WO2012070204A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012070204A1
WO2012070204A1 PCT/JP2011/006399 JP2011006399W WO2012070204A1 WO 2012070204 A1 WO2012070204 A1 WO 2012070204A1 JP 2011006399 W JP2011006399 W JP 2011006399W WO 2012070204 A1 WO2012070204 A1 WO 2012070204A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
light source
layer
phosphor
Prior art date
Application number
PCT/JP2011/006399
Other languages
English (en)
French (fr)
Inventor
真也 門脇
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012070204A1 publication Critical patent/WO2012070204A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a display device that performs color display by converting blue light emitted from a light source unit as a backlight into each color in a phosphor layer.
  • the liquid crystal display device can be reduced in thickness and has low power consumption, it is widely used as a display for OA devices such as TVs and personal computers, mobile information devices such as mobile phones and PDAs (Personal Digital Assistants).
  • OA devices such as TVs and personal computers
  • mobile information devices such as mobile phones and PDAs (Personal Digital Assistants).
  • the liquid crystal display device includes a liquid crystal panel and a backlight unit attached to the back side thereof.
  • the liquid crystal panel is arranged with an array substrate having a switching element such as a thin film transistor (TFT), a thin film transistor (TFT), and the like, and is arranged so as to face the array substrate, and three of red (R), green (G), and blue (B). It is composed of a counter substrate on which a color filter layer of color is formed and a liquid crystal layer formed between both substrates.
  • TFT thin film transistor
  • TFT thin film transistor
  • TFT thin film transistor
  • this liquid crystal display device adjusts the transmittance of light incident from the backlight for each pixel by utilizing the fact that the alignment state of the liquid crystal molecules changes by turning on and off the electrode corresponding to the pixel, The transmitted light is transmitted through the colored portion of the color filter layer to perform color display.
  • Patent Document 1 discloses a liquid crystal display device including a backlight that emits blue light as a backlight.
  • This liquid crystal display device has a phosphor layer in which a red phosphor film and a green phosphor film are arranged so as to correspond to each of a red pixel and a green pixel, thereby exciting blue light to emit red and It is described that RGB color display can be performed by obtaining green fluorescence.
  • the use efficiency of light is better than when blocking light other than light of a desired wavelength with a color filter.
  • the red light and green light emit fluorescence with omnidirectionality (Lambertian distribution).
  • the light incident from the backlight passes through the phosphor layer as it is and is extracted to the light exit side.
  • the intensity of the blue light is strong and the image is As a whole, it looks blue.
  • the intensity of blue is weak and the image looks yellowish as a whole. Therefore, the color balance is poor and the display quality is lowered.
  • Patent Document 2 discloses a configuration in which a light diffusion layer is laminated on a transparent support, and the light diffusion layer has a concavo-convex surface by containing a binder resin and resin particles. .
  • a thin-film diffusion layer having a structure in which a bead-shaped diffusion resin (filler) is dispersed in layers on the light incident side surface and light emission side surface of the phosphor layer is used.
  • a method of forming and diffusing light is used.
  • the bead-shaped diffusion resin filler
  • 9.3% of the light does not pass through the filler and passes through the filler as calculated. Therefore, a diffusion effect cannot be obtained for these lights.
  • the present invention provides an excellent display that does not depend on the viewing angle by sufficiently diffusing blue light in a display device that converts blue light into light of an arbitrary wavelength and uses blue light as a backlight to perform arbitrary color display.
  • An object is to obtain a display device capable of displaying an image with high quality.
  • the display device of the present invention includes a plurality of pixels including blue pixels arranged in a display region, and is provided on a light emitting side of the light source unit that emits light in a blue wavelength region from the light emitting surface, and on the light emitting side of the light source unit.
  • the phosphor layer has a phosphor film that absorbs light emitted from the light source unit and emits fluorescence of an arbitrary wavelength so as to correspond to pixels other than blue, and has a blue color.
  • the layer is recessed toward the anti-diffusion layer and tapered toward the bottom, and the taper is reduced toward the bottom, or the taper decreases toward the tip and the width decreases toward the tip.
  • the resin layer provided on the light incident side surface of the diffusion layer has a plurality of recessed portions that protrude toward the anti-diffusion layer side, or a plurality of protruding portions that protrude toward the diffusion layer.
  • the blue light that is about to pass through the diffusion layer is emitted through the recessed portion and the protruding portion. Since the concave portion has a tapered shape in which the concave width becomes narrower toward the bottom, the side surface of the concave portion is not parallel to the light incident surface. Further, since the protruding portion has a tapered shape in which the protruding width becomes narrower toward the tip, the side surface of the protruding portion is not parallel to the light incident surface.
  • the blue light passing through the side surface of the recessed portion or the side surface of the protruding portion enters the diffusion layer from the recessed portion or the protruding portion while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused.
  • the resin layer provided on the light incident side surface of the diffusion layer has a plurality of recesses that are recessed toward the anti-diffusion layer side, or a plurality of protrusions that protrude toward the diffusion layer. Can diffuse. Then, by sufficiently diffusing the blue light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • the resin layer has a plurality of recessed portions
  • the concave portion When the concave portion is formed in a pyramid shape, the concave portion may have a quadrangular pyramid shape.
  • the recessed portion when the recessed portion is formed in a pyramid shape, the recessed portion may have a triangular pyramid shape.
  • the base of the concave portion is continuous with the base of the adjacent concave portion.
  • the base of the recessed portion of the present invention is formed so as to be continuous with the base of the adjacent recessed portion, the light passing through the resin layer reliably passes through the recessed portion even between the adjacent recessed portions. Therefore, light can be diffused well.
  • the resin layer has a plurality of recessed portions
  • the concave portion When the concave portion is formed in a pyramid shape, the concave portion may have a quadrangular pyramid shape.
  • the recessed portion when the recessed portion is formed in a pyramid shape, the recessed portion may have a triangular pyramid shape.
  • the base of the concave portion is continuous with the base of the adjacent concave portion.
  • the base of the recessed portion of the present invention is formed so as to be continuous with the base of the adjacent recessed portion, the light passing through the resin layer reliably passes through the recessed portion even between the adjacent recessed portions. Therefore, light can be diffused well.
  • the protrusions when the resin layer has a plurality of protrusions, the protrusions preferably have a pyramid shape.
  • the protrusion When the protrusion is formed in a pyramid shape, the protrusion may have a quadrangular pyramid shape.
  • the protrusion when the protrusion is formed in a pyramid shape, the protrusion may have a triangular pyramid shape.
  • the base end of the protrusion is preferably continuous with the base end of the adjacent protrusion.
  • the base end of the projecting portion of the present invention is formed so as to be continuous with the base end of the adjacent projecting portion, the light passing through the resin layer is reliably projected between the adjacent projecting portions. Light can be diffused satisfactorily.
  • a spherical filler that diffuses light is mixed in the diffusion layer.
  • the filler since the filler is mixed in the diffusion layer, the light reaching the filler out of the light traveling through the diffusion layer is refracted at the filler interface. Therefore, it is possible to diffuse light better.
  • the filler When the filler is mixed in the diffusion layer, the filler is preferably formed hollow.
  • the filler since the filler has a hollow configuration, the difference in refractive index between the binder filled in the diffusion layer and the pore portion of the filler increases. Therefore, the light passing through the filler passes at a large refraction angle at the filler interface, and the effect of diffusing the light is better obtained.
  • each pixel is composed of a red pixel, a green pixel, and a blue pixel
  • the phosphor layer is disposed so as to correspond to each red pixel, and absorbs light of a blue wavelength and has a red wavelength.
  • a red phosphor film that emits fluorescence and a green phosphor film that is arranged so as to correspond to each green pixel and absorbs light of blue wavelength and emits fluorescence of green wavelength. is there.
  • the display device of the present invention has an optical shutter unit that has a large number of pixels between the phosphor layer and the light source unit and controls the transmittance of light emitted from the light source unit to the display side for each pixel. May be provided.
  • the display device of the present invention has a large number of pixels on the opposite side of the phosphor layer from the light source unit, and performs light intensity control for each pixel on the display side of light emitted from the phosphor layer.
  • a shutter unit may be further provided.
  • the optical shutter unit When the display device is configured to include an optical shutter unit between the phosphor layer and the light source unit, or when the display device is configured to include an optical shutter unit on the opposite side of the phosphor layer from the light source unit, the optical shutter unit It is preferable that the two substrates have a structure in which the liquid crystal layers are disposed opposite to each other.
  • the display device includes a light source side substrate disposed on the light source unit side, and a display side substrate disposed on the opposite side of the light source unit so as to face the light source side substrate.
  • the phosphor layer is formed on the display-side substrate, and is provided so as to absorb the light whose transmittance is controlled by the optical shutter unit and emit fluorescence of an arbitrary wavelength. May be.
  • the phosphor layer is formed on the display-side substrate of the optical shutter unit, it is not necessary to provide a phosphor substrate for providing the phosphor layer, and the entire liquid crystal display device is thinned. be able to.
  • the display device of the present invention includes a light source side substrate disposed on the light source unit side, and a display side substrate disposed on the opposite side of the light source unit so as to face the light source side substrate, and includes a number of An optical shutter unit having pixels is provided, the phosphor layer is formed on the light source side substrate, and the optical shutter unit is provided to control the transmittance of the light emitted from the phosphor layer to the display side substrate. It may be.
  • the phosphor layer is formed on the light source side substrate of the optical shutter unit, there is no need to provide a phosphor substrate for providing the phosphor layer, and the entire liquid crystal display device is thinned. be able to.
  • the optical shutter unit is preferably provided with a liquid crystal layer between the light source side substrate and the display side substrate. It is.
  • a color filter of a color corresponding to each emission color of each pixel is provided on the light emission side surface of each phosphor film of the phosphor layer, and a blue color is provided on the light emission side surface of the diffusion layer.
  • a color filter may be provided.
  • each phosphor layer is arranged from the light emission side.
  • the blue light can be blocked. For this reason, unnecessary phosphor emission due to external light can be suppressed, and excellent display quality can be obtained by increasing the luminance of the fluorescence of each color.
  • the blue color filter is provided on the light emission side surface of the diffusion layer, the wavelength other than the blue color in the external light entering the diffusion layer from the light emission side is blocked. Can do. Therefore, the diffusion of external light in the diffusion layer is suppressed, and an excellent display quality can be obtained by increasing the blue luminance.
  • the light source unit may be of an edge light type including a light guide plate and a light source that is provided on the side of the light guide plate and emits light toward the light guide plate.
  • the light source unit may be a direct type composed of a plurality of light sources arranged in parallel and emitting light toward the phosphor layer.
  • the resin layer provided on the light incident side surface of the diffusion layer has a plurality of recessed portions that are recessed toward the anti-diffusion layer side or protrusions that protrude toward the diffusion layer.
  • the blue light that is going to pass through the layer will be emitted through the protrusion.
  • the concave portion has a tapered shape in which the concave width becomes narrower toward the bottom, the side surface of the concave portion is not parallel to the light incident surface.
  • the protruding portion has a tapered shape in which the protruding width becomes narrower toward the tip, the side surface of the protruding portion is not parallel to the light incident surface.
  • the blue light passing through the side surface of the recessed portion or the side surface of the protruding portion enters the diffusion layer from the recessed portion or the protruding portion while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused.
  • the resin layer provided on the light incident side surface of the diffusion layer has a plurality of recesses that are recessed toward the anti-diffusion layer side, or a plurality of protrusions that protrude toward the diffusion layer. Can diffuse. Then, by sufficiently diffusing the blue light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display device of Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal panel of Embodiment 1.
  • FIG. 2 is a cross-sectional view of a phosphor layer according to Embodiment 1.
  • FIG. It is sectional drawing which expands and shows the diffusion layer vicinity of a fluorescent substance layer.
  • A) is an enlarged plan view showing a recessed portion
  • (b) is a sectional view taken along line Vb-Vb in (a)
  • (c) is a sectional view taken along line Vc-Vc in (a).
  • It is sectional drawing which expands and shows the diffusion layer vicinity of a fluorescent substance layer about the modification of a reflecting film.
  • FIG. 10 is a schematic cross-sectional view of a liquid crystal display device showing Modification Example 1.
  • A) is an enlarged plan view showing a recessed portion of the phosphor layer in Modification 2
  • (b) is a plan view of each recessed portion
  • (c) is a cross section taken along line XIIc-XIIc in (b).
  • FIG. (A) is an enlarged plan view showing a recessed portion of the phosphor layer in Modification 3
  • (b) is a plan view of each recessed portion
  • (c) is a cross section taken along line XIIIc-XIIIc in (b).
  • FIG. (A) is a plan view showing an enlarged concave portion of the phosphor layer in Modification Example 4
  • (b) is a plan view of one concave portion
  • (c) is a cross section taken along line XIVc-XIVc in (b).
  • FIG. (A) is a plan view showing an enlarged recess of a phosphor layer in Modification Example 5
  • (b) is a cross-sectional view taken along line XVb-XVb in (a).
  • (A) is a top view which expands and shows the recessed part of the fluorescent substance layer in the modification 6
  • (b) is sectional drawing in the XVIb-XVIb line
  • 6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal panel of Embodiment 2.
  • FIG. 6 is a cross-sectional view of a phosphor layer according to Embodiment 2.
  • FIG. It is sectional drawing which expands and shows the diffusion layer vicinity of a fluorescent substance layer.
  • (A) is an enlarged plan view showing a protrusion
  • (b) is a cross-sectional view taken along line XXIb-XXIb in (a)
  • (c) is a cross-sectional view taken along line XXIc-XXIc in (a).
  • (A)-(d) is explanatory drawing of the formation method of a fluorescent substance layer.
  • (A)-(d) is explanatory drawing of the formation method of a fluorescent substance layer.
  • (A) is the top view which expands and shows the protrusion part of a fluorescent substance layer in the modification 7
  • (b) is the top view and side view per protrusion part.
  • (A) is a top view which expands and shows the protrusion part of a fluorescent substance layer in the modification 8
  • (b) is the top view and side view per protrusion part.
  • (A) is the top view which expands and shows the protrusion part of a fluorescent substance layer in the modification 9
  • (b) is the top view and side view per protrusion part.
  • (A) is a top view which expands and shows the projection part of a fluorescent substance layer in modification 10
  • (b) is a side view of (a).
  • (A) is the top view which expands and shows the protrusion part of a fluorescent substance layer in the modification 11
  • (b) is a side view of (a).
  • 6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal panel of Embodiment 3.
  • FIG. It is sectional drawing of the fluorescent substance layer of Embodiment 3.
  • 6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 4.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal panel according to Embodiment 4.
  • FIG. 6 is a cross-sectional view of a display-side substrate of Embodiment 4.
  • FIG. (A)-(f) is explanatory drawing which shows the manufacturing method of the display side board
  • FIG. (A)-(e) is explanatory drawing which shows the manufacturing method of the display side board
  • FIG. 7 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 5.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal panel of Embodiment 5.
  • FIG. 10 is a cross-sectional view of a light source side substrate according to a fifth embodiment.
  • 7 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 6.
  • FIG. 7 is a schematic cross-sectional view of a liquid crystal panel of Embodiment 6.
  • FIG. It is sectional drawing of the fluorescent substance layer of Embodiment 6.
  • Embodiment 1 (Liquid crystal display device 100) As shown in FIG. 1, the liquid crystal display device 100 according to the first embodiment includes a light source unit 110, a liquid crystal panel 120, and a phosphor layer 130. Then, the light emitted from the light source unit 110 enters the phosphor layer 130 through the liquid crystal panel 120, and these are arranged so that a predetermined image display is obtained on the display side of the phosphor layer 130.
  • the liquid crystal display device 100 is used for, for example, a display of an OA device such as a television or a personal computer, a portable information device such as a mobile phone or a PDA (Personal Digital Assistant).
  • RGB color display can be performed by controlling on / off of the display for each pixel.
  • the light source unit 110 is of an edge light type in which an LED light source 112 is provided on the side so that light enters the light guide plate 111 from the end face of the light guide plate 111.
  • the light guide plate 111 is formed so that the surface on the side opposite to the display side (the liquid crystal panel 120 side) has, for example, a prism shape, and light incident from the end hits the prism-shaped surface and is refracted. The light is emitted to the display side (the liquid crystal panel 120 side).
  • the light guide plate 111 is formed so that the surface on the side opposite to the display side (the liquid crystal panel 120 side) has, for example, a prism shape, and light incident from the end hits the prism-shaped surface and is refracted. The light is emitted to the display side (the liquid crystal panel 120 side).
  • a reflective sheet is provided.
  • an optical sheet such as a prism sheet or a diffusion sheet is provided on the display-side surface of the light guide plate 111 as necessary.
  • the LED light source 112 has a function of causing light to enter the light guide plate 111.
  • the LED light source 112 is a light source that emits light in a blue wavelength region having an emission peak wavelength of about 400 to 500 nm. Since the blue wavelength light is shorter than the red or green wavelength light, the peak position of the fluorescence emission spectrum is longer than the peak position of the excitation light emission spectrum due to energy loss of the excitation light. By using the phenomenon (Stokes shift), it can be suitably used as excitation light that emits red and green fluorescence.
  • the light in the blue region does not include ultraviolet rays (having a wavelength of less than about 400 nm), it is not necessary to cut the light in the ultraviolet region, and light utilization efficiency superior to that in the case of using white light as the light source can be obtained.
  • a fluorescent lamp such as a cold cathode tube or a hot cathode tube may be used.
  • the liquid crystal panel 120 functions as an optical shutter unit that controls the transmittance of light incident from the light source side substrate 121 side for each pixel and emits the light to the display side.
  • a light source side substrate 121 on the light source unit 110 side and a display side substrate 122 on the light extraction side (display side) are arranged so as to face each other, and liquid crystal is disposed in the space between the two substrates.
  • a layer (not shown) is filled.
  • polarizing layers 123 and 124 are provided on the surfaces of the light source substrate 121 and the display substrate 122, respectively.
  • Examples of the driving method of the liquid crystal panel 120 include a TN driving method, a VA driving method, an ECB (Electrically Controlled Birefringence) driving method, and the like.
  • the light source side substrate 121 is not shown in detail, a gate metal and a source metal are arranged on the substrate body, a switching element such as a thin film transistor (TFT) is formed for each pixel, and a pixel electrode that conducts to each switching element is provided for each pixel electrode.
  • TFT thin film transistor
  • This is an array substrate having a configuration in which an alignment film is formed so as to cover each pixel.
  • the light source side substrate 121 has a thickness of about 0.1 to 1.0 mm, for example.
  • the display-side substrate 122 has a configuration in which a counter electrode is provided on the entire surface of the substrate body, and an alignment film is formed so as to cover the counter electrode.
  • the display-side substrate 122 has a thickness of about 0.1 to 1.0 mm, for example.
  • the light that has passed through the liquid crystal panel 120 further passes through the phosphor layer 130 and is converted into RGB colors in the phosphor layer 130. Therefore, a color filter is provided on the display side substrate 122. Color display can be performed without provision.
