WO2012070422A1 - 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法 - Google Patents

帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法 Download PDF

Info

Publication number
WO2012070422A1
WO2012070422A1 PCT/JP2011/076227 JP2011076227W WO2012070422A1 WO 2012070422 A1 WO2012070422 A1 WO 2012070422A1 JP 2011076227 W JP2011076227 W JP 2011076227W WO 2012070422 A1 WO2012070422 A1 WO 2012070422A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass film
shaped glass
strip
cleaving
band
Prior art date
Application number
PCT/JP2011/076227
Other languages
English (en)
French (fr)
Inventor
薫 鑑継
直弘 猪飼
弘 安達
森 弘樹
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201180034311.4A priority Critical patent/CN102985381B/zh
Priority to EP11843737.5A priority patent/EP2570395B1/en
Priority to KR1020127033799A priority patent/KR101804192B1/ko
Publication of WO2012070422A1 publication Critical patent/WO2012070422A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • C03B21/02Severing glass sheets, tubes or rods while still plastic by cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/0235Ribbons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/412Roll
    • B65H2301/4127Roll with interleaf layer, e.g. liner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a technique for cleaving a strip glass film used for flat panel displays, solar cells, organic EL lighting, and the like along its transport direction.
  • FPD flat panel displays
  • liquid crystal displays plasma displays, organic EL displays and the like
  • weight reduction has been promoted. Therefore, the present situation is that the glass substrate used in the FPD is also made thinner (glass film).
  • the organic EL is being used as a flat light source for indoor lighting by emitting light only in a single color (for example, white). Since this type of lighting device can freely deform the light emitting surface if the glass substrate is flexible, the glass substrate used in the lighting device is sufficiently flexible. In order to ensure this, a significant reduction in thickness is being promoted.
  • a glass substrate (glass film) thinned to a thickness of 300 ⁇ m or less is usually obtained by being formed as a band-shaped glass film and then cut into a predetermined size. Since this belt-like glass film has such flexibility that it does not break even if it is wound around a winding core (core), it can be wound into a roll and used as a glass roll.
  • core winding core
  • Glass rolls that are put into production equipment for displays and lighting equipment are made of molten glass at both ends in the width direction of a strip glass film formed into a thin plate by the overflow downdraw method or slot downdraw method. It is obtained by cutting an unnecessary part (ear part) (primary cutting process) and winding it around a core (see Patent Document 1). Further, if necessary, the glass roll formed and wound by the above method is put into a Roll-to-Roll process and cut into a desired width (secondary cutting process).
  • a cutting method using laser cleaving is used for the primary cutting process and the secondary cutting process.
  • This laser cleaving is a thermal stress generated in the band-shaped glass film by performing local heating by the laser and cooling to the heating region along a line to be cut extending in the transport direction of the band-shaped glass film, and the tip of the line to be cleaved
  • the initial crack formed in the step is propagated along the planned cutting line, and the strip glass film is continuously cut.
  • the first cause is that the band-like glass film is formed to meander slightly in the width direction or the thickness direction by the overflow down draw method or the slot down draw method.
  • the second cause is a slight misalignment of the conveying device, and more specifically, wrinkles in the belt-shaped glass film due to the influence of the axial deviation of the guide roller and the deviation of the straightness of the conveying conveyor.
  • the material of the film is a stretchable web material such as a resin
  • a stretchable web material such as a resin
  • Apparent distortion and wrinkles are eliminated, and the undulation of the belt-like film being conveyed can be eliminated.
  • the band-shaped glass film since the band-shaped glass film has extremely low stretchability, even if the belt-shaped glass film is transported with tension, the band-shaped glass film does not lose its apparent distortion and wrinkles, and the wavy surface of the band-shaped glass film may be deteriorated. .
  • the belt-like glass film 12 being transported is not completely straight in the length direction of the belt-like glass film in a plan view, and is side-viewed as shown in FIG. 5A2.
  • the tension is applied in the transport direction as shown by the arrow in FIG. 5A1, the following form is obtained. That is, as shown in FIG. 5B1, distortion and wrinkle are generated in the vicinity of the longitudinal center portion of the band-shaped glass film 12 in a plan view, and as shown in FIG. 5B2, a wave 12a appears in the vicinity of the longitudinal center portion in a side view. .
  • the present invention provides a strip-shaped glass film cleaving apparatus and a strip-shaped film that can suppress undulations in a region where the strip-shaped glass film is broken in a state where at least one surface (effective surface) of the strip-shaped glass film is not in contact. It is a technical problem to provide a glass film cleaving method.
  • the belt-shaped glass film cleaving apparatus of the present invention for solving the above-mentioned problem is that while heating the belt-shaped glass film in the longitudinal direction, local heating on the planned cutting line along the transport direction of the belt-shaped glass film and cooling for the heating region
  • the band-shaped glass film cleaving apparatus configured to cleave the band-shaped glass film along the conveyance direction using the thermal stress generated by applying the above, the conveyance direction rather than the cleaving region where the band-shaped glass film is cleaved
  • the back side of the belt-like glass film is supported by the support means, and air is supplied from the air supply means to the surface of the belt-like glass film, whereby the belt-like glass film is supported with respect to the support means. It is characterized by being configured to hold down.
  • the undulation can be kept upstream from the position where the strip glass film is pressed. It is possible to suppress undulations in the cleaved region of the existing strip glass film. As a result, in the middle of the cleaving of the strip-shaped glass film, the situation where the crack of the cleaved portion is removed from the planned cutting line and meanders becomes jagged, or the crack of the cleaved portion deviates from the planned cutting line, and the band shape The situation of progressing in the width direction of the glass film can be effectively avoided.
  • belt-shaped glass film is a non-contact state. Therefore, problems such as adhesion of dirt and occurrence of damage on the one surface are less likely to occur.
  • belt-shaped glass film is a horizontal direction.
  • the “lateral direction” includes not only the horizontal direction but also an inclined direction in which the downstream side in the conveying direction is inclined downward, or an inclined direction in which the downstream side in the conveying direction is inclined upward.
  • the supply width of the air from the air supply means is set wider than the width of the belt-shaped glass film.
  • the entire width direction of the belt-shaped glass film can be pressed by the air from the air supply means, so that the effect of suppressing the undulation from reaching the cleaving region becomes more reliable.
  • the air supply means is preferably an air knife.
  • the air supply means is an air knife, it is possible to concentrate and suppress only the portion of the belt-shaped glass film that is originally desired to be pressed, and to reduce the total flow rate of supplied air.
  • the air blowing direction from the air supply means is a direction from the position separated from the surface side on the downstream side in the conveyance direction of the band-shaped glass film toward the upstream surface in the conveyance direction of the band-shaped glass film. It is preferable that
  • the support means is preferably an air float table.
  • the method for cleaving the strip-shaped glass film of the present invention for solving the above-mentioned problem is that while heating the strip-shaped glass film in the longitudinal direction, local heating and a heating region thereof on the planned fracture line along the transport direction of the strip-shaped glass film
  • the strip glass film cleaving method for cleaving the strip glass film along the transport direction by utilizing the thermal stress generated by cooling with respect to, upstream of the transport direction than the split region where the strip glass film is split By pressing air from the air supply means to the surface of the band-shaped glass film while supporting the back side of the band-shaped glass film by the support means at the side position, the band-shaped glass film is pressed against the support means. It is characterized by.
  • the present invention since at least one surface of the belt-shaped glass film is in a non-contact state, it is possible to suppress undulations in the region where the belt-shaped glass film is cleaved. ) Is appropriately protected, and in the middle of the cleaving of the belt-shaped glass film, a defect such as a crack in the cleaving portion deviating from a cleaving planned line or deviating is effectively avoided.
  • the cleaving apparatus 1 includes a conveyor 3 as a supporting means for supporting the strip glass film 2, and a thermal stress cleaving means for cleaving the strip glass film 2 using thermal stress. 4 and an air knife 5 as an air supply means for supplying air are main components.
  • the strip glass film 2 is formed by the overflow down draw method in this embodiment.
  • the band-shaped glass film 2 continuously formed from the molded body 6 and sent downward is changed in the horizontal direction in the course of feeding, and the horizontal direction indicated by the arrow A in the cleaving apparatus 1 (in this embodiment). Horizontally or substantially horizontally).
  • the strip-shaped glass film 2 which reached this cleaving apparatus 1 is in the state supported by the conveyor 3 by the thermal stress cleaving means 4, and the unnecessary film part (strip-shaped glass film part which should become a product) 2a and unnecessary of both ends It cut
  • the speed of the conveyor belt of the conveyor 3 is synchronized with the conveying speed of the belt-shaped glass film 2.
  • the effective film portion 2a is wound around the winding device 8 in a state where the band-shaped protective film 7 made of a resin film or the like is stacked.
  • the ear part 2b is conveyed to an ear part processing device (not shown).
  • the thermal stress cleaving means 4 performs so-called laser cleaving.
  • the thermal stress cleaving means 4 is arranged on the upper side of the conveyor 3, and is a laser beam irradiation means 4a that performs local heating at the heating position P1, and a mist water injection means 4b that cools at the cooling position P2. It consists of and.
  • the heating position P ⁇ b> 1 and the cooling position P ⁇ b> 2 are located on the planned cutting line along the transport direction in the belt-shaped glass film 2.
  • this thermal stress cleaving means 4 When this thermal stress cleaving means 4 performs local heating and cooling with respect to the heating region, a thermal stress is generated in the band-shaped glass film 2, and along with this, the crack propagates along the planned fracture line, The strip-shaped glass film 2 is continuously cleaved. And the heating area
  • the air knife 5 is disposed at a position separated upward from the conveyor 3 and upstream of the thermal stress cleaving means 4 in the conveying direction. Then, the air blowing direction from the air knife 5 to the band-shaped glass film 2 is an inclination direction from the upper position on the downstream side of the band-shaped glass film 2 toward the lower side on the upstream side as indicated by an arrow B.
  • the supply width of air from the air knife 5 is set to be wider than the width of the strip glass film 2. As a result, the band-shaped glass film 2 is pressed against the conveyor 3 by the air of the air knife 5 at the position P3.
  • the cleaving apparatus 1 having the above configuration can enjoy the following effects.
  • the undulation is generated in the band-shaped glass film 2 on the upstream side from the position P3, the undulation is suppressed at the position P3 because the band-shaped glass film 2 is pressed against the upper surface of the conveyor 3 and extended at the position P3. Since the position P3 is on the upstream side in the transport direction from the cleaving region R, it is possible to suppress the undulation of the band-shaped glass film 2 from reaching the cleaving region R. Moreover, the upper surface of the strip glass film 2 to which the air from the air knife 5 is blown is in a non-contact state. Therefore, the adhesion and damage of the stain
  • the air supply amount of the air knife 5 is preferably 0.1 L / min or more, more preferably 0.5 L / min or more per unit area 1 mm 2 of the air supply port of the air knife 5.
  • the air supply amount is less than 0.1 L / min, there is a possibility that the band-shaped glass film 2 cannot be sufficiently pressed by air.
  • the air supply amount is, for example, less than 10 L / min per 1 mm 2 of unit area. In the case of 10 L / min or more, there is a possibility of causing an unnecessary increase in equipment cost accompanying an increase in capacity of the air supply source.
  • the inclination angle ⁇ formed by the air jet direction of the air knife 5 and the conveying direction of the belt-like glass film 2 in a side view is preferably 15 to 75 °, more preferably 30 to 60 °. If the inclination angle ⁇ is less than 15 °, the belt-shaped glass film 2 may not be sufficiently pressed by air, and the possibility arises. On the other hand, when the inclination angle ⁇ exceeds 75 °, the air supplied from the air knife 5 tends to flow downstream. When the air that has flowed to the downstream side enters the back side of the band-shaped glass film 2 through the cleaved portion of the band-shaped glass film 2, vibration occurs in the band-shaped glass film 2. Accordingly, there is a possibility that the band-shaped glass film 2 in the cleaving region R vibrates and the cleaving becomes unstable.
  • the distance L along the conveyance direction between the heating position P1 and the position P3 is preferably 50 to 1000 mm, more preferably 100 to 500 mm. From the viewpoint of the installation space of the air knife 5, it is difficult to make the distance L less than 50 mm. When the distance L exceeds 1000 mm, there is a possibility that the strip glass film 2 will wave again between the heating position P1 and the position P3.
  • the height H of the air supply port in the air knife 5 from the surface of the conveyor belt in the conveyor 3 is preferably 3 to 50 mm, more preferably 5 to 20 mm. If the height H is less than 3 mm, the band-shaped glass film 2 may come into contact with the tip of the air knife 5 when the band-shaped glass film 2 slightly moves up and down due to vibration or the like, and the band-shaped glass film 2 may be damaged. When the height H exceeds 50 mm, the air diffuses and there is a possibility that the band-shaped glass film 2 cannot be sufficiently pressed down.
  • the width W of the air supplied from the air knife 5 is preferably 110% or more of the width of the strip glass film 2.
  • the width W of the air is, for example, less than 150% of the width of the band-shaped glass film 2. If it is 150% or more, there is a possibility that an unnecessary increase in equipment cost accompanying an increase in capacity of the air supply source and an unnecessary increase in the equipment space of the air knife 5 may be caused.
  • the present invention is not limited to the above embodiment.
  • other air supply means such as an air float 9 shown in FIG.
  • an air supply source having a larger capacity than the air knife 5 is required.
  • the air float 9 since the air which hit the strip
  • the means for supporting the belt-like glass film 2 is not limited to the conveyor 3, and may be a simple plate-like member such as a resin plate or the air float table 10 shown in FIG.
  • a simple plate-shaped member since it slides with the band-shaped glass film 2, damage may occur on the back side of the band-shaped glass film 2.
  • the belt-like glass film 2 is not in contact with the belt-shaped glass film 2, so that there is no damage on the back side.
  • there is almost no friction when the air from an air supply means hits, the strip
  • the cleaving device 1 is used for so-called primary cutting processing between forming and winding the belt-shaped glass film 2, but the present invention is not limited to this.
  • the cleaving device 1 may be used for further cleaving of the strip-shaped glass film 2 ′ in a wound state, so-called secondary cutting treatment.
  • the band-shaped glass film 2 ′ to be cleaved by the cleaving apparatus 1 is unwound from the unwinding apparatus 11 while the band-shaped protective film 7 is removed, and is cleaved into a new effective film part 2 a ′ and ear part 2 b ′. Except for this point, the configuration is substantially the same as that of the above-described embodiment.
  • a roll of a strip glass film 2 ′ having a thickness of 70 ⁇ m, a width of 800 mm, and a length of 200 m is attached to the unwinding apparatus 11, and the strip glass film 2 ′ is an effective film portion 2a ′ having a width of 600 mm.
  • both ends were cut into ear portions 2b ′ each having a width of 100 mm and separated, and the effective film portion 2a ′ was wound up by the winding device 8.
  • the dimensions of the air ejection port were 1000 mm in the width direction of the band-shaped glass film and 0.5 mm in the conveyance direction of the band-shaped glass film.
  • the maximum value of the standard deviation value of the meandering amount in the split section of the effective film portion 2a ' was 15 ⁇ m.
  • the standard deviation value of the meandering amount in the split section of the effective film part 2a ' was calculated as follows. First, while conveying the effective film part 2a ', both ends of the effective film part 2a' were photographed with a CCD camera from the thickness direction of the effective film part 2a '. Next, the photographed image is divided every 30 mm in the length of the effective film portion 2a ′, and the effective film portion for all pixels including the end face (split section) of the effective film portion 2a ′ for each divided image. The standard deviation value was calculated from the average position in the 2a ′ width direction and the difference between each position. Note that the effective film portion 2a 'has a length of 30 mm, which is divided into 1600 pixels by a CCD camera. In the width direction, the image is taken with being divided into 1200 pixels.

Abstract

 本発明は、帯状ガラスフィルムの少なくとも片面(有効面)を非接触とした状態で、帯状ガラスフィルムが割断される領域に波打ちが及ぶことを抑制できる帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法を提供する。帯状ガラスフィルム割断装置1は、帯状ガラスフィルム2を長尺方向に搬送しながら、帯状ガラスフィルム2の搬送方向に沿う割断予定線上に局部加熱とその加熱領域に対する冷却とを施すことにより生じる熱応力を利用して、帯状ガラスフィルム2を搬送方向に沿って割断する。割断装置1は、帯状ガラスフィルム2が割断される割断領域Rよりも搬送方向の上流側位置で、帯状ガラスフィルム2の裏面側をコンベア3により支持させつつ、帯状ガラスフィルム2の表面にエアナイフ5からエアを供給することによって、帯状ガラスフィルム2をコンベア3に対して押さえる。

Description

帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法
 本発明は、フラットパネルディスプレイや太陽電池、有機EL照明などに用いられる帯状ガラスフィルムをその搬送方向に沿って割断する技術に関する。
 近年、画像表示装置は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどに代表されるフラットパネルディスプレイ(FPD)が主流になっており、また、その軽量化が進められている。そのため、FPDに使用されるガラス基板についても薄板化(ガラスフィルム化)が進められているのが現状である。
 また、有機ELについては、単色(例えば白色)のみで発光させて屋内照明の平面光源としても利用されつつある。この種の照明装置は、そのガラス基板が可撓性を有すれば、自由に発光面を変形させることが可能であるから、当該照明装置に使用されるガラス基板に関しても、十分な可撓性を確保するべく大幅な薄板化が進められている。
 300μm以下の厚みまで薄板化されたガラス基板(ガラスフィルム)は、帯状ガラスフィルムとして成形された後に所定の大きさに切断されて得られるのが通例である。この帯状ガラスフィルムは、巻き芯(コア)に巻いても割れない程度の可撓性を有するため、ロール状に巻き取ってガラスロールとすることが可能である。このように帯状ガラスフィルムをロール状に巻き取ると、Roll to Roll工程(一方のガラスロールから帯状ガラスフィルムを巻き外しながら、当該ガラスフィルムに各種処理を施し、他方のガラスロールに巻き取る工程)による帯状ガラスフィルムに対する所定幅への切断処理や各種成膜処理が可能となり、ディスプレイや照明装置の生産効率を大幅に向上させることができる。
 ディスプレイや照明装置の生産設備(Roll to Roll工程)に投入されるガラスロールは、溶融されたガラスをオーバーフローダウンドロー法やスロットダウンドロー法によって薄板状に成形された帯状ガラスフィルムの幅方向両端の不要部分(耳部)を切断し(1次切断処理)、コアに巻き取ることによって得られる(特許文献1参照)。また、必要に応じて、前記の方法により成形して巻き取られたガラスロールは、Roll to Roll工程に投入して所望の幅に切断される(2次切断処理)。
 ここで、前記の1次切断処理および2次切断処理には例えばレーザー割断による切断方法が用いられる。このレーザー割断は、帯状ガラスフィルムの搬送方向に延びる割断予定線に沿ってレーザーによる局部加熱およびその加熱領域に対する冷却を行なうことにより前記帯状ガラスフィルムに生じる熱応力で、前記割断予定線の先端部に形成した初期亀裂をその割断予定線に沿って進展させ、帯状ガラスフィルムを連続的に割断する方法である。
特開2010-132531号公報 特開2000-109252号公報 特開平8-175726号公報 特開昭60-076318号公報
 ところで、前記のレーザー割断では、帯状ガラスフィルムを連続的に割断する途中で、割断部の亀裂が割断予定線から外れて蛇行することによって帯状ガラスフィルムの切断面(割断面)がギザギザになるという事態、或いは、前記割断部の亀裂が割断予定線から逸脱して帯状ガラスフィルムの幅方向に進展するという事態を招き得る。そして、これに起因して、帯状ガラスフィルムのレーザー割断が停止してしまうという問題があった。これは、以下の原因によって、割断される領域において帯状ガラスフィルムが波打つためである。
 すなわち、第1の原因は、前記オーバーフローダウンドロー法やスロットダウンドロー法によって、帯状ガラスフィルムが、その幅方向、または、厚み方向に、僅かに蛇行して形成されること、詳しくは、平面視で帯状ガラスフィルムの長さ方向に完全なストレート状ではなく僅かに湾曲していること、または、側面視で完全に平坦ではなく全幅または幅方向の一部領域において波打っていること等である。また、第2の原因は、搬送装置の僅かなミスアライメントによること、詳しくは、ガイドローラーの軸ずれや搬送コンベアの直進度のずれ等の影響で帯状ガラスフィルムにしわが入ることである。
 この場合、フィルムの材料が、樹脂等のように伸縮性のあるウェブ材料であれば、上記のいずれかの原因によって歪みやしわが発生しても、適当な張力をかけて搬送することで、見かけ上のゆがみやしわはなくなり、搬送中の帯状フィルムの波打ちをなくすことができる。しかしながら、帯状ガラスフィルムは、伸縮性が極めて低いため、張力をかけて搬送しても帯状ガラスフィルムの見かけ上の歪みやしわがなくなることはなく、かえって帯状ガラスフィルムの波打ちが悪化する場合がある。
 例えば、図5A1に示すように、搬送中の帯状ガラスフィルム12が、平面視で帯状ガラスフィルムの長さ方向に完全なストレート状でなく湾曲しており、且つ図5A2に示すように、側面視で一直線状に延びている場合に、図5A1に矢印で示すように搬送方向に張力を付与すると、以下のような形態となる。即ち、図5B1に示すように、平面視で帯状ガラスフィルム12の長手中央部付近に歪みやしわが生じ、図5B2に示すように、側面視でその長手中央部付近に波打ち12aとなって現れる。
 ここで、ウェブのしわを伸ばす方法としては、多種のしわ延ばしローラーやしわ延ばし装置が提案されているが(特許文献2~4参照)、いずれもウェブの幅方向に入るしわのみを解消させるためのものであり、帯状ガラスフィルム搬送で生じうる搬送方向に入るしわ(波打ち)を延ばす効果はない。
 また、ニップローラーで帯状ガラスフィルムを挟んで、当該帯状ガラスフィルムの波打ちが割断領域に及ぶのを防ぐ方法も考えられるが、この場合、帯状ガラスフィルムの両面がニップローラーに接触することになり、帯状ガラスフィルムの有効面(成膜等の各種処理を行なう面)に汚れが付着し、或いは損傷が発生する等の問題がある。
 本発明は、上記事情に鑑み、帯状ガラスフィルムの少なくとも片面(有効面)を非接触とした状態で、帯状ガラスフィルムが割断される領域に波打ちが及ぶことを抑制できる帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法を提供することを技術的課題とする。
 前記課題を解決するための本発明の帯状ガラスフィルム割断装置は、帯状ガラスフィルムを長尺方向に搬送しながら、該帯状ガラスフィルムの搬送方向に沿う割断予定線上に局部加熱とその加熱領域に対する冷却とを施すことにより生じる熱応力を利用して、前記帯状ガラスフィルムを搬送方向に沿って割断するように構成した帯状ガラスフィルム割断装置において、前記帯状ガラスフィルムが割断される割断領域よりも搬送方向の上流側位置で、該帯状ガラスフィルムの裏面側を支持手段により支持させつつ、該帯状ガラスフィルムの表面にエア供給手段からエアを供給することによって、該帯状ガラスフィルムを前記支持手段に対して押さえるように構成したことに特徴づけられる。
 このような構成によれば、支持手段に対してエアで帯状ガラスフィルムを押さえることによって、該帯状ガラスフィルムを押さえている位置よりも上流側に波打ちを留めておけるため、その位置の下流側に存する帯状ガラスフィルムの割断領域に波打ちが及ぶことを抑制できる。これにより、帯状ガラスフィルムの割断途中で、割断部の亀裂が割断予定線から外れて蛇行することにより割断面がギザギザになるという事態、或いは、割断部の亀裂が割断予定線から逸脱して帯状ガラスフィルムの幅方向に進展するという事態を、効果的に回避することが可能となる。また、帯状ガラスフィルムを押さえるためにエア供給手段からのエアが吹き付けられる帯状ガラスフィルムの片面(表面)は、非接触の状態である。よって、この片面に対する汚れの付着や損傷の発生等の不具合が生じ難くなる。尚、帯状ガラスフィルムの搬送方向は、横方向であることが好ましい。ここで、「横方向」とは、水平方向のみならず、搬送方向下流側が下降傾斜する傾斜方向、或いは搬送方向下流側が上昇傾斜する傾斜方向をも含む。
 上記の構成において、前記エア供給手段からのエアの供給幅は、前記帯状ガラスフィルムの幅よりも広く設定されていることが好ましい。
 このようにすれば、エア供給手段からのエアによって、帯状ガラスフィルムの幅方向全体を押さえることができるので、波打ちが割断領域に及ぶことを抑制する効果がより確実となる。
 上記何れかの構成において、前記エア供給手段は、エアナイフであることが好ましい。 
 このようにすれば、エア供給手段がエアナイフであることにより、帯状ガラスフィルムにおける本来的に押さえたい部位のみを集中して押さえることができると共に、供給するエアの総流量を少なくすることができる。
 上記何れかの構成において、前記エア供給手段からのエアの吹き付け方向は、前記帯状ガラスフィルムの搬送方向下流側における表面側に離反した位置から該帯状ガラスフィルムの搬送方向上流側の表面に向かう方向であることが好ましい。
 このようにすれば、エアナイフから供給されたエアが、帯状ガラスフィルムの搬送方向下流側に流れて生じる弊害を抑制することができる。この弊害としては、例えば、搬送方向下流側に流れたエアが、帯状ガラスフィルムの割断された部位から反対側の面に入り込むことに起因して、帯状ガラスフィルムに振動が発生し、これによって、割断が不安定になることが挙げられる。
 上記何れかの構成において、前記支持手段は、エアフロート台であることが好ましい。 
 このようにすれば、帯状ガラスフィルムは、エアフロート台によって非接触支持されることになるので、該帯状ガラスフィルムの搬送時に摩擦がほとんど生じなくなる。従って、波打ちが発生した帯状ガラスフィルムをエア供給手段からのエアによって押さえた際に、帯状ガラスフィルムが延ばされやすくなり、波打ちの抑制効果を顕著に得ることが可能となる。また、帯状ガラスフィルムの両面を非接触とすることができるので、これら両面に対する汚れの付着や損傷の発生を抑制することが可能となる。
 また、前記課題を解決するための本発明の帯状ガラスフィルム割断方法は、帯状ガラスフィルムを長尺方向に搬送しながら、該帯状ガラスフィルムの搬送方向に沿う割断予定線上に局部加熱とその加熱領域に対する冷却とを施すことにより生じる熱応力を利用して、前記帯状ガラスフィルムを搬送方向に沿って割断する帯状ガラスフィルム割断方法において、前記帯状ガラスフィルムが割断される割断領域よりも搬送方向の上流側位置で、該帯状ガラスフィルムの裏面側を支持手段により支持させつつ、該帯状ガラスフィルムの表面にエア供給手段からエアを供給することによって、該帯状ガラスフィルムを前記支持手段に対して押さえることに特徴づけられる。
 この方法の構成は、上述の本発明に係る装置のうち冒頭で述べた装置の構成と実質的に同一であるので、作用効果を含む説明事項は、当該方法について既に述べた説明事項と実質的に同一である。
 以上のように本発明によれば、帯状ガラスフィルムの少なくとも片面を非接触とした状態で、帯状ガラスフィルムが割断される領域に波打ちが及ぶことを抑制できるため、帯状ガラスフィルムの有効面(表面)の適切な保護がなされた上で、帯状ガラスフィルムの割断途中で、割断部の亀裂が割断予定線から外れて蛇行したり或いは逸脱する等の不具合が効果的に回避される。
本発明の実施形態に係る帯状ガラスフィルム割断装置の一構成例を示す側面図である。 本発明の実施形態に係る帯状ガラスフィルム割断装置の一構成例を示す平面図である。 エア供給手段の他例を示す側面図である。 支持手段の他例を示す側面図である。 本発明の実施形態に係る帯状ガラスフィルム割断装置の他の使用例を示す側面図である。 帯状ガラスフィルムを模式的に示す図で、張力を付与する前の状態を示す平面図である。 帯状ガラスフィルムを模式的に示す図で、張力を付与する前の状態を示す側面図である。 帯状ガラスフィルムを模式的に示す図で、張力を付与した後の状態を示す平面図である。 帯状ガラスフィルムを模式的に示す図で、張力を付与した後の状態を示す側面図である。
 以下、本発明を実施するための形態について図面に基づき説明する。
 図1A、図1Bは、本発明の実施形態に係る帯状ガラスフィルム割断装置の一構成例を模式的に示している。図1A、図1Bに示すように、この割断装置1は、帯状ガラスフィルム2を支持する支持手段としてのコンベア3と、熱応力を利用して帯状ガラスフィルム2を割断するための熱応力割断手段4と、エアを供給するエア供給手段としてのエアナイフ5とを主要な構成要素とする。
 帯状ガラスフィルム2は、本実施形態ではオーバーフローダウンドロー法によって成形される。成形体6から連続的に成形されて下方に向かって送られた帯状ガラスフィルム2は、送りの途中で水平方向に方向変換して、割断装置1に矢印Aで示す横方向(本実施形態では水平方向または略水平方向)に搬送される。そして、この割断装置1に至った帯状ガラスフィルム2は、熱応力割断手段4によって、コンベア3に支持された状態で、有効フィルム部(製品となるべき帯状ガラスフィルム部)2aと、両端の不要な耳部2bとに切断される。この際に、コンベア3のコンベアベルトの速度は帯状ガラスフィルム2の搬送速度に同期している。有効フィルム部2aは、樹脂フィルム等からなる帯状保護フィルム7が重ねられた状態で巻き取り装置8に巻き取られる。耳部2bは、図示しない耳部処理装置に搬送される。
 熱応力割断手段4は、いわゆるレーザー割断を行なうもので、コンベア3の上側に配置され、加熱位置P1において局部加熱を行なうレーザー光照射手段4aと、冷却位置P2において冷却を行なうミスト水噴射手段4bとから構成されている。加熱位置P1と冷却位置P2は、帯状ガラスフィルム2における搬送方向に沿う割断予定線上に位置している。この熱応力割断手段4が、局部加熱とその加熱領域に対する冷却とを行なうことによって帯状ガラスフィルム2内に熱応力が発生し、これに伴って亀裂が割断予定線に沿って進展することにより、帯状ガラスフィルム2が連続的に割断される。そして、加熱位置P1から冷却位置P2までが、帯状ガラスフィルム2が割断される割断領域Rである。
 エアナイフ5は、コンベア3から上方に離反した位置であって且つ熱応力割断手段4よりも搬送方向上流側の位置に配設されている。そして、このエアナイフ5から帯状ガラスフィルム2に対するエアの吹き付け方向は、矢印Bで示すように、帯状ガラスフィルム2の下流側上方位置から上流側下方に向かう傾斜方向とされている。また、このエアナイフ5からのエアの供給幅は、帯状ガラスフィルム2の幅よりも広くなるように設定されている。これによって、帯状ガラスフィルム2は、位置P3で、エアナイフ5のエアによってコンベア3に押さえつけられる。
 以上の構成の割断装置1では、以下の効果が享受できる。
 位置P3より上流側で帯状ガラスフィルム2に波打ちが発生していても、位置P3で帯状ガラスフィルム2がコンベア3の上面に対して押さえつけられて延ばされるので、位置P3で波打ちが抑制される。位置P3は割断領域Rより搬送方向の上流側なので、帯状ガラスフィルム2の波打ちが割断領域Rに及ぶことを抑制できる。また、エアナイフ5からのエアが吹き付けられる帯状ガラスフィルム2の上面は、非接触の状態である。よって、帯状ガラスフィルム2の上面に対する汚れの付着や損傷が発生しない。
 以下、エアナイフ5について更に詳述する。
 エアナイフ5のエアの供給量は、エアナイフ5のエア供給口の単位面積1mm2当たりで0.1L/分以上、更には0.5L/分以上が好ましい。エア供給量が0.1L/分未満であると、帯状ガラスフィルム2をエアで十分に押さえつけられなくなる可能性が生じる。一方、エア供給量は単位面積1mm2当たりで例えば10L/分未満である。10L/分以上の場合、エア供給源の大容量化に伴う設備コストの不要な高騰を招来する可能性がある。
 側面視でエアナイフ5のエアの噴出し方向と帯状ガラスフィルム2の搬送方向とが成す傾斜角度θは、15~75°、更には30~60°が好ましい。傾斜角度θが15°未満であると、帯状ガラスフィルム2をエアで十分に押さえられなく可能性が生じる。一方、傾斜角度θが75°を超えると、エアナイフ5から供給されたエアが、下流側に流れ易くなる。この下流側に流れたエアは、帯状ガラスフィルム2の割断された部位を介して帯状ガラスフィルム2の裏面側に入り込むと、帯状ガラスフィルム2に振動を生じる。これによって、割断領域Rの帯状ガラスフィルム2が振動し、割断が不安定となる可能性が生じる。
 加熱位置P1と位置P3との搬送方向に沿った距離Lは、50~1000mm、更には100~500mmが好ましい。エアナイフ5の設置スペースの観点から、距離Lを50mm未満とし難い。距離Lが1000mmを越えると、加熱位置P1と位置P3との間で、帯状ガラスフィルム2が再び波打つ可能性が生じる。
 コンベア3におけるコンベアベルトの表面からのエアナイフ5におけるエア供給口の高さHは、3~50mm、更には5~20mmが好ましい。高さHが3mm未満では、振動等により帯状ガラスフィルム2が僅かに上下動した場合に、帯状ガラスフィルム2がエアナイフ5の先端に接触し、帯状ガラスフィルム2が損傷する可能性がある。高さHが50mmを超えると、エアが拡散し、帯状ガラスフィルム2を充分に押さえつけられなくなる可能性がある。
 エアナイフ5から供給されるエアの幅Wは、帯状ガラスフィルム2の幅の110%以上が好ましい。エアの幅Wが帯状ガラスフィルム2の幅の110%未満である場合、帯状ガラスフィルムの端を十分に押さえつけることができずに、帯状ガラスフィルム2の波打ちを十分に抑制できない可能性がある。一方、エアの幅Wは、帯状ガラスフィルム2の幅の例えば150%未満である。150%以上である場合、エア供給源の大容量化に伴う設備コストの不要な高騰や、エアナイフ5の設備スペースの不要な増大を招来する可能性がある。
 本発明は、上記実施形態に限られるものではない。例えば、エアナイフ5の代わりに図2に示すエアフロート9等、他のエア供給手段を使用してもよい。しかし、エアフロート9の場合、エア供給口の単位面積1mm2当たり0.1L/分以上の流量でエアを供給するためには、エアナイフ5に比較して、容量の大きなエア供給源が必要となる。また、エアフロート9の場合には、帯状ガラスフィルム2に当たったエアが下流側に流れやすいため、上述の振動を起こしやすい。
 また、帯状ガラスフィルム2の支持手段もコンベア3に限定されず、例えば、樹脂板等の単純な板状部材であってもよいし、図3に示すエアフロート台10等であってもよい。しかし、単純な板状部材の場合には、帯状ガラスフィルム2と摺動するため、帯状ガラスフィルム2の裏面側で損傷が発生する可能性がある。一方、エアフロート台10の場合には、帯状ガラスフィルム2に、非接触のため、裏面側で損傷の発生が無い。また、摩擦がほとんど無いため、エア供給手段からのエアが当たった場合に、帯状ガラスフィルム2が延びやすく、波打ちの抑制効果が向上する。
 また、上記実施形態では、割断装置1は、帯状ガラスフィルム2の成形~巻き取りの間のいわゆる1次切断処理に使用されているが、本発明はこれに限定されることはない。例えば、図4に示すように、割断装置1は、巻き取られた状態の帯状ガラスフィルム2’の更なる割断、いわゆる2次切断処理に使用されるものであってもよい。この割断装置1における割断対象となる帯状ガラスフィルム2’は、帯状保護フィルム7が取り外されながら巻き出し装置11から巻き出され、新たな有効フィルム部2a’と耳部2b’に割断される。この点以外は、上記実施形態と実質的に同一なので、同様の構成には同一の符号を付し説明を省略する。
 図4に示す割断装置の構成例において、厚み70μm、幅800mm、長さ200mの帯状ガラスフィルム2’のロールを巻き出し装置11に取り付け、帯状ガラスフィルム2’を幅600mmの有効フィルム部2a’と両端各幅100mmの耳部2b’に切断、分離して有効フィルム部2a’を巻き取り装置8にて巻き取った。エア噴出し口の寸法は、帯状ガラスフィルムの幅方向が1000mm、帯状ガラスフィルムの搬送方向が0.5mmであった。また、供給する総エア流量は1000L/分であり、エアナイフ5のエア供給口における単位面積1mm2当たりの流量は2L/分であった。また、傾斜角度θ=45°、距離L=500mm、高さH=10mmであった。以上の条件で、帯状ガラスフィルム2’のレーザー割断を行なった結果、帯状ガラスフィルム2’の全長を切断し、有効フィルム部2a’を巻き取ることができた。また、有効フィルム部2a’の割断面における蛇行量の標準偏差値のうち、最大値は15μmであった。
 有効フィルム部2a’の割断面における蛇行量の標準偏差値は、次のように算出した。まず、有効フィルム部2a’を搬送しながら、有効フィルム部2a’の両端部を、それぞれ有効フィルム部2a’の厚み方向からCCDカメラで撮影した。次に、撮影した画像を、有効フィルム部2a’の長さ30mm毎に分割し、分割した画像毎に、有効フィルム部2a’の端面(割断面)が含まれる全ての画素についての有効フィルム部2a’幅方向の平均位置と各位置との差とから標準偏差値を算出した。尚、有効フィルム部2a’の長さ30mmは、CCDカメラによって、1600画素に分割されて撮影されている。幅方向については、1200画素に分割されて撮影されている。
 比較例として、エアナイフ5を不使用とする以外は、上述の実施例と同一の条件で帯状ガラスフィルム2’のレーザー割断を実施した。その結果、帯状ガラスフィルム2’を約35m割断した時点で、割断領域Rにおける亀裂が帯状ガラスフィルム2’の幅方向へ進展し、有効フィルム部2a’が幅方向に切断されて割断が停止した。また、割断が停止する前に600mm幅に割断された有効フィルム部2a’の割断面における蛇行量の標準偏差値のうち、最大値は132μmであった。
 実施例の結果を比較例の結果と比較すれば明確であるように、本発明の実施例に係る帯状ガラスフィルム割断装置および帯状ガラスフィルム割断方法によって、帯状ガラスフィルム2’が割断される割断領域Rに波打ちが及ぶことを効果的に抑制できた。
 本発明は以上の説明に限定されることなく、その技術的思想の範囲内であれば、様々な変形が可能である。
1   帯状ガラスフィルム割断装置
2,2’ 帯状ガラスフィルム
3   コンベア(支持手段)
5   エアナイフ(エア供給手段)
9   エアフロート(エア供給手段)
10  エアフロート台(支持手段)
R   割断領域

Claims (6)

  1.  帯状ガラスフィルムを長尺方向に搬送しながら、該帯状ガラスフィルムの搬送方向に沿う割断予定線上に局部加熱とその加熱領域に対する冷却とを施すことにより生じる熱応力を利用して、前記帯状ガラスフィルムを搬送方向に沿って割断するように構成した帯状ガラスフィルム割断装置において、
     前記帯状ガラスフィルムが割断される割断領域よりも搬送方向の上流側位置で、該帯状ガラスフィルムの裏面側を支持手段により支持させつつ、該帯状ガラスフィルムの表面にエア供給手段からエアを供給することによって、該帯状ガラスフィルムを前記支持手段に対して押さえるように構成したことを特徴とする帯状ガラスフィルム割断装置。
  2.  前記エア供給手段からのエアの供給幅が、前記帯状ガラスフィルムの幅よりも広く設定されていることを特徴とする請求項1に記載の帯状ガラスフィルム割断装置。
  3.  前記エア供給手段が、エアナイフであることを特徴とする請求項1又は2に記載の帯状ガラスフィルム割断装置。
  4.  前記エア供給手段からのエアの吹き付け方向が、前記帯状ガラスフィルムの搬送方向下流側における表面側に離反した位置から該帯状ガラスフィルムの搬送方向上流側の表面に向かう方向であることを特徴とする請求項1~3の何れかに記載の帯状ガラスフィルム割断装置。
  5.  前記支持手段が、エアフロート台であることを特徴とする請求項1~4の何れかに記載の帯状ガラスフィルム割断装置。
  6.  帯状ガラスフィルムを長尺方向に搬送しながら、該帯状ガラスフィルムの搬送方向に沿う割断予定線上に局部加熱とその加熱領域に対する冷却とを施すことにより生じる熱応力を利用して、前記帯状ガラスフィルムを搬送方向に沿って割断する帯状ガラスフィルム割断方法において、
     前記帯状ガラスフィルムが割断される割断領域よりも搬送方向の上流側位置で、該帯状ガラスフィルムの裏面側を支持手段により支持させつつ、該帯状ガラスフィルムの表面にエア供給手段からエアを供給することによって、該帯状ガラスフィルムを前記支持手段に対して押さえることを特徴とする帯状ガラスフィルム割断方法。
PCT/JP2011/076227 2010-11-22 2011-11-15 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法 WO2012070422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180034311.4A CN102985381B (zh) 2010-11-22 2011-11-15 带状玻璃薄膜割断装置及带状玻璃薄膜割断方法
EP11843737.5A EP2570395B1 (en) 2010-11-22 2011-11-15 Device for cleaving strip-shaped glass film and method for cleaving strip-shaped glass film
KR1020127033799A KR101804192B1 (ko) 2010-11-22 2011-11-15 밴드 형상 글라스 필름 할단 장치 및 밴드 형상 글라스 필름 할단 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-260275 2010-11-22
JP2010260275A JP5617556B2 (ja) 2010-11-22 2010-11-22 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法

Publications (1)

Publication Number Publication Date
WO2012070422A1 true WO2012070422A1 (ja) 2012-05-31

Family

ID=46125725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076227 WO2012070422A1 (ja) 2010-11-22 2011-11-15 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法

Country Status (7)

Country Link
US (1) US8769989B2 (ja)
EP (1) EP2570395B1 (ja)
JP (1) JP5617556B2 (ja)
KR (1) KR101804192B1 (ja)
CN (1) CN102985381B (ja)
TW (1) TWI488820B (ja)
WO (1) WO2012070422A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168380A1 (ja) * 2017-03-13 2018-09-20 日本電気硝子株式会社 ガラスフィルムの製造方法
WO2019151246A1 (ja) * 2018-01-31 2019-08-08 日本電気硝子株式会社 ガラスロール、ガラスロールの製造方法および品質評価方法

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020128067A1 (en) 2001-03-09 2002-09-12 Victor Keith Blanco Method and apparatus for creating and playing soundtracks in a gaming system
WO2011016352A1 (ja) * 2009-08-07 2011-02-10 旭硝子株式会社 超薄板ガラス基板の製造方法
US20140054348A1 (en) * 2011-06-08 2014-02-27 Yasuo Teranishi Method for cutting plate-like glass, and cutting device therefor
TWI586612B (zh) * 2011-11-18 2017-06-11 康寧公司 用於修整移動玻璃帶之設備及方法
TWI597245B (zh) * 2012-09-25 2017-09-01 康寧公司 處理連續玻璃帶之方法
CN104684856B (zh) * 2012-11-09 2017-07-07 日本电气硝子株式会社 初始裂纹形成装置以及形成方法
US9216924B2 (en) * 2012-11-09 2015-12-22 Corning Incorporated Methods of processing a glass ribbon
US9643878B2 (en) * 2012-11-13 2017-05-09 Nippon Electric Glass Co., Ltd. Sheet glass manufacturing method and manufacturing device
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
WO2014085357A1 (en) * 2012-11-29 2014-06-05 Corning Incorporated Methods and apparatus for fabricating glass ribbon of varying widths
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
US9919381B2 (en) 2013-01-30 2018-03-20 Corning Incorporated Apparatus and methods for continuous laser cutting of flexible glass
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
DE102013108308A1 (de) * 2013-08-01 2015-02-19 Schott Ag Verfahren und Vorrichtung zur Detektion in Bandrollen aus sprödhartem oder sprödbrechendem, zumindest teiltransparentem Material, sowie deren Verwendung
JP6331087B2 (ja) * 2013-08-28 2018-05-30 日本電気硝子株式会社 ガラスフィルムリボン製造方法及びガラスフィルムリボン製造装置
KR102221540B1 (ko) 2013-08-28 2021-03-02 니폰 덴키 가라스 가부시키가이샤 유리 필름 리본 제조 방법 및 유리 필름 리본 제조 장치
KR102184301B1 (ko) * 2013-08-28 2020-11-30 니폰 덴키 가라스 가부시키가이샤 유리 필름 리본 제조 방법 및 유리 필름 리본 제조 장치
JP6112301B2 (ja) * 2013-08-28 2017-04-12 日本電気硝子株式会社 ガラスフィルムリボン製造装置及びガラスフィルムリボン製造方法並びにガラスロール
CN105960383B (zh) * 2013-12-03 2019-10-18 康宁股份有限公司 用于切割无机材料的移动带的装置和方法
US10239778B2 (en) 2013-12-03 2019-03-26 Corning Incorporated Apparatus and method for severing a glass sheet
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
JP6288604B2 (ja) * 2014-01-29 2018-03-07 旭硝子株式会社 ガラス板の製造方法
KR102445217B1 (ko) 2014-07-08 2022-09-20 코닝 인코포레이티드 재료를 레이저 가공하는 방법 및 장치
EP3169479B1 (en) 2014-07-14 2019-10-02 Corning Incorporated Method of and system for arresting incident crack propagation in a transparent material
EP3169476A1 (en) 2014-07-14 2017-05-24 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
KR20170028943A (ko) * 2014-07-14 2017-03-14 코닝 인코포레이티드 조정가능한 레이저 빔 촛점 라인을 사용하여 투명한 재료를 처리하는 방법 및 시스템
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
KR20170105562A (ko) 2015-01-12 2017-09-19 코닝 인코포레이티드 다중 광자 흡수 방법을 사용한 열적 템퍼링된 기판의 레이저 절단
JP6424674B2 (ja) * 2015-02-25 2018-11-21 日本電気硝子株式会社 ガラスフィルムの割断方法
JP2018512362A (ja) * 2015-03-18 2018-05-17 コーニング インコーポレイテッド ガラスリボンの縁部を除去するための方法及び装置
CN107922237B (zh) 2015-03-24 2022-04-01 康宁股份有限公司 显示器玻璃组合物的激光切割和加工
CN107666983B (zh) 2015-03-27 2020-10-02 康宁股份有限公司 可透气窗及其制造方法
DE102015104815A1 (de) 2015-03-27 2016-09-29 Schott Ag Verfahren und Vorrichtung zum kontinuierlichen Trennen von Glas
JP6468460B2 (ja) * 2015-04-16 2019-02-13 日本電気硝子株式会社 ガラスフィルムの製造方法
CN104890348B (zh) * 2015-05-26 2017-10-10 珠海拾比佰彩图板股份有限公司 全自动精密割膜机
EP3319911B1 (en) 2015-07-10 2023-04-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
DE102016116258A1 (de) * 2015-09-11 2017-03-16 Schott Ag Vorrichtung und Verfahren zur Belastungsprüfung von Scheiben eines sprödharten Materials
WO2017192835A1 (en) 2016-05-06 2017-11-09 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
EP3490945B1 (en) 2016-07-29 2020-10-14 Corning Incorporated Methods for laser processing
CN110121398B (zh) 2016-08-30 2022-02-08 康宁股份有限公司 透明材料的激光加工
CN109803786B (zh) 2016-09-30 2021-05-07 康宁股份有限公司 使用非轴对称束斑对透明工件进行激光加工的设备和方法
KR102428350B1 (ko) * 2016-10-24 2022-08-02 코닝 인코포레이티드 시트형 유리 기판의 레이저 기반 기계 가공을 위한 기판 프로세싱 스테이션
US20180118602A1 (en) * 2016-11-01 2018-05-03 Corning Incorporated Glass sheet transfer apparatuses for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
KR102400342B1 (ko) * 2016-12-06 2022-05-20 니폰 덴키 가라스 가부시키가이샤 띠 형상 유리 필름의 품질 검사 방법, 및 유리 롤
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
JP6909403B2 (ja) * 2017-07-31 2021-07-28 日本電気硝子株式会社 ガラスフィルムの製造方法
CN111386235B (zh) * 2017-10-31 2023-04-07 康宁公司 用于处理薄玻璃带的系统及方法
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN108426606A (zh) * 2018-03-12 2018-08-21 湖南科创信息技术股份有限公司 浮法玻璃生产线冷端应力与厚度的检测系统
CN109160722A (zh) * 2018-09-21 2019-01-08 杨晓明 一种玻璃分离设备及玻璃分离方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076318A (ja) 1983-10-04 1985-04-30 Toray Ind Inc フイルムのしわ延ばし装置
JPH04356337A (ja) * 1991-05-30 1992-12-10 Kawasaki Steel Corp 極薄金属薄帯の蛇行制御方法
JPH08175726A (ja) 1994-12-22 1996-07-09 Toray Ind Inc シート状物のしわ延ばしロール
JP2000109252A (ja) 1998-08-04 2000-04-18 Sugimura Seisakusho:Kk ウォ―ムロ―ル
JP2010132531A (ja) 2008-10-01 2010-06-17 Nippon Electric Glass Co Ltd ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
JP2010195676A (ja) * 2009-02-24 2010-09-09 Corning Inc 割れ易い材料からなるシートの罫書き方法
JP2010232603A (ja) * 2009-03-30 2010-10-14 Mitsuboshi Diamond Industrial Co Ltd 基板固定装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1244346B (de) * 1964-10-19 1967-07-13 Menzel Gerhard Glasbearbeitung Verfahren zum Schneiden von Glas
GB2028165A (en) * 1978-08-17 1980-03-05 Pilkington Brothers Ltd Treatment of flat glass
US4749400A (en) * 1986-12-12 1988-06-07 Ppg Industries, Inc. Discrete glass sheet cutting
US6272886B1 (en) * 1996-10-23 2001-08-14 3M Innovative Properties Company Incremental method of producing multiple UV-induced gratings on a single optical fiber
DE19649488A1 (de) * 1996-11-29 1997-11-06 Schott Glaswerke Vorrichtung zur Handhabung von dünnen Glasscheiben
KR100626983B1 (ko) * 1999-06-18 2006-09-22 미쓰보시 다이야몬도 고교 가부시키가이샤 레이저를 이용한 스크라이브 방법
US6399670B1 (en) * 2000-01-21 2002-06-04 Congoleum Corporation Coating having macroscopic texture and process for making same
US7197898B2 (en) * 2000-12-04 2007-04-03 Sheng-Guo Wang Robust diameter-controlled optical fiber during optical fiber drawing process
JP2003034545A (ja) * 2001-07-18 2003-02-07 Seiko Epson Corp レーザ割断装置及び方法、並びに電気光学パネルの割断方法
US6742285B2 (en) * 2002-03-18 2004-06-01 Glass Equipment Development, Inc. Air knife and conveyor system
JP4178443B2 (ja) * 2002-06-24 2008-11-12 旭硝子株式会社 板硝子の製造方法及び装置
US7005317B2 (en) * 2003-10-27 2006-02-28 Intel Corporation Controlled fracture substrate singulation
RU2370462C2 (ru) 2003-12-05 2009-10-20 Асахи Гласс Компани, Лимитед Способ и устройство для разделения листового стекла
WO2006057484A1 (en) * 2004-11-26 2006-06-01 Lg Chemical Co., Ltd. Apparatus for coating 2-d or 3-d extrusion materials with paint and coating method using the same
JP4675786B2 (ja) * 2006-01-20 2011-04-27 株式会社東芝 レーザー割断装置、割断方法
WO2008133800A1 (en) * 2007-04-30 2008-11-06 Corning Incorporated Apparatus, system, and method for scoring a moving glass ribbon
KR101484349B1 (ko) * 2007-10-30 2015-01-19 아사히 가라스 가부시키가이샤 유리·수지 복합체의 제조 방법
US8051679B2 (en) * 2008-09-29 2011-11-08 Corning Incorporated Laser separation of glass sheets
JP5532507B2 (ja) * 2008-10-01 2014-06-25 日本電気硝子株式会社 ガラスロール及びガラスロールの処理方法
JP5532506B2 (ja) 2008-10-01 2014-06-25 日本電気硝子株式会社 ガラスロール
JP5691148B2 (ja) 2008-10-01 2015-04-01 日本電気硝子株式会社 ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
JP5788134B2 (ja) * 2008-10-01 2015-09-30 日本電気硝子株式会社 ガラスロール及びガラスロールの製造方法
US8656738B2 (en) * 2008-10-31 2014-02-25 Corning Incorporated Glass sheet separating device
US20100162761A1 (en) * 2008-12-30 2010-07-01 Stephen Carney Flame polishing of flat glass
US8037716B2 (en) * 2009-02-27 2011-10-18 Corning Incorporated Thermal control of the bead portion of a glass ribbon
US20110023548A1 (en) * 2009-07-29 2011-02-03 Garner Sean M Glass substrate comprising an edge web portion
JP5669001B2 (ja) * 2010-07-22 2015-02-12 日本電気硝子株式会社 ガラスフィルムの割断方法、ガラスロールの製造方法、及びガラスフィルムの割断装置
JP5696393B2 (ja) * 2010-08-02 2015-04-08 日本電気硝子株式会社 ガラスフィルムの割断方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076318A (ja) 1983-10-04 1985-04-30 Toray Ind Inc フイルムのしわ延ばし装置
JPH04356337A (ja) * 1991-05-30 1992-12-10 Kawasaki Steel Corp 極薄金属薄帯の蛇行制御方法
JPH08175726A (ja) 1994-12-22 1996-07-09 Toray Ind Inc シート状物のしわ延ばしロール
JP2000109252A (ja) 1998-08-04 2000-04-18 Sugimura Seisakusho:Kk ウォ―ムロ―ル
JP2010132531A (ja) 2008-10-01 2010-06-17 Nippon Electric Glass Co Ltd ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
JP2010195676A (ja) * 2009-02-24 2010-09-09 Corning Inc 割れ易い材料からなるシートの罫書き方法
JP2010232603A (ja) * 2009-03-30 2010-10-14 Mitsuboshi Diamond Industrial Co Ltd 基板固定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2570395A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168380A1 (ja) * 2017-03-13 2018-09-20 日本電気硝子株式会社 ガラスフィルムの製造方法
KR20190127656A (ko) * 2017-03-13 2019-11-13 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법
TWI732107B (zh) * 2017-03-13 2021-07-01 日商日本電氣硝子股份有限公司 玻璃薄膜之製造方法
KR102421584B1 (ko) 2017-03-13 2022-07-15 니폰 덴키 가라스 가부시키가이샤 유리 필름의 제조 방법
WO2019151246A1 (ja) * 2018-01-31 2019-08-08 日本電気硝子株式会社 ガラスロール、ガラスロールの製造方法および品質評価方法
TWI763974B (zh) * 2018-01-31 2022-05-11 日商日本電氣硝子股份有限公司 玻璃卷、玻璃卷的製造方法以及品質評價方法

Also Published As

Publication number Publication date
KR20130115104A (ko) 2013-10-21
CN102985381B (zh) 2015-06-24
TW201223899A (en) 2012-06-16
TWI488820B (zh) 2015-06-21
EP2570395A4 (en) 2013-12-11
US20120131962A1 (en) 2012-05-31
JP5617556B2 (ja) 2014-11-05
US8769989B2 (en) 2014-07-08
KR101804192B1 (ko) 2017-12-04
EP2570395B1 (en) 2015-03-04
CN102985381A (zh) 2013-03-20
EP2570395A1 (en) 2013-03-20
JP2012111649A (ja) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5617556B2 (ja) 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法
US8312741B2 (en) Cleaving method for a glass film
US9840028B2 (en) Cleaving method for a glass film
KR101948382B1 (ko) 가요성 유리의 연속 레이저 절단을 위한 장치 및 방법
US9676579B2 (en) Manufacturing method for a glass roll and manufacturing apparatus for a glass roll
US10829404B2 (en) Method for cutting plate-like glass, and cutting device therefor
WO2015029888A1 (ja) ガラスフィルムリボン製造方法及びガラスフィルムリボン製造装置
CN107635930B (zh) 使机械应力降低来连续处理挠性玻璃带
WO2017208677A1 (ja) ガラスフィルムの製造方法
TW201806888A (zh) 玻璃薄膜的製造方法
KR101515806B1 (ko) 시트 제조방법 및 제조장치
JP6136070B2 (ja) ガラスフィルムリボン製造方法及びガラスフィルムリボン製造装置
US11305958B2 (en) Roll manufacturing method and manufacturing device
WO2022070814A1 (ja) ガラスロールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034311.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011843737

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127033799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE