WO2012070904A2 - 편광조명시스템 - Google Patents

편광조명시스템 Download PDF

Info

Publication number
WO2012070904A2
WO2012070904A2 PCT/KR2011/009054 KR2011009054W WO2012070904A2 WO 2012070904 A2 WO2012070904 A2 WO 2012070904A2 KR 2011009054 W KR2011009054 W KR 2011009054W WO 2012070904 A2 WO2012070904 A2 WO 2012070904A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization
polarized light
light source
polarized
Prior art date
Application number
PCT/KR2011/009054
Other languages
English (en)
French (fr)
Other versions
WO2012070904A3 (ko
Inventor
최욱
김주원
Original Assignee
Choi Uk
Kim Ju Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110032626A external-priority patent/KR101268395B1/ko
Priority claimed from KR1020110039994A external-priority patent/KR101306546B1/ko
Application filed by Choi Uk, Kim Ju Won filed Critical Choi Uk
Priority to EP11843490.1A priority Critical patent/EP2644983A4/en
Priority to JP2013540901A priority patent/JP2014500596A/ja
Priority to CN201180056977XA priority patent/CN103328886A/zh
Priority to US13/989,210 priority patent/US9016884B2/en
Publication of WO2012070904A2 publication Critical patent/WO2012070904A2/ko
Publication of WO2012070904A3 publication Critical patent/WO2012070904A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Definitions

  • the present invention relates to a polarization lighting system, and more particularly, to a polarization lighting system that can obtain an illumination in which the reflected light is a color using the polarized light.
  • Polarization phenomenon means that the direction of the electric field is constant in any plane perpendicular to the traveling direction as light passes through the polarizer.
  • a typical example of such a polarization phenomenon is that the two polarizers are perpendicular to each other and the light is not transmitted when the polarization directions are perpendicular to each other.
  • the present applicant has applied for various display devices and lighting devices through research on polarization phenomenon, and related application numbers and names of the inventions are as follows.
  • the media that cause polarization by reflection are materials such as glass, acrylic, liquids such as water, plastics, crystals, transparent paints, and the like, through which part of light is partially transmitted and reflected.
  • a lighting device such as a chandelier has a decorative decoration that reflects, such as a mirror ball is covered with a plurality of reflecting members such as a mirror on the surface of the light and the light is reflected from the reflecting members by irradiating light from the light source You get the effect, through the rotation of the mirror ball or light source to achieve a unique lighting effect.
  • the present invention reflects the incident light using polarization and the reflected light has a reflective member such as a mirror on the surface, such as a mirror reflector, a light fixture having a decoration such as a chandelier, or a mirror ball, all or part of which is polarized
  • a reflective member such as a mirror on the surface, such as a mirror reflector, a light fixture having a decoration such as a chandelier, or a mirror ball, all or part of which is polarized
  • the light emitted to them for the object to be illuminated is a white light or the like, while providing a polarized light system and a method in which the reflected appearance has a color and the color is changeable.
  • An object of the present invention is to reflect the incident light by using a polarization phenomenon and the reflected light is a reflection member, such as a mirror on the surface, such as a mirror ball, such as a light fixture and a mirror ball, such as all or part of the polarized light reflector to form a polarization It is to provide a polarized light illumination system and method that the light emitted to them with respect to the illumination object having a white light and the like, without causing visual disturbance, the reflected appearance has a color and the color is changeable.
  • the first invention of the patent application is a light source means; Polarizing means for receiving and polarizing light emitted from the light source means; A birefringence medium that is emitted from the light source means and receives birefringent light through the polarization means; The light emitted from the light source means passes through the polarizing means and receives the light passing through the birefringence medium, and reflects the incident light and the reflected light comprises a polarized light reflector made of all or part of the polarization A polarization lighting system is provided.
  • the polarizing means and the birefringence medium may be disposed to be stacked on each other.
  • the birefringence medium may be attached to the front surface of the polarizing reflection.
  • the polarization means may be composed of a plurality of polarization zones having different polarization directions.
  • the birefringence medium may be composed of a plurality of birefringence zones having different birefringence characteristics.
  • the light source means preferably constitutes a surface light source.
  • the light source means may include a light source and a light guide plate that receives and emits light of the light source.
  • the light source of the light source means may be made of an LED lamp or a cold cathode fluorescent lamp.
  • the polarized light reflector may be made of a material of liquid, glass, acrylic, crystal or plastic.
  • the first invention of the present application is also to reflect the incident light installed in the illumination space and the reflected light irradiates the polarized light reflecting all or part of the polarization;
  • Light source means Polarizing means for receiving and polarizing light emitted from the light source means; It provides a lighting means characterized in that it comprises a birefringent medium which is emitted from the light source means and receives the light passed through the polarizing means birefringent.
  • the first invention of the present application further includes: lighting means comprising a plurality of light sources each emitting light having a different color, and polarizing means for polarizing light provided for each of the light sources;
  • lighting means comprising a plurality of light sources each emitting light having a different color
  • polarizing means for polarizing light provided for each of the light sources;
  • the polarization directions of the polarization means provided in light sources of different colors are different from each other in whole or in part;
  • Receiving the light emitted from the lighting means, and reflects the incident light, the reflected light provides a polarized light system, characterized in that made of all or part of the polarized light including a polarized reflector.
  • the luminaire comprises a plurality of zones, wherein the polarization direction of the polarization means of the light source emitting light of the same color may be the same in the same zone but different between the different zones.
  • the first invention of the present application is, furthermore, to reflect the incident light installed in the illumination space and the reflected light irradiates the polarized light reflecting the polarization;
  • a plurality of light sources each emitting a different color of light; It comprises a polarization means for polarizing the light provided for each of the light sources, wherein the polarization direction of the polarization means provided in the light source of different colors mutually different or all the lighting means characterized in that to provide.
  • the luminaire consists of a plurality of zones, wherein the polarization direction of the polarizing means of the light source emitting light of the same color may be the same in the same zone but different between the different zones.
  • the first invention of the present patent application furthermore, reflects the incident light installed in the illumination space and the reflected light comprises a polarized light reflector in which all or part of the polarized light and a birefringent medium disposed on the polarized light reflector As illuminating objects to be illuminated;
  • Light source means It provides a lighting means comprising a polarizing means for receiving and polarizing the light emitted from the light source means.
  • the second invention of the present application is to reflect the incident light and the reflected light is to illuminate the polarized light reflecting all or part of the polarized light; Polarized light source for irradiating the polarized light reflector as the polarized light is output; A birefringent medium disposed between the polarized light source and the polarized reflector;
  • the polarization direction of the light output from the polarized light source, the birefringent medium and the polarized light reflector provides a polarization lighting device, characterized in that to rotate relative to each other.
  • the polarized light reflector may be made of a material of liquid, glass, acrylic, crystal or plastic.
  • the polarization light source may be rotated in the polarization direction of the irradiated light and the birefringence medium and the polarization reflector may be stopped.
  • the birefringence medium is rotated and the polarized light source and the polarized reflector may be stationary.
  • the birefringence medium and the polarized light source may be rotated integrally or at a constant speed, and the polarization object may be stationary.
  • the polarized light source and the birefringent medium may be stopped and the polarized light reflector may be rotated.
  • a space is secured through a spacer between two glass substrates facing each other, a liquid crystal is filled in the space, the glass substrate is sealed with a sealant, and the glass substrate is transparent.
  • the polarization direction of the polarized light from the polarized light source may be rotated by using a liquid crystal device in which an electrode and an alignment layer are stacked to change a polarization direction of light incident on the glass substrate by applying a voltage to the transparent electrode.
  • the rotation includes a partial angle of rotation or a change of angle.
  • the second invention also relates to reflecting incident light, wherein the reflected light illuminates a polarized light reflector in which all or part of the light is polarized; Three colors of red (R), green (G), and blue (B), each comprising three polarized light sources to which polarized light is output; The light of the three polarized light source is mixed to form a white light to irradiate the reflecting object, and all or part of the polarization direction of each of the three polarized light source and the polarized light reflector to make a relative rotation to provide.
  • RGB red
  • G green
  • B blue
  • the three polarized light sources each comprise a light source for emitting light of each of R, G, and B wavelengths, and individual polarizing means for polarizing light from the respective light sources;
  • Light of R, G, and B wavelengths polarized from each of these polarized light sources secures a space through a spacer between two glass substrates facing each other, fills the liquid crystal in the space, Sealed with a sealant, a transparent electrode and an alignment layer are stacked on the glass substrate, and the polarization direction is changed while passing through a liquid crystal device which applies a voltage to the transparent electrode to change the polarization direction of light incident on the glass substrate. Can be achieved.
  • the third invention of the present application is a reflection object and a reflection object having a polarizing means for polarizing the light transmitted as installed on the surface of the reflection member; A polarized light source through which polarized light is emitted; A birefringent medium provided between the polarized light source and the polarizing means of the reflective object; Light emitted from the polarized light source and passed through the birefringent medium irradiates the reflective object; And a displacement means for changing a polarization direction of the light emitted from the polarized light source, a position of one point of the birefringent medium, and a polarization direction of the polarization means of the reflective object. to provide.
  • the birefringence medium may be integrally combined with the polarized light source.
  • the displacement means may include a polarization direction rotation means of the polarization light source for rotating the polarization direction of the polarization light source.
  • the displacement means may comprise a birefringent medium rotating means for rotating the birefringent medium.
  • the displacement means may comprise a reflecting object rotating means for rotating the reflecting object.
  • the birefringence medium may be attached to the surface of the polarizing means in the reflective object.
  • the polarization direction rotation means of the polarization light source secures a space between spacers between two glass substrates, fills the liquid crystal in the space, and sealants between the glass substrates.
  • the glass substrate may be a liquid crystal device in which a transparent electrode and an alignment layer are stacked on the glass substrate to change a polarization direction of light incident on the glass substrate by applying a voltage to the transparent electrode.
  • one or more reflective members may be disposed.
  • a plurality of polarization means are provided in the reflective member, and the polarization direction of these polarization means may be different in part or all.
  • the reflective object may be a mirror ball.
  • a third object of the present invention is to provide a reflecting member, comprising: a reflecting object having a reflecting member and polarizing means for polarizing light transmitted through the reflecting member; A plurality of polarized light sources different in color of light emitted as polarized light is emitted; The plurality of polarized light sources irradiate the reflective object; And a displacement means for changing each polarization direction of the plurality of polarized light sources and the polarization direction of the polarization means of the reflective object.
  • the plurality of polarized light sources include a first polarized light source in which R (red) light is polarized and emitted, a second polarized light source in which G (green) light is polarized, and a light of B (blue). It may include a third polarized light source that is polarized and emitted.
  • Light emitted from a plurality of polarized light sources including a third polarized light source that is polarized and emitted is preferably mixed to form white light.
  • the displacement means secures a space between spacers facing two glass substrates, fills the liquid crystal in the space, seals the space between these glass substrates with a sealant
  • the glass substrate may be a liquid crystal device in which a transparent electrode and an alignment layer are stacked to change a polarization direction of light incident on the glass substrate by applying a voltage to the transparent electrode.
  • the reflective object may be a mirror ball.
  • a light emitting device comprising: a reflecting object having a reflecting member and a polarizing means for polarizing light transmitted as provided on the surface of the reflecting member, and a birefringent medium provided on the surface of the polarizing means; Wherein the birefringence medium is divided into a plurality of zones having different birefringence properties; A polarized light source through which polarized light is emitted; It provides a polarized light reflecting illumination system comprising a displacement means for changing the polarization direction of the light emitted from the polarized light source and the position of one point of the birefringent medium of the reflective object.
  • the displacement means may include a polarization direction rotation means of the polarization light source for rotating the polarization direction of the polarization light source.
  • the reflective object may be stopped or rotated.
  • the reflective object may be a mirror ball.
  • the fourth invention of the present application is a medium through which light passes, a decoration having polarization means; A polarized light source through which polarized light is emitted; A birefringent medium provided between the polarized light source and the polarizing means provided on the decoration; Light emitted from the polarized light source and passed through the birefringent medium irradiates polarizing means installed on the decoration; And a displacement means for changing the polarization direction of the light emitted from the polarized light source, the position of one point of the birefringent medium, and the polarization direction of the polarization means installed in the decoration. do.
  • the displacement means may rotate the polarization direction of the light irradiated from the polarized light source and the polarization means provided on the birefringent medium and the decoration may be stopped.
  • the displacement means rotates the birefringent medium, and the polarization means installed on the polarization light source and the decoration may be stationary.
  • the displacement means rotates the birefringent medium and the polarized light source together, and the polarization means installed in the decoration may be stationary.
  • the displacement means may be to change the position of one point of the polarization means installed in the decoration.
  • the displacement means may be to rotate the polarizing means.
  • the displacement means may be to rotate the polarizing means along the circumference of the polarization lighting device.
  • the displacement means secures a space between the two glass substrates facing each other through a spacer, fills the liquid crystal in the space, seals the space between these glass substrates with a sealant
  • the glass substrate may be a liquid crystal device in which a transparent electrode and an alignment layer are stacked to change a polarization direction of light incident on the glass substrate by applying a voltage to the transparent electrode.
  • the rotation includes rotation of some angle or change of angle.
  • the displacement means may be to change the position of one point of the polarization means installed in the decoration.
  • the birefringence medium may be attached to the surface of the polarizing means installed in the decoration.
  • the decoration is intaglio or embossed, bubbles are formed inside the decoration, or an empty space is formed inside the decoration, or the decoration is a polyhedron with a plurality of corners. Can be.
  • the fourth invention is also a medium through which light passes, a decorative material provided with polarizing means; A plurality of polarized light sources different in color of light emitted as polarized light is emitted; The plurality of polarized light sources irradiate polarization means installed in the decoration; It provides a polarization lighting device comprising a displacement means for changing each polarization direction of the plurality of polarized light sources and the polarization direction of the polarization means provided in the decoration.
  • the plurality of polarized light sources include a first polarized light source in which R (red) light is polarized and emitted, a second polarized light source in which G (green) light is polarized and emitted, and B ( And a third polarized light source that is polarized and emitted.
  • the light emitted from the third polarized light source in the first polarized light source is preferably mixed to form white light.
  • the displacement means secures a space between the two glass substrates facing each other through a spacer, fills the liquid crystal in the space, seals the space between these glass substrates with a sealant
  • the glass substrate may be a liquid crystal device in which a transparent electrode and an alignment layer are stacked to change a polarization direction of light incident on the glass substrate by applying a voltage to the transparent electrode.
  • the present patent application provides a polarized light system that emits polarized light to reflect the color light from the polarized reflector.
  • the light emitted from the lighting means is a white light or the like, and the reflected light of the polarized light reflects the color without causing visual interference, and the polarizing means or the birefringence medium of the lighting means is formed into a plurality of zones having different polarization directions or birefringence characteristics.
  • Luminescent means reflected from the polarized light reflector may cause the reflected light of a different color for each zone.
  • the color of the reflected light may change depending on the position of the eye of the viewer.
  • the polarization lighting system of the first aspect of the present invention provides light source means for emitting light of different colors and installs polarization means for each of these light source means, and the polarization direction of the polarization means attached to the light source means of different colors is All or some of the directions may be different from each other to emit light having different polarization directions according to the wavelength of each color, and the light may be reflected from the polarized light reflector to reflect light having color.
  • the light source means may form a zone, and if the zones are different, the polarization direction of the polarization means of the light source means of the same color may also be different, and in this case, the color of light reflected from the polarized light reflector may be different for each zone.
  • the second invention of the present patent application provides a polarization lighting system that uses a polarization phenomenon to form a unique display that changes color in the polarized light reflecting light.
  • the polarization lighting system according to the second invention provides a polarization lighting system in which the light irradiated from the light source causes a change in color of the polarized light to which the light is irradiated without causing a visual disturbance to a person.
  • the color of reflected light of a reflective object such as a mirror ball is changed by using a polarization phenomenon, and each reflected light is changed to a different color according to the polarization direction of the polarization means of the surface of the reflective object or according to the birefringence characteristic of the birefringent medium.
  • a polarized light reflecting illumination system that is reflected. Even in this case, although the color of the light emitted from the light source does not change at all, a change in color is produced in the reflected light of the reflecting object such as a mirror ball.
  • the fourth aspect of the present invention provides a polarization lighting device that changes color in the decoration in a lighting device having a decoration such as a chandelier using a polarization phenomenon. Even in this case, although the color of the light emitted from the light source of the lighting device does not change at all, the color of the decoration is produced.
  • FIG. 1 shows a polarization illumination system according to a first aspect of the first invention
  • FIG. 2 is a view showing a case in which the polarizing means or the birefringence medium consists of a plurality of zones in the first invention
  • FIG. 3 shows a polarization illumination system according to a second aspect of the first invention
  • FIG. 4 is a view showing a case in which the luminaire consists of a plurality of zones in the polarization lighting system according to the second aspect of the first invention
  • FIG. 5 is a view showing a sculpture in which water flows as an example of a polarized reflection
  • FIG. 6 shows another embodiment of a polarization lighting system according to the first aspect of the first invention
  • FIG. 7 shows a polarization illumination system according to the first aspect of the second invention
  • FIG. 8 is a view showing a structure of a polarized light source in which the polarization direction of the output light rotates
  • FIG. 9 shows a polarization illumination system according to a second aspect of the second invention.
  • FIG. 10 is a view showing the structure of a liquid crystal element for rotating the polarization direction according to the second invention.
  • FIG. 11 is a view showing an example of a polarization direction change light output device for each wavelength
  • FIG. 13 is a view showing an example of a polarization direction change light output device for each R, G, B wavelength;
  • FIG. 14 shows an embodiment of a mirror ball illumination system according to a third invention
  • FIG. 15 shows an example of a polarized birefringent light source in a mirror ball illumination system according to a third invention
  • FIG. 16 is a view showing the structure of a liquid crystal element for changing the polarization direction of the polarized light source in the third invention.
  • FIG. 17 shows another example of a polarized birefringent light source in the mirror ball illumination system according to the third invention.
  • FIG. 18 shows a second embodiment of a mirror ball illumination system according to a third invention
  • 19 is a view illustrating an example of polarized light sources for R, G, and B stars;
  • FIG. 20 is a view showing another example of the polarized light source by R, G, B;
  • 21 is a view showing an example in which the third invention is applied to a plane reflective object
  • FIG. 23 is a view of a case where the reflection object is a mirror ball in the embodiment of FIG. 22;
  • FIG. 24 shows a polarization illumination device according to a first embodiment of the fourth invention
  • 25 is a view showing the structure of the polarization birefringent light source of the first embodiment of the fourth invention.
  • FIG. 26 is a view showing a part where color change occurs in a decoration in which an effect of the fourth invention is shown;
  • FIG. 27 is a view showing the structure of a liquid crystal element for changing the polarization direction of the polarized light source in the fourth invention.
  • 29 is a view showing polarization light sources of R, G, and B stars according to the third embodiment of the fourth invention.
  • FIG. 30 shows a polarization illumination device according to a fourth embodiment of the fourth invention
  • Figure 31 shows a displacement means for displacing an ornament in a fourth embodiment of the fourth invention.
  • FIG. 1 to FIG. 6 show a polarization lighting system for a polarization reflector in which all or part of the reflected light reflects incident light and reflects incident light, according to the first invention of the present application.
  • FIG. 1 is a view showing a polarization lighting system 1000a according to the first aspect of the present invention.
  • a light source means 8 through which light is emitted is provided, the polarizing means 10 is disposed in front of the light source means 8 and the birefringent medium 20 in front of the polarizing means 10. ) Is placed.
  • the light emitted from the light source means 8 passes through the polarization means 10 and then passes through the birefringent medium 20.
  • These light source means 8, the polarizing means 10 and the birefringent medium 20 can form an illumination means for illuminating the polarizing reflector 60a to be described later.
  • the light source means 8 emits light, and may be a light source itself such as an LED lamp, a cold cathode fluorescent lamp (CCFL), or a light guide plate to uniformly and effectively emit light of the light source. .
  • a light source itself such as an LED lamp, a cold cathode fluorescent lamp (CCFL), or a light guide plate to uniformly and effectively emit light of the light source.
  • CCFL cold cathode fluorescent lamp
  • the polarizing means 10 may be a polarizing film, a polarizing filter, a polarizing plate or the like as polarizing light.
  • the birefringence medium 20 is a birefringent light, a stretched plastic film such as OPP film, PET film, cellophane film, plastic plate, etc. having a birefringence may be used, and a birefringence film specially prepared for birefringence may be used have.
  • a birefringent medium a birefringent plate, a birefringent lens, or the like may be used.
  • the polarization means 10 may be attached to the lower surface of the light source means 8, and the birefringence medium 20 may be attached to the lower surface of the polarization means 10.
  • a polarizing film may be attached to a light source means 8 such as an LED lamp and a cold cathode fluorescent lamp (CCFL), and a birefringent film may be attached to the polarizing film.
  • CCFL cold cathode fluorescent lamp
  • the light emitted from the light source means 8 and passed through the polarization means 10 becomes polarized light and then passes through the birefringent medium 20.
  • the polarized light When the polarized light passes through the birefringent medium, the polarized light has a different polarization direction according to the wavelength. Accordingly, the light is emitted from the light source means 8 and passes through the birefringent medium 20 through the polarization means 10. The light is emitted into the illumination space (S), which is a space in which the illumination is made by the different polarization direction for each wavelength. In this case, the light emitted to the illumination space S maintains the color of the light emitted from the light source means 8 almost intact.
  • the illumination space S is provided with a polarized light reflector 60a.
  • the polarized light reflector 60a reflects incident light, and the reflected light is all or part of polarized light.
  • the glass, acrylic, crystal, plastic material and the like can be a polarized reflector to be reflected at the same time as the transmission of a portion of light.
  • the reflection is made and the reflected light is a polarized light can be a polarized light reflector according to the present invention.
  • a polarized light reflector E.g. water in a container or running water
  • the polarized light reflector according to the present invention includes everything in which the reflected light forms all or part of the polarized light.
  • the polarized light reflector 60a may be installed at various positions such as vertical and horizontal in an illumination space.
  • a polarized reflector 60a may be a sculpture through which water flows. That is, as shown in Figure 5, the water 66 flows down from the groove 611 of the vertical plate 601, the molding of the shape in which the water tank 63 is formed may be a polarized light reflector (60a). In this case, all or part of the reflected light reflected from the surface of the flowing water 66 is polarized.
  • polarized light reflector (60a) may be a sculpture of various forms made of glass, acrylic, crystal or plastic material.
  • the shape formed by the polarized light reflector 60a includes a plate shape.
  • the wall surface of the lighting space (S) is made of a material such as glass, acrylic, and the like, the reflected light is polarized
  • the wall surface may be a polarized reflector (60a)
  • the sculpture of the crystal material may also be a polarized reflector (60a).
  • a glass or crystal glass may also be a polarized light reflector (60a).
  • the polarized light reflector 60a which is a various type of sculpture made of glass, acrylic, crystal, or plastic material, may be installed on the wall of the lighting space S or on the floor, installed on the ceiling, or the ceiling. It can also be installed by hanging.
  • the base is attached to the polarizing means 10 'such as a polarizing film, as shown next to the polarized light reflector of 60a shown in FIG.
  • the member 60 ' may include polarizing the light 60a' that is forcibly reflected.
  • the base member 60 ′ includes all of the reflections and may include a mirror.
  • coating the coating on the base member 60 'instead of the polarizing means 10' may also be a polarizing reflector.
  • the light emitted from the light source means 8 through the polarizing means 10 and the birefringent medium 20, respectively, the polarization direction is different for each wavelength is irradiated to the illumination space (S).
  • the color of the light of the light source means 8 is almost as it is.
  • the light source means 8 is white light and the light irradiated to the illumination space S becomes white light and does not cause visual disturbance.
  • the polarized reflection (60a) is to look like the color ⁇ .
  • the color reflected by the polarized reflector 60a may appear differently depending on the position of the eye of the viewer, which starts from the light source means 8 according to the position of the eye of the viewer. After passing through the birefringence medium 20 and the birefringent medium 20 may be reflected by the light path that is reflected from the polarization reflector (60a) to reach the eyes of the viewer.
  • the angle of the light incident on the birefringent medium 20 and the path of the light passing through the birefringent medium 20 are different according to the position of the viewer, so that the result of passing through the birefringent medium 20 is different (that is, the viewer When the light passes through the birefringence medium 20 according to the position of the birefringence due to different birefringence characteristics, according to the position of the viewer according to the polarization direction for each wavelength after passing through the birefringence medium 20 Then, the wavelength reflected from the polarized light reflector 60a is also different, and thus the color appears.
  • the reflected light reflected from the polarized light reflector 60a may have a different polarization direction, polarization degree, or polarization rate depending on the viewing position, and thus, color may change.
  • the color is changed according to the path of the light reaching the eye of the viewer, reflected from the polarization reflector 60a after passing through the polarization means 10 and the birefringence medium 20 from the light source means 8. It can be different.
  • the polarized light reflector (60a) when the portion to be captured at a glance is quite large, it may appear in a different color from the near to the far. This is because if the distance between two spaced apart points at a glance is large, the angle of light incident on the birefringent medium 20 and the path of light passing through the birefringent medium 20 may be different at these individual points.
  • the white space in the illumination space (S) does not interfere visually, but the visible reflection from the polarized light reflector (60a) It has a color, and the lighting effect of the color of the reflected light changes according to the viewing position. If the portion of the polarization reflector 60a that is enclosed at a glance is quite large, the lighting effect that is seen in the different color portion at the portion that is captured at a glance is obtained.
  • the white light is emitted from the light source means, but the light reflected from the flowing water 66 is colored, thereby obtaining a unique aesthetic.
  • the light of the light source is white light
  • the light reflected from the polarized light reflector (60a) is reflected in accordance with the change of the position of the viewer even though there is no color light source anywhere The visible color changes.
  • the light source means 8 forms a surface light source to emit uniform light over the entire area.
  • the light source means 8 preferably includes a light source 38 and a light guide plate 40 that receives and emits light from the light source 38.
  • the light source 38 of the light source means 8 may use an LED or a cold cathode fluorescent lamp (CCFL).
  • the polarization means 10 may be composed of a plurality of zones of different polarization directions.
  • the birefringence medium 20 may also be composed of a plurality of zones having different birefringence properties.
  • the polarizing means 10 is composed of three zones 11, 12, 13 and their polarization directions are different.
  • the polarization directions of the three zones 11, 12, 13 may be different from each other, or may be different between the adjacent ones 11 and 12 and 12 and 13.
  • the birefringence medium 20 is composed of three zones 21, 22, and 23, and their birefringence characteristics are different.
  • the birefringence characteristics of the three zones 21, 22, 23 may be different from each other, or may be different between the adjacent ones 21 and 22 and 22 and 23.
  • the birefringence characteristic refers to a characteristic in which the birefringence is made differently such as the angle of refraction (speed of light in the medium) of each refracted light incident upon the birefringent medium and the distance in which the light is birefringed in the birefringence medium.
  • the birefringence medium itself can be used differently (for example, when the material is different, such as cellophane and OPP), or birefringence properties can be varied, or the same birefringence medium can have different thicknesses or different placement directions (e.g. When placed in the horizontal direction and in the vertical direction), birefringence characteristics can be different.
  • each using a birefringence medium of a different material may have different birefringence properties therebetween.
  • the birefringence properties can be changed by varying the number of layers of the same birefringence medium and the same placement direction and the same thickness.
  • the polarization means 10 and the birefringence medium 20 are emitted from the light source means 8 to sequentially rotate the polarization means 10 and the birefringence medium 20.
  • the passed light has different polarization directions for each wavelength depending on the area.
  • the polarization means 10 is composed of a plurality of zones with different polarization directions, the polarization directions are shifted from the light source means 8 to the polarization zones 11, 12 and 13 while passing through the polarization means 10.
  • the polarization directions of the respective wavelengths are different for each of the polarization zones 11, 12, 13, and are emitted into the illumination space S.
  • the birefringence medium 20 includes a plurality of zones having different birefringence characteristics
  • the light polarized from the light source means 8 and through the polarization means 10 is divided into the birefringence medium 20 in which the zones are formed according to the birefringence characteristics. While passing through the birefringence zones 21, 22 and 23, the polarization directions are different for each wavelength and are emitted into the illumination space S.
  • each reflected light may represent a different color. Also in this case, an illumination effect in which the color of the reflected light in each zone changes according to the viewing position is obtained.
  • the polarization means 10 may be formed of a plurality of zones having different polarization directions
  • the birefringence medium 20 may be formed of a plurality of zones having different birefringence characteristics.
  • the polarizing means 10 is formed of a plurality of zones having different polarization directions or the birefringent medium 20 is formed of a plurality of zones having different birefringence characteristics, these zones are patterns or letters. It is desirable to form the shape of.
  • the birefringent medium 20 may be disposed on the front surface of the polarized light reflector 60a.
  • the birefringent film may be attached as the birefringent medium 20 to the entire surface of the polarization reflector 60a of the glass material.
  • the polarizing means 10 or the birefringence medium 20 may be formed of a plurality of zones having different polarization directions or birefringence characteristics.
  • the polarization reflector 60a and the birefringence medium 20 disposed on the front thereof form an illumination object to be illuminated
  • the light source means 8 and the polarization means 10 are the polarization reflector 60a.
  • it will be a lighting means for irradiating the illumination object consisting of a birefringent medium (20).
  • the light reflected from the illumination object has a color
  • the polarization means 10 or the birefringence medium 20 forms a zone, the light of different colors is obtained for each zone.
  • FIG 3 shows a polarization illumination system 2000a according to the second aspect of the present invention.
  • polarization lighting system 2000a In the polarization lighting system 2000a according to the second aspect of the present invention, a plurality of light sources are provided which emit light of different colors, and polarization means for polarizing light with respect to each of these light sources are provided.
  • the polarization direction of the polarization means provided in the light sources of different colors is different in whole or in part.
  • a plurality of light sources each of which emits light of different colors, and a polarization means installed in each of the light sources and having different polarization directions of all or a part of each other, are provided according to the second aspect of the present invention. ).
  • R, G, B LED elements 81, 82, 83 are provided as a plurality of light sources that emit light of different colors, and each of the R, G, B LED elements 81 is provided.
  • the polarization films 811, 812, and 813 are attached to the 82 and 83, respectively, and the polarization directions of the polarization films 811, 812, and 813 are different from each other or all of them.
  • the polarization directions of the polarizing films 811, 812, and 813 may be different from each other, only the polarization directions of the polarizing films 811 and 812 may be different, or the polarization films 811 and 813. Only the polarization direction of may be different.
  • the LED elements 81, 82, 83 of R, G, and B are arranged adjacent to each other so that they are mixed to form white light.
  • the LED elements 81, 82, 83 of R, G, and B to which these polarizing films 811, 812, and 813 are attached form a single light source 80.
  • an LED lamp 800 in which a plurality of such photons 80 are arranged is provided.
  • white light having different polarization directions for each of the R, G, and B wavelengths from the LED lamp 800 is emitted from the individual light sources 80 to the illumination space S, thereby forming illumination.
  • a polarization reflector 60a of the polarization lighting system according to the first aspect of the first invention described above is provided.
  • white light having different polarization directions for each of the R, G, and B wavelengths is emitted from the individual light sources 80 of the LED lamp 800 to achieve illumination in the illumination space S, and The reflected light is colored.
  • FIG. 4 shows another example 2000a 'of a polarization lighting system according to the second aspect of the present invention.
  • the luminaire 90 ' consists of a plurality of zones, the polarization direction of the polarizing means of the light source emitting light of the same color being the same in the same zone but different between the different zones.
  • the luminaire 90 ′ consists of zones A, B and C, for example in the zone A the polarization direction of the polarizing film of the color-specific light source of the photons 80 is the same. . However, the polarization direction of the polarizing film of the color-specific light source is different between the zones A and B.
  • a plurality of LED lamps 800 are provided for each zone, the polarization direction of the polarization means for the LED element of R of the plurality of light sources 80 of the plurality of LED lamps 800 in the same zone are all the same This is also the case for the LED elements of G and B.
  • the polarization direction of the polarization means between the LED elements of R of the photons 80 is different between the different zones, and so is the case of the LED elements of G and B.
  • the polarization reflector 60a when the light is reflected from the polarization reflector 60a, light having different polarization directions for each wavelength is incident and reflected for each zone, and the reflected light has different colors corresponding to the zones.
  • the polarized light is emitted to provide a polarized light system in which light having color is reflected from the polarized light reflector.
  • the light emitted from the lighting means is white light, and does not cause visual interference
  • the reflected light of the polarized light reflects the color
  • the polarizing means or the birefringence medium is divided into a plurality of zones having different polarization directions or birefringence characteristics. It can be formed to be reflected light of different colors for each zone in the polarized reflector.
  • the color of the reflected light may change depending on the position of the eye of the viewer.
  • the present invention provides light source means for emitting light of different colors and polarizing means for each of the light source means, and the polarization direction of the polarizing means attached to the light source means of different colors is all or part of it.
  • light having different polarization directions may be emitted according to wavelengths of colors, and the light may be reflected from the polarized light reflector to reflect light having colors.
  • the light source means may form a zone, and if the zones are different, the polarization direction of the polarization means of the light source means of the same color may also be different, and in this case, the color of light reflected from the polarized light reflector may be different for each zone.
  • FIG. 7 to FIG. 13 show a polarization lighting system according to the second invention of the present patent application.
  • the second invention also reflects incident light such as made of glass, acrylic, crystal, plastic, or the surface of a liquid exhibiting the effect of the first invention, and the reflected light reflects the polarized light reflecting all or part of polarization.
  • the object produces a light that changes color of the reflected light reflected from the polarized light reflector.
  • FIG 7 shows a polarization illumination system 1000b according to the first aspect of the present invention.
  • a polarization reflector 60b is provided, in which case a glass is provided.
  • a polarized light source 100 to which polarized light is irradiated is provided, and the polarized light source 100 irradiates the polarization object 80.
  • the polarized light source 100 is, for example, a polarizing means such as a polarizing film, a polarizing plate or a polarizing filter is attached to the light source, the light from the light source is polarized while passing through the polarizing means such as the polarizing film, polarizing plate or polarizing filter Can be provided.
  • a polarizing means such as a polarizing film, a polarizing plate or a polarizing filter
  • a birefringent medium 200 is disposed between the polarized light source 100 and the polarized reflector 60b.
  • the birefringent medium 200 may be placed at various positions between the polarized light source 100 and the polarized light reflector 60b, and are independently from each of the polarized light source 100 and the polarized light reflector 60b. It may be placed between the, in the form of a film may be used to be attached to the polarized light source 100, or may be attached to the surface of the polarizing object (60b).
  • the polarization direction of the light irradiated from the polarization light source 100 and the birefringence medium 200 and the polarization reflector (60b) is relatively rotated with each other, such a relative rotation is This includes six cases:
  • the polarization direction of the light irradiated from the polarization light source 100 and the birefringence medium 200 makes relative rotation with each other, and the polarization reflector 60b is stopped.
  • the birefringent medium 200 rotates without changing the polarization direction of the light irradiated from the polarized light source 100, or the polarization direction of the light of the polarized light source 100 rotates and the birefringent medium 200 ) Or when the polarization direction of the light of the polarized light source 100 is rotated and the birefringent medium 200 also rotates, the rotation speed between them is different.
  • the polarized light source 100 is stopped and the birefringent medium 200 and the polarized light reflector 60b relatively rotate with each other.
  • This case also includes a case in which one of the birefringent medium 200 and the polarization reflector 60b is stopped and the other rotates, and a case in which both rotate, but the rotation speed is different.
  • the birefringence medium 200 stops, and the polarization direction of the light irradiated from the polarization light source 100 and the polarization reflector 60b rotate relative to each other.
  • the polarization reflector 60b rotates without changing the polarization direction of the light irradiated from the polarization light source 100, or the polarization direction of light of the polarization light source 100 rotates and the polarization reflection object
  • the rotational speed between them is different.
  • the polarized light source 100, the birefringent medium 200 and the polarized light reflector (60b) all rotates and the rotation speed between them has a difference.
  • the polarization direction of the polarization light source 100 and the birefringence medium 200 is rotated as a single body or at a constant speed, and the polarization reflector 60b is stopped.
  • the polarized light source 100 is stopped, the birefringent medium 200 and the polarized light reflector (60b) is a case in which the rotation is formed as a single body or at a constant speed.
  • FIG. 7 illustrates a case in which the polarization direction of the light output from the polarization light source 100 changes as the rotation is performed, and the birefringence medium 200 and the polarization reflector 60b are stopped.
  • the above-mentioned rotation includes rotation of some angle or change of angle.
  • a rotation of some angle is made at 30 degrees, 60 degrees, 90 degrees or 180 degrees, or the angle is changed by the same.
  • the light polarized from the polarized light source 100 and irradiated through the birefringent medium 200 forms birefringence, and the polarization direction is different depending on the wavelength, respectively, and the polarized light reflector ( 60b) enters light having different polarization directions depending on the wavelength.
  • the wavelength having a polarization direction perpendicular to the polarization direction according to the reflection does not achieve reflection, and in the case of other wavelengths All or part of the reflection is made according to each polarization direction and the polarization direction of the reflected light reflected by the polarization reflector 60b, and colors according to the wavelengths reflected by the polarization reflector 60b are mixed. .
  • the polarized light source 100, the birefringent medium 200 and the polarized light reflector (60b) is relatively rotated with each other, based on the polarized light reflector (60b) When the light entering the polarization reflector (60b) is changed in the polarization direction according to each wavelength.
  • the polarization direction of the light irradiated from the polarized light source 100 there is a rotation of the polarization direction of the light irradiated from the polarized light source 100, the light of which the polarization direction is changed according to the rotation passes through the birefringent medium 200
  • the light entering the polarization reflector 60b is the polarization direction changed for each wavelength according to the rotation of the polarization direction of the light emitted from the polarization light source 100, respectively.
  • the wavelength of the reflected light and the wavelength of the non-reflective light of the object 60b are changed.
  • the polarized light reflector 60b is reflected by the rotation of the polarization direction of the output light of the polarized light source 100. The color appears to change.
  • the birefringent medium 200 rotates, when the polarized light emitted from the polarized light source 100 passes through the rotating birefringent medium 200, there is a change in polarization direction for each wavelength, and birefringence is performed. As the medium 200 rotates, the polarization direction of each wavelength is rotated so that the color of the polarization reflector 60b changes.
  • FIG. 8 illustrates an example of a polarized light source 100 through which light in which the aforementioned polarization direction is rotated is output.
  • the polarization light source 100 includes a polarization light source unit 70 and a driving unit 40 for rotating the polarization light source unit 70.
  • the polarization light source unit 70 is provided with a body portion 71, a light source 78 is installed inside the body portion 71, and a polarization filter 74 is coupled to the front surface of the light source 78. Accordingly, light from the light source 78 is polarized while passing through the polarization filter 74.
  • the driving unit 40 may include a motor 44, a control unit 46 for controlling the operation of the motor 44, and an operation unit 48 for manipulating the operation of the motor 44.
  • the motor 44 is coupled to the body portion 71, and accordingly, the body portion 71 rotates in accordance with the power transmission of the motor 44, and thus the polarization direction of the light irradiated from the polarization light source portion 70. Makes a turn.
  • the body part 81 is fixed, and the polarization direction of light polarized while the motor 44 rotates the polarization filter 74 and is irradiated from the light source 78 to pass through the polarization filter 74 is rotated. Can be achieved.
  • an apparatus for controlling the rotation of the body portion 71 may be installed between the motor 44 and the body portion 71 under the control of the controller 46 such as a reduction gear or a planetary gear. Can be.
  • the polarized light source unit 70 is not necessarily driven by a motor, but may be driven by other means, or may be driven manually.
  • the polarized light source 100 is installed to illuminate the polarized light reflector (60b) may be installed a plurality.
  • the birefringence medium 200 in the form of a film is attached to the front surface of the polarization light source unit 70 and the motor 44 is controlled.
  • the birefringence medium 200 is shown rotating.
  • the light of the light source 78 is passed through the polarization filter 74 and polarized, and then passes through the transparent birefringent medium 200 in the form of a film. It is being investigated.
  • the birefringent medium 200 in the form of a film may be attached to the front surface of the polarization filter 74 so that the polarized light source 100 and the birefringent medium 200 rotate together as one body. (Not shown)
  • the birefringence medium 200 may be rotated manually.
  • the rotational speed of the motor 44 may be variously controlled, and thus, the speed of color change may be variously produced.
  • This relative rotation can also exhibit various movements, for example, it can be reciprocated.
  • An example of the reciprocating motion is such that the polarization direction of the light emitted from the polarized light source 100 reciprocates between 0 degrees and 180 degrees.
  • the relative rotation of the polarization direction of the light irradiated from the polarization light source 100 and the birefringence medium 200 may be changed in various directions and the rotation angle may be variously changed.
  • the rotational direction of the output shaft of the motor 44 and the rotational angle thereof may be controlled to vary.
  • the polarization direction may be changed by using a liquid crystal device.
  • 10 shows an example of such a liquid crystal device 400.
  • the liquid crystal device 400 causing the change in the polarization direction is filled with a liquid crystal 490 by securing a space between spacers (not shown) between the glass substrates 410 and 410 and sealed by the sealant 430. .
  • the transparent electrode 460 and the liquid crystal alignment layer 470 are sequentially stacked below the glass substrates 410 and 410.
  • this structure is a structure in which the polarizer is removed from the LCD panel.
  • FIG. 11 shows an example of a polarization direction change light output device 500 for wavelengths having various polarization directions according to wavelengths and outputting light in which the polarization directions are rotated using the liquid crystal device 400 of FIG. 10.
  • a light source 78 is installed on the case member 900, and a polarizing means 74 such as a polarizing film or a polarizing filter is installed in front of the case member 900, and a liquid crystal device 400 is installed at the front thereof to cause rotation of the polarization direction.
  • the birefringent film 200 is installed.
  • the light irradiated from the light source 78 is polarized while passing through the polarizing means 74 and then passes through the birefringent film 200 while the polarization direction is rotated while passing through the liquid crystal device 400. Accordingly, light having different polarization directions depending on the wavelength and whose polarization direction for each wavelength is changed is output.
  • FIG. 12 shows a polarization illumination system 3000b according to the third aspect of the present invention.
  • three polarized light sources 101, 102, 103 are provided, in which polarized light is output as three colors of red (R), green (G), and blue (B).
  • the light of these three polarized light sources (101, 102, 103) is mixed to form white light to irradiate the polarized light reflector (60b), and the three of these three polarized light sources (101, 102, 103) Any one, two or all three of the dog polarization direction and the polarized light reflector (60b) is a relative rotation between each other.
  • Each of the three polarized light sources 101, 102, 103 of FIG. 12 has the structure of the polarized light source of FIG. 8, and each of the light sources 78 that emits R, G, and B may be used.
  • the light source 78 may use a red LED with respect to the structure of the polarized light source 100 of FIG. 8. As a result, the red (R) wavelength polarized light in which the polarization direction rotates is output.
  • the colors of R, G, and B are mixed to be white light, but internally, the wavelengths of R, G, and B are rotated.
  • some of the R, G, and B wavelengths may or may not be reflected according to the polarization direction of the polarization according to the reflection from the polarized light reflector 60b, and the color may be seen according to the mixture of the reflected ones. Since the polarization directions of the R, G, and B wavelengths are changing, the color rendition is also changed.
  • FIG. 13 is a polarization direction change light output for each of the R, G, B wavelengths having a different polarization direction according to the wavelength of R, G, B using the liquid crystal device 400 of FIG. An example of a device 500 'is shown.
  • the red polarized light rotation light output device 101 ′ having a red wavelength of light and rotating in a polarization direction thereof is provided with a light source 78R for emitting red wavelength light, and in front of the polarizing means such as a polarizing film or a polarizing filter ( 74 is provided, and the above-mentioned liquid crystal element 400 is provided in front.
  • a light source 78R for emitting red wavelength light
  • the polarizing means such as a polarizing film or a polarizing filter ( 74 is provided, and the above-mentioned liquid crystal element 400 is provided in front.
  • the green polarization rotation light output device 102 ′ having green wavelength light and whose polarization direction rotates is provided with a light source 78G for emitting green wavelength light, and in front of the polarization means such as a polarizing film or a polarizing filter ( 74 is provided, and the above-mentioned liquid crystal element 400 is provided in front.
  • the blue polarization rotating light output device 103 ′ having blue wavelength light and whose polarization direction is rotated is provided with a light source 78B for emitting blue wavelength light and polarizing means such as a polarizing film or a polarizing filter in front thereof. 74 is provided, and the above-mentioned liquid crystal element 400 is provided in front.
  • the polarization rotation and output devices 101 ', 102' and 103 'of R, G, and B are collected as shown in FIG. 13A, so that light of each wavelength is mixed to form white light.
  • the second invention provides a polarization lighting system that forms a unique display in which color is changed in a polarized light reflecting light by using a polarization phenomenon.
  • the light irradiated from the polarized light source to the polarized reflector is reduced in intensity but not visually disturbed.
  • the second invention is to provide a polarization lighting system in which the light irradiated from the light source causes a change in color of the polarized light to which the light is irradiated without causing a visual disturbance to a person.
  • the polarized reflector 60b Reflected light becomes color.
  • This essentially belongs to the scope of the first invention, but in an embodiment belongs to both the first and second inventions.
  • a polarization reflector such as a glass in which the light polarized from the light source 78 is stopped through the birefringent medium 200 without driving the motor 44 or the liquid crystal 400 in the above-described embodiments ( 60b).
  • the third invention of the present application provides a polarized light reflecting illumination system in which the color of the reflected light is changed with respect to the reflecting object having a reflecting member, such as a mirror ball.
  • FIG 14 shows a mirror ball illumination system 1000c according to the third invention, wherein the mirror ball illumination system 1000c is provided with a mirror ball 600.
  • a plurality of mirror-like reflective members 61 are attached adjacent to each other so as to cover the surface of the sphere (ball), according to the present invention on the upper surface of these reflective members 61
  • Polarization means 67 is attached to polarize the transmitted light.
  • the polarizing means 67 may be a polarizing filter, a polarizing film, a polarizing plate, or the like. In this embodiment, a polarizing film is used.
  • the polarizing film 67 attached to the upper surfaces of the plurality of reflecting members 61 is attached to each of the reflecting members 67 but is not necessarily required.
  • the polarization direction of these polarizing films 67 is different from the polarization direction of another adjacent polarizing film 67.
  • the polarization direction of the polarizing film 67a and the polarization direction of the polarizing films 67b, 67c, 67d and 67e adjacent to the polarizing film 67a are different. In this case, light of a different color is reflected for each adjacent reflective member as described below.
  • the mirror ball illumination system 1000c has a polarized light source 70, which emits polarized light (see FIG. 15).
  • a polarizing means 74 such as a polarizing film, a polarizing plate, or a polarizing filter is attached to the light source 78 so that light from the light source 78 may pass through the polarizing means 74 such as the polarizing film, the polarizing plate, or the polarizing filter. What is polarized and irradiated while passing may be provided as a polarized light source.
  • a birefringent medium 200 is provided, wherein the birefringent medium is placed between the polarized light source 70 and the polarizing film 67 of the mirror ball surface and thus from the polarized light source 70 The light emitted by polarization passes through the birefringent medium 200 and is then irradiated onto the polarizing film 67 of the mirror ball 600.
  • the birefringent medium 200 may be placed at various positions between the polarized light source and the polarizing means 67, and may be placed independently of each other from the polarized light source 70 and the polarizing means 67, respectively.
  • the film may be used to be attached to the polarization means 74 of the polarization light source 70, or may be attached to the top surface of the polarization means 67 in the mirror ball 600.
  • the polarizing means 74 such as a polarizing plate or a polarizing film
  • the birefringent medium 200 such as a birefringent plate or a birefringent film, is provided in front of it. It is installed.
  • birefringence medium in the form of a film an elongated plastic film such as OPP film or PET film having a birefringence property, a cellophane film, a plastic plate, etc. may be used, and a birefringence film specially prepared for birefringence may be used.
  • a birefringent medium a birefringent plate, a birefringent lens, or the like may be used.
  • the polarization direction of the light emitted from the polarized light source 70, the position of one point of the birefringent medium 200, and the polarization of the individual polarizing film 67 attached to the mirror ball 600 Directions change relative to each other. Such relative changes may include the following cases.
  • the change of the position of one point of the birefringence medium refers to the change of the position of any one point on the birefringence medium.
  • the birefringence medium rotates, the point on the axis of rotation does not change, but any point anywhere else changes. This includes.
  • the polarization direction of the light irradiated from the polarization light source 70 and the birefringence medium 200 is rotated between each other and the mirror ball 600 is stopped.
  • the polarization light source 70 is stopped and the one point of the birefringent medium and the polarization direction of the polarization means 67 provided in the mirror ball 600 is a displacement between each other.
  • the birefringence medium 200 may rotate or the birefringence medium 200 and the mirror ball 600 may rotate at relatively different speeds.
  • the birefringence medium stops and the polarization direction of the light irradiated from the polarization light source and the polarization direction of the individual polarization means 67 provided in the mirror ball 600 are changed.
  • either the polarized light source 70 and the mirror ball 600 may be stopped and the other rotates.
  • both the polarized light source 70, the birefringent medium and the mirror ball 600 cause a displacement.
  • the polarization light source and the birefringence medium are displaced together, and the mirror ball 600 is stopped.
  • the polarized light source is stopped, the birefringent medium and the mirror ball 600 is a case where the displacement is made together.
  • the polarized light source is stopped and the birefringent film is attached to the surface of the polarization means 67 in the mirror ball 600, the mirror ball 600 is rotated.
  • the displacements together include the case where the displacement occurs as one body and the displacement occurs along the same path at the same speed.
  • the above-mentioned rotation comprises rotation of some angle.
  • the angle changes such as 30 degrees, 60 degrees, 90 degrees, or 180 degrees, is included.
  • the polarized birefringent light source 100a is provided such that the polarized light source 70 and the birefringent medium 200 are rotated together as one body, and the mirror ball 600 may be stopped or rotated.
  • FIG. 14 a polarization birefringent light source 100a is provided, and FIG. 15 shows a structure of the polarization birefringent light source 100a.
  • the polarization birefringent light source 100a first has a body portion 71.
  • a light source 78 is installed inside the body 71 and polarizing means 74 such as a polarizing filter or a polarizing film is installed in front of the body 71. Accordingly, the light of the light source 78 is polarized while passing through the polarization means 74, the light source 78 and the polarization means 74 forms a polarized light source 70 for emitting polarized light.
  • a birefringent medium 200 such as a birefringent plate is installed in front of the polarizing means 74 in the body portion 71. Therefore, the light irradiated from the light source 78 and polarized through the polarization means 74 forms birefringence while passing through the birefringence medium 200, and the light having different polarization directions according to the wavelengths is the polarization birefringent light source 100a. ) Is released.
  • the motor 44 is provided to rotate the body portion 71, and thus the polarized light source 70 and the birefringence medium 200 integrally installed on the body portion 71 are rotated together as one body. .
  • the motor 44 is connected to the control unit 46 and the control unit 46 receives a command from the operation unit 48. Accordingly, the operation of the motor 44 is made according to the operation of the operation unit 48.
  • the mechanical structure may be designed such that the motor 44 rotates only the birefringent medium 200, in which case the polarized light source 70 is stopped and one point of the birefringent medium 200 is displaced. Will be raised.
  • a motor does not necessarily need to be provided as a power source, and various means can be provided, and does not exclude manual movement.
  • the rotation of the polarization direction of the polarized light source can be achieved only a part of the rotation by the use of a step motor, the present invention includes this case as a rotation.
  • the polarization birefringent light source 100a irradiates light toward the mirror ball 600 described above.
  • a plurality of polarized birefringent light sources 100a are provided so that each can be irradiated toward the mirror ball 600.
  • the polarized light emitted from the polarized light source 70 is birefringent while passing through the birefringent medium 200 to become light having a slightly different polarization direction depending on the length of the wavelength to the mirror ball 600.
  • the polarizing film 67 provided is irradiated.
  • the light irradiated onto the mirror ball 600 is reflected after passing through the installed polarizing film 67 has a specific color, on the other hand in the rotation of the polarization direction of the light emitted from the polarization birefringent light source (100a) As a result, the color appears.
  • the polarized light When the polarized light is birefringent so that different polarization directions are incident on the polarization film 67 of the mirror ball 600, the polarized light does not pass perpendicular to the polarization direction of the polarization film 67.
  • the polarized light passes through a mixture of light of the wavelength passing through a specific color, wherein, as the polarization direction of the light emitted from the light source is rotated for each wavelength of the light incident on the polarizing film 67
  • the polarization direction of the change again, the wavelength that can pass through the polarizing film 67 and its passing rate is changed, accordingly, the color of the light reflected from the reflective member 61 causes a change will be.
  • the color will be different for each polarizing film having different polarization directions, and if the polarization directions of the plurality of polarizing films 67 are sequentially changed in an adjacent order. If you give, you can expect a sequential change in color.
  • This phenomenon occurs when the polarization direction of the light emitted from the polarized light source, the position of one point of the birefringent medium, and the polarization direction of the polarization means installed in the mirror ball 600 cause a change between each other.
  • the refraction direction is also generated.
  • a polarization direction may be changed by using a liquid crystal device.
  • FIG. 16 shows an example of such a liquid crystal device 400.
  • the liquid crystal device 400 causing the change in the polarization direction has a liquid crystal between the glass substrates 410 and 410 with a space between spacers (not shown). 490 is filled and sealed by sealant 430.
  • the transparent electrode 460 and the liquid crystal alignment layer 470 are sequentially stacked below the glass substrates 410 and 410.
  • this structure is a structure in which the polarizer is removed from the LCD panel.
  • FIG. 17 shows an example of a polarized birefringent light source 100b using the liquid crystal device 400 of FIG. 16.
  • a light source 78 is installed on the case member 900, and a polarizing means 74 such as a polarizing film or a polarizing filter is installed in front of the case member 900, and a liquid crystal device 400 is installed at the front thereof to cause rotation of the polarization direction.
  • the birefringent film 200 is installed.
  • the light irradiated from the light source 78 is polarized while passing through the polarizing means 74 and then passes through the birefringent film 200 while the polarization direction is rotated while passing through the liquid crystal device 400.
  • the intensity of the voltage applied to the liquid crystal device 400 is changed while having different polarization directions depending on the wavelength, light having a different polarization direction for each wavelength is output.
  • FIG. 18 shows a mirror ball illumination system 2000c according to the second aspect of the third invention.
  • a plurality of polarized light sources 100R, 100G, 100B are provided in place of the polarized birefringent light source 100a, wherein the plurality of polarized light sources 100R, 100G ( 100B) is that each polarized light is emitted, the color of the light is different.
  • These polarized light sources 100R, 100G and 100B emit light of red (R), green (G) and blue (B), respectively, and they are preferably mixed to form white light.
  • the polarization direction of the light emitted from the polarized light source (100R) (100G) (100B) and the polarization direction of the individual polarizing film 67 attached to the mirror ball 600 are relatively relative to each other.
  • a light source 78R for outputting red light is installed inside the body portion 71, and a polarizing means 74 is installed in front of the body portion 71.
  • the motor 44 is controlled to rotate to form a polarized light source 100R in which the polarization direction is rotated as red (R) light, and the polarized light source 100G and the polarized light source 100B can be configured in the same manner.
  • the mirror ball 600 may be stationary, but may be rotated.
  • the polarizing film 67 which is the polarizing means of the mirror ball 600
  • the polarization of the polarizing film 67 What does not pass perpendicular to the direction does not pass a specific color due to the mixture of the wavelength of light passing through all or part of the pass according to the polarization angle, wherein the red (R) incident on the polarizing film 67 )
  • the polarization direction for each wavelength of green (G) and blue (B) changes again, and the wavelength and the ratio of the passage that can pass through the polarizing film 67 are changed.
  • the color of the light reflected from the reflective member 61 will cause a change. Different colors cause changes between polarization films 67 having different polarization directions.
  • FIG. 20 illustrates a polarization light source 100c for each of R, G, and B, which has different polarization directions according to wavelengths of R, G, and B, and outputs light in which the polarization direction is rotated using the liquid crystal device 400 of FIG. 16. see.
  • the R, G, and B polarized light source 100c includes a polarized light source 101 emitting red light and a polarized light source 102 emitting green light and a polarized light source 103 emitting blue light. They have light sources 60R, 60G and 60B which emit red, green and blue light sources, respectively, and polarizing means 70 (in front of 60R) 60G and 60B of these light sources. 70 and 70 are installed, and the liquid crystal elements 400 and 400 and 400 described above are installed in front.
  • the light of the wavelength of R, G, B is output while the polarization direction of each of them is output. It is preferable that the white light is output as a whole by mixing these R, G, and B.
  • the aforementioned R, G, and B polarized light sources 100c may be provided alone or in plurality.
  • the rotational speed of the motor 44 in a variety of ways it can produce a variety of speed of the color change of the light reflected from the mirror ball (600).
  • the rotation direction or the rotation angle of the body portion 71 through the control of the motor 44, it is possible to variously adjust the direction of the color of the light reflected from the mirror ball 600.
  • the present invention has been described using a mirror ball as a reflecting object, the present invention is not limited thereto and may be applied to all reflecting objects provided with a reflecting member such as a mirror.
  • the mirror ball 600 when providing a reflecting object made by attaching a polarizing means such as a polarizing film on the upper surface of the reflecting member such as a mirror, the color changes in the polarizing film Reflected light can be obtained.
  • a plurality of reflecting members may be provided (for example, a form in which a plurality of mirrors are attached to the base member), or one may be provided as a whole, such as one mirror attached to the entire base member.
  • a plurality of polarization means may be provided adjacent to or away from the reflective member, and the polarization direction of these polarization means may be different in part or all. do.
  • FIG. 21 illustrates a polarized light reflecting illumination system 3000c in which a planar reflecting object 6000 is installed in place of the mirror ball 600 in FIG. 14.
  • the plane reflective object 6000 is provided with a mirror-like reflecting member 610 on the front surface of the base member 5, and four polarizing films 671, 672, 673 as polarizing means on the reflecting member 610. ) 674 is attached, and the polarization directions of these polarizing films 671, 672, 673, and 674 are different from each other.
  • the light of which the polarization direction is rotated again is irradiated from the polarized birefringent light source 100a to the polarization films 671 and 672 of the reflective object 8000.
  • Each of the (673) and (674) colors can be reflected light which sequentially changes color.
  • FIG. 22 shows a polarized light reflecting illumination system 4000c according to another aspect of the third invention.
  • the reflective object 6000 ′ has a base member 5 and a reflective member 610 such as a mirror is installed on the front surface thereof.
  • Polarizing means 670 such as a polarizing film, is provided on the front surface of the reflective member 610.
  • one polarizing means 670 is provided, but a plurality of polarizing means 670 are installed and their polarization directions are partially or All may be different.
  • a birefringence medium is installed on the front surface of the polarizing means 670.
  • the birefringence medium is divided into a plurality of zones 221, 222, 223 and 224 having different birefringence characteristics.
  • the birefringence characteristics may be different from those of the birefringence medium itself or the same birefringence medium with different thicknesses or different arrangement directions (for example, when placed in the horizontal direction and in the longitudinal direction). have.
  • the birefringence characteristics of the zones 221, 222, 223, and 224 are different from those of the birefringence media by varying the material of the birefringence medium. You can do it differently. (For example one cellophane film and the other OPP film etc.)
  • films of the same thickness can have different birefringence properties by varying the number of layers.
  • the number of layers may be different for each zone.
  • the same birefringence medium may have different birefringence characteristics by different arrangement directions, even if cut out from the same birefringence film in the zones 221, 222, 223, 224, if the arrangement direction is different It has birefringence characteristics. (For example, one is attached horizontally and the other is attached vertically)
  • the polarized light is irradiated onto the reflective object 6000 ′ from the polarized light source 70 through which the polarized light is emitted.
  • the polarization direction of the light emitted from the polarization light source 70 and one point of the birefringent medium (221, 222, 223, 224) of the reflective object 6000 ' there is provided a displacement means for changing, in this embodiment the polarized light source 70 is rotated by the power of the motor, and thus the displacement means is made to include a motor.
  • the light polarized from the polarized light source 70 irradiates the zones 221, 222, 223, and 224 having different birefringence characteristics, and birefringence is performed for each zone. As the characteristics are different, the polarization direction for each wavelength of light passing through the zones is different.
  • the different polarization directions for different wavelengths in each zone are incident on the polarizing means 670 and do not pass perpendicular to the polarization direction of the polarizing means 670. Otherwise, they pass through all or part of the polarization angles.
  • the mixing of wavelengths of light gives each zone a specific color.
  • the polarization direction of the light emitted from the polarization light source 70 rotates, the polarization direction for each wavelength of light incident on the polarization means 670 changes again, and passes through the polarization means 670.
  • the wavelength and the pass ratio thereof may vary, and thus, the color of the light reflected by the reflecting member 610 may change for each of the birefringent regions 221, 222, 223, and 224.
  • FIG. 23 shows a case in which the reflection object is the mirror ball 600 'for the embodiment of FIG.
  • a plurality of reflective members 61 are installed on the surface of the mirror ball 600 ', and a polarizing film 67 is attached to the upper surface thereof, and the birefringent film 227 is attached to the surface again.
  • the birefringent films 227 may have some or all of their birefringence characteristics different, and at least, it is preferable that the birefringence characteristics differ between adjacent ones.
  • the mirror ball 600 ' which is a reflection object, is rotated, and the polarized light source 70 is rotated by a displacement means such as a motor, and the polarization direction thereof is changed in rotation.
  • the color of reflected light of a reflective object such as a mirror ball is changed by using a polarization phenomenon, and each reflected light is changed to a different color according to the polarization direction of the polarization means of the surface of the reflective object or according to the birefringence characteristic of the birefringent medium.
  • a polarized light reflecting illumination system that is reflected.
  • the change of color is produced in the reflected light of the reflecting object such as a mirror ball.
  • a light source is polarized in a luminaire having a decoration such as a chandelier so that the decoration produces a change in various colors.
  • FIG. 24 shows an example 1000d of a polarization lighting apparatus according to the present invention.
  • the polarization lighting apparatus 1000d includes a plurality of decorations 660 as chandeliers.
  • the decoration 660 is a medium through which light passes, for example, crystal or glass, but is not limited thereto, and may be made of various materials such as plastic as long as light is transmitted.
  • the decoration 660 is provided with a polarizing means such as a polarizing film, a polarizing filter or a polarizing plate to be irradiated with light emitted from the polarized light source. This will be described later.
  • a polarizing means such as a polarizing film, a polarizing filter or a polarizing plate to be irradiated with light emitted from the polarized light source. This will be described later.
  • the ornament 660 is suspended through the string 6 in the decorative section 16 around the chandelier body, the ornament 660 is polarized as the shape of the cube
  • the polarizing film 67 which is a means is attached to the upper surface of the said decoration 660.
  • the polarizing film 67 installed in the decoration 660 is irradiated with the light emitted from the polarized light source 70.
  • a polarized birefringent light source 100a which polarizes light and emits light by birefringence.
  • the polarized light birefringent light source 100a is provided with a polarized light source 70. (See FIG. 25) This will be described later.
  • an intaglio or emboss is formed in the decoration 660 because in this case, the color may be seen by tapping the intaglio or embossed portions.
  • bubbles or the like may be formed inside the decoration, or an empty space may have the effect of tapping the color at the boundary of the bubble or the empty space.
  • the decoration 660 may be a polyhedron having a plurality of corners by a complicated line, and thus the color may be prominent at each corner.
  • the decoration 660 is not embossed or engraved or bubble or empty space, even if not a complex polyhedral structure, the effect of the color change according to the present invention appears and thus the above are not essential.
  • the decoration 660 is formed with a recessed V-shaped grooves 604 and 604 (see Fig. 26).
  • the polarization lighting apparatus 1000d includes not only a chandelier but all lighting devices having a decoration.
  • the polarization lighting apparatus 1000d has a polarization light source 70 that emits polarized light.
  • the polarized light source 70 is, for example, a polarizing means such as a polarizing film, a polarizing plate or a polarizing filter is attached to the light source and the light from the light source is polarized while passing through the polarizing means such as the polarizing film, polarizing plate or polarizing filter What is irradiated may be provided as a polarized light source.
  • a polarizing means such as a polarizing film, a polarizing plate or a polarizing filter
  • a birefringent medium 200 is provided, wherein the birefringent medium is placed between the polarization light source 70 and the polarization means installed in the decoration 660 and thus from the polarization light source 70 The light emitted by polarized light is passed through the birefringent medium 200 and then irradiated with polarizing means (polarizing film 67 in this embodiment) installed in the decoration 660.
  • polarizing means polarizing film 67 in this embodiment
  • the birefringent medium 200 may be placed at various positions between the polarized light source 70 and the decoration 660, and may be placed independently between the polarized light source 70 and the decoration 660, respectively. And, in the form of a film may be used may be attached to the polarizing means 74 of the polarized light source 70, may be attached to the surface of the polarizing film 67, the polarizing means in the decoration 660.
  • birefringence medium in the form of a film an elongated plastic film such as OPP film or PET film having a birefringence property, a cellophane film, a plastic plate, etc. may be used, and a birefringence film specially prepared for birefringence may be used.
  • a birefringent medium a birefringent plate, a birefringent lens, or the like may be used.
  • the polarization direction of the light emitted from the polarized light source 70, the position of one point of the birefringent medium 200, and the polarization direction of the polarization means 67 provided in the decoration 660 are relatively relative to each other. Such relative changes may include the following cases.
  • the change of the position of one point of the birefringence medium refers to the change of the position of any one point on the birefringence medium.
  • the point on the axis of rotation does not change, but any point anywhere else changes. This includes.
  • the polarization direction of the light irradiated from the polarization light source 70 and the birefringence medium 200 rotates with each other and the polarization means 67 installed in the decoration 660 is stopped. If the polarization means 67 is fixed to the ornament 660, if the ornament 80 is stopped, the polarization means 67 will also be stopped. On the other hand, when the polarization means 67 is fixed to the ornament 660, the polarization means 67 will also cause a displacement in accordance with the displacement (movement) of the ornament 660.
  • This case includes the case where one of the polarized light source 70 and the birefringent medium 200 is stopped and the other rotates and both 70 and 200 are rotated but their rotation speeds are different.
  • the polarization light source 70 is stopped and one point of the birefringent medium 200 and one point of the polarization means 67 provided in the decoration 660 is a displacement between each other.
  • the birefringence medium 200 rotates or when the ornament 660 rotates by turning the string 6 of the ornament 660 having the polarizing film 67 attached to the upper surface thereof, or the ornament 660.
  • the decorative section 16 to be installed is revolved around the chandelier body.
  • the birefringence medium 200 stops and the polarization direction of the light irradiated from the polarization light source 70 and the polarization direction of the polarization means 67 provided in the decoration 660 are changed.
  • any one of the polarization means installed in the polarized light source 70 and the decoration 660 is stopped, and the other may rotate or revolve.
  • both the polarization light source 70, the birefringent medium 200 and the polarization means 67 provided in the decoration 660 cause a displacement.
  • the polarization light source 70 and the birefringent medium 200 are displaced together as a single body or at a constant velocity, and the polarizing means 67 installed in the decoration 660 is stopped.
  • the polarization light source 70 is stopped, and the birefringence medium 200 and the polarization means 67 provided in the decoration 660 is a case where the displacement is integrally or at the same speed.
  • the above-described rotation includes rotation of some angle or change of angle, for example, when the angle is changed, such as 30 degrees, 60 degrees, 90 degrees or 180 degrees.
  • a polarized birefringent light source 100a (see FIG. 25) is provided, in which case the polarized light source 70 and the birefringent medium 200 rotate together as one body and are attached to the decoration 660.
  • the polarizing film 67 is stopped. In this case, the case in which the decoration 660 is moved according to the wind, etc. is not excluded.
  • FIG. 25 shows the structure of the polarization birefringent light source 100a of FIG. 24, wherein the polarization birefringent light source 100a has a body portion 71.
  • a light source 68 is installed inside the body 71 and polarizing means 74 such as a polarizing filter or a polarizing film is installed in front of the body 71. Accordingly, the light of the light source 68 is polarized while passing through the polarization means 74, the light source 68 and the polarization means 74 forms a polarized light source 70 for emitting polarized light.
  • polarizing means 74 such as a polarizing filter or a polarizing film
  • the birefringent medium 200 is installed in front of the polarizing means 74 in the body portion 71. Therefore, the light irradiated from the light source 68 and polarized through the polarization means 74 forms birefringence while passing through the birefringence medium 200, and the light having different polarization directions depending on the wavelength is the polarization birefringent light source 100a. ) Is released.
  • the motor 44 is provided to rotate the body portion 71, and thus the polarized light source 70 and the birefringence medium 200 integrally installed on the body portion 71 are rotated together as one body. Cause relative displacement.
  • the motor 44 is connected to the control unit 46 and the control unit 46 receives a command from the operation unit 48. Accordingly, the operation of the motor 44 is made according to the operation of the operation unit 48.
  • the mechanical structure may be designed such that the motor 44 rotates only the birefringent medium 200, in which case the polarized light source 70 is stopped and one point of the birefringent medium 200 is displaced. It is a case of causing.
  • the motor does not necessarily need to be provided as a power source, and various means can be provided, and does not exclude manual movement.
  • the polarization birefringent light source 100a is illuminated, and at this time, the polarizing film 67, which is the polarization means installed in the decoration 660, receives the light from the polarization birefringent light source 100a.
  • One polarization birefringent light source 100a may be provided or a plurality of polarization birefringent light sources 100a may be provided.
  • the polarized light emitted from the polarized light source 70 is birefringent while passing through the birefringent medium 200 becomes a light having a different polarization direction for each wavelength polarizing film 67 installed in the decoration 660 Will be investigated.
  • the light irradiated onto the decoration 660 has a specific color while passing through the installed polarizing film 67, and the decoration 660 placed in the traveling direction of the light passing through the polarizing film 67.
  • This color appears strongly at the corners C1, C2, and C3 of the c), and on the other hand, the appearing color is changed according to the rotation of the polarization direction of the light emitted from the polarization birefringent light source 100a.
  • This phenomenon is caused by the polarization direction of the light emitted from the polarized light source 70, the position of one point of the birefringent medium 200, and the polarization direction of the polarization means 67 provided in the decoration 660 relative to each other In the event of a change, all will occur.
  • the refraction direction is also generated.
  • FIG. 27 shows an example of such a liquid crystal device 400.
  • the liquid crystal device 400 causing the change in the polarization direction has a liquid crystal between the glass substrates 410 and 410 with a space between spacers (not shown). 490 is filled and sealed by sealant 430.
  • the transparent electrode 460 and the liquid crystal alignment layer 470 are sequentially stacked below the glass substrates 410 and 410.
  • this structure is a structure in which the polarizer is removed from the LCD panel.
  • FIG. 28 shows an example of a polarization birefringent light source 100b using the liquid crystal device 400 of FIG. 27.
  • a light source 78 is installed on the case member 900, and a polarizing means 74 such as a polarizing film or a polarizing filter is installed in front of the case member 900, and a liquid crystal device 400 is installed at the front thereof to cause rotation of the polarization direction.
  • the birefringent film 200 is installed.
  • the light irradiated from the light source 68 is polarized while passing through the polarizing means 74 and then passes through the birefringent film 200 while the polarization direction is rotated while passing through the liquid crystal device 400. Accordingly, light having different polarization directions depending on the wavelength and whose polarization direction for each wavelength is changed is output.
  • FIG. 29 illustrates a polarization light source 100c for each of R, G, and B that has different polarization directions according to wavelengths of R, G, and B, and outputs light in which the polarization direction is rotated using the liquid crystal device 400 of FIG. 4. see.
  • the R, G, and B polarized light source 100c includes a polarized light source 101 emitting red light and a polarized light source 102 emitting green light and a polarized light source 103 emitting blue light.
  • a polarized light source 101 emitting red light
  • a polarized light source 102 emitting green light
  • a polarized light source 103 emitting blue light.
  • 74 and 74 are installed, and the liquid crystal elements 400 and 400 and 400 described above are installed in front.
  • the light of the wavelength of R, G, B is output while the polarization direction of each of them is output. It is preferable that the white light is output as a whole by mixing these R, G, and B.
  • the white light is output from the chandelier and thus is not affected by the lighting, but the decoration 660 causes a change in color.
  • light of a color other than white light may be output and used as illumination.
  • the aforementioned R, G, and B polarized light sources 100c may be provided singly or in plural.
  • FIG. 30 and 31 show another embodiment 1000d ′ of the polarization lighting apparatus according to the fourth invention.
  • the polarized birefringent light source 100d includes a body 71, a light source 68 therein, a polarization means 74, and a birefringent medium 200.
  • the body portion 71 is stopped and the ornament 660 causes a displacement, the polarizing film 67 causes a displacement, the ornament 16 on which the ornament 660 is placed according to the power of the motor 44. Seems to rotate.
  • the base plate 190 on which the decorative panel 16 is installed, rotates according to the operation of the motor 44, and the ornaments 660 rotate. At this time, the body portion 71 is installed so as not to rotate.
  • the fourth invention provides a polarization lighting device that changes color in the decoration in a lighting device having a decoration such as a chandelier using a polarization phenomenon.
  • the polarization lighting system according to the present invention can be used for the display or advertisement of goods and the like for lighting, and can also be used for interior and to enhance the aesthetics of the building.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

본건 특허출원의 제1발명에 따른 편광조명시스템(1000a)은 광원수단(8)과, 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단(10)과, 상기 광원수단으로부터 방출되어 상기 편광수단을 거친 빛을 받아 복굴절시키는 복굴절매질(20)을 포함하여 이루어진 조명수단을 가진다. 상기 조명수단의 빛이 방출되는 조명공간(S)에는 상기 조명수단으로부터 방출된 빛을 받는 것으로서, 입사된 빛을 반사하며 반사된 빛은 편광을 이루는 편광반사물(60)이 설치된다.

Description

편광조명시스템
본 발명은 편광조명시스템에 관한 것으로서, 더욱 상세히는, 편광 된 빛을 이용하여 반사광이 색상을 띄게 되는 조명을 얻을 수 있는 편광조명시스템에 관한 것이다.
편광현상은 빛이 편광자를 통과하면서 진행방향에 수직한 임의의 평면에서 전기장의 방향이 일정하게 되는 것을 말한다. 이러한 편광현상의 대표적인 예는 두 개의 편광자를 상호간에 편광방향이 수직이 되게 놓고 빛을 통과시키는 경우 빛의 투과가 없게 되는 것이다.
이러한 편광현상을 이용하여 편광필름 등을 이용하여 빛에 대하여 일정방향의 편광성을 가지게 할 수 있다.
본 출원인은 편광현상에 대한 연구를 통하여 다양한 디스플레이 장치 및 조명장치를 출원하였는데 관련출원번호 및 발명의 명칭은 아래와 같다.
대한민국 특허출원번호 10-2010-0072201 편광디스플레이장치
대한민국 특허출원번호 10-2010-0088893 편광디스플레이장치
대한민국 특허출원번호 10-2010-0091423 편광디스플레이장치
대한민국 특허출원번호 10-2010-0117952 반사체를 대상으로 하는 편광조명장치
대한민국 특허출원번호 10-2010-0117956 액정소자를 이용하여 편광방향의 변화를 이루는 편광디스플레이장치
대한민국특허출원번호 10-2011-0003062 편광디스플레이장치
대한민국 특허출원번호 10-2011-0032626 편광조명장치
대한민국 특허출원번호 10-2011-0039994 편광반사조명시스템
대한민국 특허출원번호 10-2011-0048592 편광조명테이블
대한민국 특허출원번호 10-2011-0063584 보는 위치에 따라 다른 색상으로 보일 수 있는 편광디스플레이 장치
대한민국 특허출원번호 10-2011-0074013 편광디스플레이장치 (위 출원 건들 중 출원번호 10-2010-0072201, 10-2010-0088893, 10-2011-0003062, 10-2010-0117956, 10-2010-0091423에 대한 우선권 주장 출원 건)
국제특허출원번호 PCT/KR2011/005501 편광디스플레이장치 (위 출원 건들 중 출원번호 10-2010-0072201, 10-2010-0088893, 10-2011-0003062, 10-2010-0117956, 10-2010-0091423에 대한 우선권 주장 국제특허출원 건)
대한민국 특허출원 10-2011-0087761 편광조명시스템
한편, 빛이 공기(또는 진공, 액체) 중에서 진행하다가 어떠한 매질의 경계에서 일부 매질로 투과가 되어 굴절되고 일부 반사가 되는 경우 반사광은 각도에 따라 전부 또는 일부 편광을 이루게 된다. 이와 같이 반사에 의하여 편광을 일으키는 매질은 유리, 아크릴, 물과 같은 액체, 플라스틱, 크리스털, 투명 도료 등 빛이 그 표면에서 일부 투과, 일부 반사되는 물질들이다.
또 한편, 샹들리에와 같은 조명기구는 반사를 이루는 장식물을 가지고 있으며, 미러볼과 같은 것은 그 표면에 거울 등과 같은 반사부재가 복수개로 덮여 있으며 광원으로부터 빛을 조사받아 상기 반사부재들로부터 빛이 반사되어 조명효과를 얻게 되는데, 미러볼 또는 광원의 회전을 통하여 독특한 조명효과를 얻는다.
본 발명은 편광현상을 이용하여 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물, 샹들리에와 같이 장식물이 달린 조명기구 및 미러볼 등과 같이 표면에 거울과 같은 반사부재를 가지는 조명대상물에 대하여 이들에 대하여 방출되는 빛은 백색광 등으로서 시각적 방해를 일으키지 않으면서, 반사되는 모습은 색상을 가지고 또한 이러한 색상은 변화가 가능한 편광조명시스템 및 그 방법을 제공한다.
본 발명의 목적은 편광현상을 이용하여 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물, 샹들리에와 같이 장식물이 달린 조명기구 및 미러볼 등과 같이 표면에 거울과 같은 반사부재를 가지는 조명대상물에 대하여 이들에 대하여 방출되는 빛은 백색광 등으로서 시각적 방해를 일으키지 않으면서, 반사되는 모습은 색상을 가지고 또한 이러한 색상은 변화가 가능한 편광조명시스템 및 그 방법을 제공하는 것이다.
본건 특허출원의 제1발명은 광원수단과; 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단과; 상기 광원수단으로부터 방출되어 상기 편광수단을 거친 빛을 받아 복굴절시키는 복굴절매질과; 상기 광원수단으로부터 방출되어 상기 편광수단을 통과한 후 상기 복굴절매질을 통과한 빛을 받는 것으로서, 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 포함하여 이루어진 것을 특징으로 하는 편광조명시스템을 제공한다.
본 제1발명의 실시예의 경우, 상기 편광수단과 복굴절매질은 상호간에 적층되어 배치될 수 있다.
본 제1발명의 실시예의 경우, 상기 복굴절매질은 상기 편광반사물의 전면에 부착되어 있을 수 있다.
본 제1발명의 실시예의 경우, 상기 편광수단은 편광방향이 다른 다수개의 편광구역으로 이루어질 수 있다.
본 제1발명의 실시예의 경우, 상기 복굴절매질은 복굴절특성이 다른 다수개의 복굴절구역으로 이루어질 수 있다.
본 제1발명의 실시예의 경우, 상기 광원수단은 면광원을 이루는 것이 바람직하다.
본 제1발명의 실시예의 경우, 상기 광원수단은 광원과 상기 광원의 빛을 받아 방출하는 도광판을 포함하여 이루어질 수 있다.
본 제1발명의 실시예의 경우, 상기 광원수단의 광원은 엘이디램프 또는 냉음극형광등으로 이루어질 수 있다.
본 제1발명의 실시예의 경우, 상기 편광반사물은 액체, 유리, 아크릴, 크리스털 또는 플라스틱의 재질로 이루어질 수 있다.
본건 특허출원의 제1발명은, 또한, 조명공간에 설치된 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 조사하는 것으로서; 광원수단과; 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단과; 상기 광원수단으로부터 방출되어 상기 편광수단을 거친 빛을 받아 복굴절시키는 복굴절매질을 포함하여 이루어진 것을 특징으로 하는 조명수단을 제공한다..
본건 특허출원의 제1발명은, 또한, 각각 색상이 다른 빛을 방출하는 다수개의 광원과, 이들 각각의 광원에 대하여 설치되는 빛을 편광시키는 편광수단을 포함하여 이루어지는 조명수단과; 여기서 상호간에 다른 색상의 광원에 설치되는 편광수단의 편광방향은 전부 또는 일부가 서로 다르며; 상기 조명수단으로부터 방출된 빛을 받는 것으로서, 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 포함하여 이루어진 것을 특징으로 하는 편광조명시스템을 제공한다.
이 경우, 상기 조명수단은 다수개의 구역으로 이루어지며, 여기서, 동일한 색상의 빛을 방출하는 광원의 편광수단의 편광방향은 동일한 구역에서는 동일하지만 다른 구역사이에서는 다를 수 있다.
본건 특허출원의 제1발명은, 나아가서, 조명공간에 설치된 입사된 빛을 반사하며 반사된 빛은 편광을 이루는 편광반사물을 조사하는 것으로서; 각각 색상이 다른 빛을 방출하는 다수개의 광원과; 이들 각각의 광원에 대하여 설치되는 빛을 편광시키는 편광수단을 포함하여 이루어지며, 여기서, 상호간에 다른 색상의 광원에 설치되는 편광수단의 편광방향은 전부 또는 일부가 서로 다른 것을 특징으로 하는 조명수단을 제공한다.
이러한 경우, 상기 조명수단은 다수개의 구역으로 이루어지며, 여기서, 동일한 색상의 빛을 방출하는 광원의 편광수단의 편광방향은 동일한 구역에서는 동일하지만 다른 구역사이에서는 다를 수 있다.
본건 특허출원의 제1발명은, 또한 나아가서, 조명공간에 설치된 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물과 상기 편광반사물에 배치된 복굴절매질을 포함하여 이루어진 조명대상물을 조사하는 것으로서; 광원수단과; 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단을 포함하여 이루어진 것을 특징으로 하는 조명수단을 제공한다.
본건 특허출원의 제2발명은 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물에 조명을 이루는 것으로서; 편광 된 빛이 출력되는 것으로서 상기 편광반사물을 조사하는 편광광원과; 상기 편광광원과 상기 편광반사물의 사이에 놓이는 복굴절매질을 포함하여 이루어지며; 여기서, 상기 편광광원에서 출력되는 빛의 편광방향과 상기 복굴절매질과 상기 편광반사물은 상호간에 상대적으로 회전을 이루는 것을 특징으로 하는 편광조명장치를 제공한다.
본 제2발명에 따를 경우, 상기 편광반사물은 액체, 유리, 아크릴, 크리스털 또는 플라스틱의 재질로 이루어질 수 있다.
본 제2발명에 따를 경우, 상기 편광광원은 조사되는 빛의 편광방향이 회전을 이루고 상기 복굴절매질과 상기 편광반사물은 정지되어 있을 수 있다.
본 제2발명에 따를 경우, 상기 복굴절매질이 회전을 이루고 상기 편광광원과 상기 편광반사물은 정지되어있을 수 있다.
본 제2발명에 따를 경우, 상기 복굴절매질과 상기 편광광원이 일체로 또는 등속으로 회전을 이루고 상기 편광대상물은 정지되어있을 수 있다.
본 제2발명에 따를 경우, 상기 편광광원과 상기 복굴절매질은 정지하고 상기 편광반사물이 회전을 이룰 수 있다.
본 제2발명에 따를 경우, 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자를 이용하여 상기 편광광원으로부터의 편광된 빛의 편광방향을 회전시킬 수 있다.
본 제2발명에 따를 경우, 상기 회전은 일부각도의 회전 또는 각도의 변화를 포함한다.
본 제2발명은 또한 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물에 조명을 이루는 것으로서; 적색(R), 녹색(G) 및 청색(B)의 세 가지의 색으로서 편광 된 빛이 각각 출력되는 세 개의 편광광원을 포함하여 이루어지며; 상기 세 개의 편광광원의 빛은 혼합되어 백색광을 이루어 상기 반사대상물을 조사하며 이들 세 개의 각 편광광원의 편광방향의 전부 또는 일부와 상기 편광반사물은 상대적 회전을 이루는 것을 특징으로 하는 편광조명장치를 제공한다.
이러한 경우, 상기 세 개의 편광광원은 각각 R, G, B 각각의 파장의 빛을 방출하는 광원과, 상기 각각의 광원으로부터의 빛을 각각 편광시키는 개개의 편광수단을 포함하여 이루어지며; 이들 각각의 편광광원으로부터 편광 된 R, G, B 파장의 빛은 각각 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자를 통과하면서 그 편광방향이 변화를 이룰 수 있다.
본건 특허출원의 제3발명은 반사부재와 상기 반사부재의 표면에 설치된 것으로서 투과되는 빛을 편광시키는 편광수단을 가지는 반사대상물과; 편광 된 빛이 방출되는 편광광원과; 상기 편광광원과 상기 반사대상물의 편광수단의 사이에 설치된 복굴절매질과; 상기 편광광원으로부터 방출되어 상기 복굴절매질을 통과한 빛은 상기 반사대상물을 조사하며; 상기 편광광원에서 방출되는 빛의 편광방향과, 상기 복굴절매질의 일점의 위치와, 상기 반사대상물의 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템을 제공한다.
본건 제3발명에 따를 경우, 상기 복굴절매질은 상기 편광광원과 일체로 결합되어 있을 수 있다.
본건 제3발명에 따를 경우, 상기 변위수단은 상기 편광광원의 편광방향을 회전시키는 편광광원의 편광방향 회전수단을 포함하여 이루어질 수 있다.
본건 제3발명에 따를 경우, 상기 변위수단은 상기 복굴절매질을 회전시키는 복굴절매질회전수단을 포함하여 이루어질 수 있다.
본건 제3발명에 따를 경우, 상기 변위수단은 상기 반사대상물을 회전시키는 반사대상물 회전수단을 포함하여 이루어질 수 있다.
본건 제3발명에 따를 경우, 상기 복굴절매질은 상기 반사대상물에서 상기 편광수단의 표면에 부착되어 있을 수 있다.
본건 제3발명에 따를 경우, 상기 편광광원의 편광방향 회전수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자일 수 있다.
본건 제3발명에 따를 경우, 상기 반사부재는 하나 또는 복수개가 배치될 수 있다.
본건 제3발명에 따를 경우, 상기 반사부재에는 다수개의 편광수단이 설치되고 이들 편광수단의 편광방향은 일부 또는 전부가 다를 수 있다.
본건 제3발명에 따를 경우, 상기 반사대상물은 미러볼일 수 있다.
본건 제3발명은 또한 반사부재와 상기 반사부재의 표면에 설치된 것으로서 투과되는 빛을 편광시키는 편광수단을 가지는 반사대상물과; 편광 된 빛이 방출되는 것으로서 방출되는 빛의 색이 다른 복수개의 편광광원과; 상기 복수개의 편광광원은 상기 반사대상물을 조사하며; 상기 복수개의 편광광원의 각 편광방향과 상기 반사대상물의 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템을 제공한다.
이러한 경우, 상기 복수개의 편광광원은 R(적색)의 빛이 편광되어 방출되는 제1편광광원과, G(녹색)의 빛이 편광되어 방출되는 제2편광광원과, B(청색)의 빛이 편광되어 방출되는 제3편광광원을 포함하여 이루어질 수 있다.
본건 제3발명에 따를 경우, 상기 R(적색)의 빛이 편광되어 방출되는 제1편광광원과, G(녹색)의 빛이 편광되어 방출되는 제2편광광원과, B(청색)의 빛이 편광되어 방출되는 제3편광광원을 포함한 복수개의 편광광원으로부터 방출되는 빛은 혼합되어 백색광을 이루는 것이 바람직하다.
본건 제3발명에 따를 경우, 상기 변위수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자일 수 있다.
본건 제3발명에 따를 경우, 상기 반사대상물은 미러볼일 수 있다.
본건 제3발명은 나아가서 반사부재와 상기 반사부재의 표면에 설치된 것으로서 투과되는 빛을 편광시키는 편광수단과 상기 편광수단의 표면에 설치된 복굴절매질을 가지는 반사대상물과; 여기서 상기 복굴절매질은 복굴절 특성이 다른 다수개의 구역으로 나뉘며; 편광 된 빛이 방출되는 편광광원과; 상기 편광광원에서 방출되는 빛의 편광방향과 상기 반사대상물의 복굴절매질의 일점의 위치를 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템을 제공한다.
이러한 경우, 상기 변위수단은 상기 편광광원의 편광방향을 회전시키는 편광광원의 편광방향 회전수단을 포함하여 이루어질 수 있다. 이 경우, 상기 반사대상물은 정지 또는 회전을 이루고 있을 수 있다.
본건 제3발명에 따를 경우, 상기 반사대상물은 미러볼일 수 있다.
본건 특허출원의 제4발명은 빛이 통과하는 매질체로서, 편광수단이 설치된 장식물과; 편광 된 빛이 방출되는 편광광원과; 상기 편광광원과 상기 장식물에 설치된 편광수단의 사이에 설치된 복굴절매질과; 상기 편광광원으로부터 방출되어 상기 복굴절매질을 통과한 빛은 상기 장식물에 설치된 편광수단을 조사하며; 상기 편광광원에서 방출되는 빛의 편광방향과, 상기 복굴절매질의 일점의 위치와, 상기 장식물에 설치된 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광조명장치를 제공한다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 편광광원에서 조사되는 빛의 편광방향을 회전시키고 상기 복굴절매질과 상기 장식물에 설치된 편광수단은 정지되어 있을 수 있다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 복굴절매질을 회전시키고 상기 편광광원과 상기 장식물에 설치된 편광수단은 정지되어있을 수 있다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 복굴절매질과 상기 편광광원을 같이 회전시키고 상기 장식물에 설치된 편광수단은 정지되어있을 수 있다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 장식물에 설치된 편광수단의 일점의 위치를 변화시키는 것일 수 있다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 편광수단을 자전시키는 것일 수 있다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 편광수단을 상기 편광조명장치의 둘레를 따라 회전시키는 것일 수 있다.
본 제4발명에 따를 경우, 상기 변위수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자일 수 있다.
본 제4발명에 따를 경우, 상기 회전은 일부각도의 회전 또는 각도의 변화를 포함한다.
본 제4발명에 따를 경우, 상기 변위수단은 상기 장식물에 설치된 편광수단의 일점의 위치를 변화시키는 것일 수 있다.
본 제4발명에 따를 경우, 상기 복굴절매질은 상기 장식물에 설치된 편광수단의 표면에 부착될 수 있다.
본 제4발명에 따를 경우, 상기 장식물에는 음각 또는 양각이 형성되거나, 또는 상기 장식물의 내부에 기포가 형성되거나 또는 상기 장식물의 내부에 빈 공간이 형성되거나, 또는 상기 장식물은 다수의 모서리를 가진 다면체일 수 있다.
본 제4발명은 또한 빛이 통과하는 매질체로서, 편광수단이 설치된 장식물과; 편광 된 빛이 방출되는 것으로서 방출되는 빛의 색이 다른 복수개의 편광광원과; 상기 복수개의 편광광원은 상기 장식물에 설치된 편광수단을 조사하며; 상기 복수개의 편광광원의 각 편광방향과 상기 장식물에 설치된 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광조명장치를 제공한다.
본 제4발명에 따를 경우, 상기 복수개의 편광광원은 R(적색)의 빛이 편광되어 방출되는 제1편광광원과, G(녹색)의 빛이 편광되어 방출되는 제2편광광원과, B(청색)의 빛이 편광되어 방출되는 제3편광광원을 포함하여 이루어질 수 있다.
본 제4발명에 따를 경우, 상기 제1편광광원에서 제3편광광원으로부터 방출되는 빛은 혼합되어 백색광을 이루는 것이 바람직하다.
본 제4발명에 따를 경우, 상기 변위수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자일 수 있다.
본건 특허출원의 제1발명에 따를 경우, 편광 된 빛을 방출하여 편광반사물에서 색상을 가지는 빛이 반사되어 나오는 편광조명시스템을 제공한다.
이 경우, 조명수단에서 방출되는 빛은 백색광 등으로서 시각적 방해를 일으키지 않고 편광반사물의 반사광이 색상을 띄게 되며, 조명수단의 편광수단 또는 복굴절매질을 편광방향 또는 복굴절특성이 다른 다수개의 구역으로 형성하여 편광반사물에서 반사되어 보이는 조명수단이 그 구역별로 다른 색상의 반사광이 나오도록 할 수 있다.
한편, 본건 제1발명에 따를 경우, 보는 사람의 눈의 위치에 따라 반사광의 색상이 변할 수 있다.
또한 본건 제1발명의 편광조명시스템은 서로 다른 색상의 빛을 방출하는 광원수단을 제공하고 이들 광원수단 각각에 대하여 편광수단을 설치하며, 서로 다른 색상의 광원수단에 부착된 편광수단의 편광방향은 전부 또는 일부가 서로 방향을 달리하여, 색상별 파장에 따라 편광방향이 다른 빛을 방출하고 이러한 빛이 편광반사물로부터 반사되어 색상을 가지는 빛이 반사되도록 할 수 있다.
이 경우, 광원수단들은 구역을 형성하고, 구역이 다르면 동일색상의 광원수단의 편광수단의 편광방향도 달리할 수 있으며, 이러한 경우 구역별로 편광반사물에서 반사되는 빛의 색상을 달리할 수 있다.
본건 특허출원의 제2발명은 편광현상을 이용하여 빛이 조사되는 편광반사물에서 색상이 변화하여 보이는 독특한 디스플레이를 이루는 편광조명시스템을 제공하고 있다.
본 제2발명에 따른 편광조명시스템은 광원으로부터 조사되는 빛이 사람에게 시각적 방해를 일으키지 않으면서 상기 빛이 조사되는 편광반사물이 색상의 변화를 일으키는 편광조명시스템을 제공한다.
본 제3발명은 편광현상을 이용하여 미러볼과 같은 반사대상물의 반사광의 색상이 변화하며 특별히 반사대상물 표면의 편광수단의 편광방향에 따라 또는 복굴절매질의 복굴절 특성에 따라 각 반사광이 각각 다른 색상으로 변화하며 반사되는 편광 반사 조명시스템을 제공한다. 이 경우에도, 광원으로부터 방출되는 빛의 색은 아무런 변화도 없음에도 불구하고 미러볼과 같은 반사대상물의 반사광에는 색의 변화가 연출되게 된다.
본 제4발명은 편광현상을 이용하여 샹들리에와 같이 장식물이 달린 조명장치에서 그 장식물에서 색상이 변화하여 보이는 편광조명 장치를 제공한다. 이 경우에도 조명장치의 광원으로부터 방출되는 빛의 색은 아무런 변화도 없음에도 불구하고 장식물에서는 색의 변화가 연출되게 된다.
도 1은 제1발명의 첫 번째 측면에 따른 편광조명시스템을 보이는 도면;
도 2는 제1발명에서 편광수단 또는 복굴절매질이 다수개의 구역으로 이루어진 경우를 보이는 도면;
도 3은 제1발명의 두 번째 측면에 따른 편광조명시스템을 보이는 도면;
도 4는 제1발명의 두 번째 측면에 따른 편광조명시스템에서 조명수단이 다수개의 구역으로 이루어진 경우를 보이는 도면;
도 5는 편광반사물의 예로서 물이 흐르는 조형물을 보이는 도면;
도 6은 제1발명의 첫 번째 측면에 따른 편광조명시스템의 다른 실시예를 보이는 도면;
도 7은 제2발명의 첫 번째 측면에 따른 편광조명시스템을 보이는 도면;
도 8은 출력되는 빛의 편광방향이 회전하는 편광광원의 구조를 보이는 도면;
도 9는 제2발명의 두 번째 측면 따른 편광조명시스템을 보이는 도면;
도 10은 제2발명에 따라 편광방향을 회전시키는 액정소자의 구조를 보이는 도면;
도 11은 파장별 편광방향변화 빛 출력장치의 일예를 보이는 도면;
도 12는 제2발명의 세 번째 측면에 따른 편광조명시스템을 보이는 도면;
도 13은 R, G, B 파장별 편광방향변화 빛 출력장치의 일예를 보이는 도면;
도 14는 제3발명에 따른 미러볼 조명시스템의 일 실시예를 보이는 도면;
도 15는 제3발명에 따른 미러볼 조명시스템에서 편광복굴절광원의 일예를 보이는 도면;
도 16은 제3발명에서 편광광원의 편광방향을 변화시키기 위한 액정소자의 구조를 보이는 도면;
도 17은 제3발명에 따른 미러볼 조명시스템에서 편광복굴절광원의 다른 예를 보이는 도면;
도 18은 제3발명에 따른 미러볼 조명시스템의 두 번째 실시예를 보이는 도면;
도 19는 R, G, B 별 편광광원의 일 예를 보이는 도면;
도 20은 R, G, B 별 편광광원의 다른 예를 보이는 도면;
도 21은 평면의 반사대상물에 제3발명이 적용된 예를 보이는 도면;
도 22는 제3발명의 또 다른 측면에 따른 실시예를 보이는 도면;
도 23은 도22의 실시예에서 반사대상물을 미러볼로 한 경우를 보는 도면;
도 24는 제4발명의 첫 번째 실시예에 따른 편광조명장치를 보이는 도면;
도 25는 제4발명의 첫 번째 실시예의 편광복굴절광원의 구조를 보이는 도면;
도 26은 제4발명의 효과가 나타나는 장식물에서 색상변화가 일어나는 부분을 보이는 도면;
도 27은 제4발명에서 편광광원의 편광방향을 변화시키기 위한 액정소자의 구조를 보이는 도면;
도 28은 제4발명의 두 번째 실시예에 따른 편광복굴절광원을 보이는 도면;
도 29는 제4발명의 세 번째 실시예에 따른 R, G, B 별 편광광원을 보이는 도면;
도 30은 제4발명의 네 번째 실시예에 따른 편광조명장치를 보이는 도면;
도 31은 제4발명의 네 번째 실시예에서 장식물을 변위시키는 변위수단을 보이는 도면.
이제 본 발명의 바람직한 실시예를 첨부한 도면을 참고로 하여 설명하기로 한다.
먼저 도 1에서 도 6은 본건 특허출원의 제1발명에 따른 것으로서, 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 대상으로 한 편광조명시스템을 보인다.
도 1은 본 제1발명의 첫 번째 측면에 따른 편광조명시스템(1000a)을 보이는 도면이다.
본 발명에 따를 경우, 우선 빛이 방출되는 광원수단(8)이 제공되며, 상기 광원수단(8)의 전방에는 편광수단(10)이 배치되고 상기 편광수단(10)의 전방에는 복굴절매질(20)이 배치된다.
이에 따라 상기 광원수단(8)으로부터 방출되는 빛은 편광수단(10)을 통과하고 이후 복굴절매질(20)을 통과하게 된다.
이들 광원수단(8), 편광수단(10) 및 복굴절매질(20)은 후술하는 편광반사물(60a)에 대하여 조명을 이루는 조명수단을 이룰 수 있다.
상기 광원수단(8)은 빛을 방출하는 것으로서, 엘이디(LED)램프, 냉음극형광등(CCFL) 등의 광원 자체가 되거나 또는 광원의 빛을 균일하게 효과적으로 방출하기 위하여 도광판 등을 포함한 것이 될 수 있다.
상기 편광수단(10)은 빛을 편광시키는 것으로서 편광필름이나 편광필터, 편광판 등이 사용될 수 있다.
상기 복굴절매질(20)은 빛을 복굴절시키는 것으로서, 복굴절성을 가지는 OPP 필름, PET 필름 등 연신된 플라스틱 필름이나 셀로판필름, 플라스틱 판 등이 사용될 수 있고 또한 복굴절을 위하여 특별히 제조된 복굴절필름이 사용될 수 있다. 복굴절매질로서 복굴절판, 복굴절렌즈 등이 이용될 수 있음은 물론이다.
본 발명에 따를 경우, 상기 광원수단(8)의 하면에 상기 편광수단(10)이 부착되고 상기 편광수단(10)의 하면에 상기 복굴절매질(20)이 부착될 수 있다. 예를 들어, 엘이디(LED)램프, 냉음극형광등(CCFL) 등의 광원수단(8)에 편광필름이 부착되고 상기 편광필름에 복굴절필름이 부착될 수 있다.
상기 광원수단(8)으로부터 방출되어 상기 편광수단(10)을 통과한 빛은 편광이 되며, 이후 복굴절매질(20)을 통과하게 된다.
편광 된 빛이 복굴절매질을 통과하면 파장에 따라 각기 다른 편광방향을 가지게 되는데, 이에 따라, 상기 광원수단(8)으로부터 방출되어 상기 편광수단(10)을 거쳐 상기 복굴절매질(20)을 통과한 빛은 파장별로 각기 편광방향이 다른 빛이 되어 조명이 이루어지는 공간인 조명공간(S)으로 방출된다. 이 경우, 상기 조명공간(S)으로 방출되는 빛은 광원수단(8)으로부터 방출되는 빛의 색상을 거의 그대로 유지하게 된다.
통상적인 경우로서 백색광이 상기 광원수단(8)으로부터 방출되는 경우, 상기 편광수단(10)을 거쳐 상기 복굴절매질(20)을 통과한 빛도 거의 백색광을 유지하고 따라서 조명공간(S)에서 시각적 방해를 일으키지 않는다.
본 발명에 따를 경우 조명공간(S)에는 편광반사물(60a)이 제공된다.
상기 편광반사물(60a)은 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부 편광을 이루는 것을 말한다.
예를 들어 입사된 빛의 일부가 투과되면서 일부가 반사되는 것은 입사각ㅇ반사각 및 굴절각에 따라 그 반사광이 전부 또는 일부 편광을 이룬다. 따라서 유리, 아크릴, 크리스털, 플라스틱 재질 등의 것으로서 빛의 일부의 투과와 동시에 반사가 되는 것이 편광반사물이 될 수 있다.
한편으로 액체의 표면과 같은 경우도 빛의 투과와 동시에 반사가 이루어지며 반사광은 편광을 이루게 되어 본 발명에 따른 편광반사물이 될 수 있다. (예를 들어 용기에 담긴 물이나, 흐르는 물 등)
본 발명에 따른 편광반사물은 이와 같이 반사광이 전부 또는 일부 편광을 이루는 모든 것을 포함한다.
상기 편광반사물(60a)은 조명공간에서 수직, 수평 등 다양한 위치로 설치될 수 있다.
이러한 편광반사물(60a)의 예로는 물이 흐르는 조형물이 될 수 있다. 즉 도 5에서와 같이, 수직판(601)의 홈(611)로부터 물(66)이 흘러내리고 그 하부에는 수조(63)가 형성된 형태의 조형물이 편광반사물(60a)이 될 수 있다. 이 경우, 흘러내리는 물(66)의 표면에서 반사되는 반사광이 전부 또는 일부가 편광을 이룬다.
편광반사물(60a)의 또 하나의 예로는 유리, 아크릴, 크리스털 또는 플라스틱 재질 등으로 이루어진 다양한 형태의 조형물이 될 수 있다. 편광반사물(60a)이 이루는 형태는 판 형태를 포함한다.
조명공간(S)의 벽면이 유리, 아크릴 등의 재질로 이루어져 반사광이 편광을 이루는 경우 상기 벽면이 편광반사물(60a)이 될 수 있고, 크리스털 재질의 조각품도 편광반사물(60a)이 될 수 있으며, 유리잔이나 크리스털잔 등도 편광반사물(60a)이 될 수 있다.
이들 유리, 아크릴, 크리스털 또는 플라스틱 재질 등으로 이루어진 다양한 형태의 조형물인 편광반사물(60a)은 조명공간(S)의 벽에 설치될 수 도 있고 바닥에 설치될 수도 있고, 천정에 설치하거나 또는 천정에 매다는 방법으로 설치할 수도 있다.
한편으로, 이와 같이 반사광이 전부 또는 일부가 편광을 이루는 편광반사물은, 도 1에서 도시부호 60a의 편광반사물의 옆에 도시된 것과 같이, 편광필름과 같은 편광수단(10')이 부착된 베이스부재(60')로 이루어져 강제적으로 반사되는 빛을 편광시키는 것(60a')을 포함할 수 있다. 이 경우 베이스부재(60')는 반사를 이루는 모든 것을 포함하며, 거울도 포함할 수 있다.
또한 베이스부재(60')에 편광수단(10') 대신 도료를 입힌 것도 편광반사물이 될 수 있다.
이러한 본 발명에 따를 경우, 광원수단(8)으로부터 방출되어 상기 편광수단(10) 및 복굴절매질(20)을 거쳐 파장별로 각기 편광방향이 다르게 된 빛이 조명공간(S)으로 조사되는데 이 빛은 광원수단(8)의 빛의 색상을 거의 그대로 가진다. 통상적으로 광원수단(8)은 백색광으로서 조명공간(S)에 조사되는 빛은 백색광이 되며 시각적 방해를 일으키지 않는다.
상기 조명공간(S)으로 방출된 파장별로 각기 편광방향이 다른 빛이 상기 편광반사물(60a)의 표면에서 반사가 되는 경우 색상을 띄게 된다. 즉 편광반사물(60a)에 색상을 띈 모습으로 보이게 되는 것이다.
이것은 파장별로 각기 편광방향이 다른 빛이 상기 편광반사물(60a)에서 반사될 때, 반사에 따른 편광방향과 수직을 이루는 편광방향을 가지는 파장의 것은 반사를 이루지 못하고, 이외의 파장의 것들의 경우 이들 각각의 편광방향과 편광반사물(60a)에서 반사되는 반사광의 편광방향에 따라 전부 또는 일부가 반사를 이루게 되어, 상기 편광반사물(60a)에서 반사된 파장에 따른 색들이 혼합되어 색상이 나타나는 것이다.
한편, 상기 편광반사물(60a)에서 반사되어 나타나는 색상은 보는 사람의 눈의 위치에 따라 다르게 나타날 수 있는데, 이것은 보는 사람의 눈의 위치에 따라 광원수단(8)으로부터 출발하여 상기 편광수단(10)과 복굴절매질(20)을 통과한 후 편광반사물(60a)에서 반사되어 보는 사람의 눈에 도달하게 되는 빛의 경로가 달라짐에 따라 발생할 수 있다.
특별히, 보는 사람의 위치에 따라 복굴절매질(20)에 입사하는 빛의 각도와 복굴절매질(20)에서의 빛이 통과하는 경로가 달라져 복굴절매질(20)을 통과한 결과가 다르게 되며(즉 보는 사람의 위치에 따라 빛이 복굴절매질(20)을 통과하였을 때 서로 다른 복굴절특성에 의하여 복굴절이 된 결과가 되며), 이에 따라 보는 사람의 위치에 따라 복굴절매질(20)을 통과 후의 파장별로 편광방향은 다르게 되고, 이후 상기 편광반사물(60a)로부터 반사되는 파장도 다르게 되며 따라서 나타나는 색상도 다르게 된다.
또한 상기 편광반사물(60a)에서 반사되는 반사광은 그 보는 위치에 따라 반사에 따른 편광방향, 편광도 또는 편광율이 다를 수 있고 이에 따라 색상이 변화할 수 있는 것이다.
이와 같이 광원수단(8)으로부터 출발하여 상기 편광수단(10)과 복굴절매질(20)을 통과한 후 편광반사물(60a)에서 반사되어 보는 사람의 눈에 도달하게 되는 빛의 경로에 따라 색상이 서로 다르게 될 수 있는 것이다.
한편으로 편광반사물(60a)에서 동일한 눈의 위치를 유지하여도 한눈에 포섭되는 부분이 상당히 클 경우, 가까운 곳으로부터 먼 곳으로 갈수록 서로 다른 색상으로 보일 수 있다. 이것은 한눈에 포섭되는 두 개의 이격된 지점 사이의 거리가 클 경우, 이들 개개의 지점에서 복굴절매질(20)에 입사하는 빛의 각도와 복굴절매질(20)에서의 빛이 통과하는 경로가 달라질 수 있기 때문이며, 또한 광원수단(8)에서 출발하여 편광반사물(60a)에서 반사되어 관찰자에게 도달하는 빛의 각도에 따라 개개의 지점에서 편광반사물(60a)의 반사광의 편광방향이나 편광도 또는 편광율이 달라질 수 있고 이에 따라 색상이 달라질 수 있기 때문이다.
따라서 본 발명에 따를 경우, 조명공간(S)에서 백색광의 광원수단(8)이 제공되는 경우, 조명공간(S)에는 백색광이 미치어 시각적 방해가 없지만 편광반사물(60a)로부터 반사되는 보이는 것은 색상을 가지게 되며, 보는 위치에 따라 반사광의 색상이 변하는 조명효과를 얻게 된다. 만일 편광반사물(60a)에서 한눈에 포섭되는 부분이 상당히 클 경우, 한눈에 포섭되는 부분에서 서로 다른 색상부분으로 보이게 되는 조명효과를 얻게 된다.
예를 들어 도 5를 참고로 전술한 흐르는 조형물의 경우, 광원수단에서는 백색광이 비추어지지만 흐르는 물(66)로부터 반사되는 빛은 색상을 띄는 것이며, 이에 따른 독특한 미감을 얻을 수 있다.
한편 본 발명에 따를 경우, 광원의 빛이 백색광인 경우, 어디서도 색상을 띄는 광원이 없음에도 불구하고 편광반사물(60a)로부터 반사되는 빛은 색을 띄고 또한 보는 사람의 위치의 변화에 따라 반사되어 보이는 색상이 변화되는 것이다.
본 발명에 따를 경우 상기 광원수단(8)은 면광원을 이루어 전체 면적에 걸쳐 균일한 빛을 방출하는 것이 바람직하다.
예를 들어, 도 1을 참고로, 상기 광원수단(8)은 광원(38)과 상기 광원(38)의 빛을 받아 방출하는 도광판(40)으로 이루어지는 것이 바람직하다. 이러한 경우 상기 광원수단(8)의 광원(38)은 엘이디(LED) 또는 냉음극형광등(CCFL)을 이용하는 것이 좋다.
본 발명에 따를 경우, 상기 편광수단(10)은 편광방향이 다른 다수개의 구역으로 이루어질 수 있다. 또한 복굴절매질(20)도 복굴절특성이 다른 다수개의 구역으로 이루어질 수 있다.
예를 들어, 도 2의 (a)에서 보이는 것과 같이 편광수단(10)은 세 개의 구역(11)(12)(13)으로 이루어지며 이들의 편광방향은 다르다. 이 경우 세 개의 구역(11)(12)(13)의 편광방향이 상호간에 모두 다를 수도 있고, 상호간에 인접한 것(11과 12)(12와 13) 사이에서 다를 수 있다.
또한 도 2의 (b)에서 보이는 것과 같이 복굴절매질(20)의 경우 세 개의 구역(21)(22)(23)으로 이루어지며 이들의 복굴절특성은 다르다. 이 경우 세 개의 구역(21)(22)(23)의 복굴절특성이 상호간에 모두 다를 수도 있고, 상호간에 인접한 것(21과 22)(22와 23) 사이에서 다를 수 있다.
복굴절특성은 광선이 복굴절매질에 입사되어 복굴절되는 각 굴절광의 굴절각(매질에서의 빛의 속도), 굴절방향 또는 복굴절매질 속에서 복굴절되어 진행되는 거리 등과 같이 복굴절이 다르게 이루어지게 하는 특성을 말한다.
복굴절매질 자체를 다른 것을 사용하여 (예를 들어 셀로판과 OPP와 같이 재질이 다른 경우) 복굴절 특성을 달리할 수 있고, 또는 동일한 복굴절매질이라도 그 두께를 달리하거나 그 배치방향을 달리하여(예를 들어 가로방향으로 놓는 경우와 세로방향으로 놓는 경우), 복굴절 특성을 다르게 할 수 있다.
복굴절 매질의 재질을 달리하여 구역 간에 복굴절 특성을 달리하는 것과 관련되어, 도 2 (b)의 복굴절구역(21)(22)의 경우, 각각이 서로 다른 재질의 복굴절매질을 사용하여(예를 들어 하나는 셀로판 필름 다른 하나는 OPP 필름) 이들 간의 복굴절특성을 달리할 수 있다.
복굴절 매질의 두께를 달리하여 복굴절 특성을 달리하는 것과 관련되어, 동일한 복굴절매질과 동일한 배치방향을 가지고 두께가 동일한 필름을 그 겹수를 달리하여 복굴절 특성을 다르게 할 수 있다.
이와 같이, 편광수단(10) 또는 복굴절매질(20)이 편광방향 또는 복굴절특성이 다른 구역으로 이루어진 경우, 상기 광원수단(8)으로부터 방출되어 이들 편광수단(10) 및 복굴절매질(20)을 차례로 통과한 빛은 구역에 따라 각 파장별 편광방향이 각각 다르게 된다.
만일 편광수단(10)이 편광방향이 다른 다수개의 구역으로 이루어진 경우, 광원수단(8)으로부터 출발하여 편광수단(10)을 거치면서 편광구역별(11)(12)(13)로 편광방향이 다르게 편광 된 빛이 복굴절매질(20)을 거치면 편광구역(11)(12)(13) 마다 각각 파장별 편광방향이 각각 다른 빛이 되어 조명공간(S)으로 방출된다.
만일 복굴절매질(20)이 복굴절특성이 다른 다수개의 구역으로 이루어진 경우, 광원수단(8)으로부터 출발하여 편광수단(10)을 거쳐 편광 된 빛이 복굴절 특성에 따라 구역이 이루어진 복굴절매질(20)을 거치면서 복굴절구역(21)(22)(23) 마다 각각 파장별로 편광방향이 각각 다른 빛이 되어 조명공간(S)으로 방출된다.
이와 같이 구역에 따라 파장별 편광방향이 다른 빛이 상기 편광반사물(60a)을 비추어 반사가 이루어지는 경우, 구역별로 각기 파장별 편광방향이 각각 다른 빛이 입사되어 각각 반사되는 것으로서, 각각의 구역에 대해 각각의 반사광은 서로 다른 색상을 나타낼 수 있게 된다. 이 경우도, 보는 위치에 따라 각각의 구역의 반사광의 색상이 각각 변하는 조명효과를 얻게 된다.
한편, 본 발명에 따를 경우, 편광수단(10)을 편광방향이 다른 다수개의 구역으로 형성함과 동시에 복굴절매질(20)을 복굴절특성이 다른 다수개의 구역으로 형성할 수도 있다.
본 발명에 따를 경우, 이와 같이, 편광수단(10)을 편광방향이 다른 다수개의 구역으로 형성하거나 또는 복굴절매질(20)을 복굴절특성이 다른 다수개의 구역으로 형성하는 경우 이들 구역이 문양이나 글자 등의 모양을 형성하도록 하는 것이 바람직하다.
한편 본 발명에 따를 경우, 도 6에서 보이는 것과 같이, 복굴절매질(20)을 편광반사물(60a)의 전면에 배치하는 것도 가능하다. 예를 들어 유리재질의 편광반사물(60a)의 전면에 복굴절필름을 복굴절매질(20)로서 부착할 수 있다.
이 경우, 도 2를 참고로 설명한 것과 같이, 편광수단(10) 또는 복굴절매질(20)을 편광방향 또는 복굴절특성이 다른 다수개의 구역으로 이루어지도록 할 수 있다.
이 경우, 상기 편광반사물(60a)과 그 전면에 배치된 복굴절매질(20)이 조명을 받는 조명대상물을 이루게 되고, 광원수단(8)과 편광수단(10)이 상기 편광반사물(60a)과 복굴절매질(20)로 이루어진 조명대상물에 조명을 조사하는 조명수단이 된다할 것이다.
이러한 경우, 상기 조명대상물로부터 반사되는 빛은 색상을 띄게 되고, 편광수단(10) 또는 복굴절매질(20)이 구역을 이루는 경우 그 각각의 구역별로 다른 색상의 반사광을 얻게 된다.
도 3은 본 제1발명의 두 번째 측면에 따른 편광조명시스템(2000a)을 보인다.
본 제1발명의 두 번째 측면에 따른 편광조명시스템(2000a)의 경우, 각각 색상이 다른 빛을 방출하는 다수개의 광원이 제공되고 이들 각각의 광원에 대하여 빛을 편광시키는 편광수단이 설치되며, 이들 각각의 다른 색상의 광원에 설치되는 편광수단의 편광방향은 전부 또는 일부가 서로 다르다.
이들 각각 색상이 서로 다른 빛을 방출하는 다수개의 광원과 이들 각각의 광원에 설치되며 상호간에 그 전부 또는 일부의 편광방향이 다른 편광수단은 본 제1발명의 두 번째 측면에 따른 조명수단(90')을 이룬다.
본 실시예의 경우는 서로 다른 색상의 빛을 방출하는 다수개의 광원으로 R, G, B의 LED 소자(81)(82)(83)가 제공되고, 각각의 R, G, B의 LED 소자(81)(82)(83)에는 편광필름(811)(812)(813)이 부착되는데, 이들 편광필름(811)(812)(813)의 편광방향은 서로 전부 또는 일부가 다르다. 예를 들어, 편광필름(811)(812)(813)의 편광방향이 모두 다를 수 있고, 편광필름(811)(812)의 편광방향만이 다를 수 있고, 또는 편광필름(811)(813)의 편광방향만이 다를 수 있다.
또한, R, G, B의 LED 소자(81)(82)(83)는 인접하여 배치되어 이들이 혼합되어 백색광을 이루도록 하고 있다.
따라서 각각의 R, G, B의 LED 소자(81)(82)(83)로부터 R, G, B 각 파장별로 편광방향이 서로 다른 빛이 방출되고 이들 빛은 혼합되어 백색광을 이루고 있다.
본 실시예에서, 이들 편광필름(811)(812)(813)이 부착된 R, G, B의 LED 소자들(81)(82)(83)이 하나의 광소(光素)(80)를 이루고 이러한 광소(80)가 복수개 배열된 LED 램프(800)가 제공되고 있다.
이에 따라, 상기 LED 램프(800)로부터 R, G, B 파장 별로 편광방향이 다른 백색광이 개개의 광소(80)로부터 조명공간(S)으로 방출되어 조명을 이룬다.
본 제1발명의 두 번째 측면에 따를 경우, 전술한 본 제1발명의 첫 번째 측면에 따른 편광조명시스템의 편광반사물(60a)이 제공된다.
이에 따라, 상기 LED 램프(800)의 개개의 광소(80)로부터 R, G, B 파장 별로 편광방향이 다른 백색광이 방출되어 조명공간(S)에서 조명을 이루고 상기 편광반사물(60a)에서의 반사광은 색상을 띄게 된다.
이것은 R, G, B 파장별로 편광방향이 다른 빛이 상기 편광반사물(60a)에서 반사될 때, 반사에 따른 편광방향과 수직을 이루는 편광방향을 가지는 파장의 것은 반사를 이루지 못하고, 이외의 파장의 것들의 경우 이들 각각의 편광방향과 편광반사물(60a)에서 반사되는 반사광의 편광방향에 따라 전부 또는 일부가 반사를 이루게 되어, 상기 편광반사물(60a)에서 반사된 파장에 따른 색들이 혼합되어 색상이 나타나는 것이다.
도 4는 본 제1발명의 두 번째 측면에 따른 편광조명시스템의 다른 예(2000a')를 보인다.
이 경우, 상기 조명수단(90')은 다수개의 구역으로 이루어지는데, 동일한 색상의 빛을 방출하는 광원의 편광수단의 편광방향은 동일한 구역에서는 동일하지만 다른 구역사이에서는 다르다.
도 4를 참고로, 조명수단(90')은 구역 A, 구역 B 및 구역 C로 구역이 이루어지는데, 예를 들어 구역 A에서 광소(80)들의 색상별 광원의 편광필름의 편광방향은 동일하다. 그러나 구역 A와 구역 B의 사이에서 색상별 광원의 편광필름의 편광방향은 다르다.
이러한 경우, 구역별로 파장별 편광방향이 다른 빛이 방출된다.
도 4의 경우, 구역별로 다수개의 LED램프(800)가 설치되는데, 동일한 구역에서 다수개의 LED 램프(800)의 다수개의 광소(80)의 R의 LED 소자에 대한 편광수단의 편광방향은 모두 동일하며, G 및 B의 LED 소자의 경우도 그러하다.
그러나 서로 다른 구역의 사이에서는 광소(80)의 R의 LED 소자사이의 편광수단의 편광방향은 다르며, G 및 B의 LED 소자의 경우도 그러하다.
이에 따라, 조명수단(90')으로부터 R, G, B 파장별로 편광방향이 전부 또는 일부가 다른 빛이 방출되는데, 이들 R, G, B 파장별의 편광방향은 또한 구역별로 다르다.
이에 따라 이러한 빛이 편광반사물(60a)에서 반사되는 경우, 구역별로 각기 파장별 편광방향이 다른 빛이 입사되어 반사되는 것으로서, 반사광은 구역에 대응하여 다른 색상을 나타내게 된다.
이와 같이, 본 제1발명에 따를 경우, 편광 된 빛을 방출하여 편광반사물에서 색상을 가지는 빛이 반사되어 나오는 편광조명시스템을 제공한다.
본 제1발명에 따를 경우, 조명수단에서 방출되는 빛은 백색광 등으로서 시각적 방해를 일으키지 않고 편광반사물의 반사광이 색상을 띄게 되며, 편광수단 또는 복굴절매질을 편광방향 또는 복굴절특성이 다른 다수개의 구역으로 형성하여 편광반사물에서 구역별로 다른 색상의 반사광이 나오도록 할 수 있다.
한편, 본 제1발명에 따를 경우, 보는 사람의 눈의 위치에 따라 반사광의 색상이 변할 수 있다.
또한 본 제1발명은 서로 다른 색상의 빛을 방출하는 광원수단을 제공하고 이들 광원수단 각각에 대하여 편광수단을 설치하며, 서로 다른 색상의 광원수단에 부착된 편광수단의 편광방향은 전부 또는 일부가 서로 방향을 달리하여, 색상별 파장에 따라 편광방향이 다른 빛을 방출하고 이러한 빛이 편광반사물로부터 반사되어 색상을 가지는 빛이 반사되도록 할 수 있다.
이 경우, 광원수단들은 구역을 형성하고, 구역이 다르면 동일색상의 광원수단의 편광수단의 편광방향도 달리할 수 있으며, 이러한 경우 구역별로 편광반사물에서 반사되는 빛의 색상을 달리할 수 있다.
다음, 도 7에서 도 13은 본건 특허출원의 제2발명에 따른 편광조명시스템을 보인다.
본 제2발명도 제1발명의 효과가 발휘되는 유리, 아크릴, 크리스털, 플라스틱 재질로 이루어진 것 또는 액체의 표면과 같이 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부 편광을 이루는 편광반사물을 대상으로 상기 편광반사물로부터 반사되는 반사광의 색상이 변하는 조명을 연출한다.
우선 도 7은 본 제2발명의 첫 번째 측면에 따른 편광조명시스템(1000b)을 보인다.
먼저, 편광반사물(60b)이 제공되는데, 본 실시예의 경우 유리잔이 제공되고 있다. 또한 편광 된 빛이 조사되는 편광광원(100)이 제공되는데, 상기 편광광원(100)은 상기 편광대상물(80)을 조사(照射)한다.
상기 편광광원(100)은, 예를 들어, 광원에 편광필름, 편광판 또는 편광필터와 같은 편광수단이 부착되어 상기 광원으로부터의 빛이 상기 편광필름, 편광판 또는 편광필터등의 편광수단을 통과하면서 편광 되어 조사되는 것이 제공될 수 있다.
본 제2발명에 따를 경우, 상기 편광광원(100)과 상기 편광반사물(60b)의 사이에는 복굴절매질(200)이 놓인다.
상기 복굴절매질(200)은 상기 편광광원(100)과 상기 편광반사물(60b)의 사이에서 다양한 위치에 놓일 수 있는데, 상기 편광광원(100)과 상기 편광반사물(60b) 각각으로부터 독립되어 이들의 사이에 놓일 수도 있고, 필름형태의 것이 사용되어 상기 편광광원(100)에 부착될 수도 있고, 또는 상기 편광대상물(60b)의 표면에 부착될 수도 있다.
본 제2발명에 따를 경우, 상기 편광광원(100)에서 조사되는 빛의 편광방향과 상기 복굴절매질(200)과 상기 편광반사물(60b)은 상호간에 상대적으로 회전을 이루는데 이와 같은 상대적 회전은 아래의 6가지 경우를 포함한다.
첫째, 상기 편광광원(100)에서 조사되는 빛의 편광방향과 상기 복굴절매질(200)이 상호간에 상대적 회전을 이루고, 상기 편광반사물(60b)이 정지되어 있는 경우이다.
이 경우는 상기 편광광원(100)에서 조사되는 빛의 편광방향이 변화하지 않고 상기 복굴절매질(200)이 회전하거나, 또는 상기 편광광원(100)의 빛의 편광방향이 회전하고 상기 복굴절매질(200)이 정지된 경우, 또는 상기 편광광원(100)의 빛의 편광방향이 회전하고 상기 복굴절매질(200)도 회전하는데 이들 간의 회전속도가 다른 경우를 포함한다.
둘째, 상기 편광광원(100)이 정지되고 상기 복굴절매질(200)과 상기 편광반사물(60b)이 상호간에 상대적으로 회전을 이루는 경우이다.
이 경우도 상기 복굴절매질(200)과 상기 편광반사물(60b) 중의 하나가 정지되고 다른 하나가 회전하는 경우 그리고 양자가 회전하는데 그 회전속도가 다른 경우를 포함한다.
셋째, 상기 복굴절매질(200)이 정지를 이루고 상기 편광광원(100)에서 조사되는 빛의 편광방향과 상기 편광반사물(60b)이 상호간에 상대적으로 회전을 이루는 경우이다.
이 경우도 상기 편광광원(100)에서 조사되는 빛의 편광방향이 변화하지 않고 상기 편광반사물(60b)이 회전하거나, 또는 상기 편광광원(100)의 빛의 편광방향이 회전하고 상기 편광반사물(60b)이 정지된 경우, 또는 상기 편광광원(100)의 빛의 편광방향이 회전하고 상기 편광반사물(60b)도 회전하는데 이들 간의 회전속도가 다른 경우를 포함한다.
넷째, 상기 편광광원(100)과 상기 복굴절매질(200)과 상기 편광반사물(60b)이 모두 회전을 이루고 이들 간의 회전속력이 차이를 가지는 경우이다.
다섯째, 상기 편광광원(100)의 편광방향과 상기 복굴절매질(200)이 일체로서 또는 등속으로 회전을 이루고 상기 편광반사물(60b)은 정지된 경우이다.
여섯째, 상기 편광광원(100)은 정지되고, 상기 복굴절매질(200)과 상기 편광반사물(60b)이 일체로서 또는 등속으로 회전을 이루는 경우이다.
도 7은 편광광원(100)으로부터 출력되는 빛의 편광방향이 회전에 따라 변화를 이루고 있으며, 복굴절매질(200)과 편광반사물(60b)은 정지된 경우를 보이고 있다.
본 제2발명에 따를 경우, 전술한 회전은 일부 각도의 회전 또는 각도의 변화를 포함한다. 예를 들어, 30도, 60도, 90도 또는 180도 등으로 일부각도의 회전을 이루거나 그 만큼 각이 변화하는 경우를 포함한다.
이와 같은 본 제2발명에 따를 경우, 우선 편광광원(100)으로부터 편광 되어 조사된 빛이 상기 복굴절매질(200)을 통과하면서 복굴절을 이루면서 파장에 따라 각각 편광방향이 다르게 되고, 상기 편광반사물(60b)에는 파장에 따라 각기 다른 편광방향을 가지는 빛이 진입하게 된다.
파장별로 각기 편광방향이 다른 빛이 상기 편광반사물(60b)에서 반사될 때, 반사에 따른 편광방향과 수직을 이루는 편광방향을 가지는 파장의 것은 반사를 이루지 못하고, 이외의 파장의 것들의 경우 이들 각각의 편광방향과 편광반사물(60b)에서 반사되는 반사광의 편광방향에 따라 전부 또는 일부가 반사를 이루게 되어, 상기 편광반사물(60b)에서 반사된 파장에 따른 색들이 혼합되어 색상이 나타나게 된다.
그런데, 본 제2발명에 따를 경우, 상기 편광광원(100)과 상기 복굴절매질(200)과 상기 편광반사물(60b)은 상호간에 상대적으로 회전을 하는 것으로서, 상기 편광반사물(60b)을 기준으로 할 때, 상기 편광반사물(60b)에 인입되는 빛은 각각의 파장에 따른 편광방향이 변화를 한다.
예를 들어, 도 7에서 보이는 실시예 경우, 편광광원(100)으로부터 조사되는 빛의 편광방향의 회전이 있고, 그 회전에 따라 편광방향이 변화되는 빛이 상기 복굴절매질(200)을 통과하면서 각 파장별로 편광방향이 변하는 것으로서, 상기 편광반사물(60b)로 진입하는 빛은 편광광원(100)으로부터 나오는 빛의 편광방향의 회전에 따라 각 파장별로 달라진 편광방향이 각 회전하게 되는 것으로서, 편광반사물(60b)에서 반사를 이루는 파장의 것과 반사를 이루지 못하는 파장이 변하게 되는 것이며, 이에 따라, 상기 편광반사물(60b)에는 편광광원(100)의 출력 빛의 편광방향의 회전에 따라 반사되어 보이는 색상이 변화하는 모습으로 나타난다.
상기 복굴절매질(200)이 회전을 이루는 경우도 마찬가지로서, 편광광원(100)으로부터 조사된 편광 된 빛이 상기 회전하는 복굴절매질(200)을 통과하게 되면 각 파장별로 편광방향의 변화가 있게 되며 복굴절매질(200)의 회전에 따라 각 파장별 편광방향이 각 회전하게 되어 상기 편광반사물(60b)에는 색상이 변화하는 모습으로 나타나게 된다.
도 8은 전술한 편광방향이 회전을 이루는 빛이 출력되는 편광광원(100)의 일 예를 보인다.
상기 편광광원(100)은 편광광원부(70)와 상기 편광광원부(70)를 회전시키는 구동부(40)를 포함하여 이루어진다.
상기 편광광원부(70)는 몸체부(71)가 제공되고 상기 몸체부(71)의 내부에 광원(78)이 설치되고 상기 광원(78)의 전면에 편광필터(74)가 결합된다. 이에 따라 상기 광원(78)으로부터의 빛은 상기 편광필터(74)를 통과하면서 편광된다.
상기 구동부(40)는 모터(44)를 포함하며 상기 모터(44)의 작동을 제어하는 제어부(46)와 상기 모터(44)의 동작을 조작하는 조작부(48)를 포함하여 이루어질 수 있다.
상기 모터(44)는 상기 몸체부(71)와 결합되며, 이에 따라, 모터(44)의 동력전달에 따라 상기 몸체부(71)는 회전하여 상기 편광광원부(70)로부터 조사되는 빛의 편광방향은 회전을 이룬다.
다른 예로는 몸체부(81)는 고정되고, 상기 모터(44)가 상기 편광필터(74)를 회전시켜 광원(78)으로부터 조사되어 편광필터(74)를 통과하면서 편광되는 빛의 편광방향이 회전을 이루도록 할 수 있다.
도시하지는 않았지만, 상기 모터(44)와 상기 몸체부(71)의 사이에는 감속기어 또는 유성기어 등 상기 제어부(46)의 제어에 따라 상기 몸체부(71)의 회전을 제어하기 위한 장치가 설치될 수 있다.
본 제2발명에 따를 경우, 상기 편광광원부(70)는 반드시 모터에 의하여 구동되지 않으며 다른 수단에 의하여 구동될 수 있고, 수동(手動)으로 구동될 수도 있다.
이러한 편광광원(100)은 상기 편광반사물(60b)을 비추도록 설치되며 다수개가 설치될 수 있다.
도 9는 본 제2발명에 따른 편광조명시스템의 다른 예(2000)로서, 이 경우, 편광광원부(70)의 전면에 필름형태의 복굴절매질(200)을 부착하고 모터(44)를 제어하여 상기 복굴절매질(200)을 회전하는 구조를 보이고 있다.
광원(78)의 빛이 편광필터(74)를 통과하여 편광 된 후 회전하는 필름형태의 투명의 복굴절매질(200)을 통과하게 되어 파장에 따라 편광방향이 변하는 빛이 편광반사물(60b)에 조사되고 있다.
다른 경우, 도 8을 참고로, 편광필터(74)의 전면에 필름형태의 복굴절매질(200)을 부착하여 상기 편광광원(100)과 복굴절매질(200)이 일체로서 같이 회전하도록 할 수 있다. (미도시)
한편 상기 복굴절매질(200)의 회전은 수동으로도 가능함은 당연하다.
도 8 또는 도 9의 예의 경우, 모터(44)의 회전속도를 다양하게 제어할 수 있는 것이며 이에 따라 색상변화의 속도를 다양하게 연출할 수 있게 된다.
또한 이런 상대적 회전은 여러 가지 움직임을 보일 수 있는데, 예를 들어, 왕복될 수 있다. 왕복운동의 예는 편광광원(100)에서 조사되는 빛의 편광방향이 0도에서 180도 사이를 왕복하는 것과 같은 것이다.
이것은 도 8 또는 도 9의 예를 참조할 경우, 모터(44)의 출력축의 회전각을 0도에서 180도 사이로 제어함으로써 이루어질 수 있다.
다른 경우, 상기 편광광원(100)에서 조사되는 빛의 편광방향과 상기 복굴절매질(200)이 이루는 상대적 회전은 그 회전방향이 다양하게 변경되고 그 회전각도 다양하게 변경될 수 있다. 도 8 또는 도 9의 예의 경우, 모터(44)의 출력축의 회전방향과 그 회전각이 다양하게 변화되도록 제어함으로써 이루어질 수 있다.
본 제2발명에 따를 경우, 액정소자를 이용하여 편광방향의 변화를 일으킬 수 있다. 도 10은 이러한 액정소자(400)의 예를 보인다.
상기 편광방향의 변화를 일으키는 액정소자(400)는 유리기판(410)(410)사이에 스페이서(미도시)를 개재하여 공간을 확보하여 액정(490)을 충진하고 실런트(430)에 의하여 밀봉된다. 상기 유리기판(410)(410)의 하부에는 투명전극(460)과 액정배향층(470)이 순차적으로 적층된다.
상기 투명전극(460)(460)에 전압이 인가되면 상기 액정(490)은 그 배열을 변화하며 이에 따라 상기 유리기판(410)(410)으로 편광된 빛을 입사시키면 상기 액정을 통과하면서 빛의 편광방향이 변하게 된다. 실질적으로 이러한 구조는 LCD 패널에서 편광판이 제거된 구조이다.
도 11은 도 10의 액정소자(400)를 이용하여 파장에 따라 다양한 편광방향을 가지며 그 편광방향이 회전하는 빛을 출력하는 파장별 편광방향변화 빛 출력장치(500)의 일예를 보인다.
케이스부재(900)에 광원(78)이 설치되고 그 전방에 편광필름 또는 편광필터와 같은 편광수단(74)이 설치되며 그 전방에 편광방향의 회전을 일으키는 액정소자(400)가 설치되며 그 전방에 복굴절필름(200)이 설치된다.
이러한 구조에 따라 상기 광원(78)으로부터 조사되는 빛이 상기 편광수단(74)을 통과하면서 편광되고 이후 상기 액정소자(400)를 통과하면서 편광방향이 회전되면서 상기 복굴절필름(200)을 통과하게 된다. 이에 따라서 파장에 따라 각기 다른 편광방향을 가지면서 그 각 파장별 편광방향이 변화하는 빛이 출력된다.
도 12는 본 제2발명의 세 번째 측면에 따른 편광조명시스템(3000b)을 보인다.
본 세 번째 측면에 따를 경우, 적색(R), 녹색(G) 및 파랑(B)의 세 가지의 색으로서 편광 된 빛이 각각 출력되는 세 개의 편광광원(101)(102)(103)이 제공되며, 이들 세 개의 편광광원(101)(102)(103)의 빛이 혼합되어 백색광을 이루어 편광반사물(60b)을 조사하며, 이들 세 개의 편광광원(101)(102)(103)의 세 개 중 어느 하나, 둘 또는 세 개 전부의 편광방향과 상기 편광반사물(60b)은 상호간에 상대적 회전을 이룬다.
도 12의 세 개의 편광광원(101)(102)(103)은 각각이 도 8의 편광광원의 구조를 가지며, 각각의 것의 광원(78)은 R, G, B를 방출하는 것이 사용될 수 있다.
예를 들어 적색(R)의 편광광원(101)은 도 8의 편광광원(100)의 구조에 대하여 그 광원(78)이 적색의 LED를 사용할 수 있다. 이에 따라 그 편광방향이 회전하는 적색(R)파장의 편광이 출력되는 것이다.
이러한 경우, 상기 편광반사물(60b)로는 R, G, B의 색상이 혼합되어 백색광이지만, 내부적으로 R, G, B의 파장을 가지며 각각은 그 편광방향이 회전하는 것이 인입되는 것이다.
이에 따라 상기 편광반사물(60b)로부터 반사에 따른 편광의 편광방향에 따라 상기 R, G, B 파장의 것 중 반사가 이루어는 것이 있고 아닌 것이 있으며, 반사된 것들의 혼합에 따라 색이 보이게 되는데, R, G, B 파장의 편광방향이 변하고 있으므로 이러한 색의 연출도 변화를 이루게 된다.
도 13은 도 4의 액정소자(400)를 이용하여 R, G, B의 파장에 따라 다른 편광방향을 가지며 그 편광방향이 회전하는 빛을 출력하는 R, G, B 파장별 편광방향변화 빛 출력장치(500')의 일예를 보인다.
적색파장의 빛으로서 그 편광방향이 회전하는 적색의 편광회전 빛 출력장치(101')는 적색파장의 빛을 방출하는 광원(78R)이 제공되고 그 전방에 편광필름이나 편광필터와 같은 편광수단(74)이 설치되고 그 전방에 전술한 액정소자(400)가 설치된다.
녹색파장의 빛으로서 그 편광방향이 회전하는 녹색의 편광회전 빛 출력장치(102')는 녹색파장의 빛을 방출하는 광원(78G)이 제공되고 그 전방에 편광필름이나 편광필터와 같은 편광수단(74)이 설치되고 그 전방에 전술한 액정소자(400)가 설치된다.
청색파장의 빛으로서 그 편광방향이 회전하는 파랑의 편광회전 빛 출력장치(103')는 파랑색파장의 빛을 방출하는 광원(78B)이 제공되고 그 전방에 편광필름이나 편광필터와 같은 편광수단(74)이 설치되고 그 전방에 전술한 액정소자(400)가 설치된다.
이와 같은 R, G, B의 편광회전 및 출력장치(101')(102')(103')를 도 13의 (a)와 같이 모아, 이들 각각의 파장의 빛이 혼합되어 백색광을 이루도록 한다.
이와 같이 본 제2발명은 편광현상을 이용하여 빛이 조사되는 편광반사물에서 색상이 변화하여 보이는 독특한 디스플레이를 이루는 편광조명시스템을 제공하고 있다.
본 제2발명에 따를 경우, 상기 편광광원으로부터 상기 편광반사물로 조사되는 빛은 그 세기가 감소되기는 하지만 시각적으로 방해를 일으키는 것은 아니다.
따라서 본 제2발명에 따른 편광조명시스템이 설치된 경우, 사람들은 시각적 방해를 일으키지 않게 되어 일상적으로 생활 할 수 있게 된다. 즉 본 제2발명은 광원으로부터 조사되는 빛이 사람에게 시각적 방해를 일으키지 않으면서 상기 빛이 조사되는 편광반사물이 색상의 변화를 일으키는 편광조명시스템을 제공하는 것이다.
한편으로, 본 제2발명에 따른 편광조명시스템 또는 편광조명장치에서 상기 편광광원(100)과 복굴절매질(200) 및 편광반사물(60b) 어느 것도 회전을 이루지 않고 정지하여 있어도 편광반사물(60b)의 반사광은 색상을 띄게 된다. 이것은 본질적으로 제1발명의 범주에 속하지만, 실시예적으로는 제1발명과 제2발명에 모두 속하게 된다. 이와 같은 예는 전술한 실시예 들 중에서 모터(44) 또는 액정(400)을 구동시키지 않고 광원(78)으로부터 편광 된 빛이 복굴절매질(200)을 통과하여 정지한 유리잔과 같은 편광반사물(60b)에 조사되는 경우이다.
도 14에서 도 23은 본건 특허출원의 제3발명에 따른 편광조명시스템을 보인다.
본건 특허출원의 제3발명은 미러볼과 같이 반사부재를 가지는 반사대상물에 대하여 반사광의 색상이 변하여 보이는 편광반사조명시스템을 제공한다.
우선 도 14는 본 제3발명에 따른 미러볼 조명시스템(1000c)을 보이는데, 상기 미러볼 조명시스템(1000c)에는 미러볼(600)이 제공된다.
상기 미러볼(600)의 표면에는 다수개의 거울과 같은 반사부재(61)가 구(球)의 표면을 덮도록 상호간에 인접하여 부착되어 있는데, 본 발명에 따를 경우 이들 반사부재(61)의 상면에는 투과되는 빛을 편광시키는 편광수단(67)이 부착된다.
상기 편광수단(67)은 편광필터, 편광필름, 편광판 등과 같은 것이 될 수 있는데, 본 실시예의 경우 편광필름이 사용되고 있다.
상기 다수개의 반사부재(61)의 상면에 부착되는 편광필름(67)은 각각의 반사부재(67)마다 부착되어 있는데 반드시 그럴 필요가 있는 것은 아니다.
또한 이들 편광필름(67)의 편광방향은 인접한 다른 편광필름(67)의 편광방향과는 다른 것이 바람직하다. 예를 들어 편광필름(67a)의 편광방향과 상기 편광필름(67a)과 인접한 편광필름(67b)(67c)(67d)(67e)의 편광방향은 다르다. 이러한 경우 후술하는 바와 같이 인접한 반사부재마다 다른 색상의 빛이 반사된다.
본 제3발명에 따를 경우, 상기 미러볼 조명시스템(1000c)은 편광광원(70)을 가지는데, 상기 편광광원(70)은 편광 된 빛을 방출하는 것이다.(도 15 참조)
예를 들어 광원(78)에 편광필름, 편광판 또는 편광필터와 같은 편광수단(74)이 부착되어 상기 광원(78)으로부터의 빛이 상기 편광필름, 편광판 또는 편광필터 등의 편광수단(74)을 통과하면서 편광 되어 조사되는 것이 편광광원으로서 제공될 수 있다.
또한 본 발명에 따를 경우, 복굴절매질(200)이 제공되는데, 상기 복굴절매질은 상기 편광광원(70)과 상기 미러볼 표면의 편광필름(67)의 사이에 놓이며 이에 따라 상기 편광광원(70)으로부터 편광되어 방출되는 빛은 상기 복굴절매질(200)을 통과한 후 상기 미러볼(600)의 편광필름(67)으로 조사된다.
상기 복굴절매질(200)은 상기 편광광원과 상기 편광수단(67)의 사이에서 다양한 위치에 놓일 수 있는데, 편광광원(70)과 상기 편광수단(67)으로부터 각각 독립되어 이들의 사이에 놓일 수도 있고, 필름형태의 것이 사용되어 편광광원(70)의 편광수단(74)에 부착될 수도 있고, 상기 미러볼(600)에서 상기 편광수단(67)의 상면에 부착될 수도 있다.
본 실시예에서는, 도 15에서 보이는 바와 같이, 광원(78)의 전방에 편광판 또는 편광필름과 같은 편광수단(74)이 설치되고, 그 전방에 복굴절판 또는 복굴절필름과 같은 복굴절매질(200)이 설치되고 있다.
필름형태의 복굴절매질은 복굴절성을 가지는 OPP 필름, PET 필름 등 연신된 플라스틱 필름이나 셀로판필름, 플라스틱 판 등이 사용될 수 있고 또한 복굴절을 위하여 특별히 제조된 복굴절필름이 사용될 수 있다. 복굴절매질로서 복굴절판, 복굴절렌즈 등이 이용될 수 있음은 물론이다.
본 발명에 따를 경우, 상기 편광광원(70)에서 방출되는 빛의 편광방향과, 상기 복굴절매질(200)의 일점의 위치와, 상기 미러볼(600)에 부착된 개개의 편광필름(67)의 편광방향은 상호간에 상대적으로 변화를 이룬다. 이와 같은 상대적인 변화는 아래의 경우들을 포함할 수 있다. 이때 복굴절매질의 일점의 위치의 변화는 복굴절매질 상의 임의의 일점의 위치가 변화하는 것을 말하는데 복굴절매질이 자전을 이루는 경우 자전축상의 점은 위치가 변하지 않지만 다른 곳의 임의의 점은 위치가 변화하는 것으로서 이러한 경우를 포함한다.
첫째, 상기 편광광원(70)에서 조사되는 빛의 편광방향과 상기 복굴절매질(200)이 상호간에 회전을 하고 상기 미러볼(600)이 정지된 경우이다.
이 경우는 상기 편광광원과 상기 복굴절매질 중에서 하나가 정지되고 다른 하나가 회전하는 경우 그리고 양자가 회전되는데 그 회전속도가 다른 경우를 포함한다.
둘째, 상기 편광광원(70)이 정지되고 상기 복굴절매질의 일점과 상기 미러볼(600)에 설치된 편광수단(67)의 편광방향이 상호간에 변위를 이루는 경우이다. 예를 들어 복굴절매질(200)이 회전을 이루는 경우 또는 상기 복굴절매질(200)과 미러볼(600)이 상대적으로 다른 속도로 회전하는 경우 등이 있을 수 있다.
셋째, 상기 복굴절매질이 정지를 이루고 상기 편광광원에서 조사되는 빛의 편광방향과 상기 미러볼(600)에 설치된 개개의 편광수단(67)의 편광방향이 상호간에 변화되는 경우이다. 이 경우도 상기 편광광원(70)과 미러볼(600) 중 어느 하나가 정지되고 다른 하나가 회전하는 경우 등이 있을 수 있다.
넷째, 상기 편광광원(70)과 상기 복굴절매질과 상기 미러볼(600)이 모두 변위를 일으키는 경우이다.
다섯째, 상기 편광광원과 복굴절매질이 같이 변위를 이루고 상기 미러볼(600)은 정지된 경우이다.
여섯째, 상기 편광광원은 정지되고, 상기 복굴절매질과 상기 미러볼(600)이 같이 변위를 이루는 경우이다. 예를 들어 편광광원은 정지되고 상기 미러볼(600)에서 편광수단(67)의 표면에 복굴절필름이 부착되어 있는데, 이러한 미러볼(600)이 회전하는 경우이다.
다섯 번째와 여섯 번째에서, 같이 변위를 이루는 경우는 일체로서 변위되는 경우와 등속으로 동일경로를 따라 변위를 일으키는 경우를 포함한다.
본 발명에 따를 경우, 전술한 회전은 일부 각도의 회전을 포함한다. 예를 들어, 30도, 60도, 90도 또는 180도 등 각도가 변화하는 경우를 포함한다.
도 14의 실시 예의 경우, 편광복굴절광원(100a)이 제공되어 편광광원(70)과 복굴절매질(200)은 일체로서 같이 회전하고 있으며, 상기 미러볼(600)은 정지되거나 또는 회전하고 있을 수 있다.
도 14의 실시예의 경우, 편광복굴절광원(100a)이 제공되고 있는데, 도 15는 상기 편광복굴절광원(100a)의 구조를 보인다.
상기 편광복굴절광원(100a)은 우선 몸체부(71)를 가진다. 상기 몸체부(71)의 내부에는 광원(78)이 설치되고 그 전방에 편광필터 또는 편광필름 같은 편광수단(74)이 설치된다. 이에 따라 상기 광원(78)의 빛은 상기 편광수단(74)을 통과하면서 편광되고, 상기 광원(78)과 편광수단(74)은 편광 된 빛을 방출하는 편광광원(70)을 이룬다.
상기 몸체부(71)에서 상기 편광수단(74)의 전방에는 복굴절판과 같은 복굴절매질(200)이 설치된다. 따라서 상기 광원(78)으로부터 조사되어 상기 편광수단(74)을 거쳐 편광되어진 빛은 상기 복굴절매질(200)을 통과하면서 복굴절을 이루고 그 파장에 따라 각각 편광방향이 달라진 빛들이 상기 편광복굴절광원(100a)으로부터 방출된다.
본 실시예에 따를 경우 모터(44)가 제공되어 상기 몸체부(71)를 회전시키며 이에 따라 몸체부(71)에 일체로 설치된 편광광원(70)과 복굴절매질(200)은 일체로서 같이 회전된다.
상기 모터(44)는 제어부(46)와 연결되고 상기 제어부(46)는 조작부(48)의 명령을 받는다. 이에 따라 모터(44)의 동작은 상기 조작부(48)의 조작에 따라 이루어지게 된다.
도시하지는 않았지만, 상기 모터(44)가 상기 복굴절매질(200)만을 회전시키도록 기계적 구조를 설계할 수도 있을 것이며, 이러한 경우 편광광원(70)은 정지되고 상기 복굴절매질(200)의 일점이 변위를 일으키게 된다.
본 발명에 따를 경우, 동력원으로서 반드시 모터가 제공될 필요가 없으며 다양한 수단의 것이 제공될 수 있고, 수동(手動)을 배제하는 것은 아니다.
한편 스텝모터 등의 활용으로 상기 편광광원의 편광방향의 회전은 일부 각도의 회전만을 이룰 수 있으며, 본 발명은 이러한 경우를 회전으로서 포함한다.
이러한 편광복굴절광원(100a)은 전술한 미러볼(600)을 향하여 빛을 조사한다.
본 발명에 따를 경우, 편광복굴절광원(100a)은 다수개가 제공되어 각각이 상기 미러볼(600)을 향하여 조사할 수 있다.
이러한 본 제3발명에 따를 경우, 편광광원(70)에서 방출되는 편광 된 빛은 복굴절매질(200)을 거치면서 복굴절되어 파장의 길이에 따라 편광방향이 조금씩 다른 빛이 되어 상기 미러볼(600)에 설치된 편광필름(67)을 조사하게 된다.
이때 상기 편광복굴절광원(100a)으로부터 방출되는 빛의 편광방향은 회전을 이루고 있어, 각 파장별로 달라진 각 편광방향이 다시 각기 회전을 이루고 있는 상태로 상기 미러볼(600)에 설치된 편광필름(67)을 조사하게 된다.
이러한 경우 상기 미러볼(600)에 조사되는 빛은 설치된 편광필름(67)을 통과한 후 반사되어 나오면서 특정한 색상을 띄게 되고, 한편으로 상기 편광복굴절광원(100a)으로부터 방출되는 빛의 편광방향의 회전에 따라 그 나타나는 색상이 변화를 보이게 된다.
이것은 편광된 빛이 복굴절되어 파장마다 편광방향이 다른 것이 상기 미러볼(600)의 편광필름(67)으로 입사되면 상기 편광필름(67)의 편광방향과 수직을 이루는 것을 통과를 못하고 그렇지 않은 것은 편광 각도에 따라 전부 또는 일부 통과를 이루면서 통과한 파장의 빛의 혼합으로 특정한 색상을 띄게 되는데, 이때, 상기 광원으로부터 방출되는 빛의 편광 방향이 회전함에 따라 상기 편광필름(67)으로 입사되는 빛의 파장마다의 편광방향은 다시 변화를 일으키는 것으로서, 상기 편광필름(67)을 통과할 수 있는 파장과 그 통과 비율이 달라지고, 이에 따라서, 상기 반사부재(61)에서 반사되는 빛의 색상이 변화를 일으키게 되는 것이다.
상기 다수개의 편광필름(67) 사이에서 편광방향을 다르게 하는 경우, 편광방향이 다른 편광필름마다 색상은 다르게 나타날 것이고, 만일 다수개의 편광필름(67)의 편광방향을 인접한 순서를 따라 순차적으로 변화를 줄 경우 색상의 순차적 변화도 기대할 수 있다.
이러한 현상은 상기 편광광원에서 방출되는 빛의 편광방향과, 상기 복굴절매질의 일점의 위치와, 상기 미러볼(600)에 설치된 편광수단의 편광방향이 상호간에 변화를 일으키는 경우 모두 발생되게 된다.
예를 들어, 편광광원으로부터 방출되는 빛의 편광방향과 상기 미러볼에 설치된 편광수단의 편광방향이 변화가 없이 복굴절매질(200)만이 회전을 일으켜 굴절방향이 변화하는 경우에도 발생된다.
본 제3발명에 따를 경우, 액정소자를 이용하여 편광방향의 변화를 일으킬 수 있다.
도 16은 이러한 액정소자(400)의 예를 보이며, 상기 편광방향의 변화를 일으키는 액정소자(400)는 유리기판(410)(410)사이에 스페이서(미도시)를 개재하여 공간을 확보하여 액정(490)을 충진하고 실런트(430)에 의하여 밀봉된다. 상기 유리기판(410)(410)의 하부에는 투명전극(460)과 액정배향층(470)이 순차적으로 적층된다.
상기 투명전극(460)(460)에 전압이 인가되면 인가되는 전압의 세기에 따라 상기 액정(490)은 그 배열을 변화하며 이에 따라 상기 유리기판(410)(410)으로 편광된 빛을 입사시키면 상기 액정을 통과하면서 빛의 편광방향이 변하게 된다. 실질적으로 이러한 구조는 LCD 패널에서 편광판이 제거된 구조이다.
도 17은 도 16의 액정소자(400)를 이용한 편광복굴절광원(100b)의 일예를 보인다.
케이스부재(900)에 광원(78)이 설치되고 그 전방에 편광필름 또는 편광필터와 같은 편광수단(74)이 설치되며 그 전방에 편광방향의 회전을 일으키는 액정소자(400)가 설치되며 그 전방에 복굴절필름(200)이 설치된다.
이러한 구조에 따라 상기 광원(78)으로부터 조사되는 빛이 상기 편광수단(74)을 통과하면서 편광되고 이후 상기 액정소자(400)를 통과하면서 편광방향이 회전되면서 상기 복굴절필름(200)을 통과하게 된다. 이에 따라서 파장에 따라 각기 다른 편광방향을 가지면서 액정소자(400)에 인가되는 전압의 세기를 변화시킴에 따라 그 각 파장별 편광방향이 변화하는 빛이 출력된다.
도 18은 본 제3발명의 두 번째 측면에 따른 미러볼 조명시스템(2000c)을 보인다.
본 제3발명의 두 번째 측면에 따를 경우, 편광복굴절광원(100a)을 대신하여 복수개의 편광광원(100R)(100G)(100B)이 제공되는데, 상기 복수개의 편광광원(100R)(100G)(100B)은 각각이 편광 된 빛이 방출되는 것으로서 방출되는 빛의 색이 다른 것이다.
이들 편광광원(100R)(100G)(100B)은 각각 적색(R), 녹색(G) 및 청색(B)의 빛을 방출하며 이들은 혼합되어 백색광을 형성하는 것이 바람직하다.
또한 본 제3발명의 두 번째 측면에 따른 경우 상기 편광광원(100R)(100G)(100B)에서 방출되는 빛의 편광방향과, 미러볼(600)에 부착된 개개의 편광필름(67)의 편광방향은 상호간에 상대적으로 변화를 이룬다.
본 실시예의 경우는 도 19에서 보이는 것과 같이 몸체부(71)의 내부에 적색의 빛이 출력되는 광원(78R)이 설치되고 그 전방에 편광수단(74)이 설치되며 상기 몸체부(71)를 모터(44)를 제어하여 회전시켜 적색(R)의 빛으로서 그 편광방향이 회전하는 편광광원(100R)을 구성하고 있으며, 편광광원(100G) 및 편광광원(100B)도 동일하게 구성할 수 있다. 이 경우, 상기 미러볼(600)은 정지하여 있을 수도 있지만, 회전을 이루어도 된다.
이 경우 적색(R), 녹색(G), 청색(B)의 파장마다 편광방향이 다른 빛이 상기 미러볼(600)의 편광수단인 편광필름(67)으로 입사되면 상기 편광필름(67)의 편광방향과 수직을 이루는 것을 통과를 못하고 그렇지 않은 것은 편광 각도에 따라 전부 또는 일부 통과를 이루면서 통과한 파장 빛의 것의 혼합으로 특정한 색상을 띄게 되는데, 이때, 상기 편광필름(67)으로 입사되는 적색(R), 녹색(G), 청색(B)의 각 파장마다의 편광방향은 다시 변화를 일으키는 것으로서, 상기 편광필름(67)을 통과할 수 있는 파장과 그 통과 비율이 달라지게 되고, 이에 따라서, 상기 반사부재(61)에서 반사되는 빛의 색상이 변화를 일으키게 되는 것이다. 편광방향이 다른 편광필름(67)의 사이에서는 서로 다른 색이 변화를 일으키게 된다.
도 20은 도 16의 액정소자(400)를 이용하여 R, G, B의 파장에 따라 다른 편광방향을 가지며 그 편광방향이 회전하는 빛을 출력하는 R, G, B 별 편광광원(100c)을 보인다.
상기 R, G, B 별 편광광원(100c)은 적색파장의 빛을 방출하는 편광광원(101)과 녹색파장의 빛을 방출하는 편광광원(102)과 청색파장의 빛을 방출하는 편광광원(103)을 포함하며, 이들은 각각 적색, 녹색 및 청색의 광원을 방출하는 광원(60R)(60G)(60B)을 가지고 있으며 이들 광원의 (60R)(60G)(60B)전방에 편광수단(70)(70)(70)이 설치되며 다시 그 전방에 전술한 액정소자(400)(400)(400)가 설치된다.
이에 따라, R, G, B의 파장의 것이 각각 출력되면서 그 각각의 것의 편광방향이 변화하는 빛이 출력되는데 이들 R, G, B의 혼합으로 전체로는 백색광이 출력되도록 하는 것이 바람직하다.
전술한 R, G, B 별 편광광원(100c)은 단독 또는 다수개가 제공될 수 있을 것이다.
본 발명에 따를 경우, 상기 모터(44)의 회전속도를 다양하게 제어하여 미러볼(600)의에서 반사되는 빛의 색상변화의 속도를 다양하게 연출할 수 있다. 또한 모터(44)의 제어를 통하여 몸체부(71)의 회전방향이나 회전각을 다양하게 제어하여 상기 미러볼(600)에서 반사되는 빛의 색의 연출을 다양하게 조절 할 수 있다.
본 제3발명은 미러볼을 반사대상물로 하여 설명이 되었지만 여기에 한정되는 것은 아니며 거울과 같은 반사부재가 설치된 모든 반사대상물에 적용될 수 있다.
예를 들어, 전술한 실시 예에서 미러볼(600)을 대신하여, 거울과 같은 반사부재의 상면에 편광필름과 같은 편광수단을 부착하여 이루어진 반사대상물을 제공하는 경우, 상기 편광필름에서 색상이 변화를 이루는 반사광을 얻을 수 있다. 이 경우 반사부재는 다수개가 제공될 수도 있고(예를 들어, 베이스부재에 다수개의 거울이 부착된 형태), 베이스부재 전체에 하나의 거울이 부착되는 것과 같이 전체로서 하나가 제공될 수도 있다.
이러한 경우, 상기 반사부재에는 다수개의 편광수단이 인접하거나 떨어져서 설치될 수 있고 이들 편광수단의 편광방향은 일부 또는 전부가 다를 수 있는데 편광방향이 다른 편광수단마다 다른 색상이 서로 다르게 변화하는 반사광이 연출된다.
예를 들어, 도 21은 도 14에서 미러볼(600)을 대신하여 평면의 반사대상물(6000)이 설치된 편광반사조명시스템(3000c)을 보인다.
상기 평면의 반사대상물(6000)은 베이스부재(5)의 전면에 거울과 같은 반사부재(610)가 설치되고 상기 반사부재(610)에 편광수단으로서 4개의 편광필름(671)(672)(673)(674)이 부착되고 있으며, 이들 편광필름(671)(672)(673)(674)의 편광방향은 서로 다르다.
이러한 반사대상물(6000)에 편광복굴절광원(100a)으로부터 파장별로 편광방향이 다른 빛으로 다시 그 각 편광방향이 회전을 이루는 빛이 조사되어 상기 반사대상물(8000)의 편광필름(671)(672)(673)(674)마다 색상이 각기 다르게 순차적으로 변하는 반사광을 얻을 수 있다.
도 22는 본 제3발명의 또 다른 측면에 따른 편광반사조명시스템(4000c)을 보인다.
이 경우, 반사대상물(6000')은 베이스부재(5)를 가지고 그 전면에 거울과 같은 반사부재(610)가 설치된다. 상기 반사부재(610)의 전면에는 편광필름과 같은 편광수단(670)이 설치되는데, 본 실시예에서 상기 편광수단(670)은 하나가 설치되고 있지만, 다수개가 설치되고 이들의 편광방향이 일부 또는 전부가 다를 수도 있다.
상기 편광수단(670)의 전면에는 복굴절매질이 설치되는데 상기 복굴절매질은 복굴절특성이 다른 다수개의 구역(221)(222)(223)(224)으로 나뉜다.
복굴절특성은 복굴절매질 자체를 다른 것을 사용거나 또는 동일한 복굴절매질이라도 그 두께를 달리하거나 그 배치방향을 달리하여 (예를 들어 가로방향으로 놓는 경우와 세로방향으로 놓는 경우), 복굴절특성을 다르게 할 수 있다.
복굴절 매질의 재질을 달리하여 구역 간에 복굴절 특성을 달리하는 것과 관련되어, 도면을 참고로 각각의 구역(221)(222)(223)(224)의 복굴절매질의 재질을 달리하여 이들의 복굴절특성을 다르게 할 수 있다. (예를 들어 하나는 셀로판 필름 다른 하나는 OPP 필름 등)
구역마다 복굴절 매질의 두께를 달리하여 구역 간에 복굴절 특성을 달리하는 것과 관련되어, 두께가 동일한 필름을 그 겹수를 달리하여 복굴절 특성을 다르게 할 수 있다.
도 22의 복굴절구역(221)(222)(223)(224)의 경우, 개개의 구역마다 겹수를 달리할 수 있다.
또한 동일한 복굴절매질이라도 배치방향을 달리하여 서로 다른 복굴절 특성을 가지도록 할 수 있는데, 상기 구역(221)(222)(223)(224)에서 동일한 복굴절필름으로부터 잘라내어도 그 배치방향이 서로 다른 경우 다른 복굴절특성을 가지게 된다. (예를 들어 하나는 가로방향으로 부착하고 다른 하나는 세로방향으로 부착하는 경우 등)
이와 같은 반사대상물(6000')에는 편광된 빛이 방출되는 편광광원(70)으로부터 편광 된 빛이 조사된다. 또한 본 발명에 따를 경우, 상기 편광광원(70)에서 방출되는 빛의 편광방향과 상기 반사대상물(6000')의 복굴절매질(221)(222)(223)(224)의 일점이 위치를 상호간에 변화시키는 변위수단이 제공되는데, 본 실시예에서 상기 편광광원(70)은 모터의 동력을 받아 회전을 이루며, 이에 따라 상기 변위수단은 모터를 포함하여 이루어지게 된다.
이와 같은 편광반사조명시스템(4000c)의 경우, 편광광원(70)으로부터 편광된 빛이 상기 복굴절특성이 다른 구역(221)(222)(223)(224)을 조사하게 되는데, 각각의 구역마다 복굴절특성이 다름에 따라, 구역마다 구역을 통과한 빛의 파장별 편광방향은 다르게 된다.
구역마다 파장별 편광방향이 다른 것이 상기 편광수단(670)으로 입사되고 상기 편광수단(670)의 편광방향과 수직을 이루는 것을 통과를 못하고 그렇지 않은 것은 편광 각도에 따라 전부 또는 일부 통과를 이루면서 통과한 파장의 빛의 혼합으로 구역마다 특정한 색상을 띄게 된다.
이때, 상기 편광광원(70)으로부터 방출되는 빛의 편광 방향이 회전함에 따라 상기 편광수단(670)으로 입사되는 빛의 파장마다의 편광방향은 다시 변화를 일으키는 것으로서, 상기 편광수단(670)을 통과할 수 있는 파장과 그 통과 비율이 달라지고, 이에 따라서, 상기 반사부재(610)에서 반사되는 빛의 색상이 복굴절 구역(221)(222)(223)(224)마다 변화를 일으키게 되는 것이다.
도 23은 도 22의 실시예에 대하여 그 반사대상물이 미러볼(600')인 경우를 보인다.
미러볼(600')의 표면에 다수개의 반사부재(61)가 설치되고 그 상면에 편광필름(67)이 부착되며 그 표면에 다시 복굴절필름(227)이 부착된다. 복굴절필름(227)들은 그 복굴절특성이 일부 또는 전부가 다를 수 있으며, 적어도, 인접한 것들 사이에는 복굴절특성이 다른 것이 바람직하다.
본 실시예의 경우 반사대상물인 미러볼(600')이 회전을 이루며, 편광광원(70)도 모터 등의 변위수단에 의하여 회전을 이루어 그 편광방향이 회전변화를 이룬다.
이 경우 개개의 복굴절구역(227)마다 다른 색상의 빛이 반사되며 그 색상은 변화하게 된다.
본 제3발명은 편광현상을 이용하여 미러볼과 같은 반사대상물의 반사광의 색상이 변화하며 특별히 반사대상물 표면의 편광수단의 편광방향에 따라 또는 복굴절매질의 복굴절 특성에 따라 각 반사광이 각각 다른 색상으로 변화하며 반사되는 편광 반사 조명시스템을 제공한다.
본 제3발명에 따를 경우 광원으로부터 방출되는 빛의 색은 아무런 변화도 없음에도 불구하고 미러볼과 같은 반사대상물의 반사광에는 색의 변화가 연출되게 된다.
도 24에서 도 31은 본건 특허출원의 제4발명에 따른 편광조명시스템을 보인다.
본 제4발명은 샹들리에와 같이 장식물이 달린 조명기구에서 그 광원을 편광으로 하여 상기 장식물이 다양한 색상의 변화를 연출하도록 한다.
도 24는 본 4발명에 따른 편광조명장치의 일 예(1000d)를 보이는데, 상기 편광조명장치(1000d)는 샹들리에로서 다수개의 장식물(660)이 부착되어 있다.
상기 장식물(660)은 빛이 통과하는 매질체로서 예를 들어 크리스털이나 유리를 재질로 하는데, 반드시 이에 한정되는 것은 아니며 빛이 투과되는 한 플라스틱 등 다른 여러 가지 재질의 것으로 이루어질 수 있다.
본 발명에 따를 경우, 상기 장식물(660)에는 편광필름, 편광필터 또는 편광판과 같은 편광수단이 편광광원으로부터 방출되는 빛을 조사받을 수 있도록 설치된다. 이에 대해서는 후술된다.
본 실시예의 경우, 도 24와 도 26을 참고로, 상기 장식물(660)은 샹들리에 본체주변의 장식간(16)에 줄(6)을 통하여 매달려 있고, 상기 장식물(660)은 육면체의 형상으로서 편광수단인 편광필름(67)이 상기 장식물(660)의 상면에 부착되어 있다.
이에 따라 상기 장식물(660)에 설치된 편광필름(67)은 상기 편광광원(70)으로부터 방출되는 빛을 조사받게 된다.
도 24를 참고로, 빛을 편광한 후 복굴절 시켜 방출하는 편광복굴절광원(100a)이 제공되고 상기 편광복굴절광원(100a)에는 편광광원(70)이 설치되고 있다. (도 25 참조) 이에 대해서는 후술된다.
본 제4발명에 따를 경우, 상기 장식물(660)에는 음각 또는 양각이 형성되는 것이 바람직한데 이러한 경우 음각 또는 양각된 부분마다 색채가 두드려져 보이게 될 수 있기 때문이다.
한편으로, 상기 장식물(660)에 양각 또는 음각 대신 장식물의 내부에 기포 등을 형성하거나 빈 공간을 형성하게 하여 기포나 빈 공간의 경계면에서 색체가 두드려져 보이게 하는 효과를 나타낼 수 있다.
또한, 상기 장식물(660)을 복잡한 선에 의한 다수의 모서리를 가진 다면체로 하여 각 모서리마다 색체가 두드러져 보이게 하는 효과를 나타낼 수 있다.
그러나 상기 장식물(660)에 양각 또는 음각이나 기포나 빈공간이 없고, 복잡한 다면체 구조가 아니더라도 본 발명에 따른 색상변화의 효과는 나타나며 따라서 위와 같은 것들이 필수요소는 아니다.
본 실시예에 따를 경우, 상기 장식물(660)에는 음각인 V자 형태의 홈(604)(604)이 형성되어 있다.(도 26 참조)
본 발명에 따를 경우, 상기 편광조명장치(1000d)는 샹들리에로 한정되지 않고 장식물을 가지는 조명장치를 모두 포함한다.
본 발명에 따를 경우 상기 편광조명장치(1000d)는 편광된 빛을 방출하는 편광광원(70)을 가진다.
편광광원(70)은, 예를 들어, 광원에 편광필름, 편광판 또는 편광필터와 같은 편광수단이 부착되어 상기 광원으로부터의 빛이 상기 편광필름, 편광판 또는 편광필터 등의 편광수단을 통과하면서 편광 되어 조사되는 것이 편광광원으로서 제공될 수 있다.
또한 본 발명에 따를 경우, 복굴절매질(200)이 제공되는데, 상기 복굴절매질은 상기 편광광원(70)과 상기 장식물(660)에 설치된 편광수단의 사이에 놓이며 이에 따라 상기 편광광원(70)으로부터 편광되어 방출되는 빛은 상기 복굴절매질(200)을 통과한 후 상기 장식물(660)에 설치된 편광수단(본 실시예의 경우 편광필름(67))으로 조사된다.
상기 복굴절매질(200)은 상기 편광광원(70)과 상기 장식물(660)의 사이에서 다양한 위치에 놓일 수 있는데, 편광광원(70)과 상기 장식물(660)로부터 각각 독립되어 이들의 사이에 놓일 수도 있고, 필름형태의 것이 사용되어 편광광원(70)의 편광수단(74)에 부착될 수도 있고, 상기 장식물(660)에서 상기 편광수단인 편광필름(67)의 표면에 부착될 수도 있다.
필름형태의 복굴절매질은 복굴절성을 가지는 OPP 필름, PET 필름 등 연신된 플라스틱 필름이나 셀로판필름, 플라스틱 판 등이 사용될 수 있고 또한 복굴절을 위하여 특별히 제조된 복굴절필름이 사용될 수 있다. 복굴절매질로서 복굴절판, 복굴절렌즈 등이 이용될 수 있음은 물론이다.
본 제4발명에 따를 경우, 상기 편광광원(70)에서 방출되는 빛의 편광방향과, 상기 복굴절매질(200)의 일점의 위치와, 상기 장식물(660)에 설치된 편광수단(67)의 편광방향은 상호간에 상대적으로 변화를 이룬다. 이와 같은 상대적인 변화는 아래의 경우들을 포함할 수 있다.
이때 복굴절매질의 일점의 위치의 변화는 복굴절매질 상의 임의의 일점의 위치가 변화하는 것을 말하는데 복굴절매질이 자전을 이루는 경우 자전축상의 점은 위치가 변하지 않지만 다른 곳의 임의의 점은 위치가 변화하는 것으로서 이러한 경우를 포함한다.
첫째, 상기 편광광원(70)에서 조사되는 빛의 편광방향과 상기 복굴절매질(200)이 상호간에 회전을 하고 상기 장식물(660)에 설치된 편광수단(67)은 정지되어 있는 경우이다. 만일 편광수단(67)이 장식물(660)에 고정되는 경우 장식물(80)이 정지되면 편광수단(67)도 정지될 것이다. 한편 편광수단(67)이 장식물(660)에 고정된 경우, 장식물(660)의 변위(움직임)에 따라 편광수단(67)도 변위를 일으킬 것이다.
이 경우는 상기 편광광원(70)과 상기 복굴절매질(200) 중에서 하나가 정지되고 다른 하나가 회전하는 경우 그리고 양자(70)(200)가 회전되는데 그 회전속도가 다른 경우를 포함한다.
둘째, 상기 편광광원(70)이 정지되고 상기 복굴절매질(200)의 일점과 상기 장식물(660)에 설치된 편광수단(67)의 일점이 상호간에 변위를 이루는 경우이다. 예를 들어 복굴절매질(200)이 회전을 이루는 경우 또는 상면에 편광필름(67)이 부착된 장식물(660)의 줄(6)을 돌려 이들 장식물(660)이 자전을 하는 경우 또는 장식물(660)이 설치되는 장식간(16)을 샹들리에 본체를 중심으로 공전시키는 경우 등이 있을 수 있다.
셋째, 상기 복굴절매질(200)이 정지를 이루고 상기 편광광원(70)에서 조사되는 빛의 편광방향과 상기 장식물(660)에 설치된 편광수단(67)의 편광방향이 상호간에 변화되는 경우이다. 이 경우도 상기 편광광원(70)과 장식물(660)에 설치된 편광수단 중 어느 하나가 정지되고 다른 하나가 자전 또는 공전하는 경우 등이 있을 수 있다.
넷째, 상기 편광광원(70)과 상기 복굴절매질(200)과 상기 장식물(660)에 설치된 편광수단(67)이 모두 변위를 일으키는 경우이다.
다섯째, 상기 편광광원(70)과 복굴절매질(200)이 일체로서 또는 등속으로서 같이 변위를 이루고 상기 장식물(660)에 설치된 편광수단(67)은 정지된 경우이다.
여섯째, 상기 편광광원(70)은 정지되고, 상기 복굴절매질(200)과 상기 장식물(660)에 설치된 편광수단(67)이 일체로 또는 등속으로 같이 변위를 이루는 경우이다.
본 발명에 따를 경우, 전술한 회전은 일부 각도의 회전 또는 각도의 변화를 포함하는데, 예를 들어, 30도, 60도, 90도 또는 180도 등 각도가 변화하는 경우를 포함한다.
도 24의 실시 예는 편광복굴절광원(100a)(도 25 참조)이 제공되고 있는데, 이 경우는 편광광원(70)과 복굴절매질(200)이 일체로서 같이 회전하고 상기 장식물(660)에 부착된 편광필름(67)이 정지되어 있다. 이러한 경우, 바람 등에 따라 장식물(660)이 움직이는 경우를 제외하는 것은 아니며 이러한 경우를 포함한다.
도 25는 도 24의 상기 편광복굴절광원(100a)의 구조를 보이는데, 상기 편광복굴절광원(100a)은 우선 몸체부(71)를 가진다. 상기 몸체부(71)의 내부에는 광원(68)이 설치되고 그 전방에 편광필터 또는 편광필름 같은 편광수단(74)이 설치된다. 이에 따라 상기 광원(68)의 빛은 상기 편광수단(74)을 통과하면서 편광되고, 상기 광원(68)과 편광수단(74)은 편광 된 빛을 방출하는 편광광원(70)을 이룬다.
상기 몸체부(71)에서 상기 편광수단(74)의 전방에는 복굴절매질(200)이 설치된다. 따라서 상기 광원(68)으로부터 조사되어 상기 편광수단(74)을 거쳐 편광되어진 빛은 상기 복굴절매질(200)을 통과하면서 복굴절을 이루고 그 파장에 따라 각각 편광방향이 다른 빛이 상기 편광복굴절광원(100a)으로부터 방출된다.
본 실시예에 따를 경우 모터(44)가 제공되어 상기 몸체부(71)를 회전시키며 이에 따라 몸체부(71)에 일체로 설치된 편광광원(70)과 복굴절매질(200)은 일체로서 같이 회전되며 상대적 변위를 일으킨다.
상기 모터(44)는 제어부(46)와 연결되고 상기 제어부(46)는 조작부(48)의 명령을 받는다. 이에 따라 모터(44)의 동작은 상기 조작부(48)의 조작에 따라 이루어지게 된다.
도시하지는 않았지만, 상기 모터(44)가 상기 복굴절매질(200)만을 회전시키도록 기계적 구조를 설계할 수도 있을 것이며, 이러한 경우는 편광광원(70)은 정지되고 상기 복굴절매질(200)의 일점이 변위를 일으키는 경우에 해당된다.
본 제4발명에 따를 경우, 동력원으로서 반드시 모터가 제공될 필요가 없으며 다양한 수단의 것이 제공될 수 있고, 수동(手動)을 배제하는 것은 아니다.
이러한 편광복굴절광원(100a)은 조명을 하게 되며, 이때, 상기 장식물(660)에 설치된 편광수단인 편광필름(67)은 상기 편광복굴절광원(100a)으로부터의 빛을 받게 된다. 이러한 편광복굴절광원(100a)은 하나가 제공될 수도 있고 복수개가 제공될 수도 있다.
이러한 본 발명에 따를 경우, 편광광원(70)에서 방출되는 편광 된 빛은 복굴절매질(200)을 거치면서 복굴절되어 파장마다 편광방향이 다른 빛이 되어 상기 장식물(660)에 설치된 편광필름(67)을 조사하게 된다.
이때 상기 편광복굴절광원(100a)으로부터 방출되는 빛의 편광방향은 회전을 이루고 있어, 각 파장별로 달라진 각 편광방향이 다시 각기 회전을 이루고 있는 상태로 상기 장식물(660)에 설치된 편광필름(67)을 조사하게 된다.
이러한 경우 도 26을 참고로, 상기 장식물(660)에 조사되는 빛은 설치된 편광필름(67)을 통과하면서 특정한 색상을 띄게 되고, 편광필름(67)을 통과한 빛의 진행방향에 놓인 장식물(660)의 모서리(C1)(C2)(C3)에서 이러한 색상이 강하게 나타나게 되며, 한편으로 상기 편광복굴절광원(100a)으로부터 방출되는 빛의 편광방향의 회전에 따라 그 나타나는 색상이 변화를 보이게 된다.
이것은 편광된 빛이 복굴절되어 파장마다 편광방향이 다른 것이 상기 장식물(660)의 편광수단(67)으로 입사되면 상기 편광수단(67)의 편광방향과 수직을 이루는 것을 통과를 못하고 그렇지 않은 것은 편광 각도에 따라 전부 또는 일부 통과를 이루면서 통과한 파장 빛의 것의 혼합으로 특정한 색상을 띄게 되는데, 이러한 색상이 특히 모서리(C1)(C2)(C3)에서 반사 등의 광학적 효과로 강하게 나타나게 된다.
그런데, 상기 편광필름(67)으로 입사되는 빛의 파장마다의 편광방향은 다시 변화를 일으키는 것으로서, 상기 편광필름(67)을 통과할 수 있는 파장과 그 통과 비율이 달라지게 되고, 이에 따라서, 상기 장식물(660)에 나타나는 색상이 변화를 일으키게 되는 것이다.
이러한 현상은 상기 편광광원(70)에서 방출되는 빛의 편광방향과, 상기 복굴절매질(200)의 일점의 위치와, 상기 장식물(660)에 설치된 편광수단(67)의 편광방향이 상호간에 상대적으로 변화를 일으키는 경우 모두 발생되게 된다.
예를 들어, 편광광원으로부터 방출되는 빛의 편광방향과 상기 장식물에 설치된 편광수단의 편광방향이 변화가 없이 복굴절매질(200)만이 회전을 일으켜 굴절방향이 변화하는 경우에도 발생된다.
본 발명에 따를 경우, 액정소자를 이용하여 편광방향의 변화를 일으킬 수 있다. 도 27은 이러한 액정소자(400)의 예를 보이며, 상기 편광방향의 변화를 일으키는 액정소자(400)는 유리기판(410)(410)사이에 스페이서(미도시)를 개재하여 공간을 확보하여 액정(490)을 충진하고 실런트(430)에 의하여 밀봉된다. 상기 유리기판(410)(410)의 하부에는 투명전극(460)과 액정배향층(470)이 순차적으로 적층된다.
상기 투명전극(460)(460)에 전압이 인가되면 상기 액정(490)은 그 배열을 변화하며 이에 따라 상기 유리기판(410)(410)으로 편광된 빛을 입사시키면 상기 액정을 통과하면서 빛의 편광방향이 변하게 된다. 실질적으로 이러한 구조는 LCD 패널에서 편광판이 제거된 구조이다.
도 28은 도 27의 액정소자(400)를 이용한 편광복굴절광원(100b)의 일예를 보인다.
케이스부재(900)에 광원(78)이 설치되고 그 전방에 편광필름 또는 편광필터와 같은 편광수단(74)이 설치되며 그 전방에 편광방향의 회전을 일으키는 액정소자(400)가 설치되며 그 전방에 복굴절필름(200)이 설치된다.
이러한 구조에 따라 상기 광원(68)으로부터 조사되는 빛이 상기 편광수단(74)을 통과하면서 편광되고 이후 상기 액정소자(400)를 통과하면서 편광방향이 회전되면서 상기 복굴절필름(200)을 통과하게 된다. 이에 따라서 파장에 따라 각기 다른 편광방향을 가지면서 그 각 파장별 편광방향이 변화하는 빛이 출력된다.
도 29는 도 4의 액정소자(400)를 이용하여 R, G, B의 파장에 따라 다른 편광방향을 가지며 그 편광방향이 회전하는 빛을 출력하는 R, G, B 별 편광광원(100c)을 보인다.
상기 R, G, B 별 편광광원(100c)은 적색파장의 빛을 방출하는 편광광원(101)과 녹색파장의 빛을 방출하는 편광광원(102)과 청색파장의 빛을 방출하는 편광광원(103)을 포함하며, 이들은 각각 적색, 녹색 및 청색의 광원을 방출하는 광원(68R)(68G)(68B)을 가지고 있으며 이들 광원의 (68R)(68G)(68B)전방에 편광수단(74)(74)(74)이 설치되며 다시 그 전방에 전술한 액정소자(400)(400)(400)가 설치된다.
이에 따라, R, G, B의 파장의 것이 각각 출력되면서 그 각각의 것의 편광방향이 변화하는 빛이 출력되는데 이들 R, G, B의 혼합으로 전체로는 백색광이 출력되도록 하는 것이 바람직하다.
이에 따라 샹들리에로부터는 백색광이 출력되어 조명에 아무런 영향을 받지 않지만 장식물(660)은 색상의 변화를 일으키게 된다. 다른 경우 그 혼합비율에 따라 백색광이 아닌 다른 색의 빛이 출력되어 조명으로 활용될 수도 있을 것이다.
이것은 R, G, B의 파장마다 편광방향이 다른 빛이 상기 장식물(660)의 편광수단인 편광필름(67)으로 입사되면 상기 편광필름(67)의 편광방향과 수직을 이루는 것을 통과를 못하고 그렇지 않은 것은 편광 각도에 따라 전부 또는 일부 통과를 이루면서 통과한 파장 빛의 것의 혼합으로 특정한 색상을 띄게 되는데, 이러한 색상이 특히 모서리(C1)(C2)(C3)에서 반사 등의 광학적 효과로 강하게 나타나게 된다.
그런데, 상기 편광필름(67)으로 입사되는 빛의 파장마다의 편광방향은 다시 변화를 일으키는 것으로서, 상기 편광필름(67)을 통과할 수 있는 파장과 그 통과 비율이 달라지게 되고, 이에 따라서, 상기 장식물(660)에 나타나는 색상이 변화를 일으키게 되는 것이다.
전술한 R, G, B 별 편광광원(100c)은 조명장치에서 단독 또는 다수개가 제공될 수 있을 것이다.
도 30 및 도 31은 본 제4발명에 따른 편광조명장치의 다른 실시예(1000d')를 보인다.
이 경우, 편광복굴절광원(100d)은 몸체부(71)와 그 내부의 광원(68)과 편광수단(74) 및 복굴절매질(200)로 이루어진다.
본 실시예에서 상기 몸체부(71)는 정지되고 장식물(660)이 변위를 일으켜 편광필름(67)이 변위를 일으키게 되는데, 모터(44)의 동력에 따라 장식물(660)이 놓이는 장식간(16)이 회전되는 것을 보인다.
장식간(16)이 설치되는 베이스판(190)이 모터(44)의 작동에 따라 회전을 이루어, 상기 장식물(660)들이 회전을 이루고 있다. 이때 상기 몸체부(71)는 회전되지 않고 정지되도록 설치된다.
이 경우도 전술한 바와 같이, 상기 장식물(660)의 편광필름(67)에는 파장마다 편광방향이 다른 빛이 조사되는데, 장식물(660)의 위치가 변화됨으로 인하여 편광복굴절광원(100d)과의 관계에서 편광필름(67)의 상대적인 편광방향이 변하게 되고, 이에 따라 편광필름(67)을 통과하는 파장이 변화되어 장식물(80)에 나타나는 색상이 변화하는 것이다.
이와 같이 본 제4발명은 편광현상을 이용하여 샹들리에와 같이 장식물이 달린 조명장치에서 그 장식물에서 색상이 변화하여 보이는 편광조명 장치를 제공하고 있다.
본 제4발명의 경우도, 조명장치의 광원으로부터 방출되는 빛의 색은 아무런 변화도 없음에도 불구하고 장식물에서는 색의 변화가 연출되게 된다.
본 발명에 따른 편광조명시스템은 조명용으로서 상품 등의 전시 또는 광고에 사용될 수 있으며, 또한 인테리어용으로 그리고 건축물의 미관을 증진하기 위하여 사용될 수 있다.

Claims (62)

  1. (a) 광원수단과;
    (b) 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단과;
    (c) 상기 광원수단으로부터 방출되어 상기 편광수단을 거친 빛을 받아 복굴절시키는 복굴절매질과;
    (d) 상기 광원수단으로부터 방출되어 상기 편광수단을 통과한 후 상기 복굴절매질을 통과한 빛을 받는 것으로서, 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 포함하여 이루어진 것을 특징으로 하는 편광조명시스템.
  2. 제1항에 있어서,
    상기 편광수단과 복굴절매질은 상호간에 적층되어 배치된 것을 특징으로 하는 편광조명시스템.
  3. 제1항에 있어서,
    상기 복굴절매질은 상기 편광반사물의 전면에 부착되어 있음을 특징으로 하는 편광조명시스템.
  4. 제1항에 있어서,
    상기 편광수단은 편광방향이 다른 다수개의 편광구역으로 이루어진 것을 특징으로 하는 편광조명시스템.
  5. 제1항에 있어서,
    상기 복굴절매질은 복굴절특성이 다른 다수개의 복굴절구역으로 이루어진 것을 특징으로 하는 편광조명시스템.
  6. 제4항에 있어서,
    상기 복굴절매질은 복굴절특성이 다른 다수개의 복굴절구역으로 이루어진 것을 특징으로 하는 편광조명시스템.
  7. 제1항에 있어서,
    상기 광원수단은 면광원을 이루는 것을 특징으로 하는 편광조명시스템.
  8. 제7항에 있어서
    상기 광원수단은 광원과 상기 광원의 빛을 받아 방출하는 도광판을 포함하여 이루어진 것을 특징으로 하는 편광조명시스템.
  9. 제7항 또는 제8항에 있어서,
    상기 광원수단의 광원은 엘이디램프 또는 냉음극형광등인 것을 특징으로 하는 편광조명시스템.
  10. 제1항부터 제8항 중 어느 일 항에 있어서,
    상기 편광반사물은 액체, 유리, 아크릴, 크리스털 또는 플라스틱의 재질로 이루어진 것을 특징으로 하는 편광조명시스템.
  11. (a) 조명공간에 설치된 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 조사하는 것으로서;
    (b1) 광원수단과;
    (b2) 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단과;
    (b3) 상기 광원수단으로부터 방출되어 상기 편광수단을 거친 빛을 받아 복굴절시키는 복굴절매질을 포함하여 이루어진 것을 특징으로 하는 조명수단.
  12. (a) 각각 색상이 다른 빛을 방출하는 다수개의 광원과, 이들 각각의 광원에 대하여 설치되는 빛을 편광시키는 편광수단을 포함하여 이루어지는 조명수단과; 여기서 상호간에 다른 색상의 광원에 설치되는 편광수단의 편광방향은 전부 또는 일부가 서로 다르며;
    (b) 상기 조명수단으로부터 방출된 빛을 받는 것으로서, 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물을 포함하여 이루어진 것을 특징으로 하는 편광조명시스템.
  13. 제12항에 있어서,
    상기 조명수단은 다수개의 구역으로 이루어지며, 여기서, 동일한 색상의 빛을 방출하는 광원의 편광수단의 편광방향은 동일한 구역에서는 동일하지만 다른 구역사이에서는 다른 것을 특징으로 하는 편광조명시스템.
  14. (a) 조명공간에 설치된 입사된 빛을 반사하며 반사된 빛은 편광을 이루는 편광반사물을 조사하는 것으로서;
    (b1) 각각 색상이 다른 빛을 방출하는 다수개의 광원과;
    (b2) 이들 각각의 광원에 대하여 설치되는 빛을 편광시키는 편광수단을 포함하여 이루어지며, 여기서, 상호간에 다른 색상의 광원에 설치되는 편광수단의 편광방향은 전부 또는 일부가 서로 다른 것을 특징으로 하는 조명수단.
  15. 제14항에 있어서,
    상기 조명수단은 다수개의 구역으로 이루어지며, 여기서, 동일한 색상의 빛을 방출하는 광원의 편광수단의 편광방향은 동일한 구역에서는 동일하지만 다른 구역사이에서는 다른 것을 특징으로 하는 조명수단.
  16. (a) 조명공간에 설치된 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물과 상기 편광반사물에 배치된 복굴절매질을 포함하여 이루어진 조명대상물을 조사하는 것으로서;
    (b1) 광원수단과;
    (b2) 상기 광원수단으로부터 방출된 빛을 받아 편광시키는 편광수단을 포함하여 이루어진 것을 특징으로 하는 조명수단.
  17. (a) 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물에 조명을 이루는 것으로서;
    (b) 편광 된 빛이 출력되는 것으로서 상기 편광반사물을 조사하는 편광광원과;
    (c) 상기 편광광원과 상기 편광반사물의 사이에 놓이는 복굴절매질을 포함하여 이루어지며; 여기서,
    (d) 상기 편광광원에서 출력되는 빛의 편광방향과 상기 복굴절매질과 상기 편광반사물은 상호간에 상대적으로 회전을 이루는 것을 특징으로 하는 편광조명장치.
  18. 제17항에 있어서,
    상기 편광반사물은 액체, 유리, 아크릴, 크리스털 또는 플라스틱의 재질로 이루어진 것을 특징으로 하는 편광조명장치.
  19. 제17항에 있어서,
    상기 편광광원은 조사되는 빛의 편광방향이 회전을 이루고 상기 복굴절매질과 상기 편광반사물은 정지되어 있음을 특징으로 하는 편광조명장치.
  20. 제17항에 있어서,
    상기 복굴절매질이 회전을 이루고 상기 편광광원과 상기 편광반사물은 정지되어있음을 특징으로 하는 편광조명장치.
  21. 제17항에 있어서,
    상기 복굴절매질과 상기 편광광원이 일체로 또는 등속으로 회전을 이루고 상기 편광대상물은 정지되어있음을 특징으로 하는 편광조명장치.
  22. 제17항에 있어서,
    마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자를 이용하여 상기 편광광원으로부터의 편광된 빛의 편광방향을 회전시키는 것을 특징으로 하는 편광조명장치.
  23. 제17항부터 제22항 중 어느 하나의 항에 있어서,
    상기 회전은 일부각도의 회전 또는 각도의 변화를 포함하는 것을 특징으로 하는 편광조명장치.
  24. 제17항에 있어서, 상기 편광광원과 상기 복굴절매질은 정지하고 상기 편광반사물이 회전을 이루는 것을 특징으로 하는 편광조명장치.
  25. (a) 입사된 빛을 반사하며 반사된 빛은 전부 또는 일부가 편광을 이루는 편광반사물에 조명을 이루는 것으로서;
    (b) 적색(R), 녹색(G) 및 청색(B)의 세 가지의 색으로서 편광 된 빛이 각각 출력되는 세 개의 편광광원을 포함하여 이루어지며;
    (c) 상기 세 개의 편광광원의 빛은 혼합되어 백색광을 이루어 상기 편광반사물을 조사하며;
    (d) 이들 세 개의 편광광원의 편광방향의 전부 또는 일부와 상기 편광반사물은 상대적 회전을 이루는 것을 특징으로 하는 편광조명장치.
  26. 제25항에 있어서,
    상기 회전은 일부각도의 회전 또는 각도의 변화를 포함하는 것을 특징으로 하는 편광조명장치.
  27. 제25항 또는 제26항에 있어서,
    (a) 상기 세 개의 편광광원은 각각 R, G, B 각각의 파장의 빛을 방출하는 광원과, 상기 각각의 광원으로부터의 빛을 각각 편광시키는 개개의 편광수단을 포함하여 이루어지며;
    (b) 이들 각각의 편광광원으로부터 편광 된 R, G, B 파장의 빛은 각각 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자를 통과하면서 그 편광방향이 변화하는 것을 특징으로 하는 편광조명장치.
  28. (a) 반사부재와 상기 반사부재의 표면에 설치된 것으로서 투과되는 빛을 편광시키는 편광수단을 가지는 반사대상물과;
    (b) 편광 된 빛이 방출되는 편광광원과;
    (c) 상기 편광광원과 상기 반사대상물의 편광수단의 사이에 설치된 복굴절매질과; 상기 편광광원으로부터 방출되어 상기 복굴절매질을 통과한 빛은 상기 반사대상물을 조사하며;
    (d) 상기 편광광원에서 방출되는 빛의 편광방향과, 상기 복굴절매질의 일점의 위치와, 상기 반사대상물의 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  29. 제28항에 있어서,
    상기 복굴절매질은 상기 편광광원과 일체로 결합되어 있는 것을 특징으로 하는 편광반사조명시스템.
  30. 제28항에 있어서,
    상기 변위수단은 상기 편광광원의 편광방향을 회전시키는 편광광원의 편광방향 회전수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  31. 제28항에 있어서,
    상기 변위수단은 상기 복굴절매질을 회전시키는 복굴절매질회전수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  32. 제28항에 있어서,
    상기 변위수단은 상기 반사대상물을 회전시키는 반사대상물 회전수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  33. 제30항 또는 제32항에 있어서,
    상기 복굴절매질은 상기 반사대상물에서 상기 편광수단의 표면에 부착되어 있음을 특징으로 하는 편광반사조명시스템.
  34. 제30항에 있어서,
    상기 편광광원의 편광방향 회전수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자인 것을 특징으로 하는 편광반사조명시스템.
  35. 제28항부터 제34항 중 어느 하나의 항에 있어서,
    상기 반사부재는 하나 또는 복수개가 배치되는 것을 특징으로 하는 편광반사조명시스템.
  36. 제35항에 있어서,
    상기 반사부재에는 다수개의 편광수단이 설치되고 이들 편광수단의 편광방향은 일부 또는 전부가 다름을 특징으로 하는 편광반사조명시스템.
  37. 제36항에 있어서,
    상기 반사대상물은 미러볼임을 특징으로 하는 편광반사조명시스템.
  38. (a) 반사부재와 상기 반사부재의 표면에 설치된 것으로서 투과되는 빛을 편광시키는 편광수단을 가지는 반사대상물과;
    (b) 편광 된 빛이 방출되는 것으로서 방출되는 빛의 색이 다른 복수개의 편광광원과; 상기 복수개의 편광광원은 상기 반사대상물을 조사하며;
    (c) 상기 복수개의 편광광원의 각 편광방향과 상기 반사대상물의 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  39. 제38항에 있어서,
    상기 복수개의 편광광원은 R(적색)의 빛이 편광되어 방출되는 제1편광광원과, G(녹색)의 빛이 편광되어 방출되는 제2편광광원과, B(청색)의 빛이 편광되어 방출되는 제3편광광원을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  40. 제39항에 있어서,
    상기 R(적색)의 빛이 편광되어 방출되는 제1편광광원과, G(녹색)의 빛이 편광되어 방출되는 제2편광광원과, B(청색)의 빛이 편광되어 방출되는 제3편광광원을 포함한 복수개의 편광광원으로부터 방출되는 빛은 혼합되어 백색광을 이루는 것을 특징으로 하는 편광반사조명시스템.
  41. 제38항에서 제40항 중 어느 하나의 항에 있어서,
    상기 변위수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자인 것을 특징으로 하는 편광반사조명시스템.
  42. 제38항에 있어서,
    상기 반사대상물은 미러볼인 것을 특징으로 하는 편광반사조명시스템.
  43. (a) 반사부재와 상기 반사부재의 표면에 설치된 것으로서 투과되는 빛을 편광시키는 편광수단과 상기 편광수단의 표면에 설치된 복굴절매질을 가지는 반사대상물과; 여기서 상기 복굴절매질은 복굴절 특성이 다른 다수개의 구역으로 나뉘며;
    (b) 편광 된 빛이 방출되는 편광광원과;
    (c) 상기 편광광원에서 방출되는 빛의 편광방향과 상기 반사대상물의 복굴절매질의 일점의 위치를 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  44. 제43항에 있어서,
    상기 변위수단은 상기 편광광원의 편광방향을 회전시키는 편광광원의 편광방향 회전수단을 포함하여 이루어진 것을 특징으로 하는 편광반사조명시스템.
  45. 제44항에 있어서,
    상기 반사대상물은 정지 또는 회전을 이루고 있음을 특징으로 하는 편광반사조명시스템.
  46. 제45항에 있어서,
    상기 반사대상물은 미러볼인 것을 특징으로 하는 편광반사조명시스템.
  47. (a) 빛이 통과하는 매질체로서, 편광수단이 설치된 장식물과;
    (b) 편광 된 빛이 방출되는 편광광원과;
    (c) 상기 편광광원과 상기 장식물에 설치된 편광수단의 사이에 설치된 복굴절매질과; 상기 편광광원으로부터 방출되어 상기 복굴절매질을 통과한 빛은 상기 장식물에 설치된 편광수단을 조사하며;
    (d) 상기 편광광원에서 방출되는 빛의 편광방향과, 상기 복굴절매질의 일점의 위치와, 상기 장식물에 설치된 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광조명장치.
  48. 제47항에 있어서,
    상기 변위수단은 상기 편광광원에서 조사되는 빛의 편광방향을 회전시키고 상기 복굴절매질과 상기 장식물에 설치된 편광수단은 정지되어 있음을 특징으로 하는 편광조명장치.
  49. 제47항에 있어서,
    상기 변위수단은 상기 복굴절매질을 회전시키고 상기 편광광원과 상기 장식물에 설치된 편광수단은 정지되어있음을 특징으로 하는 편광조명장치.
  50. 제47항에 있어서,
    상기 변위수단은 상기 복굴절매질과 상기 편광광원을 같이 회전시키고 상기 장식물에 설치된 편광수단은 정지되어있음을 특징으로 하는 편광조명장치.
  51. 제47항에 있어서,
    상기 변위수단은 상기 장식물에 설치된 편광수단의 일점의 위치를 변화시키는 것임을 특징으로 하는 편광조명장치.
  52. 제51항에 있어서,
    상기 변위수단은 상기 편광수단을 자전시키는 것임을 특징으로 하는 편광조명장치.
  53. 제51항에 있어서,
    상기 변위수단은 상기 편광수단을 상기 편광조명장치의 둘레를 따라 회전시키는 것임을 특징으로 하는 편광조명장치.
  54. 제48항에 있어서,
    상기 변위수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자인 것을 특징으로 하는 편광조명장치.
  55. 제48항부터 제50항 중 어느 하나의 항에 있어서,
    상기 회전은 일부각도의 회전 또는 각도의 변화를 포함하는 것을 특징으로 하는 편광조명장치.
  56. 제47항에 있어서,
    상기 변위수단은 상기 장식물에 설치된 편광수단의 일점의 위치를 변화시키는 것임을 특징으로 하는 편광조명장치.
  57. 제47항에 있어서,
    상기 복굴절매질은 상기 장식물에 설치된 편광수단의 표면에 부착된 것을 특징으로 하는 편광조명장치.
  58. 제47항에 있어서,
    상기 장식물에는 음각 또는 양각이 형성되거나, 또는 상기 장식물의 내부에 기포가 형성되거나 또는 상기 장식물의 내부에 빈 공간이 형성되거나, 또는 상기 장식물은 다수의 모서리를 가진 다면체인 것을 특징으로 하는 편광조명장치.
  59. (a) 빛이 통과하는 매질체로서, 편광수단이 설치된 장식물과;
    (b) 편광 된 빛이 방출되는 것으로서 방출되는 빛의 색이 다른 복수개의 편광광원과; 상기 복수개의 편광광원은 상기 장식물에 설치된 편광수단을 조사하며;
    (c) 상기 복수개의 편광광원의 각 편광방향과 상기 장식물에 설치된 편광수단의 편광방향을 상호간에 변화시키는 변위수단을 포함하여 이루어진 것을 특징으로 하는 편광조명장치.
  60. 제59항에 있어서,
    상기 복수개의 편광광원은 R(적색)의 빛이 편광되어 방출되는 제1편광광원과, G(녹색)의 빛이 편광되어 방출되는 제2편광광원과, B(청색)의 빛이 편광되어 방출되는 제3편광광원을 포함하여 이루어진 것을 특징으로 하는 편광조명장치.
  61. 제60항에 있어서,
    상기 제1편광광원에서 제3편광광원으로부터 방출되는 빛은 혼합되어 백색광을 이루는 것을 특징으로 하는 편광조명장치.
  62. 제59항에 있어서,
    상기 변위수단은 마주보는 두 개의 유리기판의 사이에 스페이서를 개재하여 공간을 확보하고, 상기 공간에 액정을 충진하며, 이들 유리기판의 사이를 실런트로 밀봉하고, 상기 유리기판에는 투명전극과 배향층이 적층된 것으로서 상기 투명전극에 전압을 인가하여 상기 유리기판으로 입사된 빛의 편광방향을 변화시키는 액정소자인 것을 특징으로 하는 편광조명장치.
PCT/KR2011/009054 2010-11-25 2011-11-25 편광조명시스템 WO2012070904A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11843490.1A EP2644983A4 (en) 2010-11-25 2011-11-25 LIGHTING SYSTEM WITH POLARIZED LIGHT
JP2013540901A JP2014500596A (ja) 2010-11-25 2011-11-25 偏光照明システム
CN201180056977XA CN103328886A (zh) 2010-11-25 2011-11-25 偏振照明系统
US13/989,210 US9016884B2 (en) 2010-11-25 2011-11-25 Polarization illumination system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20100117952 2010-11-25
KR10-2010-0117952 2010-11-25
KR1020110032626A KR101268395B1 (ko) 2011-04-08 2011-04-08 편광조명장치
KR10-2011-0032626 2011-04-08
KR1020110039994A KR101306546B1 (ko) 2011-04-28 2011-04-28 편광 반사 조명 시스템
KR10-2011-0039994 2011-04-28
KR10-2011-0087761 2011-08-31
KR20110087761 2011-08-31

Publications (2)

Publication Number Publication Date
WO2012070904A2 true WO2012070904A2 (ko) 2012-05-31
WO2012070904A3 WO2012070904A3 (ko) 2012-09-27

Family

ID=46146331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009054 WO2012070904A2 (ko) 2010-11-25 2011-11-25 편광조명시스템

Country Status (5)

Country Link
US (1) US9016884B2 (ko)
EP (1) EP2644983A4 (ko)
JP (1) JP2014500596A (ko)
CN (1) CN103328886A (ko)
WO (1) WO2012070904A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036342A1 (en) * 2012-08-29 2014-03-06 Axlen, Inc. Led-based personal and other lighting devices and systems
US20140070076A1 (en) * 2012-09-12 2014-03-13 Goutham Mallapragda Real-Time Composite 3-D for a Large Field of View Using Multiple Structured Light Sensors
CN105008798A (zh) * 2012-12-28 2015-10-28 崔旭 使用光影的偏振光显示设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015220A2 (ko) * 2010-07-27 2012-02-02 Choi Uk 편광디스플레이장치
WO2016140499A1 (ko) 2015-03-03 2016-09-09 최욱 선편광 경향을 증가시켜 개선된 색상을 창출하는 색상창출장치 및 색상창출방법
JP6425210B2 (ja) * 2015-05-07 2018-11-21 有限会社大平技研 反射鏡集合体を用いた星空の投影装置
HUE061358T2 (hu) * 2018-09-20 2023-06-28 Mei S R L Polarizációs szûrõ, berendezés és eljárás poláros lencse lencsepolarizációs tengelye állásának meghatározására
CN112578523A (zh) * 2020-12-30 2021-03-30 中国科学院长春光学精密机械与物理研究所 滤光片切换装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072201A (ko) 2007-09-26 2010-06-30 마이크로소프트 코포레이션 동적 인스턴트 코멘트
KR20100088893A (ko) 2009-02-02 2010-08-11 엘지전자 주식회사 문서 분석 시스템
KR20100091423A (ko) 2009-02-10 2010-08-19 농업회사법인 유한회사 한누리 축사용 목걸림틀의 자동 개폐장치
KR20100117952A (ko) 2009-04-27 2010-11-04 현대제철 주식회사 슬래그를 이용한 콘크리트 조성물
KR20100117956A (ko) 2009-04-27 2010-11-04 현대제철 주식회사 전기로를 이용한 저질소강의 제조방법
KR20110003062A (ko) 2009-07-03 2011-01-11 (주)엘지하우시스 터치스크린용 수지 조성물, 점착 필름 및 터치스크린
KR20110005501A (ko) 2009-07-10 2011-01-18 서울대학교치과병원 말초신경재생을 위한 신경성장인자 전달용 신경도관의 개발
KR20110032626A (ko) 2009-09-23 2011-03-30 삼성전자주식회사 헤드셋과 이의 운용 방법 및 시스템과, 이를 지원하는 휴대 단말기
KR20110039994A (ko) 2009-10-13 2011-04-20 (주)엘지하우시스 창호용 디지털 잠금장치의 록킹부 조립체
KR20110048592A (ko) 2005-03-18 2011-05-11 상하이 인스티튜트 오브 마테리아 메디카 차이니즈 아카데미 오브 싸이언시즈 항바이러스제로 유용한 텐덤 비스헤테로사이클 화합물, 이의 용도 및 상기 화합물을 포함하는 조성물
KR20110063584A (ko) 2008-11-03 2011-06-10 엘지전자 주식회사 다중 셀 협력적 무선통신 시스템에서 데이터를 전송하는 방법
KR20110074013A (ko) 2009-12-24 2011-06-30 삼성전기주식회사 모터
KR20110087761A (ko) 2010-01-27 2011-08-03 양산기공 주식회사 에어 그라인더

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2200959A (en) * 1938-06-01 1940-05-14 Polaroid Corp Display device employing polarized light
US2174270A (en) * 1938-06-01 1939-09-26 Polaroid Corp Display device employing polarized light
US3535805A (en) * 1968-04-26 1970-10-27 Adam Peiperl Display device
JPH0562504A (ja) 1991-09-03 1993-03-12 Matsushita Electric Works Ltd 装飾用照明器具
JPH07333574A (ja) * 1994-06-10 1995-12-22 Casio Comput Co Ltd Rgbフィールド順次表示方式のカラー液晶表示装置
KR19990075707A (ko) 1998-03-24 1999-10-15 손욱 칼라변환 조명기기
US6574044B1 (en) * 1999-10-25 2003-06-03 3M Innovative Properties Company Polarizer constructions and display devices exhibiting unique color effects
JP3871940B2 (ja) 2002-02-15 2007-01-24 株式会社リコー 照明装置および表示装置
WO2004015330A1 (ja) 2002-08-09 2004-02-19 Mitsubishi Rayon Co., Ltd. 面光源装置
JP2005338652A (ja) 2004-05-28 2005-12-08 Fujinon Corp 光源装置
US7357511B2 (en) * 2005-03-23 2008-04-15 3M Innovative Properties Company Stress birefringence compensation in polarizing beamsplitters and systems using same
JP4832187B2 (ja) 2006-07-03 2011-12-07 富士フイルム株式会社 高速偏光装置、およびこれを用いた高速複屈折測装置、立体画像表示装置
TWI448643B (zh) * 2007-05-20 2014-08-11 3M Innovative Properties Co 背光與利用背光之顯示系統
US7618178B2 (en) * 2007-06-11 2009-11-17 SKC Haas Display Films Co., Lt.d Backlight containing formed birefringence reflective polarizer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110048592A (ko) 2005-03-18 2011-05-11 상하이 인스티튜트 오브 마테리아 메디카 차이니즈 아카데미 오브 싸이언시즈 항바이러스제로 유용한 텐덤 비스헤테로사이클 화합물, 이의 용도 및 상기 화합물을 포함하는 조성물
KR20100072201A (ko) 2007-09-26 2010-06-30 마이크로소프트 코포레이션 동적 인스턴트 코멘트
KR20110063584A (ko) 2008-11-03 2011-06-10 엘지전자 주식회사 다중 셀 협력적 무선통신 시스템에서 데이터를 전송하는 방법
KR20100088893A (ko) 2009-02-02 2010-08-11 엘지전자 주식회사 문서 분석 시스템
KR20100091423A (ko) 2009-02-10 2010-08-19 농업회사법인 유한회사 한누리 축사용 목걸림틀의 자동 개폐장치
KR20100117952A (ko) 2009-04-27 2010-11-04 현대제철 주식회사 슬래그를 이용한 콘크리트 조성물
KR20100117956A (ko) 2009-04-27 2010-11-04 현대제철 주식회사 전기로를 이용한 저질소강의 제조방법
KR20110003062A (ko) 2009-07-03 2011-01-11 (주)엘지하우시스 터치스크린용 수지 조성물, 점착 필름 및 터치스크린
KR20110005501A (ko) 2009-07-10 2011-01-18 서울대학교치과병원 말초신경재생을 위한 신경성장인자 전달용 신경도관의 개발
KR20110032626A (ko) 2009-09-23 2011-03-30 삼성전자주식회사 헤드셋과 이의 운용 방법 및 시스템과, 이를 지원하는 휴대 단말기
KR20110039994A (ko) 2009-10-13 2011-04-20 (주)엘지하우시스 창호용 디지털 잠금장치의 록킹부 조립체
KR20110074013A (ko) 2009-12-24 2011-06-30 삼성전기주식회사 모터
KR20110087761A (ko) 2010-01-27 2011-08-03 양산기공 주식회사 에어 그라인더

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036342A1 (en) * 2012-08-29 2014-03-06 Axlen, Inc. Led-based personal and other lighting devices and systems
US9879843B2 (en) 2012-08-29 2018-01-30 Axlen, Inc. LED-based personal and other lighting devices and systems
US20140070076A1 (en) * 2012-09-12 2014-03-13 Goutham Mallapragda Real-Time Composite 3-D for a Large Field of View Using Multiple Structured Light Sensors
CN105008798A (zh) * 2012-12-28 2015-10-28 崔旭 使用光影的偏振光显示设备

Also Published As

Publication number Publication date
WO2012070904A3 (ko) 2012-09-27
EP2644983A4 (en) 2014-07-09
EP2644983A2 (en) 2013-10-02
CN103328886A (zh) 2013-09-25
JP2014500596A (ja) 2014-01-09
US9016884B2 (en) 2015-04-28
US20130242528A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2012070904A2 (ko) 편광조명시스템
WO2012015220A2 (ko) 편광디스플레이장치
WO2017052058A1 (en) Display device, door including the same, and refrigerator including the door
WO2016018016A1 (en) Display assembly and display apparatus using the same background
WO2015102438A1 (en) Display apparatus
WO2011025100A1 (en) Optical assembly, backlight unit and display apparatus thereof
WO2013180365A1 (en) Member for cotrolling luminous flux, method for fabricating the member, display device, and light emitting device
WO2016159489A1 (en) Display apparatus
WO2017010659A1 (en) Display device and backlight unit included therein
WO2016068590A1 (en) Backlight unit and display device including backlight unit
EP3058561A1 (en) Display apparatus
WO2020060154A1 (en) Display device
WO2017069528A1 (ko) 편광판 일체형 윈도우 기판 및 이의 제조 방법
WO2013015602A2 (en) Lighting module
WO2018074747A1 (en) Display panel and display apparatus having the same
WO2017034088A1 (en) Display apparatus
WO2015111874A1 (ko) 디스플레이 장치
WO2013002598A2 (ko) 보는 위치에 따라 색상과 모양이 변하여 보일 수 있는 편광디스플레이 장치
WO2016159490A1 (en) Manufacturing method of chassis and display apparatus having the same
WO2023033566A1 (ko) 냉장고 및 가전기기
WO2013180366A1 (en) Member for cotrolling luminous flux, display device, and light emitting device
WO2017018616A1 (en) Optical lens, backlight unit including optical lens, and display device including optical lens
WO2024071651A1 (ko) 디스플레이 장치
WO2024019370A1 (ko) 냉장고
WO2023090845A1 (ko) 가전 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843490

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13989210

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013540901

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011843490

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE