WO2012067072A1 - Softened thermosetting resin particles - Google Patents

Softened thermosetting resin particles Download PDF

Info

Publication number
WO2012067072A1
WO2012067072A1 PCT/JP2011/076195 JP2011076195W WO2012067072A1 WO 2012067072 A1 WO2012067072 A1 WO 2012067072A1 JP 2011076195 W JP2011076195 W JP 2011076195W WO 2012067072 A1 WO2012067072 A1 WO 2012067072A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
particles
monomer
particle
resin softening
Prior art date
Application number
PCT/JP2011/076195
Other languages
French (fr)
Japanese (ja)
Inventor
林 寿人
将大 飛田
小澤 雅昭
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012544237A priority Critical patent/JP6040773B2/en
Publication of WO2012067072A1 publication Critical patent/WO2012067072A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine

Definitions

  • the present invention relates to novel resin particles obtained by reacting an amino compound such as acetoguanamine and an aldehyde compound such as formaldehyde, and more particularly to resin particles having a medium hardness.
  • spherical melamine-based cured resin particles obtained by reacting amino-based compounds with aldehyde-based compounds utilize properties such as hardness, heat resistance, and solvent resistance, and are used for matting agents, light diffusing agents, and polishing. It is used in applications such as a filler, a coating agent for various films, a filler such as polyolefin, polyvinyl chloride, various rubbers, various paints and toners, as well as a rheology control agent and a colorant.
  • Such spherical melamine-based cured resin particles are known to be produced by various methods.
  • the conventional method disclosed above has the merit that particles having sufficient hardness can be produced, but on the other hand, depending on the application, the hardness may be too high and damages the target object, equipment or device used. There is a problem that there is a risk of giving.
  • particles made of general-purpose thermoplastic resins such as styrene resin particles, acrylic resin particles, and urethane resin particles that have been used in various fields have low hardness, there is a problem that desired performance cannot be achieved depending on applications. is there.
  • the present invention has been made in view of the above circumstances, and includes thermoplastic resin particles (low hardness) made of conventional styrene resin, acrylic resin, etc., and thermosetting resin particles (high hardness) made of melamine resin, etc. It is an object of the present invention to provide particles having a medium hardness between, ie, particles having sufficient hardness and flexibility.
  • the present inventors have adopted a bifunctional monomer compound such as acetoguanamine as an essential amino compound used in conventional spherical melamine-based cured resin particles. did.
  • an aqueous solution of an initial condensate of water-soluble melamine resin is prepared from the monomer compound and the aldehyde compound in an aqueous medium containing colloidal silica, and then cured by adding an acid catalyst.
  • an acid catalyst By conducting the (condensation polymerization) reaction, it was found that particles having an appropriate hardness can be obtained, and that the particles become the above-mentioned target particles, and the present invention has been completed.
  • a monomer compound containing at least one bifunctional monomer and an aldehyde compound are reacted under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm,
  • Thermosetting obtained by a production method comprising a step of forming an aqueous solution of an initial condensate of melamine resin soluble in water and a step of depositing spherical thermosetting resin softening particles by adding an acid catalyst to the aqueous solution It relates to resin softening particles.
  • a monomer compound containing at least one bifunctional monomer and at least one polyfunctional monomer and an aldehyde compound under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm It is obtained by a production method comprising a step of reacting to form an aqueous solution of an initial condensate of melamine resin that is soluble in water, and a step of adding an acid catalyst to the aqueous solution to precipitate spherical thermosetting resin softening particles.
  • the thermosetting resin softening particles are examples of the thermosetting resin softening particles.
  • the invention relates to the thermosetting resin softening particles according to the first aspect or the second aspect, in which 0.5 to 100 parts by mass of colloidal silica is present with respect to 100 parts by mass of the monomer compound.
  • a 4th viewpoint it is related with the thermosetting resin softening particle
  • the bifunctional monomer is selected from the group consisting of guanamine, acetoguanamine, benzoguanamine, urea, thiourea, and ethylene urea, and the thermosetting resin softening particles according to the first aspect or the second aspect.
  • the thermosetting resin softening particles according to the first aspect or the second aspect is about.
  • the polyfunctional monomer relates to a thermosetting resin softening particle according to the second aspect selected from the group consisting of melamine, CTU guanamine and CMTU guanamine.
  • the inner matrix of the particles is a thermosetting resin
  • the colloidal silica is a spherical particle unevenly distributed on the particle surface portion
  • the particle has an average particle diameter of 0.05 to 100 ⁇ m
  • the particle The particles relate to thermosetting resin softening particles having a 10% displacement hardness of 30 to 84 MPa.
  • the present invention relates to the thermosetting resin softening particle according to the seventh aspect, wherein the colloidal silica is present in the vicinity of the particle surface within a depth of 0.3 ⁇ m from the outermost surface of the particle.
  • the thermosetting resin relates to a thermosetting resin softening particle according to the seventh aspect, which is formed from a monomer compound containing at least one bifunctional monomer and an aldehyde compound.
  • the thermosetting resin is formed from a monomer compound containing at least one bifunctional monomer and at least one multifunctional monomer and an aldehyde compound, and the thermosetting resin softening according to the seventh aspect Concerning particles.
  • the bifunctional monomer is selected from the group consisting of guanamine, acetoguanamine, benzoguanamine, urea, thiourea, and ethylene urea, and the thermosetting resin softening particles according to the ninth aspect or the tenth aspect About.
  • the polyfunctional monomer relates to a thermosetting resin softening particle according to the tenth aspect selected from the group consisting of melamine, CTU guanamine and CMTU guanamine.
  • thermosetting resin softening particles of the present invention have a hardness lower than the hardness of conventional spherical melamine-based cured resin particles and higher than the hardness of particles made of a thermoplastic resin such as styrene, that is, a medium hardness.
  • thermosetting resin softening particles of the present invention have a surface roughness of a roller surface resin layer used in an electrophotographic apparatus such as a copying machine or a laser beam printer, for example, in a range of particles requiring a medium hardness. It can be expected to be suitably used as particles added for the purpose of adjusting the thickness, charging characteristics, wear resistance, and the like.
  • FIG. 1 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 2.
  • FIG. 3 is a view showing a scanning electron micrograph of the thermosetting resin particles obtained in Example 3.
  • 4 is a view showing a scanning electron micrograph of the thermosetting resin particles obtained in Example 4.
  • FIG. 5 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 5.
  • 6 is a view showing a scanning electron micrograph of the thermosetting resin particles obtained in Example 6.
  • FIG. 7 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 7.
  • FIG. 8 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 1.
  • FIG. 9 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 2.
  • FIG. 10 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 3.
  • 11 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 5.
  • FIG. 12 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 7.
  • the heat-curing resin softening particles of the present invention are obtained by reacting a monomer compound and an aldehyde compound under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm. And (b) adding an acid catalyst to the aqueous solution to precipitate spherical thermosetting resin softening particles.
  • the monomer compound used in the step (a) contains at least one bifunctional monomer as an essential component, and may contain a polyfunctional monomer in addition to the bifunctional monomer.
  • the bifunctional monomer used herein include 6-substituted guanamines such as guanamine, acetoguanamine, and benzoguanamine, and ureas such as urea, thiourea, and ethylene urea, and are produced industrially. Inexpensive guanamine, acetoguanamine, and benzoguanamine are preferable.
  • Polyfunctional monomers include melamine and CTU guanamine (3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] -2,4,8,10-tetra Oxaspiro [5,5] undecane), CMTU guanamine (3,9-bis [(3,5-diamino-2,4,6- ⁇ riazaphenyl) methyl] -2,4,8,10-tetraoxaspiro [
  • An amine-substituted triazine compound such as 5,5] undecane) can be used, and among them, melamine capable of forming a rigid crosslinking point is most preferable from the viewpoint of improving particle hardness.
  • the monomer compound may be one or two or more types of bifunctional monomers, or one or two or more types of bifunctional monomers and one or more types of multifunctional monomers. May be used in combination.
  • thermosetting resin softening particles of the present invention are, in other words, an initial stage obtained by adding formaldehyde to a bifunctional monomer such as acetoguanamine or benzoguanamine, or a polyfunctional monomer such as these bifunctional monomers and melamine.
  • Resin particles obtained by condensation polymerization and curing of a condensate with an acid catalyst are a methylolated product obtained by adding formaldehyde to a bifunctional monomer such as acetoguanamine or benzoguanamine, and a polyfunctional monomer such as these bifunctional monomers and melamine, and the methylolated product is This refers to those condensed with each other to form a quantifier (oligomer).
  • methylolated product obtained by adding formaldehyde to a bifunctional monomer or polyfunctional monomer is insoluble in an aqueous medium (for example, when CTU guanamine or CMTU guanamine is used)
  • methylol having higher hydrophilicity is used.
  • a hydrophilic initial condensate (quantity) can be obtained by simultaneously adding and co-condensing guanamine, acetoguanamine, and melamine from which chemical forms are obtained. It is more preferable that the initial condensate is hydrophilic, because the particles obtained through the subsequent steps are, as a result, spherical and have a uniform particle size distribution with little variation in particle size.
  • a hydrophilic initial condensate for example, a hydrophobic monomer that becomes insoluble in an aqueous medium when forming a methylolated product, such as CTU guanamine, and acetoguanamine or melamine from which a more hydrophilic methylolated product can be obtained.
  • the mixing ratio with the hydrophilic monomer such as is preferably 40:60 to 99: 1 in terms of the mass ratio of hydrophilic monomer: hydrophobic monomer. From the viewpoint of particle formation, when the amount of hydrophilic monomer is larger than this mixing ratio, the resin obtained by condensation polymerization is dissolved in the aqueous medium, so that the resin is difficult to precipitate and it is difficult to obtain resin particles.
  • the ratio of the hydrophobic monomers is too large, the initial condensate becomes hydrophobic, so that the resin obtained by condensation becomes indeterminate, precipitates as a lump, and resin particles cannot be obtained. More preferably, the weight ratio of hydrophilic monomer: hydrophobic monomer is 50:50 to 90:10.
  • condensation product (target resin) of the above initial condensate is easily soluble in an aqueous medium (for example, when guanamine or acetoguanamine is used)
  • a melamine from which a condensation polymer with lower aqueous medium solubility can be obtained.
  • Benzoguanamine, CTU guanamine, and CMTU guanamine are simultaneously added, and subjected to initial condensation and condensation polymerization, whereby a condensation polymer (target resin) is precipitated in an aqueous medium, and spherical resin particles with little dissolution loss can be obtained.
  • a polycondensation product such as guanamine or acetoguanamine is easily soluble in an aqueous medium.
  • the mixing ratio of the hydrophilic resin monomer and the hydrophobic resin monomer such as melamine or benzoguanamine from which a copolycondensation product with lower aqueous medium solubility is obtained is expressed by a mass ratio of hydrophilic resin monomer: hydrophobic resin monomer 1: It is preferably 99 to 99: 1. More preferably, the weight ratio of hydrophilic resin monomer: hydrophobic resin monomer is 5:95 to 80:20.
  • the polyfunctional monomer when using a bifunctional monomer and a polyfunctional monomer together, from the viewpoint of particle hardness control obtained by the addition of the polyfunctional monomer, the polyfunctional monomer is 30 with respect to the total mass of the monomer compound. If the content is less than mass%, the crosslinking concentration is low and appropriate particle hardness cannot be obtained. If the content exceeds 99 mass%, the flexibility of the particles due to the addition of the bifunctional monomer cannot be obtained. Preference is given to using polyfunctional monomers. When the bifunctional monomer and the polyfunctional monomer are used in combination, it is particularly preferable to use the polyfunctional monomer in the range of 50 to 95% by mass with respect to the total mass of the monomer compound.
  • aldehyde compound used in the step (a) examples include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, furfural and the like, but formaldehyde and paraformaldehyde that are inexpensive and have good reactivity with the above-described monomer compounds are preferable.
  • formaldehyde and paraformaldehyde that are inexpensive and have good reactivity with the above-described monomer compounds are preferable.
  • Water is most preferable as the medium used in the step (a). Also, a mixed solution in which a part of water is replaced with an organic solvent soluble in water can be used. In this case, it is preferable to select an organic solvent capable of dissolving the above-mentioned initial condensate.
  • organic solvents include alcohols such as methanol, ethanol, isopropanol and propanol, ethers such as dioxane, tetrahydrofuran and 1,2-dimethoxyethane, and polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide.
  • Colloidal silica having an average particle diameter of 5 to 70 nm is used.
  • the average particle diameter of colloidal silica is a specific surface area diameter obtained by measurement by a nitrogen adsorption method (BET method).
  • powdered colloidal silica such as precipitated silica powder and vapor phase method silica powder can be used, it is preferable to use a colloidal silica sol stably dispersed to the primary particle level in a medium.
  • colloidal silica sols There are two types of colloidal silica sols: aqueous silica sol and organosilica sol, both of which can be applied.
  • the aqueous silica sol may be used from the viewpoint of dispersion stability of the colloidal silica sol.
  • the silica concentration in the colloidal silica sol is preferably from 5 to 50% by mass because it is generally commercially available and can be easily obtained.
  • thermosetting resin softening particles that precipitate in the subsequent step (b) are difficult to become spherical particles.
  • the average particle size of the thermosetting resin softening particles generally tends to be smaller as the monomer compound (ie, melamine resin) concentration is lower and the average particle size of colloidal silica is smaller.
  • the amount of colloidal silica added is preferably 0.5 to 100 parts by mass, particularly 1 to 50 parts by mass with respect to 100 parts by mass of the monomer compound. If the addition amount is less than 0.5 parts by mass, it becomes difficult to obtain the thermosetting resin softening particles in the step (b). Further, particles can be obtained even when the addition amount exceeds 100 parts by mass. In this case, however, fine, non-spherical aggregated particles are produced as a by-product compared to the thermosetting resin softening particles obtained under optimum conditions, which is not preferable.
  • the reaction between the monomer compound and the aldehyde compound is preferably performed under basic conditions, that is, by adjusting the pH of the reaction solution to 7 to 10.
  • the basic catalyst for example, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be suitably used.
  • the reaction is usually carried out at 50 to 100 ° C.
  • an aqueous solution of an initial condensate soluble in water having a molecular weight of about 200 to 700 is prepared.
  • Examples of the acid catalyst used in the curing reaction in the step (b) include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, alkylbenzenesulfonic acid, sulfamic acid and the like.
  • Examples include sulfonic acids, formic acid, oxalic acid, benzoic acid, and organic acids such as phthalic acid.
  • an acid catalyst is added to the aqueous solution of the initial condensate obtained in the step (a) to perform a curing (condensation polymerization) reaction. Particles are deposited.
  • the curing reaction is preferably performed at 70 to 100 ° C. by adjusting the pH of the reaction solution to 3 to 7 with an acid catalyst.
  • thermosetting resin softening particles of the present invention obtained through the above steps (a) and (b) are particles in which colloidal silica is unevenly distributed in the vicinity of the particle surface, and are obtained by drying a solid content obtained by general filtration or centrifugation. Or by directly spray-drying an aqueous dispersion slurry of resin particles, it can be obtained as powder particles. If the dried powder particles are agglomerated between particles, such as mixers with shearing force such as homomixers, Henschel mixers, and Laedige mixers, pin disc mills, pulverizers, inomizers, counter jet mills, etc. When appropriately treated with a pulverizer, interparticle aggregation can be loosened without destroying the spherical particles.
  • the present invention is also directed to thermosetting resin softening particles in which the internal matrix of the particles is a thermosetting resin and colloidal silica is unevenly distributed on the particle surface portion.
  • the thermosetting resin that is the internal matrix of the particles is preferably formed from the monomer compound and the aldehyde compound described above.
  • the particles are particles having an average particle diameter of 0.05 to 100 ⁇ m, and the average particle diameter ( ⁇ m) is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction / scattering method based on Mie theory. ).
  • the particles have a 10% displacement hardness of 30 to 84 MPa, particularly preferably 10% displacement hardness of 50 to 80 MPa.
  • the 10% displacement hardness is a test force when a displacement amount reaches 10% of the particle diameter when a test force is applied to one particle at a loading speed of 0.223 mN / sec in a compression test.
  • thermosetting resin softening particles in which the colloidal silica is unevenly distributed on the particle surface portion are primary particles that are spherical and independent, have no pores, and the colloidal silica is about 0.3 ⁇ m from the particle outermost surface. It means that it exists near the particle surface within the depth.
  • colloidal silica is embedded in the thermosetting resin near the particle surface or exists on the particle surface, the outermost surface component is usually a thermosetting resin.
  • thermosetting resin softening particle of the present invention is a particle having the flexibility of a two-dimensional structure caused by a bifunctional monomer, and further has such a flexible three-dimensional crosslinked structure caused by a polyfunctional monomer.
  • Thermosetting resin that combines the properties of a thermosetting resin, such as wear resistance and heat resistance, with the characteristics of a thermoplastic resin, such as moderate flexibility that deforms the shape due to excessive load. Softening particles.
  • Example 1 In a 100 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 4.51 g of melamine, 1.53 g of acetoguanamine, 11.58 g of 37% formalin, 20% by mass aqueous silica sol [manufactured by Nissan Chemical Industries, Snow Tex (registered trademark) ST-N (trade name), average particle size 12 nm, pH 9.5] 0.93 g, water 37.1 g, and 25% aqueous ammonia 67.2 ⁇ L were charged.
  • aqueous silica sol manufactured by Nissan Chemical Industries, Snow Tex (registered trademark) ST-N (trade name), average particle size 12 nm, pH 9.5
  • Example 2 In a 30 mL reaction flask equipped with a stirrer, reflux condenser and thermometer, 0.50 g of melamine, 0.52 g of guanamine, 1.93 g of 37% formalin, 20% by mass aqueous silica sol [manufactured by Nissan Chemical Industries, Snowtex (Registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5] 0.17 g, water 6.17 g, and 25% aqueous ammonia 20 ⁇ L were charged.
  • aqueous silica sol manufactured by Nissan Chemical Industries, Snowtex (Registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5
  • Example 3 Into a 200 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 1.00 g of benzoguanamine, 1.00 g of acetoguanamine, 1.00 g of melamine, 5.18 g of 37% formalin, 20 mass% aqueous silica sol [Nissan Chemical ( Snowtex (registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5] 0.46 g, water 38.7 g, and 25% aqueous ammonia 34 ⁇ L were charged. Thereafter, the mixture was heated to 90 ° C. while stirring to prepare an aqueous solution of an initial condensate of melamine resin.
  • Example 4 To a 200 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 1.00 g of benzoguanamine, 1.00 g of acetoguanamine, 2.00 g of melamine, 7.11 g of 37% formalin, 20 mass% aqueous silica sol [Nissan Chemical Industry ( Snowtex (registered trademark) ST-N (trade name), 0.62 g of pH9.5], 52.2 g of water, and 45 ⁇ L of 25% ammonia water were prepared. Thereafter, the mixture was heated to 90 ° C. while stirring to prepare an aqueous solution of an initial condensate of melamine resin.
  • Example 5 To a 100 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 0.30 g of benzoguanamine, 0.30 g of acetoguanamine, 1.81 g of melamine, 4.13 g of 37% formalin, 20% by mass aqueous silica sol [Nissan Chemical Industry ( Snowtex (registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5] 0.38 g, water 39.7 g, and 25% aqueous ammonia 0.024 g were charged. Thereafter, the mixture was heated to 80 ° C.
  • Example 6 In a 200 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 0.50 g of CTU guanamine, 4.50 g of acetoguanamine, 9.04 g of 37% formalin, 20 mass% aqueous silica sol [manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) ST-N (trade name), average particle size 12 nm, pH 9.5] 0.78 g, water 65.6 g, and 25% aqueous ammonia 56 ⁇ L were charged. Thereafter, the mixture was heated to 90 ° C. while stirring to prepare an aqueous solution of an initial condensate of acetoguanamine resin.
  • Example 7 Into a 500 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 5.00 g of benzoguanamine, 6.50 g of 37% formalin, 20% by mass aqueous silica sol [manufactured by Nissan Chemical Industries, Snowtex (registered trademark) ST -N (trade name), average particle diameter 12 nm, pH 9.5] 0.78 g, water 355.1 g, and 25% aqueous ammonia 56 ⁇ L were charged. Thereafter, the mixture was heated to 95 ° C. while stirring to prepare an aqueous dispersion of an initial condensate of benzoguanamine resin.
  • aqueous silica sol manufactured by Nissan Chemical Industries, Snowtex (registered trademark) ST -N (trade name), average particle diameter 12 nm, pH 9.5
  • FIG. 9 shows the inside of the resin particles on the upper right side of the screen
  • FIG. 10 shows the inside of the resin particles on the lower right side of the screen
  • FIG. 11 shows the inside of the resin particles on the upper side of the screen
  • black contrast is seen near the particle surface compared to the inside of the resin particle, and colloidal silica is unevenly distributed on the particle surface. was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

[Problem] To provide particles having a hardness which is intermediate between the low hardness of conventional thermoplastic resin particles comprising a styrene resin, an acrylic resin or the like and the high hardness of conventional thermosetting resin particles comprising a melamine resin or the like, namely, particles which combine sufficient hardness and softness. [Solution] Softened thermosetting resin particles obtained by a manufacturing process which includes: a step of reacting a monomer compound that contains at least one bifunctional monomer with an aldehyde compound under basic conditions in the presence of suspended colloidal silica having a mean particle diameter of 5 to 70nm to form an aqueous solution of a water-soluble melamine resin precondensate; and a step of adding an acid catalyst to the aqueous solution to deposit spherical softened thermosetting resin particles.

Description

熱硬化樹脂軟質化粒子Thermosetting resin softening particles
 本発明は、アセトグアナミン等のアミノ系化合物と、ホルムアルデヒド等のアルデヒド化合物とを反応させて得られる新規な樹脂粒子、詳細には中程度の硬度を有する樹脂粒子に関する。 The present invention relates to novel resin particles obtained by reacting an amino compound such as acetoguanamine and an aldehyde compound such as formaldehyde, and more particularly to resin particles having a medium hardness.
 従来より、アミノ系化合物とアルデヒド系化合物とを反応させて得られる球状メラミン系硬化樹脂粒子は、硬度や耐熱性、耐溶剤性に優れるという特性を利用し、艶消し剤、光拡散剤、研磨剤、各種フィルム用コーティング剤、或いはポリオレフィンやポリ塩化ビニル、各種ゴム、各種塗料、トナー等の充填剤、さらにはレオロジーコントロール剤や着色剤等の用途で用いられている。
 こうした球状メラミン系硬化樹脂粒子は、種々の方法によって製造されることが知られており、例えば、アミノ系化合物とホルムアルデヒドとを反応させて得られる初期縮合物を乳化させて乳濁液とし、次いで硬化触媒を加えて硬化反応させる方法が開示されている(特許文献1乃至特許文献4等)。
Conventionally, spherical melamine-based cured resin particles obtained by reacting amino-based compounds with aldehyde-based compounds utilize properties such as hardness, heat resistance, and solvent resistance, and are used for matting agents, light diffusing agents, and polishing. It is used in applications such as a filler, a coating agent for various films, a filler such as polyolefin, polyvinyl chloride, various rubbers, various paints and toners, as well as a rheology control agent and a colorant.
Such spherical melamine-based cured resin particles are known to be produced by various methods. For example, an initial condensate obtained by reacting an amino compound with formaldehyde is emulsified into an emulsion, A method of adding a curing catalyst to cause a curing reaction is disclosed (Patent Documents 1 to 4, etc.).
特開昭49-57091号公報JP 49-57091 A 特開昭50-45852号公報JP 50-45852 A 特開平4-211450号公報JP-A-4-211450 特開2002-327036号公報JP 2002-327036 A
 上述に開示される従来の方法では、十分な硬度を有する粒子を製造できるというメリットがあるものの、反面、用途によっては硬度が高すぎる場合があり、使用する対象物や機器・装置等にダメージを与える虞があるという問題がある。
 また、従来より種々の分野で利用されているスチレン樹脂粒子やアクリル樹脂粒子、ウレタン樹脂粒子などの汎用熱可塑性樹脂よりなる粒子は硬度が低いため、用途によっては所望の性能を達成できないという問題がある。
The conventional method disclosed above has the merit that particles having sufficient hardness can be produced, but on the other hand, depending on the application, the hardness may be too high and damages the target object, equipment or device used. There is a problem that there is a risk of giving.
In addition, since particles made of general-purpose thermoplastic resins such as styrene resin particles, acrylic resin particles, and urethane resin particles that have been used in various fields have low hardness, there is a problem that desired performance cannot be achieved depending on applications. is there.
 本発明は、上記の事情に鑑みなされたものであって、従来のスチレン樹脂、アクリル樹脂などからなる熱可塑性樹脂粒子(低硬度)と、メラミン樹脂などからなる熱硬化樹脂粒子(高硬度)との間の中程度の硬度を有する粒子、すなわち、十分な硬度と柔軟性を兼ね備える粒子の提供を目的とする。 The present invention has been made in view of the above circumstances, and includes thermoplastic resin particles (low hardness) made of conventional styrene resin, acrylic resin, etc., and thermosetting resin particles (high hardness) made of melamine resin, etc. It is an object of the present invention to provide particles having a medium hardness between, ie, particles having sufficient hardness and flexibility.
 本発明者等は、上記目的を達成するために鋭意検討を重ねた結果、従来の球状メラミン系硬化樹脂粒子において使用するアミノ系化合物として、アセトグアナミン等の二官能性のモノマー化合物を必須として採用した。また該粒子を製造するにあたり、コロイダルシリカが存在する水性媒体中で、上記モノマー化合物とアルデヒド化合物から水に可溶なメラミン系樹脂の初期縮合物の水溶液を調製した後、酸触媒を加えて硬化(縮重合)反応を行うことにより、適度な硬度を有する粒子を得ることができ、該粒子が上記目的の粒子となることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have adopted a bifunctional monomer compound such as acetoguanamine as an essential amino compound used in conventional spherical melamine-based cured resin particles. did. In producing the particles, an aqueous solution of an initial condensate of water-soluble melamine resin is prepared from the monomer compound and the aldehyde compound in an aqueous medium containing colloidal silica, and then cured by adding an acid catalyst. By conducting the (condensation polymerization) reaction, it was found that particles having an appropriate hardness can be obtained, and that the particles become the above-mentioned target particles, and the present invention has been completed.
 すなわち、本発明は第1観点として、5~70nmの平均粒子径を有するコロイダルシリカの懸濁下で少なくとも一種の二官能性モノマーを含むモノマー化合物とアルデヒド化合物を塩基性条件下で反応させ、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる段階と、該水溶液に酸触媒を加えて球状の熱硬化樹脂軟質化粒子を析出させる段階とを含む製造法により得られる、熱硬化樹脂軟質化粒子に関する。
 第2観点として、5~70nmの平均粒子径を有するコロイダルシリカの懸濁下で少なくとも一種の二官能性モノマーと少なくとも一種の多官能性モノマーとを含むモノマー化合物とアルデヒド化合物を塩基性条件下で反応させ、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる段階と、該水溶液に酸触媒を加えて球状の熱硬化樹脂軟質化粒子を析出させる段階とを含む製造法により得られる、熱硬化樹脂軟質化粒子に関する。
 第3観点として、前記モノマー化合物100質量部に対して、コロイダルシリカを0.5~100質量部存在させる、第1観点又は第2観点に記載の熱硬化樹脂軟質化粒子に関する。
 第4観点として、前記コロイダルシリカとして水性シリカゾルを用いる、第1観点又は第2観点に記載の熱硬化樹脂軟質化粒子に関する。
 第5観点として、前記二官能性モノマーは、グアナミン、アセトグアナミン、ベンゾグアナミン、尿素、チオ尿素及びエチレン尿素からなる群から選択される、第1観点又は第2観点に記載の熱硬化樹脂軟質化粒子に関する。
 第6観点として、前記多官能性モノマーは、メラミン、CTUグアナミン及びCMTUグアナミンからなる群から選択される、第2観点に記載の熱硬化樹脂軟質化粒子に関する。
 第7観点として、粒子の内部マトリクスが熱硬化樹脂であり、コロイダルシリカが粒子表面部分に偏在した球状粒子であって、該粒子は0.05~100μmの平均粒子径を有し、且つ、該粒子は30~84MPaの10%変位硬度を有する、熱硬化樹脂軟質化粒子に関する。
 第8観点として、前記コロイダルシリカが粒子最表面から0.3μmの深さ内の粒子表面付近に存在している、第7観点に記載の熱硬化樹脂軟質化粒子に関する。
 第9観点として、前記熱硬化樹脂は、少なくとも一種の二官能性モノマーを含むモノマー化合物とアルデヒド化合物から形成される、第7観点に記載の熱硬化樹脂軟質化粒子に関する。
 第10観点として、前記熱硬化樹脂は、少なくとも一種の二官能性モノマーと少なくとも一種の多官能性モノマーとを含むモノマー化合物とアルデヒド化合物から形成される、第7観点に記載の熱硬化樹脂軟質化粒子に関する。
 第11観点として、前記二官能性モノマーは、グアナミン、アセトグアナミン、ベンゾグアナミン、尿素、チオ尿素及びエチレン尿素からなる群から選択される、第9観点又は第10観点に記載の熱硬化樹脂軟質化粒子に関する。
 第12観点として、前記多官能性モノマーはメラミン、CTUグアナミン及びCMTUグアナミンからなる群から選択される、第10観点に記載の熱硬化樹脂軟質化粒子に関する。
That is, as a first aspect of the present invention, a monomer compound containing at least one bifunctional monomer and an aldehyde compound are reacted under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm, Thermosetting obtained by a production method comprising a step of forming an aqueous solution of an initial condensate of melamine resin soluble in water and a step of depositing spherical thermosetting resin softening particles by adding an acid catalyst to the aqueous solution It relates to resin softening particles.
As a second aspect, a monomer compound containing at least one bifunctional monomer and at least one polyfunctional monomer and an aldehyde compound under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm. It is obtained by a production method comprising a step of reacting to form an aqueous solution of an initial condensate of melamine resin that is soluble in water, and a step of adding an acid catalyst to the aqueous solution to precipitate spherical thermosetting resin softening particles. The thermosetting resin softening particles.
As a third aspect, the invention relates to the thermosetting resin softening particles according to the first aspect or the second aspect, in which 0.5 to 100 parts by mass of colloidal silica is present with respect to 100 parts by mass of the monomer compound.
As a 4th viewpoint, it is related with the thermosetting resin softening particle | grains as described in a 1st viewpoint or a 2nd viewpoint using aqueous silica sol as said colloidal silica.
As a fifth aspect, the bifunctional monomer is selected from the group consisting of guanamine, acetoguanamine, benzoguanamine, urea, thiourea, and ethylene urea, and the thermosetting resin softening particles according to the first aspect or the second aspect. About.
As a sixth aspect, the polyfunctional monomer relates to a thermosetting resin softening particle according to the second aspect selected from the group consisting of melamine, CTU guanamine and CMTU guanamine.
As a seventh aspect, the inner matrix of the particles is a thermosetting resin, the colloidal silica is a spherical particle unevenly distributed on the particle surface portion, the particle has an average particle diameter of 0.05 to 100 μm, and the particle The particles relate to thermosetting resin softening particles having a 10% displacement hardness of 30 to 84 MPa.
As an eighth aspect, the present invention relates to the thermosetting resin softening particle according to the seventh aspect, wherein the colloidal silica is present in the vicinity of the particle surface within a depth of 0.3 μm from the outermost surface of the particle.
As a ninth aspect, the thermosetting resin relates to a thermosetting resin softening particle according to the seventh aspect, which is formed from a monomer compound containing at least one bifunctional monomer and an aldehyde compound.
As a tenth aspect, the thermosetting resin is formed from a monomer compound containing at least one bifunctional monomer and at least one multifunctional monomer and an aldehyde compound, and the thermosetting resin softening according to the seventh aspect Concerning particles.
As an eleventh aspect, the bifunctional monomer is selected from the group consisting of guanamine, acetoguanamine, benzoguanamine, urea, thiourea, and ethylene urea, and the thermosetting resin softening particles according to the ninth aspect or the tenth aspect About.
As a twelfth aspect, the polyfunctional monomer relates to a thermosetting resin softening particle according to the tenth aspect selected from the group consisting of melamine, CTU guanamine and CMTU guanamine.
 本発明の熱硬化樹脂軟質化粒子は、従来の球状メラミン系硬化樹脂粒子の硬度より低く、スチレン等の熱可塑性樹脂よりなる粒子の硬度より高い硬度、すなわち中程度の硬度を有するものである。 The thermosetting resin softening particles of the present invention have a hardness lower than the hardness of conventional spherical melamine-based cured resin particles and higher than the hardness of particles made of a thermoplastic resin such as styrene, that is, a medium hardness.
 このため、本発明の熱硬化樹脂軟質化粒子は中程度の硬度が要求される粒子の用途範囲において、例えば、複写機やレーザービームプリンタなどの電子写真装置に用いられるローラ表面樹脂層の表面粗さや帯電特性、耐摩耗性などを調整する目的で添加される粒子として、好適に使用することが期待できる。 For this reason, the thermosetting resin softening particles of the present invention have a surface roughness of a roller surface resin layer used in an electrophotographic apparatus such as a copying machine or a laser beam printer, for example, in a range of particles requiring a medium hardness. It can be expected to be suitably used as particles added for the purpose of adjusting the thickness, charging characteristics, wear resistance, and the like.
図1は実施例1で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。1 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 1. FIG. 図2は実施例2で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。2 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 2. FIG. 図3は実施例3で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。FIG. 3 is a view showing a scanning electron micrograph of the thermosetting resin particles obtained in Example 3. 図4は実施例4で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。4 is a view showing a scanning electron micrograph of the thermosetting resin particles obtained in Example 4. FIG. 図5は実施例5で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。FIG. 5 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 5. 図6は実施例6で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。6 is a view showing a scanning electron micrograph of the thermosetting resin particles obtained in Example 6. FIG. 図7は実施例7で得られた熱硬化樹脂粒子の走査型電子顕微鏡写真を示す図である。FIG. 7 is a scanning electron micrograph of the thermosetting resin particles obtained in Example 7. 図8は実施例1で得られた熱硬化樹脂粒子断面の粒子表面近傍の透過型電子顕微鏡写真を示す図である。FIG. 8 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 1. 図9は実施例2で得られた熱硬化樹脂粒子断面の粒子表面近傍の透過型電子顕微鏡写真を示す図である。FIG. 9 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 2. 図10は実施例3で得られた熱硬化樹脂粒子断面の粒子表面近傍の透過型電子顕微鏡写真を示す図である。FIG. 10 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 3. 図11は実施例5で得られた熱硬化樹脂粒子断面の粒子表面近傍の透過型電子顕微鏡写真を示す図である。11 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 5. FIG. 図12は実施例7で得られた熱硬化樹脂粒子断面の粒子表面近傍の透過型電子顕微鏡写真を示す図である。12 is a transmission electron micrograph of the vicinity of the particle surface of the thermosetting resin particle cross section obtained in Example 7. FIG.
 以下に、本発明の実施形態を詳しく説明する。
 本発明の熱硬化樹脂軟質化粒子は、(a)5~70nmの平均粒子径を有するコロイダルシリカの懸濁下でモノマー化合物とアルデヒド化合物を塩基性条件下で反応させ、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる段階と、(b)該水溶液に酸触媒を加えて球状の熱硬化樹脂軟質化粒子を析出させる段階とにより得られる。
Hereinafter, embodiments of the present invention will be described in detail.
The heat-curing resin softening particles of the present invention are obtained by reacting a monomer compound and an aldehyde compound under basic conditions in a suspension of colloidal silica having an average particle diameter of 5 to 70 nm. And (b) adding an acid catalyst to the aqueous solution to precipitate spherical thermosetting resin softening particles.
 上記(a)段階において使用されるモノマー化合物は、少なくとも一種の二官能性モノマーを必須として含むものであり、該二官能性モノマーに加えて、多官能性モノマーを含んでいてもよい。
 ここで用いられる二官能性モノマーとしては、グアナミン、アセトグアナミン、ベンゾグアナミン等の6-置換グアナミン類、及び、尿素、チオ尿素、エチレン尿素等の尿素類を挙げることができ、工業的に生産されており安価なグアナミン、アセトグアナミン、ベンゾグアナミンが好ましい。
 また多官能性モノマーとしては、メラミンやCTUグアナミン(3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)、CMTUグアナミン(3,9-ビス[(3,5-ジアミノ-2,4,6-卜リアザフェニル)メチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)などのアミン置換トリアジン化合物が使用でき、中でも、粒子硬度を向上させる観点で剛直な架橋点を形成することのできるメラミンが最も好ましい。
 本発明において、モノマー化合物は、一種又は二種以上の二官能性モノマーを用いてもよいし、或いは、一種又は二種以上の二官能性モノマーと、一種又は二種以上の多官能性モノマーとを混合して用いてもよい。
The monomer compound used in the step (a) contains at least one bifunctional monomer as an essential component, and may contain a polyfunctional monomer in addition to the bifunctional monomer.
Examples of the bifunctional monomer used herein include 6-substituted guanamines such as guanamine, acetoguanamine, and benzoguanamine, and ureas such as urea, thiourea, and ethylene urea, and are produced industrially. Inexpensive guanamine, acetoguanamine, and benzoguanamine are preferable.
Polyfunctional monomers include melamine and CTU guanamine (3,9-bis [2- (3,5-diamino-2,4,6-triazaphenyl) ethyl] -2,4,8,10-tetra Oxaspiro [5,5] undecane), CMTU guanamine (3,9-bis [(3,5-diamino-2,4,6- 卜 riazaphenyl) methyl] -2,4,8,10-tetraoxaspiro [ An amine-substituted triazine compound such as 5,5] undecane) can be used, and among them, melamine capable of forming a rigid crosslinking point is most preferable from the viewpoint of improving particle hardness.
In the present invention, the monomer compound may be one or two or more types of bifunctional monomers, or one or two or more types of bifunctional monomers and one or more types of multifunctional monomers. May be used in combination.
 さて、本発明の熱硬化樹脂軟質化粒子は、言い換えると、アセトグアナミン、ベンゾグアナミンなどの二官能性モノマー、又はこれら二官能性モノマーとメラミンなどの多官能性モノマーにホルムアルデヒドを付加させて得られる初期縮合物を酸触媒により縮重合、硬化させた樹脂粒子である。
 上記初期縮合物とは、アセトグアナミン、ベンゾグアナミンなどの二官能性モノマーと、これら二官能性モノマーとメラミンなどの多官能性モノマーとをホルムアルデヒド付加させて得られるメチロール化体、及び前記メチロール化体が互いに縮合し、数量体(オリゴマー)を形成したものをさす。
The thermosetting resin softening particles of the present invention are, in other words, an initial stage obtained by adding formaldehyde to a bifunctional monomer such as acetoguanamine or benzoguanamine, or a polyfunctional monomer such as these bifunctional monomers and melamine. Resin particles obtained by condensation polymerization and curing of a condensate with an acid catalyst.
The initial condensate is a methylolated product obtained by adding formaldehyde to a bifunctional monomer such as acetoguanamine or benzoguanamine, and a polyfunctional monomer such as these bifunctional monomers and melamine, and the methylolated product is This refers to those condensed with each other to form a quantifier (oligomer).
 ここで、二官能性モノマーや多官能性モノマーにホルムアルデヒド付加させて得られるメチロール化体が水性媒体中で不溶性である場合(例えばCTUグアナミンやCMTUグアナミンを用いた場合)、より親水性の高いメチロール化体の得られるグアナミン、アセトグアナミンやメラミンを同時添加し、共縮合させることによって親水性の初期縮合体(数量体)を得ることができる。初期縮合体が親水性であると、その後の段階を経て得られた粒子が、結果として真球状で且つ粒子径のばらつきが少なく、均一な粒径分布を有するものとなるため、より好ましい。
 したがって親水性の初期縮合物を得るべく、例えば、CTUグアナミンのようにメチロール化体形成時に水性媒体中で不溶性となる疎水性モノマーと、より親水性の高いメチロール化体の得られるアセトグアナミンやメラミンなどの親水性モノマーとの混合比を、親水性モノマー:疎水性モノマーの質量比で40:60~99:1とする事が好ましい。粒子形成の観点から、この混合比より親水性モノマーが多くなると、縮重合により得られる樹脂が水性媒体に対して溶解してしまうため樹脂が析出しにくく、樹脂粒子が得られ難い。また、疎水性モノマーの比が多すぎると、初期縮合物が疎水性となることによって縮合により得られる樹脂が不定形となり、塊状物となって析出してしまい樹脂粒子が得られない。より好ましくは、親水性モノマー:疎水性モノマーの質量比で50:50~90:10で使用することが望ましい。
Here, when the methylolated product obtained by adding formaldehyde to a bifunctional monomer or polyfunctional monomer is insoluble in an aqueous medium (for example, when CTU guanamine or CMTU guanamine is used), methylol having higher hydrophilicity is used. A hydrophilic initial condensate (quantity) can be obtained by simultaneously adding and co-condensing guanamine, acetoguanamine, and melamine from which chemical forms are obtained. It is more preferable that the initial condensate is hydrophilic, because the particles obtained through the subsequent steps are, as a result, spherical and have a uniform particle size distribution with little variation in particle size.
Accordingly, in order to obtain a hydrophilic initial condensate, for example, a hydrophobic monomer that becomes insoluble in an aqueous medium when forming a methylolated product, such as CTU guanamine, and acetoguanamine or melamine from which a more hydrophilic methylolated product can be obtained. The mixing ratio with the hydrophilic monomer such as is preferably 40:60 to 99: 1 in terms of the mass ratio of hydrophilic monomer: hydrophobic monomer. From the viewpoint of particle formation, when the amount of hydrophilic monomer is larger than this mixing ratio, the resin obtained by condensation polymerization is dissolved in the aqueous medium, so that the resin is difficult to precipitate and it is difficult to obtain resin particles. On the other hand, if the ratio of the hydrophobic monomers is too large, the initial condensate becomes hydrophobic, so that the resin obtained by condensation becomes indeterminate, precipitates as a lump, and resin particles cannot be obtained. More preferably, the weight ratio of hydrophilic monomer: hydrophobic monomer is 50:50 to 90:10.
 また、上記初期縮合物の縮重合物(目的樹脂)が水性媒体中で易溶性である場合(例えばグアナミンやアセトグアナミンを用いた場合)、より水性媒体溶解性の低い縮重合物の得られるメラミン、ベンゾグアナミン、CTUグアナミンやCMTUグアナミンを同時添加し、初期縮合、縮重合させることによって水性媒体中に縮重合物(目的樹脂)を析出させ、溶解損失少なく真球状の樹脂粒子を得ることができる。粒子径のばらつきが少なく、均一な粒径分布を有する樹脂粒子を低損失で得るという観点で、例えば、グアナミンやアセトグアナミンのように縮重合物(目的樹脂)が水性媒体中で易溶性となる親水性樹脂モノマーと、より水性媒体溶解性の低い共縮重合物の得られるメラミンやベンゾグアナミンなどの疎水性樹脂モノマーとの混合比を、親水性樹脂モノマー:疎水性樹脂モノマーの質量比で1:99~99:1とする事が好ましい。より好ましくは、親水性樹脂モノマー:疎水性樹脂モノマーの質量比で5:95~80:20で使用することが望ましい。 In addition, when the condensation product (target resin) of the above initial condensate is easily soluble in an aqueous medium (for example, when guanamine or acetoguanamine is used), a melamine from which a condensation polymer with lower aqueous medium solubility can be obtained. , Benzoguanamine, CTU guanamine, and CMTU guanamine are simultaneously added, and subjected to initial condensation and condensation polymerization, whereby a condensation polymer (target resin) is precipitated in an aqueous medium, and spherical resin particles with little dissolution loss can be obtained. From the viewpoint of obtaining resin particles having a small particle size variation and a uniform particle size distribution with low loss, for example, a polycondensation product (target resin) such as guanamine or acetoguanamine is easily soluble in an aqueous medium. The mixing ratio of the hydrophilic resin monomer and the hydrophobic resin monomer such as melamine or benzoguanamine from which a copolycondensation product with lower aqueous medium solubility is obtained is expressed by a mass ratio of hydrophilic resin monomer: hydrophobic resin monomer 1: It is preferably 99 to 99: 1. More preferably, the weight ratio of hydrophilic resin monomer: hydrophobic resin monomer is 5:95 to 80:20.
 なお、二官能性モノマーと、多官能性モノマーを併用する場合、多官能性モノマーの添加により獲得される粒子硬度制御の観点からすると、モノマー化合物の全質量に対して、多官能性モノマーが30質量%未満では架橋濃度が低く適度な粒子硬度が得られず、また、99質量%を超えると二官能性モノマー添加に起因する粒子の柔軟性が得られないことから、これらの数値範囲内で多官能性モノマーを使用することが好ましい。二官能性モノマーと多官能性モノマーを併用する場合には、特に、モノマー化合物の全質量に対して、50~95質量%の範囲で多官能性モノマーを使用することが好ましい。 In addition, when using a bifunctional monomer and a polyfunctional monomer together, from the viewpoint of particle hardness control obtained by the addition of the polyfunctional monomer, the polyfunctional monomer is 30 with respect to the total mass of the monomer compound. If the content is less than mass%, the crosslinking concentration is low and appropriate particle hardness cannot be obtained. If the content exceeds 99 mass%, the flexibility of the particles due to the addition of the bifunctional monomer cannot be obtained. Preference is given to using polyfunctional monomers. When the bifunctional monomer and the polyfunctional monomer are used in combination, it is particularly preferable to use the polyfunctional monomer in the range of 50 to 95% by mass with respect to the total mass of the monomer compound.
 上記(a)段階において使用されるアルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、フルフラールなどが挙げられるが、安価で先に挙げたモノマー化合物との反応性が良いホルムアルデヒドやパラホルムアルデヒドが好ましい。アルデヒド化合物はモノマー化合物1モルに対して有効アルデヒド基当たり1.1~6.0モル、特に1.2~4.0モルとなるアルデヒド化合物を使用することが好ましい。 Examples of the aldehyde compound used in the step (a) include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, furfural and the like, but formaldehyde and paraformaldehyde that are inexpensive and have good reactivity with the above-described monomer compounds are preferable. . As the aldehyde compound, it is preferable to use an aldehyde compound having an amount of 1.1 to 6.0 mol, particularly 1.2 to 4.0 mol, per effective aldehyde group with respect to 1 mol of the monomer compound.
 上記(a)段階で使用する媒体としては水が最も好ましい。また水の一部を、水に可溶する有機溶媒に置き換えた混合溶液も使用でき、この場合、前述の初期縮合物を溶解することが可能な有機溶媒を選択すると良い。好ましい有機溶媒としては、メタノール、エタノール、イソプロパノール、プロパノールなどのアルコール類、ジオキサン、テトラヒドロフラン、1,2-ジメトキシエタンなどのエーテル類、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶媒が挙げられる。 Water is most preferable as the medium used in the step (a). Also, a mixed solution in which a part of water is replaced with an organic solvent soluble in water can be used. In this case, it is preferable to select an organic solvent capable of dissolving the above-mentioned initial condensate. Preferred organic solvents include alcohols such as methanol, ethanol, isopropanol and propanol, ethers such as dioxane, tetrahydrofuran and 1,2-dimethoxyethane, and polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide.
 コロイダルシリカは、5~70nmの平均粒子径を有するものが使用される。 Colloidal silica having an average particle diameter of 5 to 70 nm is used.
 ここでコロイダルシリカの平均粒子径は、窒素吸着法(BET法)により測定して得られる比表面積径である。平均粒子径(比表面積径)(Dnm)は、窒素吸着法で測定される比表面積Sm2/gから、D=2720/Sの式によって与えられる。沈降性シリカパウダー、気相法シリカパウダーなどのパウダー状のコロイダルシリカを使用することもできるが、好ましくは媒体中で一次粒子レベルまで安定分散させたコロイダルシリカのゾルを使用すると良い。コロイダルシリカのゾルとしては水性シリカゾルとオルガノシリカゾルがありどちらも適用可能であるが、メラミン樹脂の製造に水性媒体を用いる場合、コロイダルシリカのゾルの分散安定性の面から水性シリカゾルを使用することが最も好ましい。コロイダルシリカのゾル中のシリカ濃度は5~50質量%のものが一般に市販されており、容易に入手できるので好ましい。 Here, the average particle diameter of colloidal silica is a specific surface area diameter obtained by measurement by a nitrogen adsorption method (BET method). The average particle diameter (specific surface area diameter) (Dnm) is given by the formula D = 2720 / S from the specific surface area Sm 2 / g measured by the nitrogen adsorption method. Although powdered colloidal silica such as precipitated silica powder and vapor phase method silica powder can be used, it is preferable to use a colloidal silica sol stably dispersed to the primary particle level in a medium. There are two types of colloidal silica sols: aqueous silica sol and organosilica sol, both of which can be applied. However, when an aqueous medium is used for the production of melamine resin, the aqueous silica sol may be used from the viewpoint of dispersion stability of the colloidal silica sol. Most preferred. The silica concentration in the colloidal silica sol is preferably from 5 to 50% by mass because it is generally commercially available and can be easily obtained.
 コロイダルシリカの平均粒子径が70nmを超える場合は、後の(b)段階で析出する熱硬化樹脂軟質化粒子は球状粒子になり難くなる。熱硬化樹脂軟質化粒子の平均粒子径は、一般的に前記モノマー化合物(すなわちメラミン系樹脂)濃度が低いほど、またコロイダルシリカの平均粒子径が小さいほど小さくなる傾向にある。 When the average particle diameter of colloidal silica exceeds 70 nm, the thermosetting resin softening particles that precipitate in the subsequent step (b) are difficult to become spherical particles. The average particle size of the thermosetting resin softening particles generally tends to be smaller as the monomer compound (ie, melamine resin) concentration is lower and the average particle size of colloidal silica is smaller.
 コロイダルシリカの添加量は、前記モノマー化合物100質量部に対して0.5~100質量部、特に1~50質量部存在させることが好ましい。添加量が0.5質量部未満では(b)段階において熱硬化樹脂軟質化粒子を得ることが困難になる。また添加量が100質量部を超えても粒子は得られるが、この場合、最適な条件で得られる熱硬化樹脂軟質化粒子に比べ微小な、球状でない凝集粒子が副生するので好ましくない。 The amount of colloidal silica added is preferably 0.5 to 100 parts by mass, particularly 1 to 50 parts by mass with respect to 100 parts by mass of the monomer compound. If the addition amount is less than 0.5 parts by mass, it becomes difficult to obtain the thermosetting resin softening particles in the step (b). Further, particles can be obtained even when the addition amount exceeds 100 parts by mass. In this case, however, fine, non-spherical aggregated particles are produced as a by-product compared to the thermosetting resin softening particles obtained under optimum conditions, which is not preferable.
 上記(a)段階において、前記モノマー化合物と前記アルデヒド化合物の反応は塩基性条件下で、すなわち、反応液のpHを7~10に調整して反応を行うことが好ましい。塩基性触媒としては、例えば水酸化ナトリウム、水酸化カリウム、アンモニア水などが好適に使用できる。反応は、通常50~100℃で行えばよく、その結果分子量200~700程度の水に可溶な初期縮合物の水溶液が調製される。 In the step (a), the reaction between the monomer compound and the aldehyde compound is preferably performed under basic conditions, that is, by adjusting the pH of the reaction solution to 7 to 10. As the basic catalyst, for example, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be suitably used. The reaction is usually carried out at 50 to 100 ° C. As a result, an aqueous solution of an initial condensate soluble in water having a molecular weight of about 200 to 700 is prepared.
 上記(b)段階の硬化反応で使用する酸触媒としては、塩酸、硫酸、硝酸、リン酸などの鉱酸類、メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、アルキルベンゼンスルホン酸、スルファミン酸などのスルホン酸類、ギ酸、シュウ酸、安息香酸、フタル酸などの有機酸類などが挙げられる。 Examples of the acid catalyst used in the curing reaction in the step (b) include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, alkylbenzenesulfonic acid, sulfamic acid and the like. Examples include sulfonic acids, formic acid, oxalic acid, benzoic acid, and organic acids such as phthalic acid.
 (b)段階において、前記(a)段階で得られた初期縮合物の水溶液に酸触媒を加えて硬化(縮重合)反応を行うが、通常は酸触媒添加後、数分で熱硬化樹脂軟質化粒子が析出する。硬化反応は、反応液のpHを酸触媒により3~7に調整して、70~100℃で行うことが好ましい。 In the step (b), an acid catalyst is added to the aqueous solution of the initial condensate obtained in the step (a) to perform a curing (condensation polymerization) reaction. Particles are deposited. The curing reaction is preferably performed at 70 to 100 ° C. by adjusting the pH of the reaction solution to 3 to 7 with an acid catalyst.
 以上の(a)及び(b)段階を経て得られる本発明の熱硬化樹脂軟質化粒子は、コロイダルシリカが粒子表面付近に偏在した粒子となり、一般的な濾過又は遠心分離した固形分を乾燥したり、又は樹脂粒子の水分散スラリーを直接噴霧乾燥することにより、粉末状の粒子として得ることができる。乾燥された粉末状の粒子が粒子間凝集している場合は、ホモミキサー、ヘンシェルミキサー、レーディゲミキサーなどの剪断力を有する混合機や、ピンディスクミル、パルベライザー、イノマイザー、カウンタージェットミルなどの粉砕機で適切に処理すれば、球状粒子を破壊することなく粒子間凝集をほぐすことができる。 The thermosetting resin softening particles of the present invention obtained through the above steps (a) and (b) are particles in which colloidal silica is unevenly distributed in the vicinity of the particle surface, and are obtained by drying a solid content obtained by general filtration or centrifugation. Or by directly spray-drying an aqueous dispersion slurry of resin particles, it can be obtained as powder particles. If the dried powder particles are agglomerated between particles, such as mixers with shearing force such as homomixers, Henschel mixers, and Laedige mixers, pin disc mills, pulverizers, inomizers, counter jet mills, etc. When appropriately treated with a pulverizer, interparticle aggregation can be loosened without destroying the spherical particles.
 そして、本発明は、粒子の内部マトリクスは熱硬化樹脂であり、コロイダルシリカが粒子表面部分に偏在した熱硬化樹脂軟質化粒子も対象とする。
 前記粒子の内部マトリクスである熱硬化樹脂は、前述のモノマー化合物とアルデヒド化合物より形成されることが好ましい。
 前記粒子は平均粒子径が0.05~100μmの粒子であり、ここで平均粒子径(μm)とは、Mie理論に基づくレーザー回折・散乱法により測定して得られる50%体積径(メジアン径)である。
 また前記粒子は、30~84MPaの10%変位硬度を有し、特に50~80MPaの10%変位硬度を有するものが好ましい。ここで10%変位硬度とは、圧縮試験において、1粒子に負荷速度0.223mN/秒で試験力をかけた際に、変位量が粒子径の10%に達した時点の試験力である。
The present invention is also directed to thermosetting resin softening particles in which the internal matrix of the particles is a thermosetting resin and colloidal silica is unevenly distributed on the particle surface portion.
The thermosetting resin that is the internal matrix of the particles is preferably formed from the monomer compound and the aldehyde compound described above.
The particles are particles having an average particle diameter of 0.05 to 100 μm, and the average particle diameter (μm) is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction / scattering method based on Mie theory. ).
The particles have a 10% displacement hardness of 30 to 84 MPa, particularly preferably 10% displacement hardness of 50 to 80 MPa. Here, the 10% displacement hardness is a test force when a displacement amount reaches 10% of the particle diameter when a test force is applied to one particle at a loading speed of 0.223 mN / sec in a compression test.
 上記コロイダルシリカが粒子表面部分に偏在した熱硬化樹脂軟質化粒子とは、一次粒子が球状で独立しており、空孔は有しておらず、コロイダルシリカが粒子最表面から約0.3μmの深さ内の粒子表面付近に存在していることを意味している。コロイダルシリカは粒子表面付近の熱硬化樹脂内に埋め込まれていたり、粒子表面上に固着した状態で存在するが、通常最表面成分は熱硬化樹脂となっている。 The above-mentioned thermosetting resin softening particles in which the colloidal silica is unevenly distributed on the particle surface portion are primary particles that are spherical and independent, have no pores, and the colloidal silica is about 0.3 μm from the particle outermost surface. It means that it exists near the particle surface within the depth. Although colloidal silica is embedded in the thermosetting resin near the particle surface or exists on the particle surface, the outermost surface component is usually a thermosetting resin.
 本発明の熱硬化樹脂軟質化粒子は、二官能性モノマーに起因する二次元構造の持つ柔軟性を備える粒子であり、さらにこうした柔軟性と多官能性モノマーに起因する強固な三次元架橋構造を兼ね備えた粒子であり、耐摩耗性、耐熱性等、熱硬化性樹脂としての特性と、過度な負荷によって形状を変形させる適度な柔軟性等のいわば熱可塑性樹脂のような特性を併せ持つ熱硬化樹脂軟質化粒子である。 The thermosetting resin softening particle of the present invention is a particle having the flexibility of a two-dimensional structure caused by a bifunctional monomer, and further has such a flexible three-dimensional crosslinked structure caused by a polyfunctional monomer. Thermosetting resin that combines the properties of a thermosetting resin, such as wear resistance and heat resistance, with the characteristics of a thermoplastic resin, such as moderate flexibility that deforms the shape due to excessive load. Softening particles.
 以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples.
〔実施例1〕
 撹拌機、還流コンデンサー及び温度計を装備した100mLの反応フラスコに、メラミン4.51g、アセトグアナミン1.53g、37%ホルマリン11.58g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.93g、水37.1g、及び25%アンモニア水67.2μLを仕込んだ。その後、上記混合物を撹拌しながら昇温し、温度を70℃に保ち、30分反応させてメラミン樹脂の初期縮合物の水溶液を調製した。次に温度を70℃に維持したまま、得られた初期縮合物の水溶液に5質量%パラトルエンスルホン酸水溶液3.59gを添加した。約5分後に反応系内が白濁して共縮重合アミノ樹脂粒子が析出した。その後、温度を90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
[Example 1]
In a 100 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 4.51 g of melamine, 1.53 g of acetoguanamine, 11.58 g of 37% formalin, 20% by mass aqueous silica sol [manufactured by Nissan Chemical Industries, Snow Tex (registered trademark) ST-N (trade name), average particle size 12 nm, pH 9.5] 0.93 g, water 37.1 g, and 25% aqueous ammonia 67.2 μL were charged. Thereafter, the temperature of the mixture was increased while stirring, the temperature was kept at 70 ° C., and the mixture was reacted for 30 minutes to prepare an aqueous solution of an initial condensate of melamine resin. Next, while maintaining the temperature at 70 ° C., 3.59 g of 5 mass% para-toluenesulfonic acid aqueous solution was added to the obtained aqueous solution of the initial condensate. After about 5 minutes, the reaction system became cloudy and copolycondensation amino resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔実施例2〕
 撹拌機、還流コンデンサー及び温度計を装備した30mLの反応フラスコに、メラミン0.50g、グアナミン0.52g、37%ホルマリン1.93g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.17g、水6.17g、及び25%アンモニア水20μLを仕込んだ。その後、上記混合物を撹拌しながら昇温し、温度を70℃に保ち、30分反応させてメラミン樹脂の初期縮合物の水溶液を調製した。次に温度を70℃に維持したまま、得られた初期縮合物の水溶液に5質量%パラトルエンスルホン酸水溶液0.58gを添加した。約2分後に反応系内が白濁して共縮重合アミノ樹脂粒子が析出した。その後、温度を90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
[Example 2]
In a 30 mL reaction flask equipped with a stirrer, reflux condenser and thermometer, 0.50 g of melamine, 0.52 g of guanamine, 1.93 g of 37% formalin, 20% by mass aqueous silica sol [manufactured by Nissan Chemical Industries, Snowtex (Registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5] 0.17 g, water 6.17 g, and 25% aqueous ammonia 20 μL were charged. Thereafter, the temperature of the mixture was increased while stirring, the temperature was kept at 70 ° C., and the mixture was reacted for 30 minutes to prepare an aqueous solution of an initial condensate of melamine resin. Next, while maintaining the temperature at 70 ° C., 0.58 g of a 5 mass% paratoluenesulfonic acid aqueous solution was added to the obtained aqueous solution of the initial condensate. After about 2 minutes, the reaction system became cloudy and copolycondensation amino resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔実施例3〕
 撹拌機、還流コンデンサー及び温度計を装備した200mLの反応フラスコに、ベンゾグアナミン1.00g、アセトグアナミン1.00g、メラミン1.00g、37%ホルマリン5.18g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.46g、水38.7g、及び25%アンモニア水34μLを仕込んだ。その後、上記混合物を撹拌しながら90℃へ昇温し、メラミン樹脂の初期縮合物の水溶液を調製した。次に温度を90℃に維持したまま、得られた初期縮合物の水溶液に5質量%パラトルエンスルホン酸水溶液2.34gを添加した。約40秒後に反応系内が白濁して共縮重合アミノ樹脂粒子が析出した。その後、温度90℃のまま3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
Example 3
Into a 200 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 1.00 g of benzoguanamine, 1.00 g of acetoguanamine, 1.00 g of melamine, 5.18 g of 37% formalin, 20 mass% aqueous silica sol [Nissan Chemical ( Snowtex (registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5] 0.46 g, water 38.7 g, and 25% aqueous ammonia 34 μL were charged. Thereafter, the mixture was heated to 90 ° C. while stirring to prepare an aqueous solution of an initial condensate of melamine resin. Next, while maintaining the temperature at 90 ° C., 2.34 g of a 5 mass% paratoluenesulfonic acid aqueous solution was added to the obtained aqueous solution of the initial condensate. After about 40 seconds, the reaction system was clouded and copolycondensation amino resin particles were precipitated. Thereafter, the curing reaction was continued for 3 hours while maintaining the temperature at 90 ° C. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔実施例4〕
 撹拌機、還流コンデンサー及び温度計を装備した200mLの反応フラスコに、ベンゾグアナミン1.00g、アセトグアナミン1.00g、メラミン2.00g、37%ホルマリン7.11g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.62g、水52.2g、及び25%アンモニア水45μLを仕込んだ。その後、上記混合物を撹拌しながら90℃へ昇温し、メラミン樹脂の初期縮合物の水溶液を調製した。次に温度を90℃に維持したまま、得られた初期縮合物の水溶液に5質量%パラトルエンスルホン酸水溶液2.34gを添加した。約30秒後に反応系内が白濁して共縮重合アミノ樹脂粒子が析出した。その後、温度90℃のまま3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
Example 4
To a 200 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 1.00 g of benzoguanamine, 1.00 g of acetoguanamine, 2.00 g of melamine, 7.11 g of 37% formalin, 20 mass% aqueous silica sol [Nissan Chemical Industry ( Snowtex (registered trademark) ST-N (trade name), 0.62 g of pH9.5], 52.2 g of water, and 45 μL of 25% ammonia water were prepared. Thereafter, the mixture was heated to 90 ° C. while stirring to prepare an aqueous solution of an initial condensate of melamine resin. Next, while maintaining the temperature at 90 ° C., 2.34 g of a 5 mass% paratoluenesulfonic acid aqueous solution was added to the obtained aqueous solution of the initial condensate. After about 30 seconds, the reaction system became cloudy and copolycondensation amino resin particles were precipitated. Thereafter, the curing reaction was continued for 3 hours while maintaining the temperature at 90 ° C. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔実施例5〕
 撹拌機、還流コンデンサー及び温度計を装備した100mLの反応フラスコに、ベンゾグアナミン0.30g、アセトグアナミン0.30g、メラミン1.81g、37%ホルマリン4.13g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.38g、水39.7g、及び25%アンモニア水0.024gを仕込んだ。その後、上記混合物を撹拌しながら80℃へ昇温し、さらに5分間撹拌してメラミン樹脂の初期縮合物の水溶液を調製した。次に温度を80℃に維持したまま、得られた初期縮合物の水溶液に5質量%パラトルエンスルホン酸水溶液1.41gを添加した。約3分後に反応系内が白濁して共縮重合アミノ樹脂粒子が析出した。その後、温度90℃まで昇温して3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
Example 5
To a 100 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 0.30 g of benzoguanamine, 0.30 g of acetoguanamine, 1.81 g of melamine, 4.13 g of 37% formalin, 20% by mass aqueous silica sol [Nissan Chemical Industry ( Snowtex (registered trademark) ST-N (trade name), average particle diameter 12 nm, pH 9.5] 0.38 g, water 39.7 g, and 25% aqueous ammonia 0.024 g were charged. Thereafter, the mixture was heated to 80 ° C. while stirring, and further stirred for 5 minutes to prepare an aqueous solution of an initial condensate of melamine resin. Next, while maintaining the temperature at 80 ° C., 1.41 g of a 5 mass% paratoluenesulfonic acid aqueous solution was added to the obtained aqueous solution of the initial condensate. After about 3 minutes, the reaction system became cloudy and copolycondensation amino resin particles were precipitated. Thereafter, the temperature was raised to 90 ° C. and the curing reaction was continued for 3 hours. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔実施例6〕
 撹拌機、還流コンデンサー及び温度計を装備した200mLの反応フラスコに、CTUグアナミン0.50g、アセトグアナミン4.50g、37%ホルマリン9.04g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.78g、水65.6g、及び25%アンモニア水56μLを仕込んだ。その後、上記混合物を撹拌しながら90℃まで昇温しアセトグアナミン樹脂の初期縮合物の水溶液を調製した。次に温度を90℃に維持したまま、得られた初期縮合物の水溶液に5質量%パラトルエンスルホン酸水溶液2.92gを添加した。約10分後に反応系内が白濁して共縮重合アミノ樹脂粒子が析出した。その後、温度90℃のまま3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
Example 6
In a 200 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 0.50 g of CTU guanamine, 4.50 g of acetoguanamine, 9.04 g of 37% formalin, 20 mass% aqueous silica sol [manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) ST-N (trade name), average particle size 12 nm, pH 9.5] 0.78 g, water 65.6 g, and 25% aqueous ammonia 56 μL were charged. Thereafter, the mixture was heated to 90 ° C. while stirring to prepare an aqueous solution of an initial condensate of acetoguanamine resin. Next, 2.92 g of 5 mass% para-toluenesulfonic acid aqueous solution was added to the obtained aqueous solution of the initial condensate while maintaining the temperature at 90 ° C. After about 10 minutes, the reaction system became cloudy and copolycondensation amino resin particles were precipitated. Thereafter, the curing reaction was continued for 3 hours while maintaining the temperature at 90 ° C. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔実施例7〕
 撹拌機、還流コンデンサー及び温度計を装備した500mLの反応フラスコに、ベンゾグアナミン5.00g、37%ホルマリン6.50g、20質量%水性シリカゾル[日産化学工業(株)製、スノーテックス(登録商標)ST-N(商品名)、平均粒子径12nm、pH9.5]0.78g、水355.1g、及び25%アンモニア水56μLを仕込んだ。その後、上記混合物を撹拌しながら95℃へ昇温しベンゾグアナミン樹脂の初期縮合物の水分散液を調製した。次に温度を95℃に維持したまま、得られた初期縮合物の水分散液に5質量%パラトルエンスルホン酸水溶液2.92gを添加した。添加直後に反応系内が白濁してベンゾグアナミン樹脂粒子が析出した。その後、温度を95℃に保ち、3時間硬化反応を続けた。冷却後、得られた反応液を濾過、乾燥して白色の硬化樹脂粒子を得た。
Example 7
Into a 500 mL reaction flask equipped with a stirrer, a reflux condenser and a thermometer, 5.00 g of benzoguanamine, 6.50 g of 37% formalin, 20% by mass aqueous silica sol [manufactured by Nissan Chemical Industries, Snowtex (registered trademark) ST -N (trade name), average particle diameter 12 nm, pH 9.5] 0.78 g, water 355.1 g, and 25% aqueous ammonia 56 μL were charged. Thereafter, the mixture was heated to 95 ° C. while stirring to prepare an aqueous dispersion of an initial condensate of benzoguanamine resin. Next, 2.92 g of 5 mass% para-toluenesulfonic acid aqueous solution was added to the obtained aqueous dispersion of the initial condensate while maintaining the temperature at 95 ° C. Immediately after the addition, the reaction system became cloudy and benzoguanamine resin particles were precipitated. Thereafter, the temperature was kept at 95 ° C. and the curing reaction was continued for 3 hours. After cooling, the resulting reaction solution was filtered and dried to obtain white cured resin particles.
〔形状観察〕
 各実施例で調製した硬化樹脂粒子のそれぞれについて、走査型電子顕微鏡(SEM)[日本電子(株)製、JSM-7400F]によりその形状観察を行った。実施例1乃至実施例7で調製した硬化樹脂粒子のSEM画像をそれぞれ図1乃至図7に示す。
 図1乃至図7に示す走査型電子顕微鏡写真を参照すると、実施例1乃至実施例7で得られた硬化樹脂粒子は均一な粒子径を有し、いずれの製造条件においても真球状の粒子が得られているとする結果が得られた。
[Shape observation]
The shape of each of the cured resin particles prepared in each example was observed with a scanning electron microscope (SEM) [manufactured by JEOL Ltd., JSM-7400F]. SEM images of the cured resin particles prepared in Examples 1 to 7 are shown in FIGS. 1 to 7, respectively.
Referring to the scanning electron micrographs shown in FIG. 1 to FIG. 7, the cured resin particles obtained in Examples 1 to 7 have a uniform particle diameter, and the spherical particles are the same under any production conditions. The result was obtained.
〔断面観察〕
 実施例1乃至実施例3、実施例5及び実施例7で調製した硬化樹脂粒子のそれぞれについて、各粒子を樹脂へ埋包させた後、スライス片を作成し、透過型電子顕微鏡(TEM)[(株)日立製作所製、H-8000]によりその断面観察を行った。実施例1乃至実施例3、実施例5及び実施例7で調製した硬化樹脂粒子のTEM画像をそれぞれ図8乃至図12に示す。
 なお図8乃至図12は粒子の表面部分を拡大して示したものであり、図8は画面左側が樹脂粒子内部を示し、その隣りの濃淡のある粒団の画像は粒子の表面層(図中、樹脂粒子境界を点線で示す)を示す。同様に、図9は画面右上側が樹脂粒子内部を示し、図10は画面右下側が樹脂粒子内部を示し、図11は画面上側が樹脂粒子内部を示し、図12は画面左上側が樹脂粒子内部を示し、各図中、樹脂粒子境界を点線で示す。
 図8乃至図12に示す透過型電子顕微鏡写真を参照すると、いずれの写真においても粒子表面付近に樹脂粒子内部と比べて黒色のコントラストが見え、粒子表面にコロイダルシリカが偏在しているとすることが確認された。
[Cross-section observation]
For each of the cured resin particles prepared in Examples 1 to 3, Example 5, and Example 7, each particle was embedded in a resin, and then a slice piece was prepared, and a transmission electron microscope (TEM) [ The cross section was observed with Hitachi, Ltd., H-8000]. TEM images of the cured resin particles prepared in Examples 1 to 3, Example 5, and Example 7 are shown in FIGS. 8 to 12, respectively.
8 to 12 are enlarged views of the surface portion of the particle, and FIG. 8 shows the inside of the resin particle on the left side of the screen, and the image of the adjacent gray aggregate with the surface layer of the particle (see FIG. 8). The resin particle boundary is indicated by a dotted line). Similarly, FIG. 9 shows the inside of the resin particles on the upper right side of the screen, FIG. 10 shows the inside of the resin particles on the lower right side of the screen, FIG. 11 shows the inside of the resin particles on the upper side of the screen, and FIG. In each figure, the boundary of the resin particles is indicated by a dotted line.
Referring to the transmission electron micrographs shown in FIG. 8 to FIG. 12, in any of the photographs, black contrast is seen near the particle surface compared to the inside of the resin particle, and colloidal silica is unevenly distributed on the particle surface. Was confirmed.
〔比重測定〕
 各実施例及び比較例で調製した硬化樹脂粒子のそれぞれについて、乾式自動密度計[(株)島津製作所製、アキュピック1330]によりその密度測定を行った。なお、比較例1として日産化学工業(株)製、オプトビーズ(登録商標)3500Mを採用し、同様に密度測定を行った。結果(各5回の測定の平均値)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[Specific gravity measurement]
About each of the cured resin particle prepared by each Example and the comparative example, the density measurement was performed with the dry-type automatic densimeter [Corporation | KK Shimadzu Corp. make, Accupic 1330]. Note that, as Comparative Example 1, Optobeads (registered trademark) 3500M manufactured by Nissan Chemical Industries, Ltd. was adopted, and the density measurement was performed in the same manner. The results (average values of five measurements each) are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
〔粒子硬度測定〕
 各実施例で調製した硬化樹脂粒子のそれぞれについて、微小圧縮試験機[(株)島津製作所製、MCT]によりその粒子硬度測定を行った。なお比較例1及び比較例2として、日産化学工業(株)製、オプトビーズ(登録商標)3500M(比較例1)、エア・ウォーター(株)製、ベルパールS(比較例2)を採用し、同様に粒子硬度測定を行った。10%変位硬度(※1)及び5mN負荷後の復元率(※2)の測定の結果(各5回の測定の平均値)を表2に示す。
<※1:10%変位硬度>
圧縮試験において、1粒子に負荷速度0.223mN/秒で試験力をかけた際に、変位量が粒子径の10%に達した時点の試験力
<※2:5mN負荷後の復元率>
負荷-除荷試験において、1粒子に負荷速度0.223mN/秒で試験力をかけ、試験力が0.49mNとなったときに得られる変位量をL0(μm)、5.0mNの最大試験力に達した時点の変位量をL1(μm)、除荷速度0.223mN/秒で除荷し、試験力が0.49mNとなったときに得られる変位量をL2(μm)としたときに、L1-L2をL1-L0で除し100分率とした値(100*(L1-L2)/(L1-L0):復元率)
Figure JPOXMLDOC01-appb-T000002
(Particle hardness measurement)
About each of the cured resin particle prepared in each Example, the particle hardness measurement was performed with the micro compression tester [Shimadzu Corporation make, MCT]. As Comparative Example 1 and Comparative Example 2, Nissan Chemical Industries, Ltd., Opto Beads (registered trademark) 3500M (Comparative Example 1), Air Water Co., Ltd., Bell Pearl S (Comparative Example 2) were adopted. Similarly, the particle hardness was measured. Table 2 shows the results of measurement of 10% displacement hardness (* 1) and restoration rate (* 2) after 5 mN load (average value of five measurements each).
<* 1: 10% displacement hardness>
In the compression test, when a test force is applied to one particle at a load speed of 0.223 mN / sec, the test force when the displacement reaches 10% of the particle diameter <* 2: Restoration rate after 5 mN load>
In the load-unload test, a test force is applied to one particle at a load speed of 0.223 mN / sec, and the displacement obtained when the test force becomes 0.49 mN is L 0 (μm), a maximum of 5.0 mN The displacement when the test force is reached is L 1 (μm), the unloading speed is 0.223 mN / sec, and the displacement obtained when the test force is 0.49 mN is L 2 (μm). Where L 1 -L 2 is divided by L 1 -L 0 to give a value of 100 minutes (100 * (L 1 -L 2 ) / (L 1 -L 0 ): restoration rate)
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1乃至実施例7のそれぞれで得られた硬化樹脂粒子の10%変位硬度は、メラミン樹脂(単体)粒子(比較例1)と比較すると硬度が低下した。実施例1乃至実施例5で得られたメラミンを含む硬化樹脂粒子と比較例1のメラミン樹脂(単体)粒子とを比較すると、粒子中のメラミン組成比増加に伴い、粒子硬度が増加したとする結果を得た。
 また、5mN負荷後の復元率は、実施例3及び実施例4で得られたメラミンを含む硬化樹脂粒子と比較例1のメラミン樹脂(単体)粒子とを比較すると、粒子中のメラミン比率増加に伴って復元率が増加しているとする結果を得た。
As shown in Table 2, the 10% displacement hardness of the cured resin particles obtained in each of Examples 1 to 7 decreased in comparison with the melamine resin (single) particles (Comparative Example 1). When the cured resin particles containing melamine obtained in Examples 1 to 5 and the melamine resin (single) particles of Comparative Example 1 were compared, the particle hardness increased with an increase in the melamine composition ratio in the particles. The result was obtained.
Moreover, the restoration rate after 5 mN load is compared with the melamine ratio increase in particle | grains, when the cured resin particle containing the melamine obtained in Example 3 and Example 4 and the melamine resin (simple substance) particle | grains of the comparative example 1 are compared. As a result, the result that the restoration rate increased was obtained.

Claims (12)

  1. 5~70nmの平均粒子径を有するコロイダルシリカの懸濁下で少なくとも一種の二官能性モノマーを含むモノマー化合物とアルデヒド化合物を塩基性条件下で反応させ、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる段階と、
    該水溶液に酸触媒を加えて球状の熱硬化樹脂軟質化粒子を析出させる段階とを含む製造法により得られる、
    熱硬化樹脂軟質化粒子。
    Initial condensation of a water-soluble melamine resin by reacting a monomer compound containing at least one bifunctional monomer with an aldehyde compound under a basic condition in a suspension of colloidal silica having an average particle size of 5 to 70 nm. Producing an aqueous solution of the product,
    Adding an acid catalyst to the aqueous solution and precipitating spherical thermosetting resin softening particles.
    Thermosetting resin softening particles.
  2. 5~70nmの平均粒子径を有するコロイダルシリカの懸濁下で少なくとも一種の二官能性モノマーと少なくとも一種の多官能性モノマーとを含むモノマー化合物とアルデヒド化合物を塩基性条件下で反応させ、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させる段階と、
    該水溶液に酸触媒を加えて球状の熱硬化樹脂軟質化粒子を析出させる段階とを含む製造法により得られる、
    熱硬化樹脂軟質化粒子。
    In a suspension of colloidal silica having an average particle size of 5 to 70 nm, a monomer compound containing at least one bifunctional monomer and at least one polyfunctional monomer and an aldehyde compound are reacted under basic conditions, and are then added to water. Generating an aqueous solution of an initial condensate of a soluble melamine resin;
    Adding an acid catalyst to the aqueous solution and precipitating spherical thermosetting resin softening particles.
    Thermosetting resin softening particles.
  3. 前記モノマー化合物100質量部に対して、コロイダルシリカを0.5~100質量部存在させる、請求項1又は請求項2に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particles according to claim 1 or 2, wherein 0.5 to 100 parts by mass of colloidal silica is present with respect to 100 parts by mass of the monomer compound.
  4. 前記コロイダルシリカとして水性シリカゾルを用いる、請求項1又は請求項2に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particles according to claim 1 or 2, wherein an aqueous silica sol is used as the colloidal silica.
  5. 前記二官能性モノマーは、グアナミン、アセトグアナミン、ベンゾグアナミン、尿素、チオ尿素及びエチレン尿素からなる群から選択される、請求項1又は請求項2に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particles according to claim 1 or 2, wherein the bifunctional monomer is selected from the group consisting of guanamine, acetoguanamine, benzoguanamine, urea, thiourea, and ethylene urea.
  6. 前記多官能性モノマーは、メラミン、CTUグアナミン及びCMTUグアナミンからなる群から選択される、請求項2に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particles according to claim 2, wherein the polyfunctional monomer is selected from the group consisting of melamine, CTU guanamine, and CMTU guanamine.
  7. 粒子の内部マトリクスが熱硬化樹脂であり、コロイダルシリカが粒子表面部分に偏在した球状粒子であって、
    該粒子は0.05~100μmの平均粒子径を有し、
    且つ、該粒子は30~84MPaの10%変位硬度を有する、熱硬化樹脂軟質化粒子。
    The inner matrix of the particles is a thermosetting resin, the colloidal silica is a spherical particle unevenly distributed on the particle surface portion,
    The particles have an average particle size of 0.05 to 100 μm;
    The particles are softened thermosetting resin particles having a 10% displacement hardness of 30 to 84 MPa.
  8. 前記コロイダルシリカが粒子最表面から0.3μmの深さ内の粒子表面付近に存在している、請求項7に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particle according to claim 7, wherein the colloidal silica is present in the vicinity of the particle surface within a depth of 0.3 µm from the outermost surface of the particle.
  9. 前記熱硬化樹脂は、少なくとも一種の二官能性モノマーを含むモノマー化合物とアルデヒド化合物から形成される、請求項7に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particles according to claim 7, wherein the thermosetting resin is formed from a monomer compound containing at least one bifunctional monomer and an aldehyde compound.
  10. 前記熱硬化樹脂は、少なくとも一種の二官能性モノマーと少なくとも一種の多官能性モノマーとを含むモノマー化合物とアルデヒド化合物から形成される、請求項7に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particles according to claim 7, wherein the thermosetting resin is formed from a monomer compound containing at least one bifunctional monomer and at least one polyfunctional monomer and an aldehyde compound.
  11. 前記二官能性モノマーは、グアナミン、アセトグアナミン、ベンゾグアナミン、尿素、チオ尿素及びエチレン尿素からなる群から選択される、請求項9又は請求項10に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particle according to claim 9 or 10, wherein the bifunctional monomer is selected from the group consisting of guanamine, acetoguanamine, benzoguanamine, urea, thiourea and ethyleneurea.
  12. 前記多官能性モノマーはメラミン、CTUグアナミン及びCMTUグアナミンからなる群から選択される、請求項10に記載の熱硬化樹脂軟質化粒子。 The thermosetting resin softening particle according to claim 10, wherein the polyfunctional monomer is selected from the group consisting of melamine, CTU guanamine, and CMTU guanamine.
PCT/JP2011/076195 2010-11-15 2011-11-14 Softened thermosetting resin particles WO2012067072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544237A JP6040773B2 (en) 2010-11-15 2011-11-14 Thermosetting resin softening particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-255135 2010-11-15
JP2010255135 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012067072A1 true WO2012067072A1 (en) 2012-05-24

Family

ID=46083999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076195 WO2012067072A1 (en) 2010-11-15 2011-11-14 Softened thermosetting resin particles

Country Status (2)

Country Link
JP (1) JP6040773B2 (en)
WO (1) WO2012067072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144695A (en) 2019-03-19 2021-11-30 세키스이가가쿠 고교가부시키가이샤 Resin particle, electroconductive particle, an electrically-conductive material, and bonded structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500031A (en) * 1986-06-27 1990-01-11 ダイノ インダストリアー エー.エス Method for producing urea-formaldehyde resin
JPH0249019A (en) * 1988-04-30 1990-02-19 Dyno Ind As Preparation of urea-formaldehyde resin
JPH03239712A (en) * 1990-02-16 1991-10-25 Nippon Kasei Kk Production of urea resin
JP2002284591A (en) * 2001-03-26 2002-10-03 Mitsubishi Rayon Co Ltd Manufacturing method for ultra-slow-acting nitrogen fertilizer of urea-formaldehyde condensate
JP2002293854A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Method for producing amino resin particle
JP2002293856A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Method for producing amino resin particle
JP2008239637A (en) * 2007-03-23 2008-10-09 Sekisui Plastics Co Ltd Method for producing polymer particle
JP2010099588A (en) * 2008-10-23 2010-05-06 Kyocera Chemical Corp Method for manufacturing supported catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863080B2 (en) * 2001-08-29 2006-12-27 株式会社日本触媒 Amino resin composite particles
CN1364838A (en) * 2002-02-05 2002-08-21 张人韬 Water-thinned Normal temperature hardening fluorosilicious paint with metal texture
JP4139180B2 (en) * 2002-09-30 2008-08-27 株式会社日本触媒 Novel cross-linked amino resin particles
JP2008123843A (en) * 2006-11-13 2008-05-29 Fci Connectors Singapore Pte Ltd Connector for flat flexible cable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500031A (en) * 1986-06-27 1990-01-11 ダイノ インダストリアー エー.エス Method for producing urea-formaldehyde resin
JPH0249019A (en) * 1988-04-30 1990-02-19 Dyno Ind As Preparation of urea-formaldehyde resin
JPH03239712A (en) * 1990-02-16 1991-10-25 Nippon Kasei Kk Production of urea resin
JP2002284591A (en) * 2001-03-26 2002-10-03 Mitsubishi Rayon Co Ltd Manufacturing method for ultra-slow-acting nitrogen fertilizer of urea-formaldehyde condensate
JP2002293854A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Method for producing amino resin particle
JP2002293856A (en) * 2001-03-30 2002-10-09 Nippon Shokubai Co Ltd Method for producing amino resin particle
JP2008239637A (en) * 2007-03-23 2008-10-09 Sekisui Plastics Co Ltd Method for producing polymer particle
JP2010099588A (en) * 2008-10-23 2010-05-06 Kyocera Chemical Corp Method for manufacturing supported catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144695A (en) 2019-03-19 2021-11-30 세키스이가가쿠 고교가부시키가이샤 Resin particle, electroconductive particle, an electrically-conductive material, and bonded structure
US11884782B2 (en) 2019-03-19 2024-01-30 Sekisui Chemical Co., Ltd. Resin particles, conductive particles, conductive material and connection structure

Also Published As

Publication number Publication date
JPWO2012067072A1 (en) 2014-05-12
JP6040773B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
US7115303B2 (en) Process for producing spherical composite cured melamine resin particles
Wu et al. Monodispersed or narrow-dispersed melamine–formaldehyde resin polymer colloidal spheres: preparation, size-control, modification, bioconjugation and particle formation mechanism
JP6218945B2 (en) Method for producing hollow silica particles, hollow silica particles, composition containing them, and heat insulating sheet
CA2480411A1 (en) Composite sol, process for producing the same, and ink-jet recording medium
JP6040773B2 (en) Thermosetting resin softening particles
JP4631016B2 (en) Surface-treated cured amino resin particles and method for producing the same
US4839445A (en) Spherical particles of thermosetting phenolic resin and process for producing the same
JP4243848B2 (en) Method for producing spherical composite cured melamine resin particles
JP4126546B2 (en) Method for producing colored spherical composite cured melamine resin particles
JPS6268811A (en) Production of spherical fine cured resin particle having uniform particle diameter
WO2013176057A1 (en) Method for producing hardened amino resin particles
JP2008101040A (en) Cured amino resin particle and method for treating the surface thereof
JP4436054B2 (en) Amino resin crosslinked pulverized particles and method for producing amino resin crosslinked pulverized particles
JP2020161531A (en) Polishing dispersion liquid, polishing sheet, and manufacturing method thereof
JP2007169440A (en) Method for producing fine thermosetting resin particle
EP1192210A1 (en) Coated hollow polymer particle latex and a method for the manufacture thereof
JP4139180B2 (en) Novel cross-linked amino resin particles
JP2003306521A (en) Method of manufacturing fine particle of thermosetting resin
KR20080007353A (en) Dispersion
JP4455752B2 (en) Manufacturing method of colored resin spherical fine particles
JP4550461B2 (en) Resin composite, thermosetting resin molding material containing the composite, molded product, method for manufacturing the composite, and method for manufacturing the thermosetting resin molding material
KR20220158736A (en) Composite particles, method for producing composite particles, liquid composition, method for producing a laminate, and method for producing a film
JP2020157389A (en) Dispersion liquid for polishing and polishing sheet, and method for producing them
JPH0610234B2 (en) Microspherical cured melamine resin particles and method for producing the same
JP2018172568A (en) Inkjet recording method, and inkjet recording device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841590

Country of ref document: EP

Kind code of ref document: A1