WO2012070240A1 - α-オレフィン重合体及びその製造方法 - Google Patents
α-オレフィン重合体及びその製造方法 Download PDFInfo
- Publication number
- WO2012070240A1 WO2012070240A1 PCT/JP2011/006529 JP2011006529W WO2012070240A1 WO 2012070240 A1 WO2012070240 A1 WO 2012070240A1 JP 2011006529 W JP2011006529 W JP 2011006529W WO 2012070240 A1 WO2012070240 A1 WO 2012070240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- molecular weight
- olefin
- group
- log
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/04—Fractionation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/50—Partial depolymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
- C09D11/106—Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D11/108—Hydrocarbon resins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/10—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08704—Polyalkenes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08795—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08797—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/10—Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/011—Cloud point
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/02—Reduction, e.g. hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
Definitions
- the present invention relates to an ⁇ -olefin polymer, particularly an ⁇ -olefin polymer obtained by decomposing a high molecular weight ⁇ -olefin polymer, a hydrogenated product of the ⁇ -olefin polymer, and a process for producing them.
- Patent Documents 1 to 6 show that a poly ⁇ -olefin is decomposed using a peroxide in order to improve the moldability of the poly ⁇ -olefin.
- the target poly ⁇ -olefins are many polymers of ⁇ -olefins having a small number of carbon atoms such as 1-butene, propylene, ethylene, etc., and most of ⁇ -olefins constituting the polymer are polymers having 8 or more carbon atoms. There was no example.
- the polymer to be decomposed is a high molecular weight substance and has not been sufficiently decomposed. Therefore, the polymer obtained after the decomposition remains a high molecular weight substance and has no fluidity at room temperature. It was. Therefore, it has been difficult to use as an additive to various resins, an additive to lubricating oil, and the like.
- the ⁇ -olefin which is a monomer of the polymer to be decomposed, was mostly ⁇ -olefin having 4 or less carbon atoms such as ethylene.
- JP-A-8-230116 JP-A-7-308967 JP-A-7-33916 Japanese Patent Publication No. 6-057728 Japanese Patent Laid-Open No. 4-139245 JP-A-3-287608
- An object of the present invention is to provide an ⁇ -olefin polymer excellent in heat resistance and a hydrogenated product of the ⁇ -olefin polymer.
- the average carbon number of the ⁇ -olefin constituting the polymer is 6.0 or more and 14 or less
- Molecular weight distribution (Mw / Mn) ⁇ 2.0 3000 ⁇ weight average molecular weight (Mw) ⁇ 600,000 (4) (Log 10 Mp-Log 10 M1)-(Log 10 M2-Log 10 Mp) ⁇ 0.2
- M1 is the molecular weight of the peak starting point
- Mp is the molecular weight of the peak top
- M2 is the molecular weight of the peak end point in the chart measured by gel permeation chromatography.
- fills following (5).
- the melting point is not confirmed by differential scanning calorimetry, or the melting point is 100 ° C. or less.
- the average carbon number of the ⁇ -olefin constituting the polymer is 6.0 or more and 14 or less
- Molecular weight distribution (Mw / Mn) ⁇ 2.0 3000 ⁇ weight average molecular weight (Mw) ⁇ 600,000 (4) (Log 10 Mp-Log 10 M1)-(Log 10 M2-Log 10 Mp) ⁇ 0.2 (In the formula, M1 is the molecular weight of the peak starting point, Mp is the molecular weight of the peak top, and M2 is the molecular weight of the peak end point in the chart measured by gel permeation chromatography.) (6) Bromine number ⁇ 2.0 4).
- an ⁇ -olefin polymer having excellent heat resistance or a hydrogenated product of an ⁇ -olefin polymer can be provided.
- the ⁇ -olefin polymer of the present invention satisfies the following (1) to (4).
- the average carbon number of the ⁇ -olefin constituting the polymer is 6.0 or more and 14 or less.
- the average carbon number of the ⁇ -olefin constituting the ⁇ -olefin polymer of the present invention is 6.0 or more, for example, 7.0 or more, more than 7.0, or 8.0 or more.
- the average carbon number is 14 or less, preferably 13 or less, more preferably 12 or less. If the average carbon number is 6.0 or more, the fluidity at room temperature can be sufficiently ensured, so that it can be used, for example, as an additive to ink or lubricating oil. Further, when the average carbon number is 14 or less, similarly, sufficient fluidity at room temperature can be secured, and for example, it can be used as an additive to ink or lubricating oil.
- the molecular weight distribution (Mw / Mn) of the ⁇ -olefin polymer of the present invention is 2 or less, preferably 1.6 or less, more preferably 1.4 or less. If the molecular weight distribution is wide, sufficient performance may not be exhibited when applied to uses such as lubricants. Especially in lubricating oil applications, the degradation reaction of molecules due to shearing is a factor in lowering the permanent viscosity. However, if the molecular weight distribution is 2 or less, the stability against shearing is improved, so that sufficient performance in lubricating oil applications is achieved. Is considered to be expressed.
- the ⁇ -olefin polymer of the present invention may contain an oligomer in addition to the polymer.
- the weight average molecular weight (Mw: hereinafter, also simply referred to as molecular weight) is 3,000 to 600,000, preferably 5,000 to 300,000, and more preferably 10,000 to 200,000. If it is less than 3000, the lubrication performance at high temperature may not be sufficient, and if it exceeds 600,000, the heat resistance may be adversely affected.
- Mw weight average molecular weight
- Shear stability is calculated
- the molecular weight is small, it is difficult to be sheared and the rate of decrease in viscosity is small.
- viscosity index improving action it is better that the molecular weight is large.
- the shear stability and the viscosity index improving action have a contradictory relationship with respect to the molecular weight, but a balance can be achieved if it is in the range of 3000 to 600000.
- the shear stability is high, it can be said that the decrease in the oil film viscosity due to the heat generated by the shearing can be suppressed, and the heat resistance is excellent.
- the ⁇ -olefin polymer of the present invention has the above (Log 10 Mp-Log 10 M1)-(Log 10 M2-Log 10 Mp) of 0.2 or more, preferably 0.3 to 0.6, Preferably, it is 0.35 to 0.6.
- This formula indicates that there are fewer components on the high molecular weight side than the peak top.
- the high molecular weight component that is easily thermally decomposed is sufficiently reduced, and the shear stability is high, that is, the heat resistance is high, which is preferable.
- the amount of decomposition of the high molecular weight component is small and the change in viscosity with time is small. It is preferable that the viscosity is 0.6 or less because a sufficient viscosity can be maintained in lubricating oil applications.
- the above molecular weight distribution, molecular weight, M1, Mp, and M2 are determined by gel permeation chromatography (GPC), and can be specifically measured by the method described in the examples.
- the ⁇ -olefin polymer of the present invention preferably has a melting point not confirmed by DSC (differential scanning calorimetry), or has a melting point measured by DSC of 100 ° C. or lower, more preferably 80 ° C. or lower, more preferably 50 It is below °C. When it deviates from this range, it may become difficult to mix or be deposited when applied to a composition.
- the ⁇ -olefin polymer whose melting point is not confirmed by DSC is generally a polymer having fluidity at room temperature and being amorphous.
- the polymer of the present invention can be obtained by decomposing a polymer of one or more ⁇ -olefins selected from ⁇ -olefins having 3 to 32 carbon atoms (hereinafter also referred to as “raw polymer”). .
- the raw material polymer has less than 3 carbon atoms, for example, an ethylene polymer
- the decomposition reaction does not proceed or even if the decomposition reaction proceeds, only the component on the high molecular weight side should be selected and reduced. I can not.
- the raw material polymer has less than 3 carbon atoms, for example, an ethylene polymer
- the decomposition reaction is difficult to proceed and the crosslinking reaction is promoted, so only the component on the high molecular weight side Can not be reduced by selecting.
- the ⁇ -olefin constituting the raw material polymer has 32 or less carbon atoms, physical properties suitable for lubricating oil applications can be maintained.
- Examples of the ⁇ -olefin having 3 to 32 carbon atoms include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, Examples thereof include 1-hexadecene, 1-octadecene, 1-eicocene, and the like, and one or more of these can be used.
- ⁇ -olefin selected from 6 to 16 carbon atoms (preferably 8 to 14 carbon atoms), or ⁇ -olefin selected from 3 to 4 carbon atoms and 6 carbon atoms
- An ⁇ -olefin (copolymer) selected from ⁇ 16 preferably having 6 to 14 carbon atoms, more preferably 8 to 12 carbon atoms
- ⁇ -olefins (homopolymers and copolymers) containing one selected from 8 to 14 carbon atoms are preferred.
- the raw material polymer can be produced using (A) a transition metal compound, (B) a solid boron compound that forms an ion pair with the component (A), and / or (C) an organoaluminum compound as a catalyst (Japanese Patent Application Laid-Open (JP)). No. 2011-16893 (see Japanese Patent Application No. 2009-161752).
- the chelate-type complex include N, N′-bis (2,6-diisopropylphenyl) -1,2-dimethylethylenediiminonickel dibromide, N, N′-bis (2,6-diisopropylphenyl)- Examples include 1,2-dimethylethylenediiminopalladium dibromide.
- Examples of the metallocene complex having a non-bridged ligand include biscyclopentadienylzirconium dichloride, bis (n-butylcyclopentadienyl) zirconium dichloride, bis (pentamethylcyclopentadienyl) zirconium dichloride, and bisindene. And nilzirconium dichloride. Since the polymerization activity is high, a metallocene complex in which a ligand forms a crosslinked structure via a crosslinking group is preferable, a mono-bridged metallocene complex and a bi-bridged metallocene complex are more preferable, and a bi-bridged metallocene complex is most preferable.
- Examples of mono-bridged metallocene complexes include dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl-2-phenoxy) zirconium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (tert-butylamide) Zirconium dichloride, dimethylsilylenebis (2-methyl-4,5-benzoindenyl) zirconium dichloride, dimethylsilylenebis (2-methyl-4-phenylindenyl) zirconium dichloride, dimethylsilylenebis (2-methyl-4-naphthyl) Indenyl) zirconium dichloride, dimethylsilylene bis (2-methylindenyl) zirconium dichloride, ethylenebis (2-methylindenyl) zirconium dichloride, and the like.
- bibridged metallocene complex examples include bibridged metallocene complexes represented by the following general formula (I).
- M represents a metal element of Group 3 to 10 of the periodic table or a lanthanoid series
- E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, a heterocyclopentadienyl group
- X represents a ⁇ -binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , E 2 or Y may be cross-linked.
- Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon
- M is preferably a metal element belonging to Group 4 of the periodic table, of which titanium, zirconium and hafnium are preferred.
- E 1 and E 2 are each preferably a substituted cyclopentadienyl group, an indenyl group or a substituted indenyl group.
- X examples include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, and a carbon number.
- examples thereof include a silicon-containing group having 1 to 20 carbon atoms, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms.
- Y include amines, ethers, phosphines, thioethers and the like.
- Examples of A 1 and A 2 include those represented by the following general formula.
- D is carbon, silicon or tin
- R 2 and R 3 are each a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other, and are bonded to each other to form a ring structure You may do it.
- e represents an integer of 1 to 4.
- Ethylene, isopropylidene and dimethylsilylene groups are preferred.
- metallocene complexes having a bibridged biscyclopentadienyl derivative represented by the general formula (II) as a ligand are preferable.
- M, A 1 , A 2 , X 1 , Y 1 , q and r are the same as described above.
- R 4 to R 9 each represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group or a heteroatom-containing group.
- R 4 to R 9 may be the same or different from each other, and adjacent groups may be bonded to each other to form a ring.
- R 6 and R 7 preferably form a ring, and R 8 and R 9 preferably form a ring.
- R 4 and R 5 are preferably groups containing heteroatoms such as oxygen, halogen and silicon.
- the metallocene complex having the bibridged biscyclopentadienyl derivative as a ligand preferably contains silicon in the bridging group between the ligands.
- organoboron compound as the component (B) examples include coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to a metal.
- coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to a metal there are various coordination complex compounds composed of an anion and a cation in which a plurality of groups are bonded to a metal.
- a compound represented by the general formula (III) or (IV) can be preferably used. ([L 1 ⁇ H] s + ) t ([BZ 1 Z 2 Z 3 Z 4 ] ⁇ ) 1 (III) ([L 2 ] s + ) t ([BZ 1 Z 2 Z 3 Z 4 ] ⁇ ) 1 ...
- L 2 is M 1 , R 10 R 11 M 2 or R 12 3 C described later, L 1 is a Lewis base, M 1 is group 1 and group 8 of the periodic table.
- a metal selected from Group 12; M 2 is a metal selected from Groups 8 to 10 of the Periodic Table;
- Z 1 to Z 4 are a hydrogen atom, a dialkylamino group, an alkoxy group, an aryloxy group, and a carbon number of 1 to 20 represents an alkyl group, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, an arylalkyl group, a substituted alkyl group, an organic metalloid group, or a halogen atom.
- R 10 and R 11 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, and R 12 represents an alkyl group.
- s is an integer of 1 to 7 in terms of L 1 -H and L 2 ionic valence
- t is an integer of 1 or more
- l t ⁇ s).
- M 1 include each atom such as Ag, Cu, Na, and Li
- M 2 include each atom such as Fe, Co, and Ni
- Z 1 to Z 4 include, for example, dimethylamino group and diethylamino group as dialkylamino group, methoxy group, ethoxy group, n-butoxy group and the like as alkoxy group, phenoxy group as aryloxy group, 2,6 -As a C1-C20 alkyl group such as dimethylphenoxy group, naphthyloxy group, etc., carbon such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-octyl group, 2-ethylhexyl group, etc.
- substituted cyclopentadienyl group represented by each of R 10 and R 11 include a methylcyclopentadienyl group, a butylcyclopentadienyl group, a pentamethylcyclopentadienyl group, and the like.
- anions in which a plurality of groups are bonded to a metal include B (C 6 F 5 ) 4 ⁇ , B (C 6 HF 4 ) 4 ⁇ , B (C 6 H 2 F 3 ) 4 ⁇ , B (C 6 H 3 F 2 ) 4 ⁇ , B (C 6 H 4 F) 4 ⁇ , B (C 6 CF 3 F 4 ) 4 ⁇ , B (C 6 H 5 ) 4 ⁇ , BF 4 ⁇ and the like. It is done.
- Cp 2 Fe + , (MeCp) 2 Fe + , (tBuCp) 2 Fe + , (Me 2 Cp) 2 Fe + , (Me 3 Cp) 2 Fe + , (Me 4 Cp) 2 Fe + , (Me 5 Cp) 2 Fe + , Ag + , Na + , Li + and the like can be mentioned, and other cations include pyridinium, 2,4-dinitro-N, N-diethylanilinium, diphenylammonium.
- Nitrogen-containing compounds such as p-nitroanilinium, 2,5-dichloroaniline, p-nitro-N, N-dimethylanilinium, quinolinium, N, N-dimethylanilinium, N, N-diethylanilinium, Carbenium compounds such as phenyl carbenium, tri (4-methylphenyl) carbenium, tri (4-methoxyphenyl) carbenium, CH 3 PH 3 + , C 2 H 5 PH 3 + , C 3 H 7 PH 3 + , (CH 3 ) 2 PH 2 + , (C 2 H 5 ) 2 PH 2 + , (C 3 H 7 ) 2 PH 2 + , (CH 3 ) 3 PH + , (C 2 H 5 ) 3 PH + , (C 3 H 7 ) 3 PH + , (CF 3 ) 3 PH + , (CH 3 ) 4 P + , (C 2 H 5 ) 4 P + , ( Alkylphosphon
- Preferred coordination complex compounds are those comprising a non-coordinating anion and a substituted triarylcarbenium, and examples of the non-coordinating anion include compounds represented by the general formula (V).
- Z 1 to Z 4 are each a hydrogen atom, a dialkylamino group, an alkoxy group, an aryloxy group, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms (including a halogen-substituted aryl group), An alkylaryl group, an arylalkyl group, a substituted alkyl group and an organic metalloid group or a halogen atom are shown.
- examples of the substituted triarylcarbenium include compounds represented by the general formula (VI). [CR 13 R 14 R 15 ] + ... (VI)
- R 13 , R 14 and R 15 in the general formula (VI) are each an aryl group such as a phenyl group, a substituted phenyl group, a naphthyl group and an anthracenyl group, and they may be the same or different from each other. However, at least one of them is a substituted phenyl group, a naphthyl group or an anthracenyl group.
- non-coordinating anion represented by the general formula (V) include tetra (fluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, Tetrakis (pentafluorophenyl) borate, tetrakis (trifluoromethylphenyl) borate, tetra (toluyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate And tridecahydride-7,8-dicarboundeborate.
- substituted triarylcarbenium represented by the general formula (VI) include tri (toluyl) carbenium, tri (methoxyphenyl) carbenium, tri (chlorophenyl) carbenium, tri (fluorophenyl) carbenium, tri ( Xylyl) carbenium, [di (toluyl), phenyl] carbenium, [di (methoxyphenyl), phenyl] carbenium, [di (chlorophenyl), phenyl] carbenium, [toluyl, di (phenyl)] carbenium, [methoxyphenyl, di (Phenyl)] carbenium, [chlorophenyl, di (phenyl)] carbenium and the like.
- R 20 represents an alkyl group having 1 to 10 carbon atoms
- J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom
- v represents an integer of 1 to 3 Is
- R 21 represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group, arylalkyl group or the like having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms or a halogen atom, w represents an average degree of polymerization, Usually, it is an integer of 2 to 50, preferably 2 to 40.
- Each R 21 may be the same or different.
- R 21 and w are the same as those in the general formula (IX).
- the raw material polymer has a stereoregularity index value [mm] of preferably 10 to 85 mol%, more preferably 20 to 80 mol%, and further preferably 30 to 75 mol%. It shows that isotacticity is so high that the value of [mm] is large. If [mm] is too low, the syndiotacticity becomes strong, the crystallinity increases, and it becomes difficult to decompose because it cannot be melted at a low temperature. On the other hand, if it is too high, isotacticity becomes strong, crystallinity increases, and it becomes difficult to decompose because it cannot be melted at a low temperature. [Mm] can be obtained by the method described in Examples.
- the polymer of the present invention is excellent in heat resistance, it is used as an additive in toners, lubricating oils, inks and the like.
- the polymer of the present invention can be produced by decomposing the above raw material polymer in an inert gas atmosphere at 300 ° C. or less in the presence of an organic peroxide. According to this method, it is possible to efficiently produce a polymer that hardly generates a gel and has excellent heat resistance.
- an organic peroxide any gas having low reactivity may be used.
- nitrogen gas or argon gas can be preferably used.
- the organic peroxide is a radical decomposing agent. Therefore, if oxygen is present in the reaction field, the oxidation reaction of the starting polymer proceeds, so it is necessary to react in an inert gas atmosphere. is there.
- the molecular weight distribution (Mw / Mn) of the raw material polymer is preferably 4 or less, more preferably 3 or less, and even more preferably 2.5 or less. When the molecular weight distribution is wide, gas components are generated, and the yield during decomposition may be low.
- the molecular weight distribution of the raw material polymer can be narrowed by making the polymerization conditions constant, using a homogeneous catalyst such as metallocene, and the like.
- the molecular weight of the starting polymer can be adjusted by increasing the polymerization temperature, increasing the hydrogen concentration, etc. to activate the chain transfer reaction, or selecting an optimum catalyst.
- the raw material polymer As described above, by adjusting the molecular weight distribution and molecular weight of the raw material polymer, it becomes easy to adjust the molecular weight distribution and molecular weight of the decomposed polymer. Moreover, at the time of decomposition, the raw material polymer is uniformly decomposed and the molecular weight distribution is narrowed by dividing and introducing the decomposition agent over time so that the decomposition agent is dispersed as uniformly as possible in the raw material polymer. be able to.
- the above log 10 Mp-Log 10 M1)-(Log 10 M2-Log 10 Mp)
- the value can be 0.2 or more.
- the melting point can be made 100 ° C. or lower or cannot be confirmed by selecting a catalyst that lowers the regularity of the polymer, copolymerizing plural kinds of monomers, and the like.
- the decomposition reaction (radical decomposition) is usually carried out at a temperature of 300 ° C. or lower.
- the decomposition temperature is preferably 100 to 290 ° C, more preferably 150 to 280 ° C. If the decomposition temperature is too low, the decomposition reaction may not proceed. On the other hand, when the decomposition temperature is too high, the decomposition proceeds vigorously, and the decomposition may be terminated before the organic peroxide is sufficiently uniformly diffused into the molten polymer by stirring, and the molecular weight distribution may be expanded.
- organic peroxides include the following compounds: diisobutyryl peroxide, cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl.
- Peroxydicarbonate 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-tert-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t -Hexylperoxyneodecanoate, t-butylperoxyneoheptanoate, t-hexylperoxypivalate, t-butylperoxypivalate, di (3,5,5-trimethylhexanoyl) peroxide , Dilauryl peroxide, 1,1,3,3-teto Methylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, di ( 4-methylbenzoyl) peroxide,
- the amount of the organic peroxide added is preferably 0.05 to 10% by weight, more preferably 0.2 to 5% by weight, still more preferably 0.3 to 3% by weight based on the raw material polymer.
- the addition amount is less than 0.05% by weight, the decomposition reaction rate may be slowed and the production efficiency may be deteriorated.
- the addition amount exceeds 10.0% by weight, the odor resulting from the decomposition of the organic peroxide may cause a problem.
- the decomposition time of the decomposition reaction is, for example, 30 seconds to 10 hours, preferably 1 minute to 2 hours, and more preferably 2 minutes to 1 hour.
- the decomposition time is less than 30 seconds, not only does the decomposition reaction not proceed sufficiently, but a large amount of undecomposed organic peroxide may remain.
- the decomposition time exceeds 10 hours, there is a concern that the cross-linking reaction, which is a side reaction, may progress, and the resulting polyolefin may be yellowed.
- the decomposition reaction can be carried out, for example, by using any one of decomposition by a batch method and decomposition by a continuous melt method.
- an inert gas such as nitrogen or argon is filled in a reaction vessel made of stainless steel or the like equipped with a stirrer, and the raw material polymer is put into a heated polymer and melted.
- the decomposition reaction can be performed by dropping the organicated oxide and heating at a predetermined temperature for a predetermined time.
- the organic peroxide may be dropped within the range of the decomposition time, and the dropping may be either continuous dropping or divided dropping. Further, the reaction time from the dropping end time is preferably within the above reaction time range.
- the organic peroxide may be dripped as a solution after being dispersed in a high concentration in the raw material polymer or dissolved in a solvent.
- the dilution ratio is usually 1.1 to 20 times, preferably 1.5 to 15 times, and more preferably 2 to 10 times. If it is lower than this, the frequency of the crosslinking reaction increases, and if it is higher than this, the efficiency of the decomposition reaction may be lowered.
- a solvent may be used as the diluent, and the amount of the solvent used is preferably 0 to 1 times (volume ratio) with respect to the polymer to be decomposed. If it is higher than this, the efficiency of the decomposition reaction may decrease.
- the solvent is preferably a hydrocarbon solvent, and specific examples include aliphatic hydrocarbons such as heptane, octane, decane, dodecane, tetradecane, hexadecane, and nanodecane; methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, And alicyclic hydrocarbons such as cyclododecane; and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene.
- a solvent having a boiling point of 100 ° C. or higher is preferable.
- the raw material polymer may be dissolved in a solvent.
- the decomposition temperature is usually 100 to 300 ° C., preferably 150 to 260 ° C., more preferably 160 to 250 ° C.
- the reaction time as viewed from the average residence time is, for example, 20 seconds to 10 minutes.
- the time is preferably 30 seconds to 6 minutes, more preferably 40 seconds to 3 minutes.
- the melt continuous method can improve the mixing state and shorten the reaction time compared to the batch method.
- a method of impregnating a raw material polymer with an organic peroxide using the above-mentioned apparatus, or a method of individually supplying and mixing the raw material polymer and the organic peroxide can be applied.
- the impregnation of the raw material polymer with the organic peroxide is performed by adding a predetermined amount of the organic peroxide to the raw material polymer in the presence of an inert gas such as nitrogen, and stirring in the range of room temperature to 40 ° C.
- an inert gas such as nitrogen
- the raw material pellets can be uniformly absorbed and impregnated.
- the raw material polymer (impregnated pellet) impregnated with the obtained organic peroxide is decomposed by melt extrusion, or the impregnated pellet is added to the raw material polymer as a master batch and decomposed to obtain a terminal unsaturated polyolefin. .
- the organic peroxide is solid or the organic peroxide has low solubility in the raw material polymer
- the organic polymer is dissolved in a hydrocarbon solvent in advance as a solution in the raw material polymer. Absorption impregnation is recommended.
- the mixing of the raw material polymer and the organic peroxide separately is performed by supplying the raw material polymer and the organic peroxide at a constant flow rate to the extruder hopper, or the organic peroxide at a constant flow rate in the middle of the barrel. It can be implemented by supplying.
- the 1-minute half-life temperature of the organic peroxide is preferably 100 ° C or higher, more preferably 120 ° C or higher, and further preferably 130 ° C or higher. If the temperature is lower than this temperature, a gel may be generated in the polymer that decomposes.
- a hydrogenation reaction (also referred to as “hydrogenation”) may be performed in order to reduce the terminal double bond and further improve the oxidation resistance and heat resistance.
- hydrogenation By making a completely saturated product by hydrogenation reaction, the heat resistance can be further improved, and the hydrogenated product of ⁇ -olefin polymer excellent in heat resistance, which is the object of the present application, can be provided.
- the hydrogenated product of the ⁇ -olefin polymer of the present invention satisfies the following (1 ′) to (4 ′) and (6).
- the average carbon number of the ⁇ -olefin constituting the polymer is 6.0 or more and 14 or less (2 ′) molecular weight distribution (Mw / Mn) ⁇ 2.0 (3 ′) 3000 ⁇ weight average molecular weight (Mw) ⁇ 600,000 (4 ′) (Log 10 Mp-Log 10 M1) ⁇ (Log 10 M2-Log 10 Mp) ⁇ 0.2 (In the formula, M1 is the molecular weight of the peak starting point, Mp is the molecular weight of the peak top, and M2 is the molecular weight of the peak end point in the chart measured by gel permeation chromatography.) (6) Bromine number ⁇ 2.0
- the above (1 ′) to (4 ′) are the same as (1) to (4) of the ⁇ -olefin polymer, and preferred specific examples are also the same.
- the hydrogenated ⁇ -olefin polymer can be produced by the following method.
- a well-known method can be used, For example, a means as described in international publication 2010/074233 can be used.
- SiMe 2 represents “dimethylsilylene” and SiMe 2 SiMe 2 represents “tetramethyldisilylene”.
- the measuring method of the characteristic in an Example and a comparative example is shown below. [Molecular weight, molecular weight distribution] Molecular weight and molecular weight distribution were measured with the following apparatus and conditions.
- ⁇ GPC measurement device Column: TOSOGMMHHR-H (S) HT Detector: RI detector WATERS150C for liquid chromatogram ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml Injection volume: 160 ⁇ l Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
- n the average number of carbon atoms
- a an integrated value of 0.95 to 1.60 ppm of 1 H-NMR spectrum (tetramethylsilane standard)
- b an integrated value of 0.89 ppm.
- 1 H-NMR was measured using the following apparatus and conditions. Apparatus: EX-400 manufactured by JEOL Ltd. Measurement temperature: 130 ° C Pulse width: 45 ° Total number of times: 16 times
- Stereoregularity index value Asakura, M .; Demura, Y .; It was determined in accordance with the method proposed in “Macromolecules, 24, 2334 (1991)” reported by Nishiyama. That is, in the 13 C NMR spectrum, [mm] was obtained by utilizing the fact that the CH 2 carbon at the ⁇ -position of the side chain derived from the higher ⁇ -olefin was observed to be split reflecting the difference in stereoregularity. .
- [Mm] was determined as follows. Six large absorption peaks based on the mixed solvent were observed at 127 to 135 ppm. Among these peaks, the fourth peak value from the low magnetic field side was set to 131.1 ppm, which was used as a reference for chemical shift. At this time, an absorption peak based on CH 2 carbon at the ⁇ -position of the side chain was observed in the vicinity of 34 to 37 ppm. At this time, [mm] (mol%) was calculated
- This solid was dissolved in 50 ml of tetrahydrofuran (THF), and 1.4 ml of iodomethyltrimethylsilane was added dropwise thereto at room temperature. After hydrolysis with 10 ml of water and extraction of the organic phase with 50 ml of ether, the organic phase was dried and the solvent was distilled off. 50 ml of ether was added thereto, and a hexane solution of n-BuLi (1.60 mol / liter, 12.4 ml) was added dropwise at ⁇ 78 ° C., then the mixture was raised to room temperature and stirred for 3 hours, and then the ether was distilled off.
- THF tetrahydrofuran
- Example 1 [Production of 1-octene homopolymer (I)] In a 1 L stainless steel autoclave that had been dried by heating, 400 mL of 1-octene, 1 mmol of triisobutylaluminum, 3 ⁇ mol of methylanilinium tetrakis (perfluorophenyl) borate and (1,2′-dimethyl) prepared in Production Example 1 1 ⁇ mol of silylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethyl-indenyl) zirconium dichloride was added.
- the target decomposition polymer (Ia) was obtained by allowing the temperature to fall to room temperature.
- the measurement results of characteristics are shown in Table 1.
- the average carbon number of the ⁇ -olefin of the polymer decomposition product is the same as that of the polymer before decomposition.
- Example 2 [Production of 1-decene homopolymer (II)] Polymerization was conducted in the same manner as in Example 1 except that 1-decene was used in place of 1-octene and the temperature after hydrogen addition was changed to 50 ° C. to obtain 180 g of 1-decene homopolymer (II). The measurement results of characteristics are shown in Table 1.
- Example 3 [Production of 1-dodecene homopolymer (III)] Polymerization was carried out in the same manner as in “Production of 1-decene homopolymer (II)” in Example 2 except that 1-dodecene was used in place of 1-decene to obtain 190 g of 1-dodecene homopolymer (III). . The measurement results of characteristics are shown in Table 1.
- Example 4 [Production of 1-tetradecene homopolymer (IV)] Polymerization was carried out in the same manner as in “Production of 1-octene homopolymer (I)” in Example 1 except that 1-tetradecene was used instead of 1-octene to obtain 180 g of 1-tetradecene homopolymer (IV). . The measurement results of characteristics are shown in Table 1.
- Example 5 [Production of 1-tetradecene / propylene copolymer (V)] A 1-tetradecene 400 mL, triisobutylaluminum 1 mmol, methylanilinium tetrakis (perfluorophenyl) borate 3 ⁇ mol, and (1,2′-dimethyl) prepared in Production Example 1 were placed in a 1 L stainless steel autoclave that had been dried by heating. 1 ⁇ mol of silylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride was added.
- Example 6 [Production of 1-tetradecene homopolymer decomposition product (IV-b)] 175 g of 1-tetradecene homopolymer (IV) produced in Example 4 was charged into a Sepa-type SUS reactor (internal volume 500 ml) equipped with a thermometer, a stirring blade and a mantle heater while stirring at a rotational speed of 50 rpm. The temperature was raised to 180 ° C. in a nitrogen atmosphere.
- Example 7 [Production of 1-hexene homopolymer (IX)] In a stainless steel autoclave having an inner volume of 1 L, which was dried by heating, 400 ml of 1-hexene, 1 mmol of triisobutylaluminum, 8 ⁇ mol of dimethylanilinium tetrakis (pentafluorophenyl) borate and (1,1′-SiMe) produced in Production Example 2 2 ) 2 ⁇ mol of (2,2′-SiMe 2 SiMe 2 ) bis (indenyl) zirconium dichloride was added.
- the target decomposition polymer was obtained by making it cool naturally to room temperature.
- Table 4 shows the measurement results of the characteristics.
- the average carbon number of the ⁇ -olefin of the polymer decomposition product is the same as that of the polymer before decomposition.
- Example 8 [Production of 1-hexene / 1-dodecene copolymer (X)] 1-hexene 200 ml, 1-dodecene 200 mL, triisobutylaluminum 1 mmol, dimethylanilinium tetrakis (pentafluorophenyl) borate 4 ⁇ mol, and production example 2 (1) , 1′-SiMe 2 ) (2,2′-SiMe 2 SiMe 2 ) bis (indenyl) zirconium dichloride was charged at 1 ⁇ mol. Further, hydrogen was added to 0.15 MPa, and then the temperature was raised to 80 ° C. and polymerization was performed for 2 hours.
- the target decomposition polymer (Xa) was obtained by allowing the temperature to fall to room temperature.
- Table 4 shows the measurement results of the characteristics.
- the average carbon number of the ⁇ -olefin of the polymer decomposition product is the same as that of the polymer before decomposition.
- Example 9 [Production of 1-butene / 1-dodecene copolymer (XI)]
- a stainless steel autoclave having an internal volume of 1 L, which was dried by heating, 200 ml of 1-butene, 200 ml of 1-dodecene, 1 mmol of triisobutylaluminum, 4 ⁇ mol of dimethylanilinium tetrakis (pentafluorophenyl) borate, and production example 2 (1 , 1′-SiMe 2 ) (2,2′-SiMe 2 SiMe 2 ) bis (indenyl) zirconium dichloride was charged at 1 ⁇ mol.
- the target decomposition polymer (XI-a) was obtained by allowing the temperature to fall to room temperature.
- Table 4 shows the measurement results of the characteristics.
- the average carbon number of the ⁇ -olefin of the polymer decomposition product is the same as that of the polymer before decomposition.
- Example 10 [Production of hydrogenated product of 1-decene homopolymer decomposition product (II-a)]
- the heat-treated product (100 g) of the polymer obtained in Example 2 was put in a stainless steel autoclave having an internal volume of 1 liter, and 1 wt% of a stabilized nickel catalyst (SN750 manufactured by Sakai Chemical Industry Co., Ltd.) was added at a weight ratio of 1 MPa.
- SN750 manufactured by Sakai Chemical Industry Co., Ltd.
- the temperature was cooled to around 80 ° C., the contents were taken out, and the catalyst component was separated by filtration using a 1 micron filter to obtain a hydrogenated product (100 g).
- the bromine number of the hydrogenated product it was confirmed to be 0.02.
- the polymer of the present invention can be used for toner, lubricating oil, ink, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Lubricants (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
1.下記(1)~(4)を満たすα-オレフィン重合体。
(1)重合体を構成するα-オレフィンの平均炭素数が6.0以上14以下
(2)分子量分布(Mw/Mn)≦2.0
(3)3000≦重量平均分子量(Mw)≦600000
(4)(Log10Mp-Log10M1)-(Log10M2-Log10Mp)≧0.2
(式中、M1は、ゲルパーミエイションクロマトグラフィーにより測定したチャートにおいて、ピークの開始点の分子量、Mpはピークトップの分子量、M2はピークの終点の分子量である。)
2.さらに下記(5)を満たす1記載の重合体。
(5)示差走査熱量測定によって融点が確認されない、又は融点が100℃以下
3.下記(1)~(4)、(6)を満たすα-オレフィン重合体の水添体。
(1)重合体を構成するα―オレフィンの平均炭素数が6.0以上14以下
(2)分子量分布(Mw/Mn)≦2.0
(3)3000≦重量平均分子量(Mw)≦600000
(4)(Log10Mp-Log10M1)-(Log10M2-Log10Mp)≧0.2
(式中、M1は、ゲルパーミエイションクロマトグラフィーにより測定したチャートにおいて、ピークの開始点の分子量、Mpはピークトップの分子量、M2はピークの終点の分子量である。)
(6)臭素価≦2.0
4.炭素数3~32のα-オレフィンから選択される1以上のα-オレフィンの重合体であって、α-オレフィンの平均炭素数が6.0以上14以下の原料重合体を、不活性ガス雰囲気下、300℃以下、有機過酸化物存在下で分解する1又は2記載の重合体の製造方法。
5.炭素数3~32のα-オレフィンから選択される1以上のα-オレフィンの重合体であって、α-オレフィンの平均炭素数が6.0以上14以下の原料重合体を、不活性ガス雰囲気下、300℃以下、有機過酸化物存在下で分解後、水添することを特徴とする3記載のα-オレフィン重合体の水添体の製造方法。
6.前記有機過酸化物を、前記原料重合体で希釈して用いる4又は5記載の製造方法。
7.1~3のいずれかに記載のα-オレフィン重合体又はα-オレフィン重合体の水添体を用いて得られたトナー。
8.1~3のいずれかに記載のα-オレフィン重合体又はα-オレフィン重合体の水添体を用いて得られた潤滑油。
9.1~3いずれかに記載のα-オレフィン重合体又はα-オレフィン重合体の水添体を用いて得られたインク。
(1)重合体を構成するα-オレフィンの平均炭素数が6.0以上14以下。
(2)分子量分布(Mw/Mn)≦2.0
(3)3000≦重量平均分子量(Mw)≦600000
(4)(Log10Mp-Log10M1)-(Log10M2-Log10Mp)≧0.2
(式中、M1は、ゲルパーミエイションクロマトグラフィーにより測定したチャートにおいて、ピークの開始点の分子量、Mpはピークトップの分子量、M2はピークの終点の分子量である)
特に潤滑油用途において、せん断による分子の分解反応は、永久粘度低下の要因となっているが、分子量分布が2以下であれば、せん断に対する安定性が向上するため、潤滑油用途において十分な性能が発現すると考えられる。
重量平均分子量(Mw:以下、単に分子量ともいう)は3000~600000であり、好ましくは5000~300000、さらに好ましくは、10000~200000である。3000未満では高温での潤滑性能が十分でなくなる可能性があり、600000超では耐熱性に悪影響を与える恐れがある。
潤滑油の添加剤としてポリマーを使用する場合、そのポリマーは使用されるうちにせん断(分子鎖が切断される)され、スラッジに変化する。そしてスラッジに変化すると粘度が低下し、必要な油膜を形成することができなくなるため、潤滑油への添加剤としてはせん断安定性が求められている。
一般的に、分子量が小さくなるとせん断されにくく、粘度低下率が小さくなるが、潤滑油の添加剤として必要な粘度を保つ(粘度指数向上作用)ためには、分子量が大きい方がよい。せん断安定性と粘度指数向上作用は、分子量に関して相反する関係にあるが、3000~600000の範囲であれば、バランスがとれる。
また、せん断安定性が高いので、せん断によって生じる発熱に伴う油膜粘度の低下が抑えることができ、耐熱性にも優れるといえる。
原料重合体が、炭素数が3未満である、例えばエチレン系重合体の場合、分解反応が進まないことや、分解反応が進んだ場合でも、高分子量側の成分のみを選択して少なくすることが出来ない。原料重合体が、炭素数が3未満である、例えばエチレン系重合体の場合、三級炭素原子が存在しないため、分解反応が進みにくく、架橋反応が促進されるため、高分子量側の成分のみを選択して少なくすることができない。また、原料重合体を構成するα-オレフィンの炭素数が32以下であると、潤滑油用途などにおいて適する物性を維持できる。
例えば、炭素数6~16(好ましくは炭素数8~14)から選択される1種のみのα-オレフィン(単独重合体)、又は炭素数3~4から選択されるα-オレフィンと炭素数6~16(好ましくは炭素数6~14、さらに好ましくは8~12)から選択されるα-オレフィン(共重合体)を用いる。流動性の観点からは、炭素数8~14から選択される1種を含むα-オレフィン(単独重合体、共重合体)が好ましい。
キレート型錯体としては、例えば、N,N’-ビス(2,6-ジイソプロピルフェニル)-1,2-ジメチルエチレンジイミノニッケルジブロマイド、N,N’-ビス(2,6-ジイソプロピルフェニル)-1,2-ジメチルエチレンジイミノパラジウムジブロマイド等が挙げられる。
非架橋の配位子を有するメタロセン錯体としては、例えば、ビスシクロペンタジエニルジルコニウムジクロライド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライド、ビス(ペンタメチルシクロペンタジエニル)ジルコニウムジクロライド、ビスインデニルジルコニウムジクロライド等が挙げられる。
重合活性が高いため、配位子が架橋基を介して架橋構造を形成しているメタロセン錯体が好ましく、一架橋メタロセン錯体及び二架橋メタロセン錯体がより好ましく、二架橋メタロセン錯体が最も好ましい。
E1及びE2はそれぞれ、置換シクロペンタジエニル基、インデニル基及び置換インデニル基が好ましい。
Yの具体例としては、アミン類、エーテル類、ホスフィン類、チオエーテル類等を挙げることができる。
エチレン基、イソプロピリデン基及びジメチルシリレン基が好適である。
R4~R9はそれぞれ水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。
また、R4~R9は互いに同一でも異なっていてもよく、隣接する基同士が互いに結合して環を形成していてもよい。R6とR7は環を形成していること及びR8とR9は環を形成していることが好ましい。
R4及びR5としては、酸素、ハロゲン、珪素等のヘテロ原子を含有する基が好ましい。
この二架橋ビスシクロペンタジエニル誘導体を配位子とするメタロセン錯体は、配位子間の架橋基にケイ素を含むものが好ましい。
複数の基が金属に結合したアニオンとカチオンとからなる配位錯化合物としては様々なものがあるが、例えば、一般式(III)又は(IV)で表される化合物を好ましく用いることができる。
([L1-H]s+)t([BZ1Z2Z3Z4]-)1・・・(III)
([L2]s+)t([BZ1Z2Z3Z4]-)1・・・(IV)
式(III)又は(IV)中、L2は後述のM1、R10R11M2又はR12 3Cであり、L1はルイス塩基、M1は周期律表の1族及び8族~12族から選ばれる金属、M2は周期律表の8族~10族から選ばれる金属、Z1~Z4はそれぞれ水素原子、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基、アルキルアリール基、アリールアルキル基、置換アルキル基、有機メタロイド基又はハロゲン原子を示す。
R10及びR11は、それぞれシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基、R12はアルキル基を示す。
sはL1-H、L2のイオン価数で1~7の整数、tは1以上の整数、l=t×s)である。
Z1~Z4の具体例としては、例えば、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基等、アルコキシ基としてメトキシ基、エトキシ基、n-ブトキシ基等、アリールオキシ基としてフェノキシ基、2,6-ジメチルフェノキシ基、ナフチルオキシ基等、炭素数1~20のアルキル基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-オクチル基、2-エチルヘキシル基等、炭素数6~20のアリール基、アルキルアリール基若しくはアリールアルキル基としてフェニル基、p-トリル基、ベンジル基、ペンタフルオロフェニル基、3,5-ジ(トリフルオロメチル)フェニル基、4-ターシャリ-ブチルフェニル基、2,6-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4-ジメチルフェニル基、1,2-ジメチルフェニル基等、ハロゲンとしてF、Cl、Br、I、有機メタロイド基としてテトラメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニル硼素基等が挙げられる。
R10及びR11のそれぞれで表される置換シクロペンタジエニル基の具体例としては、メチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基等が挙げられる。
(BZ1Z2Z3Z4)-・・・(V)
式中、Z1~Z4はそれぞれ水素原子、ジアルキルアミノ基、アルコキシ基、アリールオキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基(ハロゲン置換アリール基を含む)、アルキルアリール基、アリールアルキル基、置換アルキル基及び有機メタロイド基又はハロゲン原子を示す。
〔CR13R14R15〕+・・・(VI)
一般式(VI)におけるR13、R14及びR15は、それぞれフェニル基、置換フェニル基、ナフチル基及びアントラセニル基等のアリール基であって、それらは互いに同一であっても、異なっていてもよいが、その中の少なくとも一つは、置換フェニル基、ナフチル基又はアントラセニル基である。
R20 vAlJ3-v・・・(VIII)
式中、R20は炭素数1~10のアルキル基、Jは水素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数である
不活性ガスとしては、反応性の低いガスであればよく、例えば窒素ガス、アルゴンガスを好適に用いることができる。
有機過酸化物存在下で分解する場合、有機過酸化物はラジカル分解剤であるため、反応場に酸素が存在すると原料重合体の酸化反応が進む為、不活性ガス雰囲気下で反応させる必要がある。
また、重合温度を上げる、水素濃度を上げる等して連鎖移動反応を活発にする、最適な触媒を選択する等により原料重合体の分子量を調整できる。
また、分解時に、分解剤が原料重合体中になるべく均一に分散するように、分割して時間をかけて分解剤を投入することにより、原料重合体が均一に分解して分子量分布を狭くすることができる。
また、重合体の規則性を低下させる触媒を選択する、複数種類のモノマーを共重合させる等により、融点を100℃以下又は確認できないようにできる。
上記分解温度は、好ましくは100~290℃であり、より好ましくは150~280℃である。分解温度が低すぎる場合、分解反応が進まないおそれがある。一方、分解温度が高すぎる場合、分解が激しく進行し、撹拌により十分に有機過酸化物が溶融ポリマーに均一拡散する前に分解が終了してしまい、分子量分布が拡がるおそれがある。
分解反応をバッチ法によって実施する場合、撹拌装置の付いたステンレス製等の反応容器に窒素、アルゴン等の不活性ガスを充填し、原料重合体を入れて加熱溶融させ、溶融した原料重合体に及び有機化酸化物を滴下して、所定温度で所定時間加熱することで分解反応を実施できる。
有機過酸化物は、原料重合体に事前に高濃度分散させたものや溶媒に溶解して溶液として滴下してもよい。
また、希釈剤に溶媒を用いてもよく、溶媒使用量は、分解対象のポリマーに対して好ましくは0~1倍(体積比)である。これより高いと分解反応の効率が落ちることがある。
また、分解の際、原料重合体を溶媒に溶解させてもよい。原料重合体を溶媒に溶解して分解する場合の分解温度は、通常100~300℃、好ましくは150~260℃、さらに好ましくは160~250℃である。
装置は、単軸又は二軸の溶融押出機を用いることができ、好ましくはバレル途中に注入口を有し、減圧脱気が可能な押出機であって、L/D(スクリューの有効長さ/スクリュー径)=10以上である押出機である。
溶融連続法による分解反応は、上記装置を用いて、有機過酸化物を原料重合体に含浸させる方法、又は原料重合体及び有機過酸化物を個別に供給して混合する方法が適用できる。
原料重合体及び有機過酸化物を個別に供給しての混合は、押出機ホッパー部に一定流量で原料重合体と有機過酸化物を供給する、又は有機過酸化物をバレル途中に一定流量で供給することで実施できる。
本発明のα-オレフィン重合体の水添体は、下記(1’)~(4’)及び(6)を満たす。
(1’)重合体を構成するα―オレフィンの平均炭素数が6.0以上14以下
(2’)分子量分布(Mw/Mn)≦2.0
(3’)3000≦重量平均分子量(Mw)≦600000
(4’)(Log10Mp-Log10M1)-(Log10M2-Log10Mp)≧0.2
(式中、M1は、ゲルパーミエイションクロマトグラフィーにより測定したチャートにおいて、ピークの開始点の分子量、Mpはピークトップの分子量、M2はピークの終点の分子量である。)
(6)臭素価≦2.0
上記(1’)~(4’)においては、前記α-オレフィン重合体の(1)~(4)と同様であり、好ましい具体例も同様である。
上記(6)において、臭素価が2.0以下であると、不飽和結合の量が少なく、熱安定性及びせん断安定性に優れるという理由により好ましい。重合体中の不飽和結合量が少ないことを示し、耐熱性、せん断安定性がより高くなるため好ましい。
前記α-オレフィン重合体の水添体は、以下の方法により製造可能である。
炭素数3~32のα-オレフィンから選択される1以上のα-オレフィンの重合体であって、α-オレフィンの平均炭素数が6.0以上14以下の原料重合体を、不活性ガス雰囲気下、300℃以下、有機過酸化物存在下で分解後、水添する。
この水添処理の方法は、特に制限はなく公知の方法を使用することができ、例えば国際公開第2010/074233号に記載のような手段を用いることができる。
実施例、比較例における特性の測定方法を以下に示す。
[分子量、分子量分布]
分子量、分子量分布は以下の装置と条件で測定した。
<GPC測定装置>
カラム:TOSOGMHHR-H(S)HT
検出器:液体クロマトグラム用RI検出器WATERS150C
<測定条件>
溶媒:1,2,4-トリクロロベンゼン
測定温度:145℃
流速:1.0ml/分
試料濃度:2.2mg/ml
注入量:160μl
検量線:UniversalCalibration
解析プログラム:HT-GPC(Ver.1.0)
平均炭素数は以下の式により求めた。
(2(n-3)+3)/3=a/b
式中、nは平均炭素数、aは1H-NMRスペクトル(テトラメチルシラン基準)の0.95~1.60ppmの積分値、bは0.89ppmの積分値を示す。
1H-NMRは以下の装置と条件で測定した。
装置:日本電子株式会社製EX-400
測定温度:130℃
パルス幅:45°
積算回数:16回
溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
重合体の融点は以下の装置と条件で測定した。
示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料10mgを窒素雰囲気下、-10℃で5分間保持した後、10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップを融点とした。
炭素数6以上のα-オレフィンの規則性のみ評価した。
立体規則性指標値[mm]は、T.Asakura,M.Demura,Y.Nishiyamaにより報告された「Macromolecules,24,2334(1991)」で提案された方法に準拠して求めた。
即ち、13CNMRスペクトルで、高級α-オレフィンに由来する、側鎖α位のCH2炭素が立体規則性の違いを反映して分裂して観測されることを利用して[mm]が求めた。
装置:日本電子株式会社製EX-400
測定温度:130℃
パルス幅:45°
積算回数:1000回
溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
混合溶媒に基づく大きな吸収ピークが、127~135ppmに6本見られた。このピークのうち、低磁場側から4本目のピーク値を131.1ppmとし、化学シフトの基準とした。このとき側鎖α位のCH2炭素に基づく吸収ピークが34~37ppm付近に観測された。このとき以下の式を用いて[mm](mol%)を求めた。
[触媒成分(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-インデニル)ジルコニウムジクロライドの合成]
窒素気流下、200ミリリットルのシュレンク瓶にエーテル50ミリリットルと(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビスインデン3.5g(10.2mmol)を加え、ここに-78℃でn-ブチルリチウム(n-BuLi)のヘキサン溶液(1.60モル/リットル、12.8ミリリットル)を滴下した。室温で8時間撹拌した後溶媒を留去し、得られた固体を減圧乾燥することにより白色固体5.0gを得た。
[(1,1’-SiMe2)(2,2’-SiMe2SiMe2)ビス(インデニル)ジルコニウムジクロライドの合成]
窒素気流下、300ミリリットルの三つ口フラスコにマグネシウム2.5gとTHF100ミリリットル投入し、沃素一片(約5mg)を添加した。ここへTHF40ミリリットルに溶解した2-ブロモインデン5.0g(25.6ミリモル)を滴下漏斗より滴下した。滴下終了後さらに室温で2時間撹拌した後、1,2-ジクロロテトラメチルジシラン1.33g(7.1ミリモル)を滴下した。室温で終夜撹拌した後、溶媒を留去し、残渣をヘキサン50ミリリットルで抽出すると淡黄色油状物として1,2-ビス(インデニル)テトラメチルジシランが2.03g(収率82%)で得られた。
この塩をTHF20ミリリットルに溶解し、ジクロロジメチルシラン0.3ミリリットルを滴下した。室温で3時間撹拌した後、溶媒を除去し、残渣をヘキサン30ミリリットルで抽出した。ろ別後溶媒を留去すると(1,1’-SiMe2)(2,2’-SiMe2SiMe2)ビス(インデン)1.26gが得られた。
[1-オクテン単独重合体(I)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-オクテン400mL、トリイソブチルアルミニウム1mmol、メチルアニリニウムテトラキス(パーフルオロフェニル)ボレート3μmol、及び製造例1で製造した(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-インデニル)ジルコニウムジクロライド1μmolを投入した。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-オクテン単独重合体(I)90gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で190℃まで昇温した。
次に、パーヘキサ25B(日本油脂社製)(2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)へキサン)1.8gを窒素気流下で20分かけてゆっくりと滴下した。滴下終了後、さらに30分間、190℃に維持しながら撹拌を続けた。そして、室温まで自然降温させることで目的の分解重合体(I-a)を得た。特性の測定結果を表1に示す。尚、重合体分解物のα-オレフィンの平均炭素数は分解前重合体と同じである。
[1-デセン単独重合体(II)の製造]
1-オクテンに代えて1-デセンを使用し、水素投入後の温度を50℃とした以外は実施例1と同様に重合を行い、1-デセン単独重合体(II)180gを得た。特性の測定結果を表1に示す。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-デセン単独重合体(II)140gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で170℃まで昇温した。
次に、パーヘキサHC(日本油脂社製)(1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン)2.1gを窒素気流下で10分かけてゆっくりと滴下した。滴下終了後、さらに30分間、170℃に維持しながら撹拌を続けた。室温まで自然降温させることで目的の分解重合体(II-a)を得た。特性の測定結果を表1に示す。
[1-ドデセン単独重合体(III)の製造]
1-デセンに代えて1-ドデセンを使用した以外は実施例2の「1-デセン単独重合体(II)の製造」と同様に重合し、1-ドデセン単独重合体(III)190gを得た。特性
の測定結果を表1に示す。
1-デセン単独重合体(II)に代えて1-ドデセン単独重合体(III)を使用した以外は実施例2の「1-デセン単独重合体分解物(II-a)の製造」と同様に分解を行い、1-ドデセン単独重合体分解物(III-a)を得た。特性の測定結果を表1に示す。
[1-テトラデセン単独重合体(IV)の製造]
1-オクテンに代えて1-テトラデセンを使用した以外は実施例1の「1-オクテン単独重合体(I)の製造」と同様に重合し、1-テトラデセン単独重合体(IV)180gを得た。特性の測定結果を表1に示す。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-テトラデセン単独重合体(IV)180gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で180℃まで昇温した。次に、パーヘキサHC(日本油脂社製)2.7gを窒素気流下で10分かけてゆっくりと滴下した。滴下終了後、さらに30分間、180℃に維持しながら撹拌を続けた。そして、室温まで自然降温させることで目的の分解重合体(IV-a)を得た。特性の測定結果を表1に示す。
[1-テトラデセン/プロピレン共重合体(V)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-テトラデセン400mL、トリイソブチルアルミニウム1mmol、メチルアニリニウムテトラキス(パーフルオロフェニル)ボレート3μmol、及び製造例1で製造した(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1μmol投入した。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-テトラデセン/プロピレン共重合体(V)120gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で180℃まで昇温した。次に、パーヘキサHC(日本油脂社製)1.8gを窒素気流下で10分かけてゆっくりと滴下した。滴下終了後、さらに30分間、180℃に維持しながら撹拌を続けた。そして、室温まで自然降温させることで目的の分解重合体(V-a)を得た。特性の測定結果を表1に示す。
[1-ヘキサデセン重合体(VI)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-ヘキサデセン400mL、トリイソブチルアルミニウム1mmol、メチルアニリニウムテトラキス(パーフルオロフェニル)ボレート8μmol、及び製造例1で製造した(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを2μmol投入した。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-ヘキサデセン重合体(VI)120gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で180℃まで昇温した。次に、パーヘキサHC(日本油脂社製)1.8gを窒素気流下で10分かけてゆっくりと滴下した。滴下終了後、さらに30分間、180℃に維持しながら撹拌を続けた。この状態でゲル状の塊が大量に生成していた。
[炭素数20~24のα-オレフィン共重合体(VII)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、出光興産社製「リニアレン2024」400mL、トリイソブチルアルミニウム1mmol、メチルアニリニウムテトラキス(パーフルオロフェニル)ボレート8μmol、及び製造例1で製造した(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを2μmol投入した。
さらに、水素を0.15MPaまで投入した後、温度を110℃に昇温し、3時間重合した。重合終了後、メタノール5mlを投入し、脱圧後、反応溶液を取り出し、減圧下で乾燥させることによって炭素数20~24のα-オレフィン共重合体150gを得た。特性の測定結果を表1に示す。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-テトラデセン/プロピレン共重合体(VII)120gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で180℃まで昇温した。次に、パーヘキサHC(日本油脂社製)1.8gを窒素気流下で10分かけてゆっくりと滴下した。滴下終了後、さらに30分間、180℃に維持しながら撹拌を続けた。この状態でゲル状の塊が大量に生成していた。
[1-デセン低分子量体(VIII)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-デセン400mL、トリイソブチルアルミニウム1mmol、メチルアニリニウムテトラキス(パーフルオロフェニル)ボレート3μmol、及び製造例1で製造した(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド1μmolを投入した。
さらに、水素を0.05MPaまで投入した後、温度を80℃に昇温し、2時間重合した。重合終了後、メタノール5mlを投入し、脱圧後、反応溶液を取り出し、減圧下で乾燥させることによって1-デセン単独重合体(VIII)185gを得た。特性の測定結果を表2に示す。
[熱安定性の測定]
Φ32×15mmのシャーレに2枚に、実施例2及び比較例3で得た2種類の1-デセン重合体分解物(II-a及びVIII)、実施例3で得た1-ドデセン重合体分解物(III-a)、実施例5で得た1-テトラデセン/プロピレン共重合体分解物(V-a)を約1gずつ採取し、柴田化学株式会社製グラスチューブオーブン(GTO-350D)に設置した。そして、空気下で250℃、30分加熱し、得られたサンプルのGPC測定を行った。分子量維持率により熱安定性を評価し、分子量維持率は以下の式に従って求めた。測定結果を表2に示す。
分子量維持率=(熱処理前のMw/熱処理後のMw)×100
[1-テトラデセン単独重合体分解物(IV-b)の製造]
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に実施例4で製造した1-テトラデセン単独重合体(IV)175gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で180℃まで昇温した。
分解条件は、過酸化物を原料重合体で希釈した他は同様であるが、実施例4よりもより分解していることが分かる。
[1-ヘキセン単独重合体(IX)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-ヘキセン400ml、トリイソブチルアルミニウム1mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート8μmol、及び製造例2で製造した(1,1’-SiMe2)(2,2’-SiMe2SiMe2)ビス(インデニル)ジルコニウムジクロライド2μmolを投入した。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-ヘキセン単独重合体(IX)90gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で250℃まで昇温した。
次に、パーヘキサ25B(日本油脂社製)1.8gを窒素気流下で20分かけてゆっくりと滴下した。滴下終了後、さらに30分間、250℃に維持しながら撹拌を続けた。そして、室温まで自然降温させることで目的の分解重合体を得た。特性の測定結果を表4に示す。尚、重合体分解物のα-オレフィンの平均炭素数は分解前重合体と同じである。
[1-ヘキセン/1-ドデセン共重合体(X)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-ヘキセン200ml、1-ドデセン200mL、トリイソブチルアルミニウム1mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート4μmol、及び製造例2で製造した(1,1’-SiMe2)(2,2’-SiMe2SiMe2)ビス(インデニル)ジルコニウムジクロライド1μmolを投入した。
さらに、水素を0.15MPaまで投入した後、温度を80℃に昇温し、2時間重合した。重合終了後、メタノール5mlを投入し、脱圧後、反応溶液を取り出し、減圧下で乾燥させることによって1-ヘキセン/1-ドデセン共重合体(X)179gを得た。特性の測定結果を表4に示す。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-ヘキセン/1-ドデセン共重合体(X)90gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で250℃まで昇温した。
次に、パーヘキサ25B(日本油脂社製)1.8gを窒素気流下で20分かけてゆっくりと滴下した。滴下終了後、さらに30分間、250℃に維持しながら撹拌を続けた。そして、室温まで自然降温させることで目的の分解重合体(X-a)を得た。特性の測定結果を表4に示す。尚、重合体分解物のα-オレフィンの平均炭素数は分解前重合体と同じである。
[1-ブテン/1-ドデセン共重合体(XI)の製造]
加熱乾燥させた内容積1Lのステンレス鋼製オートクレーブに、1-ブテン200ml、1-ドデセン200mL、トリイソブチルアルミニウム1mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート4μmol、及び製造例2で製造した(1,1’-SiMe2)(2,2’-SiMe2SiMe2)ビス(インデニル)ジルコニウムジクロライド1μmolを投入した。
さらに、水素を0.15MPaまで投入した後、温度を80℃に昇温し、2時間重合した。重合終了後、メタノール5mlを投入し、脱圧後、反応溶液を取り出し、減圧下で乾燥させることによって1-ブテン/1-ドデセン共重合体(XI)201gを得た。特性の測定結果を表4に示す。
温度計及び撹拌翼、マントルヒーターを装着したセパラ式SUS製反応機(内容積500ml)に上記で製造した1-ブテン/1-ドデセン共重合体(XI)90gを仕込み、50rpmの回転速度で撹拌しながら窒素雰囲気下で250℃まで昇温した。
次に、パーヘキサ25B(日本油脂社製)1.8gを窒素気流下で20分かけてゆっくりと滴下した。滴下終了後、さらに30分間、250℃に維持しながら撹拌を続けた。そして、室温まで自然降温させることで目的の分解重合体(XI-a)を得た。特性の測定結果を表4に示す。尚、重合体分解物のα-オレフィンの平均炭素数は分解前重合体と同じである。
この明細書に記載の文献の内容を全てここに援用する。
Claims (9)
- 下記(1)~(4)を満たすα-オレフィン重合体。
(1)重合体を構成するα-オレフィンの平均炭素数が6.0以上14以下
(2)分子量分布(Mw/Mn)≦2.0
(3)3000≦重量平均分子量(Mw)≦600000
(4)(Log10Mp-Log10M1)-(Log10M2-Log10Mp)≧0.2
(式中、M1は、ゲルパーミエイションクロマトグラフィーにより測定したチャートにおいて、ピークの開始点の分子量、Mpはピークトップの分子量、M2はピークの終点の分子量である。) - さらに下記(5)を満たす請求項1記載の重合体。
(5)示差走査熱量測定によって融点が確認されない、又は融点が100℃以下 - 下記(1)~(4)、(6)を満たすα-オレフィン重合体の水添体。
(1)重合体を構成するα―オレフィンの平均炭素数が6.0以上14以下
(2)分子量分布(Mw/Mn)≦2.0
(3)3000≦重量平均分子量(Mw)≦600000
(4)(Log10Mp-Log10M1)-(Log10M2-Log10Mp)≧0.2
(式中、M1は、ゲルパーミエイションクロマトグラフィーにより測定したチャートにおいて、ピークの開始点の分子量、Mpはピークトップの分子量、M2はピークの終点の分子量である。)
(6)臭素価≦2.0 - 炭素数3~32のα-オレフィンから選択される1以上のα-オレフィンの重合体であって、α-オレフィンの平均炭素数が6.0以上14以下の原料重合体を、不活性ガス雰囲気下、300℃以下、有機過酸化物存在下で分解する請求項1又は2記載の重合体の製造方法。
- 炭素数3~32のα-オレフィンから選択される1以上のα-オレフィンの重合体であって、α-オレフィンの平均炭素数が6.0以上14以下の原料重合体を、不活性ガス雰囲気下、300℃以下、有機過酸化物存在下で分解後、水添することを特徴とする請求項3記載のα-オレフィン重合体の水添体の製造方法。
- 前記有機過酸化物を、前記原料重合体で希釈して用いる請求項4又は5記載の製造方法。
- 請求項1~3のいずれかに記載のα-オレフィン重合体又はα-オレフィン重合体の水添体を用いて得られたトナー。
- 請求項1~3のいずれかに記載のα-オレフィン重合体又はα-オレフィン重合体の水添体を用いて得られた潤滑油。
- 請求項1~3いずれかに記載のα-オレフィン重合体又はα-オレフィン重合体の水添体を用いて得られたインク。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012545620A JPWO2012070240A1 (ja) | 2010-11-26 | 2011-11-24 | α−オレフィン重合体及びその製造方法 |
US13/989,612 US20130317166A1 (en) | 2010-11-26 | 2011-11-24 | Alpha-olefin polymer and method for producing the same |
EP11842583.4A EP2669301A4 (en) | 2010-11-26 | 2011-11-24 | ALPHA OLEFIN OLIGOMERS AND METHOD FOR THE PRODUCTION THEREOF |
SG2013040258A SG190402A1 (en) | 2010-11-26 | 2011-11-24 | Alpha-olefin polymer and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010263274 | 2010-11-26 | ||
JP2010-263274 | 2010-11-26 | ||
JP2011004564 | 2011-01-13 | ||
JP2011-004564 | 2011-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070240A1 true WO2012070240A1 (ja) | 2012-05-31 |
Family
ID=46145605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006529 WO2012070240A1 (ja) | 2010-11-26 | 2011-11-24 | α-オレフィン重合体及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130317166A1 (ja) |
EP (1) | EP2669301A4 (ja) |
JP (1) | JPWO2012070240A1 (ja) |
SG (1) | SG190402A1 (ja) |
WO (1) | WO2012070240A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013118841A1 (ja) * | 2012-02-08 | 2013-08-15 | 出光興産株式会社 | 末端不飽和α-オレフィン重合体及びその製造方法 |
WO2016039295A1 (ja) * | 2014-09-10 | 2016-03-17 | 三井化学株式会社 | 潤滑油組成物 |
US9909002B2 (en) | 2014-04-09 | 2018-03-06 | Sumitomo Chemical Company, Limited | Resin composition, cross-linked product, and method for manufacturing cross-linked product |
WO2019189121A1 (ja) * | 2018-03-30 | 2019-10-03 | 出光興産株式会社 | 潤滑油組成物、及び潤滑油組成物の使用方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03287608A (ja) | 1990-04-04 | 1991-12-18 | Mitsui Petrochem Ind Ltd | α−オレフィン系共重合体の熱分解物およびその製造方法 |
JPH04139245A (ja) | 1990-09-28 | 1992-05-13 | Mitsui Petrochem Ind Ltd | 繊維用ポリ1―ブテン樹脂の製造方法 |
JPH0657728A (ja) | 1992-08-04 | 1994-03-01 | Tokyo Kiyuuei:Kk | 取水口 |
JPH0733916A (ja) | 1993-07-20 | 1995-02-03 | Tonen Chem Corp | 熱可塑性エラストマー組成物 |
JPH07308967A (ja) | 1994-05-18 | 1995-11-28 | Tokuyama Corp | 成形体溶着物の製造方法 |
JPH08230116A (ja) | 1995-02-28 | 1996-09-10 | Showa Denko Kk | 多層積層体 |
JPH09104720A (ja) * | 1995-08-07 | 1997-04-22 | Tosoh Corp | 過酸化物改質エチレン・α−オレフィン系共重合体エラストマーおよび樹脂組成物 |
JP2009057573A (ja) * | 2008-11-06 | 2009-03-19 | Idemitsu Kosan Co Ltd | 高級α−オレフィン共重合体及びその製造方法 |
JP2009161752A (ja) | 2007-12-14 | 2009-07-23 | Aisin Aw Co Ltd | 洗浄組成物 |
WO2010074233A1 (ja) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | α-オレフィン重合体の製造方法、α-オレフィン重合体、および潤滑油組成物 |
WO2010117028A1 (ja) * | 2009-04-10 | 2010-10-14 | 出光興産株式会社 | αオレフィンオリゴマーおよびその製造方法 |
JP2011016893A (ja) | 2009-07-08 | 2011-01-27 | Idemitsu Kosan Co Ltd | 重合触媒及びその保存方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3519609A (en) * | 1967-06-07 | 1970-07-07 | Eastman Kodak Co | Method for making polyolefin waxes by thermal degradation of higher molecular weight polyolefins in the presence of organic acids and anhydrides |
DE19827323A1 (de) * | 1998-06-19 | 1999-12-23 | Basf Ag | Verwendung von metallocenkatalysiert hergestellten Oligodecenen als Komponenten in Schmierstoffen |
-
2011
- 2011-11-24 WO PCT/JP2011/006529 patent/WO2012070240A1/ja active Application Filing
- 2011-11-24 SG SG2013040258A patent/SG190402A1/en unknown
- 2011-11-24 JP JP2012545620A patent/JPWO2012070240A1/ja active Pending
- 2011-11-24 US US13/989,612 patent/US20130317166A1/en not_active Abandoned
- 2011-11-24 EP EP11842583.4A patent/EP2669301A4/en not_active Withdrawn
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03287608A (ja) | 1990-04-04 | 1991-12-18 | Mitsui Petrochem Ind Ltd | α−オレフィン系共重合体の熱分解物およびその製造方法 |
JPH04139245A (ja) | 1990-09-28 | 1992-05-13 | Mitsui Petrochem Ind Ltd | 繊維用ポリ1―ブテン樹脂の製造方法 |
JPH0657728A (ja) | 1992-08-04 | 1994-03-01 | Tokyo Kiyuuei:Kk | 取水口 |
JPH0733916A (ja) | 1993-07-20 | 1995-02-03 | Tonen Chem Corp | 熱可塑性エラストマー組成物 |
JPH07308967A (ja) | 1994-05-18 | 1995-11-28 | Tokuyama Corp | 成形体溶着物の製造方法 |
JPH08230116A (ja) | 1995-02-28 | 1996-09-10 | Showa Denko Kk | 多層積層体 |
JPH09104720A (ja) * | 1995-08-07 | 1997-04-22 | Tosoh Corp | 過酸化物改質エチレン・α−オレフィン系共重合体エラストマーおよび樹脂組成物 |
JP2009161752A (ja) | 2007-12-14 | 2009-07-23 | Aisin Aw Co Ltd | 洗浄組成物 |
JP2009057573A (ja) * | 2008-11-06 | 2009-03-19 | Idemitsu Kosan Co Ltd | 高級α−オレフィン共重合体及びその製造方法 |
WO2010074233A1 (ja) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | α-オレフィン重合体の製造方法、α-オレフィン重合体、および潤滑油組成物 |
WO2010117028A1 (ja) * | 2009-04-10 | 2010-10-14 | 出光興産株式会社 | αオレフィンオリゴマーおよびその製造方法 |
JP2011016893A (ja) | 2009-07-08 | 2011-01-27 | Idemitsu Kosan Co Ltd | 重合触媒及びその保存方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2669301A4 |
T. ASAKURA; M. DEMURA; Y NISHIYAMA, MACROMOLECULES, vol. 24, 1991, pages 2334 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013118841A1 (ja) * | 2012-02-08 | 2013-08-15 | 出光興産株式会社 | 末端不飽和α-オレフィン重合体及びその製造方法 |
US9909002B2 (en) | 2014-04-09 | 2018-03-06 | Sumitomo Chemical Company, Limited | Resin composition, cross-linked product, and method for manufacturing cross-linked product |
WO2016039295A1 (ja) * | 2014-09-10 | 2016-03-17 | 三井化学株式会社 | 潤滑油組成物 |
JPWO2016039295A1 (ja) * | 2014-09-10 | 2017-06-29 | 三井化学株式会社 | 潤滑油組成物 |
US10227543B2 (en) | 2014-09-10 | 2019-03-12 | Mitsui Chemicals, Inc. | Lubricant compositions |
WO2019189121A1 (ja) * | 2018-03-30 | 2019-10-03 | 出光興産株式会社 | 潤滑油組成物、及び潤滑油組成物の使用方法 |
US11274262B2 (en) | 2018-03-30 | 2022-03-15 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition and use method therefor |
Also Published As
Publication number | Publication date |
---|---|
EP2669301A1 (en) | 2013-12-04 |
EP2669301A4 (en) | 2014-07-09 |
US20130317166A1 (en) | 2013-11-28 |
JPWO2012070240A1 (ja) | 2014-05-19 |
SG190402A1 (en) | 2013-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1309633B1 (en) | Process for producing liquid polyalphaolefin polymer, metallocene catalyst therefor and lubricants containing the same | |
US7019091B2 (en) | Higher α-olefin copolymers and process for preparation thereof | |
TW201521869A (zh) | 以超分支乙烯爲主之油及油脂 | |
JP3955573B2 (ja) | 結晶性高級αオレフィン重合体及びその製造方法 | |
KR20100126666A (ko) | 프로펜 첨가에 따른 폴리알파올레핀의 브랜치 레벨 및 점도 제어 | |
JPWO2008047860A1 (ja) | 高純度末端不飽和オレフィン系重合体及びその製造方法 | |
JP2019065290A (ja) | シンジオタクチックプロピレンポリマーおよび同を含む潤滑油 | |
WO2012070240A1 (ja) | α-オレフィン重合体及びその製造方法 | |
JP6329129B2 (ja) | α−オレフィン重合体及び水添α−オレフィン重合体の製造方法 | |
EP2452954A1 (en) | Polymerization catalysts and method for preservation of same | |
US20090018288A1 (en) | Crosslinked olefin polymers and process for production thereof | |
JP5850510B2 (ja) | 衛生性に優れたエチレン共重合体およびその製造方法 | |
WO2006117983A1 (ja) | 重合触媒及び該触媒を用いるポリα-オレフィンの製造方法 | |
EP1659135B1 (en) | Chlorinated propylene polymer, process for producing the same, and use of the same | |
JP5957472B2 (ja) | 末端不飽和α−オレフィン重合体及びその製造方法 | |
JP2005113038A (ja) | 極性基含有高級オレフィン重合体及びその製造方法 | |
US9056931B2 (en) | Method for producing olefin polymer | |
JP5606144B2 (ja) | ポリオレフィンの製造方法 | |
JP2009280678A (ja) | 結晶性ポリマー分散体、活性光線硬化型インキ及びその製造方法 | |
JP5248426B2 (ja) | 重合触媒および芳香族ビニル化合物重合体の製造方法 | |
WO2014142207A1 (ja) | α-オレフィン重合体及び水添α-オレフィン重合体の製造方法 | |
JP2002371162A (ja) | 1−ブテン系樹脂組成物および成形体 | |
JPWO2008105317A1 (ja) | 酸化変性プロピレン系重合体及びその製造方法 | |
JPH06172449A (ja) | 結晶性オレフィン系ランダム共重合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11842583 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012545620 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011842583 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13989612 Country of ref document: US |