  • the light source side substrate 121 is described as the array substrate and the display side substrate 122 is the counter substrate.
  • the display side substrate 122 is the array substrate and the light source side substrate 121 is the counter substrate. May be.
  • the phosphor layer 130 is formed by bonding the light emitting side of the phosphor layer 130 to the phosphor substrate body 130S with an adhesive layer 139a so as to be supported by the phosphor substrate body 130S.
  • the red phosphor film 131R is arranged so as to correspond to the red pixel
  • the green phosphor film 131G is arranged so as to correspond to the green pixel
  • the diffusion layer 132 is arranged so as to correspond to the blue pixel.
  • the light incident side surfaces of the red and green phosphor films 131R and 131G and the diffusion layer 132 are covered with the resin film 134b, and the light emission side surface is covered with the resin layer 133.
  • a planarizing film 134a is provided so as to further cover the surface of the resin film 134b and planarize the surface of the phosphor layer 130.
  • the phosphor substrate body 130S is made of a transparent material such as glass or transparent resin.
  • the phosphor substrate body 130S has a thickness of about 0.03 to 1.0 mm, for example.
  • the red phosphor film 131R and the green phosphor film 131G are provided in a region corresponding to the red pixel and a region corresponding to the green pixel, respectively.
  • the red phosphor film 131R is formed of a fluorescent material having a function of converting blue light into red light.
  • the green phosphor film 131G is formed of a fluorescent material having a function of converting blue light into green light.
  • Each fluorescent material is obtained by, for example, dispersing a fluorescent dye in a resin such as an acrylic resin or an ultraviolet curable resin or making it into a solid solution state.
  • the red and green phosphor films 131R and 131G have a thickness of 5 to 20 ⁇ m, for example.
  • the diffusion layer 132 is provided so as to correspond to the blue pixel region. As shown in FIG. 4, the diffusion layer is formed by dispersing spherical fillers 132a in a binder resin.
  • the diffusion layer 132 has a thickness of 5 to 20 ⁇ m, for example.
  • the binder resin is formed of a photocurable or thermosetting resin, and examples thereof include acrylic resins (refractive index of about 1.49) and polyester resins (refractive index of about 1.55).
  • the filler 132a is made of, for example, an organic material such as acrylic resin (refractive index of about 1.49) or polystyrene resin (refractive index of about 1.59), or an inorganic material such as ceramic particles.
  • the filler 132a is formed of a material having a refractive index of 0.01 or more smaller than the binder resin of the diffusion layer.
  • the filler 132a has a true spherical shape with a diameter of about 2 to 10 ⁇ m, for example. Since the filler 132a is mixed in the diffusion layer, the light that has reached the filler 132a out of the light traveling through the diffusion layer is refracted at the interface of the filler 132a, so that the light can be diffused better. .
  • the filler 132a has a hollow structure inside.
  • the filler 132a having a hollow structure include single hollow particles having one hole inside the particle, multi-hollow particles having a plurality of holes inside the particle, and porous particles having a porous structure. Since the inside of the filler 132a has a hollow structure, the difference in refractive index between the binder filled in the diffusion layer and the pore portion of the filler 132a increases. Therefore, the light passing through the filler 132a passes through the interface of the filler 132a with a large refraction angle, and the effect of diffusing the light can be obtained better.
  • the filler 132a may be a hemispherical shape, a lens shape, or other shapes other than a true spherical shape.
  • the filler 132a is dispersed in the binder resin of the diffusion layer here, the filler 132a is not an essential configuration.
  • the planarizing film 134a and the resin film 134b are made of a resin such as acrylic or urethane acrylate.
  • the planarizing film 134a and the resin film 134b provided so as to cover the light incident side surfaces of the respective phosphor films 131R and G and the diffusion layer 132 constitute a resin layer 134.
  • the planarization film 134a and the resin film 134b may be formed of the same material or different materials.
  • the resin layer 134 is composed of the planarizing film 134a and the resin film 134b here, the planarizing film 134a and the resin film 134b may be integrally formed.
  • the planarization film 134a has a thickness of about 1 to 50 ⁇ m, for example, and the resin film 134b has a thickness of about 1 to 10 ⁇ m, for example.
  • the resin film 134b is formed of a material having a refractive index smaller than that of the diffusion layer 132.
  • the planarizing film 134a is also filled in regions between the phosphor layers 131R and 131G and between the diffusion layers 132, and partition walls are formed so as to partition each of the phosphor films 131R and G and the diffusion layer 132. Is configured.
  • the partition wall portion of the planarization film 134a preferably has a tapered shape that tapers from the light incident side toward the emission side.
  • a reflective film 135 is provided on the partition wall portion of the planarizing film 134a.
  • a part of the resin film 134b provided to cover the light incident side surface of the diffusion layer 132 is formed with a plurality of recessed portions 134ba that are recessed toward the opposite side of the diffusion layer 132 side, as shown in FIG. Has been.
  • the recessed portion 134ba has a tapered shape in which the recessed width becomes narrower toward the bottom, and specifically, the shape of the recessed portion becomes a quadrangular pyramid shape.
  • Each of the plurality of recessed portions 134ba is arranged to have a layout in which quadrangles on the bottom surface of the quadrangular pyramid are spread so that the base portion is continuous with the base portion of the adjacent recessed portion.
  • the recessed portions 134ba are preferably provided with a pitch width of 1 to 50 ⁇ m, and more preferably with a pitch width of 3 to 10 ⁇ m.
  • the pitch width is preferably small.
  • the pitch width is somewhat Larger is preferred.
  • the concave shape of the concave portion 134ba is assumed to be a quadrangular pyramid shape, the bottom portion of the concave portion 134ba corresponding to the apex portion of the quadrangular pyramid is crushed for manufacturing, and a flat portion of about 0.1 to 2 ⁇ m square, for example, It does not matter. Further, the side surface of the quadrangular pyramid constituting the recessed portion 134ba may not be a complete plane.
  • the quadrangular pyramid means that the schematic shape is a quadrangular pyramid.
  • the expression “triangular pyramid”, “hexagonal pyramid”, “cone”, “pyramidal frustum”, and the like used in the following means that the approximate shape is that shape.
  • the reflection film 135 is provided on the surface of the partition wall portion of the planarization film.
  • the reflective film 135 is formed of a material exhibiting high reflectivity in the visible light range, such as Al, Ag, Al alloy, Ag alloy, and the like, and has a thickness of, for example, 100 to 500 nm.
  • the reflective film 135 can be formed using, for example, a sputtering method or vapor deposition.
  • the reflective film 135 may be provided up to the recessed portion of the recessed portion 134ba as shown in FIG. 4, and is provided so as not to enter the recessed portion 134ba as shown in FIG. May be.
  • the resin layer 133 is formed of a material mainly composed of a resin such as acrylic or urethane acrylate.
  • the resin layer 133 has a thickness of about 1 to 5 ⁇ m, for example.
  • the refractive index of the resin layer 133 is made of a material smaller than the refractive index of the diffusion layer 132.
  • the liquid crystal panel 120 and the phosphor layer 130 are bonded by an adhesive layer 139b shown in FIG.
  • the transmittance of the blue light emitted from the light source unit 110 is adjusted for each pixel by the TFT corresponding to each pixel in the liquid crystal panel 120. Then, the light that has passed through the phosphor layer 130 from the liquid crystal panel 120 is converted into fluorescence having an arbitrary color wavelength in the phosphor layer 130, thereby displaying a desired image as a whole.
  • the light source unit 110 and the liquid crystal panel 120 can be manufactured using a conventionally known method, and thus the description thereof is omitted.
  • the second mold M2 is formed by cutting the first mold M1 and using the first mold M1 as a mold.
  • the cutting tool B1 has a shape in which a tip portion to be cut has a diameter reduced toward the tip, and a cross section of the tip portion perpendicular to the cutting direction has a trapezoidal shape.
  • a trapezoidal plate-like chip may be attached to the tip of the cutting tool M1, or the tip may be formed in a truncated cone.
  • the cutting tool B2 has a shape in which a tip portion to be cut has a diameter reduced toward the tip, and a cross section of the tip portion perpendicular to the cutting direction has a triangular shape.
  • the shape of the tip portion of the cutting tool M2 may be that a tip of a triangular plate is attached to the tip of the cutting tool M2, or the tip of the cutting tool M2 may be formed in a cone (described later).
  • FIG. 8A shows a case where the tip of the cutting tool M2 is a cone).
  • a plurality of grooves are formed in a lattice shape on the surface of the flat plate M1a using the cutting tool B1.
  • a plurality of structures protruding in the shape of a quadrangular pyramid are formed in a matrix on the surface of the flat plate M1a.
  • a quadrangular pyramid-shaped protrusion M1b is formed on a predetermined portion of the quadrangular frustum-shaped projecting structure formed using a bite B2.
  • the protrusions M1b are formed so as to be arranged in a matrix with no gaps.
  • a plurality of grooves are formed in parallel on the surface of the flat plate M1a in one direction (for example, in the X direction in FIG. 8B). To do. Then, by further providing a plurality of grooves in a direction orthogonal to this (for example, in the Y direction of FIG. 8B), as shown in FIGS. A plurality of M1b are formed.
  • the first mold M1 is used as a mold, and a second mold M2 having a shape reversed from the first mold M1 is formed.
  • the second forming mold M2 may be formed of a silicon resin or may be formed of a metal material by electroforming.
  • the second mold M2 is provided with a plurality of cell-like recessed regions MR, MG, MB corresponding to regions where the phosphor films 131R, 131G and the diffusion layer 132 are formed. In the region MB where the diffusion layer 132 is provided, a plurality of recessed portions MBa are formed on the surface of the first mold M1 by being recessed by the protrusions formed by the cutting tool B2.
  • a second mold M2 is prepared by the method described above.
  • each phosphor film is formed in each of the recessed regions MR and MG of the second mold M2 using, for example, an ink jet method, and baked and cured.
  • the red phosphor film 131R and the green phosphor film 131G are formed.
  • a binder resin containing a filler 132a is applied to each of the recessed regions MB of the second mold M2, and only the blue pixel portion is cured by UV irradiation. At this time, the binder resin adhering to the red and green pixel portions is removed with a solvent.
  • the red phosphor film 131R, the green phosphor film 131G, and the diffusion layer 132 provided in each of the recessed regions MR, MG, MB of the second mold M2 are sealed.
  • the resin layer 133 is formed by applying a resin so as to stop and then curing.
  • a UV curable adhesive is applied to the upper layer of the resin layer 133, and the phosphor substrate body 130S is pressed thereon to cure the UV curable resin.
  • the phosphor substrate main body 130S is fixed through the adhesive layer 139a.
  • the second mold M2 is peeled off from the phosphor substrate body 130S.
  • a flattening film between the phosphor films 131R and G and the diffusion layer 132 is formed by forming an Al film using a sputtering method and patterning.
  • a reflective film 135 is formed in a region to be a partition wall portion 134a.
  • a resin is applied and then cured to form a resin film 134b.
  • a part of the resin film 134b enters the recess of the diffusion layer 132 and is cured, so that a part of the resin film 134b is formed in the recessed part 134ba.
  • the resin is applied and then cured to form a planarizing film 134a. Thereby, the phosphor layer 130 is completed.
  • the phosphor layer 130 thus fabricated is bonded to the display side substrate 122 side of the liquid crystal panel 120 through the adhesive layer 139b, and further bonded to the light source unit 110, whereby the liquid crystal display device 100 is manufactured. .
  • the resin film 134 b provided on the light incident side surface of the diffusion layer 132 has a plurality of recessed portions 134 ba that are recessed toward the opposite side of the diffusion layer 132, and therefore attempts to pass through the diffusion layer 132.
  • the blue light to be emitted passes through the recessed portion 134ba and is emitted.
  • the concave portion 134ba has a tapered shape, specifically a quadrangular pyramid shape, in which the concave width becomes narrower as it goes to the bottom portion. Therefore, the side surface of the concave portion 134ba is not parallel to the light incident surface.
  • the blue light passing through the side surface of the recessed portion 134ba enters the diffusion layer 132 from the recessed portion 134ba while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused. Therefore, since the resin film 134 provided on the light incident side surface of the diffusion layer 132 has a plurality of recessed portions 134ba that are recessed toward the opposite side of the diffusion layer 132, the blue light can be diffused satisfactorily. As described above, by sufficiently diffusing blue light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • the light source unit 110 is described as an edge light type backlight.
  • a plurality of LED light sources 112 are arranged in parallel on the light emitting surface of the light source unit 110.
  • a direct type system in which light is emitted toward the phosphor layer 130 may be used.
  • the concave shape of the concave portion 134ba has been described as a quadrangular pyramid shape, but is not limited thereto.
  • the recessed shape of the recessed portion 134ba may be a triangular pyramid, and as Modification 3 in FIGS. 13A to 13C.
  • the recessed shape of the recessed portion 134ba may be a hexagonal pyramid shape.
  • the concave shape of the concave portion 134ba is not limited to the pyramid shape, and for example, as shown in FIG.
  • the concave shape of the concave portion 134ba may be a conical shape
  • the concave shape of the concave portion 134ba may be a truncated pyramid shape.
  • the concave shape of the concave portion 134ba is a conical shape as in Modification 4
  • the light incident on the concave portion 134ba is emitted so as to be dispersed from the side surface of the cone on average, so a pyramid shape
  • the light can be diffused more uniformly than in the above case.
  • a part of the light incident from the light incident side surface of the diffusion layer 132 passes through the concave portion 134ba.
  • a pyramid shape such as a quadrangular pyramid, a triangular pyramid, or a hexagonal pyramid is preferable.
  • the concave portion 134ba is arranged so that the quadrangular shape of the bottom surface of the quadrangular pyramid is spread so that the base portion is continuous with the base portion of the adjacent concave portion.
  • the recessed portions 134ba may be arranged so that the bases of the adjacent recessed portions 134ba are separated from each other.
  • Embodiment 2 (Liquid crystal display device 200)
  • the liquid crystal display device 200 of Embodiment 2 includes a light source unit 210, a liquid crystal panel 220, and a phosphor layer 230, as shown in FIG. These are arranged so that light emitted from the light source unit 210 enters the phosphor layer 230 through the liquid crystal panel 220 and a predetermined image display is obtained on the display side of the phosphor layer 230.
  • the liquid crystal display device 200 is used for, for example, a display of an OA device such as a television or a personal computer, or a portable information device such as a mobile phone or a PDA.
  • RGB color display can be performed by controlling on / off of the display for each pixel.
  • the light source unit 210 is of an edge light type in which an LED light source 212 is provided on the side so that light enters the light guide plate 211 from the end face of the light guide plate 211.
  • the liquid crystal panel 220 functions as an optical shutter unit that controls the transmittance of light incident from the light source side substrate 221 side for each pixel and emits the light to the display side.
  • a light source side substrate 221 on the light source unit 210 side and a display side substrate 222 on the light extraction side (display side) are arranged to face each other, and a liquid crystal is disposed in a space between both substrates.
  • a layer (not shown) is filled.
  • Polarizing layers 223 and 224 are provided on the surfaces of the light source side substrate 221 and the display side substrate 222, respectively.
  • the light source side substrate 221 is described as an array substrate and the display side substrate 222 is a counter substrate, but the display side substrate 222 is an array substrate and the light source side substrate 221 is a counter substrate. May be.
  • the phosphor layer 230 is formed by bonding the light emitting side of the phosphor layer 230 to the phosphor substrate body 230S with an adhesive layer 239a so as to be supported by the phosphor substrate body 230S.
  • a red phosphor film 231R is disposed so as to correspond to a red pixel
  • a green phosphor film 231G is disposed so as to correspond to a green pixel
  • a diffusion layer 232 is disposed so as to correspond to a blue pixel.
  • the light incident side surfaces of the red and green phosphor films 231 ⁇ / b> R and 231 ⁇ / b> G and the diffusion layer 232 are covered with the resin film 234 b and the light emission side surface is covered with the resin layer 233.
  • a planarizing film 234a is provided so as to further cover the surface of the resin film 234b and planarize the surface of the phosphor layer 230.
  • the phosphor substrate body 230S is formed of a transparent material such as glass or transparent resin.
  • the phosphor substrate main body 230S has a thickness of about 0.03 to 1.0 mm, for example.
  • the red phosphor film 231R and the green phosphor film 231G are provided in a region corresponding to the red pixel and a region corresponding to the green pixel, respectively.
  • the red phosphor film 231R is formed of a fluorescent material having a function of converting blue light into red light.
  • the green phosphor film 231G is formed of a fluorescent material having a function of converting blue light into green light.
  • Each fluorescent material is obtained by, for example, dispersing a fluorescent dye in a resin such as an acrylic resin or an ultraviolet curable resin or making it into a solid solution state.
  • the red and green phosphor films 231R and 231G have a thickness of 5 to 20 ⁇ m, for example.
  • the diffusion layer 232 is provided so as to correspond to the blue pixel region. As shown in FIG. 20, the diffusion layer is configured by dispersing spherical fillers 232a in a binder resin.
  • the diffusion layer 232 has a thickness of 5 to 20 ⁇ m, for example.
  • the binder resin is formed of a photocurable or thermosetting resin, and examples thereof include acrylic resins (refractive index of about 1.49) and polyester resins (refractive index of about 1.55).
  • the filler 232a is made of, for example, an organic material such as acrylic resin (refractive index of about 1.49) or polystyrene resin (refractive index of about 1.59), or an inorganic material such as ceramic particles.
  • the filler 232a is formed of a material having a refractive index smaller by 0.01 or more than the binder resin of the diffusion layer.
  • the filler 232a has the true spherical shape with a diameter of about 2 to 10 ⁇ m, for example. Since the filler 232a is mixed in the diffusion layer, the light reaching the filler 232a among the light traveling through the diffusion layer is refracted at the interface of the filler 232a, and the light can be diffused more favorably. .
  • the filler 232a has a hollow structure inside.
  • the filler 232a having a hollow structure include single hollow particles having one hole inside the particle, multi-hollow particles having a plurality of holes inside the particle, and porous particles having a porous structure. Since the filler 232a has a hollow structure, the difference in refractive index between the binder filled in the diffusion layer and the pore portion of the filler 232a is increased. Therefore, the light passing through the filler 232a passes at a large refraction angle at the interface of the filler 232a, and the effect of diffusing the light is better obtained.
  • the filler 232a may be a hemispherical shape, a lens shape, or other shapes in addition to a true spherical shape.
  • the filler 232a is dispersed in the binder resin of the diffusion layer, but the filler 232a is not an essential configuration.
  • the planarization film 234a and the resin film 234b are formed of a resin such as acrylic or urethane acrylate, for example.
  • the planarizing film 234a and the resin films 234b provided so as to cover the light incident side surfaces of the phosphor films 231R and G and the diffusion layer 232 constitute a resin layer 234.
  • the planarization film 234a and the resin film 234b may be formed of the same material or different materials.
  • the resin layer 234 is composed of the planarizing film 234a and the resin film 234b here, the planarizing film 234a and the resin film 234b may be integrally formed.
  • the planarizing film 234a has a thickness of about 1 to 50 ⁇ m, for example, and the resin film 234b has a thickness of about 1 to 10 ⁇ m, for example.
  • the resin film 234 b is formed of a material having a refractive index smaller than that of the diffusion layer 232.
  • the flattening film 234a is also filled in regions between the phosphor layers 231R and 231G and between the diffusion layers 232, and partition walls are formed so as to partition the phosphor films 231R and G and the diffusion layers 232, respectively. Is configured.
  • the partition wall portion of the planarization film 234a preferably has a tapered shape that tapers from the light incident side toward the light exit side.
  • a reflective film 235 is provided on the partition wall of the planarizing film 234a.
  • a portion of the resin film 234b provided so as to cover the light incident side surface of the diffusion layer 232 is formed with a plurality of protrusions 234bb protruding toward the diffusion layer 232 as shown in FIG. .
  • the protruding portion 234bb has a tapered shape in which the protruding width becomes narrower toward the tip, and specifically has a quadrangular pyramid shape.
  • Each of the plurality of protrusions 234bb is arranged to have a layout in which quadrangles on the bottom surface of the quadrangular pyramid are spread so that the base ends are continuous with the base ends of the adjacent protrusions.
  • the protrusions 234bb are preferably provided with a pitch width of 1 to 50 ⁇ m, for example, and more preferably with a pitch width of 3 to 10 ⁇ m. From the viewpoint of reducing the pitch width of the protrusions 234bb and reducing the thickness, the pitch width is preferably small. From the viewpoint of facilitating the formation of the quadrangular pyramid shape of the protrusions 234bb, the pitch width is preferably large to some extent. .
  • the shape of the protruding portion 234bb is a quadrangular pyramid shape
  • the apex portion of the quadrangular pyramid may be crushed for manufacturing, and may be a flat portion of, for example, about 0.1 to 2 ⁇ m square.
  • the side surface of the quadrangular pyramid constituting the protruding portion 234bb may not be a complete plane.
  • the quadrangular pyramid means that the schematic shape is a quadrangular pyramid.
  • the expression “triangular pyramid”, “hexagonal pyramid”, “cone”, “pyramidal frustum”, and the like used in the following means that the approximate shape is that shape.
  • the reflection film 235 is provided on the surface of the partition wall portion of the planarization film.
  • the reflective film 235 is formed of a material exhibiting high reflectivity in the visible light range, such as Al, Ag, Al alloy, Ag alloy, and the like, and has a thickness of, for example, 100 to 500 nm.
  • the reflective film 235 can be formed using, for example, a sputtering method or vapor deposition.
  • the resin layer 233 is formed of a material mainly composed of a resin such as acrylic or urethane acrylate.
  • the resin layer 233 has a thickness of about 1 to 5 ⁇ m, for example.
  • the resin layer 233 has a refractive index smaller than that of the red and green phosphor films 231R and 231G and the diffusion layer 232.
  • the liquid crystal panel 220 and the phosphor layer 230 are bonded by an adhesive layer 239b shown in FIG.
  • the transmittance of the blue light emitted from the light source unit 210 is adjusted for each pixel by the TFT corresponding to each pixel in the liquid crystal panel 220.
  • the light that has passed through the phosphor layer 230 from the liquid crystal panel 220 is converted into fluorescence having an arbitrary color wavelength in the phosphor layer 230, thereby displaying a desired image as a whole.
  • the light source unit 210 and the liquid crystal panel 220 can be manufactured using a conventionally known method, and thus the description thereof is omitted.
  • a plurality of cell-like recessed regions MR, MG, MB are provided in a matrix corresponding to the regions where the phosphor films 231R, G and the diffusion layer 232 are formed.
  • a mold M is prepared.
  • a plurality of quadrangular pyramidal protrusions MBa are provided on the surface of the mold M. These have shapes corresponding to the protrusions 234bb of the resin film 234b to be formed.
  • each phosphor film is formed in each of the recessed regions MR and MG of the mold M using, for example, an ink jet method, and is baked and cured.
  • a red phosphor film 231R and a green phosphor film 231G are formed.
  • a binder resin containing a filler 232a is applied to each of the recessed areas MB of the mold M, and only the blue pixel portion is cured by UV irradiation. At this time, the binder resin adhering to the red and green pixel portions is removed with a solvent.
  • the red phosphor film 231R, the green phosphor film 231G, and the diffusion layer 232 provided in each of the recessed regions MR, MG, and MB of the mold M are sealed.
  • coating resin it hardens
  • a UV curable adhesive is applied to the upper layer of the resin layer 233, and the phosphor substrate body 230S is pressed thereon to cure the UV curable resin.
  • the phosphor substrate body 230S is fixed via the adhesive layer 239a.
  • the mold M is peeled off from the phosphor substrate body 230S.
  • a flattening film between the phosphor films 231R, G and the diffusion layer 232 is formed by depositing and patterning an Al film using a sputtering method or the like.
  • a reflective film 235 is formed in a region to be a partition wall portion of 234a.
  • a resin is applied and then cured to form a resin film 234b.
  • a part of the resin film 234b enters the recess of the diffusion layer 232 and is cured, so that a part of the resin film 234b is formed on the protruding portion 234bb.
  • a planarizing film 234a is formed by applying and curing a resin. Thereby, the phosphor layer 230 is completed.
  • the phosphor layer 230 thus manufactured is bonded to the display side substrate 222 side of the liquid crystal panel 220 via the adhesive layer 239b, and further bonded to the light source unit 210, whereby the liquid crystal display device 200 is manufactured. .
  • the resin film 234 b provided on the light incident side surface of the diffusion layer 232 has a plurality of protruding portions 234 bb protruding toward the diffusion layer 232, so that the blue light that is about to pass through the diffusion layer 232 Is emitted through the protrusion 234bb. Since the protruding portion 234bb has a tapered shape in which the protruding width becomes narrower toward the tip, specifically, a quadrangular pyramid shape, the side surface of the protruding portion 234bb is not parallel to the light incident surface.
  • the blue light passing through the side surface of the protrusion 234bb enters the diffusion layer 232 from the protrusion 234bb while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused.
  • the resin film 234 provided on the light incident side surface of the diffusion layer 232 has a plurality of protrusions 234bb protruding toward the diffusion layer 232, whereby blue light can be diffused well, and as a result, blue By sufficiently diffusing light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • the light source unit 210 is described as an edge light type backlight. However, as described in the first embodiment, for example, the light source unit 210 is a direct type that emits light toward the phosphor layer 230. Also good.
  • the protrusion has been described as having a quadrangular pyramid shape, but is not limited thereto.
  • the protruding portion 234bb may have a triangular pyramid shape, and as Modification 8 in FIGS. 25A and 25B.
  • the protrusion 234bb may have a hexagonal pyramid shape.
  • the shape of the protruding portion 234bb is not limited to the pyramid shape.
  • the protruding portion 234bb may have a conical shape.
  • the protruding portion 234bb may have a truncated pyramid shape.
  • the protrusion 234bb has a conical shape as in the modification 9
  • light incident on the protrusion 234bb is emitted so as to be dispersed from the side surface of the cone on average, so that the case of the pyramid shape Can evenly diffuse light.
  • a part of the light incident from the light incident side surface of the diffusion layer 232 has the protrusion 234bb. From the point of entering the diffusion layer 232 without passing through, it is preferably a pyramid shape such as a quadrangular pyramid, a triangular pyramid, or a hexagonal pyramid.
  • the protrusion 234bb is arranged so that the base of the quadrangular pyramid is laid out so that the base end is continuous with the base end of the adjacent protrusion.
  • the protrusions 234bb may be arranged so that the base ends of the adjacent protrusions 234bb are separated from each other.
  • the liquid crystal display device 300 includes a light source unit 310, a liquid crystal panel 320, and a phosphor layer 330. These are arranged so that light emitted from the light source unit 310 enters the liquid crystal panel 320 through the phosphor layer 330 and a predetermined image display is obtained on the display side of the liquid crystal panel 320.
  • the liquid crystal display device 300 is used for, for example, a display of an OA device such as a television or a personal computer, or a portable information device such as a mobile phone or a PDA.
  • RGB color display can be performed by controlling on / off of the display for each pixel.
  • the light source unit 310 is of an edge light type in which an LED light source 312 is provided on the side so that light enters the light guide plate 311 from the end surface of the light guide plate 311.
  • the liquid crystal panel 320 functions as an optical shutter unit that controls the transmittance of light incident from the light source side substrate 321 side for each pixel and emits the light to the display side.
  • a light source side substrate 321 on the light source unit 310 side and a display side substrate 322 on the light extraction side (display side) are arranged to face each other.
  • a space between the substrates is filled with a liquid crystal layer (not shown).
  • polarizing layers 323 and 324 are provided on the surfaces of the light source substrate 321 and the display substrate 322, respectively.
  • the phosphor layer 330 is formed by bonding the light incident side of the phosphor layer 330 to the phosphor substrate body 330S with an adhesive layer 339a so as to be supported by the phosphor substrate body 330S. .
  • a red phosphor film 331R is disposed so as to correspond to a red pixel
  • a green phosphor film 331G is disposed so as to correspond to a green pixel
  • a diffusion layer 332 is disposed so as to correspond to a blue pixel.
  • the light incident side surfaces of the red and green phosphor films 331R and 331G and the diffusion layer 332 are covered with the resin film 334b, and the light emission side surface is covered with the resin layer 333.
  • a planarizing film 334a is provided so as to further cover the surface of the resin film 334b and planarize the surface of the phosphor layer 330.
  • each configuration of the phosphor layer 330 is the same as those in the second embodiment.
  • the liquid crystal panel 320 and the phosphor layer 330 are bonded by an adhesive layer 339b shown in FIG.
  • a plurality of protrusions 334bb projecting toward the diffusion layer 332 side are provided on the light incident side surface of the resin film 334b.
  • the diffusion layer 332 is provided on the light incident side surface of the resin film 334b.
  • a plurality of recessed portions 334ba that are recessed toward the opposite side may be provided.
  • the blue light emitted from the light source unit 310 is converted into fluorescent light having an arbitrary color in the phosphor layer 330.
  • the light that has passed through the liquid crystal panel 320 from the phosphor layer 330 is adjusted in transmittance for each pixel by the TFT corresponding to each pixel in the liquid crystal panel 320, whereby a desired image is obtained as a whole.
  • the manufacturing method of the liquid crystal display device 300 of the third embodiment is the same as that of the second embodiment, except that the phosphor substrate body 330S is bonded to the light incident side of the phosphor layer 330 in the step of manufacturing the phosphor layer 330. It is.
  • the resin film 334 b provided on the light incident side surface of the diffusion layer 332 has a plurality of protruding portions 334 bb protruding toward the diffusion layer 332, so that the blue light that is about to pass through the diffusion layer 332 Is emitted through the protrusion 334bb. Since the protrusion 334bb has a quadrangular pyramid shape, the side surface of the protrusion 334bb is not parallel to the light incident surface.
  • the blue light passing through the side surface of the protrusion 334bb enters the diffusion layer 332 from the protrusion 334bb while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused. Therefore, the resin film 334 provided on the light incident side surface of the diffusion layer 332 has a plurality of protrusions 334bb protruding toward the diffusion layer 332, so that blue light can be diffused favorably. By sufficiently diffusing light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • Embodiment 4 (Liquid crystal display device 400)
  • the liquid crystal display device 400 of Embodiment 4 is provided with the light source unit 410 and the liquid crystal panel 420 as shown in FIG. These are arranged so that light emitted from the light source unit 410 enters the liquid crystal panel 420 and a predetermined image display is obtained on the display side of the liquid crystal panel 420.
  • the liquid crystal display device 400 is used for, for example, a display of an OA device such as a television or a personal computer, or a portable information device such as a mobile phone or a PDA.
  • blue pixels, red pixels, and green pixels are arranged in a predetermined layout in a display area. Then, RGB color display can be performed by controlling on / off of the display for each pixel.
  • the light source unit 410 is of an edge light type in which an LED light source 412 is provided on the side so that light enters the light guide plate 411 from the end face of the light guide plate 411.
  • the liquid crystal panel 420 functions as an optical shutter unit that controls the transmittance of light incident from the light source side substrate 421 side for each pixel and emits the light to the display side.
  • a light source side substrate 421 on the light source unit 410 side and a display side substrate 422 on the side from which light is extracted (display side) are arranged so as to face each other.
  • a layer (not shown) is filled.
  • a polarizing layer 423 is provided on the surface of the light source side substrate 421.
  • the light source side substrate 421 is not shown in detail, but a gate metal and a source metal are arranged on the substrate body, a switching element such as a TFT is formed for each pixel, and a pixel electrode that is electrically connected to each switching element is provided for each pixel.
  • This is an array substrate having a configuration in which an alignment film is formed so as to cover the layers.
  • the light source side substrate 421 has a thickness of about 0.1 to 1.0 mm, for example.
  • the display side substrate 422 is provided with a phosphor layer 430 on the light incident side surface of the display side substrate main body 422S, and further, a polarizing layer 422A, a planarizing layer 422B, a counter electrode 422C, and an alignment film 422D is stacked in order.
  • the display-side substrate 422 has a thickness of about 0.11 to 1.1 mm, for example.
  • the display side substrate body 422S is formed of a transparent material such as glass or transparent resin.
  • the display-side substrate body 422S has a thickness of about 0.1 to 1.0 mm, for example.
  • the display-side substrate body 422S is bonded to the phosphor layer 430 with an adhesive layer 490 on the surface on the light incident side.
  • a red phosphor film 431R is disposed so as to correspond to a red pixel
  • a green phosphor film 431G is disposed so as to correspond to a green pixel
  • a diffusion layer 432 is disposed so as to correspond to a blue pixel.
  • the light incident side surfaces of the red and green phosphor films 431R and 431G and the diffusion layer 432 are covered with the resin film 434b, and the light emission side surface is covered with the resin layer 433.
  • a planarization film 434a is provided so as to further cover the surface of the resin film 434b and planarize the surface of the phosphor layer 430, and the planarization film 434a and the resin film 434b constitute the resin layer 434.
  • the configuration of the phosphor layer 430 is the same as that in the second embodiment.
  • the polarizing layer 422A is provided, for example, so that the Al film has a wire grid pattern.
  • the planarizing layer 422B is formed of a resin such as acrylic or urethane acrylate.
  • the planarization layer 422B is provided to planarize the unevenness formed on the light incident side surface of the phosphor layer 430 by the polarizing layer 422A.
  • the counter electrode 422C is formed of a transparent conductive film such as ITO (Indium Tin Oxide).
  • the counter electrode 422C has a thickness of 0.1 to 0.5 ⁇ m, for example.
  • the alignment film 422D is formed of, for example, a polyimide film so as to cover the counter electrode 422C.
  • the alignment film 422D has a thickness of about 0.05 ⁇ m.
  • the light source side substrate 421 is described as an array substrate and the display side substrate 422 is a counter substrate.
  • the display side substrate 422 is an array substrate and the light source side substrate 421 is a counter substrate. May be.
  • the display side substrate 422 is a counter substrate from the viewpoint that the process of forming the phosphor layer 430 on the display side substrate 422 is easy.
  • the light incident side surface of the resin film 434b is provided with a plurality of protrusions 434bb projecting toward the diffusion layer 432 side, but the diffusion layer 432 of the resin film 434b is provided on the light incident side surface.
  • a plurality of recessed portions 434ba that are recessed toward the opposite side may be provided.
  • the blue light emitted from the light source unit 410 is adjusted in the alignment direction of the liquid crystal by the TFT corresponding to each pixel on the light source side substrate 421 of the liquid crystal panel 420.
  • the transmittance is adjusted.
  • the light that has entered the display side substrate 422 from the light source side substrate 421 is converted into fluorescence having a wavelength of an arbitrary color in the phosphor layer 430 formed on the display side substrate 422, thereby forming a desired image as a whole. Is displayed.
  • a mold M is prepared as shown in FIG.
  • a red phosphor film 431R and a green phosphor film 431G are formed in each of the recessed regions MR and MG of the mold M
  • the diffusion layer 432 is formed in each of the recessed regions MB of the mold M.
  • the red phosphor film 431R, the green phosphor film 431G, and the diffusion layer 432 provided in each of the recessed regions MR, MG, MB of the mold M are sealed.
  • the resin layer 433 is formed.
  • a reflective film 435 is formed as shown in FIG.
  • the protrusion 434bb is formed at the same time as the resin film 434b is formed.
  • a planarizing film 434a is formed. Thereby, the phosphor layer 430 is completed.
  • an Al film is formed in a wire grid pattern on the planarizing film 434b by using, for example, a sputtering method, and a polarizing layer 422A is provided.
  • the display side substrate 422 is completed by forming the planarization layer 422B, the counter electrode 422C, and the alignment film 422D using a known method.
  • the liquid crystal panel 420 is obtained by providing the liquid crystal layer by filling the display side substrate 422 thus manufactured with the light source side substrate 421 and filling a liquid crystal material between both the substrates. Then, the liquid crystal display device 400 is manufactured by bonding the liquid crystal panel 420 and the light source unit 410 together.
  • the resin film 434 b provided on the light incident side surface of the diffusion layer 432 has a plurality of protrusions 434 bb protruding toward the diffusion layer 432, so that the blue light that is about to pass through the diffusion layer 432 Is emitted through the protrusion 434bb. Since the protrusion 434bb has a quadrangular pyramid shape, the side surface of the protrusion 434bb is not parallel to the light incident surface.
  • the blue light passing through the side surface of the protrusion 434bb enters the diffusion layer 432 from the protrusion 434bb while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused. Therefore, the resin film 434 provided on the light incident side surface of the diffusion layer 432 has a plurality of protruding portions 434bb protruding toward the diffusion layer 432, whereby blue light can be diffused satisfactorily. Then, by sufficiently diffusing the blue light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • the phosphor layer 430 is formed on the display-side substrate 422, it is not necessary to provide a substrate for supporting the phosphor layer 430, and the entire liquid crystal display device can be thinned. it can.
  • a liquid crystal display device 500 of Embodiment 5 includes a light source unit 510 and a liquid crystal panel 520 as shown in FIG. These are arranged so that light emitted from the light source unit 510 enters the liquid crystal panel 520 and a predetermined image display is obtained on the display side of the liquid crystal panel 520.
  • the liquid crystal display device 500 is used for, for example, a display of an OA device such as a television or a personal computer, or a portable information device such as a mobile phone or a PDA.
  • RGB color display can be performed by controlling on / off of the display for each pixel.
  • the light source unit 510 is of an edge light type in which an LED light source 512 is provided laterally so that light enters the light guide plate 511 from the end surface of the light guide plate 511.
  • the liquid crystal panel 520 functions as an optical shutter unit that controls the transmittance of light incident from the light source side substrate 521 side for each pixel and emits the light to the display side.
  • a light source side substrate 521 on the light source unit 510 side and a display side substrate 522 on the light extraction side (display side) are arranged so as to face each other, and liquid crystal is disposed in the space between both substrates.
  • a layer (not shown) is filled.
  • a polarizing layer 524 is provided on the surface of the display side substrate 522.
  • the light source side substrate 521 is provided with a phosphor layer 530 on the light emission side surface of the light source side substrate body 521S, and further, a polarizing layer 521A, a planarizing layer 521B, a counter electrode 521C, and an alignment film. 521D is stacked in order.
  • the light source side substrate 521 has a thickness of about 0.11 to 1.1 mm, for example.
  • the phosphor layer 530 includes a red phosphor film 531R corresponding to the red pixel, a green phosphor film 531G corresponding to the green pixel, and a diffusion layer 532 corresponding to the blue pixel. . Further, in the phosphor layer 530, the light incident side surfaces of the red and green phosphor films 531R and 531G and the diffusion layer 532 are covered with the resin film 534b, and the light emission side surface is covered with the resin layer 533. Further, a planarization film 534a is provided so as to further cover the surface of the resin film 534b and planarize the surface of the phosphor layer 530, and the planarization film 534a and the resin film 534b constitute the resin layer 534. A plurality of projecting portions 534bb projecting toward the diffusion layer 532 are provided on the light incident side surface of the resin film 534b. Each of the plurality of protrusions 534bb has a quadrangular pyramid shape.
  • each configuration of the phosphor layer 530 is the same as those in the second embodiment.
  • a gate metal and a source metal are arranged on the substrate body, a switching element such as a TFT is formed for each pixel, and a pixel electrode that is electrically connected to each switching element is provided for each pixel.
  • This is an array substrate having a configuration in which an alignment film is formed so as to cover the layers.
  • the display-side substrate 522 has a thickness of about 0.1 to 1.0 mm, for example.
  • the light source side substrate 521 is described as the counter substrate and the display side substrate 522 is the array substrate.
  • the display side substrate 522 is the counter substrate and the light source side substrate 521 is the array substrate. May be.
  • the light source side substrate 521 is a counter substrate from the viewpoint that the process of forming the phosphor layer 530 on the light source side substrate 521 is easy.
  • the light incident side surface of the resin film 534b is provided with a plurality of protrusions 534bb projecting toward the diffusion layer 532 side.
  • the diffusion layer 532 is provided on the light incident side surface of the resin film 534b.
  • a plurality of recessed portions 534ba that are recessed toward the opposite side may be provided.
  • the blue light emitted from the light source unit 510 enters the light source side substrate 521 of the liquid crystal panel 520 and has an arbitrary color in the phosphor layer 530 formed on the light source side substrate 521. Converted to wavelength fluorescence. Then, light entering the display side substrate 522 from the light source side substrate 521 passes through the liquid crystal layer whose alignment direction is adjusted by the TFT corresponding to each pixel of the display side substrate 522 which is an array substrate, so that for each pixel. By adjusting the transmittance, a desired image can be obtained as a whole.
  • the manufacturing method of the liquid crystal display device 500 of Embodiment 5 is the same as that of Embodiment 4 except that the counter substrate on which the phosphor layer 530 is formed is used as the light source substrate 521 instead of the display substrate.
  • the resin film 534 b provided on the light incident side surface of the diffusion layer 532 has a plurality of protrusions 534 bb protruding toward the diffusion layer 532, so that the blue light that is about to pass through the diffusion layer 532 Is emitted through the protruding portion 534bb. Since the protruding portion 534bb has a quadrangular pyramid shape, the side surface of the protruding portion 534bb is not parallel to the light incident surface.
  • the blue light passing through the side surface of the protrusion 534bb enters the diffusion layer 332 from the protrusion 534bb while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused. Therefore, the resin film 534 provided on the light incident side surface of the diffusion layer 532 has a plurality of protruding portions 534bb protruding toward the diffusion layer 532, whereby blue light can be diffused satisfactorily. Then, by sufficiently diffusing the blue light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • the phosphor layer 530 is formed on the light source side substrate 521, it is not necessary to provide a substrate for supporting the phosphor layer 530, and the entire liquid crystal display device can be thinned. it can.
  • Embodiment 6 (Liquid crystal display device 600)
  • the liquid crystal display device 600 of Embodiment 6 is provided with the light source unit 610, the liquid crystal panel 620, and the fluorescent substance layer 630, as shown in FIG. These are arranged so that light emitted from the light source unit 610 enters the phosphor layer 630 through the liquid crystal panel 620 and a predetermined image display is obtained on the display side of the phosphor layer 630.
  • the liquid crystal display device 600 is used for, for example, a display of an OA device such as a television or a personal computer, or a portable information device such as a mobile phone or a PDA.
  • RGB color display can be performed by controlling on / off of the display for each pixel.
  • the light source unit 610 is of an edge light type in which an LED light source 612 is provided on the side so that light enters the light guide plate 611 from the end face of the light guide plate 611.
  • the liquid crystal panel 620 functions as an optical shutter unit that controls the transmittance of light incident from the light source side substrate 621 for each pixel and emits the light to the display side.
  • the liquid crystal panel 620 includes a light source side substrate 621 on the light source unit 610 side and a display side substrate 622 on the side from which light is extracted (display side). A space between the substrates is filled with a liquid crystal layer (not shown).
  • polarizing layers 623 and 624 are provided on the surfaces of the light source substrate 621 and the display substrate 622, respectively.
  • the phosphor layer 630 is formed by adhering the light emitting side of the phosphor layer 630 to the phosphor substrate body 630S with an adhesive layer 639a so as to be supported by the phosphor substrate body 630S. .
  • a red phosphor film 631R is disposed so as to correspond to a red pixel
  • a green phosphor film 631G is disposed so as to correspond to a green pixel
  • a diffusion layer 632 is disposed so as to correspond to a blue pixel.
  • a red color filter 636R is provided on the light emission side of the red phosphor film 631R
  • a green color filter 636G is provided on the light emission side of the green phosphor film 631G
  • a blue color filter 636B is provided on the light emission side of the diffusion layer 632.
  • the light incident side surfaces of the red and green phosphor films 631R and 631G and the diffusion layer 632 are covered with the resin film 634b, and the light emission side surface is covered with the resin layer 633.
  • a planarizing film 634a is provided so as to further cover the surface of the resin film 634b and planarize the surface of the phosphor layer 630.
  • a plurality of protruding portions 634bb protruding toward the diffusion layer 632 side are provided on the light incident side surface of the resin film 634b.
  • Each of the plurality of protrusions 634bb has a quadrangular pyramid shape.
  • Each color filter 636R, G, B has a thickness of 0.5 to 2.0 ⁇ m, for example.
  • each component of the phosphor layer 630 other than the color filters 636R, G, and B are the same as in the second embodiment.
  • the liquid crystal panel 620 and the phosphor layer 630 are bonded by an adhesive layer 690b shown in FIG.
  • the liquid crystal display device 600 having the configuration in which the light source unit 610, the liquid crystal panel 620, and the phosphor layer 630 are arranged in this order is used for the red and green phosphor films.
  • the respective color filters 636R, G, B are provided on the light emitting side of 631R, 631G and the diffusion layer 632, the present invention is not limited to this.
  • each color filter on the light exit side of the red and green phosphor films and the diffusion layer In the liquid crystal display device in which the phosphor layer is formed on one of the display side substrate and the light source side substrate of the liquid crystal panel as in the fourth and fifth embodiments, the red and green phosphor films are provided. Each color filter may be provided on the light exit side of the diffusion layer.
  • a plurality of protrusions 634bb projecting toward the diffusion layer 632 side are provided on the light incident side surface of the resin film 634b.
  • the diffusion layer 632 is provided on the light incident side surface of the resin film 634b.
  • a plurality of recessed portions 634ba that are recessed toward the opposite side may be provided.
  • the transmittance of the blue light emitted from the light source unit 610 is adjusted for each pixel by the TFT corresponding to each pixel in the liquid crystal panel 620.
  • the light that has passed through the phosphor layer 630 from the liquid crystal panel 620 is converted into fluorescence having an arbitrary color wavelength in the phosphor layer 630, and further passes through the color filters 636R, G, and B of each color, thereby A desired image is displayed.
  • the red color filter 636R is provided on the light emission side of the red phosphor film 631R, and the light emission side of the green phosphor film 631G.
  • a green color filter 636G and a blue color filter 636B are provided on the light emission side of the diffusion layer 632 by using, for example, an inkjet method or a photolithography method.
  • the resin film 634 b provided on the light incident side surface of the diffusion layer 632 has a plurality of protruding portions 634 bb protruding toward the diffusion layer 632, so that the blue light that is about to pass through the diffusion layer 632 Is emitted through the protrusion 634bb. Since the protrusion 634bb has a quadrangular pyramid shape, the side surface of the protrusion 634bb is not parallel to the light incident surface.
  • the blue light passing through the side surface of the protrusion 634bb enters the diffusion layer 632 from the protrusion 634bb while being refracted in a direction not perpendicular to the light incident surface, and at this time, the blue light is diffused.
  • the resin film 634 provided on the light incident side surface of the diffusion layer 632 has a plurality of protruding portions 634bb protruding toward the diffusion layer 632, whereby blue light can be diffused satisfactorily. Then, by sufficiently diffusing the blue light, it is possible to display an image with excellent display quality without depending on the viewing angle.
  • the red color filter 636R and the green color filter 636G are provided, so that the phosphor layers 631R, G enter from the light emitting side.
  • the blue wavelength can be blocked. Therefore, unnecessary phosphor emission due to external light can be suppressed, and excellent display quality can be obtained by increasing the luminance of red and green.
  • the blue color filter 636B by providing the blue color filter 636B, it is possible to block the red and green wavelengths of the external light entering the diffusion layer 632 from the light emitting side. Therefore, it is possible to prevent external light from being diffused by the diffusion layer 632 and reflected from the reflective film 635, and an excellent display quality can be obtained by increasing blue luminance.
  • the diffusion sheet is not disposed on the light incident side surface or the light emission side surface of the diffusion layer.
  • the resin layer on the light incident side surface of the diffusion layer with a recess or protrusion, the blue light diffusion effect can be enhanced.
  • the blue pixels, the red pixels, and the green pixels are arranged in a predetermined layout in the display area of the liquid crystal display device.
  • the present invention is not limited to this.
  • Red pixels, green pixels, and yellow pixels may be arranged in a predetermined layout.
  • the present invention is useful for a display device that performs color display by converting blue light emitted from a light source unit that is a backlight into each color in a phosphor layer, and particularly diffuses light well in a blue light emitting pixel. Therefore, it is useful for a display device that performs display with excellent display quality that does not depend on the viewing angle.
  • Liquid crystal display device 110 210, 310, 410, 510, 610
  • Light source unit 111 211, 311, 411, 511, 611
  • Light guide plate 112, 212, 312, 412, 512 612 LED light source 121,221,321,421,521,621
  • Light source side substrate 122,222,322,422,522,622 Display side substrate 130,230,330,430,530,630

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本発明に係る表示装置の蛍光体層(130)は、青色以外の画素に対応するように光源ユニットから出射された光を吸収して任意の波長の蛍光を発光する蛍光体膜(131R,G)を有すると共に、青色画素に対応するように光源ユニット(110)から入射された青色光を拡散する拡散層(132)を有し、拡散層(132)は、少なくとも光入射側表面が樹脂層(134b)で被覆され、拡散層(132)の光入射側表面に対応する樹脂層(134b)は、反拡散層側に向かって凹陥すると共に、底部にいくに従って凹陥幅が狭くなる先細り形状の凹陥部(134ba)を複数有する。

Description

表示装置
 本発明は、バックライトである光源ユニットから出射された青色光を蛍光体層において各色に変換することによりカラー表示を行う表示装置に関する。
 液晶表示装置は、薄型化が可能で低消費電力であるため、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA(Personal Digital Assistant)等の携帯情報機器のディスプレイとして広く用いられている。
 液晶表示装置は、液晶パネルと、その背面側に取り付けられたバックライトユニットとを備えている。液晶パネルは、一般に、薄膜トランジスタ(TFT; Thin Film Transistor)等のスイッチング素子を備えたアレイ基板と、アレイ基板に対向して配置され、赤(R)、緑(G)及び青(B)の3色のカラーフィルタ層が形成された対向基板と、両基板間に形成された液晶層と、で構成されている。そして、この液晶表示装置は、画素に応じた電極をON、OFFすることで液晶分子の配向状態が変わることを利用して、バックライトから入射する光の透過率を画素毎に調整し、その透過光がカラーフィルタ層の着色部分を透過することでカラー表示を行うようになっている。
 バックライトから液晶パネルに光を入射させてカラーフィルタで光の波長を変換する場合、例えば、バックライトから入射された光を赤色カラーフィルタに透過させる場合、カラーフィルタを透過する光のうち緑色、青色の成分が赤色カラーフィルタに吸収されて、赤色の成分の光のみが透過する。そのため、バックライトからの入射光の3分の2はカラーフィルタで吸収されることになり、バックライトを有効に利用することができない。
 特許文献1には、バックライトとして青色光を出射するバックライトを備えた液晶表示装置が開示されている。この液晶表示装置は、赤色画素及び緑色画素のそれぞれに対応するように赤色蛍光体膜及び緑色蛍光体膜が配置された蛍光体層を有し、これにより、青色光を励起して各々赤色及び緑色の蛍光を得ることによりRGBカラー表示を行うことができると記載されている。
 バックライトからの光を蛍光材料により波長変換させて任意の波長を取り出しカラー表示を行う方法によれば、カラーフィルタで所望の波長の光以外を遮断する場合よりも、光の利用効率が良好となる利点がある。
 ところで、青色光をバックライトとして、青色光を赤色光、緑色光に変換してRGBカラー表示を行う場合、赤色光や緑色光については、無指向性(ランバーシアン分布)で蛍光を発光する。一方、青色光については、バックライトから入射された光がそのまま蛍光体層を通過して光出射側に取り出されることとなり、液晶表示装置の正面方向から見ると青色光の強度が強く、画像が全体として青色味がかってみえてしまう。また、液晶表示装置の斜め方向から見ると青色の強度が弱く、画像が全体として黄色味がかってみえてしまう。そのため、カラーバランスが悪く、表示品位が低下してしまう。
 上記のカラーバランスが悪い問題を解決するために、青色光を拡散させることが行われている。青色光を拡散させるために、例えば、蛍光体層の光入射側表面や光出射側表面に拡散シートを設けて光の拡散を行うこと開示されている(例えば、特許文献2)。拡散シートの例としては、例えば、特許文献3に、透明支持体上に光拡散層が積層され、光拡散層がバインダー樹脂及び樹脂粒子を含有することにより凹凸表面を有する構成が開示されている。
 また、青色光を拡散させる別の方法としては、蛍光体層の光入射側表面や光出射側表面に、ビーズ状の拡散樹脂(フィラー)を層状に分散させた構成の薄膜状の拡散層を形成して光の拡散を行う方法がある。
特開2000-131683号公報 特開2009-244383号公報 特開2003-107214号公報
 例えば、特許文献3の拡散シートにより光の拡散を行う場合、拡散シート表面に設けられた樹脂粒子及びバインダー樹脂と空気との界面において、樹脂と空気との屈折率差が大きいことを利用して光が大きく屈折することにより光が拡散されるようになっている。しかしながら、特許文献2や3のように蛍光体層の表面に拡散シートを設ける場合には、バインダー樹脂の表面を透明材料で被覆することとなるので、拡散シートの界面において、樹脂と空気ほどの大きな屈折率差を得ることができない。そのため、拡散シートによる拡散効果が十分に得られない虞がある。
 また、薄膜状の拡散層により光の拡散を行う場合、拡散層に入射した光の全てがビーズ状の拡散樹脂(フィラー)を透過するわけではない。例えば、理想的に真球のフィラーを一層の厚みで配置した構造の拡散層に、平行光を入射させた場合、計算上、9.3%の光がフィラーを通過しないで平行光のまま透過してしまい、これらの光については拡散効果が得られない。
 本発明は、青色光をバックライトとして青色光を任意の波長の光に変換して任意のカラー表示を行う表示装置において、青色光を十分に拡散させることにより視認角度に依存しないで優れた表示品位で画像表示を行うことのできる表示装置を得ることを目的とする。
 本発明の表示装置は、表示領域に配列された青色画素を含む多数の画素を有し、光出射面から青色の波長域の光を出射する光源ユニットと、光源ユニットの光出射側に設けられた蛍光体層と、を備え、蛍光体層は、青色以外の画素に対応するように光源ユニットから出射された光を吸収して任意の波長の蛍光を発光する蛍光体膜を有すると共に、青色画素に対応するように光源ユニットから入射された青色光を拡散する拡散層を有し、拡散層は、少なくとも光入射側表面が樹脂層で被覆され、拡散層の光入射側表面に対応する樹脂層は、反拡散層側に向かって凹陥すると共に、底部にいくに従って凹陥幅が狭くなる先細り形状の凹陥部、または、拡散層に向かって突出すると共に、先端にいくに従って突出幅が狭くなる先細り形状の突出部を複数有することを特徴とする。
 上記の構成によれば、拡散層の光入射側表面に設けられた樹脂層は、反拡散層側に向かって凹陥する凹陥部、または、拡散層に向かって突出する突出部を複数有するので、拡散層を通過しようとする青色光は、凹陥部や突出部を通過して出射されることとなる。凹陥部は、底部にいくに従って凹陥幅が狭くなる先細り形状であるので、凹陥部の側面は光入射面に対して非平行となっている。また、突出部は、先端にいくに従って突出幅が狭くなる先細り形状であるので、突出部の側面は光入射面に対して非平行となっている。そのため、凹陥部の側面や突出部の側面を通る青色光は、光入射面と垂直でない方向に屈折しながら凹陥部または突出部から拡散層に進入することとなり、このとき、青色光が拡散される。従って、拡散層の光入射側表面に設けられた樹脂層が、反拡散層側に向かって凹陥する凹陥部、または、拡散層に向かって突出する突出部を複数有することにより、青色光を良好に拡散させることができる。そして、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
 本発明の表示装置は、樹脂層が複数の凹陥部を有する場合、凹陥部が角錐形状であることが好ましい。
 凹陥部が角錐形状に形成されている場合、凹陥部は、四角錐形状を有していてもよい。
 また、凹陥部が角錐形状に形成されている場合、凹陥部は、三角錐形状を有していてもよい。
 凹陥部の基部は、隣接する凹陥部の基部と連続していることが好ましい。
 本発明の凹陥部の基部は、隣接する凹陥部の基部と連続するように配置されて形成されているので、隣接する凹陥部間においても、樹脂層を通過する光が確実に凹陥部を通過することとなり、良好に光を拡散させることができる。
 本発明の表示装置は、樹脂層が複数の凹陥部を有する場合、凹陥部が角錐形状であることが好ましい。
 凹陥部が角錐形状に形成されている場合、凹陥部は、四角錐形状を有していてもよい。
 また、凹陥部が角錐形状に形成されている場合、凹陥部は、三角錐形状を有していてもよい。
 凹陥部の基部は、隣接する凹陥部の基部と連続していることが好ましい。
 本発明の凹陥部の基部は、隣接する凹陥部の基部と連続するように配置されて形成されているので、隣接する凹陥部間においても、樹脂層を通過する光が確実に凹陥部を通過することとなり、良好に光を拡散させることができる。
 本発明の表示装置は、樹脂層が複数の突出部を有する場合、突出部が角錐形状であることが好ましい。
 突出部が角錐形状に形成されている場合、突出部は、四角錐形状を有していてもよい。
 また、突出部が角錐形状に形成されている場合、突出部は、三角錐形状を有していてもよい。
 突出部の基端は、隣接する突出部の基端と連続していることが好ましい。
 本発明の突出部の基端は、隣接する突出部の基端と連続するように配置されて形成されているので、隣接する突出部間においても、樹脂層を通過する光が確実に突出部を通過することとなり、良好に光を拡散させることができる。
 本発明の表示装置は、拡散層に、光を拡散する球状のフィラーが混入されていることが好ましい。
 上記の構成によれば、拡散層中にフィラーが混入されているので、拡散層を進行する光のうちフィラーに到達した光がフィラーの界面で屈折されることとなる。従って、より良好に光を拡散させることができる。
 拡散層にフィラーが混入されている場合、フィラーは中空に形成されていることが好ましい。
 上記の構成によれば、フィラーが中空の構成を有するので、拡散層に充填されているバインダーとフィラーの空孔部分との屈折率差が大きくなる。従って、フィラーを通過する光がフィラーの界面で大きな屈折角で通過することとなり、光を拡散させる効果がより良好に得られる。
 本発明の表示装置は、各画素は赤色画素、緑色画素、及び青色画素で構成され、蛍光体層は、各赤色画素に対応するように配置され、青色波長の光を吸収して赤色波長の蛍光を出射する赤色蛍光体膜と、各緑色画素に対応するように配置され、青色波長の光を吸収して緑色波長の蛍光を出射する緑色蛍光体膜と、をさらに備えた場合に好適である。
 本発明の表示装置は、蛍光体層と光源ユニットとの間には、多数の画素を有し且つ光源ユニットから出射された光の表示側への透過率の制御を画素毎に行う光シャッターユニットを備えていてもよい。
 本発明の表示装置は、蛍光体層の光源ユニットとは反対側には、多数の画素を有し且つ蛍光体層から出射された光の表示側への透過率の制御を画素毎に行う光シャッターユニットをさらに備えていてもよい。
 表示装置が蛍光体層と光源ユニットとの間に光シャッターユニットを備えた構成である場合、または、蛍光体層の光源ユニットと反対側に光シャッターユニットを備えた構成である場合、光シャッターユニットは、2枚の基板が液晶層を挟んで対向配置された構成を有することが好適である。
 本発明の表示装置は、光源ユニット側に配された光源側基板と、光源ユニットとは反対側に光源側基板と対向するように配された表示側基板と、で構成され、多数の画素を有する光シャッターユニットを備え、蛍光体層は、表示側基板上に形成され、光シャッターユニットで透過率の制御が行われた光を吸収して任意の波長の蛍光を発光するように設けられていてもよい。
 上記の構成によれば、蛍光体層が光シャッターユニットの表示側基板上に形成されているので、蛍光体層を設けるための蛍光体基板を設ける必要がなく、液晶表示装置全体として薄型化することができる。
 また、本発明の表示装置は、光源ユニット側に配された光源側基板と、光源ユニットとは反対側に光源側基板と対向するように配された表示側基板と、で構成され、多数の画素を有する光シャッターユニットを備え、蛍光体層は光源側基板上に形成され、光シャッターユニットは、蛍光体層から出射された光の表示側基板への透過率の制御を行うように設けられていてもよい。
 上記の構成によれば、蛍光体層が光シャッターユニットの光源側基板上に形成されているので、蛍光体層を設けるための蛍光体基板を設ける必要がなく、液晶表示装置全体として薄型化することができる。
 表示装置が光源側基板及び表示側基板が対向配置された構成の光シャッターユニットを備えている場合、光シャッターユニットは、光源側基板と表示側基板との間に液晶層が設けられることが好適である。
 本発明の表示装置は、蛍光体層の各蛍光体膜の光出射側表面には各画素の各発光色に対応する色のカラーフィルタが設けられ、拡散層の光出射側表面には青色のカラーフィルタが設けられていてもよい。
 上記の構成によれば、蛍光体層の各蛍光体膜の光出射側表面には各画素の各発光色に対応する色のカラーフィルタが設けられているので、光出射側から各蛍光体層に進入する外光のうち、青色波長のものを遮断することができる。そのため、外光による不要な蛍光体の発光を抑制することができ、各色の蛍光の輝度を高めることにより優れた表示品位を得ることができる。
 また、上記の構成によれば、拡散層の光出射側表面には青色のカラーフィルタが設けられているので、光出射側から拡散層に進入する外光のうち青色以外の波長を遮断することができる。そのため、外光が拡散層で拡散されるのが抑制され、青色の輝度を高めることにより優れた表示品位を得ることができる。
 本発明の表示装置は、光源ユニットは、導光板と、導光板の側方に設けられ導光板に向かって光を出射する光源と、からなるエッジライト方式であってもよい。
 また、本発明の表示装置は、光源ユニットは、並列に配置され蛍光体層に向かって光を出射する複数の光源からなる直下型方式であってもよい。
 本発明によれば、拡散層の光入射側表面に設けられた樹脂層は、反拡散層側に向かって凹陥する凹陥部、または、拡散層に向かって突出する突出部を複数有するので、拡散層を通過しようとする青色光は、突出部を通過して出射されることとなる。凹陥部は、底部にいくに従って凹陥幅が狭くなる先細り形状であるので、凹陥部の側面は光入射面に対して非平行となっている。また、突出部は、先端にいくに従って突出幅が狭くなる先細り形状であるので、突出部の側面は光入射面に対して非平行となっている。そのため、凹陥部の側面や突出部の側面を通る青色光は、光入射面と垂直でない方向に屈折しながら凹陥部または突出部から拡散層に進入することとなり、このとき、青色光が拡散される。従って、拡散層の光入射側表面に設けられた樹脂層が、反拡散層側に向かって凹陥する凹陥部、または、拡散層に向かって突出する突出部を複数有することにより、青色光を良好に拡散させることができる。そして、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
実施形態1の液晶表示装置の概略断面図である。 実施形態1の液晶パネルの概略断面図である。 実施形態1の蛍光体層の断面図である。 蛍光体層の拡散層付近を拡大して示す断面図である。 (a)は凹陥部を拡大して示す平面図、(b)は(a)のVb-Vb線における断面図、及び(c)は(a)のVc-Vc線における断面図である。 反射膜の変形例について、蛍光体層の拡散層付近を拡大して示す断面図である。 (a)~(c)は、成形型の形成方法を示す説明図である。 (a)~(c)は、成形型の形成方法を示す説明図である。 (a)~(e)は、蛍光体層の形成方法の説明図である。 (a)~(d)は、蛍光体層の形成方法の説明図である。 変形例1を示す液晶表示装置の概略断面図である。 (a)は変形例2において蛍光体層の凹陥部を拡大して示す平面図、(b)は凹陥部1つあたりの平面図、及び(c)は(b)のXIIc-XIIc線における断面図である。 (a)は変形例3において蛍光体層の凹陥部を拡大して示す平面図、(b)は凹陥部1つあたりの平面図、及び(c)は(b)のXIIIc-XIIIc線における断面図である。 (a)は変形例4において蛍光体層の凹陥部を拡大して示す平面図、(b)は凹陥部1つあたりの平面図、及び(c)は(b)のXIVc-XIVc線における断面図である。 (a)は変形例5において蛍光体層の凹陥部を拡大して示す平面図、及び(b)は(a)のXVb-XVb線における断面図である。 (a)は変形例6において蛍光体層の凹陥部を拡大して示す平面図、及び(b)は(a)のXVIb-XVIb線における断面図である。 実施形態2の液晶表示装置の概略断面図である。 実施形態2の液晶パネルの概略断面図である。 実施形態2の蛍光体層の断面図である。 蛍光体層の拡散層付近を拡大して示す断面図である。 (a)は突出部を拡大して示す平面図、(b)は(a)のXXIb-XXIb線における断面図、及び(c)は(a)のXXIc-XXIc線における断面図である。 (a)~(d)は、蛍光体層の形成方法の説明図である。 (a)~(d)は、蛍光体層の形成方法の説明図である。 (a)は変形例7において蛍光体層の突出部を拡大して示す平面図、及び(b)は突出部1つあたりの平面図及び側面図である。 (a)は変形例8において蛍光体層の突出部を拡大して示す平面図、及び(b)は突出部1つあたりの平面図及び側面図である。 (a)は変形例9において蛍光体層の突出部を拡大して示す平面図、及び(b)は突出部1つあたりの平面図及び側面図である。 (a)は変形例10において蛍光体層の突出部を拡大して示す平面図、及び(b)は(a)の側面図である。 (a)は変形例11において蛍光体層の突出部を拡大して示す平面図、及び(b)は(a)の側面図である。 実施形態3の液晶表示装置の概略断面図である。 実施形態3の液晶パネルの概略断面図である。 実施形態3の蛍光体層の断面図である。 実施形態4の液晶表示装置の概略断面図である。 実施形態4の液晶パネルの概略断面図である。 実施形態4の表示側基板の断面図である。 (a)~(f)は実施形態4の表示側基板の製造方法を示す説明図である。 (a)~(e)は実施形態4の表示側基板の製造方法を示す説明図である。 実施形態5の液晶表示装置の概略断面図である。 実施形態5の液晶パネルの概略断面図である。 実施形態5の光源側基板の断面図である。 実施形態6の液晶表示装置の概略断面図である。 実施形態6の液晶パネルの概略断面図である。 実施形態6の蛍光体層の断面図である。
 以下、本発明の実施形態に係る液晶表示装置の構成について、図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態1~6に限定されるものではない。
  《実施形態1》
  (液晶表示装置100)
 実施形態1の液晶表示装置100は、図1に示すように、光源ユニット110、液晶パネル120,及び蛍光体層130を備える。そして、光源ユニット110から出射された光が液晶パネル120を通って蛍光体層130に進入し、蛍光体層130の表示側において所定の画像表示が得られるように、これらが配置されている。この液晶表示装置100は、例えば、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA(Personal Digital Assistant)等の携帯情報機器のディスプレイ等に用いられるものである。
 液晶表示装置100は、表示領域に青色画素、赤色画素、及び緑色画素(それぞれ不図示)が所定のレイアウトで配列されている。そして、各画素毎に表示のオンオフを制御することにより、RGBカラー表示を行うことができる。
  (光源ユニット110)
 光源ユニット110は、導光板111の端面から導光板111の内部に光が進入するように側方にLED光源112が設けられたエッジライト方式のものである。
 導光板111は、図示しないが、表示側(液晶パネル120側)とは反対側の表面が例えばプリズム形状となるように形成されており、端部から入射された光が当該プリズム形状面に当たって屈折され、表示側(液晶パネル120側)へ出射されるように構成されている。導光板111の表示側とは反対側の表面には、図1中には図示しないが、必要に応じて、表示側とは反対側に漏れ出た光を導光板111側に反射するための反射シートが設けられる。また、導光板111の表示側の表面には、図1中には図示しないが、必要に応じて、プリズムシートや拡散シート等の光学シートが設けられる。
 LED光源112は、導光板111の内部に光を入射させる機能を有する。LED光源112は、発光ピーク波長が400~500nm程度の青色の波長域の光を出射する光源である。青色の波長の光は、赤色や緑色の波長の光よりも短波長であるため、励起光のエネルギーロス等により蛍光の発光スペクトルのピーク位置が励起光の発光スペクトルのピーク位置よりも長波長側になる現象(ストークスシフト)を利用することにより、赤色、緑色の蛍光を発光する励起光として好適に利用できる。また、青色の領域の光は、紫外線(波長400nm未満程度)を含まないので、紫外領域の光をカットする必要がなく、白色光を光源として用いる場合よりも優れた光利用効率が得られる。
 なお、光源としては、LED光源112を用いる他、冷陰極管や熱陰極管等の蛍光ランプを用いてもよい。
  (液晶パネル120)
 液晶パネル120は、光源側基板121側から入射された光の透過率を画素毎に制御して表示側に出射する光シャッターユニットとしての機能を有する。液晶パネル120は、図2に示すように、光源ユニット110側の光源側基板121と、光を取り出す側(表示側)の表示側基板122と、が対向配置され、両基板間の空間に液晶層(不図示)が充填されている。また、光源側基板121及び表示側基板122のそれぞれの表面には偏光層123,124が設けられている。液晶パネル120の駆動方式としては、TN駆動方式やVA駆動方式、ECB(Electrically Controlled Birefringence)駆動方式等が挙げられる。
 光源側基板121は、詳細は図示しないが、基板本体上にゲートメタルやソースメタルが配置されて画素毎に薄膜トランジスタ(TFT)等のスイッチング素子が形成され、各スイッチング素子に導通する画素電極が各画素毎に形成され、さらにそれらを覆うように配向膜が形成された構成のアレイ基板である。光源側基板121は、例えば厚さが0.1~1.0mm程度である。
 表示側基板122は、詳細は図示しないが、基板本体上の全面に対向電極が設けられ、さらに対向電極を覆うように配向膜が形成された構成を有する。表示側基板122は、例えば厚さが0.1~1.0mm程度である。
 なお、この液晶表示装置100では、液晶パネル120を通過した光はさらに蛍光体層130を通過し、蛍光体層130においてRGBの各色に変換されるので、表示側基板122には、カラーフィルタを設けることなくカラー表示を行うことができる。
 また、この液晶パネル120においては、光源側基板121がアレイ基板、及び表示側基板122が対向基板であるとして説明したが、表示側基板122がアレイ基板、及び光源側基板121が対向基板であってもよい。
  (蛍光体層130)
 蛍光体層130は、図3に示すように、蛍光体基板本体130Sに支持されるように、蛍光体層130の光出射側が接着層139aで蛍光体基板本体130Sに接着されて形成されている。蛍光体層130は、赤色画素に対応するように赤色蛍光体膜131Rが、緑色画素に対応するように緑色蛍光体膜131Gが、及び青色画素に対応するように拡散層132が配置されている。また、蛍光体層130は、赤色、緑色蛍光体膜131R,131G及び拡散層132の光入射側の表面が樹脂膜134bで、光出射側の表面が樹脂層133で覆われている。また、樹脂膜134b表面をさらに覆うと共に蛍光体層130の表面を平坦化するように平坦化膜134aが設けられている。
 蛍光体基板本体130Sは、例えばガラスや透明樹脂等の透明材料で形成されている。蛍光体基板本体130Sは、例えば厚さが0.03~1.0mm程度である。
 赤色蛍光体膜131R及び緑色蛍光体膜131Gは、それぞれ、赤色画素に対応する領域及び緑色画素に対応する領域に設けられている。赤色蛍光体膜131Rは、青色光を赤色光に変換する機能を有する蛍光材料で形成されている。また、緑色蛍光体膜131Gは、青色光を緑色光に変換する機能を有する蛍光材料で形成されている。各蛍光材料は、例えば、蛍光色素をアクリル樹脂や紫外線硬化樹脂等の樹脂に分散させたり固溶状態としたものである。赤色、緑色蛍光体膜131R,131Gは、例えば厚さが5~20μmである。
 拡散層132は、青色画素領域に対応するように設けられている。拡散層は、図4に示すように、バインダー樹脂中に球状のフィラー132aが分散されて構成されている。拡散層132は、例えば厚さが5~20μmである。
 バインダー樹脂は、光硬化性または熱硬化性の樹脂で形成されており、例えば、アクリル系樹脂(屈折率1.49程度)やポリエステル樹脂(屈折率1.55程度)等が挙げられる。
 フィラー132aは、例えば、アクリル系樹脂(屈折率1.49程度)、ポリスチレン系樹脂(屈折率1.59程度)等の有機材料や、セラミック粒子等の無機材料で形成されている。フィラー132aは、拡散層のバインダー樹脂よりも0.01以上屈折率の小さい材料で形成される。フィラー132aは、例えば径が2~10μm程度の該真球形状を有する。拡散層中にフィラー132aが混入されていることにより、拡散層を進行する光のうちフィラー132aに到達した光がフィラー132aの界面で屈折されることとなり、より良好に光を拡散させることができる。
 フィラー132aは、内部が中空の構造を有することが好ましい。内部が中空構造のフィラー132aとしては、例えば、粒子内部に1つの空孔を有する単中空粒子、粒子内部に複数の空孔を有する多中空粒子、多孔質構造の多孔粒子等が挙げられる。フィラー132aの内部が中空の構造であることにより、拡散層に充填されているバインダーとフィラー132aの空孔部分との屈折率差が大きくなる。従って、フィラー132aを通過する光がフィラー132aの界面で大きな屈折角で通過することとなり、光を拡散させる効果がより良好に得られる。
 また、フィラー132aは、真球形状の他、半球状であっても、レンズ状であっても、その他の形状であってもよい。
 また、ここでは拡散層のバインダー樹脂にフィラー132aを分散させているとしているが、フィラー132aは必須の構成ではない。
 平坦化膜134aや樹脂膜134bは、例えばアクリルやウレタンアクリレート等の樹脂で形成されている。平坦化膜134aと、各蛍光体膜131R、Gや拡散層132の光入射側表面を覆うように設けられた樹脂膜134bは、両者で樹脂層134を構成している。平坦化膜134aと樹脂膜134bとは、同一の材料で形成されていても、異なる材料で形成されていてもよい。また、ここでは樹脂層134が平坦化膜134aと樹脂膜134bとで構成されるとしているが、平坦化膜134aと樹脂膜134bとが一体に形成されていてもよい。平坦化膜134aは、例えば、厚さが1~50μm程度であり、樹脂膜134bは、例えば、厚さが1~10μm程度である。樹脂膜134bは、屈折率が、拡散層132よりも小さい材料で形成されている。
 平坦化膜134aは、各蛍光体層131R,G間や拡散層132との間の領域にも充填されており、各蛍光体膜131R、Gや拡散層132のそれぞれを区画するように隔壁部分が構成されている。平坦化膜134aの隔壁部分は、光入射側から出射側に向かって先細りになるテーパ形状であることが好ましい。そして、平坦化膜134aの隔壁部分には、反射膜135が設けられている。
 樹脂膜134bのうち、拡散層132の光入射側表面を覆うように設けられた部分には、図4に示すように、拡散層132側の反対側に向かって凹陥した凹陥部134baが複数形成されている。凹陥部134baは、図5(a)~(c)に示すように、底部にいくに従って凹陥幅が狭くなる先細り形状を有し、具体的には、凹陥した部分の形状が四角錐形状となっている。複数の凹陥部134baのそれぞれは、基部が隣接する凹陥部の基部と連続するように、四角錐の底面の四角形が敷き詰められるようなレイアウトとなるように配置されている。凹陥部134baは、例えば、1~50μmのピッチ幅で設けられていることが好ましく、3~10μmのピッチ幅で設けられていることがより好ましい。凹陥部134baのピッチ幅を小さくして樹脂膜134bの厚みを押さえる観点からは、ピッチ幅は小さいことが好ましく、凹陥部134baの四角錐形状の形成を容易にする観点からは、ピッチ幅はある程度大きいことが好ましい。
 なお、凹陥部134baの凹陥形状が四角錐形状であるとしているが、製造上、四角錐の頂点部分に相当する凹陥部134baの底部が潰れて、例えば0.1~2μm平方程度の平坦部となっていても構わない。また、凹陥部134baを構成する四角錐の側面が完全な平面でなくても構わない。ここでの四角錐とは、概略形状が四角錐であることを意味する。また、以下で用いる「三角錐」「六角錐」「円錐」「角錐台」等の表現についても同様に、概略形状がその形状であることを意味する。
 反射膜135は、平坦化膜の隔壁部分の表面に設けられている。反射膜135は、可視光範囲で高反射性を示す材料、例えば、Al、Ag、Al合金、Ag合金等で形成され、例えば厚さが100~500nmである。反射膜135は、例えばスパッタリング法や蒸着等を用いて形成することができる。平坦化膜の隔壁部分の表面に反射膜135が設けられていることにより、各蛍光膜131R,Gや拡散層132を通る光を反射させて光出射側に出射することにより、光取り出し効率を高めることができる。
 なお、反射膜135は、図4に示すように凹陥部134baの凹んだ部分にまで設けられていてもよく、図6に示すように、凹陥部134baの内部には入らないように設けられていてもよい。
 樹脂層133は、例えばアクリルやウレタンアクリレート等の樹脂を主体とした材料で形成されている。樹脂層133は、例えば、厚さが1~5μm程度である。樹脂層133の屈折率は、拡散層132の屈折率より小さい材料で形成されている。
 液晶パネル120と蛍光体層130とは、図3に示す接着層139bで接着されている。
  (液晶表示装置100の動作)
 以上の構成の液晶表示装置100においては、光源ユニット110から出射された青色光が液晶パネル120において、各画素に対応するTFTによって画素毎に透過率の調整がなされる。そして、液晶パネル120から蛍光体層130を通過した光は、蛍光体層130において任意の色の波長の蛍光に変換されることにより、全体として所望の画像が表示される。
  (液晶表示装置100の製造方法)
 以下、本実施形態の液晶表示装置100の製造方法について、説明する。なお、光源ユニット110や液晶パネル120については従来公知の方法を用いて作製できるため、説明を省略する。
  〈成形型の作製方法〉
 蛍光体層130の製造方法の前に、図7及び8を用いて、蛍光体層130の凹陥部134baを形成するための第2成形型M2の作製方法を説明する。第2成形型M2は、まず、第1成形型M1を引ききり加工で形成し、第1成形型M1を成形型として作製する。
  -第1成形型M1の形成-
 まず、切削工具であるバイトB1,B2と、第1成形型M1となるための成形型材料である平板M1aを準備する。バイトB1は、切削を行う先端部分が先端に向かって縮径した形状を有し、その先端部分の、切削を行う方向に対して垂直な断面が台形形状となっている。このようなバイトM1の先端部分の形状としては、バイトM1の先端に台形平板状のチップが取り付けられたものであってもよく、先端が円錐台に形成されたものであってもよい。バイトB2は、切削を行う先端部分が先端に向かって縮径した形状を有し、その先端部分の、切削を行う方向に対して垂直な断面が三角形状となっている。このようなバイトM2の先端部分の形状としては、バイトM2の先端に三角形平板状のチップが取り付けられてものであってもよく、先端が円錐に形成されたものであってもよい(後述の図8(a)では、バイトM2の先端が円錐である場合を示している)。
 はじめに、図7(a)に示すように、バイトB1を用いて平板M1aの表面に格子状に複数の溝を形成する。これにより、平板M1aの表面に、四角錐台の形状に突出した構造がマトリクス状に複数形成される。
 次に、図7(b)に示すように、上記形成した四角錐台形状の突出構造のうち所定の部分に、バイトB2を用いて、四角錐形状の突起部M1bを形成する。この突起部M1bは、マトリクス状に隙間なく配置されるように形成する。
 突起部M1bの形成方法については、まず、図8(a)に示すように、一方向に(例えば、図8(b)のX方向に)平板M1aの表面に複数の溝を並行して形成する。そして、これに直交する方向に(例えば、図8(b)のY方向に)複数の溝をさらに設けることにより、図8(b)及び(c)に示すように、四角錐形状の突起部M1bが複数形成される。
 最後に、図7(c)に示すように、第1成形型M1を成形型として、第1成形型M1と反転した形状を有する第2成形型M2を形成する。第2形成型M2は、シリコン樹脂で形成してもよく、金属材料で電気鋳造により形成してもよい。第2成形型M2は、各蛍光体膜131R,Gや拡散層132を形成する領域に対応して、セル状の凹んだ領域MR,MG,MBが複数設けられる。拡散層132を設ける領域MBには、第1成形型M1の表面にバイトB2で形成した突起部により凹陥された凹陥部MBaが、複数形成されている。
  〈蛍光体層130の作製方法〉
 次に、蛍光体層130の作製方法について、図9及び10を用いて説明する。
 まず、上記説明した方法により、図9(a)に示すように、第2成形型M2を準備する。
 次に、図9(b)に示すように、第2成形型M2の凹んだ領域MR,MGのそれぞれに、例えばインクジェット法を用いて各蛍光体膜を成膜し、ベークして硬化させることにより、赤色蛍光体膜131R、及び緑色蛍光体膜131Gを形成する。
 次いで、図9(c)に示すように、第2成形型M2の凹んだ領域MBのそれぞれにフィラー132aを含んだバインダー樹脂を塗布し、青色画素部分のみをUV照射により硬化させる。このとき、赤色及び緑色画素部分に付着したバインダー樹脂は、溶剤により除去する。
 続いて、図9(d)に示すように、第2成形型M2の凹んだ領域MR,MG,MBのそれぞれに設けられた赤色蛍光体膜131R、緑色蛍光体膜131G及び拡散層132を封止するように、樹脂を塗布した後硬化して、樹脂層133を形成する。
 次に、図9(e)に示すように、樹脂層133の上層に、例えばUV硬化型の接着剤を塗布してその上に蛍光体基板本体130Sを押し付け、UV硬化樹脂を硬化させることにより、接着層139aを介して蛍光体基板本体130Sを固定する。
 次いで、図10(a)に示すように、第2成形型M2を蛍光体基板本体130Sから引き剥がす。
 続いて、図10(b)に示すように、スパッタ法等を用いてAl膜を成膜してパターニングすることにより、各蛍光体膜間131R,Gや拡散層132の間の、平坦化膜134aの隔壁部分となる領域に、反射膜135を形成する。
 次に、図10(c)に示すように、樹脂を塗布した後硬化して、樹脂膜134bを形成する。このとき、拡散層132の凹みに樹脂膜134bの一部が入り込んで硬化されることにより、樹脂膜134bの一部が凹陥部134baに形成される。
 最後に、図10(d)に示すように、樹脂を塗布した後硬化して、平坦化膜134aを形成する。これにより、蛍光体層130が完成する。
 このようにして作製した蛍光体層130を、接着層139bを介して液晶パネル120の表示側基板122側と貼り合わせ、さらに、光源ユニット110と貼り合わせることにより、液晶表示装置100が作製される。
  (実施形態1の効果)
 本実施形態によれば、拡散層132の光入射側表面に設けられた樹脂膜134bは、拡散層132の反対側に向かって凹陥する凹陥部134baを複数有するので、拡散層132を通過しようとする青色光は、凹陥部134baを通過して出射されることとなる。凹陥部134baは、底部にいくに従って凹陥幅が狭くなる先細り形状、具体的には四角錐形状であるので、凹陥部134baの側面は光入射面に対して非平行となっている。そのため、凹陥部134baの側面を通る青色光は、光入射面と垂直でない方向に屈折しながら凹陥部134baから拡散層132に進入することとなり、このとき、青色光が拡散される。従って、拡散層132の光入射側表面に設けられた樹脂膜134が拡散層132の反対側に向かって凹陥する凹陥部134baを複数有することにより、青色光を良好に拡散させることができ、結果として、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
  (変形例)
 実施形態1では、光源ユニット110がエッジライト方式のバックライトであるとして説明したが、例えば、図11に変形例1として示すように、光源ユニット110の発光面に複数のLED光源112が並列に配置され、蛍光体層130に向かって光を出射する直下型方式であってもよい。
 実施形態1では凹陥部134baの凹陥形状が四角錐形状であるとして説明したが、特にこれに限られない。例えば、図12(a)~(c)に変形例2として示すように、凹陥部134baの凹陥形状が三角錐形状であってもよく、図13(a)~(c)に変形例3として示すように、凹陥部134baの凹陥形状が六角錐形状であってもよい。また、凹陥部134baの凹陥形状は角錐形状に限られず、例えば、図14(a)~(c)に変形例4として示すように、凹陥部134baの凹陥形状が円錐形状であってもよく、図15(a)及び(b)に変形例5として示すように、凹陥部134baの凹陥形状は角錐台形状であってもよい。
 変形例4のように凹陥部134baの凹陥形状が円錐形状である場合には、凹陥部134baに入射した光が円錐の側面から平均的に分散するように出射されることとなるので、角錐形状の場合よりも均一な光の拡散を行うことができる。但し、隣接する凹陥部134baの基部同士が連続するように円錐の底面の円形が敷き詰められるようなレイアウトとしても、拡散層132の光入射側表面から入射する光の一部は凹陥部134baを通過しないで拡散層132に進入してしまうこととなる点からは、四角錐や三角錐、六角錐等の角錐形状であることが好ましい。
 また、実施形態1では、凹陥部134baが基部が隣接する凹陥部の基部と連続するように、四角錐の底面の四角形が敷き詰められるようなレイアウトとなるように配置されているとしたが、例えば、図16(a)及び(b)に変形例6として示すように、隣接する凹陥部134baの基部同士が離間したレイアウトとなるように凹陥部134baが配置されていてもよい。
  《実施形態2》
  (液晶表示装置200)
 実施形態2の液晶表示装置200は、図17に示すように、光源ユニット210、液晶パネル220,及び蛍光体層230を備える。そして、光源ユニット210から出射された光が液晶パネル220を通って蛍光体層230に進入し、蛍光体層230の表示側において所定の画像表示が得られるように、これらが配置されている。この液晶表示装置200は、例えば、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA等の携帯情報機器のディスプレイ等に用いられるものである。
 液晶表示装置200は、表示領域に青色画素、赤色画素、及び緑色画素(それぞれ不図示)が所定のレイアウトで配列されている。そして、各画素毎に表示のオンオフを制御することにより、RGBカラー表示を行うことができる。
  (光源ユニット210)
 光源ユニット210は、導光板211の端面から導光板211の内部に光が進入するように側方にLED光源212が設けられたエッジライト方式のものである。
  (液晶パネル220)
 液晶パネル220は、光源側基板221側から入射された光の透過率を画素毎に制御して表示側に出射する光シャッターユニットとしての機能を有する。液晶パネル220は、図18に示すように、光源ユニット210側の光源側基板221と、光を取り出す側(表示側)の表示側基板222と、が対向配置され、両基板間の空間に液晶層(不図示)が充填されている。また、光源側基板221及び表示側基板222のそれぞれの表面には偏光層223,224が設けられている。
 なお、この液晶パネル220においては、光源側基板221がアレイ基板、及び表示側基板222が対向基板であるとして説明したが、表示側基板222がアレイ基板、及び光源側基板221が対向基板であってもよい。
  (蛍光体層230)
 蛍光体層230は、図19に示すように、蛍光体基板本体230Sに支持されるように、蛍光体層230の光出射側が接着層239aで蛍光体基板本体230Sに接着されて形成されている。蛍光体層230は、赤色画素に対応するように赤色蛍光体膜231Rが、緑色画素に対応するように緑色蛍光体膜231Gが、及び青色画素に対応するように拡散層232が配置されている。また、蛍光体層230は、赤色、緑色蛍光体膜231R,231G及び拡散層232の光入射側の表面が樹脂膜234bで、光出射側の表面が樹脂層233で覆われている。また、樹脂膜234b表面をさらに覆うと共に蛍光体層230の表面を平坦化するように平坦化膜234aが設けられている。
 蛍光体基板本体230Sは、例えばガラスや透明樹脂等の透明材料で形成されている。蛍光体基板本体230Sは、例えば厚さが0.03~1.0mm程度である。
 赤色蛍光体膜231R及び緑色蛍光体膜231Gは、それぞれ、赤色画素に対応する領域及び緑色画素に対応する領域に設けられている。赤色蛍光体膜231Rは、青色光を赤色光に変換する機能を有する蛍光材料で形成されている。また、緑色蛍光体膜231Gは、青色光を緑色光に変換する機能を有する蛍光材料で形成されている。各蛍光材料は、例えば、蛍光色素をアクリル樹脂や紫外線硬化樹脂等の樹脂に分散させたり固溶状態としたものである。赤色、緑色蛍光体膜231R,231Gは、例えば厚さが5~20μmである。
 拡散層232は、青色画素領域に対応するように設けられている。拡散層は、図20に示すように、バインダー樹脂中に球状のフィラー232aが分散されて構成されている。拡散層232は、例えば厚さが5~20μmである。
 バインダー樹脂は、光硬化性または熱硬化性の樹脂で形成されており、例えば、アクリル系樹脂(屈折率1.49程度)やポリエステル樹脂(屈折率1.55程度)等が挙げられる。
 フィラー232aは、例えば、アクリル系樹脂(屈折率1.49程度)、ポリスチレン系樹脂(屈折率1.59程度)等の有機材料や、セラミック粒子等の無機材料で形成されている。フィラー232aは、拡散層のバインダー樹脂よりも0.01以上屈折率の小さい材料で形成される。フィラー232aは、例えば径が2~10μm程度の該真球形状を有する。拡散層中にフィラー232aが混入されていることにより、拡散層を進行する光のうちフィラー232aに到達した光がフィラー232aの界面で屈折されることとなり、より良好に光を拡散させることができる。
 フィラー232aは、内部が中空の構造を有することが好ましい。内部が中空構造のフィラー232aとしては、例えば、粒子内部に1つの空孔を有する単中空粒子、粒子内部に複数の空孔を有する多中空粒子、多孔質構造の多孔粒子等が挙げられる。フィラー232aの内部が中空の構造であることにより、拡散層に充填されているバインダーとフィラー232aの空孔部分との屈折率差が大きくなる。従って、フィラー232aを通過する光がフィラー232aの界面で大きな屈折角で通過することとなり、光を拡散させる効果がより良好に得られる。
 また、フィラー232aは、真球形状の他、半球状であっても、レンズ状であっても、その他の形状であってもよい。
 また、ここでは拡散層のバインダー樹脂にフィラー232aを分散させているとしているが、フィラー232aは必須の構成ではない。
 平坦化膜234aや樹脂膜234bは、例えばアクリルやウレタンアクリレート等の樹脂で形成されている。平坦化膜234aと、各蛍光体膜231R、Gや拡散層232の光入射側表面を覆うように設けられた樹脂膜234bは、両者で樹脂層234を構成している。平坦化膜234aと樹脂膜234bとは、同一の材料で形成されていても、異なる材料で形成されていてもよい。また、ここでは樹脂層234が平坦化膜234aと樹脂膜234bとで構成されるとしているが、平坦化膜234aと樹脂膜234bとが一体に形成されていてもよい。平坦化膜234aは、例えば、厚さが1~50μm程度であり、樹脂膜234bは、例えば、厚さが1~10μm程度である。樹脂膜234bは、屈折率が、拡散層232よりも小さい材料で形成されている。
 平坦化膜234aは、各蛍光体層231R,G間や拡散層232との間の領域にも充填されており、各蛍光体膜231R、Gや拡散層232のそれぞれを区画するように隔壁部分が構成されている。平坦化膜234aの隔壁部分は、光入射側から出射側に向かって先細りになるテーパ形状であることが好ましい。そして、平坦化膜234aの隔壁部分には、反射膜235が設けられている。
 樹脂膜234bのうち、拡散層232の光入射側表面を覆うように設けられた部分には、図20に示すように、拡散層232側に向かって突出した突出部234bbが複数形成されている。突出部234bbは、図21(a)~(c)に示すように、先端にいくに従って突出幅が狭くなる先細り形状を有し、具体的には、四角錐形状を有する。複数の突出部234bbのそれぞれは、基端が隣接する突出部の基端と連続するように、四角錐の底面の四角形が敷き詰められるようなレイアウトとなるように配置されている。突出部234bbは、例えば、1~50μmのピッチ幅で設けられていることが好ましく、3~10μmのピッチ幅で設けられていることがより好ましい。突出部234bbのピッチ幅を小さくして厚みを押さえる観点からは、ピッチ幅は小さいことが好ましく、突出部234bbの四角錐形状の形成を容易にする観点からは、ピッチ幅はある程度大きいことが好ましい。
 なお、突出部234bbの形状が四角錐形状であるとしたが、製造上、四角錐の頂点部分が潰れて、例えば0.1~2μm平方程度の平坦部となっていても構わない。また、突出部234bbを構成する四角錐の側面が完全な平面でなくても構わない。ここでの四角錐とは、概略形状が四角錐であることを意味する。また、以下で用いる「三角錐」「六角錐」「円錐」「角錐台」等の表現についても同様に、概略形状がその形状であることを意味する。
 反射膜235は、平坦化膜の隔壁部分の表面に設けられている。反射膜235は、可視光範囲で高反射性を示す材料、例えば、Al、Ag、Al合金、Ag合金等で形成され、例えば厚さが100~500nmである。反射膜235は、例えばスパッタリング法や蒸着等を用いて形成することができる。平坦化膜の隔壁部分の表面に反射膜235が設けられていることにより、各蛍光膜231R,Gや拡散層232を通る光を反射させて光出射側に出射することにより、光取り出し効率を高めることができる。
 樹脂層233は、例えばアクリルやウレタンアクリレート等の樹脂を主体とした材料でで形成されている。樹脂層233は、例えば、厚さが1~5μm程度である。樹脂層233の屈折率は、赤色、緑色蛍光体膜231R,231Gや拡散層232の屈折率より小さい材料で形成されている。
 液晶パネル220と蛍光体層230とは、図19に示す接着層239bで接着されている。
  (液晶表示装置200の動作)
 以上の構成の液晶表示装置200においては、光源ユニット210から出射された青色光が液晶パネル220において、各画素に対応するTFTによって画素毎に透過率の調整がなされる。そして、液晶パネル220から蛍光体層230を通過した光は、蛍光体層230において任意の色の波長の蛍光に変換されることにより、全体として所望の画像が表示される。
  (液晶表示装置200の製造方法)
 以下、本実施形態の液晶表示装置200の製造方法について説明する。なお、光源ユニット210や液晶パネル220については従来公知の方法を用いて作製できるため、説明を省略する。
  〈蛍光体層230の作製方法〉
 次に、蛍光体層230の作製方法について、図22及び23を用いて説明する。
 はじめに、図22(a)に示すように、各蛍光体膜231R,Gや拡散層232を形成する領域に対応して、セル状の凹んだ領域MR,MG,MBが複数マトリクス状に設けられた成形型Mを準備する。拡散層232を設ける領域MBには、成形型Mの表面に、四角錐形状の複数の突起部MBaが設けられている。これらは、形成する樹脂膜234bの突出部234bbに対応する形状のものである。
 次に、図22(b)に示すように、成形型Mの凹んだ領域MR,MGのそれぞれに、例えばインクジェット法を用いて各蛍光体膜を成膜し、ベークして硬化させることにより、赤色蛍光体膜231R、及び緑色蛍光体膜231Gを形成する。
 その後、成形型Mの凹んだ領域MBのそれぞれにフィラー232aを含んだバインダー樹脂を塗布し、青色画素部分のみをUV照射により硬化させる。このとき、赤色及び緑色画素部分に付着したバインダー樹脂は、溶剤により除去する。
 続いて、図22(c)に示すように、成形型Mの凹んだ領域MR,MG,MBのそれぞれに設けられた赤色蛍光体膜231R、緑色蛍光体膜231G及び拡散層232を封止するように、樹脂を塗布した後硬化して、樹脂層233を形成する。
 次に、図22(d)に示すように、樹脂層233の上層に、例えばUV硬化型の接着剤を塗布してその上に蛍光体基板本体230Sを押し付け、UV硬化樹脂を硬化させることにより、接着層239aを介して蛍光体基板本体230Sを固定する。
 次いで、図23(a)に示すように、成形型Mを蛍光体基板本体230Sから引き剥がす。
 続いて、図23(b)に示すように、スパッタ法等を用いてAl膜を成膜してパターニングすることにより、各蛍光体膜間231R,Gや拡散層232の間の、平坦化膜234aの隔壁部分となる領域に、反射膜235を形成する。
 次に、図23(c)に示すように、樹脂を塗布した後硬化して、樹脂膜234bを形成する。このとき、拡散層232の凹みに樹脂膜234bの一部が入り込んで硬化されることにより、樹脂膜234bの一部が突出部234bbに形成される。
 最後に、図23(d)に示すように、樹脂を塗布した後硬化して、平坦化膜234aを形成する。これにより、蛍光体層230が完成する。
 このようにして作製した蛍光体層230を、接着層239bを介して液晶パネル220の表示側基板222側と貼り合わせ、さらに、光源ユニット210と貼り合わせることにより、液晶表示装置200が作製される。
  (実施形態2の効果)
 本実施形態によれば、拡散層232の光入射側表面に設けられた樹脂膜234bは、拡散層232に向かって突出する突出部234bbを複数有するので、拡散層232を通過しようとする青色光は、突出部234bbを通過して出射されることとなる。突出部234bbは、先端にいくに従って突出幅が狭くなる先細り形状、具体的には四角錐形状であるので、突出部234bbの側面は光入射面に対して非平行となっている。そのため、突出部234bbの側面を通る青色光は、光入射面と垂直でない方向に屈折しながら突出部234bbから拡散層232に進入することとなり、このとき、青色光が拡散される。従って、拡散層232の光入射側表面に設けられた樹脂膜234が拡散層232に向かって突出する突出部234bbを複数有することにより、青色光を良好に拡散させることができ、結果として、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
  (変形例)
 実施形態2では、光源ユニット210がエッジライト方式のバックライトであるとして説明したが、例えば、実施形態1でも説明したように、蛍光体層230に向かって光を出射する直下型方式であってもよい。
 実施形態2では突出部が四角錐形状を有するとして説明したが、特にこれに限られない。例えば、図24(a)及び(b)に変形例7として示すように、突出部234bbが三角錐形状を有していてもよく、図25(a)及び(b)に変形例8として示すように、突出部234bbが六角錐形状を有していてもよい。また、突出部234bbの形状は角錐形状に限られず、例えば、図26(a)及び(b)に変形例9として示すように、突出部234bbが円錐形状であってもよく、図27(a)及び(b)に変形例10として示すように、突出部234bbは角錐台形状であってもよい。
 変形例9のように突出部234bbが円錐形状である場合には、突出部234bbに入射した光が円錐の側面から平均的に分散するように出射されることとなるので、角錐形状の場合よりも均一な光の拡散を行うことができる。但し、隣接する突出部234bbの基端同士が連続するように円錐の底面の円形が敷き詰められるようなレイアウトとしても、拡散層232の光入射側表面から入射する光の一部は突出部234bbを通過しないで拡散層232に進入してしまうこととなる点からは、四角錐や三角錐、六角錐等の角錐形状であることが好ましい。
 また、実施形態2では、突出部234bbが基端が隣接する突出部の基端と連続するように、四角錐の底面の四角形が敷き詰められるようなレイアウトとなるように配置されているとしたが、例えば図28(a)及び(b)に変形例11として示すように、隣接する突出部234bbの基端同士が離間したレイアウトとなるように突出部234bbが配置されていてもよい。
  《実施形態3》
  (液晶表示装置300)
 実施形態3の液晶表示装置300は、図29に示すように、光源ユニット310、液晶パネル320,及び蛍光体層330を備える。そして、光源ユニット310から出射された光が蛍光体層330を通って液晶パネル320に進入し、液晶パネル320の表示側において所定の画像表示が得られるように、これらが配置されている。この液晶表示装置300は、例えば、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA等の携帯情報機器のディスプレイ等に用いられるものである。
 液晶表示装置300は、表示領域に青色画素、赤色画素、及び緑色画素(それぞれ不図示)が所定のレイアウトで配列されている。そして、各画素毎に表示のオンオフを制御することにより、RGBカラー表示を行うことができる。
  (光源ユニット310)
 光源ユニット310は、実施形態2と同様、導光板311の端面から導光板311の内部に光が進入するように側方にLED光源312が設けられたエッジライト方式のものである。
  (液晶パネル320)
 液晶パネル320は、光源側基板321側から入射された光の透過率を画素毎に制御して表示側に出射する光シャッターユニットとしての機能を有する。液晶パネル320は、実施形態2と同様、図30に示すように、光源ユニット310側の光源側基板321と、光を取り出す側(表示側)の表示側基板322と、が対向配置され、両基板間の空間に液晶層(不図示)が充填されている。また、光源側基板321及び表示側基板322のそれぞれの表面には偏光層323,324が設けられている。
  (蛍光体層330)
 蛍光体層330は、図31に示すように、蛍光体基板本体330Sに支持されるように、蛍光体層330の光入射側が接着層339aで蛍光体基板本体330Sに接着されて形成されている。蛍光体層330は、赤色画素に対応するように赤色蛍光体膜331Rが、緑色画素に対応するように緑色蛍光体膜331Gが、及び青色画素に対応するように拡散層332が配置されている。また、蛍光体層330は、赤色、緑色蛍光体膜331R,331G及び拡散層332の光入射側の表面が樹脂膜334bで、光出射側の表面が樹脂層333で覆われている。また、樹脂膜334b表面をさらに覆うと共に蛍光体層330の表面を平坦化するように平坦化膜334aが設けられている。
 なお、蛍光体層330の各構成の詳細については、実施形態2と同様である。
 液晶パネル320と蛍光体層330とは、図31に示す接着層339bで接着されている。
 なお、本実施形態では、樹脂膜334bの光入射側表面に拡散層332側に向かって突出する突出部334bbを複数備えているとしたが、樹脂膜334bの光入射側表面に拡散層332の反対側に向かって凹陥する凹陥部334baを複数備えていてもよい。
  (液晶表示装置300の動作)
 以上の構成の液晶表示装置300においては、光源ユニット310から出射された青色光が蛍光体層330において任意の色の波長の蛍光に変換される。そして、蛍光体層330から液晶パネル320を通過した光は、液晶パネル320において、各画素に対応するTFTによって画素毎に透過率の調整がなされることにより、全体として所望の画像が得られる。
  (液晶表示装置300の製造方法)
 実施形態3の液晶表示装置300の製造方法は、蛍光体層330の作製の工程において、蛍光体基板本体330Sを蛍光体層330の光入射側に接着させることを除いて、実施形態2と同じである。
  (実施形態3の効果)
 本実施形態によれば、拡散層332の光入射側表面に設けられた樹脂膜334bは、拡散層332に向かって突出する突出部334bbを複数有するので、拡散層332を通過しようとする青色光は、突出部334bbを通過して出射されることとなる。突出部334bbは、四角錐形状であるので、突出部334bbの側面は光入射面に対して非平行となっている。そのため、突出部334bbの側面を通る青色光は、光入射面と垂直でない方向に屈折しながら突出部334bbから拡散層332に進入することとなり、このとき、青色光が拡散される。従って、拡散層332の光入射側表面に設けられた樹脂膜334が拡散層332に向かって突出する突出部334bbを複数有することにより、青色光を良好に拡散させることができ、結果として、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
  《実施形態4》
  (液晶表示装置400)
 実施形態4の液晶表示装置400は、図32に示すように、光源ユニット410及び液晶パネル420を備える。そして、光源ユニット410から出射された光が液晶パネル420に進入して液晶パネル420の表示側において所定の画像表示が得られるように、これらが配置されている。この液晶表示装置400は、例えば、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA等の携帯情報機器のディスプレイ等に用いられるものである。
 液晶表示装置400は、表示領域に青色画素、赤色画素、及び緑色画素(それぞれ不図示)が所定のレイアウトで配列されている。そして、各画素毎に表示のオンオフを制御することにより、RGBカラー表示を行うことができる。
  (光源ユニット410)
 光源ユニット410は、実施形態1と同様、導光板411の端面から導光板411の内部に光が進入するように側方にLED光源412が設けられたエッジライト方式のものである。
  (液晶パネル420)
 液晶パネル420は、光源側基板421側から入射された光の透過率を画素毎に制御して表示側に出射する光シャッターユニットとしての機能を有する。液晶パネル420は、図33に示すように、光源ユニット410側の光源側基板421と、光を取り出す側(表示側)の表示側基板422と、が対向配置され、両基板間の空間に液晶層(不図示)が充填されている。また、光源側基板421の表面には偏光層423が設けられている。
 光源側基板421は、詳細は図示しないが、基板本体上にゲートメタルやソースメタルが配置されて画素毎にTFT等のスイッチング素子が形成され、各スイッチング素子に導通する画素電極が各画素毎に形成され、さらにそれらを覆うように配向膜が形成された構成のアレイ基板である。光源側基板421は、例えば厚さが0.1~1.0mm程度である。
 表示側基板422は、図34に示すように、表示側基板本体422Sの光入射側表面に蛍光体層430が設けられ、さらに、偏光層422A、平坦化層422B、対向電極422C,及び配向膜422Dが順に積層された構成を有する。表示側基板422は、例えば厚さが0.11~1.1mm程度である。
 表示側基板本体422Sは、例えばガラスや透明樹脂等の透明材料で形成されている。表示側基板本体422Sは、例えば厚さが0.1~1.0mm程度である。表示側基板本体422Sは、光入射側の表面に、接着層490によって蛍光体層430と接着されている。
 蛍光体層430は、赤色画素に対応するように赤色蛍光体膜431Rが、緑色画素に対応するように緑色蛍光体膜431Gが、及び青色画素に対応するように拡散層432が配置されている。また、蛍光体層430は、赤色、緑色蛍光体膜431R,431G及び拡散層432の光入射側の表面が樹脂膜434bで、光出射側の表面が樹脂層433で覆われている。また、樹脂膜434b表面をさらに覆うと共に蛍光体層430の表面を平坦化するように平坦化膜434aが設けられ、平坦化膜434aと樹脂膜434bとで樹脂層434を構成している。
 なお、蛍光体層430の各構成については、実施形態2と同様である。
 偏光層422Aは、例えば、Al膜がワイヤーグリッドパターンとなるように設けられたものである。
 平坦化層422Bは、例えばアクリルやウレタンアクリレート等の樹脂で形成されている。平坦化層422Bは、偏光層422Aにより蛍光体層430の光入射側表面にできた凸凹を平坦化するために設けられる。
 対向電極422Cは、例えばITO(Indium Tin Oxide)等の透明導電膜で形成される。対向電極422Cは、例えば厚さが0.1~0.5μmである。
 配向膜422Dは、対向電極422Cを覆うように、例えばポリイミド膜で形成されている。配向膜422Dは、例えば、厚さが0.05μm程度である。
 なお、この液晶パネル420においては、光源側基板421がアレイ基板、及び表示側基板422が対向基板であるとして説明したが、表示側基板422がアレイ基板、及び光源側基板421が対向基板であってもよい。但し、表示側基板422上に蛍光体層430を形成する工程が容易である点からは、表示側基板422が対向基板であることが好ましい。
 また、本実施形態では、樹脂膜434bの光入射側表面に拡散層432側に向かって突出する突出部434bbを複数備えているとしたが、樹脂膜434bの光入射側表面に拡散層432の反対側に向かって凹陥する凹陥部434baを複数備えていてもよい。
  (液晶表示装置400の動作)
 以上の構成の液晶表示装置400においては、光源ユニット410から出射された青色光が液晶パネル420の光源側基板421において、各画素に対応するTFTにより液晶の配向方向の調整がなされ、画素毎に透過率の調整がなされる。そして、光源側基板421から表示側基板422に進入した光は、表示側基板422に形成された蛍光体層430において任意の色の波長の蛍光に変換されることにより、全体として所望の画像が表示される。
  (液晶表示装置400の製造方法)
 以下、本実施形態の液晶表示装置400の製造方法について説明する。なお、光源ユニット410や液晶パネル420のうち光源側基板421については従来公知の方法を用いて作製できるため、説明を省略する。
   〈表示側基板422の作製方法〉
 表示側基板422の作製方法について、図35及び36を用いて説明する。
 まず、実施形態2と同様にして、図35(a)に示すように、成形型Mを準備する。
 次に、実施形態2と同様に、図35(b)に示すように、成形型Mの凹んだ領域MR,MGのそれぞれに、赤色蛍光体膜431R、及び緑色蛍光体膜431Gを形成し、図35(c)に示すように、成形型Mの凹んだ領域MBのそれぞれに拡散層432を形成する。そして、図35(d)に示すように、成形型Mの凹んだ領域MR,MG,MBのそれぞれに設けられた赤色蛍光体膜431R、緑色蛍光体膜431G及び拡散層432を封止するように、樹脂層433を形成する。
 次いで、図35(e)に示すように、樹脂層433の上層に、接着層490を介して表示側基板本体422Sを固定した後、図35(f)に示すように、成形型Mを表示側基板本体422Sから引き剥がす。
 続いて、実施形態2と同様に、図36(a)に示すように、反射膜435を形成する。
 次に、実施形態2と同様に、図36(b)に示すように、樹脂膜434bを形成すると同時に突出部434bbを形成する。そして、図36(c)に示すように、平坦化膜434aを形成する。これにより、蛍光体層430が完成する。
 最後に、図36(d)に示すように、平坦化膜434bの上層に、Al膜を例えばスパッタ法等を用いてワイヤーグリッドパターンに成膜し、偏光層422Aを設ける。そして、図36(e)に示すように、公知の方法を用いて平坦化層422B、対向電極422C、及び配向膜422Dを形成することにより、表示側基板422が完成する。
 このようにして作製した表示側基板422を、光源側基板421と対向させて、両基板間に液晶材料を充填させて液晶層を設けることにより液晶パネル420が得られる。そして、液晶パネル420と光源ユニット410とを貼り合わせることにより、液晶表示装置400が作製される。
  (実施形態4の効果)
 本実施形態によれば、拡散層432の光入射側表面に設けられた樹脂膜434bは、拡散層432に向かって突出する突出部434bbを複数有するので、拡散層432を通過しようとする青色光は、突出部434bbを通過して出射されることとなる。突出部434bbは、四角錐形状であるので、突出部434bbの側面は光入射面に対して非平行となっている。そのため、突出部434bbの側面を通る青色光は、光入射面と垂直でない方向に屈折しながら突出部434bbから拡散層432に進入することとなり、このとき、青色光が拡散される。従って、拡散層432の光入射側表面に設けられた樹脂膜434が拡散層432に向かって突出する突出部434bbを複数有することにより、青色光を良好に拡散させることができる。そして、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
 また、本実施形態によれば、表示側基板422上に蛍光体層430を形成するので、蛍光体層430を支持するための基板を設ける必要がなく、液晶表示装置全体として薄型化することができる。
  《実施形態5》
  (液晶表示装置500)
 実施形態5の液晶表示装置500は、図37に示すように、光源ユニット510及び液晶パネル520を備える。そして、光源ユニット510から出射された光が液晶パネル520に進入して液晶パネル520の表示側において所定の画像表示が得られるように、これらが配置されている。この液晶表示装置500は、例えば、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA等の携帯情報機器のディスプレイ等に用いられるものである。
 液晶表示装置500は、表示領域に青色画素、赤色画素、及び緑色画素(それぞれ不図示)が所定のレイアウトで配列されている。そして、各画素毎に表示のオンオフを制御することにより、RGBカラー表示を行うことができる。
  (光源ユニット510)
 光源ユニット510は、実施形態1と同様、導光板511の端面から導光板511の内部に光が進入するように側方にLED光源512が設けられたエッジライト方式のものである。
  (液晶パネル520)
 液晶パネル520は、光源側基板521側から入射された光の透過率を画素毎に制御して表示側に出射する光シャッターユニットとしての機能を有する。液晶パネル520は、図38に示すように、光源ユニット510側の光源側基板521と、光を取り出す側(表示側)の表示側基板522と、が対向配置され、両基板間の空間に液晶層(不図示)が充填されている。また、表示側基板522の表面には偏光層524が設けられている。
 光源側基板521は、図39に示すように、光源側基板本体521Sの光出射側表面に蛍光体層530が設けられ、さらに、偏光層521A、平坦化層521B、対向電極521C,及び配向膜521Dが順に積層された構成を有する。光源側基板521は、例えば厚さが0.11~1.1mm程度である。
 蛍光体層530は、赤色画素に対応するように赤色蛍光体膜531Rが、緑色画素に対応するように緑色蛍光体膜531Gが、及び青色画素に対応するように拡散層532が配置されている。また、蛍光体層530は、赤色、緑色蛍光体膜531R,531G及び拡散層532の光入射側の表面が樹脂膜534bで、光出射側の表面が樹脂層533で覆われている。また、樹脂膜534b表面をさらに覆うと共に蛍光体層530の表面を平坦化するように平坦化膜534aが設けられ、平坦化膜534aと樹脂膜534bとで樹脂層534を構成している。樹脂膜534bの光入射側表面には、拡散層532側に向かって突出する突出部534bbを複数備えている。複数の突出部534bbのそれぞれは、四角錐形状を有する。
 なお、蛍光体層530の各構成の詳細については、実施形態2と同様である。
 表示側基板522は、詳細は図示しないが、基板本体上にゲートメタルやソースメタルが配置されて画素毎にTFT等のスイッチング素子が形成され、各スイッチング素子に導通する画素電極が各画素毎に形成され、さらにそれらを覆うように配向膜が形成された構成のアレイ基板である。表示側基板522は、例えば厚さが0.1~1.0mm程度である。
 なお、この液晶パネル520においては、光源側基板521が対向基板、及び表示側基板522がアレイ基板であるとして説明したが、表示側基板522が対向基板、及び光源側基板521がアレイ基板であってもよい。但し、光源側基板521上に蛍光体層530を形成する工程が容易である点からは、光源側基板521が対向基板であることが好ましい。
 また、本実施形態では、樹脂膜534bの光入射側表面に拡散層532側に向かって突出する突出部534bbを複数備えているとしたが、樹脂膜534bの光入射側表面に拡散層532の反対側に向かって凹陥する凹陥部534baを複数備えていてもよい。
  (液晶表示装置500の動作)
 以上の構成の液晶表示装置500においては、光源ユニット510から出射された青色光が液晶パネル520の光源側基板521に進入し、光源側基板521に形成された蛍光体層530において任意の色の波長の蛍光に変換される。そして、光源側基板521から表示側基板522に進入する光は、アレイ基板である表示側基板522の各画素に対応するTFTにより配向方向が調整された液晶層を通過することにより、画素毎に透過率の調整がなされることにより、全体として所望の画像が得られる。
  (液晶表示装置500の製造方法)
 実施形態5の液晶表示装置500の製造方法は、蛍光体層530を形成した対向基板を、表示側基板ではなく光源側基板521として用いることを除いて、実施形態4と同じである。
  (実施形態5の効果)
 本実施形態によれば、拡散層532の光入射側表面に設けられた樹脂膜534bは、拡散層532に向かって突出する突出部534bbを複数有するので、拡散層532を通過しようとする青色光は、突出部534bbを通過して出射されることとなる。突出部534bbは、四角錐形状であるので、突出部534bbの側面は光入射面に対して非平行となっている。そのため、突出部534bbの側面を通る青色光は、光入射面と垂直でない方向に屈折しながら突出部534bbから拡散層332に進入することとなり、このとき、青色光が拡散される。従って、拡散層532の光入射側表面に設けられた樹脂膜534が拡散層532に向かって突出する突出部534bbを複数有することにより、青色光を良好に拡散させることができる。そして、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
 また、本実施形態によれば、光源側基板521上に蛍光体層530を形成するので、蛍光体層530を支持するための基板を設ける必要がなく、液晶表示装置全体として薄型化することができる。
  《実施形態6》
  (液晶表示装置600)
 実施形態6の液晶表示装置600は、図40に示すように、光源ユニット610、液晶パネル620,及び蛍光体層630を備える。そして、光源ユニット610から出射された光が液晶パネル620を通って蛍光体層630に進入し、蛍光体層630の表示側において所定の画像表示が得られるように、これらが配置されている。この液晶表示装置600は、例えば、テレビ、パーソナルコンピュータ等のOA機器や携帯電話、PDA等の携帯情報機器のディスプレイ等に用いられるものである。
 液晶表示装置600は、表示領域に青色画素、赤色画素、及び緑色画素(それぞれ不図示)が所定のレイアウトで配列されている。そして、各画素毎に表示のオンオフを制御することにより、RGBカラー表示を行うことができる。
  (光源ユニット610)
 光源ユニット610は、実施形態1と同様、導光板611の端面から導光板611の内部に光が進入するように側方にLED光源612が設けられたエッジライト方式のものである。
  (液晶パネル620)
 液晶パネル620は、光源側基板621側から入射された光の透過率を画素毎に制御して表示側に出射する光シャッターユニットとしての機能を有する。液晶パネル620は、実施形態1と同様、図41に示すように、光源ユニット610側の光源側基板621と、光を取り出す側(表示側)の表示側基板622と、が対向配置され、両基板間の空間に液晶層(不図示)が充填されている。また、光源側基板621及び表示側基板622のそれぞれの表面には偏光層623,624が設けられている。
  (蛍光体層630)
 蛍光体層630は、図42に示すように、蛍光体基板本体630Sに支持されるように、蛍光体層630の光出射側が接着層639aで蛍光体基板本体630Sに接着されて形成されている。蛍光体層630は、赤色画素に対応するように赤色蛍光体膜631Rが、緑色画素に対応するように緑色蛍光体膜631Gが、及び青色画素に対応するように拡散層632が配置されている。そして、赤色蛍光体膜631Rの光出射側には赤色カラーフィルタ636Rが、緑色蛍光体膜631Gの光出射側には緑色カラーフィルタ636Gが、拡散層632の光出射側には青色カラーフィルタ636Bが、それぞれ設けられている。また、蛍光体層630は、赤色、緑色蛍光体膜631R,631G及び拡散層632の光入射側の表面が樹脂膜634bで、光出射側の表面が樹脂層633で覆われている。また、樹脂膜634b表面をさらに覆うと共に蛍光体層630の表面を平坦化するように平坦化膜634aが設けられている。樹脂膜634bの光入射側表面には、拡散層632側に向かって突出する突出部634bbを複数備えている。複数の突出部634bbのそれぞれは、四角錐形状を有する。
 各カラーフィルタ636R,G,Bは、例えば厚さが0.5~2.0μmである。
 なお、蛍光体層630のカラーフィルタ636R,G,B以外の各構成の詳細については、実施形態2と同様である。
 液晶パネル620と蛍光体層630とは、図42に示す接着層690bで接着されている。
 なお、本実施形態では、実施形態1や2のように、光源ユニット610、液晶パネル620、及び蛍光体層630がこの順で配置された構成の液晶表示装置600について、赤色、緑色蛍光体膜631R,631G及び拡散層632の光出射側に各色カラーフィルタ636R,G,Bが設けられているとしたが、特にこれに限られない。例えば、実施形態3のように、光源ユニット、蛍光体層、及び液晶パネルがこの順で配置された構成の液晶表示装置について、赤色、緑色蛍光体膜及び拡散層の光出射側に各色カラーフィルタを設けてもよく、実施形態4や実施形態5のように、液晶パネルの表示側基板や光源側基板の一方の基板上に蛍光体層を形成した液晶表示装置について、赤色、緑色蛍光体膜及び拡散層の光出射側に各色カラーフィルタを設けてもよい。
 また、本実施形態では、樹脂膜634bの光入射側表面に拡散層632側に向かって突出する突出部634bbを複数備えているとしたが、樹脂膜634bの光入射側表面に拡散層632の反対側に向かって凹陥する凹陥部634baを複数備えていてもよい。
  (液晶表示装置600の動作)
 以上の構成の液晶表示装置600においては、光源ユニット610から出射された青色光が液晶パネル620において、各画素に対応するTFTによって画素毎に透過率の調整がなされる。そして、液晶パネル620から蛍光体層630を通過した光は、蛍光体層630において任意の色の波長の蛍光に変換され、さらに、各色のカラーフィルタ636R,G,Bを通過することにより、全体として所望の画像が表示される。
  (液晶表示装置600の製造方法)
 実施形態6の液晶表示装置600の製造方法は、蛍光体層630の作製の工程において、赤色蛍光体膜631Rの光出射側には赤色カラーフィルタ636Rを、緑色蛍光体膜631Gの光出射側には緑色カラーフィルタ636Gを、拡散層632の光出射側には青色カラーフィルタ636Bを、例えばインクジェット法やフォトリソグラフィ法を用いてそれぞれ設けることを除いて、実施形態2と同じである。
  (実施形態6の効果)
 本実施形態によれば、拡散層632の光入射側表面に設けられた樹脂膜634bは、拡散層632に向かって突出する突出部634bbを複数有するので、拡散層632を通過しようとする青色光は、突出部634bbを通過して出射されることとなる。突出部634bbは、四角錐形状であるので、突出部634bbの側面は光入射面に対して非平行となっている。そのため、突出部634bbの側面を通る青色光は、光入射面と垂直でない方向に屈折しながら突出部634bbから拡散層632に進入することとなり、このとき、青色光が拡散される。従って、拡散層632の光入射側表面に設けられた樹脂膜634が拡散層632に向かって突出する突出部634bbを複数有することにより、青色光を良好に拡散させることができる。そして、青色光を十分に拡散させることにより、視認角によらないで、優れた表示品位で画像表示を行うことができる。
 また、本実施形態の液晶表示装置によれば、赤色画素及び緑色画素においては、赤色カラーフィルタ636Rや緑色カラーフィルタ636Gが設けられることにより、光出射側から各蛍光体層631R,Gに進入する外光のうち、青色波長のものを遮断することができる。そのため、外光による不要な蛍光体の発光を抑制することができ、赤色及び緑色の輝度を高めることにより優れた表示品位を得ることができる。また、青色画素においては、青色カラーフィルタ636Bが設けられることにより、光出射側から拡散層632に進入する外光のうち赤色、緑色の波長を遮断することができる。そのため、外光が拡散層632で拡散されたり、反射膜635で反射されたりするのが抑制され、青色の輝度を高めることにより優れた表示品位を得ることができる。
 (その他の実施形態)
 上記実施形態1~6では、拡散層の光入射側表面や光出射側表面に拡散シートを配置しないとして説明したが、拡散シートを用いて青色光を拡散する構成の液晶表示装置であっても、本発明のように、拡散層の光入射側表面の樹脂層に凹陥部や突出部を設けることにより、青色光の拡散効果を高めることができる。
 上記実施形態1~6では、液晶表示装置の表示領域に青色画素、赤色画素、及び緑色画素が所定のレイアウトで配列されているとしたが、特にこれに限られず、例えば、表示領域に青色画素、赤色画素、緑色画素及び黄色画素が所定のレイアウトで配列されていてもよい。
 本発明は、バックライトである光源ユニットから出射された青色光を蛍光体層において各色に変換することによりカラー表示を行う表示装置について有用であり、特に、青色発光画素において良好に光を拡散させることにより、視認角度に依存しない優れた表示品位で表示を行う表示装置について有用である。
100,200,300,400,500,600   液晶表示装置
110,210,310,410,510,610   光源ユニット
111,211,311,411,511,611   導光板
112,212,312,412,512,612   LED光源(光源)
121,221,321,421,521,621   光源側基板
122,222,322,422,522,622   表示側基板
130,230,330,430,530,630   蛍光体層
131G,231G,331G,431G,531G,631G   緑色蛍光体膜
131R,231R,331R,431R,531R,631R   赤色蛍光体膜
132,232,332,432,532,632   拡散層
132a,232a,332a,432a,532a,632a   フィラー
133,233,333,433,533,633   樹脂層
134,234,334,434,534,634   樹脂層
134ba   凹陥部
234bb,334bb,434bb,534bb,634bb   突出部
636B,G,R   カラーフィルタ

Claims (15)

  1.  表示領域に配列された青色画素を含む多数の画素を有し、
     光出射面から青色の波長域の光を出射する光源ユニットと、
     上記光源ユニットの光出射側に設けられた蛍光体層と、
    を備え、
     上記蛍光体層は、青色以外の画素に対応するように上記光源ユニットから出射された光を吸収して任意の波長の蛍光を発光する蛍光体膜を有すると共に、青色画素に対応するように該光源ユニットから入射された青色光を拡散する拡散層を有し、
     上記拡散層は、少なくとも光入射側表面が樹脂層で被覆され、
     上記拡散層の光入射側表面に対応する樹脂層は、反拡散層側に向かって凹陥すると共に、底部にいくに従って凹陥幅が狭くなる先細り形状の凹陥部、または、拡散層に向かって突出すると共に、先端にいくに従って突出幅が狭くなる先細り形状の突出部を複数有することを特徴とする表示装置。
  2.  請求項1に記載された表示装置において、
     上記凹陥部は、凹陥形状が角錐形状であることを特徴とする表示装置。
  3.  請求項2に記載された表示装置において、
     上記凹陥部の基部は、隣接する凹陥部の基部と連続していることを特徴とする表示装置。
  4.  請求項1に記載された表示装置において、
     上記突出部は、角錐形状に形成されていることを特徴とする表示装置。
  5.  請求項4に記載された表示装置において、
     上記突出部の基端は、隣接する突出部の基端と連続していることを特徴とする表示装置。
  6.  請求項1~5のいずれか1項に記載された表示装置において、
     上記拡散層には、光を拡散する球状のフィラーが混入されていることを特徴とする表示装置。
  7.  請求項6に記載された表示装置において、
     上記フィラーは中空に形成されていることを特徴とする表示装置。
  8.  請求項1~7のいずれか1項に記載された表示装置において、
     上記各画素は赤色画素、緑色画素、及び青色画素で構成され、
     上記蛍光体層は、
      各赤色画素に対応するように配置され、青色波長の光を吸収して赤色波長の蛍光を出射する赤色蛍光体膜と、
      各緑色画素に対応するように配置され、青色波長の光を吸収して緑色波長の蛍光を出射する緑色蛍光体膜と、
    をさらに備えたことを特徴とする表示装置。
  9.  請求項1~8のいずれか1項に記載された表示装置において、
     上記蛍光体層と上記光源ユニットとの間には、上記多数の画素を有し且つ該光源ユニットから出射された光の表示側への透過率の制御を画素毎に行う光シャッターユニットを備えたことを特徴とする表示装置。
  10.  請求項1~8のいずれか1項に記載された表示装置において、
     上記蛍光体層の上記光源ユニットとは反対側には、上記多数の画素を有し且つ該蛍光体層から出射された光の表示側への透過率の制御を画素毎に行う光シャッターユニットを備えたことを特徴とする表示装置。
  11.  請求項9または10に記載された表示装置において、
     上記光シャッターユニットは、2枚の基板が液晶層を挟んで対向配置された構成を有することを特徴とする表示装置。
  12.  請求項1~8のいずれか1項に記載された表示装置において、
     上記光源ユニット側に配された光源側基板と、該光源ユニットとは反対側に該光源側基板と対向するように配された表示側基板と、で構成され、上記多数の画素を有する光シャッターユニットを備え、
     上記蛍光体層は上記表示側基板上に形成され、上記光シャッターユニットで透過率の制御が行われた光を吸収して任意の波長の蛍光を発光することを特徴とする表示装置。
  13.  請求項1~8のいずれか1項に記載された表示装置において、
     上記光源ユニット側に配された光源側基板と、該光源ユニットとは反対側に該光源側基板と対向するように配された表示側基板と、で構成され、上記多数の画素を有する光シャッターユニットを備え、
     上記蛍光体層は上記光源側基板上に形成され、
     上記光シャッターユニットは、上記蛍光体層から出射された光の表示側基板への透過率の制御を行うことを特徴とする表示装置。
  14.  請求項12または13に記載された表示装置において、
     上記光源側基板と上記表示側基板との間には液晶層が設けられていることを特徴とする表示装置。
  15.  請求項1~14のいずれか1項に記載された表示装置において、
     上記蛍光体層の各蛍光体膜の光出射側表面には各画素の各発光色に対応する色のカラーフィルタが設けられ、
     上記拡散層の光出射側表面には青色のカラーフィルタが設けられていることを特徴とする表示装置。
PCT/JP2011/006399 2010-11-24 2011-11-17 表示装置 WO2012070204A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-261295 2010-11-24
JP2010261295 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070204A1 true WO2012070204A1 (ja) 2012-05-31

Family

ID=46145575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006399 WO2012070204A1 (ja) 2010-11-24 2011-11-17 表示装置

Country Status (1)

Country Link
WO (1) WO2012070204A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180052A1 (ja) * 2012-05-28 2013-12-05 シャープ株式会社 色変換基板および液晶表示装置
CN109523909A (zh) * 2018-12-03 2019-03-26 厦门天马微电子有限公司 一种背光源、背光模组及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026540A1 (fr) * 2006-08-29 2008-03-06 Takiron Co., Ltd. Feuille de diffusion de lumière et unité de rétroéclairage
JP2009244383A (ja) * 2008-03-28 2009-10-22 Fujifilm Corp 液晶表示装置
JP2010032719A (ja) * 2008-07-28 2010-02-12 Sekisui Chem Co Ltd 光学シート及びバックライトユニット
WO2010106704A1 (ja) * 2009-03-19 2010-09-23 シャープ株式会社 表示パネルおよび表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026540A1 (fr) * 2006-08-29 2008-03-06 Takiron Co., Ltd. Feuille de diffusion de lumière et unité de rétroéclairage
JP2009244383A (ja) * 2008-03-28 2009-10-22 Fujifilm Corp 液晶表示装置
JP2010032719A (ja) * 2008-07-28 2010-02-12 Sekisui Chem Co Ltd 光学シート及びバックライトユニット
WO2010106704A1 (ja) * 2009-03-19 2010-09-23 シャープ株式会社 表示パネルおよび表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180052A1 (ja) * 2012-05-28 2013-12-05 シャープ株式会社 色変換基板および液晶表示装置
US9285629B2 (en) 2012-05-28 2016-03-15 Sharp Kabushiki Kaisha Color-converting substrate and liquid crystal display device
CN109523909A (zh) * 2018-12-03 2019-03-26 厦门天马微电子有限公司 一种背光源、背光模组及显示装置

Similar Documents

Publication Publication Date Title
TWI498602B (zh) 光學板片及其製造方法
KR100980072B1 (ko) 광학용 복합 필름
TWI463216B (zh) 多功能光學片
KR20030072349A (ko) 방사 디스플레이의 휘도 증대
JP2008262133A (ja) 液晶表示装置
WO2012027928A1 (zh) 背光模块及其光学组件
KR100909427B1 (ko) 광제어 필름
KR20130036205A (ko) 액정 표시 장치
KR20110135097A (ko) 액정표시장치 모듈
JP2009086208A (ja) 光学シート、バックライトユニット及びディスプレイ装置
KR100920645B1 (ko) 프리즘 복합필름
KR101087026B1 (ko) 광학용 복합 필름
WO2012070204A1 (ja) 表示装置
KR20090052081A (ko) 프리즘 시트 및 그 제조 방법과, 이를 갖는 백라이트 유닛및 액정표시장치
KR102101204B1 (ko) 액정표시장치 및 그 제조방법
US20230359085A1 (en) Optical sheet, backlight unit, and liquid crystal display device
KR100980068B1 (ko) 광학용 복합 필름
KR100988764B1 (ko) 광학용 복합 필름
KR20090123527A (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
JP5509532B2 (ja) 光学部材及びバックライトユニット並びにディスプレイ装置
KR100544518B1 (ko) 광손실을 최소화한 프리즘 필름
KR101370167B1 (ko) 백라이트 유닛 어셈블리
CN220709874U (zh) 一种背光模组及显示装置
WO2023210614A1 (ja) 光拡散シート、バックライトユニット、液晶表示装置、及び情報機器
JPH07287127A (ja) 面光源用フイルムレンズ及びそれを用いた面光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP