WO2012066850A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2012066850A1
WO2012066850A1 PCT/JP2011/071611 JP2011071611W WO2012066850A1 WO 2012066850 A1 WO2012066850 A1 WO 2012066850A1 JP 2011071611 W JP2011071611 W JP 2011071611W WO 2012066850 A1 WO2012066850 A1 WO 2012066850A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
sensor
orientation
motion sensor
motion
Prior art date
Application number
PCT/JP2011/071611
Other languages
English (en)
French (fr)
Inventor
健 芦田
Original Assignee
Necカシオモバイルコミュニケーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necカシオモバイルコミュニケーションズ株式会社 filed Critical Necカシオモバイルコミュニケーションズ株式会社
Priority to US13/881,264 priority Critical patent/US9366533B2/en
Priority to CN201180054905.1A priority patent/CN103210277B/zh
Priority to JP2012544144A priority patent/JPWO2012066850A1/ja
Priority to EP11842308.6A priority patent/EP2642248A4/en
Publication of WO2012066850A1 publication Critical patent/WO2012066850A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Definitions

  • the present invention relates to an electronic device that measures an orientation, an orientation measurement method, and a program.
  • the electronic compass that measures azimuth realizes azimuth measurement by detecting geomagnetism using a geomagnetic sensor. Specifically, when the magnetic field changes by moving the compass, the pointing direction changes accordingly.
  • the orientation can be known on the mobile terminal.
  • An object of the present invention is to provide an electronic device, a direction measuring method, and a program that solve the above-described problems.
  • the electronic device of the present invention is Electronic equipment, A geomagnetic sensor for detecting geomagnetism; A motion sensor for detecting movement of the electronic device; Based on the result detected by the geomagnetic sensor and the result detected by the motion sensor, the orientation of the electronic device is measured, and while the motion sensor detects the rest of the electronic device, the motion sensor Based on only the detected result, a control unit that measures the orientation of the electronic device, A display unit that displays the orientation measured by the control unit.
  • the azimuth measuring method of the present invention is An orientation measurement method for measuring the orientation of an electronic device, Geomagnetism detection processing to detect geomagnetism, An operation detection process for detecting the movement of the electronic device; Based on the result detected in the geomagnetism detection process and the result detected in the operation detection process, a process of measuring the orientation of the electronic device, While stillness of the electronic device is detected in the motion detection process, based on only the result detected in the motion detection process, a process of measuring the orientation of the electronic device; The process of displaying the measured azimuth is performed.
  • the program of the present invention is A program for causing an electronic device to execute, A geomagnetic detection procedure for detecting geomagnetism; An operation detection procedure for detecting the movement of the electronic device; Based on the result detected in the geomagnetic detection procedure and the result detected in the operation detection procedure, a procedure for measuring the orientation of the electronic device, While stillness of the electronic device is detected in the motion detection procedure, based on only the result detected in the motion detection procedure, a procedure for measuring the orientation of the electronic device, And displaying the measured azimuth.
  • FIG. 1 is a figure which shows one Embodiment of the electronic device of this invention. It is a figure which shows an example of the internal structure of the motion sensor shown in FIG. It is a figure which shows the other example of an internal structure of the motion sensor shown in FIG. It is a figure which shows other embodiment of the electronic device of this invention.
  • 3 is a flowchart for explaining an example of a direction measuring method in the electronic device shown in FIG. 1.
  • 6 is a flowchart for explaining another example of the direction measuring method in the electronic apparatus shown in FIG. 1.
  • FIG. 1 is a diagram showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device 100 includes a 6-axis sensor 110, a control unit 160, and a display unit 170.
  • FIG. 1 shows only the components related to the present invention among the components included in the electronic device 100, and other components (for example, the electronic device 100 is a mobile terminal) included in a general electronic device.
  • the communication unit, storage unit, audio processing unit, power supply unit, etc. are omitted.
  • the 6-axis sensor 110 includes a geomagnetic sensor 120 that is a 3-axis (3-dimensional) geomagnetic sensor and an operation sensor 130 that is a 3-axis motion sensor.
  • the geomagnetic sensor 120 detects geomagnetism. Further, the geomagnetic sensor 120 outputs the detection result to the control unit 160.
  • the motion sensor 130 detects the movement of the electronic device 100. Further, the motion sensor 130 outputs the detection result to the control unit 160.
  • FIG. 2 is a diagram showing an example of the internal configuration of the motion sensor 130 shown in FIG.
  • the motion sensor 130 shown in FIG. 1 may be composed of an acceleration sensor 140 that is a three-axis acceleration sensor that detects the acceleration of the electronic device 100 as shown in FIG.
  • FIG. 3 is a diagram showing another example of the internal configuration of the motion sensor 130 shown in FIG.
  • the motion sensor 130 shown in FIG. 1 may be composed of a gyro sensor 150 that detects the rotation of the electronic device 100 as shown in FIG.
  • the motion sensor 130 may be composed of a vibration sensor that detects vibration of the electronic device 100.
  • the control unit 160 measures (calculates) the orientation of the electronic device 100 based on the result output from the geomagnetic sensor 120 and the result output from the motion sensor 130.
  • the control unit 160 determines the orientation of the electronic device 100 based only on the result output from the motion sensor 130. Measure (calculate). At this time, the control unit 160 ignores (discards) the result output from the geomagnetic sensor 120 and measures the orientation of the electronic device 100 based only on the result output from the motion sensor 130. Alternatively, the operation of the geomagnetic sensor 120 may be stopped, and the direction of the electronic device 100 may be measured based only on the result output from the operation sensor 130.
  • Display unit 170 displays the orientation measured (calculated) by control unit 160.
  • a 9-axis sensor may be used instead of the 6-axis sensor 110.
  • FIG. 4 is a diagram showing another embodiment of the electronic apparatus of the present invention.
  • the electronic device 100 in this embodiment is provided with a nine-axis sensor 111 instead of the six-axis sensor 110 shown in FIG.
  • the 9-axis sensor 111 includes a geomagnetic sensor 120 and a motion sensor 131.
  • the motion sensor 131 includes an acceleration sensor 140 and a gyro sensor 150.
  • acceleration sensor 140 The operations of the acceleration sensor 140 and the gyro sensor 150 are the same as those described with reference to FIGS.
  • the control unit 160 illustrated in FIG. 4 measures the orientation of the electronic device 100 based on the result output from the geomagnetic sensor 120 and the results output from the acceleration sensor 140 and the gyro sensor 150 in the motion sensor 131. (calculate.
  • control unit 160 illustrated in FIG. 4 includes the acceleration sensor 140 and the gyro sensor 150 in the motion sensor 131 while the acceleration sensor 140 and the gyro sensor 150 in the motion sensor 131 detect that the electronic device 100 is stationary.
  • the orientation of the electronic device 100 is measured based only on the result output from the.
  • FIG. 5 is a flowchart for explaining an example of the direction measuring method in the electronic device 100 shown in FIG.
  • the orientation of the electronic device 100 is measured (calculated) by the control unit 160 based on the detection result of the geomagnetism by the geomagnetic sensor 120 and the detection result of the movement of the electronic device 100 by the motion sensor 130.
  • Step 1 it is detected by the motion sensor 130 whether or not the electronic device 100 is stationary.
  • the motion sensor 130 detects that the electronic device 100 is stationary, the detection result of the geomagnetic sensor 120 is ignored by the control unit 160 in step 2, and the direction of the electronic device 100 is based only on the detection result of the motion sensor 130. Is measured.
  • the orientation measured by the control unit 160 is displayed on the display unit 170 in step 3.
  • the control unit 160 causes the geomagnetic sensor 120 to detect the geomagnetic detection result and the motion sensor 130 to move the electronic device 100 in step 4. Based on the detection result, the orientation of the electronic device 100 is measured, and the process of step 3 is performed.
  • step 2 the process of step 2 is performed. Further, after that, when the motion sensor 130 does not detect the rest of the electronic device 100 in step 1, the process of step 4 is performed.
  • FIG. 6 is a flowchart for explaining another example of the direction measuring method in the electronic apparatus 100 shown in FIG.
  • the orientation of the electronic device 100 is measured (calculated) by the control unit 160 based on the detection result of the geomagnetism by the geomagnetic sensor 120 and the detection result of the movement of the electronic device 100 by the motion sensor 130.
  • step 11 whether or not the electronic device 100 is stationary is detected by the motion sensor 130.
  • the controller 160 determines in step 12 whether the geomagnetic sensor 120 is operating.
  • control unit 160 stops the operation of the geomagnetic sensor 120 in step 13. In step 14, the control unit 160 measures the orientation of the electronic device 100 based only on the detection result of the motion sensor 130.
  • step 13 If the geomagnetic sensor 120 is not in operation, the process of step 13 is not performed and the process of step 14 is performed.
  • step 15 the direction measured by the control unit 160 is displayed on the display unit 170 in step 15.
  • the controller 160 determines whether or not the geomagnetic sensor 120 is operating.
  • the controller 160 instructs the geomagnetic sensor 120 to start operation in step 17, and the operation of the geomagnetic sensor 120 is started.
  • the controller 160 measures the orientation of the electronic device 100 based on the detection result of the geomagnetism by the geomagnetic sensor 120 and the detection result of the movement of the electronic device 100 by the motion sensor 130. Processing is performed.
  • step 17 is not performed and the process of step 18 is performed.
  • the electronic device 100 may be a portable terminal with an orientation measurement function or a pedometer with an orientation measurement function, and may be any device / device equipped with an electronic compass function.
  • the processing performed by each component provided in the electronic device 100 described above may be performed by a logic circuit that is produced according to the purpose.
  • a computer program (hereinafter referred to as a program) in which processing contents are described as a procedure is recorded on a recording medium readable by the electronic device 100, and the program recorded on the recording medium is read by the electronic device 100 and executed. It may be what you do.
  • the recording medium readable by the electronic device 100 is a removable recording medium such as a floppy (registered trademark) disk, a magneto-optical disk, a DVD, and a CD, and a memory such as a ROM and a RAM built in the electronic device 100. And HDD.
  • the program recorded on the recording medium is read by the control unit 160 provided in the electronic apparatus 100, and the same processing as described above is performed under the control of the control unit 160.
  • the control unit 160 operates as a computer that executes a program read from a recording medium on which the program is recorded.

Abstract

制御部(160)が、地磁気を検出する地磁気センサ(120)が検出した結果と、電子機器(100)の動きを検出する動作センサ(130)が検出した結果とに基づいて、電子機器(100)の方位を計測し、動作センサ(130)が電子機器(100)の静止を検出している間は、動作センサ(130)が検出した結果のみに基づいて、電子機器(100)の方位を計測し、計測した方位を表示部(170)が表示する。

Description

電子機器
 本発明は、方位を計測する電子機器、方位計測方法およびプログラムに関する。
 方位を計測する電子コンパスは、地磁気センサを用いて地磁気を検知することで方位計測を実現している。具体的には、コンパスを動かすなどで磁界が変化したときは、それにしたがって指し示す方位が変化する。
 また、これを携帯端末等の電子機器に搭載することで、携帯端末上などで方位を知ることができる。
 しかしながら、地磁気センサを用いて検出された地磁気のみによる方位計測では、当該電子機器が傾いた状態では正確な方位計測ができない。そのため、近年では、地磁気センサに加えて、当該電子機器の動きとして加速度を検出する加速度センサを搭載(3軸+3軸=6軸センサを構成)するものが考えられている。例えば、傾斜角補正を行うことで、当該電子機器の姿勢に依らず、正確な方位を計測する技術が知られている(例えば、特許文献1参照。)。
 また、地磁気センサを用いた方位計は、予期せぬ磁界の乱れが発生した場合、オフセット補正が必要であることが知られており、その補正方法が提案されている(例えば、特許文献2参照。)。
 また、電子機器の姿勢・状態(例えば、携帯端末の開状態/閉状態)毎に、地磁気センサのオフセットを複数持たせる方法が知られている(例えば、特許文献3参照。)。
特開平08-278137号公報 特開2006-047038号公報 特開2005-291932号公報
 しかしながら、上述した技術においては、以下のような問題点がある。
 上述した技術においては、地磁気センサを用いた検出が継続される上、その検出結果も方位計測に反映され続ける。そのため、誤ったオフセットが求められてしまうようなノイズや外乱等が発生した場合、誤ったオフセット補正が行われてしまう。その結果、誤動作につながるおそれがある。
 本発明の目的は、上述した課題を解決する電子機器、方位計測方法およびプログラムを提供することである。
 本発明の電子機器は、
 電子機器であって、
 地磁気を検出する地磁気センサと、
 当該電子機器の動きを検出する動作センサと、
 前記地磁気センサが検出した結果と前記動作センサが検出した結果とに基づいて、当該電子機器の方位を計測し、前記動作センサが当該電子機器の静止を検出している間は、前記動作センサが検出した結果のみに基づいて、当該電子機器の方位を計測する制御部と、
 前記制御部が計測した方位を表示する表示部とを有する。
 また、本発明の方位計測方法は、
 電子機器の方位を計測する方位計測方法であって、
 地磁気を検出する地磁気検出処理と、
 当該電子機器の動きを検出する動作検出処理と、
 前記地磁気検出処理にて検出された結果と前記動作検出処理にて検出された結果とに基づいて、当該電子機器の方位を計測する処理と、
 前記動作検出処理にて当該電子機器の静止が検出されている間は、前記動作検出処理にて検出された結果のみに基づいて、当該電子機器の方位を計測する処理と、
 前記計測した方位を表示する処理とを行う。
 また、本発明のプログラムは、
 電子機器に実行させるためのプログラムであって、
 地磁気を検出する地磁気検出手順と、
 当該電子機器の動きを検出する動作検出手順と、
 前記地磁気検出手順にて検出された結果と前記動作検出手順にて検出された結果とに基づいて、当該電子機器の方位を計測する手順と、
 前記動作検出手順にて当該電子機器の静止が検出されている間は、前記動作検出手順にて検出された結果のみに基づいて、当該電子機器の方位を計測する手順と、
 前記計測した方位を表示する手順とを実行させる。
 以上説明したように、本発明においては、電子コンパスの誤動作を防止することができる。
本発明の電子機器の実施の一形態を示す図である。 図1に示した動作センサの内部構成の一例を示す図である。 図1に示した動作センサの内部構成の他の例を示す図である。 本発明の電子機器の他の実施の形態を示す図である。 図1に示した電子機器における方位計測方法の一例を説明するためのフローチャートである。 図1に示した電子機器における方位計測方法の他の例を説明するためのフローチャートである。
 以下に、本発明の実施の形態について図面を参照して説明する。
 図1は、本発明の電子機器の実施の一形態を示す図である。
 本形態における電子機器100には図1に示すように、6軸センサ110と、制御部160と、表示部170とが設けられている。なお、図1には、電子機器100が具備する構成要素のうち、本発明に関わる構成要素のみを示し、一般的な電子機器が具備する他の構成要素(例えば、電子機器100が携帯端末である場合の通信部、記憶部、音声処理部、電源部等)を省略した。
 6軸センサ110は、3軸(3次元)地磁気センサである地磁気センサ120と、3軸動作センサである動作センサ130とから構成されている。
 地磁気センサ120は、地磁気を検出する。また、地磁気センサ120は、検出結果を制御部160へ出力する。
 動作センサ130は、電子機器100の動きを検出する。また、動作センサ130は、検出結果を制御部160へ出力する。
 図2は、図1に示した動作センサ130の内部構成の一例を示す図である。
 図1に示した動作センサ130は図2に示すように、電子機器100の加速度を検出する3軸加速度センサである加速度センサ140から構成されているものであっても良い。
 図3は、図1に示した動作センサ130の内部構成の他の例を示す図である。
 図1に示した動作センサ130は図3に示すように、電子機器100の回転を検出するジャイロセンサ150から構成されているものであっても良い。
 また、動作センサ130は、電子機器100の振動を検出する振動センサから構成されているものであっても良い。
 制御部160は、地磁気センサ120から出力されてきた結果と動作センサ130から出力されてきた結果とに基づいて、電子機器100の方位を計測(算出)する。
 また、制御部160は、動作センサ130から出力されてきた結果が、電子機器100の静止を示している間は、動作センサ130から出力されてきた結果のみに基づいて、電子機器100の方位を計測(算出)する。このとき、制御部160は、地磁気センサ120から出力されてきた結果を無視(破棄)して、動作センサ130から出力されてきた結果のみに基づいて、電子機器100の方位を計測するものであっても良いし、地磁気センサ120の動作を停止させ、動作センサ130から出力されてきた結果のみに基づいて、電子機器100の方位を計測するものであっても良い。
 表示部170は、制御部160が計測(算出)した方位を表示する。
 また、6軸センサ110の代わりに9軸センサを用いるものであっても良い。
 図4は、本発明の電子機器の他の実施の形態を示す図である。
 本形態における電子機器100には図4に示すように、図1に示した6軸センサ110の代わりに9軸センサ111が設けられている。
 9軸センサ111は、地磁気センサ120と、動作センサ131とから構成されている。
 また、動作センサ131は、加速度センサ140とジャイロセンサ150とから構成されている。
 加速度センサ140およびジャイロセンサ150の動作は、図2および図3を用いて説明したものと同じである。
 図4に示した制御部160は、地磁気センサ120から出力されてきた結果と動作センサ131内の加速度センサ140およびジャイロセンサ150から出力されてきた結果とに基づいて、電子機器100の方位を計測(算出)する。
 また、図4に示した制御部160は、動作センサ131内の加速度センサ140およびジャイロセンサ150が電子機器100の静止を検出している間は、動作センサ131内の加速度センサ140およびジャイロセンサ150から出力されてきた結果のみに基づいて、電子機器100の方位を計測する。
 以下に、図1に示した電子機器100における方位計測方法について説明する。
 図5は、図1に示した電子機器100における方位計測方法の一例を説明するためのフローチャートである。
 まず、方位計測の動作(電子コンパス)が起動すると、地磁気センサ120による地磁気の検出と、動作センサ130による電子機器100の動きの検出が開始される。
 すると、制御部160によって、地磁気センサ120による地磁気の検出結果と動作センサ130による電子機器100の動きの検出結果とに基づいて、電子機器100の方位が計測(算出)される。
 また、ステップ1にて、動作センサ130によって電子機器100が静止しているかどうかが検出される。
 動作センサ130によって電子機器100の静止が検出された場合、ステップ2にて、制御部160によって、地磁気センサ120の検出結果が無視され、動作センサ130の検出結果のみに基づいて電子機器100の方位が計測される。
 続いて、制御部160によって計測された方位が、ステップ3にて、表示部170に表示される。
 一方、ステップ1にて、動作センサ130によって電子機器100の静止が検出されない場合は、ステップ4にて、制御部160によって、地磁気センサ120による地磁気の検出結果と動作センサ130による電子機器100の動きの検出結果とに基づいて、電子機器100の方位が計測され、ステップ3の処理が行われる。
 その後、ステップ1にて、動作センサ130によって電子機器100の静止が検出されている間は、ステップ2の処理が行われる。また、その後、ステップ1にて、動作センサ130によって電子機器100の静止が検出されなくなると、ステップ4の処理が行われる。
 図6は、図1に示した電子機器100における方位計測方法の他の例を説明するためのフローチャートである。
 まず、方位計測の動作(電子コンパス)が起動すると、地磁気センサ120による地磁気の検出と、動作センサ130による電子機器100の動きの検出が開始される。
 すると、制御部160によって、地磁気センサ120による地磁気の検出結果と動作センサ130による電子機器100の動きの検出結果とに基づいて、電子機器100の方位が計測(算出)される。
 また、ステップ11にて、動作センサ130によって電子機器100が静止しているかどうかが検出される。
 動作センサ130によって電子機器100の静止が検出された場合、ステップ12にて、地磁気センサ120が動作中であるかどうかが制御部160によって判別される。
 地磁気センサ120が動作中である場合、ステップ13にて、制御部160によって、地磁気センサ120の動作が停止される。そして、ステップ14にて、制御部160によって、動作センサ130の検出結果のみに基づいて電子機器100の方位が計測される。
 また、地磁気センサ120が動作中ではない場合は、ステップ13の処理は行われず、ステップ14の処理が行われる。
 続いて、制御部160によって計測された方位が、ステップ15にて、表示部170に表示される。
 一方、ステップ11にて、動作センサ130によって電子機器100の静止が検出されない場合は、ステップ16にて、地磁気センサ120が動作中であるかどうかが制御部160によって判別される。
 地磁気センサ120が動作中ではない場合、ステップ17にて、制御部160によって、地磁気センサ120へ動作の開始が指示され、地磁気センサ120の動作が開始される。そして、ステップ18にて、制御部160によって、地磁気センサ120による地磁気の検出結果と動作センサ130による電子機器100の動きの検出結果とに基づいて、電子機器100の方位が計測され、ステップ15の処理が行われる。
 また、地磁気センサ120が動作中である場合は、ステップ17の処理は行われず、ステップ18の処理が行われる。
 図6を用いて説明した方位計測方法では、地磁気センサ120の動作を止めるため、地磁気センサ120の動作により発生する消費電力を削減することができる。
 なお、図4に示した形態においても、図5および図6に示したフローチャートを用いて説明した処理と同様の処理が行われる。
 なお、電子機器100は、方位計測機能付きの携帯端末であっても良いし、方位計測機能付きの歩数計であっても良く、電子コンパス機能を搭載した機器・装置であれば良い。
 以上、説明したように、電子機器100の静止中に、動作センサ130の検出結果のみを方位の計測に用いることで、電子機器100の静止中に外乱ノイズ等の磁界を乱す要因が発生したとしても電子コンパスの方位を誤らない。また、地磁気センサ120のオフセットが誤っても止まることはなく、電子コンパスの誤動作防止につながる。
 上述した電子機器100に設けられた各構成要素が行う処理は、目的に応じてそれぞれ作製された論理回路で行うようにしても良い。また、処理内容を手順として記述したコンピュータプログラム(以下、プログラムと称する)を電子機器100にて読取可能な記録媒体に記録し、この記録媒体に記録されたプログラムを電子機器100に読み込ませ、実行するものであっても良い。電子機器100にて読取可能な記録媒体とは、フロッピー(登録商標)ディスク、光磁気ディスク、DVD、CDなどの移設可能な記録媒体の他、電子機器100に内蔵されたROM、RAM等のメモリやHDD等を指す。この記録媒体に記録されたプログラムは、電子機器100に設けられた制御部160にて読み込まれ、制御部160の制御によって、上述したものと同様の処理が行われる。ここで、制御部160は、プログラムが記録された記録媒体から読み込まれたプログラムを実行するコンピュータとして動作するものである。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年11月18日に出願された日本出願特願2010-257984を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (7)

  1.  電子機器であって、
     地磁気を検出する地磁気センサと、
     当該電子機器の動きを検出する動作センサと、
     前記地磁気センサが検出した結果と前記動作センサが検出した結果とに基づいて、当該電子機器の方位を計測し、前記動作センサが当該電子機器の静止を検出している間は、前記動作センサが検出した結果のみに基づいて、当該電子機器の方位を計測する制御部と、
     前記制御部が計測した方位を表示する表示部とを有する電子機器。
  2.  請求項1に記載の電子機器において、
     前記制御部は、前記動作センサが当該電子機器の静止を検出した場合、前記地磁気センサの動作を停止させることを特徴とする電子機器。
  3.  請求項1に記載の電子機器において、
     前記動作センサは、加速度センサであることを特徴とする電子機器。
  4.  請求項1に記載の電子機器において、
     前記動作センサは、ジャイロセンサであることを特徴とする電子機器。
  5.  請求項1に記載の電子機器において、
     前記動作センサは、当該電子機器の振動を検出するセンサであることを特徴とする電子機器。
  6.  電子機器の方位を計測する方位計測方法であって、
     地磁気を検出する地磁気検出処理と、
     当該電子機器の動きを検出する動作検出処理と、
     前記地磁気検出処理にて検出された結果と前記動作検出処理にて検出された結果とに基づいて、当該電子機器の方位を計測する処理と、
     前記動作検出処理にて当該電子機器の静止が検出されている間は、前記動作検出処理にて検出された結果のみに基づいて、当該電子機器の方位を計測する処理と、
     前記計測した方位を表示する処理とを行う方位計測方法。
  7.  電子機器に、
     地磁気を検出する地磁気検出手順と、
     当該電子機器の動きを検出する動作検出手順と、
     前記地磁気検出手順にて検出された結果と前記動作検出手順にて検出された結果とに基づいて、当該電子機器の方位を計測する手順と、
     前記動作検出手順にて当該電子機器の静止が検出されている間は、前記動作検出手順にて検出された結果のみに基づいて、当該電子機器の方位を計測する手順と、
     前記計測した方位を表示する手順とを実行させるためのプログラム。
PCT/JP2011/071611 2010-11-18 2011-09-22 電子機器 WO2012066850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/881,264 US9366533B2 (en) 2010-11-18 2011-09-22 Electronic device
CN201180054905.1A CN103210277B (zh) 2010-11-18 2011-09-22 电子设备
JP2012544144A JPWO2012066850A1 (ja) 2010-11-18 2011-09-22 電子機器
EP11842308.6A EP2642248A4 (en) 2010-11-18 2011-09-22 ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257984 2010-11-18
JP2010-257984 2010-11-18

Publications (1)

Publication Number Publication Date
WO2012066850A1 true WO2012066850A1 (ja) 2012-05-24

Family

ID=46083793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071611 WO2012066850A1 (ja) 2010-11-18 2011-09-22 電子機器

Country Status (5)

Country Link
US (1) US9366533B2 (ja)
EP (1) EP2642248A4 (ja)
JP (1) JPWO2012066850A1 (ja)
CN (1) CN103210277B (ja)
WO (1) WO2012066850A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176704A (ja) * 2015-03-18 2016-10-06 アルプス電気株式会社 地磁気センサと加速度センサを搭載した電子機器
WO2022010156A1 (ko) * 2020-07-09 2022-01-13 삼성전자 주식회사 전자 장치의 지자기 센서 보정 방법 및 그 전자 장치

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619090A (zh) * 2013-10-23 2014-03-05 深迪半导体(上海)有限公司 基于微型惯性传感器舞台灯光自动定位和追踪系统和方法
CN112817424A (zh) * 2019-11-18 2021-05-18 Oppo广东移动通信有限公司 实现指南针应用的方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278137A (ja) 1995-04-07 1996-10-22 Sony Corp 方位出力装置
JP2005291932A (ja) 2004-03-31 2005-10-20 Kyocera Corp 携帯通信端末とその地磁気センサの誤差補正方法
JP2006047038A (ja) 2004-08-03 2006-02-16 Yamaha Corp 地磁気センサの補正方法
JP2006275523A (ja) * 2005-03-28 2006-10-12 Citizen Watch Co Ltd 電子方位装置および記録媒体
WO2009008411A1 (ja) * 2007-07-09 2009-01-15 Sony Corporation 電子機器及びその制御方法
JP2010257984A (ja) 2008-04-01 2010-11-11 Toyota Motor Corp 二次電池システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991692A (en) * 1995-12-28 1999-11-23 Magellan Dis, Inc. Zero motion detection system for improved vehicle navigation system
JP3505494B2 (ja) 2000-09-11 2004-03-08 川崎重工業株式会社 移動体の方位推定装置および位置推定装置
JP3886005B2 (ja) 2002-09-26 2007-02-28 Necトーキン株式会社 姿勢角度検出装置
JP4167263B2 (ja) * 2004-07-15 2008-10-15 株式会社シーアンドエヌ 携帯端末装置
US7219033B2 (en) * 2005-02-15 2007-05-15 Magneto Inertial Sensing Technology, Inc. Single/multiple axes six degrees of freedom (6 DOF) inertial motion capture system with initial orientation determination capability
US7421340B2 (en) 2005-02-28 2008-09-02 Vectronix Ag Method, apparatus and computer program for azimuth determination e.g. for autonomous navigation applications
KR20060111246A (ko) 2005-04-21 2006-10-26 삼성전기주식회사 2축 지자기센서와 가속도센서를 이용한 기울임 보상 방법및 그 장치
KR100653081B1 (ko) 2005-11-25 2006-12-04 삼성전자주식회사 지자기 센서 및 그 방위각 산출 방법
JP4915996B2 (ja) 2006-10-06 2012-04-11 株式会社リコー センサ・モジュール、補正方法、プログラム及び記録媒体
JP5070428B2 (ja) 2006-10-23 2012-11-14 アイチ・マイクロ・インテリジェント株式会社 電子コンパス及び方位測定方法
JP2008309594A (ja) 2007-06-13 2008-12-25 Sumitomo Precision Prod Co Ltd 慣性計測装置
US8005635B2 (en) * 2007-08-14 2011-08-23 Ching-Fang Lin Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)
JP2009122041A (ja) 2007-11-16 2009-06-04 Ricoh Co Ltd 複合センサー
JP5125534B2 (ja) 2008-01-17 2013-01-23 富士通株式会社 方位検出装置および方位検出プログラム
JP4941343B2 (ja) 2008-02-07 2012-05-30 富士通株式会社 移動方向算出装置および移動方向算出プログラム
WO2010001968A1 (ja) * 2008-07-02 2010-01-07 独立行政法人産業技術総合研究所 移動体の測位装置
CN101387518B (zh) * 2008-11-05 2010-10-27 北京科技大学 一种具有加减速补偿功能的车辆用磁电子罗盘及其测量方法
JP5263956B2 (ja) 2009-01-23 2013-08-14 Necカシオモバイルコミュニケーションズ株式会社 電子機器及びプログラム
CN102297693B (zh) * 2010-06-24 2013-03-27 鼎亿数码科技(上海)有限公司 测量物体位置和方位的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278137A (ja) 1995-04-07 1996-10-22 Sony Corp 方位出力装置
JP2005291932A (ja) 2004-03-31 2005-10-20 Kyocera Corp 携帯通信端末とその地磁気センサの誤差補正方法
JP2006047038A (ja) 2004-08-03 2006-02-16 Yamaha Corp 地磁気センサの補正方法
JP2006275523A (ja) * 2005-03-28 2006-10-12 Citizen Watch Co Ltd 電子方位装置および記録媒体
WO2009008411A1 (ja) * 2007-07-09 2009-01-15 Sony Corporation 電子機器及びその制御方法
JP2010257984A (ja) 2008-04-01 2010-11-11 Toyota Motor Corp 二次電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2642248A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176704A (ja) * 2015-03-18 2016-10-06 アルプス電気株式会社 地磁気センサと加速度センサを搭載した電子機器
WO2022010156A1 (ko) * 2020-07-09 2022-01-13 삼성전자 주식회사 전자 장치의 지자기 센서 보정 방법 및 그 전자 장치

Also Published As

Publication number Publication date
CN103210277B (zh) 2016-03-23
EP2642248A4 (en) 2016-02-24
CN103210277A (zh) 2013-07-17
EP2642248A1 (en) 2013-09-25
JPWO2012066850A1 (ja) 2014-05-12
US20130218515A1 (en) 2013-08-22
US9366533B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP6359067B2 (ja) 方位データを改善するためのシステムおよび方法
US11473894B2 (en) Computing system implementing an algorithm for fusing data from inertial sensors, and method
US9448250B2 (en) Detecting mount angle of mobile device in vehicle using motion sensors
JP5194180B2 (ja) モーションセンシングプログラム及びそれを備えた電子コンパス
US20100136957A1 (en) Method and apparatus for determining a user input from inertial sensors
JP6098874B2 (ja) 撮像装置および画像処理装置
KR20110066969A (ko) 움직임 센서들을 사용하는 가상 버튼들의 생성
JP2007248477A (ja) 勾配の影響を補償し方位角を演算する地磁気センサー、およびその演算方法
WO2012066850A1 (ja) 電子機器
JP2006170997A (ja) 方位角を測定する地磁気センサ及びその方法
JP2008224642A (ja) 磁気式ジャイロ
JP6474128B2 (ja) 地磁気センサと加速度センサを搭載した電子機器
CA2803376A1 (en) Methods and devices for detecting magnetic interference affecting the operation of a magnetometer
JP5560413B2 (ja) 磁気式ジャイロ
JP2006275523A (ja) 電子方位装置および記録媒体
US9360497B2 (en) Controlling sensor use on an electronic device
JP5125534B2 (ja) 方位検出装置および方位検出プログラム
JP2011071568A (ja) コマンド入力システム
JP3772806B2 (ja) 磁気方位検出方式および磁気方位検出方法
US20130191067A1 (en) Systems and Methods for Reliable Motion Control of Virtual Tour Applications
JP5302099B2 (ja) 車載用電子コンパス
EP2703778A1 (en) Controlling sensor operation in an electronic device
JP2009103542A (ja) 慣性センサ装置及び慣性センサ装置を備えた電子機器
JP2012090132A (ja) 状態検出装置、状態検出方法、状態検出プログラム、携帯端末、および制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180054905.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011842308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881264

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012544144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE