WO2012070679A1 - 高強度コラーゲン線維膜及びその製造方法 - Google Patents

高強度コラーゲン線維膜及びその製造方法 Download PDF

Info

Publication number
WO2012070679A1
WO2012070679A1 PCT/JP2011/077424 JP2011077424W WO2012070679A1 WO 2012070679 A1 WO2012070679 A1 WO 2012070679A1 JP 2011077424 W JP2011077424 W JP 2011077424W WO 2012070679 A1 WO2012070679 A1 WO 2012070679A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
fiber membrane
collagen fiber
fish
derived
Prior art date
Application number
PCT/JP2011/077424
Other languages
English (en)
French (fr)
Inventor
田中 順三
生駒 俊之
朋彦 吉岡
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2012545817A priority Critical patent/JP5870398B2/ja
Priority to US13/989,397 priority patent/US9315562B2/en
Priority to EP11843962.9A priority patent/EP2644692B1/en
Publication of WO2012070679A1 publication Critical patent/WO2012070679A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • A61L15/325Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/043Proteins; Polypeptides; Degradation products thereof
    • A61L31/044Collagen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to a high-strength collagen fiber membrane and a method for producing the same.
  • the high-strength collagen fiber membrane of the present invention can be usefully used as a cell culture substrate, a scaffold material for regenerative medicine, a transplant material, and a drug delivery carrier.
  • Collagen accounts for 30% of proteins in the body and is an important protein having functions such as skeletal support and cell adhesion.
  • Molded bodies using collagen are cell culture substrates, scaffold materials for regenerative medicine (for example, cartilage, bone, ligament, corneal parenchyma, skin, liver tissue regeneration material), transplant materials (wound covering material, bone filling material)
  • It is useful as a biomaterial such as a drug, a hemostatic material, an adhesion prevention material, etc.) or a drug delivery carrier, and is particularly indispensable for regeneration of large tissues by regenerative medicine.
  • its use in clinical settings has been limited due to its insufficient mechanical properties.
  • Patent Document 1 is obtained by fibrillating fish skin-derived collagen, freeze-drying the obtained gel, and further subjecting it to thermal dehydration crosslinking or chemical crosslinking (aqueous solution of carbodiimide, glutaraldehyde, succinimide, or the like).
  • a collagen membrane is disclosed.
  • Patent Document 2 discloses a stretchable collagen molded body in which fish skin-derived collagen is chemically cross-linked with a cross-linking agent in a solution simultaneously with fibrosis.
  • these molded bodies are porous bodies despite the collagen being crosslinked, sufficient strength (mechanical characteristics) has not been obtained.
  • Non-Patent Documents 1 and 2 disclose that a collagen thin film containing collagen fibers was obtained using bovine-derived collagen. This collagen thin film is not crosslinked but has a certain degree of strength due to vitrification (drying for at least 2 weeks). However, the strength of this collagen thin film is not sufficient, and it is only put to practical use as a cell culture substrate by reinforcing the periphery of the collagen thin film with a nylon frame (Non-patent Documents 1 and 2). .
  • the object of the present invention is to provide a cell culture substrate, a scaffold material for regenerative medicine (for example, a regenerated material for cartilage, bone, ligament, corneal stroma, skin, liver tissue), a transplant material (a wound covering material, a bone filling material, It is to provide a collagen fiber membrane having sufficient strength that can be used as a hemostatic material, an anti-adhesion material, etc.) or a drug delivery carrier.
  • a scaffold material for regenerative medicine for example, a regenerated material for cartilage, bone, ligament, corneal stroma, skin, liver tissue
  • a transplant material a wound covering material, a bone filling material, It is to provide a collagen fiber membrane having sufficient strength that can be used as a hemostatic material, an anti-adhesion material, etc.
  • Collagen fibers are known to be formed under moderate salt concentration and pH conditions.
  • a method of densifying the fibers for example, a method of densifying by centrifugation, or a method of dehydrating the hydrogel in a dry air atmosphere is disclosed (Patent Document 3 and Patent Document 4).
  • Patent Document 3 and Patent Document 4 a method of densifying by centrifugation, or a method of dehydrating the hydrogel in a dry air atmosphere.
  • the present inventors have used fish-derived collagen, particularly fish scale-derived collagen.
  • the present invention provides (1) a tensile strength of 30 MPa or more, (2) a density by gravimetric method of 0.4 g / cm 3 or more, and (3) an average film thickness of 1 ⁇ m to 2 mm, and a film
  • the present invention relates to a fish-derived collagen fiber membrane, characterized in that the variation in thickness is within ⁇ 30% of the average film thickness.
  • the collagen is derived from fish scales.
  • collagen is crosslinked.
  • the degree of cross-linking determined by the determination of free amino groups is 5% or more.
  • the denaturation temperature of the collagen exceeds the denaturation temperature of the collagen before fibrosis by 5 ° C. or more, and in a preferred embodiment of the cross-linked fish-derived collagen, This denaturation temperature exceeds the denaturation temperature of collagen before fibrosis by 10 ° C. or more.
  • the swelling rate is 300% or less.
  • it exhibits osteoblast differentiation inducing ability.
  • the present invention also includes (1) a collagen fibrosis step in which collagen in a solubilized collagen solution is fibrillated to obtain a collagen fiber gel of 0.3% by weight or more.
  • a method of producing a fish-derived collagen fiber membrane comprising: a step of removing salt with an ethanol step mixture; and (3) a step of covering the upper and lower surfaces of the collagen fiber gel and drying by removing the solvent from the side surface.
  • the collagen is fish scale-derived collagen.
  • crosslinking the said fish-derived collagen fiber membrane is further included.
  • the high-strength collagen fiber membrane of the present invention is a high-density collagen fiber membrane that has not existed conventionally. Moreover, since the variation in film thickness is small and there is no portion where the strength is reduced, the high strength collagen fiber membrane of the present invention can exhibit high tensile strength.
  • the high-strength collagen fiber membrane of the present invention having such a high mechanical strength is useful as a cell culture substrate, a scaffold material for regenerative medicine, a transplant material, or a drug delivery carrier, due to insufficient mechanical strength in the medical field. The problem of operability can be solved.
  • the high-strength collagen fiber membrane of the present invention uses fish-derived collagen that hardly has zoonotic infections, it is derived from cattle (bovine spongiform encephalopathy (BSE)), pigs (foot-and-mouth disease), or It can be used as a scaffold for regenerative medicine or a material for transplantation more safely than a molded body (material) using collagen derived from birds (influenza).
  • BSE bovine spongiform encephalopathy
  • pigs foot-and-mouth disease
  • It can be used as a scaffold for regenerative medicine or a material for transplantation more safely than a molded body (material) using collagen derived from birds (influenza).
  • Example 2 shows a collagen fiber gel prepared using 0.05% by weight (Comparative Example 3) of tilapia scale collagen hydrochloric acid aqueous solution.
  • the fish scale origin collagen fiber membrane of Example 2 (0.4 weight%) which the removal-and-drying process was complete
  • White circles indicate places where the fiber membranes remained firmly adhered to the glass when peeled off. It is a scanning electron microscope image of a fish scale origin collagen fiber membrane.
  • A Atomic force microscope image of fish scale-derived collagen fiber membrane.
  • the black frame shows the same stripe structure as the collagen fibers observed in natural scales.
  • B An atomic force microscope image of a fish scale-derived collagen fiber membrane is shown. The black frame shows a collagen structure in which collagen fibers are complexed in a spiral. It is a graph which shows the result of the tensile strength test of a fish scale origin collagen fiber membrane.
  • Collagen fiber membrane (A) of Example 7 prepared by covering an upper surface and a lower surface with polystyrene using an approximately 1.11% by weight tilapia scale collagen hydrochloric acid aqueous solution, and a collagen fiber of Comparative Example 7 prepared without covering the upper surface with polystyrene It is an electron micrograph (C) of a film (B) and Comparative Example 7.
  • the fish-derived collagen fiber membrane of the present invention has (1) a tensile strength of 30 MPa or more, (2) a density by gravimetric method of 0.4 g / cm 3 or more, and (3 ) The average film thickness is 1 ⁇ m to 2 mm, and the film thickness variation is within ⁇ 30% of the average film thickness.
  • the fish-derived collagen contained in the fish-derived collagen fiber membrane of the present invention is not particularly limited as long as it is fish type I collagen, but is preferably fish scale-derived collagen. This is because collagen derived from fish scales is more easily fibrillated than other collagens, and the fiber formation rate is significantly faster. Furthermore, since a collagen fiber membrane obtained from fish scale-derived collagen has a strong interaction between fibers, it is considered that a particularly high mechanical strength can be obtained. Examples of the types of fish from which fish-derived collagen is obtained include tilapia, gonzui, rabeo rojita, cutlery, carp, thunderfish, piraluk, thailand, flounder, shark, and salmon.
  • fish that inhabit rivers, lakes, or seas with high water temperatures are preferable.
  • fish of the genus Oreochromis fish of the genus Oreochromis, with tilapia being particularly preferred.
  • Collagen with a relatively high denaturation temperature can be obtained from fish of the genus Oreochromis.
  • Nile tilapia (Oreochromis niloticus), which is cultivated for food in Japan and China, is easily available, and a large amount of collagen can be obtained. it can.
  • fish scale-derived type I collagen has a “triple helical structure (tropocollagen)” formed by gathering three polypeptide chains having a molecular weight of about 100,000, and has a molecular weight of about 300,000. It is shaped like one hard bar with a length of 300 nm and a diameter of 1.5 nm. It is the amino acid sequence of the polypeptide chain that forms the unique “triple helix structure (tropocollagen)” of fish type I collagen.
  • the polypeptide chain is composed of a series of units “GXY” in which three amino acids are arranged. G often represents glycine, X is proline, and Y is often hydroxyproline.
  • Hydroxyproline is not contained in ordinary proteins and is an amino acid unique to collagen, but it is believed that the triple helix structure is stabilized by hydrogen bonding between the hydroxyl group of hydroxyproline and hydrated water.
  • Collagen is an amphoteric polymer having an amino group and a carboxyl group, and has the property of being positively charged in an acidic solution and negatively charged in an alkaline solution. Become. Collagen molecules with a triple helix structure (tropocollagen) form collagen fibrils in the vicinity of neutrality, depending strongly on salt concentration, salt type and temperature.
  • the collagen breaks the “triple helix structure” composed of three polypeptides, and the three polypeptides are separated into gelatin.
  • the change from collagen to gelatin is called denaturation. Once denaturation occurs, it is difficult to return to the “triple helical structure” even if the temperature is lowered again.
  • the denaturation temperature of collagen is usually slightly higher than the inhabitant temperature of the organism from which the collagen is derived. Therefore, the denaturation temperature of fish scales inhabiting fish is not so high.
  • the fish-derived collagen contained in the fish-derived collagen fiber membrane of the present invention is not limited by its denaturation temperature, but fish-derived collagen having a high denaturation temperature is preferred, specifically 20 ° C. or higher is preferred, and 25 More preferably, it is 28 ° C. or higher, and most preferably 30 ° C. or higher. However, even if it is a fish-derived collagen having a denaturation temperature of less than 20 ° C., the fish-derived collagen fiber membrane of the present invention can be obtained by performing the operation at or below the denaturation temperature.
  • the method for obtaining fish-derived collagen is not particularly limited as long as the triple helix structure of collagen is not destroyed.
  • it can be obtained by the obtaining method disclosed in JP-A-2006-257014.
  • the manufacturing method of the collagen from a scale is demonstrated.
  • the treatment solution only needs to be able to dissolve inorganic components, and may be an inorganic acid such as hydrochloric acid or phosphoric acid, an organic acid such as acetic acid or citric acid, or an aqueous solution such as ethylenediaminetetraacetic acid. Acetic acid is preferably used.
  • the amount used is not particularly limited, and the scale after decalcification may be washed with water.
  • the scales from which contaminants were removed in this manner were gently agitated using an agitating blade or the like in an acidic solution to which protease was added for 2 to 72 hours, so that the crosslinks between collagen molecules were cut and solubilized. Collagen is extracted.
  • the operation after this extraction step should be carried out at a denaturation temperature or lower, preferably at a denaturation temperature of ⁇ 5 ° C. or lower in order to prevent collagen denaturation.
  • protease M having high activity in an acidic solution is preferably used.
  • the pH of the solution may be in a range where the protease activity is high, and is generally about 2 to 5.
  • the amount of protease used is not particularly limited, but is usually about 1 to 15% with respect to the dry weight of fish scales, and if the concentration is determined so that the scales can be uniformly stirred. good.
  • the acid to be used is not particularly limited, but is preferably selected from those having high safety for living organisms such as hydrochloric acid, acetic acid, citric acid, or malic acid, and hydrochloric acid and acetic acid are particularly preferably used.
  • the collagen solubilized in this way is separated from unscaled fish scale residue by centrifugation, filtration or the like.
  • the fish scale residue can be extracted again by solubilizing collagen by treating it in an acidic solution to which a protease is added, so that the yield may be increased by repeating it about 2 to 4 times.
  • the collagen solution thus obtained contains proteases, proteins other than collagen, gelatin (denatured collagen), etc., and thus is purified as necessary.
  • collagen is precipitated by adding a salt such as sodium chloride to the solubilized collagen solution and increasing the salt concentration.
  • a salt such as sodium chloride
  • sodium chloride is added to a solubilized collagen aqueous solution so as to have a final concentration of 1 M, and the mixture is allowed to stand for about 5 minutes to 24 hours to precipitate (salt out) collagen.
  • Precipitation can also be achieved by adding sodium hydroxide or the like to bring the pH to neutral or higher.
  • a sodium hydroxide solution is added until the pH reaches about 7 to 9, and the mixture is allowed to stand for about 5 minutes to 24 hours, whereby collagen is precipitated.
  • collagen precipitation can be easily confirmed by the cloudiness of the solution.
  • Precipitated collagen is collected by a general solid-liquid separation method such as centrifugation or filtration, and this is gently dissolved in an acidic solution and redissolved. For example, it may be gently stirred for about 1 to 48 hours in a hydrochloric acid solution having a pH of about 2 to 4. In this way, collagen can be purified, and the purity can be further increased by repetition.
  • the salts used in the purification step can be removed by desalting against pure water using a dialysis membrane or the like.
  • the tensile strength of the collagen fiber membrane of the present invention is 30 MPa or more, preferably 40 MPa or more, more preferably 50 MPa or more, and most preferably 55 MPa or more. This is because if it is less than 30 MPa, sufficient strength cannot be obtained when used as a biomaterial.
  • the upper limit of the tensile strength is not particularly limited, but is preferably 200 MPa or less, more preferably 150 MPa or less, and most preferably 120 MPa or less. When it exceeds 200 MPa, it may not be combined with surrounding tissues or may be damaged when transplanted.
  • the tensile strength test can be performed according to a conventional method. Specifically, a test piece having a width of 1 to 10 mm and a length of 20 to 30 mm was fixed at both ends so that the distance between the load cells was 10 mm, pulled at a speed of 0.5 mm / min, elongation (%) and stress at break (G) is measured using a tensile tester (Orientec; STA-1150). The measurement is performed on five test pieces, and the average value is obtained. In addition, the thickness of a test piece is measured with a micrometer, and tensile strength is calculated.
  • the shape of the test piece may be, for example, a rectangle having a width of 10 mm ⁇ a length of 20 mm, or may be a shape having a width of 10 mm ⁇ a length of 20 mm and a width narrowed from 10 mm to 5 mm at the center as shown in FIG.
  • the tensile strength can be calculated from the thickness and width of the test piece.
  • the Young's modulus is a constant that determines the value of how much stress is required per unit strain in the elastic range, and the unit is the same as stress, for example, GPa.
  • the Young's modulus of the collagen fiber membrane of the present invention is not particularly limited, but the lower limit is preferably 0.1 GPa or more, more preferably 0.5 GPa or more, and the upper limit is preferably 5.0 GPa or less, more preferably 2.0 GPa. It is as follows. This is because if it is less than 0.1 GPa, it becomes a film that cannot be held autonomously, and if it exceeds 5.0 GPa, it is too hard, and a decrease in compatibility with a living body is expected.
  • the collagen fiber membrane of the present invention has a density by a gravimetric method of 0.4 g / cm 3 or more, preferably 0.5 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, and still more preferably Is 0.65 g / cm 3 or more, and most preferably 0.70 g / cm 3 or more. This is because the mechanical strength is insufficient when the density is less than 0.4 g / cm 3 .
  • the upper limit of the density is not particularly limited, preferably 1.2 g / cm 3 or less, more preferably 1.15 g / cm 3 or less, 1.1 g / cm 3 or less is most preferred. If it exceeds 1.2 g / cm 3 , impurities in the drying process may be mixed.
  • the density by gravimetric method can be calculated by dividing the weight of the collagen fiber membrane by the volume.
  • the average thickness of the collagen fiber membrane of the present invention is 1 ⁇ m to 2 mm, preferably 5 ⁇ m to 1 mm, more preferably 10 to 500 ⁇ m. If the thickness is less than 1 ⁇ m, the strength may be significantly reduced or a uniform film may not be obtained. If the thickness exceeds 2 mm, the drying process may take a long time, and uniform film formation may be difficult.
  • the average film thickness can be measured by the following method. The film thickness produced using a micrometer is measured. The average film thickness can be measured by measuring at least 5 points and calculating the average value.
  • the thickness variation of the collagen fiber membrane of the present invention is within ⁇ 30% of the average thickness.
  • the collagen fiber membrane includes a portion having a high strength and a portion having a low strength, which may cause a decrease in mechanical strength such as tensile strength.
  • the variation in film thickness can be measured by the following method. Using a micrometer, the thickness of the produced film is measured at least five points, and the standard deviation is calculated, whereby the variation can be quantified.
  • the collagen fiber membrane of the present invention preferably contains complexed fibers as shown in FIG.
  • the complex fiber is a collagen fine fiber having a diameter of 80 to 150 nm, which is fibrotic from fish scale collagen, and further forms a spiral wound collagen complex fiber.
  • the function of this spiral wound collagen complexed fiber is not clearly elucidated, but is considered to be a phenomenon that occurs in collagen where the interaction between the fibers is high, contributing to the improvement of mechanical properties.
  • collagen fiber membranes that do not contain helically wound composite fibers are also included in the present invention. Furthermore, even if the spirally wound collagen complex fiber does not affect the mechanical properties, it does not affect the scope of the present invention.
  • the collagen fiber membrane of the present invention may be cross-linked. Crosslinking can further improve the mechanical properties. Crosslinking may occur between collagen molecules (triple helical structure) in the collagen fiber membrane, or between collagen fibrils formed by collagen molecules.
  • the crosslinking method is not particularly limited, and for example, crosslinking may be performed by physical crosslinking using ⁇ rays, ultraviolet rays, heat treatment (thermal dehydration), electron beam, or chemical crosslinking using a crosslinking agent or a condensing agent. However, since a large-scale apparatus is not necessary, one using heat treatment or a crosslinking agent is preferable. For the heat treatment, for example, heat treatment is performed under reduced pressure using a vacuum furnace.
  • the cross-linking agent is not particularly limited as long as it can cross-link proteins and has water-solubility or vaporization ability, and may cross-link carboxyl groups and amino groups or cross-link amino groups.
  • the crosslinking agent for example, aldehyde-based, carbodiimide-based, epoxide-based and imidazole-based crosslinking agents are preferable from the viewpoint of economy, safety and operability.
  • the degree of crosslinking can be specified by the degree of crosslinking.
  • the method for specifying the degree of cross-linking is not limited. For example, when collagen is cross-linked with glutaraldehyde, the amino group is used for cross-linking. Therefore, the degree of cross-linking is measured by measuring the free amino group. Can do. Specifically, the amount of free amino groups can be quantified by the TNBS method using trinitrobenzenesulfonic acid.
  • the degree of crosslinking of the crosslinked collagen fiber membrane of the present invention is not particularly limited, but the lower limit is preferably 5% or more, more preferably 15% or more, and most preferably 30% or more.
  • the upper limit is preferably 90% or less, more preferably 80% or less, and most preferably 75% or less. This is because if the content is less than 5%, the collagen material is easily degraded by the enzyme, and if it exceeds 90%, the degradation is hardly caused in vivo.
  • the collagen fiber membrane of the present invention is significantly increased compared to the denaturation temperature of collagen before fibrillation due to its structure. That is, the collagen fiber membrane of the present invention is resistant to temperature.
  • the denaturation temperature of the collagen fiber membrane of the present invention is not particularly limited, but is preferably 3 ° C. or more, more preferably 5 ° C. or more, and even more preferably 8 ° C. or more than the denaturation temperature of collagen before fibrosis. It is expensive.
  • the cross-linked collagen fiber membrane is preferably higher than the denaturation temperature of collagen before fibrosis, preferably 10 ° C or higher, more preferably 15 ° C or higher, still more preferably 20 ° C or higher, most preferably 25 ° C or higher. . This is because, since the denaturation temperature is high, heat resistance is enhanced and the application of the present invention is expanded. Although an upper limit is not specifically limited, 200 degrees C or less is preferable and 90 degrees C or less is more preferable.
  • the collagen fiber membrane of the present invention has a low swelling rate and is resistant to moisture.
  • the swelling rate of the collagen fiber membrane of the present invention is not particularly limited, but the upper limit is preferably 300% or less, more preferably 250% or less.
  • a minimum is 100% or more, and the swelling rate of 100% in this specification means not swelling at all. If it exceeds 300%, it swells rapidly and the strength of the film decreases, and rapid degradation occurs in vivo.
  • the collagen fiber membrane of the present invention can induce differentiation of mesenchymal stem cells into osteoblasts. Specifically, it is possible to induce differentiation of mesenchymal stem cells into osteoblasts by contacting collagen fiber membranes with mesenchymal stem cells or culturing mesenchymal stem cells using collagen fiber membranes. In particular, the initial inductive ability is excellent.
  • a collagen fiber membrane as a culture substrate for cell culture, it is preferable to have a certain degree of strength. From this point of view, the high-strength collagen fiber membrane of the present invention is useful as a collagen fiber membrane for inducing osteoblast differentiation. It is.
  • the mesenchymal stem cells are not limited as long as they can be differentiated into medulloblasts.
  • bone marrow mesenchymal stem cells adipose tissue-derived mesenchymal stem cells, synovial tissue-derived mesenchymal cells Stem cells, dental pulp-derived mesenchymal stem cells, tooth embryo-derived mesenchymal stem cells, auricular perichondrium-derived mesenchymal stem cells, peripheral blood-derived mesenchymal stem cells, cord blood-derived mesenchymal stem cells, ligament-derived mesenchymal stem cells.
  • tendon-derived mesenchymal stem cells ES cell-derived mesenchymal stem cells, and iPS cell-derived mesenchymal stem cells.
  • the animal species from which the mesenchymal stem cells are derived is not particularly limited, and examples of mammals include humans, monkeys, dogs, cats, pigs, sheep, goats, cows, horses, rabbits, guinea pigs, rats, and mice. Can be mentioned. Birds can include chickens, quails, ducks, geese, ostriches and guinea fowls. Reptiles can include crocodiles, turtles and lizards. Amphibians include frogs and newts. Fish can include tilapia, Thailand, flounder, shark, and salmon. In addition, examples of invertebrates include crabs, shellfish, jellyfish, and shrimps.
  • the mesenchymal stem cells are cells capable of differentiating into cells belonging to the mesenchymal system such as osteoblasts, adipocytes, myocytes, or chondrocytes, and can constitute bone, blood vessels, or myocardium It will be.
  • the mesenchymal stem cells may be established cell lines, can be prepared according to conventional methods, and commercially available cells can also be used.
  • mesenchymal stem cells isolated from living bodies for example, bone marrow mesenchymal stem cells, adipose tissue-derived mesenchymal stem cells, synovial tissue-derived mesenchymal stem cells, dental pulp-derived mesenchymal stem cells, tooth germ-derived mesenchymal stem cells , Mesenchymal stem cells derived from auricular perichondrium, peripheral blood derived mesenchymal stem cells, umbilical cord blood derived mesenchymal stem cells, ligament derived mesenchymal stem cells, tendon derived mesenchymal stem cells, ES cell derived mesenchymal stem cells, or iPS cell-derived mesenchymal stem cells) can be induced to differentiate into osteoblasts by the osteoblast differentiation inducing method of the present invention.
  • the cells collected from the living body are preferably prepared by removing connective tissue and the like according to a conventional method. Furthermore, it is preferable to use primary cultured cells as cells collected from a living body. Although it is possible to use after passage, the number of passages is preferably small, preferably 10 times or less, more preferably 5 times or less, and most preferably 2 times or less.
  • Osteoblasts are cells that form bone in bone tissue.
  • the cytoplasm is basophil and has alkaline phosphatase activity.
  • Osteoblasts may also have androgen and estrogen receptors, androgen reduces osteoblast activity, and estrogen stimulates osteoblasts.
  • Differentiation induction from mesenchymal stem cells into osteoblasts can be confirmed by measuring the activity of alkaline phosphatase.
  • the measurement of alkaline phosphatase can be performed according to a conventional method as shown in Examples described later.
  • the medium used for contacting or culturing the collagen fiber membrane of the present invention and the mesenchymal stem cells is not limited as long as it can be maintained by the mesenchymal stem cells, but if the medium normally used for culturing the mesenchymal stem cells is used. Good.
  • a known medium such as MEM medium, ⁇ -MEM medium, or D-MEM medium can be appropriately selected and used according to the cells to be cultured.
  • the contact or culture time is not limited as long as differentiation induction of mesenchymal stem cells into osteoblasts occurs, but the lower limit is substantially 10 minutes or more, preferably 1 hour or more, more preferably Is more than one day.
  • the contact or culture temperature can be appropriately determined according to the optimal culture temperature of mesenchymal stem cells.
  • the temperature is 30 ° C to 40 ° C, preferably 35 ° C to 37 ° C.
  • the cell culture substrate is contacted with the mesenchymal stem cells at a contact temperature lower than the culture temperature, and the mesenchyme is raised to the optimal culture temperature. It is also possible to culture stem cell.
  • osteoblast differentiation factor In contact or culture of the collagen fiber membrane of the present invention and mesenchymal stem cells, an osteoblast-inducing factor can also be added.
  • the osteoblast differentiation inducing factor is not limited as long as it can induce differentiation of mesenchymal stem cells into osteoblasts.
  • an immunosuppressant such as dexamethasone, FK-506, or cyclosporine, BMP2, BMP4, BMP5 , BMP6, BMP7, BMP9 and other bone morphogenetic proteins (BMP: Bone Morphogenic Proteins) and TGF ⁇ and other osteogenic fluid factors.
  • BMP Bone Morphogenic Proteins
  • the concentration of the osteoblast differentiation inducing factor can be appropriately determined according to the type of osteoblast differentiation inducing factor used. For example, when dexamethasone is used, it can be used at a concentration of 1 to 100 nM, and 10 nM is particularly preferable.
  • a collagen fiber membrane capable of inducing differentiation of mesenchymal stem cells into osteoblasts it is important to use fish-derived collagen, particularly fish scale-derived collagen. That is, for example, collagen derived from porcine or bovine cannot induce mesenchymal stem cells into osteoblasts. Furthermore, as shown in the Examples described later, osteoblast differentiation is weak in a collagen transparent membrane in which fibers are not formed. This indicates that collagen is fibrillated in order to induce differentiation of mesenchymal stem cells into osteoblasts.
  • the mechanism capable of inducing differentiation of mesenchymal stem cells into osteoblasts using the high-strength collagen fiber membrane of the present invention has not been elucidated in detail, but fish-derived collagen (particularly fish scale-derived collagen) It is considered that when the collagen fiber membrane using the membrane is brought into contact with mesenchymal stem cells, differentiation of mesenchymal cells into osteoblasts is induced, in particular, early differentiation is induced.
  • the method for producing a fish-derived collagen fiber membrane of the present invention comprises (1) fibrosis of collagen in a solubilized collagen solution to obtain a collagen fiber gel of 0.3% by weight or more.
  • Collagen fibrosis step (hereinafter referred to as collagen fibrosis step) (2) Step of removing salt from the collagen fiber gel with purified water / ethanol step mixture (hereinafter referred to as salt removal step), (3 ) Including a step of drying by covering the upper surface and the lower surface of the collagen fiber gel and removing the solvent from the side surface (hereinafter referred to as a desolvation / drying step).
  • the fish-derived collagen fiber membrane of the present invention can be produced by the method for producing a fish-derived collagen fiber membrane of the present invention.
  • the fish-derived collagen fiber membrane of the present invention can be produced by a method other than the method for producing the fish-derived collagen fiber membrane of the present invention.
  • Fish-derived collagen As the fish-derived collagen used in the method for producing a fish-derived collagen fiber membrane of the present invention, the fish-derived collagen described in the above section “[1] Fish-derived collagen fiber membrane” can be used.
  • the solubilized collagen solution can be obtained by dissolving fish-derived collagen in an acidic aqueous solvent. That is, it can be prepared by mixing an inorganic acid or an organic acid in an aqueous solvent and dissolving collagen.
  • inorganic acids include hydrochloric acid, phosphoric acid, nitric acid, and sulfuric acid
  • organic acids include acetic acid, formic acid, citric acid, and oxalic acid.
  • the pH of the solubilized collagen solution is preferably pH 2.0 to 4.0.
  • solubilized collagen solution a carbon dioxide solution in which carbon dioxide is dissolved by bubbling or the like and the pH is lowered to 4 or less can be used. That is, fish-derived collagen can be dissolved in an acidic carbon dioxide solution and used as a solubilized collagen solution.
  • the fish-derived collagen is fibrillated by setting the solubilized collagen solution to an appropriate ionic strength and pH. That is, fish-derived collagen is fibrillated by adding an appropriate buffer to the solubilized collagen solution.
  • the pH suitable for fibrosis of fish-derived collagen varies depending on the type of collagen, it is often in the range of pH 5 to 9, that is, in the neutral range, and a neutral buffer is used.
  • the buffer solution is not particularly limited as long as it satisfies an appropriate ionic strength and neutrality condition.
  • the buffer solution has no cytotoxicity or It is preferable to use a low salt aqueous solution having a buffer capacity such as phosphate, acetate, carbonate, citrate, Tris.
  • a buffer capacity such as phosphate, acetate, carbonate, citrate, Tris.
  • it is a neutral buffer solution that is inexpensive, non-toxic to the living body, and is more active in causing collagen fibrillation than other neutral buffer solutions (eg, Dulbecco PBS, Or a sodium phosphate aqueous solution) is preferable.
  • the collagen fiber gel obtained by the collagen fibrillation step has a concentration of 0.3% by weight or more, preferably 0.4% by weight or more, and most preferably 0.5% by weight or more. This is because when it is less than 0.3% by weight, it is difficult to produce a collagen fiber gel having sufficient strength.
  • salt removal step salt is removed from the collagen fiber gel using a mixed solution of purified water / lower alcohol. Specifically, the solvent containing the salt in the collagen fiber gel is replaced with the lower alcohol using a water / lower alcohol step mixture in which the mixing ratio of purified water / lower alcohol is changed.
  • a lower alcohol having 1 to 4 carbon atoms that is, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, or tert-butyl alcohol
  • the mixing ratio of purified water and lower alcohol in the purified water / lower alcohol step mixture can be determined as appropriate.
  • ethanol aqueous solution 50 volume% ethanol aqueous solution, 70 volume% ethanol aqueous solution, 90 volume% ethanol aqueous solution and 100% ethanol
  • the collagen fiber gel solvent is 100 Replace with% ethanol.
  • the solvent removal / drying step purified water and / or lower alcohol is removed from the collagen fiber gel and dried.
  • the removal and drying step the density of the fish-derived collagen fiber membrane is increased and the mechanical strength can be improved.
  • the removal and drying are performed by covering the upper and lower surfaces of the gel with a smooth plate or the like through which water and alcohol do not pass, and gradually removing the solvent only from the side surfaces. Further, by covering with a smooth plate, the thickness of the fish-derived collagen fiber membrane obtained can be made uniform, and the mechanical strength can be increased.
  • the plate is not particularly limited, and examples thereof include polystyrene, silicone, polyester, polyamide, polypropylene, polyethylene, polymethyl methacrylate, and glass, but the dissociation from the resulting fish-derived collagen fiber membranes is possible. Polystyrene is preferred because it is good.
  • the time for removing the solvent and drying is not particularly limited as long as 90% or more of purified water and alcohol are removed, but it is preferably 1 hour to 13 days, more preferably 3 hours to 7 days, and more preferably 5 hours to 24 days. Time is most preferred.
  • the method for producing a fish-derived collagen fiber membrane of the present invention can further include a step of crosslinking the fish-derived collagen fiber membrane.
  • Crosslinking may occur between collagen molecules (topocollagen) in collagen fiber membranes, or between collagen fibrils formed by collagen molecules (topocollagen).
  • crosslinking method a known method can be used, and examples thereof include physical crosslinking and chemical crosslinking.
  • physical cross-linking include thermal cross-linking (thermal dehydration (DHT) cross-linking), ultraviolet (UV) irradiation, or ⁇ -ray irradiation.
  • thermal cross-linking a collagen fiber membrane is heated to 100 ° C to 140 ° C. It crosslinks by processing for 1 to 12 hours in a vacuum.
  • thermal cross-linking a collagen fiber membrane is heated to 100 ° C to 140 ° C. It crosslinks by processing for 1 to 12 hours in a vacuum.
  • chemical cross-linking below the denaturation temperature is preferred.
  • crosslinking agent used for chemical crosslinking a chemical crosslinking agent such as glutaraldehyde, polyepoxy compound, carbodiimide, isocyanate, or genipin can be used.
  • crosslinking can be performed by dissolving a crosslinking agent in a solvent and immersing the fish-derived collagen fiber membrane.
  • a glutaraldehyde solution when used, crosslinking can be uniformly introduced by using a glutaraldehyde concentration in the range of 0.5 to 2.0%.
  • a 25% glutaraldehyde solution or a solution obtained by diluting the 25% glutaraldehyde solution is placed in a desiccator, and the collagen fiber membrane is treated under reduced pressure at a temperature of about 20 ° C. to 40 ° C. for 1 to 24 hours.
  • glutaraldehyde By evaporating glutaraldehyde, it is possible to introduce cross-linking uniformly to the inside.
  • strength of a fish-derived collagen fiber membrane improves by performing bridge
  • Production of fish-derived collagen >> A method for producing collagen from tilapia scales is described below.
  • the tilapia scales were thoroughly washed with water and further washed with a 10% sodium chloride solution to remove impurities such as wrinkles, and then dried at room temperature. The water content was 18.5%.
  • pepsin Waako Pure Chemicals 1: 10000
  • pepsin Waako Pure Chemicals 1: 10000
  • a stirring blade 25 ° C. for 24 hours to dissolve the collagen from the scales. This was raised to a monkey and separated from the scale residue, and then the supernatant was recovered by centrifugation (10000 G, 60 minutes) to separate it from the fine scale residue.
  • 0.5 g of pepsin was added and held at 25 ° C. for 24 hours.
  • Examples 1 to 3 and Comparative Examples 1 to 3 >>
  • a high-strength collagen fiber membrane was prepared using a collagen fiber gel having a thickness of 5 mm.
  • the tilapia scale collagen hydrochloric acid aqueous solution obtained in Production Example 1 is 0.5% by weight (Example 1) and 0.4% by weight (Example 2) with a hydrochloric acid solution (0.001 mol / L, pH 3.0). ), 0.3 wt% (Example 3), 0.2 wt% (Comparative Example 1), 0.1 wt% (Comparative Example 2), and 0.05 wt% (Comparative Example 3).
  • the collagen fiber gel (0.4% by weight) of Example 2 was further impregnated successively with 50% by volume ethanol aqueous solution, 70% by volume ethanol aqueous solution, 90% by volume ethanol aqueous solution and 100% ethanol to remove salts.
  • the upper and lower surfaces of this collagen fiber gel were covered with cover glass or polystyrene, and the upper and lower surfaces were covered with the glass fiber. All the collagen fiber membranes were sufficiently dried in one day, and a collagen fiber membrane having a uniform film thickness could be obtained. Particularly, those using polystyrene were easy to peel off the collagen fiber membrane and polystyrene.
  • the cover glass the adhesion between the collagen fiber membrane and the cover glass was strong (FIG. 2).
  • Example 4 In Examples 4 to 6, a high-strength collagen fiber membrane was prepared using a 1.0% by weight collagen hydrochloric acid aqueous solution. The procedure of Example 2 was repeated except that a 1 wt% tilapia scale collagen hydrochloride aqueous solution was used instead of the 0.4 wt% tilapia scale collagen hydrochloride aqueous solution.
  • the volume of the collagen gel before drying is 1.271 cm 3 , and the weight of the contained collagen is 11.44 mg.
  • the dried collagen fiber membrane had a uniform film thickness of 52.5 ⁇ 7 ⁇ m. Therefore, the density of the obtained collagen fiber membrane is 0.857 g / cm 3 .
  • Example 5 The operation of Example 4 was repeated except that a silicone molding tank (diameter 18 mm, height 1 mm) having a height of 1 mm was used instead of the silicone molding tank having a height of 5 mm.
  • the volume of the collagen gel before drying is 0.254 cm 3 and the weight of the collagen contained is 2.28 mg.
  • the dried collagen fiber membrane had a uniform film thickness of 11.5 ⁇ 3 ⁇ m. Therefore, the density of the obtained collagen fiber membrane is 0.782 g / cm 3 .
  • Example 6 The operation of Example 4 except that instead of the 5 mm-high silicone molding tank, a 0.5 mm-high silicone molding tank (diameter 18 mm, height 0.5 mm) was used. Was repeated.
  • the volume of the collagen gel before drying is 0.127 cm 3 and the weight of the collagen contained is 1.15 mg.
  • the dried collagen fiber membrane had a uniform film thickness of 6.7 ⁇ 1 ⁇ m. Therefore, the density of the obtained collagen fiber membrane is 0.672 g / cm 3 .
  • Example 4 Except that only the lower surface of the collagen fiber gel was covered with polystyrene and dried, the operation of Example 4 was repeated to obtain a collagen fiber membrane. The obtained collagen fiber membrane was not uniform in thickness and partially thinned, and the tensile strength could not be measured.
  • Comparative Example 5 Except that only the lower surface of the collagen fiber gel was covered with polystyrene and dried, the procedure of Example 5 was repeated to obtain a collagen fiber membrane. The obtained collagen fiber membrane was not uniform in thickness and partially thinned, and the tensile strength could not be measured.
  • Comparative Example 6 Except that only the lower surface of the collagen fiber gel was covered with polystyrene and dried, the procedure of Example 6 was repeated to obtain a collagen fiber membrane. The obtained collagen fiber membrane was not uniform in thickness and partially thinned, and the tensile strength could not be measured.
  • FIG. 4 shows a photograph of the fiber structure by an atomic force microscope. A striped periodic structure (about 60 nm) similar to collagen fibrils, which are fibers observed in the living body, was observed (FIG. 4A). Further, it was found that fibers in which collagen fibers were complexed into a spiral wound were formed (FIG. 4B).
  • ⁇ Tensile strength test> A tensile strength test was performed. The operation of Example 4 was repeated except that instead of a silicone molding tank (diameter 18 mm, height 5 mm), a polystyrene molding tank (width 45 mm ⁇ length 70 mm ⁇ height 1 mm) was used. A collagen fiber membrane was obtained. In order to perform the tensile strength test, the collagen fiber membrane was processed into a strip-shaped test piece having a width of 10 mm and a length of 20 to 30 mm. The thickness of the produced film was measured with a micrometer and was 6.7 ⁇ 1.2 ⁇ m.
  • the tensile test was performed using a tensile tester (Orientec; STA-1150) with both ends of the test piece attached to glass. Measurement conditions were such that the distance between the load cells was 10 mm, and the speed was 0.5 mm / min.
  • FIG. 5 shows the result. As shown in FIG. 5, the stress gradually improved with respect to the strain, and the fracture occurred at a strain of about 8.2%. The maximum stress was 59 MPa.
  • Example 7 In this example, a 1.11% by weight collagen hydrochloric acid aqueous solution was used to prepare a high strength collagen fiber membrane.
  • the tilapia scale collagen obtained in Production Example 1 was adjusted to 1.11% by weight using an aqueous hydrochloric acid solution (0.0001 mol / L, pH 4.9).
  • 1 part by volume of Dulbeccos PBS 10-fold in 10 times concentration was mixed with 9 parts by volume of a 1.11% by weight collagen hydrochloric acid aqueous solution.
  • This was poured into a silicone molding tank (diameter 20 mm ⁇ height 2.5 mm: a glass plate was installed on the lower surface), and the upper surface was covered with a slide glass so that moisture would not evaporate, and fibrillated at 28 ° C. for 2 hours.
  • the obtained collagen fiber gel was immersed in 50, 70, and 90 vol% ethanol aqueous solutions, respectively, to remove salts. Finally, it was immersed in 99.5% ethanol.
  • the prepared collagen fiber gel was desorbed from the side with a polystyrene lid.
  • the shape of the film after the removal of the solvent is shown in FIG. 6A. It can be seen that the molded collagen membrane is homogeneous with no shrinkage or holes observed. Further, when the morphology was observed with a scanning electron microscope, it was clear that the structure was the same as that of the collagen fibers shown in FIG.
  • Comparative Example 7 a defibrillation / drying process was performed without using a polystyrene lid to produce a collagen fiber membrane. The procedure of Example 7 was repeated, except that the removal and drying step was performed without the polystyrene lid. The shape of the dried film is shown in FIG. 6B. It can be seen that the produced collagen film is a non-uniform film having a distorted form and comprising transparent and opaque parts. It was also clear that the collagen fiber morphology was not maintained as in the scanning electron microscope image shown in FIG. 6C.
  • Examples 8 to 13 In this example, chemical crosslinking (glutaraldehyde crosslinking) was performed on the high-strength collagen fiber membrane.
  • the tilapia scale collagen was adjusted to 1.11% by weight using an aqueous hydrochloric acid solution (0.0001 mol / L, pH 4.9).
  • 1 part by volume of Dulbeccos PBS 10-fold in 10 times concentration was mixed with 9 parts by volume of a 1.11% by weight collagen hydrochloric acid aqueous solution. This is poured into a silicone molding tank for tensile test pieces (Fig.
  • the 10% glutaraldehyde solution (20 mL) and the formed product (on the net) were placed in a desiccator, depressurized, and allowed to stand in a dryer at 37 ° C.
  • Sample treated at 0 minutes (Example 8), 15 minutes (Example 9), 30 minutes (Example 10), 1 hour (Example 11), 2 hours (Example 12), 3 hours (Example 13) was made.
  • Glutaraldehyde vaporizes, and collagen in the collagen fiber membrane can be cross-linked. As the treatment time of glutaraldehyde increased, the molded product turned brown.
  • the degree of cross-linking of the obtained cross-linked high strength collagen fiber membrane was measured.
  • the degree of crosslinking was determined by quantifying the amount of free amino groups by the TNBS method using trinitrobenzenesulfonic acid. 10 mg of the collagen fiber membranes prepared in Examples 9 to 13 were weighed, 1.0 mL of sodium hydrogen carbonate (4 wt%) / TNBS (0.5 wt%) was added, and the mixture was treated at 40 ° C. for 2 hours. Further, 3 mL of hydrochloric acid (6N) was added and treated in an 80 ° C. bath for 20-40 minutes.
  • FIG. 8A shows the relationship between the crosslinking treatment time and the degree of crosslinking. As shown in the figure, the degree of crosslinking increased linearly with the treatment time.
  • the denaturation temperature of collagen molecules dispersed in a hydrochloric acid aqueous solution (lower point of cross-linking degree 0) is about 36 ° C.
  • the denaturation temperature of fibrotic Example 8 collagen fiber membrane (upper point of cross-linking degree 0) is The temperature rose about 10 ° C.
  • the modification temperature had a linear correlation with the degree of crosslinking.
  • the denaturation temperature of collagen having a crosslinking degree of 60% or more did not change as compared with collagen having a crosslinking degree of 45%.
  • the swelling rate of the obtained crosslinked high-strength collagen fiber membrane was measured.
  • the swelling rate was measured as follows. Weight of collagen fiber membranes prepared in Examples 9 to 13 immersed in Dulbeccos PBS- at 38 ° C. for 1 hour, 2 hours, 4 hours, or 8 hours, then removed from the solution, and the surrounding water removed with Kimwipe Measured from change.
  • the swelling rate (%) was calculated from the formula of (W PBS -W DRY ) / W DRY ⁇ 100.
  • FIG. 8C shows the change in the swelling rate depending on the immersion time. The swelling rate did not change after 1 hour of immersion.
  • a negative correlation was observed between the degree of crosslinking and the swelling rate after 1 hour of immersion (FIG. 8D).
  • the swelling degree of the collagen film having a crosslinking degree of 60% was not changed as compared with the collagen film having a crosslinking degree of 45%.
  • FIG. 8E shows the stress-strain curves of the collagen fiber membranes produced in Examples 8 to 13. The degree of crosslinking, tensile strength, and Young's modulus are shown in FIG. 8F. From the stress-strain curve, the uncrosslinked sample showed the highest strain.
  • hMSC human bone marrow-derived mesenchymal stem cells
  • a transparent film was prepared from a solution in which collagen molecules were dissolved by a cast film method, and hMSC was cultured using this.
  • hMSCs were cultured using a polystyrene 12-well cell culture plate (manufactured by FALCON) without using a collagen membrane.
  • the high-strength collagen fiber membrane obtained under the same conditions as in Example 7 or the transparent collagen membrane of Comparative Example 8 was inserted into the wells of a polystyrene 12-well cell culture plate.
  • Human bone marrow-derived mesenchymal stem cells (hMSC; Lot. No. 6F3974) were seeded at 1.0 ⁇ 10 4 cells / well in wells in which each collagen membrane was inserted or in which no collagen membrane was inserted. .
  • D-MEM (High-Glucose) supplemented with 10% FBS was used and cultured at 37 ° C. in a 5% CO 2 atmosphere. When culturing, no osteoblast differentiation factor was added.
  • alkaline phosphatase was measured in order to examine bone differentiation ability.
  • the cells were washed with PBS ( ⁇ ) (pH 7.4), collected with a scraper, suspended in 200 ⁇ L of 100 mM Tris-HCl (pH 7.5), 5 mM MgCl 2 , 0.2% Triton X-100, and subjected to ultrasound. It was crushed. After crushing, the supernatant was collected by centrifugation at 6,000 g for 10 minutes.
  • FIG. 10 shows a photograph of the cell morphology after 1 day of cell culture. As shown in the figure, it can be seen that the cells are stretched on any substrate. Furthermore, the result of alkaline phosphatase (ALP) measurement is shown in FIG.
  • ALP alkaline phosphatase
  • the fish-derived collagen fiber membrane of the present invention comprises a cell culture substrate, a scaffold material for regenerative medicine (for example, a regenerated material for cartilage, bone, ligament, corneal stroma, skin, liver tissue), transplant material (wound covering material, (Bone filler, hemostatic material, anti-adhesion material, etc.) or a drug delivery carrier.
  • a scaffold material for regenerative medicine for example, a regenerated material for cartilage, bone, ligament, corneal stroma, skin, liver tissue
  • transplant material wound covering material, (Bone filler, hemostatic material, anti-adhesion material, etc.) or a drug delivery carrier.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Surgery (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 細胞培養基材、再生医療用の足場材料(例えば、軟骨・骨・靭帯・角膜実質・皮膚・肝臓組織の再生材料)、移植用材料(創傷被覆材料、骨補填剤、止血材料、癒着防止材など)又は薬物送達担体に用いることのできる、十分な強度を有するコラーゲン線維膜を提供する。 前記課題は、(1)引張強度が30MPa以上であり、(2)重量法による密度が0.4g/cm以上であり、そして(3)平均膜厚が1μm~2mmで、且つ膜厚のバラツキが平均膜厚の±30%以内である、ことを特徴とする、魚類由来コラーゲン線維膜によって解決することができる。

Description

高強度コラーゲン線維膜及びその製造方法
 本発明は、高強度コラーゲン線維膜及びその製造方法に関する。本発明の高強度コラーゲン線維膜は、細胞培養基材、再生医療用の足場材料、移植用材料、及び薬物送達担体として、有用に用いることができる。
 コラーゲンは、生体内のタンパク質の30%を占め、骨格支持及び細胞接着などの機能を有する重要なタンパク質であり、例えば、ヒトの身体の骨・軟骨、靭帯・腱、角膜実質、皮膚、肝臓、筋肉などの組織の主要構成成分である。コラーゲンを用いた成形体は、細胞培養基材、再生医療用の足場材料(例えば、軟骨・骨・靭帯・角膜実質・皮膚・肝臓組織の再生材料)、移植用材料(創傷被覆材料、骨補填剤、止血材料、癒着防止材など)又は薬物送達担体などの生体材料として有用であり、特に再生医療による大型組織再生には必要不可欠である。しかし、その力学特性が十分でないため、臨床現場における使用は限定されていた。
 従来、可溶性コラーゲンを試験管内で再線維化して得られる成形体としては、以下のものが報告されている。例えば、特許文献1は、魚皮由来のコラーゲンを線維化し、得られたゲルを凍結乾燥し、更に熱脱水架橋又は化学架橋(カルボジイミド、グルタルアルデヒド、又はスクシンイミドなどの水溶液)することにより、得られるコラーゲン膜を開示している。また、特許文献2は、魚皮由来コラーゲンを、線維化と同時に溶液中にて架橋剤で化学架橋させ、伸縮性のコラーゲン成形体を開示している。
 しかしながら、これらの成形体は、コラーゲンの架橋を行っているにもかかわらず、多孔質体であるため、十分な強度(力学的特性)が得られていなかった。
 一方、非特許文献1及び2には、ウシ由来コラーゲンを用いて、コラーゲン線維を含むコラーゲン薄膜が得られたことが開示されている。このコラーゲン薄膜は、架橋を行っていないが、ガラス化(少なくとも2週間の乾燥)により、ある程度の強度を有するものである。しかしながら、このコラーゲン薄膜の強度は、十分なものではなく、コラーゲン薄膜の周囲をナイロンフレームにより補強することによって、細胞培養基材として、実用化されているのみである(非特許文献1及び2)。
特表2003-534858号公報 特開2005-334625号公報 特開平8-228768号公報 特願2005-513025号公報
「薬学雑誌」(日本)2010年、第130巻、p.565-574 「ジャーナル・オブ・バイオテクノロジー(Journal of BIOTECHNOLOGY)」(ドイツ)2007年、第131巻、p.76-83
 本発明の目的は、細胞培養基材、再生医療用の足場材料(例えば、軟骨・骨・靭帯・角膜実質・皮膚・肝臓組織の再生材料)、移植用材料(創傷被覆材料、骨補填剤、止血材料、癒着防止材など)又は薬物送達担体に用いることのできる、十分な強度を有するコラーゲン線維膜を提供することである。
 コラーゲン線維は、適度な塩濃度及びpHの条件において形成されることが知られている。また、線維を高密度化させる方法として、例えば遠心分離により高密度化する方法、又はハイドロゲルを乾燥空気雰囲気で脱水させる方法が開示されている(特許文献3及び特許文献4)。しかしながら、これらの方法では、コラーゲン線維膜の膜厚を均一にさせることが困難であった。
 本発明者らは、細胞培養基材、再生医療用の足場材料、又は移植用材料として、十分な強度を有するコラーゲン線維膜について、鋭意研究した結果、魚類由来コラーゲン、特には魚鱗由来コラーゲンを用い、水/低級アルコール階段混合液を用いた脱塩を行い、側面のみから脱媒を行い、均一な膜厚を実現することで、コラーゲン線維膜の密度を高め、強度を驚異的に上昇させることができることを見出した。より具体的には、魚類由来コラーゲン線維膜は、乾燥前に精製水/エタノールの階段混合液で処理するため、塩の残存を極めて低くすることが可能である。コラーゲンゲルの上面と下面を覆い、側面からのみ脱媒させることで高密度・高強度なコラーゲン線維膜を作製できることを見出した。魚類由来コラーゲン線維膜の製造において、膜厚のバラツキを抑えることは、魚類由来コラーゲン線維膜の強度を上昇させるために必須であった。更には、乾燥させたコラーゲン線維膜に、低真空中での蒸発法による化学架橋処理を行うことにより、強度を更に向上させた魚類由来コラーゲン線維膜を得ることが可能になった。
 本発明は、こうした知見に基づくものである。
 従って、本発明は、(1)引張強度が30MPa以上であり、(2)重量法による密度が0.4g/cm以上であり、そして(3)平均膜厚が1μm~2mmで、且つ膜厚のバラツキが平均膜厚の±30%以内である、ことを特徴とする、魚類由来コラーゲン線維膜に関する。
 本発明の魚類由来コラーゲン線維膜の好ましい態様においては、コラーゲンが魚鱗由来である。
 更に、本発明の魚類由来コラーゲン線維膜の別の好ましい態様においては、コラーゲンが架橋されている。
 本発明の架橋された魚類由来コラーゲン線維膜の別の好ましい態様においては、自由アミノ基の定量による架橋度が、5%以上である。
 本発明の魚類由来コラーゲンの別の好ましい態様においては、コラーゲンの変性温度が線維化前のコラーゲンの変性温度を5℃以上超えるものであり、更に架橋された魚類由来コラーゲンの好ましい態様においては、コラーゲンの変性温度が線維化前のコラーゲンの変性温度を10℃以上超えるものである。
 更に、本発明の架橋された魚類由来コラーゲン線維膜の別の好ましい態様においては、膨潤率が、300%以下である。
 更に本発明の魚類由来コラーゲン線維膜の好ましい態様においては、骨芽細胞分化誘導能を示すものである。
 また、本発明は、(1)可溶化コラーゲン溶液のコラーゲンを線維化させ、0.3重量%以上のコラーゲン線維ゲルを得る、コラーゲン線維化工程、(2)前記コラーゲン線維ゲルから、精製水/エタノール階段混合液により、塩を除去する工程、(3)前記コラーゲン線維ゲルの上面及び下面を覆い、側面から脱媒することにより、乾燥させる工程、を含む、魚類由来コラーゲン線維膜の製造方法に関する。
 また、本発明の魚類由来コラーゲン線維膜の製造方法の好ましい態様においては、コラーゲンが魚鱗由来コラーゲンである。
 更に、本発明の魚類由来コラーゲン線維膜の製造方法の好ましい態様においては、前記魚類由来コラーゲン線維膜を架橋する工程を更に含む。
 本発明の高強度コラーゲン線維膜は、従来存在しなかった高密度のコラーゲン線維膜である。また膜厚のバラツキが小さく、強度の低下した部分が存在しないため、本発明の高強度コラーゲン線維膜は、高い引張強度を示すことができる。このような高い機械強度を有する本発明の高強度コラーゲン線維膜は、細胞培養基材、再生医療用の足場材料、移植用材料、又は薬物送達担体として有用であり、医療現場における力学強度不足による操作性の問題を解決することができる。
 更に、本発明の高強度コラーゲン線維膜は、人獣共通感染症のほとんど存在しない魚類由来のコラーゲンを用いているため、ウシ(牛海綿状脳症(BSE))由来、ブタ(口蹄疫)由来、又は鳥(インフルエンザ)由来のコラーゲンを用いた成形体(材料)よりも、安全に再生医療用の足場材料、又は移植用材料として、使用することができる。
0.5重量%(実施例1)、0.4重量%(実施例2)、0.3重量%(実施例3)、0.2重量%(比較例1)、0.1重量%(比較例2)、0.05重量%(比較例3)のテラピア鱗コラーゲン塩酸水溶液を用いて調製したコラーゲン線維ゲルを示す。 脱媒・乾燥工程が終了した実施例2(0.4重量%)の魚鱗由来コラーゲン線維膜を示す。白丸は、線維膜を剥離する際にガラスに強固に接着して残存した場所を示す。 魚鱗由来コラーゲン線維膜の走査型電子顕微鏡像である。 (A)魚鱗由来コラーゲン線維膜の原子間力顕微鏡像である。黒枠は、天然のうろこに観測されるコラーゲン線維と同じ縞構造を示す。(B)魚鱗由来コラーゲン線維膜の原子間力顕微鏡像を示す。黒枠は、コラーゲン線維が螺旋巻きに複合化したコラーゲン構造を示す。 魚鱗由来コラーゲン線維膜の引張強度試験の結果を示すグラフである。 約1.11重量%のテラピア鱗コラーゲン塩酸水溶液を用い、ポリスチレンで上面と下面を覆い調製した実施例7のコラーゲン線維膜(A)、ポリスチレンで上面を覆わずに調製した比較例7のコラーゲン線維膜(B)、及び比較例7の電子顕微鏡写真(C)である。 中央部の幅を5mmとした引張試験片作製用のシリコーン製の成形槽を上から投影した図である。 グルタルアルデヒド蒸気により、架橋処理を行ったコラーゲン線維膜の架橋度(A)、変性温度(B)、膨潤率(C及びD)、応力―歪曲線(E)、引張強度及びヤング率(F)を示したグラフである。 非架橋コラーゲン線維膜の引張試験前(a)及び引張試験後(b)、並びにグルタルアルデヒド蒸気による30分間架橋した線維膜の引張試験後(c)及び3時間架橋した線維膜の引張試験後(d)のコラーゲン線維膜の線維形態の変化を示した写真である。 コラーゲン線維膜(A)、コラーゲン透明膜(B)、又はポリスチレンプレート(C)におけるヒト骨髄由来間葉系幹細胞の培養の形態を示した写真である。 コラーゲン線維膜、コラーゲン透明膜、又はポリスチレンプレートにより、ヒト骨髄由来間葉系幹細胞を24時間培養した場合のアルカリホスファターゼの活性を示したグラフである。
[1]魚類由来コラーゲン線維膜
 本発明の魚類由来コラーゲン線維膜は、(1)引張強度が30MPa以上であり、(2)重量法による密度が0.4g/cm以上であり、そして(3)平均膜厚が1μm~2mmで、且つ膜厚のバラツキが平均膜厚の±30%以内である。
(魚類由来コラーゲン)
 本発明の魚類由来コラーゲン線維膜に含まれる魚類由来コラーゲンは、魚類のI型コラーゲンであれば、特に限定されるものではないが、好ましくは魚鱗由来コラーゲンである。魚類の鱗由来のコラーゲンは、他のコラーゲンと比較して線維化しやすく、線維形成速度が著しく速いからである。更に、魚鱗由来コラーゲンから得られたコラーゲン線維膜は線維間の相互作用が強いため、特に高い機械強度が得られると考えられる。魚類由来コラーゲンを取得する魚類の種類としては、例えば、テラピア、ゴンズイ、ラベオ・ロヒータ、カトラ、コイ、雷魚、ピラルク、タイ、ヒラメ、サメ、及びサケなどを挙げることができるが、後述の変性温度の観点から、水温の高い川、湖沼、又は海に生息する魚類が好ましい。このような魚類として、具体的には、オレオクロミス属の魚類を挙げる事ができ、特にはテラピアが好ましい。オレオクロミス属の魚類からは、変性温度が比較的高いコラーゲンを取得でき、例えば日本や中国で食用として養殖されているナイルテラピア(Oreochromis niloticus)は入手が容易であり、大量のコラーゲンを取得することができる。
 例えば、魚鱗由来のI型コラーゲンは、分子量約10万のポリペプチド鎖が3本集まって「3重らせん構造(トロポコラーゲン)」を作っており、分子量は約30万である。長さ300nmで、直径1.5nmの1本の硬い棒のような形態をしている。魚類のI型コラーゲンが特異な「3重らせん構造(トロポコラーゲン)」を作るのは、ポリペプチド鎖のアミノ酸の配列が関与している。ポリペプチド鎖は3個のアミノ酸が並んだユニット「G-X-Y」のつながりからできている。Gはグリシンを表し、Xはプロリン、そしてYはヒドロキシプロリンであることが多い。ヒドロキシプロリンは、通常のタンパク質に含まれておらず、コラーゲンに特有のアミノ酸であるが、ヒドロキシプロリンの水酸基と水和水との水素結合によって3重らせん構造が安定すると考えられている。コラーゲンは、アミノ基及びカルボキシル基を有する両性高分子であり、酸性溶液中でプラスに帯電し、アルカリ溶液中でマイナスに帯電する性質があり、更に中性付近では見掛け上、中性の電荷となる。3重らせん構造(トロポコラーゲン)のコラーゲン分子は、塩濃度、塩の種類や温度に強く依存するが、中性付近でコラーゲン細線維を形成する。
 コラーゲンは、温度が上昇すると3本のポリペプチドからなる「3重らせん構造」が解けて、3本のポリペプチドがばらばらになり、ゼラチンとなる。コラーゲンからゼラチンへの変化を変性と呼び、一度変性が起きると、再び温度を低下させても「3重らせん構造」に戻すことは困難である。コラーゲンの変性温度は、通常そのコラーゲンが由来する生物の棲息温度より、若干高い程度であり、従って、水中に生息している魚類の鱗のコラーゲンの変性温度は、それほど高くない。
 本発明の魚類由来コラーゲン線維膜に含まれる魚類由来コラーゲンは、その変性温度によって、限定されるものではないが、変性温度の高い魚類由来コラーゲンが好ましく、具体的には20℃以上が好ましく、25℃以上がより好ましく、28℃以上が更に好ましく、30℃以上が最も好ましい。しかしながら、変性温度が20℃未満の魚類由来コラーゲンであっても、変性温度以下で、操作を行うことにより、本発明の魚類由来コラーゲン線維膜を得ることができる。
 魚類由来コラーゲンの取得方法は、コラーゲンの3重らせん構造が破壊されない方法であれば、特に限定されないが、例えば、特開2006-257014号公報に開示された取得方法によって得ることができる。以下に、鱗からのコラーゲンの製造方法について説明する。
 先ず、集めた鱗から魚皮や鰭などの不要物を水洗により取り除く。必要に応じて、メタノール、エタノール、イソプロパノールなどのアルコール類やアセトンなどの親水性有機溶剤、界面活性剤、塩化ナトリウムなどの塩類、水酸化ナトリウムなどのアルカリ溶液などを用いて、鱗表面に付着したコラーゲン以外のたんぱく質や脂質など、臭気の原因とされている物質を鱗から除去してもよい。
 更に、脱灰処理溶液中で、1~48時間、攪拌羽根を用いて緩やかに攪拌し、鱗に含まれる無機成分(リン酸カルシウム)を除去する。処理溶液は、無機成分を溶解できればよく、塩酸やリン酸などの無機酸、酢酸、クエン酸などの有機酸、エチレンジアミン4酢酸などの水溶液を用いればよいが、汎用的に利用されている塩酸や酢酸が好ましく用いられる。使用量は、特に制限する必要はなく、脱灰終了後の鱗を水洗すれば良い。
 このようにして夾雑物を除去した鱗を、プロテアーゼを添加した酸性溶液中で2時間~72時間、攪拌羽根などを用いて緩やかに攪拌することでコラーゲン分子間の架橋が切断されて可溶化したコラーゲンが抽出される。この抽出工程以降の操作は、コラーゲンの変性を防ぐため、変性温度以下、望ましくは変性温度-5℃以下で行うべきである。
 プロテアーゼの種類は、酸性溶液中で高い活性を有する、ペプシン、プロクターゼ、パパイン、又はプロテアーゼMなどが好ましく用いられる。溶液のpHは、プロテアーゼの活性が高くなる範囲を用いればよく、一般に2~5程度である。プロテアーゼの使用量は、特に限定する必要はないが、通常は魚鱗の乾燥重量に対して1~15%程度であり、鱗が均一に攪拌できる程度の液量となるように濃度を決定すれば良い。使用する酸は、特に制限されないが、塩酸、酢酸、クエン酸、又はリンゴ酸など、生物に対して安全性の高いものから選ぶことが望ましく、特に塩酸や酢酸が好ましく用いられる。このような方法により、コラーゲン分子の両末端に存在する非螺旋領域(テロペプチド)が分解されたコラーゲン(アテロ化コラーゲン)を抽出することができる。
 このようにして可溶化したコラーゲンは、遠心分離、濾過などによって可溶化していない魚鱗残渣と分離する。魚鱗残渣は、プロテアーゼを添加した酸性溶液中で処理することで、再度、可溶化したコラーゲンを抽出することができるため、2~4回程度繰り返して収率を高めてもよい。
 このようにして得られたコラーゲン溶液には、プロテアーゼやコラーゲン以外のタンパク質、ゼラチン(変性コラーゲン)などを含むため、必要に応じて精製する。精製方法について述べると、可溶化したコラーゲン溶液に、塩化ナトリウムなどの塩類を加え、塩濃度を上昇させることで、コラーゲンを析出させる。例えば、可溶化したコラーゲン水溶液中に塩化ナトリウムを終濃度1Mになるように添加し、5分~24時間程度静置することで、コラーゲンが析出(塩析)する。
 水酸化ナトリウムなどを添加して、pHを中性以上にすることでも析出することができる。例えば、pH7~9程度になるまで水酸化ナトリウム溶液を添加し、5分~24時間程度静置することで、コラーゲンが析出する。このようなコラーゲンの析出は、溶液が白濁することで容易に確認できる。
 析出したコラーゲンは遠心分離や濾過など、一般的な固液分離方法により回収し、これを酸性溶液中で緩やかに攪拌して再溶解する。例えば、pH2~4程度の塩酸溶液中で1~48時間程度ゆるやかに攪拌すればよい。このようにして、コラーゲンを精製することができ、繰り返すことで更に純度を高めることができる。精製工程で使用した塩類は、透析膜などを用いて純水に対して脱塩することで除去することができる。
(引張強度)
 本発明のコラーゲン線維膜の引張強度は30MPa以上であり、好ましくは40MPa以上であり、より好ましくは50MPa以上であり、最も好ましくは55MPa以上である。30MPa未満では、生体材料として使用した場合に、十分な強度を得ることができないからである。
 また、引張強度の上限は、特に限定されるものではないが、200MPa以下が好ましく、150MPa以下がより好ましく、120MPa以下が最も好ましい。200MPaを超えると、移植した際に周辺組織と結合しないことや周辺組織を損傷してしまうことがある。
 引張強度試験は、常法に従って行うことができる。すなわち、幅1~10mm、長さ20~30mmの試験片を、ロードセル間の距離が10mmとなるように両端を固定し、速度0.5mm/分で引っ張り、破断時の伸び(%)及び応力(g)を、引張試験機(Orientec;STA-1150)を用いて測定する。測定は、5個の試験片について行い、その平均値を求める。なお、試験片の厚みは、マイクロメータにより計測し、引張強度を計算する。
 試験片の形態は、例えば幅10mm×長さ20mmの長方形でもよく、図7に示したように、幅10mm×長さ20mmで、中央部分において幅を10mmから5mmに狭くした形状でもよい。引張強度は、試験片の厚み、及び幅から計算することができる。
(ヤング率)
 ヤング率は、弾性範囲において単位ひずみあたり、どれだけの応力が必要かの値を決める定数であり、単位は応力と同じ、例えばGPaで表すことができる。
 本発明のコラーゲン線維膜のヤング率は、特に限定されないが、下限は好ましくは0.1GPa以上、より好ましくは0.5GPa以上であり、上限は好ましくは5.0GPa以下、より好ましくは2.0GPa以下である。0.1GPa未満であると自律的に保持できない膜となり5.0GPaを超えると硬すぎるため生体との適合性の低下が予想されるためである。
(密度)
 本発明のコラーゲン線維膜は、重量法による密度が0.4g/cm以上であり、好ましくは0.5g/cm以上であり、より好ましくは0.6g/cm以上であり、更に好ましくは0.65g/cm以上であり、最も好ましくは0.70g/cm以上である。密度が0.4g/cm未満であると機械的強度が不足するからである。また、密度の上限は、特に限定されるものではないが、1.2g/cm以下が好ましく、1.15g/cm以下がより好ましく、1.1g/cm以下が最も好ましい。1.2g/cmを超えると、乾燥工程における不純物が混入していることがある。重量法による密度は、コラーゲン線維膜の重量を体積で割ることによって計算することができる。
(平均膜厚)
 本発明のコラーゲン線維膜の平均膜厚は、1μm~2mmであり、好ましくは5μm~1mmであり、より好ましくは10~500μmである。1μm未満であると、強度が著しく低下したり、均一な膜が得られないことがあり、2mmを超えると乾燥工程に時間がかかったり、均一な膜成形が困難であったりすることがある。
 平均膜厚は、以下の方法によって測定することができる。マイクロメータを用いて作製した膜厚を計測する。最低5点を計測してその平均値を出すことで平均膜厚を測定できる。
(膜厚のバラツキ)
 本発明のコラーゲン線維膜の膜厚のバラツキは、平均膜厚の±30%以内である。膜厚のバラツキが30%を超えると、コラーゲン線維膜に強度の強い部分と強度の弱い部分とが混在し、引張強度などの機械的強度が低下する原因となることがある。
 膜厚のバラツキは、以下の方法によって測定することができる。マイクロメータを用いて、作製した膜の厚さを最低5点計測して、その標準偏差を算出することでバラツキを数値化できる。
(複合化線維)
 本発明のコラーゲン線維膜は、図4に示すように、複合化線維を含むことが好ましい。前記複合化線維は、魚鱗コラーゲンから線維化した、直径80~150nmのコラーゲン細線維が、更に螺旋巻きのコラーゲン複合化線維を形成しているものである。この螺旋巻きコラーゲン複合化線維の機能は、明確に解明されているわけではないが、線維同士の相互作用が高いコラーゲンで起きる現象で、力学的特性の向上に貢献しているものと考えられる。しかしながら、螺旋巻き複合化線維を含まないコラーゲン線維膜も、本発明に含まれる。更に、螺旋巻きコラーゲン複合化線維が、仮に力学的特性に影響を与えないとしても、本発明の範囲に影響を与えるものではない。
(架橋)
 本発明のコラーゲン線維膜は、架橋されていてもよい。架橋により力学特性を更に向上させることが可能である。架橋は、コラーゲン線維膜内の、コラーゲン分子(3重らせん構造)の間で起こってもよく、コラーゲン分子によって形成されたコラーゲン細線維の間で起こってもよい。架橋方法は特に限定されるものはなく、例えばγ線、紫外線、熱処理(熱脱水)、電子線等を用いた物理的架橋、又は架橋剤や縮合剤を用いた化学的架橋によって架橋することができるが、大規模な装置が必要ないことから、熱処理又は架橋剤などを用いるものが好ましい。
 熱処理は、例えば、真空炉を使って減圧下で、加熱処理を行う。この熱処理により、コラーゲン線維のカルボキシル基とアミノ基に脱水縮合を生じさせ、効率よく架橋を生成することができる。
 また、架橋剤を使用することによっても、前記の真空熱処理と同様に効率よくコラーゲンに架橋を導入させることができる。架橋剤は、タンパク質を架橋でき、水溶性又は気化能を有するものであれば特に限定されるものではなく、カルボキシル基とアミノ基を架橋するもの、アミノ基同士を架橋するものでもよい。架橋剤としては、例えば、アルデヒド系、カルボジイミド系、エポキシド系及びイミダゾール系架橋剤が、経済性、安全性及び操作性の観点から好ましく、具体的には、グルタルアルデヒド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩、1-シクロヘキシル-3-(2-モルホリニル-4-エチル)カルボジイミド・スルホン酸塩等の水溶性カルボジイミドを挙げることができる。
(架橋度)
 架橋の程度は、架橋度によって特定することができる。架橋度の特定方法は限定されるものではないが、例えば、コラーゲンをグルタルアルデヒドで架橋した場合、アミノ基が架橋に使用されるため、自由アミノ基を測定することにより、架橋度を測定することができる。具体的には、トリニトロベンゼンスルホン酸を用いたTNBS法により、自由アミノ基量を定量することができる。
 本発明の架橋されたコラーゲン線維膜の架橋度は、特に限定されないが、下限は好ましくは5%以上、より好ましくは15%以上であり、最も好ましくは30%以上である。上限は好ましくは90%以下、より好ましくは80%以下、最も好ましくは75%以下である。5%未満であるとコラーゲン素材が酵素により分解されやすく、90%を超えると生体内で分解が殆んどされなくなるからである。
(変性温度)
 コラーゲンは一般的に、温度が上昇するとコラーゲンの3重らせん構造が破壊されて、ゼラチンとなるが、この3重螺旋構造が破壊される温度を変性温度と言う。
 本発明のコラーゲン線維膜は、その構造により線維化する前のコラーゲンの変性温度と比較すると有意に上昇しているものである。すなわち、本発明のコラーゲン線維膜は、温度に対しても耐性を有している。
 本発明のコラーゲン線維膜の変性温度は、特に限定されるものではないが、線維化する前のコラーゲンの変性温度より、好ましくは3℃以上、より好ましくは5℃以上、更に好ましくは8℃以上高いものである。更に架橋されたコラーゲン線維膜は、線維化する前のコラーゲンの変性温度より、好ましくは10℃以上、より好ましくは15℃以上、更に好ましくは20℃以上、最も好ましくは25℃以上高いものである。変性温度が、高いことにより熱への耐性が高まり、本発明の用途が広がるからである。上限は特に限定されないが、200℃以下が好ましく、90℃以下がより好ましい。
(膨潤率)
 本発明のコラーゲン線維膜は膨潤率が低く、水分に対しても耐性を有するものである。
 本発明のコラーゲン線維膜の膨潤率は、特に限定されないが、上限は好ましくは300%以下、より好ましくは250%以下である。なお、下限は100%以上であり、本明細書で膨潤率100%は、全く膨潤しないことを意味する。300%を超えると急速に膨潤して膜の強度が低下し、生体内で急速な分解が起きる。
《骨芽細胞分化誘導》
 本発明のコラーゲン線維膜は、間葉系幹細胞を骨芽細胞に分化誘導することができる。具体的には、コラーゲン線維膜を間葉系幹細胞と接触させること、又はコラーゲン線維膜を用いて間葉系幹細胞を培養することにより、間葉系幹細胞を骨芽細胞に分化誘導することができ、特に初期誘導能において優れている。コラーゲン線維膜を細胞培養用の培養基材として用いる場合、ある程度の強度を有することが好ましく、この点からも本願発明の高強度コラーゲン線維膜は、骨芽細胞分化誘導用のコラーゲン線維膜として有用である。
(間葉系幹細胞)
 間葉系幹細胞としては、髄骨芽細胞に分化誘導することのできる細胞であれば、限定されないが、例えば、骨髄間葉系幹細胞、脂肪組織由来間葉系幹細胞、滑膜組織由来間葉系幹細胞、歯髄由来間葉系幹細胞、歯胚由来間葉系幹細胞、耳介軟骨膜由来間葉系幹細胞、末梢血由来間葉系幹細胞、臍帯血由来間葉系幹細胞、靭帯由来間葉系幹細胞、腱由来間葉系幹細胞、ES細胞由来間葉系幹細胞、又はiPS細胞由来間葉系幹細胞を挙げることができる。また、前記間葉系幹細胞の由来する動物種も、特に限定されず、哺乳類としては、例えばヒト、サル、イヌ、ネコ、ブタ、ヒツジ、ヤギ、ウシ、ウマ、ウサギ、モルモット、ラット、及びマウスを挙げることができる。また、鳥類としては、ニワトリ、ウズラ、アヒル、ガチョウ、ダチョウ、及びホロホロチョウを挙げることができ、爬虫類としては、ワニ、カメ、及びトカゲを挙げることができ、両生類としては、カエル、及びイモリを挙げることができ、魚類としては、テラピア、タイ、ヒラメ、サメ、及びサケを挙げることができる。更に、無脊椎動物としては、カニ、貝類、クラゲ、及びエビを挙げることができる。
 前記間葉系幹細胞は骨芽細胞、脂肪細胞、筋細胞、又は軟骨細胞などの間葉系に属する細胞への分化能を持つ細胞であり、骨、血管、又は心筋を構成することのできる細胞となるものである。
 前記間葉系幹細胞は、株化細胞を用いてもよく、また、常法に従って調整することも可能であり、更には市販されている細胞を用いることもできる。また、生体から分離した間葉系幹細胞(例えば、骨髄間葉系幹細胞、脂肪組織由来間葉系幹細胞、滑膜組織由来間葉系幹細胞、歯髄由来間葉系幹細胞、歯胚由来間葉系幹細胞、耳介軟骨膜由来間葉系幹細胞、末梢血由来間葉系幹細胞、臍帯血由来間葉系幹細胞、靭帯由来間葉系幹細胞、腱由来間葉系幹細胞、ES細胞由来間葉系幹細胞、又はiPS細胞由来間葉系幹細胞)を、本発明の骨芽細胞分化誘導方法により骨芽細胞に分化誘導することができる。この場合、生体から採取された細胞は、常法に従って結合組織等を除去して調製することが好ましい。更に、生体から採取された細胞は、初代培養細胞を用いることが好ましい。継代して用いることも可能であるが、継代数は少ないほうが好ましく、10回以下が好ましく、5回以下が更に好ましく、2回以下であることが、最も好ましい。
(骨芽細胞)
 骨芽細胞は、骨組織において骨形成を行う細胞であり、細胞質は好塩基性を示し、アルカリホスファターゼ活性を有している。また、骨芽細胞はアンドロゲンとエストロゲンのレセプターを持っていてもよく、アンドロゲンは骨芽細胞の活動性を低下させ、エストロゲンは骨芽細胞を刺激する。間葉系幹細胞から、骨芽細胞への分化誘導は、アルカリホスファターゼの活性を測定することによって確認することができる。アルカリホスファターゼの測定は、後述の実施例に示すように、常法に従って行うことができる。
(接触又は培養)
 本発明のコラーゲン線維膜と、間葉系幹細胞との接触又は培養に用いる培地は、間葉系幹細胞が維持できる培地であれば限定されないが、通常その間葉系幹細胞の培養に用いる培地を用いればよい。例えば、MEM培地、α-MEM培地、又はD-MEM培地等の公知の培地を、培養する細胞に合わせて適宜選んで用いることができる。
 接触又は培養時間は、間葉系幹細胞の骨芽細胞への分化誘導が起きる限りにおいて、限定されないが、実質的には、下限は10分以上であり、好ましくは1時間以上であり、より好ましくは1日以上である。接触又は培養時間の上限も限定されないが、30日以下であり、好ましくは15日以下であり、より好ましくは7日以下である。
 接触又は培養温度は、間葉系幹細胞の最適な培養温度に従って、適宜決定することができる。例えば、哺乳類の間葉系幹細胞の場合、30℃~40℃であり、35℃~37℃が好ましい。しかしながら、培養温度よりも高い温度、又は低い温度で接触させることも可能である。例えば、変性温度が低い魚類由来コラーゲンを用いた場合、培養温度よりも低い接触温度で、細胞培養基材と、間葉系幹細胞との接触を行い、最適な培養温度に上昇させて、間葉系幹細胞の培養を行うことも可能である。
(骨芽細胞分化誘導因子)
 本発明のコラーゲン線維膜と、間葉系幹細胞との接触又は培養において、骨芽細胞誘導因子を添加することもできる。骨芽細胞分化誘導因子は、間葉系幹細胞を骨芽細胞に分化誘導できる限り、限定されるものではないが、例えば、デキサメタゾン、FK-506又はシクロスポリン等の免疫抑制剤、BMP2、BMP4、BMP5、BMP6、BMP7又はBMP9等の骨形成タンパク質(BMP:Bone Morphogenic Proteins)、TGFβ等の骨形成液性因子を挙げることができる。これらの骨芽細胞分化誘導因子から選択される1種又は2種以上を、培地に添加することができる。
 骨芽細胞分化誘導因子の濃度は、用いる骨芽細胞分化誘導因子の種類に応じて、適宜決めることができる。例えば、デキサメタゾンを用いる場合、1~100nMの濃度で用いることができ、特には10nMが好ましい。
(作用)
 間葉系幹細胞を骨芽細胞に分化誘導することのできるコラーゲン線維膜は、魚類由来のコラーゲンを用いることが重要であり、特に魚鱗由来のコラーゲンであることが好ましい。すなわち、例えばブタ又はウシ由来のコラーゲンでは、間葉系幹細胞を骨芽細胞に誘導することができない。
 更に、後述の実施例に示すように、線維を形成していないコラーゲン透明膜では、骨芽細胞の分化誘導が弱い。このことは、間葉系幹細胞を骨芽細胞に分化誘導するためには、コラーゲンが線維化していることが重要であることを示している。
 本願発明の高強度コラーゲン線維膜を用いて、間葉系幹細胞を骨芽細胞に分化誘導することのできる機構は、詳細に解明されたわけではないが、魚類由来コラーゲン(特には、魚鱗由来コラーゲン)を用いたコラーゲン線維膜を、間葉系幹細胞と接触させることによって、間葉系細胞の骨芽細胞への分化が誘導、特に初期分化誘導が起きるものと考えられる。
[2]魚類由来コラーゲン線維膜の製造方法
 本発明の魚類由来コラーゲン線維膜の製造方法は、(1)可溶化コラーゲン溶液のコラーゲンを線維化させ、0.3重量%以上のコラーゲン線維ゲルを得る、コラーゲン線維化工程(以下、コラーゲン線維化工程と称する)(2)前記コラーゲン線維ゲルから、精製水/エタノール階段混合液により、塩を除去する工程(以下、塩除去工程と称する)、(3)前記コラーゲン線維ゲルの上面及び下面を覆い、側面から脱媒することにより、乾燥させる工程(以下、脱媒・乾燥工程と称する)を含む。
 本発明の魚類由来コラーゲン線維膜の製造方法によって、本発明の魚類由来コラーゲン線維膜を製造することができる。しかしながら、本発明の魚類由来コラーゲン線維膜は、本発明の魚類由来コラーゲン線維膜の製造方法以外の方法によっても製造することが可能である。
(魚類由来コラーゲン)
 本発明の魚類由来コラーゲン線維膜の製造方法に用いる魚類由来コラーゲンとしては、前記の「[1]魚類由来コラーゲン線維膜」の項に記載の魚類由来コラーゲンを用いることができる。
(コラーゲン線維化工程)
 コラーゲン線維化工程において、可溶化コラーゲン溶液中のコラーゲンを線維化させる。例えば、可溶化コラーゲン溶液は、魚類由来コラーゲンを酸性の水性溶媒に溶解して得ることができる。すなわち、水性の溶媒に、無機酸又は有機酸を混合し、コラーゲンを溶解させて調製することができる。無機酸としては、塩酸、リン酸、硝酸、及び硫酸を挙げることができ、有機酸としては、酢酸、ギ酸、クエン酸及びシュウ酸を挙げることができる。可溶化コラーゲン溶液のpHは、pH2.0~4.0が好ましい。
 また、可溶化コラーゲン溶液として、二酸化炭素をバブリングなどによって溶解し、pHを4以下に低下させた二酸化炭素溶液を用いることもできる。すなわち、酸性の二酸化炭素溶液に、魚類由来コラーゲンを溶解させ、可溶化コラーゲン溶液として用いることができる。
 前記可溶化コラーゲン溶液を、適度なイオン強度及びpHとすることにより、魚類由来コラーゲンを線維化させる。すなわち、適当な緩衝液を可溶化コラーゲン溶液に添加することによって、魚類由来コラーゲンを線維化する。魚類由来コラーゲンの線維化に適するpHは、コラーゲンの種類によって変化するが、pH5~9の範囲、すなわち中性の範囲である場合が多く、中性の緩衝液が用いられる。緩衝液は、適度なイオン強度及び中性条件を満たすものであれば、特に限定されるものではないが、生体に用いる人工骨などの最終的な用途を考慮すれば、細胞毒性が無いかあるいは低い、リン酸塩、酢酸塩、炭酸塩、クエン酸塩、Tris等の緩衝能を有する塩水溶液を用いることが好ましい。特に、中性の緩衝液であり、安価、生体に毒性を示さない、そしてコラーゲンの線維化を他の中性の緩衝液よりも活発に起こす点において、リン酸緩衝液(例えば、ダルベッコーPBS、又はリン酸ナトリウム水溶液)が好ましい。
 コラーゲン線維化工程により得られるコラーゲン線維ゲルは、0.3重量%以上の濃度であり、好ましくは0.4重量%以上であり、最も好ましくは0.5重量%以上である。0.3重量%未満の場合、十分な強度のコラーゲン線維ゲルを作製することが困難であるためである。
(塩除去工程)
 塩除去工程において、精製水/低級アルコールの混合溶液を用いて、コラーゲン線維ゲルから塩を除去する。具体的には、精製水/低級アルコールの混合比率を変化させた水/低級アルコール階段混合液を用いて、コラーゲン線維ゲル中の塩を含む溶媒を、低級アルコールに置換する。低級アルコールとしては、炭素数1~4の低級アルコール(すなわち、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、又はtert-ブチルアルコール)を用いることができる。また、精製水/低級アルコール階段混合液における、精製水と低級アルコールとの混合比は、適宜決定することができる。例えば、精製水/低級アルコール階段混合液として、50容量%エタノール水溶液、70容量%エタノール水溶液、90容量%エタノール水溶液及び100%エタノールを用いることができ、最終的にコラーゲン線維ゲルの溶媒を、100%エタノールに置換する。
 溶媒を低級アルコールに置換することによって、以下の脱媒・乾燥工程において、速やかに乾燥を行うことが可能である。
(脱媒・乾燥工程)
 脱媒・乾燥工程において、コラーゲン線維ゲルからの精製水及び/又は低級アルコールの除去、及び乾燥を行う。この脱媒・乾燥工程によって、魚類由来コラーゲン線維膜の密度が上昇し、機械的強度を向上させることができる。
 脱媒及び乾燥は、ゲルの上面及び下面を、水及びアルコール等が通過しない平滑なプレートなどで覆い、側面からのみ徐々に脱媒させることにより行う。また、平滑なプレートで覆うことによって、得られる魚類由来コラーゲン線維膜の膜厚を均一にすることができ、機械的強度を上昇させることが可能である。プレートは、特に限定されるものではないが、ポリスチレン、シリコーン、ポリエステル、ポリアミド、ポリプロピレン、ポリエチレン、ポリメタクリル酸メチル又はガラスを挙げることができるが、得られた魚類由来コラーゲン線維膜との解離性がよいことから、ポリスチレンが好ましい。
 脱媒及び乾燥の時間は、精製水及びアルコールが90%以上除去される時間であれば、特に限定されないが、1時間~13日が好ましく、3時間~7日がより好ましく、5時間~24時間が最も好ましい。
(架橋工程)
 本発明の魚類由来コラーゲン線維膜の製造方法は、更に魚類由来コラーゲン線維膜を架橋する工程を含むことができる。架橋は、コラーゲン線維膜内の、コラーゲン分子(トポコラーゲン)の間で起こってもよく、コラーゲン分子(トポコラーゲン)によって形成されたコラーゲン細線維の間で起こってもよい。
 架橋方法は、公知の方法を用いることが可能であり、例えば、物理架橋又は化学架橋を挙げることができる。物理架橋としては、熱架橋(熱脱水(DHT)架橋)、紫外線(UV)照射、又はγ線照射を挙げることができ、例えば、熱架橋の場合は、コラーゲン線維膜を100℃~140℃の真空中において、1~12時間処理することによって、架橋する。しかしながら、高温での処理によりコラーゲンが変性することもあることから、変性温度以下での化学架橋が好ましい。
 化学架橋に用いる架橋剤としては、グルタルアルデヒド、ポリエポキシ化合物、カルボジイミド、イソシアネート、又はゲニピンなどの化学架橋剤を用いることができる。化学架橋の場合は、架橋剤を溶媒に溶解させ、魚類由来コラーゲン線維膜を浸漬することによって、架橋を行うことができる。例えば、グルタルアルデヒド溶液を用いる場合は、グルタルアルデヒドの濃度0.5~2.0%の範囲を用いると均一に架橋を導入することが可能である。しかしながら、好ましくは25%グルタルアルデヒド溶液又はそれを希釈した溶液をデシケーター内に入れ、コラーゲン線維膜を、減圧下で20℃~40℃程度の温度で、1時間から24時間処理する。グルタルアルデヒドを気化させることで均一に内部まで架橋を導入することが可能である。また、架橋を行うことによって、魚類由来コラーゲン線維膜の強度が向上する。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
《製造例1:魚類由来コラーゲンの製造》
 テラピアの鱗からのコラーゲンの製造方法を以下に記載する。
 テラピアの鱗を水で十分洗浄し、更に10%塩化ナトリウム溶液で十分洗浄し、鰭などの夾雑物を除去した後、室温にて乾燥した。含水率は18.5%であった。
 このテラピア鱗1kgをpH2の塩酸溶液9kgに分散し、1Mの塩酸溶液を添加しながらpHを2に保った状態で、25℃、2時間穏やかに攪拌し、鱗に含まれる無機成分を溶かし出した。これをザルにあげて、十分水洗した後、総重量が4kgとなるようにpH2の塩酸溶液を添加した。
 これに、ペプシン(和光純薬 1:10000)24gを添加し、攪拌羽根を用いて25℃、24時間、穏やかに攪拌して、鱗からコラーゲンを溶かし出した。これをザルにあげて、鱗残渣と分離した後、更に遠心分離(10000G,60分)により上澄を回収して微細な鱗残渣と分離した。これに、ペプシンを0.5g添加し、25℃、24時間保持した。
 得られた溶液(2.4kg)を0.45μmのメンブレンフィルターでろ過したあと、終濃度が1.0Mになるように塩化ナトリウムを加えて緩やかに攪拌した。25℃、30分間静置して塩析したあと、遠心分離(10000G,20分)により上澄を除去し、コラーゲンの沈殿物を回収した。この沈殿物にpH2の塩酸溶液400mLを加え、5℃、24時間緩やかに攪拌して溶解した。この塩析精製工程を3回繰り返し、テラピア鱗コラーゲン塩酸水溶液を得た。
《実施例1~3及び比較例1~3》
 本実施例では、5mmの厚さのコラーゲン線維ゲルを用いて、高強度コラーゲン線維膜を作製した。
 前記製造例1で得られたテラピア鱗コラーゲン塩酸水溶液を、塩酸溶液(0.001mol/L、pH3.0)で、0.5重量%(実施例1)、0.4重量%(実施例2)、0.3重量%(実施例3)、0.2重量%(比較例1)、0.1重量%(比較例2)、0.05重量%(比較例3)に希釈した。この0.5重量%テラピア鱗コラーゲン塩酸水溶液9容量部に、10倍のダルベッコスPBS―(カルシウム・マグネシウムが含まれていない)を1容量部混合した。得られた混合液を、シリコーン製の成形槽(直径18mm、高さ5mm)に注ぎ、水分が蒸発しないようにスライドガラスで上面と下面を覆い、28度で3時間線維化させた。得られたコラーゲン線維ゲルを70容量%のエタノールを含む精製水/エタノールの混合溶液(70容量%エタノール水溶液)に浸漬させた。図1に、前記混合溶液に浸漬したコラーゲン線維ゲルの形態を示す。コラーゲン濃度0.3重量%以上で形態が維持されることを確認した。
 前記実施例2のコラーゲン線維ゲル(0.4重量%)を、更に50容量%エタノール水溶液、70容量%エタノール水溶液、及び90容量%エタノール水溶液及び100%エタノールに、順次含浸させ塩を除去した。このコラーゲン線維ゲルの上面及び下面を、カバーガラス又はポリスチレンで上面と下面を覆い、側面のみから1日脱媒させ、コラーゲン線維膜を得た。いずれのコラーゲン線維膜も、1日で十分乾燥し、膜厚が均一なコラーゲン線維膜を得ることができた。特に、ポリスチレンを用いたものは、コラーゲン線維膜とポリスチレンとの剥離が容易であった。一方、カバーガラスを用いたものは、コラーゲン線維膜と、カバーガラスとの接着が強かった(図2)。
《実施例4》
 実施例4~6では、1.0重量%のコラーゲン塩酸水溶液を用いて、高強度コラーゲン線維膜を作製した。
 0.4重量%テラピア鱗コラーゲン塩酸水溶液に代えて、1重量%テラピア鱗コラーゲン塩酸水溶液を用いたことを除いては、実施例2の操作を繰り返した。乾燥前のコラーゲンゲルの体積は1.271cmであり、含まれるコラーゲンの重量は11.44mgである。乾燥されたコラーゲン線維膜は、52.5±7μmの均一な膜厚を有していた。従って、得られたコラーゲン線維膜の密度は、0.857g/cmである。
《実施例5》
 5mmの高さのシリコーン製の成形槽に代えて、1mmの高さのシリコーン製の成形槽(直径18mm、高さ1mm)を用いたことを除いては、実施例4の操作を繰り返した。乾燥前のコラーゲンゲルの体積は0.254cmであり、含まれるコラーゲンの重量は2.28mgである。乾燥されたコラーゲン線維膜は、11.5±3μmの均一な膜厚を有していた。従って、得られたコラーゲン線維膜の密度は、0.782g/cmである。
《実施例6》
 5mmの高さのシリコーン製の成形槽に代えて、0.5mmの高さのシリコーン製の成形槽(直径18mm、高さ0.5mm)を用いたことを除いては、実施例4の操作を繰り返した。乾燥前のコラーゲンゲルの体積は0.127cmであり、含まれるコラーゲンの重量は1.15mgである。乾燥されたコラーゲン線維膜は、6.7±1μmの均一な膜厚を有していた。従って、得られたコラーゲン線維膜の密度は、0.672g/cmである。
《比較例4》
 前記コラーゲン線維ゲルの下面のみを、ポリスチレンで覆い乾燥させたことをのぞいては、実施例4の操作を繰り返して、コラーゲン線維膜を得た。得られたコラーゲン線維膜は膜厚が均一でなく、部分的に薄くなっており、引張強度が測定できなかった。
《比較例5》
 前記コラーゲン線維ゲルの下面のみを、ポリスチレンで覆い乾燥させたことをのぞいては、実施例5の操作を繰り返して、コラーゲン線維膜を得た。得られたコラーゲン線維膜は膜厚が均一でなく、部分的に薄くなっており、引張強度が測定できなかった。
《比較例6》
 前記コラーゲン線維ゲルの下面のみを、ポリスチレンで覆い乾燥させたことをのぞいては、実施例6の操作を繰り返して、コラーゲン線維膜を得た。得られたコラーゲン線維膜は膜厚が均一でなく、部分的に薄くなっており、引張強度が測定できなかった。
《コラーゲン膜の構造》
 実施例5で得られたコラーゲン線維膜の表面の走査型電子顕微鏡像を図3に示す。形成されたコラーゲン線維が均一に絡み合った構造である。
 また、図4に原子間力顕微鏡による線維構造の写真を示す。生体内に観測される線維であるコラーゲン原線維と類似した縞状の周期構造(約60nm)が観察された(図4A)。また、コラーゲン線維が螺旋巻きに複合化した線維が形成されていることがわかった(図4B)。
《引張強度試験》
 引張強度試験を行った。
 シリコーン製の成形槽(直径18mm、高さ5mm)に代えて、ポリスチレン製の成形槽(幅45mm×長さ70mm×高さ1mm)を用いたことを除いては、実施例4の操作を繰り返し、コラーゲン線維膜を得た。
 引張強度試験を行うため、コラーゲン線維膜を、幅10mm、長さ20~30mmの短冊状の試験片に加工した。なお、作製した膜の厚さは、マイクロメータにより計測し、6.7±1.2μmであった。
 引張試験は、試験片の両端をガラスに張り付け、引張試験機(Orientec;STA-1150)を用いて行った。測定条件は、ロードセル間の距離を10mmとし、0.5mm/分の速度で行った。図5にその結果を示す。
 図5に示すように、応力が歪に対して徐々に向上し、約8.2%の歪で破断した。また、最大応力は59MPaであった。
《実施例7》
 本実施例では1.11重量%のコラーゲン塩酸酸性水溶液を用いて、高強度コラーゲン線維膜を作成した。
 製造例1で得られたテラピア鱗コラーゲンを1.11重量%になるように塩酸酸性水溶液(0.0001mol/L、pH4.9)を用いて調整した。1.11重量%のコラーゲン塩酸酸性水溶液9容量部に10倍濃度のダルベッコスPBS―を1容量部混合した。これをシリコーン製の成形槽(直径20mm×高さ2.5mm:下面にはガラスプレートを設置)に注ぎ、水分が蒸発しないようにスライドガラスで上面を覆い、28℃で2時間線維化させた。得られたコラーゲン線維ゲルを50、70、90容量%エタノール水溶液にそれぞれ浸漬し、塩を除去した。最後に99.5%エタノールに浸漬させた。
 作製したコラーゲン線維ゲルは、ポリスチレンの蓋をして側面から脱媒させた。脱媒後の膜の形状を図6Aに示す。成形したコラーゲン膜は、収縮や穴などが観察されず、均質であることが分かる。また、走査型電子顕微鏡による形態観察を行うと図3に示したコラーゲン線維と同様の構造であることが明らかであった。
《比較例7》
 本比較例では、脱媒・乾燥工程を、ポリスチレンン蓋を用いずに行い、コラーゲン線維膜を作製した。
 脱媒・乾燥工程をポリスチレンンの蓋をせずに行ったことを除いて、実施例7の操作を繰り返した。乾燥後の膜の形状を図6Bに示す。作製したコラーゲン膜は、形態が歪であり、透明と不透明な部位からなる、不均一な膜であることが分かる。また、図6Cに示した走査型電子顕微鏡像のように、コラーゲン線維形態が維持されないことが明らかであった。
《実施例8~13》
 本実施例では、高強度コラーゲン線維膜に対し、化学架橋(グルタルアルデヒド架橋)を行った。テラピア鱗コラーゲンを1.11重量%になるように塩酸酸性水溶液(0.0001mol/L、pH4.9)を用いて調整した。1.11重量%のコラーゲン塩酸酸性水溶液9容量部に10倍濃度のダルベッコスPBS―を1容量部混合した。これを引張試験片用のシリコーン製の成形槽(図7:下面にはガラスプレートを設置)に注ぎ、水分が蒸発しないようにスライドガラスで上面と下面を覆い、28℃で2時間線維化させた。得られたコラーゲン線維ゲルを50、70、90容量%エタノール水溶液にそれぞれ浸漬し、塩を除去した。最後に99.5%エタノールに浸漬させた。作製したコラーゲン線維ゲルは、ポリスチレン(形状は、図7の成形槽の形状より1mm小さいもの)で上面と下面を覆い、側面から脱媒させた。
 10%のグルタルアルデヒド溶液(20mL)と作製した成形体(網の上)をデシケーター中におき、減圧させ、37℃の乾燥機中に静置した。0分(実施例8)、15分(実施例9)、30分(実施例10)、1時間(実施例11)、2時間(実施例12)、3時間(実施例13)処理した試料を作製した。グルタルアルデヒドが気化し、コラーゲン線維膜のコラーゲン同士を架橋させることができる。グルタルアルデヒドの処理時間が長くなると、成形体は褐色に変化した。
《架橋度の測定》
 得られた架橋高強度コラーゲン線維膜の架橋度を測定した。架橋度は、トリニトロベンゼンスルホン酸を用いたTNBS法により、自由アミノ基量を定量することで行った。
 実施例9~13の作製したコラーゲン線維膜を10mg秤量し、1.0mLの炭酸水素ナトリウム(4重量体積%)/TNBS(0.5重量体積%)を加え、40℃で2時間処理した。更に、3mLの塩酸(6N)を加え、20から40分間80℃の浴槽で処理した。加水分解させた後、15mLの精製水を加え、1mLを分注し、室温まで冷却し、5mLの精製水で希釈した。345nmの波長で吸光度を計測した。自由アミノ基量(Ag-col;mol)/コラーゲン量(g)=(4×吸光度)/(1.46×106(L/mol・cm)・セルの長さ(cm))から算出した。何も処理しないコラーゲンを用いてTNBS法により自由アミノ基量(Acol)を計測した。架橋度(D;%)は(1-Ag-col/Acol)×100により計算した。架橋処理時間と架橋度の関係を図8Aに示す。図に示したように、架橋度は処理時間とともに直線的に上昇した。
《変性温度の測定》
 得られた架橋高強度コラーゲン線維膜の変性温度を測定した。変性温度の測定は、示差走査熱量測定により行った。
 実施例8~13の作製したコラーゲン線維膜から、試料重量5-6mgを秤とり、ダルベッコスPBS―に24時間浸漬させた後、余剰の水分を拭き取り、アルミニウムパンにシールして計測を行った。3℃/分の昇温速度で―10℃から100℃の範囲を走査させた。架橋度と変性温度の関係を図8Bに示す。塩酸酸性水溶液に分散させたコラーゲン分子の変性温度(架橋度0の下点)は約36℃であり、線維化させた実施例8コラーゲン線維膜の変性温度(架橋度0の上点)は、約10℃上昇した。図に示すように変性温度は架橋度との直線的な相関があった。また、架橋度60%以上のコラーゲンの変性温度は、架橋度45%のコラーゲンと比較して変化しなかった。
《膨潤度》
 得られた架橋高強度コラーゲン線維膜の膨潤率を測定した。膨潤率の測定は、以下のように行った。
 実施例9~13の作製したコラーゲン線維膜を、1時間、2時間、4時間、又は8時間、38℃でダルベッコスPBS―に浸漬し、その後溶液から取り出し、キムワイプで周りの水分を除去した重量変化から計測した。ここで、膨潤率(%)は(WPBS-WDRY)/WDRY×100の式から算出した。図8Cに浸漬時間による膨潤率の変化を示す。浸漬1時間後以降ではその膨潤率は変化しなかった。また、架橋度と浸漬1時間後の膨潤率は負の相関がみられた(図8D)。しかし、架橋度60%のコラーゲン膜の膨潤度は、架橋度45%のコラーゲン膜と比較して変化しなかった。
《引張強度》
 架橋したコラーゲン線維膜の引張強度及びヤング率を測定した。引張試験は、ギャップ間の距離を10mmとし、0.5mm/分の引張速さで計測を行った。試験片の形状は、図7に示したように、10mm×20mmで、中央部分の幅を10mmから5mmに狭くしたものである。
 実施例8~13の作製したコラーゲン線維膜の応力―歪曲線を図8Eに示す。また、架橋度と引張強度及びヤング率を図8Fに示す。応力-歪曲線から、未架橋の試料では最も高い歪を示した。架橋処理時間が15分~1時間では、引張強度の変化が観測されなかったが、架橋時間を2時間及び3時間と長くなるにつれて、引張強度と歪の両方の増加が観測された。このような変化は、架橋処理時間が短い場合は、グルタルアルデヒドがコラーゲン線維内のコラーゲン分子同士を架橋させるが、架橋処理時間を長くすると、グルタルアルデヒドが線維間に架橋を形成するためと予想される。架橋度と引張強度及びヤング率の変化からは、架橋密度と材料物性は直線的な相関があると考えられる。
《引張試験後の線維形態変化》
 引張試験後にコラーゲン線維膜の線維形態が変化するか否かを走査型電子顕微鏡によって分析した。
 白金コーティングを20nm行い、加速電5kVで観察した。電子顕微鏡写真を図9に示す。実施例8の未架橋のコラーゲン線維膜では、引張試験によって引張方向にコラーゲン線維が伸展し、線維方向が揃っている様子が観測された(図9b)。一方、実施例10の架橋処理時間30分を行ったコラーゲン線維膜(図9c)、及び実施例13の架橋処理を3時間行ったコラーゲン線維膜(図9d)では、コラーゲン線維方向には変化が観測されなかった。
《細胞培養》
 本実施例では、実施例7と同様の条件で作製した高強度コラーゲン線維膜(直径20mm)を用いて、ヒト骨髄由来間葉系幹細胞(hMSC)の培養を行った。また、比較例8として、コラーゲン分子を溶解させた溶液をキャストフィルム法により透明膜を作製し、これを用いてhMSCの培養を行った。更に、コラーゲン膜を用いず、ポリスチレン製12ウェル細胞培養プレート(FALCON社製)を用い、hMSCの培養を行った。
 ポリスチレン製12ウェル細胞培養プレートのウェルに、実施例7と同様の条件で得られた高強度コラーゲン線維膜、又は比較例8のコラーゲン透明膜を挿入した。それぞれのコラーゲン膜が挿入されたウェル、又はコラーゲン膜が挿入されていないウェルに、ヒト骨髄由来間葉系幹細胞(hMSC;Lot.No.6F3974)を1.0×10cells/wellで播種した。培地には、10%FBS添加D―MEM(High―Glucose)を用い、37℃、5%CO雰囲気下で培養を行った。培養する際には、骨芽細胞分化誘導因子は未添加しなかった。1日培養した後、骨分化能を調べるためアルカリホスファターゼの測定を行った。細胞をPBS(-)(pH7.4)で洗浄後、スクレイパーで回収し、200μLの100mM Tris-HCl(pH7.5)、5mM MgCl、0.2%Triton X-100に懸濁して超音波破砕した。破砕後、6,000gで10分間遠心して上清を回収した。上清20μL(適宜100mM Tris-HCl(pH7.5)、5mM MgClにて希釈)を使用し、LabAssay ALP(Wako)を用いてアルカリホスファターゼ活性を測定した。
 図10に細胞培養1日後の細胞形態の写真を示す。図に示したように、いずれの基盤上でも細胞が伸展していることが分かる。更に図11にアルカリホスファターゼ(ALP)計測の結果を示す。高強度コラーゲン線維膜を用いた場合、ALP活性が上昇しており、ヒト骨髄由来間葉系幹細胞が、骨芽細胞に分化した。
 コラーゲンの膜を用いない培養では、骨芽細胞の誘導は起きなかった。また、コラーゲン透明膜を用いた培養では、骨芽細胞の誘導は弱かったが、魚類由来の高強度コラーゲン線維膜を用いることにより、ヒト間葉系幹細胞は骨芽細胞に誘導された。
 本発明の魚類由来コラーゲン線維膜は、細胞培養基材、再生医療用の足場材料(例えば、軟骨・骨・靭帯・角膜実質・皮膚・肝臓組織の再生材料)、移植用材料(創傷被覆材料、骨補填剤、止血材料、癒着防止材など)又は薬物送達担体として、用いることができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。

Claims (7)

  1. (1)引張強度が30MPa以上であり、
    (2)重量法による密度が0.4g/cm以上であり、そして
    (3)平均膜厚が1μm~2mmで、且つ膜厚のバラツキが平均膜厚の±30%以内である、
    ことを特徴とする、魚類由来コラーゲン線維膜。
  2.  コラーゲンが魚鱗由来である、請求項1に記載の魚類由来コラーゲン線維膜。
  3.  コラーゲンが架橋されている請求項1又は2に記載の魚類由来コラーゲン線維膜。
  4.  骨芽細胞分化誘導用である、請求項1~3のいずれか一項に記載の魚類由来コラーゲン線維膜。
  5. (1)可溶化コラーゲン溶液のコラーゲンを線維化させ、0.3重量%以上のコラーゲン線維ゲルを得る、コラーゲン線維化工程、
    (2)前記コラーゲン線維ゲルから、精製水/エタノールにより、塩を除去する工程、
    (3)前記コラーゲン線維ゲルの下面及び上面を覆い、側面から脱媒することにより、乾燥させる工程、
    を含む、魚類由来コラーゲン線維膜の製造方法。
  6.  コラーゲンが魚鱗由来コラーゲンである、請求項5に記載の魚類由来コラーゲン線維膜の製造方法。
  7.  前記魚類由来コラーゲン線維膜を架橋する工程を更に含む、請求項5又は6に記載の魚類由来コラーゲン線維膜の製造方法。
PCT/JP2011/077424 2010-11-26 2011-11-28 高強度コラーゲン線維膜及びその製造方法 WO2012070679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012545817A JP5870398B2 (ja) 2010-11-26 2011-11-28 高強度コラーゲン線維膜及びその製造方法
US13/989,397 US9315562B2 (en) 2010-11-26 2011-11-28 High-strength collagen fiber membrane and a manufacturing method thereof
EP11843962.9A EP2644692B1 (en) 2010-11-26 2011-11-28 High-strength collagen fiber membrane and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010264375 2010-11-26
JP2010-264375 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070679A1 true WO2012070679A1 (ja) 2012-05-31

Family

ID=46146013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077424 WO2012070679A1 (ja) 2010-11-26 2011-11-28 高強度コラーゲン線維膜及びその製造方法

Country Status (4)

Country Link
US (1) US9315562B2 (ja)
EP (1) EP2644692B1 (ja)
JP (1) JP5870398B2 (ja)
WO (1) WO2012070679A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218453A (ja) * 2013-05-07 2014-11-20 国立大学法人東京工業大学 コラーゲン成形体及びその製造方法
JP2015047076A (ja) * 2013-08-29 2015-03-16 独立行政法人産業技術総合研究所 細胞培養基材、並びにそれを用いた骨芽細胞分化誘導方法及び骨芽細胞製造方法
WO2015167004A1 (ja) * 2014-04-30 2015-11-05 学校法人近畿大学 分化誘導用組成物
JP2017047030A (ja) * 2015-09-03 2017-03-09 多木化学株式会社 シート状コラーゲン成形体
JP2017047031A (ja) * 2015-09-03 2017-03-09 多木化学株式会社 透明性シート状コラーゲン成形体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081940A1 (en) * 2012-11-21 2014-05-30 Trustees Of Boston University Tissue markers and uses thereof
US9820733B2 (en) * 2013-07-12 2017-11-21 Cardiac Pacemakers, Inc. Moulded in place seal plug and suture anchor
JP2017531495A (ja) * 2014-10-10 2017-10-26 オーソセル・リミテッド 軟組織の無縫合修復
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions
US10376611B2 (en) * 2015-02-16 2019-08-13 The Royal Institution For The Advancement Of Learning/Mcgill University Multilayered bone graft and method of making same
BR102015021435B8 (pt) 2015-09-03 2023-10-10 Companhia Energetica Do Ceara Processo de beneficiamento da pele da tilápia e seu uso na cobertura de lesões cutâneas
GB201615205D0 (en) * 2016-09-07 2016-10-19 Jellagen Pty Ltd Method
CN107823693B (zh) * 2017-10-31 2019-10-15 广州迈普再生医学科技股份有限公司 止血纤维膜及其制备方法和止血制品
EP3689971A1 (en) * 2019-02-04 2020-08-05 Real Research Sp. z o.o. Protein hydrogel, preparation method and use thereof
RU2737358C1 (ru) * 2020-01-16 2020-11-27 Ефим Семенович Вайнерман Сверхпрочная ультратонкая коллагеновая мембрана и способ ее получения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534858A (ja) * 2000-05-26 2003-11-25 コレティカ 組織工学用にデザインされた担体を製造するための水生動物起源のコラーゲンの使用並びにそれにより得られる担体及び生体材料
JP2004148014A (ja) * 2002-10-31 2004-05-27 Nipro Corp 生分解性基材及び組織再生用補綴材並びに培養組織
JP2005334625A (ja) * 2004-04-28 2005-12-08 Ihara Suisan Kk 伸縮性コラーゲン成形体、その製造方法および用途
JP2006257014A (ja) * 2005-03-16 2006-09-28 National Institute For Materials Science 魚鱗由来コラーゲンおよびその取得方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206028A (en) * 1991-02-11 1993-04-27 Li Shu Tung Dense collagen membrane matrices for medical uses
JP3081130B2 (ja) 1995-02-23 2000-08-28 科学技術振興事業団 細胞外マトリックス成分含有ハイドロゲル薄膜
US6391333B1 (en) * 1999-04-14 2002-05-21 Collagen Matrix, Inc. Oriented biopolymeric membrane
FR2809412A1 (fr) 2000-05-26 2001-11-30 Coletica Utilisation de collagene d'origine aquatique pour la realisation de supports destines a l'ingenierie tissulaire, et supports et biomateriaux obtenus
JPWO2005014774A1 (ja) 2003-08-11 2006-10-26 独立行政法人農業生物資源研究所 動物細胞の培養担体と、該培養担体を用いた動物細胞の培養方法および移植方法
WO2005053617A2 (en) * 2003-11-28 2005-06-16 Alternative Sourced Collagen, Llc Compositions and methods comprising collagen
US8389010B2 (en) * 2004-04-28 2013-03-05 Ihara & Company Ltd. Stretchable collagen material and manufacturing method and use thereof
US8570239B2 (en) 2008-10-10 2013-10-29 LHC2 Inc. Spiraling surface antenna
US20130337227A1 (en) * 2010-11-26 2013-12-19 Tokyo Institute Of Technology Non-fibrogenesis collagen material and a manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534858A (ja) * 2000-05-26 2003-11-25 コレティカ 組織工学用にデザインされた担体を製造するための水生動物起源のコラーゲンの使用並びにそれにより得られる担体及び生体材料
JP2004148014A (ja) * 2002-10-31 2004-05-27 Nipro Corp 生分解性基材及び組織再生用補綴材並びに培養組織
JP2005334625A (ja) * 2004-04-28 2005-12-08 Ihara Suisan Kk 伸縮性コラーゲン成形体、その製造方法および用途
JP2006257014A (ja) * 2005-03-16 2006-09-28 National Institute For Materials Science 魚鱗由来コラーゲンおよびその取得方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ATSUSHI MATSUDA ET AL.: "Biofunctional materials: utilization of presents from the sea", MATERIALS INTEGRATION, vol. 20, no. 5, 2007, pages 11 - 16, XP008168359 *
See also references of EP2644692A4 *
ZHEFENG XU ET AL.: "Kakyo Mitsudo no Kotonaru Sakana Uroko Collagen Sen'imaku no Kikaiteki Tokusei", THE 33RD ANNUAL MEETING OF THE JAPANESE SOCIETY FOR BIOMATERIALS YOKOSHU, 21 November 2011 (2011-11-21), pages 108, XP008170254 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218453A (ja) * 2013-05-07 2014-11-20 国立大学法人東京工業大学 コラーゲン成形体及びその製造方法
JP2015047076A (ja) * 2013-08-29 2015-03-16 独立行政法人産業技術総合研究所 細胞培養基材、並びにそれを用いた骨芽細胞分化誘導方法及び骨芽細胞製造方法
WO2015167004A1 (ja) * 2014-04-30 2015-11-05 学校法人近畿大学 分化誘導用組成物
US10155804B2 (en) 2014-04-30 2018-12-18 Kinki University Composition for inducing differentiation
JP2017047030A (ja) * 2015-09-03 2017-03-09 多木化学株式会社 シート状コラーゲン成形体
JP2017047031A (ja) * 2015-09-03 2017-03-09 多木化学株式会社 透明性シート状コラーゲン成形体

Also Published As

Publication number Publication date
US9315562B2 (en) 2016-04-19
EP2644692A1 (en) 2013-10-02
EP2644692B1 (en) 2017-08-30
EP2644692A4 (en) 2014-11-26
JPWO2012070679A1 (ja) 2014-05-19
JP5870398B2 (ja) 2016-03-01
US20140044948A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5870398B2 (ja) 高強度コラーゲン線維膜及びその製造方法
JP5991624B2 (ja) コラーゲン非線維化成形体及びその製造方法
JP4064435B2 (ja) コラーゲンゲルおよびその製造方法
CA2663722C (en) Collagen preparation and method of isolation
JP4463702B2 (ja) 伸縮性コラーゲン成形体、その製造方法および用途
JP5889780B2 (ja) 細胞支持体及び骨再生材
JP2006257013A (ja) 魚鱗由来コラーゲンゲルとその作成方法
JP5875761B2 (ja) コラーゲン線維ゲルおよびその用途
JP5888670B2 (ja) 骨芽細胞分化誘導用培養基材、骨芽細胞分化誘導方法、及び骨芽細胞製造方法
JP5453690B2 (ja) コラーゲン・キトサン複合繊維状多孔体及びその製造方法
Antoshin et al. Semipermeable barrier-assisted electrophoretic deposition of robust collagen membranes
WO2020075841A1 (ja) バラマンディ鱗由来コラーゲンを含む細胞培養基材
KR100465015B1 (ko) 유기용매를 이용한 가용성 콜라겐의 제조방법
KR20230091583A (ko) 피코시아닌 및 넙치 콜라겐을 이용한 골 조직 재생용 나노섬유 및 이의 제조방법
JP2015047076A (ja) 細胞培養基材、並びにそれを用いた骨芽細胞分化誘導方法及び骨芽細胞製造方法
JP2010193808A (ja) 細胞培養基材
US8389010B2 (en) Stretchable collagen material and manufacturing method and use thereof
US20240059756A1 (en) Method for producing human collagen structures with controlled characteristics
Kim et al. Extraction and Characterization of Human Adipose Tissue-Derived Collagen: Toward Xeno-Free Tissue Engineering
Widdowson The Extraction, Characterisation and Application of Novel Collagen-Based Bio-Materials Derived from Rhizostomas pulmo For Tissue Engineering Applications
尾崎由季 Studies on extracted keratin as a scaffold for cell culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011843962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011843962

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13989397

Country of ref document: US