WO2012070502A1 - 表示装置およびその表示方法 - Google Patents
表示装置およびその表示方法 Download PDFInfo
- Publication number
- WO2012070502A1 WO2012070502A1 PCT/JP2011/076702 JP2011076702W WO2012070502A1 WO 2012070502 A1 WO2012070502 A1 WO 2012070502A1 JP 2011076702 W JP2011076702 W JP 2011076702W WO 2012070502 A1 WO2012070502 A1 WO 2012070502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color display
- voltage
- power supply
- data signal
- full
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3696—Generation of voltages supplied to electrode drivers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
- G09G3/3688—Details of drivers for data electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/027—Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
Definitions
- the present invention relates to a display device that switches between using and not using a source amplifier, and a display method thereof.
- a display device such as a liquid crystal display device has realized a technology for dynamically changing the power consumption of the backlight according to the difference in display area.
- Using such a technique can reduce the power consumption of the backlight, but in parts other than the backlight (for example, a panel part including a timing controller or a driver), the display area is always different regardless of the display area. A certain amount of power is consumed. As a result, when content that does not require relatively high power consumption is displayed, power is consumed correspondingly.
- Patent Document 1 a device for reducing power consumption other than the backlight is devised. Specifically, it is detected whether the upper L bits of the image data match the upper L bits of the previous data, and when they match, driving is performed with a low current drive capability. More specifically, when it is detected that only the upper L bits match, it is determined that the difference in image data corresponding to the source output voltage is small, and the data is obtained with the first current driving capability with a large consumption current. The data signal line is driven with the second current driving capability without driving the signal line. Conversely, when it is detected that the upper L bits do not match, it is determined that the difference in image data corresponding to the source output voltage is large, and the data signal line is driven with the first current driving capability with a large consumption current. Later, the data signal line is driven with the second current driving capability. In this manner, the current consumption can be reduced by switching the current driving capability in accordance with the comparison result between the gradation data in the driving period and the previous data corresponding to the immediately preceding driving level.
- Japanese Patent Publication Japanese Patent Laid-Open No. 2009-9018 (published on January 15, 2009)”
- an object of the present invention is to provide a display device and a display method thereof that can more effectively reduce power consumption accompanying data signal line driving. is there.
- a display device includes a plurality of scanning signal lines, a plurality of data signal lines intersecting with the plurality of scanning signal lines, a plurality of the scanning signal lines, and the plurality of scanning signal lines.
- a display screen having a plurality of pixels individually formed at each intersection of the data signal lines, wherein the display screen displays an eight-color display area and a full-color display.
- a power supply unit for supplying a voltage, and a source amplifier circuit provided for each of the data signal lines, and supplying the voltage from the power supply unit to the data signal line.
- a source amplifier circuit including a wiring and a source amplifier that supplies a voltage from the power supply unit to the data signal line, and a gradation to be displayed on the pixel for each pixel based on a video signal input from the outside
- a calculation unit that calculates a gradation voltage according to a display area corresponding to the pixel and the data signal line corresponding to the pixel included in the eight-color display area.
- the regulated voltage is supplied from the power supply unit via the supply wiring, and the grayscale voltage calculated by the calculation unit is applied to the data signal line corresponding to the pixel included in the full-color display region.
- a control unit that supplies power from the power source unit.
- the control unit supplies a voltage corresponding to the 8-color display to a display area that performs 8-color display, and supplies a voltage according to the full-color display to a display area that performs full-color display. More specifically, when performing 8-color display, a voltage corresponding to the 8-color display is supplied without using a source amplifier, and when performing full-color display, a source amplifier is used. A voltage corresponding to full color display is supplied.
- the display device according to one embodiment of the present invention, according to the display area, by switching between a case where display is performed using a source amplifier and a case where display is performed without using a source amplifier, The power consumed by driving the data signal line can be more effectively reduced. As a result, power consumption in the display device can be reduced.
- a display method of a display device includes a plurality of scanning signal lines, a plurality of data signal lines intersecting with the plurality of scanning signal lines, and a plurality of the scanning signals.
- a display device comprising a display screen having a line and a plurality of pixels individually formed at each intersection of the plurality of data signal lines, and a power supply unit for supplying voltage
- the display screen displays eight colors.
- the calculated gradation voltage is supplied from the power supply unit via a supply wiring, and the gradation voltage calculated in the calculation step is applied to the data signal line corresponding to the pixel included in the full-color display area as a source.
- data signal line driving is performed by switching between a case where display is performed using a source amplifier and a case where display is performed without using a source amplifier, depending on a display region. Accordingly, the power consumed can be reduced more effectively. As a result, power consumption in the display device can be reduced.
- FIG. 2 is a diagram illustrating an overall configuration of the display device 1.
- the display device 1 includes a display unit 2, a gate voltage output unit (gate driver) 4, a source voltage output unit (source driver) 6, a setting input unit 8 (user input unit), and a power supply unit 9. It has.
- the display unit 2 includes a screen composed of a plurality of pixels arranged in a matrix, and N (N is an arbitrary integer) scanning signal lines G (gate lines) for selecting and scanning the screen line-sequentially.
- M is an arbitrary integer) data signal lines S (source lines) for supplying data signals to pixels of one row included in the selected line.
- the scanning signal line G and the data signal line S are arranged so as to cross each other, and a pixel is individually formed at each intersection. That is, a region surrounded by two adjacent scanning signal lines G and two adjacent data signal lines S is one pixel.
- G (n) shown in FIG. 2 represents the n-th scanning signal line G (n is an arbitrary integer).
- G (1), G (2), and G (3) represent the first, second, and third scanning signal lines G, respectively.
- S (i) represents the i-th data signal line S (i is an arbitrary integer).
- S (1), S (2), and S (3) represent the first, second, and third data signal lines S, respectively.
- the gate voltage output unit 4 scans each scanning signal line G line-sequentially from the top to the bottom of the screen. At this time, a rectangular wave for turning on a switching element (TFT) provided in each pixel and connected to the pixel electrode is output to each scanning signal line G. Thereby, the pixels for one row in the screen are selected.
- TFT switching element
- the source voltage output unit 6 calculates the value of the voltage to be output to each pixel for the selected row from the input video signal, and outputs the voltage of that value to each data signal line S. As a result, image data is supplied to each pixel on the selected scanning signal line G. At this time, the display device 1 performs full-color display in a part of the display area and performs 8-color display in the other area. Accordingly, the source voltage output unit 6 supplies a voltage (grayscale voltage) corresponding to the full color display to the display area for performing the full color display based on the input information from the setting input unit 8, and performs the display for performing the 8-color display. A voltage (gray scale voltage) corresponding to the 8-color display is supplied to the area. Although the detailed configuration of the source voltage output unit 6 will be described later, the power consumed in the source voltage output unit 6 is reduced by performing full color display in a part of the display area as described above.
- the power supply unit 9 supplies a voltage necessary for the display device 1 to operate. Specifically, voltages for driving the gate voltage output unit 4 and the source voltage output unit 6 are output to the gate voltage output unit 4 and the source voltage output unit 6, respectively.
- the display device 1 performs full-color display in a part of the display area and performs 8-color display in the other area. More specifically, the display device 1 performs full-color display in an area designated by the user and performs 8-color display in other areas. For example, full-color display is performed in an area where it is preferable to perform full-color display on the display screen (more precisely, an area where the user has determined that full-color display should be performed).
- the user designates an area for full color display on the display screen to the setting input unit 8.
- the designation method for example, when the display device 1 is a liquid crystal display device, a method of transmitting to the display device 1 as a register setting using a serial interface can be used.
- the source voltage output unit 6 outputs a voltage value corresponding to the full color display for the full color display region designated by the user, and outputs a voltage value corresponding to the eight color display for the other eight color display regions. Output.
- FIG. 3 is a block diagram showing a main configuration of the source voltage output unit 6.
- the source voltage output unit 6 includes a setting control unit 3 (control unit) and a source output voltage generation unit 5 (calculation unit).
- Information of the full color display area designated by the user is output from the setting input unit 8 to the setting control unit 3.
- the setting control unit 3 uses a source amplifier to output a predetermined voltage in the full-color display area and uses the source amplifier in the 8-color display area.
- the source output voltage generator 5 is controlled so as to output a predetermined voltage. More specifically, the source output voltage generation unit 5 outputs, for each scanning signal line G, a predetermined voltage to the data signal line S corresponding to the full color display area using a source amplifier.
- the setting control unit 3 controls the data signal line S corresponding to the 8-color display area so as to output a predetermined voltage without using the source amplifier.
- the source output voltage generation unit 5 calculates a voltage value to be output based on a video signal input from the outside, but the setting control unit 3 performs full color display (so that a source amplifier is used). For the data signal line S being controlled, a voltage value corresponding to full color display is calculated. On the other hand, a voltage value corresponding to the 8-color display is calculated for the data signal line S that is controlled to perform 8-color display by the setting control unit 3 (not to use the source amplifier). The source output voltage generation unit 5 outputs the calculated voltage value to each data signal line S of the display unit 2.
- the source output voltage generation unit 5 includes a plurality of source amplifier circuits. Each source amplifier circuit is provided for each data signal line S. Therefore, the source output voltage generation unit 5 according to this embodiment includes M source amplifier circuits. That is, the number of source amplifier circuits and the number of data signal lines S are equal to each other.
- a predetermined voltage is output to each data signal line S without using the source amplifier, and a predetermined voltage is output using the source amplifier.
- the output can be switched appropriately.
- a source amplifier circuit provided in each data signal line S is shown in FIG.
- the source amplifier circuit 15 includes two types of power supplies (VGM (1) (first power supply) and VGM (2) (second power supply); power supply unit). These power supplies may supply a voltage generated by a power supply circuit (not shown) based on the voltage from the power supply section 9, or the power supply section 9 itself may be the power supply VGM (1). In this case, as shown in FIG. 1, it is preferable to convert the voltage from the power supply VGM (1) into the voltage supplied from the power supply VGM (2) by performing voltage conversion by the regulator 10.
- VGM (1) first power supply
- VGM (2) second power supply
- power supply unit power supply unit
- the power supply VGM (1) is a power supply with a high current supply capability although the accuracy of the supply voltage is low.
- the power supply VGM (2) is a power supply with high accuracy of supply voltage but low current supply capability.
- the switch SW (0) when driving the full-color display area, the switch SW (0) is switched to the contact B, and one of the switches SW (1) to (n) (n is an arbitrary integer) is turned on to A voltage for displaying a desired gradation is supplied through the amplifier 7.
- the voltage supplied from the power source VGM (2) is divided into a voltage (gradation voltage) for displaying each gradation by a ladder resistor. Therefore, by selecting a switch corresponding to the gradation to be displayed among the switches SW (1) to (n), a voltage for displaying the gradation can be output.
- the switch SW (0) is controlled by the setting control unit 3, and is controlled to switch to the contact A when performing 8-color display and to switch to the contact B when performing full-color display. That is, for each scanning signal line G, for the data signal line S corresponding to the 8-color display area, the switch SW (0) is switched to the contact A to output a predetermined voltage, and the full-color display area
- the data control line 3 is controlled by the setting control unit 3 so as to switch the switch SW (0) to the contact B and output a predetermined voltage.
- a power supply with low supply voltage accuracy and high current supply capability is a power supply with low supply voltage accuracy and high current supply capability compared to a power supply with high supply voltage accuracy and low current supply capability. It is. That is, the accuracy and current supply capability of the power supply VGM (1) used when driving the 8-color display area are lower than the accuracy of the supply voltage of the power supply VGM (2) used when driving the full-color display area. If the current supply capability is high, it can be applied to the source voltage output unit 6 of the display device 1 according to the present embodiment.
- FIG. 4 is a flowchart showing the flow of voltage output by the source output voltage generator 5.
- FIG. 5 is a diagram schematically showing the display device 1.
- FIG. 5 shows the display device 1 when there are 12 data signal lines S as an example.
- the display screen of the display device 1 includes an 8-color display area 11 and a full-color display area 12.
- step S1 in FIG. 4 (hereinafter abbreviated as S1), NO)
- the normal image display is performed. That is, full color display using the source amplifier 7 is performed.
- the setting control unit 3 performs 8-color display in the 8-color display area 11 with respect to the source output voltage generation unit 5 and performs full-color display. Full color display is performed in the display area.
- the gate voltage output unit 4 scans N (N is an arbitrary integer) scanning signal lines G line-sequentially from the top to the bottom of the screen, and one line in the screen. Minute pixels are selected.
- the source output voltage generation unit 5 of the source voltage output unit 6 calculates the value of the voltage to be output to each pixel for the selected row from the input video signal, and uses the voltage of that value as the source amplifier circuit 15. To each data signal line S.
- the voltage output state to each pixel (data signal line S) of each line is shown in Table 1.
- the numbers 1 to 12 in Table 1 correspond to the numbers given to the source amplifier circuits 15 shown in FIG.
- the pixels on the X line are all included in the 8-color display area 11. Therefore, as shown in Table 1, the first to twelfth source amplifier circuits 15 output a predetermined voltage to each corresponding data signal line S without using the source amplifier 7. Subsequently, when the pixel on the Y line of the scanning signal line G is in a selected state, a part of the pixel on the Y line is included in the full color display area 12. Therefore, a predetermined voltage is output to each data signal line S of the pixels included in the 8-color display area 11 without using the source amplifier 7. That is, as shown in Table 1, the first, second, and ninth to twelfth source amplifier circuits 15 output a predetermined voltage to each corresponding data signal line S without using the source amplifier 7. .
- a predetermined voltage is output to each data signal line S of the pixels included in the full color display area 12 using the source amplifier 7. That is, as shown in Table 1, the third to eighth source amplifier circuits 15 use the source amplifier 7 to output a predetermined voltage to each corresponding data signal line S.
- the data signal line S of the pixel corresponding to the 8-color display area 11 is set to a predetermined value without using the source amplifier 7. And a predetermined voltage is output to the data signal line S of the pixel corresponding to the full-color display area 12 by using the source amplifier 7 (S2).
- This process is sequentially performed from the first scanning signal line G to the Nth scanning signal line G (S3, NO), and ends when the scanning to the Nth scanning signal line G is completed (S3, YES). .
- FIG. 6 is a diagram schematically showing a display screen.
- the user when providing an 8-color display area and a full-color display area on the display screen, for example, the user can designate the full-color display area with the resolution (VGA) of the display screen.
- Table 2 shows examples of setting ranges and setting values in that case.
- the data signal line S (horizontal start line) at the position where the full color display area starts in the horizontal direction (the parallel direction of the data signal lines S)
- the data signal line S (horizontal end line) at the end position
- the scanning signal line G (vertical start line) at the position where the full color display area starts in the vertical direction (the parallel direction of the scanning signal lines G)
- the scanning signal line G (vertical end line) at the position where the full color display area ends are specified.
- the horizontal start line and the horizontal end line can be set within a range of 1 to 640.
- the vertical start line and the vertical end line can be set within a range of 1 to 480. Therefore, by specifying 100 for the horizontal start line, 200 for the horizontal end line, 150 for the vertical start line, and 350 for the vertical end line, a full-color display area as shown in FIG. 6 is specified.
- the full color display area can be specified by designating the scanning signal line G and the data signal line S surrounding the area where full color display is performed. Further, by designating an arbitrary scanning signal line G and data signal line S, it is possible to designate a full color display region having an arbitrary region and size.
- the display is switched between the case where the display is performed using the source amplifier 7 and the case where the display is performed without using the source amplifier 7 according to the display area.
- the power consumed by the data signal line drive at the source voltage output unit 6 can be reduced more effectively. Thereby, the power consumption in the display device 1 can be reduced.
- a voltage for displaying a desired gradation can be supplied under a driving condition that ensures a sufficient current supply capability.
- FIG. 7 is a diagram illustrating an example of a display screen when the display device 1 according to the present embodiment is applied to an electronic book.
- FIG. 8 is a diagram showing an example of a display screen when the display device 1 according to the present embodiment is applied to a digital television receiver.
- FIG. 9 is a diagram showing a display screen example when the display device 1 according to the present embodiment is applied to a mobile phone.
- an area that displays only black and white text and an area that displays a full-color moving image may be provided in advance depending on the application.
- an area for displaying black and white text is an 8-color display area
- an area for displaying a moving image or the like is a full-color display area.
- an area where data broadcasting is performed in 8-color display and an area where normal broadcasting is performed may be provided in advance depending on display contents.
- the area where data broadcasting is performed is an 8-color display area
- the area where normal broadcasting is performed is a full-color display area.
- FIG. 10 is a circuit diagram showing a source amplifier circuit provided in each data signal line S according to another embodiment of the present invention.
- the source amplifier circuit 15 ' is provided with one power source (power source VGM (1)).
- power source VGM (1) When driving the 8-color display area, a high gradation voltage or a low gradation voltage is applied to the data signal line from the power supply VGM (1) through the wiring connecting the power supply VGM (1) and the data signal line S. Supply directly to S.
- a desired gradation voltage is supplied to the data signal line S through the ladder resistor and the source amplifier 7.
- the power source VGM (1) is a wiring that connects the power source VGM (1) and the data signal line S by switching the switch SW (0) to the contact A and turning off the switches SW (1) to (n).
- a voltage high gradation voltage or low gradation voltage
- the switch SW (0) when driving the full-color display area, the switch SW (0) is switched to the contact B, and one of the switches SW (1) to (n) (n is an arbitrary integer) is turned on to A voltage for displaying a desired gradation is supplied via the amplifier 7.
- the power supply VGM (1) may supply a voltage generated by a power supply circuit (not shown) based on the voltage from the power supply unit 9, or the power supply unit 9 itself is the power supply VGM (1). Also good.
- the power source VGM (1) and the power source VGM (2) are selectively used.
- the display unit 2 can be sufficiently provided with only one power source VGM (1). Can be driven. Therefore, depending on the display area, the source voltage output unit 6 can drive the data signal line by switching between the case where the display is performed using the source amplifier 7 and the case where the display is performed without using the source amplifier 7. Accordingly, the power consumed can be reduced more effectively. Thereby, the power consumption in the display device 1 can be reduced.
- the configuration for designating the area for full-color display on the display screen is shown, but the configuration is not necessarily limited thereto.
- the user can configure the setting input unit 8 to designate an area for performing 8-color display on the display screen. That is, eight color display may be performed in an area designated by the user, and full color display may be performed in other areas. For example, in an area where 8 color display may be performed (more precisely, an area where the user determines that 8 color display may be performed), 8 color display is performed.
- FIG. 10 is a diagram schematically showing a display screen.
- the data signal line S (horizontal start line a) at the position where the 8-color display area A starts in the horizontal direction (the parallel direction of the data signal lines S).
- the data signal line S (horizontal end line a) at the end position are designated.
- the scanning signal line G (vertical start line a) at the position where the full-color display region starts in the vertical direction (the parallel direction of the scanning signal lines G), and the scanning signal line G (vertical end line a) at the position where the full color display area ends. Is specified.
- the data signal line S (horizontal start line b) at the position where the 8-color display region B starts in the horizontal direction and the data signal line S (horizontal end line b) at the position where it ends are specified.
- the scanning signal line G (vertical start line b) at the position where the full color display area starts in the vertical direction and the scanning signal line G (vertical end line b) at the position where the full color display area ends are designated.
- the power supply unit further includes the first power supply and the second power supply with higher accuracy of supply voltage than the first power supply.
- the wiring supplies a voltage from the first power supply to the data signal line, and the source amplifier supplies a voltage from the second power supply to the data signal line.
- the voltage can be supplied by using two types of power supplies properly.
- the user further includes a user input unit for inputting information obtained by dividing the display screen into the 8-color display area and the full-color display area. It is characterized by that.
- the user can determine an area for performing 8-color display and an area for performing full-color display on the display screen.
- the power supply unit performs the 8-color display by supplying either the high gradation voltage or the low gradation voltage to the supply wiring.
- the full-color display is performed by dividing the voltage from the power supply unit with a ladder resistor and supplying a plurality of gradation voltages corresponding to a plurality of gradations to the source amplifier. .
- the one power source supplies the high gradation voltage or the low gradation voltage to perform the eight-color display
- the second power source This voltage is divided by a ladder resistor to generate a plurality of gradation voltages corresponding to a plurality of gradations, thereby performing the full color display.
- the power supply unit further generates a voltage supplied from the second power supply by converting the voltage of the first power supply. .
- the main power source of the display device itself can be used as the first power source.
- the display device is further characterized in that a plurality of at least one of the 8-color display area and the full-color display area exists.
- the effect of reducing power consumption is higher than in the case where only one 8-color display area can be designated.
- a plurality of full-color display areas it is possible to cope with a case where there are a plurality of locations where it is determined that the user should perform full-color display.
- Electronic devices to which the display device according to the present invention can be applied include, for example, a personal computer, peripheral devices (for example, a printer device, a scanner device, or a multifunction device), a mobile phone, a portable information terminal, an audio player, a digital camera, and a video.
- peripheral devices for example, a printer device, a scanner device, or a multifunction device
- a mobile phone for example, a portable information terminal, an audio player, a digital camera, and a video.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
ソースアンプ回路(15)は、8色表示領域を駆動する場合には、スイッチSW(0)を接点Aに切り替え、スイッチSW(1)~(n)をオフにすることによって、ソースアンプ(7)を使用せずに電圧を供給する。一方、フルカラー表示領域を駆動する場合には、スイッチSW(0)を接点Bに切り替え、スイッチSW(1)~(n)(nは任意の整数)のいずれかをオンにすることによって、ソースアンプ(7)を使用して所望の階調を表示するための電圧を供給する。
Description
本発明は、ソースアンプを使用する場合と使用しない場合とを切り替えて駆動する表示装置およびその表示方法に関する。
近年、液晶表示装置に代表される薄型、軽量、および低消費電力の表示装置が盛んに活用されている。こうした表示装置は、例えば携帯電話、スマートフォン、またはラップトップ型パーソナルコンピュータ等への搭載が顕著である。また、今後はより薄型の表示装置である電子ペーパーの開発および普及も急速に進むことが期待されている。このような状況の中、現在、各種の表示装置において消費電力を低下させることが共通の課題となっている。
消費電力を低下させるために、液晶表示装置等の表示装置では、表示領域の差異に応じてバックライトの消費電力を動的に変化させる技術が実現されている。このような技術を用いれば、バックライトの消費電力を抑えることはできるが、バックライト以外の部分(例えば、タイミングコントローラ、あるいはドライバ等を含むパネル部分)では、表示領域の差異に関わらず、常に一定の電力が消費されている。これにより、比較的電力消費を必要としないコンテンツが表示されている場合、その分だけ無駄に電力が消費されてしまっていた。
そこで、特許文献1では、バックライト以外の消費電力を低下させるための工夫がされている。具体的には、画像データの上位Lビットと前データの上位Lビットが一致しているか否かを検出し、一致しているときに低い電流駆動能力で駆動するようにしている。より具体的には、上位Lビットだけが一致していることが検出されたときには、ソース出力電圧に対応する画像データの差が小さいと判断し、消費電流の大きい第1の電流駆動能力でデータ信号線を駆動することなく、第2の電流駆動能力でデータ信号線を駆動する。逆に、上位Lビットが不一致であることが検出されたときには、ソース出力電圧に対応する画像データの差が大きいと判断し、消費電流の大きい第1の電流駆動能力でデータ信号線を駆動した後に、第2の電流駆動能力でデータ信号線を駆動する。このように、駆動期間の階調データと直前の駆動レベルに対応した前データとの比較結果に応じて電流駆動能力を切り替えることによって、消費電流を削減できるようになる。
しかしながら、上述した特許文献1に記載の技術では、充分な消費電力の低下が望めない。これは、特許文献1に記載の技術では、指定した領域のソースアンプの駆動能力を意図的に低下させることができないためである。また、白画像と黒画像とでは、すべてのビットで値が異なるため、8色表示でも常にソースアンプの駆動能力が低下しているとは限らない。したがって、常時8色表示で表示することが決まっている領域がある場合でも、低消費電力でデータ信号線を駆動することができるとは限らない。
そこで、本発明は、上記課題に鑑みてなされたものであり、その目的は、データ信号線駆動に伴う電力消費をより効果的に低減することができる表示装置およびその表示方法を提供することにある。
本発明の一態様に係る表示装置は、上記課題を解決するために、複数の走査信号線と、複数の上記走査信号線と交差する複数のデータ信号線と、複数の上記走査信号線および複数の上記データ信号線の交差点ごとに個別に形成された複数の画素とを備えた表示画面を備えた表示装置であって、上記表示画面が8色表示を行う8色表示領域と、フルカラー表示を行うフルカラー表示領域とに分けられており、電圧を供給する電源部と、上記データ信号線ごとに設けられたソースアンプ回路であって、該データ信号線に上記電源部からの電圧を供給する供給配線と、該データ信号線に上記電源部からの電圧を供給するソースアンプとを備えたソースアンプ回路と、上記画素ごとに、外部から入力された映像信号に基づき、該画素に表示する階調に対応し、かつ該画素が含まれる表示領域に応じて階調電圧を算出する算出部と、上記8色表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出部が算出した階調電圧を、上記供給配線を介して上記電源部から供給させると共に、上記フルカラー表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出部が算出した階調電圧を、上記ソースアンプを介して上記電源部から供給させる制御部とを備えていることを特徴としている。
上記の構成によれば、本発明の一態様に係る表示装置では、一部の表示領域でフルカラー表示を行い、他の領域で8色表示を行っている。そこで、制御部は、8色表示を行う表示領域には8色表示に応じた電圧を供給し、フルカラー表示を行う表示領域にはフルカラー表示に応じた電圧を供給している。より具体的には、8色表示を行う場合には、ソースアンプを使用せずに8色表示に応じた電圧電圧を供給しており、フルカラー表示を行う場合には、ソースアンプを使用してフルカラー表示に応じた電圧を供給している。
以上のように、本発明の一態様に係る表示装置では、表示領域に応じて、ソースアンプを使用して表示を行う場合と、ソースアンプを使用しないで表示を行う場合とを切り替えることによって、データ信号線駆動に伴って消費される電力をより効果的に低減させることができる。これにより、表示装置における消費電力を低減させることが可能となる。
本発明の一態様に係る表示装置の表示方法は、上記課題を解決するために、複数の走査信号線と、複数の上記走査信号線と交差する複数のデータ信号線と、複数の上記走査信号線および複数の上記データ信号線の交差点ごとに個別に形成された複数の画素とを備えた表示画面と、電圧を供給する電源部とを備えた表示装置において、上記表示画面が8色表示を行う8色表示領域と、フルカラー表示を行うフルカラー表示領域とに分けられている表示装置の表示方法であって、上記画素ごとに、外部から入力された映像信号に基づき、該画素に表示する階調に対応し、かつ該画素が含まれる表示領域に応じて階調電圧を算出する算出ステップと、上記8色表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出ステップにおいて算出した階調電圧を、供給配線を介して上記電源部から供給させると共に、上記フルカラー表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出ステップにおいて算出した階調電圧を、ソースアンプを介して上記電源部から供給させる制御ステップとを備えていることを特徴としている。
上記の方法によれば、データ信号線駆動に伴う電力消費をより効果的に低減することができる表示方法を提供することができる。
本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
本発明の一態様に係る表示装置では、表示領域に応じて、ソースアンプを使用して表示を行う場合と、ソースアンプを使用しないで表示を行う場合とを切り替えることによって、データ信号線駆動に伴って消費される電力をより効果的に低減させることができる。これにより、表示装置における消費電力を低減させることが可能となる。
以下では、本発明の表示装置の実施形態について、図面を参照して詳細に説明する。
(表示装置1の構成)
まず、本実施形態に係る表示装置の構成について、図2を参照して説明する。図2は、表示装置1の全体構成を示す図である。
まず、本実施形態に係る表示装置の構成について、図2を参照して説明する。図2は、表示装置1の全体構成を示す図である。
図2に示すように、表示装置1は、表示部2、ゲート電圧出力部(ゲートドライバ)4、ソース電圧出力部(ソースドライバ)6、設定入力部8(ユーザ入力部)および電源供給部9を備えている。表示部2は、マトリクス状に配置された複数の画素からなる画面と、画面を線順次に選択して走査するためのN本(Nは任意の整数)の走査信号線G(ゲートライン)と、選択されたラインに含まれる一行分の画素にデータ信号を供給するM本(Mは任意の整数)のデータ信号線S(ソースライン)とを備えている。走査信号線Gとデータ信号線Sとは互いに交差するように配置されており、その交差点ごとに個別に画素が形成されている。すなわち、隣り合う2つの走査信号線Gと、隣り合う2つのデータ信号線Sとによって囲まれた領域が1つの画素である。
図2に示すG(n)はn本目(nは任意の整数)の走査信号線Gを表す。例えば、G(1)、G(2)およびG(3)は、それぞれ1本目、2本目および3本目の走査信号線Gを表す。一方、S(i)はi本目(iは任意の整数)のデータ信号線Sを表す。例えば、S(1)、S(2)およびS(3)は、それぞれ1本目、2本目および3本目のデータ信号線Sを表す。
ゲート電圧出力部4は、各走査信号線Gを画面の上から下に向かって線順次走査する。その際、各走査信号線Gに対して、各画素に備えられ、なおかつ画素電極に接続されたスイッチング素子(TFT)をオン状態にさせるための矩形波を出力する。これにより、画面内の1行分の画素を選択状態にする。
ソース電圧出力部6は、入力された映像信号から、選択された1行分の各画素に出力すべき電圧の値を算出し、その値の電圧を各データ信号線Sに出力する。結果、選択された走査信号線G上にある各画素に対して画像データを供給する。この際、表示装置1では、一部の表示領域でフルカラー表示を行い、他の領域で8色表示を行っている。そこで、ソース電圧出力部6は、設定入力部8からの入力情報に基づいて、フルカラー表示を行う表示領域にはフルカラー表示に応じた電圧(階調電圧)を供給し、8色表示を行う表示領域には8色表示に応じた電圧(階調電圧)を供給している。ソース電圧出力部6の詳細な構成については後述するが、このように一部の表示領域においてフルカラー表示を行うことによって、ソース電圧出力部6において消費する電力を削減している。
電源供給部9は、表示装置1が動作するために必要な電圧を供給する。具体的には、ゲート電圧出力部4およびソース電圧出力部6を駆動するための電圧をそれぞれゲート電圧出力部4およびソース電圧出力部6に出力している。
(ソース電圧出力部6の構成)
上述したように、表示装置1では、一部の表示領域でフルカラー表示を行い、他の領域で8色表示を行っている。より具体的には、表示装置1では、ユーザが指定した領域においてフルカラー表示を行い、その他の領域において8色表示を行う。例えば、表示画面上においてフルカラー表示を行った方が好ましい領域(正確には、フルカラー表示を行った方が良いとユーザが判断した領域)ではフルカラー表示を行う。
上述したように、表示装置1では、一部の表示領域でフルカラー表示を行い、他の領域で8色表示を行っている。より具体的には、表示装置1では、ユーザが指定した領域においてフルカラー表示を行い、その他の領域において8色表示を行う。例えば、表示画面上においてフルカラー表示を行った方が好ましい領域(正確には、フルカラー表示を行った方が良いとユーザが判断した領域)ではフルカラー表示を行う。
ユーザは、設定入力部8に対して、表示画面上においてフルカラー表示を行う領域を指定する。指定方法としては、例えば、表示装置1が液晶表示装置である場合、シリアルインターフェースを用いて、レジスタ設定として表示装置1に対して送信する方法をとることができる。ソース電圧出力部6では、ユーザが指定したフルカラー表示領域に対しては、フルカラー表示に応じた電圧値を出力し、その他の8色表示領域に対しては、8色表示に応じた電圧値を出力している。
以下では、ソース電圧出力部6のより詳細な構成について、図3を参照して説明する。図3は、ソース電圧出力部6の要部構成を示すブロック図である。
図3に示すように、ソース電圧出力部6は、設定制御部3(制御部)およびソース出力電圧生成部5(算出部)を備えている。ユーザが指定したフルカラー表示領域の情報は、設定入力部8から設定制御部3に出力される。設定制御部3は、設定入力部8からの情報に基づいて、フルカラー表示領域には、ソースアンプを使用して所定の電圧を出力するようにし、8色表示領域には、ソースアンプを使用せずに所定の電圧を出力するようにソース出力電圧生成部5を制御している。より具体的には、ソース出力電圧生成部5では、走査信号線Gごとに、フルカラー表示領域に該当するデータ信号線Sに対しては、ソースアンプを使用して所定の電圧を出力するように制御し、8色表示領域に該当するデータ信号線Sに対しては、ソースアンプを使用せずに所定の電圧を出力するように設定制御部3によって制御されている。
この際、ソース出力電圧生成部5では、外部から入力された映像信号に基づいて出力する電圧値を算出するが、設定制御部3によってフルカラー表示を行うように(ソースアンプを使用するように)制御されているデータ信号線Sに対してはフルカラー表示に応じた電圧値を算出する。一方、設定制御部3によって8色表示を行うように(ソースアンプを使用しないように)制御されているデータ信号線Sに対しては8色表示に応じた電圧値を算出する。ソース出力電圧生成部5は、算出した値の電圧を表示部2の各データ信号線Sに出力する。
(ソース出力電圧生成部5の構成)
ソース出力電圧生成部5は、複数のソースアンプ回路を備えている。各ソースアンプ回路は、データ信号線Sごとに設けられる。したがって、本実施形態に係るソース出力電圧生成部5はM個のソースアンプ回路を備えている。すなわちソースアンプ回路の数とデータ信号線Sの数とは互いに等しい。
ソース出力電圧生成部5は、複数のソースアンプ回路を備えている。各ソースアンプ回路は、データ信号線Sごとに設けられる。したがって、本実施形態に係るソース出力電圧生成部5はM個のソースアンプ回路を備えている。すなわちソースアンプ回路の数とデータ信号線Sの数とは互いに等しい。
ここで、ソース出力電圧生成部5のソースアンプ回路では、各データ信号線Sに対して、ソースアンプを使用せずに所定の電圧を出力する場合と、ソースアンプを使用して所定の電圧を出力する場合とを適宜切り替えることができる。各データ信号線Sに設けられているソースアンプ回路を図1に示す。
図1に示すように、ソースアンプ回路15は、2種の電源(VGM(1)(第1電源)およびVGM(2)(第2電源);電源部)を備えている。これらの電源は、電源供給部9からの電圧を基に、図示しない電源回路によって生成した電圧を供給しても良いし、電源供給部9自体が電源VGM(1)であっても良い。この場合は、図1に示したように、レギュレータ10により電圧変換を行うことによって、電源VGM(1)からの電圧を、電源VGM(2)から供給する電圧へと変換するのが好ましい。
電源VGM(1)は、供給電圧の精度は低いが、電流供給能力の高い電源である。一方、電源VGM(2)は、供給電圧の精度は高いが、電流供給能力の低い電源である。8色表示領域を駆動する場合には、2つの階調(高階調および低階調)しかとらないため、電圧の多少の変動が表示装置1の表示品位に対して与える影響はフルカラー表示時に比べて少ない。そこで、8色表示領域を駆動する場合には、スイッチSW(0)を接点Aに切り替え、スイッチSW(1)~(n)をオフにすることによって、電源VGM(1)とデータ信号線Sとを繋ぐ配線(供給配線)を通って、該データ信号線Sに直接電圧(高階調電圧あるいは低階調電圧)を供給する。すなわち、ソースアンプ7を使用せずに電圧を供給する。
一方、フルカラー表示領域を駆動する場合には、スイッチSW(0)を接点Bに切り替え、スイッチSW(1)~(n)(nは任意の整数)のいずれかをオンにすることによって、ソースアンプ7を介して所望の階調を表示するための電圧を供給する。電源VGM(2)から供給される電圧は、各階調を表示するための電圧(階調電圧)にラダー抵抗により分割される。したがって、スイッチSW(1)~(n)のうち、表示する階調に対応したスイッチを選択することによって、該階調を表示するための電圧を出力することができる。
スイッチSW(0)は、設定制御部3によって制御されており、8色表示を行う場合には接点Aに切り替え、フルカラー表示を行う場合には接点Bに切り替えるように制御されている。すなわち、走査信号線Gごとに、8色表示領域に該当するデータ信号線Sに対しては、スイッチSW(0)を接点Aに切り替えて所定の電圧を出力するように制御し、フルカラー表示領域に該当するデータ信号線Sに対しては、スイッチSW(0)を接点Bに切り替えて所定の電圧を出力するように設定制御部3によって制御されている。
なお、供給電圧の精度が低く、電流供給能力が高い電源とは、供給電圧の精度が高く、電流供給能力が低い電源よりも、供給電圧の精度が低く、なおかつ電流供給能力が高い電源のことである。すなわち、8色表示領域を駆動する際に用いる電源VGM(1)の供給電圧の精度および電流供給能力が、フルカラー表示領域を駆動する際に用いる電源VGM(2)の供給電圧の精度よりも低く、なおかつ電流供給能力が高ければ、本実施形態に係る表示装置1のソース電圧出力部6に適用し得る。
(ソース出力電圧生成部5による電圧出力)
以下では、ソース出力電圧生成部5による具体的な電圧出力の手順について、図5を参照して、図4に沿って説明する。図4は、ソース出力電圧生成部5による電圧出力の流れを示すフロー図である。図5は、表示装置1を概略的に示す図である。
以下では、ソース出力電圧生成部5による具体的な電圧出力の手順について、図5を参照して、図4に沿って説明する。図4は、ソース出力電圧生成部5による電圧出力の流れを示すフロー図である。図5は、表示装置1を概略的に示す図である。
ソース出力電圧生成部5による電圧出力を分かりやすく説明するために、図5には、例としてデータ信号線Sが12本である場合の表示装置1を図示している。該表示装置1の表示画面には、8色表示領域11およびフルカラー表示領域12がある。
まず、ユーザが指定したフルカラー表示領域12の情報は、設定入力部8から設定制御部3に出力される。ここで、ユーザがフルカラー表示領域12を指定しなかった場合には(図4のステップS1(以下はS1と略記する),NO)、通常通りの画像表示を行う。すなわち、ソースアンプ7を使用したフルカラー表示を行う。
一方、ユーザがフルカラー表示領域12を指定した場合には(S1,YES)、設定制御部3は、ソース出力電圧生成部5に対して、8色表示領域11においては8色表示を行い、フルカラー表示領域においてはフルカラー表示を行わせる。この際、上述したように、ゲート電圧出力部4は、N本(Nは任意の整数)の走査信号線Gを画面の上から下に向かって線順次走査していき、画面内の1行分の画素を選択状態にする。ソース電圧出力部6のソース出力電圧生成部5は、入力された映像信号から、選択された1行分の各画素に出力すべき電圧の値を算出し、その値の電圧をソースアンプ回路15から各データ信号線Sに出力する。
例えば、走査信号線GのXライン、Yライン、およびZラインの画素が選択状態である場合、各ラインの各画素(データ信号線S)への電圧出力状態を表1に示す。表1中の数字1~12は、図5に示した各ソースアンプ回路15に与えられている数字と対応している。
Xライン上の画素は、すべて8色表示領域11に含まれている。したがって、表1に示すように、1番から12番のソースアンプ回路15では、ソースアンプ7を使用せずに対応する各データ信号線Sに所定の電圧を出力する。続いて、走査信号線GのYラインの画素が選択状態である場合には、Yライン上の画素の一部がフルカラー表示領域12に含まれている。そのため、8色表示領域11に含まれている画素の各データ信号線Sには、ソースアンプ7を使用せずに所定の電圧が出力される。すなわち、表1に示すように、1番、2番、および9番から12番のソースアンプ回路15では、ソースアンプ7を使用せずに対応する各データ信号線Sに所定の電圧を出力する。一方、フルカラー表示領域12に含まれている画素の各データ信号線Sには、ソースアンプ7を使用して所定の電圧が出力される。すなわち、表1に示すように、3番から8番のソースアンプ回路15では、ソースアンプ7を使用して対応する各データ信号線Sに所定の電圧を出力する。
以上のように、n本目の走査信号線G(nはN以下の任意の整数)において、8色表示領域11に該当する画素のデータ信号線Sには、ソースアンプ7を使用せずに所定の電圧を出力し、フルカラー表示領域12に該当する画素のデータ信号線Sには、ソースアンプ7を使用して所定の電圧を出力する(S2)。この処理を1本目の走査信号線GからN本目の走査信号線Gまで順次行っていき(S3,NO)、N本目の走査信号線Gまで走査が完了した時点で終了する(S3,YES)。
(8色表示領域の設定)
ユーザは、設定入力部8に対して、表示画面上においてフルカラー表示を行う領域を指定しているが、表示画面上であればユーザは任意の領域を指定することができる。具体的な設定内容について、具体例を挙げて図6を参照して説明する。図6は、表示画面を概略的に示す図である。
ユーザは、設定入力部8に対して、表示画面上においてフルカラー表示を行う領域を指定しているが、表示画面上であればユーザは任意の領域を指定することができる。具体的な設定内容について、具体例を挙げて図6を参照して説明する。図6は、表示画面を概略的に示す図である。
図6に示すように、表示画面上に8色表示領域とフルカラー表示領域とを設ける場合、例えば、ユーザは、表示画面の解像度(VGA)をもってフルカラー表示領域を指定することができる。その場合の設定範囲の例および設定値の例を表2に示す。
表示画面の解像度をもってフルカラー表示領域を指定する場合、図6に示すように、水平方向(データ信号線Sの並列方向)においてフルカラー表示領域が開始する位置のデータ信号線S(水平開始ライン)と、終了する位置のデータ信号線S(水平終了ライン)とを指定する。同様に、垂直方向(走査信号線Gの並列方向)においてフルカラー表示領域が開始する位置の走査信号線G(垂直開始ライン)と、終了する位置の走査信号線G(垂直終了ライン)とを指定する。例えば、表2に示すように、表示画面の解像度が640×480である場合には、水平開始ラインおよび水平終了ラインは、1~640の範囲内で設定可能である。また、垂直開始ラインおよび垂直終了ラインは、1~480の範囲内で設定可能である。そこで、水平開始ラインを100、水平終了ラインを200、垂直開始ラインを150、および垂直終了ラインを350と指定することによって、図6に示したようなフルカラー表示領域が指定される。
このように、フルカラー表示を行う領域を囲む走査信号線Gならびにデータ信号線Sを指定することによって、フルカラー表示領域を特定することができる。また、任意の走査信号線Gならびにデータ信号線Sを指定することによって、任意の領域およびサイズのフルカラー表示領域を指定することが可能である。
なお、以上では、解像度(VGA)をもってフルカラー表示領域を指定する例を挙げたが、必ずしもこれに限定されるわけではない。フルカラー表示領域をユーザが指定することができる手法であれば、いかなる手法であっても良い。また、以上では、フルカラー表示領域が矩形である例を挙げたが、フルカラー表示領域は矩形に限定されるわけではない。ユーザは、所望な形状のフルカラー表示領域を指定することができる。
(作用効果)
以上のように、本実施形態に係る表示装置1では、表示領域に応じて、ソースアンプ7を使用して表示を行う場合と、ソースアンプ7を使用しないで表示を行う場合とを切り替えることによって、ソース電圧出力部6にてデータ信号線駆動に伴って消費される電力をより効果的に低減させることができる。これにより、表示装置1における消費電力を低減させることが可能となる。特に、フルカラー表示を行う際には、十分な電流供給能力を確保した駆動条件で所望の階調を表示するための電圧を供給することができる。
以上のように、本実施形態に係る表示装置1では、表示領域に応じて、ソースアンプ7を使用して表示を行う場合と、ソースアンプ7を使用しないで表示を行う場合とを切り替えることによって、ソース電圧出力部6にてデータ信号線駆動に伴って消費される電力をより効果的に低減させることができる。これにより、表示装置1における消費電力を低減させることが可能となる。特に、フルカラー表示を行う際には、十分な電流供給能力を確保した駆動条件で所望の階調を表示するための電圧を供給することができる。
以下では、本実施形態に係る表示装置1を各種電子機器への適用例を、図7~9を参照して簡単に説明する。図7は、本実施形態に係る表示装置1を電子書籍に適用した場合の表示画面例を示す図である。図8は、本実施形態に係る表示装置1をデジタルテレビジョン受像機に適用した場合の表示画面例を示す図である。図9は、本実施形態に係る表示装置1を携帯電話に適用した場合の表示画面例を示す図である。
例えば、電子書籍では、アプリケーションによっては白黒のテキストしか表示しない領域と、フルカラー動画等を表示する領域とが予め与えられている場合がある。この場合は、図7に示すように、本実施形態に係る表示装置1を適用すれば、白黒のテキストを表示する領域を8色表示領域とし、動画等を表示する領域をフルカラー表示領域とすることによって、消費電力を低減することができる。
また、デジタルテレビジョン受像機では、表示コンテンツによっては8色表示でデータ放送を行う領域と、通常の放送を行う領域とが予め与えられている場合がある。この場合は、図8に示すように、本実施形態に係る表示装置1を適用すれば、データ放送を行う領域を8色表示領域とし、通常の放送を行う領域をフルカラー表示領域とすることによって、消費電力を低減することができる。
また、携帯電話では、待受表示時にはベタ画像しか表示しない領域と、フルカラー自然画等を表示する領域とが予め与えられている場合がある。この場合は、図9に示すように、本実施形態に係る表示装置1を適用すれば、ベタ画像を表示する領域を8色表示領域とし、自然画を表示する領域をフルカラー表示領域とすることによって、消費電力を低減することができる。
(変形例1)
以上では、ソースアンプ回路15が2種の電源(電源VGM(1)および電源VGM(2))を備える構成を示したが、必ずしもこれに限定されるわけではない。例えば、電源VGM(1)のみから電圧供給を行っても良い。この構成について、図10を参照して説明する。図10は、本発明の他の実施形態に係る各データ信号線Sに設けられているソースアンプ回路を示す回路図である。
以上では、ソースアンプ回路15が2種の電源(電源VGM(1)および電源VGM(2))を備える構成を示したが、必ずしもこれに限定されるわけではない。例えば、電源VGM(1)のみから電圧供給を行っても良い。この構成について、図10を参照して説明する。図10は、本発明の他の実施形態に係る各データ信号線Sに設けられているソースアンプ回路を示す回路図である。
図10に示すように、ソースアンプ回路15’には、1つの電源(電源VGM(1))が設けられている。そして、8色表示領域を駆動する場合には、電源VGM(1)から電源VGM(1)とデータ信号線Sとを繋ぐ配線を通って、高階調電圧あるいは低階調電圧を該データ信号線Sに直接供給する。一方、フルカラー表示領域を駆動する場合には、ラダー抵抗ならびにソースアンプ7を解して所望の階調電圧をデータ信号線Sに供給する。なお、電源VGM(1)は、スイッチSW(0)を接点Aに切り替え、スイッチSW(1)~(n)をオフにすることによって、電源VGM(1)とデータ信号線Sとを繋ぐ配線(供給配線)を通って、該データ信号線Sに直接電圧(高階調電圧あるいは低階調電圧)を供給する。
一方、フルカラー表示領域を駆動する場合には、スイッチSW(0)を接点Bに切り替え、スイッチSW(1)~(n)(nは任意の整数)のいずれかをオンにすることによって、ソースアンプ7を介して所望の階調を表示するための電圧を供給する。なお、電源VGM(1)は、電源供給部9からの電圧を基に、図示しない電源回路によって生成した電圧を供給しても良いし、電源供給部9自体が電源VGM(1)であっても良い。
上述したソースアンプ回路15では、電源VGM(1)と電源VGM(2)とを使い分けているが、ソースアンプ回路15’のように、1つの電源VGM(1)だけでも十分に表示部2を駆動することができる。したがって、表示領域に応じて、ソースアンプ7を使用して表示を行う場合と、ソースアンプ7を使用しないで表示を行う場合とを切り替えることによって、ソース電圧出力部6にてデータ信号線駆動に伴って消費される電力をより効果的に低減させることができる。これにより、表示装置1における消費電力を低減させることが可能となる。
(変形例2)
以上では、表示画面上においてフルカラー表示を行う領域を指定する構成を示したが、必ずしもこれに限定されるわけではない。例えば、ユーザは、設定入力部8に対して、表示画面上において8色表示を行う領域を指定する構成にすることもできる。すなわち、ユーザが指定した領域において8色表示を行い、その他の領域においてフルカラー表示を行っても良い。例えば、8色表示を行っても差し支えない領域(正確には、8色表示を行っても良いとユーザが判断した領域)では、8色表示を行う。
以上では、表示画面上においてフルカラー表示を行う領域を指定する構成を示したが、必ずしもこれに限定されるわけではない。例えば、ユーザは、設定入力部8に対して、表示画面上において8色表示を行う領域を指定する構成にすることもできる。すなわち、ユーザが指定した領域において8色表示を行い、その他の領域においてフルカラー表示を行っても良い。例えば、8色表示を行っても差し支えない領域(正確には、8色表示を行っても良いとユーザが判断した領域)では、8色表示を行う。
また、8色表示領域(あるいはフルカラー表示領域)を複数箇所に設定できるようにしても良い。この場合の具体的な設定内容について、具体例を挙げて図10を参照して説明する。図10は、表示画面を概略的に示す図である。
図10に示すように、表示画面上に2つの8色表示領域とフルカラー表示領域とを設ける場合を想定する。例えば、表示画面の解像度をもって2つの8色表示領域を指定する場合、水平方向(データ信号線Sの並列方向)において8色表示領域Aが開始する位置のデータ信号線S(水平開始ラインa)と、終了する位置のデータ信号線S(水平終了ラインa)とを指定する。同様に、垂直方向(走査信号線Gの並列方向)においてフルカラー表示領域が開始する位置の走査信号線G(垂直開始ラインa)と、終了する位置の走査信号線G(垂直終了ラインa)とを指定する。さらに、水平方向において8色表示領域Bが開始する位置のデータ信号線S(水平開始ラインb)と、終了する位置のデータ信号線S(水平終了ラインb)とを指定する。同様に、垂直方向においてフルカラー表示領域が開始する位置の走査信号線G(垂直開始ラインb)と、終了する位置の走査信号線G(垂直終了ラインb)とを指定する。
このように、複数の8色表示領域を設ける場合は、それぞれの領域を指定する。8色表示領域が複数ある場合、8色表示領域を1箇所しか指定できない場合と比べて、消費電力の削減効果がより高くなる。なお、複数のフルカラー表示領域を設ける構成にすることも可能である。この場合は、ユーザがフルカラー表示を行った方が良いと判断した箇所が複数ある場合でも対応することができる。このように、8色表示領域およびフルカラー表示領域のうち、少なくともいずれか一方を複数設けることによって、ユーザの選択の幅が広がる。
本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
〔実施形態の総括〕
以上のように、本発明の一態様に係る表示装置においては、さらに、上記電源部が、第1電源と、上記第1電源よりも供給電圧の精度が高い第2電源とからなり、上記供給配線は、上記データ信号線に上記第1電源からの電圧を供給し、上記ソースアンプは、上記データ信号線に上記第2電源からの電圧を供給することを特徴としている。
以上のように、本発明の一態様に係る表示装置においては、さらに、上記電源部が、第1電源と、上記第1電源よりも供給電圧の精度が高い第2電源とからなり、上記供給配線は、上記データ信号線に上記第1電源からの電圧を供給し、上記ソースアンプは、上記データ信号線に上記第2電源からの電圧を供給することを特徴としている。
上記の構成によれば、2種類の電源を使い分けて電圧の供給を行うことができる。
本発明の一態様に係る表示装置においては、さらに、ユーザが、上記8色表示領域と、上記フルカラー表示領域とに上記表示画面を分けた情報を入力するためのユーザ入力部をさらに備えていることを特徴としている。
上記の構成によれば、ユーザが、表示画面上において、8色表示を行う領域と、フルカラー表示を行う領域とを決定することができる。
本発明の一態様に係る表示装置においては、さらに、上記電源部が、高階調電圧および低階調電圧のいずれかを上記供給配線に供給することによって、上記8色表示を行っており、上記電源部からの電圧をラダー抵抗によって分割し、複数の階調に対応する複数の階調電圧を生成したものを上記ソースアンプに供給することによって、上記フルカラー表示を行っていることを特徴としている。
本発明の一態様に係る表示装置においては、さらに、上記1電源が、高階調電圧および低階調電圧のいずれかを供給することによって、上記8色表示を行っており、上記第2電源からの電圧をラダー抵抗によって分割し、複数の階調に対応する複数の階調電圧を生成することによって、上記フルカラー表示を行っていることを特徴としている。
上記の構成によれば、8色表示時には、高階調電圧および低階調電圧のいずれかをソースアンプを使用せずに供給するので、データ信号線駆動に使用される電力を削減することができる。
本発明の一態様に係る表示装置においては、さらに、上記電源部は、上記第1電源の電圧を電圧変換することによって、上記第2電源から供給する電圧を生成していることを特徴としている。
上記の構成によれば、第1電源として表示装置の主電源そのものを用いることも可能である。
本発明の一態様に係る表示装置においては、さらに、上記8色表示領域および上記フルカラー表示領域のうち、少なくともいずれか一方は複数存在していることを特徴としている。
上記の構成によれば、例えば、8色表示領域が複数ある場合、8色表示領域を1箇所しか指定できない場合と比べて、消費電力の削減効果がより高くなる。また、複数のフルカラー表示領域を設ける構成にする場合は、ユーザがフルカラー表示を行った方が良いと判断した箇所が複数ある場合でも対応することができる。
発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
本発明に係る表示装置が適用可能な電子機器としては、例えば、パーソナルコンピュータ、その周辺機器(例えば、プリンタ装置、スキャナ装置または複合機)、携帯電話機、携帯情報端末、オーディオプレーヤ、デジタルカメラ、ビデオカメラ、テレビジョン受像機、またはプロジェクタ等がある。
1 表示装置
2 表示部
3 設定制御部
4 ゲート電圧出力部
5 ソース出力電圧生成部
6 ソース電圧出力部
7 ソースアンプ
8 設定入力部
9 電源供給部
10 レギュレータ
11 8色表示領域
12 フルカラー表示領域
15,15’ ソースアンプ回路
2 表示部
3 設定制御部
4 ゲート電圧出力部
5 ソース出力電圧生成部
6 ソース電圧出力部
7 ソースアンプ
8 設定入力部
9 電源供給部
10 レギュレータ
11 8色表示領域
12 フルカラー表示領域
15,15’ ソースアンプ回路
Claims (8)
- 複数の走査信号線と、複数の上記走査信号線と交差する複数のデータ信号線と、複数の上記走査信号線および複数の上記データ信号線の交差点ごとに個別に形成された複数の画素とを備えた表示画面を備えた表示装置であって、
上記表示画面が8色表示を行う8色表示領域と、フルカラー表示を行うフルカラー表示領域とに分けられており、
電圧を供給する電源部と、
上記データ信号線ごとに設けられたソースアンプ回路であって、
該データ信号線に上記電源部からの電圧を供給する供給配線と、
該データ信号線に上記電源部からの電圧を供給するソースアンプとを備えたソースアンプ回路と、
上記画素ごとに、外部から入力された映像信号に基づき、該画素に表示する階調に対応し、かつ該画素が含まれる表示領域に応じて階調電圧を算出する算出部と、
上記8色表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出部が算出した階調電圧を、上記供給配線を介して上記電源部から供給させると共に、上記フルカラー表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出部が算出した階調電圧を、上記ソースアンプを介して上記電源部から供給させる制御部とを備えていることを特徴とする表示装置。 - 上記電源部が、第1電源と、上記第1電源よりも供給電圧の精度が高い第2電源とからなり、
上記供給配線は、上記データ信号線に上記第1電源からの電圧を供給し、
上記ソースアンプは、上記データ信号線に上記第2電源からの電圧を供給することを特徴とする請求項1に記載の表示装置。 - ユーザが、上記8色表示領域と、上記フルカラー表示領域とに上記表示画面を分けた情報を入力するためのユーザ入力部をさらに備えていることを特徴とする請求項1または2に記載の表示装置。
- 上記電源部が、高階調電圧および低階調電圧のいずれかを上記供給配線に供給することによって、上記8色表示を行っており、
上記電源部からの電圧をラダー抵抗によって分割し、複数の階調に対応する複数の階調電圧を生成したものを上記ソースアンプに供給することによって、上記フルカラー表示を行っていることを特徴とする請求項1に記載の表示装置。 - 上記1電源が、高階調電圧および低階調電圧のいずれかを供給することによって、上記8色表示を行っており、
上記第2電源からの電圧をラダー抵抗によって分割し、複数の階調に対応する複数の階調電圧を生成することによって、上記フルカラー表示を行っていることを特徴とする請求項2に記載の表示装置。 - 上記電源部は、上記第1電源の電圧を電圧変換することによって、上記第2電源から供給する電圧を生成していることを特徴とする請求項2または5に記載の表示装置。
- 上記8色表示領域および上記フルカラー表示領域のうち、少なくともいずれか一方は複数存在していることを特徴とする請求項1~6のいずれか1項に記載の表示装置。
- 複数の走査信号線と、複数の上記走査信号線と交差する複数のデータ信号線と、複数の上記走査信号線および複数の上記データ信号線の交差点ごとに個別に形成された複数の画素とを備えた表示画面と、電圧を供給する電源部とを備えた表示装置において、上記表示画面が8色表示を行う8色表示領域と、フルカラー表示を行うフルカラー表示領域とに分けられている表示装置の表示方法であって、
上記画素ごとに、外部から入力された映像信号に基づき、該画素に表示する階調に対応し、かつ該画素が含まれる表示領域に応じて階調電圧を算出する算出ステップと、
上記8色表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出ステップにおいて算出した階調電圧を、供給配線を介して上記電源部から供給させると共に、上記フルカラー表示領域に含まれる上記画素に対応する上記データ信号線に、上記算出ステップにおいて算出した階調電圧を、ソースアンプを介して上記電源部から供給させる制御ステップとを備えていることを特徴とする表示方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/988,704 US20130241917A1 (en) | 2010-11-25 | 2011-11-18 | Display device, and display method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-262844 | 2010-11-25 | ||
JP2010262844 | 2010-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070502A1 true WO2012070502A1 (ja) | 2012-05-31 |
Family
ID=46145844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076702 WO2012070502A1 (ja) | 2010-11-25 | 2011-11-18 | 表示装置およびその表示方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20130241917A1 (ja) |
WO (1) | WO2012070502A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036057A (ja) * | 2001-07-23 | 2003-02-07 | Toshiba Corp | 表示装置 |
JP2003162263A (ja) * | 2001-11-27 | 2003-06-06 | Casio Comput Co Ltd | 表示駆動装置及び駆動制御方法 |
JP2006133551A (ja) * | 2004-11-08 | 2006-05-25 | Nec Electronics Corp | カラー表示装置及びその駆動回路 |
JP2006350318A (ja) * | 2005-05-20 | 2006-12-28 | Semiconductor Energy Lab Co Ltd | 液晶表示装置及び電子機器 |
JP2009025656A (ja) * | 2007-07-20 | 2009-02-05 | Tpo Displays Corp | 液晶表示装置の駆動装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4106888B2 (ja) * | 2001-09-19 | 2008-06-25 | カシオ計算機株式会社 | 液晶表示装置および携帯端末装置 |
JP2004233743A (ja) * | 2003-01-31 | 2004-08-19 | Renesas Technology Corp | 表示駆動制御装置および表示装置を備えた電子機器 |
JP4645258B2 (ja) * | 2005-03-25 | 2011-03-09 | 日本電気株式会社 | デジタルアナログ変換回路及び表示装置 |
TWI345199B (en) * | 2006-11-03 | 2011-07-11 | Chimei Innolux Corp | Power switch circuit and liquid crystal display using the same |
-
2011
- 2011-11-18 US US13/988,704 patent/US20130241917A1/en not_active Abandoned
- 2011-11-18 WO PCT/JP2011/076702 patent/WO2012070502A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036057A (ja) * | 2001-07-23 | 2003-02-07 | Toshiba Corp | 表示装置 |
JP2003162263A (ja) * | 2001-11-27 | 2003-06-06 | Casio Comput Co Ltd | 表示駆動装置及び駆動制御方法 |
JP2006133551A (ja) * | 2004-11-08 | 2006-05-25 | Nec Electronics Corp | カラー表示装置及びその駆動回路 |
JP2006350318A (ja) * | 2005-05-20 | 2006-12-28 | Semiconductor Energy Lab Co Ltd | 液晶表示装置及び電子機器 |
JP2009025656A (ja) * | 2007-07-20 | 2009-02-05 | Tpo Displays Corp | 液晶表示装置の駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130241917A1 (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070024557A1 (en) | Video signal processor, display device, and method of driving the same | |
KR100621506B1 (ko) | 표시 장치 | |
JP4501525B2 (ja) | 表示装置及びその駆動制御方法 | |
JP2001202053A (ja) | 表示装置及び情報携帯端末 | |
KR100896386B1 (ko) | 디스플레이 드라이버 | |
JP2006330338A (ja) | 表示装置及び携帯機器 | |
US20180090085A1 (en) | Electro-optical device, method of controlling electro-optical device, and electronic apparatus | |
JP2009122561A (ja) | 液晶表示装置 | |
JP2008122745A (ja) | ガンマ補正用テーブルの作成方法、表示装置用駆動回路、及び電気光学装置 | |
WO2012070502A1 (ja) | 表示装置およびその表示方法 | |
JP2005055616A (ja) | 表示装置及びその駆動制御方法 | |
WO2012070501A1 (ja) | 表示装置およびその表示方法 | |
KR100481213B1 (ko) | 액정표시장치 및 그의 구동방법 | |
JP5262093B2 (ja) | 表示制御回路及びそれを備えた表示装置 | |
US20110057949A1 (en) | Semiconductor integrated circuit, display device, and display control method | |
JP4639576B2 (ja) | 電気光学装置の駆動方法、電気光学装置及び電子機器 | |
KR101120313B1 (ko) | 표시 구동 장치 | |
JP3826930B2 (ja) | 液晶表示装置 | |
JP2008241975A (ja) | 表示装置および電子機器 | |
JP2006098422A (ja) | 表示装置 | |
JP2005326790A (ja) | 液晶表示装置、該液晶表示装置に用いられる駆動方法、及び該液晶表示装置を備えた電子機器 | |
JP2011059706A (ja) | 表示装置用駆動回路 | |
JP2007206531A (ja) | 表示駆動装置及びそれを備えた表示装置 | |
JP2007241306A (ja) | 表示装置用駆動回路 | |
KR20110017315A (ko) | 표시패널 구동장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11843739 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13988704 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11843739 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |