述第一辐射单元 1和第二辐射单元 2为 平面型的单极子天线, 所述寄生元 3位于所述第一辐射单元 1和第二辐射单 元 2之间。
其中, 优选地, 第一辐射单元 1和第二辐射 2单元分布在所述介质板 4 上表面的对角线位置, 均由曲折的微带线组成。
可选地, 本发明的天线系统包括匹配网络, 所述匹配网络包括第一匹配 电路和第二匹配电路, 或者, 也可以只包括其中一个匹配电路。 所述第一匹 配电路与第一辐射单元连接, 所述第二匹配电路与第二辐射单元连接, 所述 第一匹配电路和第二匹配电路均由一个或多个集总元件组成, 以实现负载匹 配。如图 1中,第一匹配电路包括集总元件 5 ,第二匹配电路包括集总元件 6、 7、 8。
如图 3所示,第一辐射单元 1由印制在介质板上表面的曲折微带线组成, 釆用集总元件 6 (即电感 A )进行阻抗匹配。 电感 A的一端与第一辐射单元 1 连接, 另一端为馈电点。
如图 4所示,第二辐射单元 2由印制在介质板上表面的曲折微带线组成, 釆用集总元件 6 (即电容 (:) 、 7 (电感 L2 )及 8 (电感 J3 )进行阻抗匹配。 其中, 电容的一端连接第二辐射单元, 另一端连接电感 J2 , 电感 J3—端与电 感 2连接, 且该端为馈电点, 另一端接地。
如图 5所示, 寄生元 3为矩形, 由印制在所述介质板 4上表面的微带线 组成。
如图 6所示, 所述辐射地板 9为含切角的矩形, 由印制在所述介质板 4 下表面中间位置的铜箔制成。
介质板 4为矩形, 通常为介电常数为 4.4的 FR-4介质板, 其尺寸可以为 60mm X 20mm x 0.8mm。
本发明中, 两个辐射单元釆用空间分集方式来减小相关性, 单元之间的 相对位置保证了本发明天线系统的性能。
由上述描述可看出, 本发明具有以下几个特点:
第一, 在本发明中, 多天线系统由两个天线组成, 且总尺寸为 60mmx20mmx 0.8mm , 符合 ΜΙΜΟ系统对天线小型化的要求。 第二, 在本发明中, 两个天线之间的相关性较小, 符合 MIMO的使用要 求。
第三, 在本发明中, 两个平面型单极子天线印制在介质板上, 制作成本 低。
根据上述结构, 本发明设计给出一个用于 MIMO系统的由两个天线组成 的多天线系统的具体应用示例如下:
辐射单元 1为平面型单极子天线, 印制在厚度为 0.8mm、 相对介电常数 为 4.4、 尺寸为 Jsx^=60 x20 的矩形介质板上的微带线的尺寸为 LxW = \9mmx7mm, d = \.5mm , H = 9.5mm, 釆用一电感 J =3.3nH进行阻抗匹 配。
辐射单元 2为平面型单极子天线, 尺寸与辐射单元一相同, 为印制在厚 度为 Q.8mm、 相对介电常数为 4.4、 尺寸为 LsxWs = 60mm x 20mm的 H 上的微带线, 釆用电容 C = 1PjF,电感 L2 =4. , J3 =1.6«H进行阻抗匹配。
寄生元金属片 3, 是印制在厚度为 0.8ww、 相对介电常数为 4.4、 尺寸为 Jsx^=60 x20 的矩形介质板上的微带线, 其尺寸为 nx V„ =3 Smmxlmm 辐射地板 9 是印制在厚度为 0.8mm、 相对介电常数为 4.4、 尺寸为 L xW„ = 60mm x 20mm的矩形介质板上的铜箔, 总尺寸为 =20mmx20mm , 其中矩形切角尺寸为 LcxWc = 4mmx6mm。
本发明实施例中的匹配网络釆用集总元件, 具体釆用何种元件以及元件 阻值的选择, 根据实际阻抗情况确定。 换。
本发明实施例中的两个天线均是工作在 2.4GHz频段,改变单极子天线的 尺寸可以改变工作频率。
本发明的优点可通过以下仿真以及测试进一步说明:
1、 仿真测试内容
利用仿真软件对上述实施例天线的电压驻波比、 隔离度以及远场辐射方 向图进行仿真计算, 进而制作实物进行测量。 2、 仿真测试结果
图 7为第一辐射单元的工作频率一电压驻波比, 图 8为第二辐射单元的 工作频率一电压驻波比。从图 7和图 8可以看出,在工作频带 2.3GHz-2.5GHz 范围内反射损失较小, 特别是较好地覆盖了 2.4GHz的工作频带。
图 9为两个辐射单元间的隔离度。 从图 9可以看出, 本发明天线系统中 辐射单元间的耦合在工作频段得到有效抑制。
图 10为多天线的远场增益方向图, 其中(a )为 x-y面远场方向图, (b ) 为 x-z面远场方向图,(c )为 y-z面远场方向图。 由图 10可以看出, 本发明的 天线系统具有艮好的全向性。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性
与现有技术相比, 本发明的多天线系统由两个天线组成, 且总尺寸为 60mmx20mmx 0.8mm ,符合 MIMO系统对天线小型化的要求; 两个天线之间的 相关性较小, 符合 MIMO的使用要求; 两个平面型单极子天线印制在介质板 上, 制作成本低。

Claims

权 利 要 求 书
1、 一种多输入多输出天线系统, 包括第一辐射单元、 第二辐射单元、 辐 射地板、 介质板和寄生元, 所述第一辐射单元、 第二辐射单元和寄生元印制 在所述介质板的上表面, 所述辐射地板印制在所述介质板的下表面; 所述第 一辐射单元和第二辐射单元为平面型的单极子天线, 所述寄生元位于所述第 一辐射单元和第二辐射单元之间。
2、 如权利要求 1所述的天线系统, 还包括匹配网络, 所述匹配网络包括 第一匹配电路和 /或第二匹配电路, 所述第一匹配电路与第一辐射单元连接, 所述第二匹配电路与第二辐射单元连接, 所述第一匹配电路和第二匹配电路 均由一个或多个集总元件组成。
3、 如权利要求 2所述的天线系统, 其中,
所述第一匹配电路包括电感 A , 所述电感 A的一端与第一辐射单元连接, 另一端为馈电点;
所述第二匹配电路包括依次连接的电容 (:、 电感 J2和电感 J3 , 其中, 电 容 C的一端连接第二辐射单元, 另一端连接电感 J2 , 电感 J3—端与电感 ^连 接, 且该端为馈电点, 另一端接地。
4、 如权利要求 1 ~ 3中任意一项所述的天线系统, 其中,
所述第一辐射单元和第二辐射单元分布在所述介质板上表面的对角线位 置, 均由曲折的微带线组成。
5、 如权利要求 1 ~ 3中任意一项所述的天线系统, 其中,
所述辐射地板为含切角的矩形, 由印制在所述介质板下表面中间位置的 铜箔制成。
6、 如权利要求 1 ~ 3中任意一项所述的天线系统, 其中,
所述寄生元为矩形, 由印制在所述介质板上表面的微带线组成。
7、 如权利要求 1 ~ 3中任意一项所述的天线系统, 其中,
所述介质板为介电常数为 4.4的 FR-4矩形介质板。
PCT/CN2011/073565 2010-12-01 2011-04-29 一种多输入多输出天线系统 WO2012071848A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/641,759 US9590297B2 (en) 2010-12-01 2011-04-29 Multi-input multi-output antenna system
JP2013505327A JP5504377B2 (ja) 2010-12-01 2011-04-29 多入力多出力アンテナシステム
EP11845163.2A EP2549590A4 (en) 2010-12-01 2011-04-29 MIMO ANTENNA SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010569432.6A CN102104193B (zh) 2010-12-01 2010-12-01 一种多输入多输出天线系统
CN201010569432.6 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012071848A1 true WO2012071848A1 (zh) 2012-06-07

Family

ID=44156806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073565 WO2012071848A1 (zh) 2010-12-01 2011-04-29 一种多输入多输出天线系统

Country Status (5)

Country Link
US (1) US9590297B2 (zh)
EP (1) EP2549590A4 (zh)
JP (1) JP5504377B2 (zh)
CN (1) CN102104193B (zh)
WO (1) WO2012071848A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768919A (zh) * 2020-12-30 2021-05-07 深圳市信丰伟业科技有限公司 一种高隔离度微带mimo天线系统
CN114976598A (zh) * 2022-06-01 2022-08-30 西安电子科技大学 应用于零净空移动终端的高隔离度倒l型天线对

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544727A (zh) * 2012-01-05 2012-07-04 广东通宇通讯股份有限公司 一种天线的电感直流接地结构
CN103379553B (zh) * 2012-04-28 2016-12-14 华为终端有限公司 一种提高通信速率的方法和装置
CN102983400A (zh) * 2012-11-20 2013-03-20 中兴通讯股份有限公司 一种无线设备中减少天线互扰的方法及无线设备
BR102013014249A2 (pt) * 2013-01-21 2017-07-11 Mediatek Inc. Communication device and antennas with high insulation characteristics
US9093750B2 (en) * 2013-09-12 2015-07-28 Laird Technologies, Inc. Multiband MIMO vehicular antenna assemblies with DSRC capabilities
CN104810617B (zh) * 2014-01-24 2019-09-13 南京中兴软件有限责任公司 一种天线单元及终端
CN105337050A (zh) * 2014-06-12 2016-02-17 索尼公司 天线结构、通信装置以及电子设备
CN105576356B (zh) * 2014-10-11 2019-03-19 上海诺基亚贝尔股份有限公司 辐射方向图可重构的平板天线
US9799953B2 (en) 2015-03-26 2017-10-24 Microsoft Technology Licensing, Llc Antenna isolation
CN106159446B (zh) * 2015-04-07 2019-03-01 启碁科技股份有限公司 射频装置及无线通信装置
US9813103B2 (en) 2015-09-15 2017-11-07 Microsoft Technology Licensing, Llc Enhanced multi-band multi-feed antennas and a wireless communication apparatus
CN205122769U (zh) * 2015-10-27 2016-03-30 中兴通讯股份有限公司 一种天线
JP6704169B2 (ja) * 2016-05-31 2020-06-03 パナソニックIpマネジメント株式会社 誘電体基板及びアンテナ装置
CN106207379A (zh) * 2016-07-20 2016-12-07 周丹 设有封装部的rfid电子天线标签
US11011836B2 (en) * 2016-12-20 2021-05-18 The Boeing Company Adjacent antenna interference mitigation
CN108281786A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种去耦天线架构及其去耦方法
CN109216911A (zh) * 2018-09-28 2019-01-15 深圳国人通信股份有限公司 一种双极化辐射单元
US10756424B2 (en) 2018-11-21 2020-08-25 Nokia Technologies Oy Mode balancing parasitic structure for a multimode active antenna array
US11342671B2 (en) * 2019-06-07 2022-05-24 Sonos, Inc. Dual-band antenna topology
CN111600121B (zh) * 2020-05-12 2022-03-01 中天宽带技术有限公司 一种去耦合贴片天线阵列
CN112186341B (zh) * 2020-09-29 2021-12-28 华南理工大学 基站天线、低频辐射单元及辐射臂
CN112332081B (zh) * 2020-10-30 2021-12-10 电子科技大学 基于微带结构的宽波瓣互补源天线
CN112467348B (zh) * 2020-11-13 2023-07-18 中信科移动通信技术股份有限公司 多频共面振子及基站天线
US20210111486A1 (en) * 2020-12-21 2021-04-15 Intel Corporation Antenna assembly with isolation network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101480A1 (en) * 2006-03-07 2007-09-13 Sony Ericsson Mobile Communications Ab Multi-frequency band antenna device for radio communication terminal
CN101577366A (zh) * 2009-06-22 2009-11-11 清华大学 用于移动终端的可重构双天线系统
CN101673873A (zh) * 2009-10-12 2010-03-17 清华大学 用于移动终端的平面型两天线系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580654B2 (ja) * 1996-12-04 2004-10-27 京セラ株式会社 共用アンテナおよびこれを用いた携帯無線機
JP2002330019A (ja) * 2001-04-27 2002-11-15 Iwatsu Electric Co Ltd プリント型アンテナ
US7184727B2 (en) * 2002-02-12 2007-02-27 Kyocera Wireless Corp. Full-duplex antenna system and method
GB0302818D0 (en) * 2003-02-07 2003-03-12 Antenova Ltd Multiple antenna diversity on mobile telephone handsets, PDAs and other electrically small radio platforms
JP4003077B2 (ja) * 2004-04-28 2007-11-07 株式会社村田製作所 アンテナ及び無線通信機
US7525502B2 (en) * 2004-08-20 2009-04-28 Nokia Corporation Isolation between antennas using floating parasitic elements
KR100859864B1 (ko) 2005-06-13 2008-09-24 삼성전자주식회사 아이솔레이션 소자를 포함하는 평판형 미모 어레이 안테나
EP1850491A3 (en) * 2006-04-26 2012-02-22 Hitachi Metals, Ltd. High-frequency circuit, high-frequency device and communications apparatus
JP4309902B2 (ja) * 2006-05-24 2009-08-05 株式会社東芝 共振回路、フィルタ回路及びアンテナ装置
JP2008028734A (ja) 2006-07-21 2008-02-07 Hitachi Metals Ltd 表面実装型アンテナ及びそれを搭載した通信機器
WO2008013021A1 (fr) * 2006-07-28 2008-01-31 Murata Manufacturing Co., Ltd. Dispositif d'antenne et dispositif de communication radio
US8063845B2 (en) * 2007-09-12 2011-11-22 Flextronics Automotive Inc. Symmetrical printed meander dipole antenna
JP2009105503A (ja) * 2007-10-19 2009-05-14 Toshiba Corp 円偏波アンテナ装置、半導体モジュール及び無線装置
JP2009253959A (ja) * 2008-04-11 2009-10-29 Hitachi Metals Ltd マルチバンドアンテナ装置及びそれを用いた無線通信機器
US7973718B2 (en) * 2008-08-28 2011-07-05 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods employing coupling elements to increase antenna isolation
US8294622B2 (en) * 2008-11-25 2012-10-23 Panasonic Corporation Array antenna apparatus sufficiently securing isolation between feeding elements and operating at frequencies
JP5304220B2 (ja) * 2008-12-24 2013-10-02 富士通株式会社 アンテナ装置、アンテナ装置を含むプリント基板、及びアンテナ装置を含む無線通信装置
CN101546863B (zh) * 2009-03-31 2013-12-11 京信通信系统(中国)有限公司 宽频双极化辐射单元
TWI420742B (zh) * 2009-06-11 2013-12-21 Ralink Technology Corp 用於一多輸入多輸出無線通訊系統之多重天線
JP5532847B2 (ja) * 2009-11-20 2014-06-25 船井電機株式会社 マルチアンテナ装置および携帯機器
KR20110121792A (ko) * 2010-05-03 2011-11-09 삼성전자주식회사 미모 안테나 장치
CN101895010B (zh) 2010-06-13 2012-10-24 南京邮电大学 一种共面波导馈电宽带印刷单极子天线
US8780002B2 (en) * 2010-07-15 2014-07-15 Sony Corporation Multiple-input multiple-output (MIMO) multi-band antennas with a conductive neutralization line for signal decoupling
US8786497B2 (en) * 2010-12-01 2014-07-22 King Fahd University Of Petroleum And Minerals High isolation multiband MIMO antenna system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101480A1 (en) * 2006-03-07 2007-09-13 Sony Ericsson Mobile Communications Ab Multi-frequency band antenna device for radio communication terminal
CN101577366A (zh) * 2009-06-22 2009-11-11 清华大学 用于移动终端的可重构双天线系统
CN101673873A (zh) * 2009-10-12 2010-03-17 清华大学 用于移动终端的平面型两天线系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2549590A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768919A (zh) * 2020-12-30 2021-05-07 深圳市信丰伟业科技有限公司 一种高隔离度微带mimo天线系统
CN114976598A (zh) * 2022-06-01 2022-08-30 西安电子科技大学 应用于零净空移动终端的高隔离度倒l型天线对
CN114976598B (zh) * 2022-06-01 2023-10-31 西安电子科技大学 应用于零净空移动终端的高隔离度倒l型天线对

Also Published As

Publication number Publication date
JP5504377B2 (ja) 2014-05-28
US20130241793A1 (en) 2013-09-19
CN102104193A (zh) 2011-06-22
US9590297B2 (en) 2017-03-07
EP2549590A1 (en) 2013-01-23
JP2013526164A (ja) 2013-06-20
CN102104193B (zh) 2015-04-01
EP2549590A4 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2012071848A1 (zh) 一种多输入多输出天线系统
CN110061349B (zh) 一种基于正交模式对的宽带5g mimo手机天线
JP6374971B2 (ja) アンテナユニット及び端末
Chen et al. A decoupling technique for increasing the port isolation between two strongly coupled antennas
EP2053692B1 (en) Mimo antenna and communication device using the same
JP5669281B2 (ja) メタマテリアルアンテナデバイス
EP2660933B1 (en) Array antenna of mobile terminal and implementing method thereof
CN103858277B (zh) 一种三极化天线
WO2016112628A1 (zh) 一种多输入多输出天线系统
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
WO2012071842A1 (zh) 多输入多输出阵列天线
EP2617098B1 (en) Antenna for diversity operation
WO2017114024A1 (zh) 双极化天线和通信设备
CN102136628A (zh) 一种mimo天线及其应用的移动终端
WO2016123924A1 (zh) 一种多输入多输出天线及终端
CN103155277A (zh) 用于lte/gsm频带中的mimo/分集性操作的lte天线对
US20190157751A1 (en) Antenna and mobile terminal
CN102931472A (zh) 2.4GHz/5.8GHz双频无线通讯装置
CN204497364U (zh) 一种多输入多输出天线及终端
CN102931474B (zh) 天线元件及mimo天线装置
CN103022650B (zh) 2.4GHz/5.8GHz双频无线通讯装置
CN104282993A (zh) 射频装置及无线通信装置
CN103187614B (zh) Mimo天线装置
WO2012162991A1 (zh) 一种天线及具有该天线的mimo天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13641759

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011845163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011845163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013505327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE