WO2012066790A1 - 洋上風車設置用船舶およびこれを用いた洋上風車設置方法 - Google Patents

洋上風車設置用船舶およびこれを用いた洋上風車設置方法 Download PDF

Info

Publication number
WO2012066790A1
WO2012066790A1 PCT/JP2011/050480 JP2011050480W WO2012066790A1 WO 2012066790 A1 WO2012066790 A1 WO 2012066790A1 JP 2011050480 W JP2011050480 W JP 2011050480W WO 2012066790 A1 WO2012066790 A1 WO 2012066790A1
Authority
WO
WIPO (PCT)
Prior art keywords
windmill
ship
installation
anchor
wind turbine
Prior art date
Application number
PCT/JP2011/050480
Other languages
English (en)
French (fr)
Inventor
貴之 澤井
均 熊本
友則 渡部
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012066790A1 publication Critical patent/WO2012066790A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/003Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for for transporting very large loads, e.g. offshore structure modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/24Anchors
    • B63B21/26Anchors securing to bed
    • B63B21/29Anchors securing to bed by weight, e.g. flukeless weight anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/40Arrangements or methods specially adapted for transporting wind motor components
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to an offshore windmill installation ship and an offshore windmill installation method using the same.
  • an automatic elevator platform equipped with a jack-up device and a deck crane is used.
  • Wind turbine parts such as split or partially joined wind turbine blades, a nacelle containing a generator and gearbox, and a tower, and a basic structure built from the bottom of the ocean to install a wind turbine on the ocean are loaded on this automatic elevator platform ship. Is included.
  • the jack crane on the carriage was used with the jack-up legs of the jack-up device lowered to the seabed and the hull completely lifted to the sea surface. The windmill is assembled.
  • Most existing windmill installation boats can load two or three windmill parts and foundation structures at a time. After loading the windmill parts and the foundation structure at the accumulation port, they moved to the installation sea area, installed the number of windmills and the foundation structure loaded, and then returned to the accumulation port to repeat transportation and installation of the windmill.
  • an automatic elevator carrier is resident exclusively for windmill installation work in the sea area where the windmill is installed, while another automatic elevator carrier is used for parts transportation.
  • a plurality of windmill parts and foundation structures are loaded from the accumulation port onto the parts transport trolley, stopped next to the resident windmill dedicated trolley, jacked up, and then the deck for the dedicated trolley installation Lift the wind turbine parts and the foundation structure loaded on the parts transport trolley with a crane, and perform the installation work as it is.
  • the current construction methods as described above are expected to require enormous costs for offshore installation work from the viewpoint of installation work time and cost of trolley vessels, and their reduction and improvement are major issues.
  • the problem of the installation work time is that the windmill installation area is further away from the shore than the current situation, so the round trip time from the accumulation port to the installation sea area will increase, and the water depth of the installation sea area will deepen more than before.
  • the time required to move up and down by the jack-up device is increased, and the time work efficiency is lowered by reducing the number of wind turbines that can be transported at once by the equipment currently used due to the increase in the size of the wind turbine to be used.
  • the problem of trolley ship costs is that the demand for work trolleys increases due to an increase in construction volume, and the size of trolleys and the capacity of jack-up devices and deck cranes increase with the increase in the size of wind turbines used. The ship price will increase.
  • Patent Document 1 discloses a system in which an offshore wind turbine is installed by using the foundation of the wind turbine as a floating body, towing to the installation sea area, and sinking the floating body into the sea and sitting down. In this way, since the wind turbine is assembled and transported to the installation sea area, there is an advantage that assembly work at the installation site does not occur.
  • Patent Document 1 when installing a windmill, it is necessary to submerge the floating body in the sea while supporting the windmill with a crane ship and maintaining the posture, which is difficult. Moreover, since it is necessary to arrange a crane ship in addition to the towing ship, it is difficult to reduce the cost.
  • the present invention has been made in view of such circumstances, and when a wind turbine in an assembled state is transported and installed in an installation sea area, it requires a short work time and is accompanied by great restrictions due to sea conditions. It is an object of the present invention to provide an offshore wind turbine installation ship that can maintain the hull in a fixed position and an offshore wind turbine installation method using the same.
  • the offshore wind turbine installation ship of the present invention and the offshore wind turbine installation method using the same employ the following means. That is, the offshore wind turbine installation ship according to the first aspect of the present invention includes a wind turbine in which a tower, a nacelle, and a wind turbine blade are assembled, and / or a foundation in which a lower end is fixed to the sea floor and a wind turbine is fixed to the upper end. Is mounted on the deck, self-towed or towed to the wind turbine installation sea area, and the wind turbine or the foundation is lifted by a crane provided on the deck and installed at a target installation position on the ocean.
  • the offshore wind turbine installation ship performs so-called wind turbine integrated installation in which a tower, a nacelle, and wind turbine blades are assembled and / or a foundation is transported and installed as it is to a wind turbine installation sea area. Therefore, the assembly work in the sea area where the windmill is installed can be omitted. Further, since the windmill and the foundation are lifted by the crane provided on the deck, it is not necessary to provide a large equipment other than the crane. Thereby, a wide deck space can be secured.
  • SWATH Small Waterplane Area Twin Hull
  • TLP tension mooring platform
  • DPS Dynamic The position and attitude of the hull may be further stabilized by the Positioning System).
  • the anchor includes a tank capable of taking in and out ballast water, and gas supply means for supplying gas into the tank is provided. Preferably it is.
  • the anchor is provided with a tank in which ballast water can be taken in and out, and gas supply means for supplying a gas such as air is provided in the tank.
  • gas supply means for supplying a gas such as air is provided in the tank.
  • the offshore wind turbine installation method includes a wind turbine in which a tower, a nacelle, and a wind turbine blade are assembled, and / or a foundation in which a lower end is fixed to the seabed and a wind turbine is fixed to the upper end.
  • a windmill installation method wherein the offshore windmill installation ship is a small waterline area catamaran, an anchor, a winch that allows the anchor to move between the ship bottom side and the seabed, and the anchor It is a tension mooring type platform provided with a mooring line that gives a predetermined tension between the hull and the hull.
  • the offshore wind turbine installation method performs wind turbine integrated installation in which a tower, a nacelle, and wind turbine blades are assembled and / or a foundation is transported and installed as it is to a wind turbine installation sea area. Therefore, the assembly work in the sea area where the windmill is installed can be omitted. Further, since the windmill and the foundation are lifted by the crane provided on the deck, it is not necessary to provide a large equipment other than the crane. Thereby, a wide deck space can be secured.
  • SWATH Small Waterplane Area Twin Hull
  • TLP tension mooring platform
  • DPS Dynamic The position and attitude of the hull may be further stabilized by the Positioning System).
  • the anchor includes a tank capable of taking in and out ballast water, gas supply means for supplying gas into the tank is provided, and the anchor When winding up, it is preferable to discharge the ballast water in the tank and supply gas into the tank.
  • the anchor is provided with a tank in which ballast water can be taken in and out, and gas supply means for supplying a gas such as air is provided in the tank.
  • gas supply means for supplying a gas such as air is provided in the tank.
  • the offshore wind turbine installation ship of the present invention since the wind turbine and the foundation in which the tower, nacelle and wind turbine blades are assembled are transported as they are to the wind turbine installation sea area, so-called wind turbine integrated installation is performed. Can be omitted. Further, since the windmill and the foundation are lifted by the crane provided on the deck, it is not necessary to provide a large equipment other than the crane. Thereby, a wide deck space can be secured. In addition, the combination of a small waterline area catamaran (SWATH) ship and a tension mooring platform (TLP) can greatly reduce the swaying of the hull, so that the scaffolding work can be fixed by jacking up like a jack-up ship.
  • SWATH small waterline area catamaran
  • TLP tension mooring platform
  • FIG. 1 shows an offshore wind turbine installation ship 1 (hereinafter simply referred to as “ship 1”) according to the present embodiment.
  • the ship 1 performs so-called windmill integrated installation in which a windmill assembled in advance is transported and installed as it is to a windmill installation sea area. That is, the tower 5, the nacelle 7 and the wind turbine blade 9 are assembled in advance on the land side, and the wind turbine 3 is loaded on the ship 1 as it is. Then, the wind turbine is towed by a self-navigation or towed ship to the installation sea area, and the windmill is installed on the foundation 10 previously installed in the installation sea area as shown in FIG.
  • the ship 1 can be used also when loading the foundation 10 as it is on the land side, transporting to an installation sea area, and installing the foundation 10 in a predetermined position.
  • a crane 14 is provided on the deck 12 of the ship 1.
  • the crane 14 can transfer the windmill 3 on the deck 12 and can install the windmill on the foundation 10. Note that the crane 14 may be configured to be able to load the windmill 3 on the deck 12 from a shore quay on land.
  • a bridge 16 and a residential area 18 are provided on one end side of the hull.
  • Ship 1 is a small waterline area catamaran that is a catamaran with a minimum waterline area, that is, a SWATH (Small Waterplane Area Twin Hull) ship.
  • a SWATH Small Waterplane Area Twin Hull
  • the lower hull 20 is located in the water so as to give a predetermined buoyancy, and lowers the center of gravity by putting in and out ballast such as seawater into the lower hull 20 to give a predetermined restoring force.
  • ballast such as seawater into the lower hull 20 to give a predetermined restoring force.
  • a plurality (six in this embodiment) of anchors 28 connected to the hull via mooring lines 26 are provided below the hull.
  • the hull is provided with a winch (not shown) for raising and lowering the anchor 28 by hoisting or lowering the mooring line 26.
  • These mooring lines 26, anchors 28 and winches constitute a tension mooring platform (TLP). That is, by applying a predetermined tension to the mooring line 26 and drawing the hull to the underwater side, the vertical shaking of the hull is reduced.
  • the total weight of the anchor 28 is sufficient to prevent the anchor 28 from floating from the seabed when an increase in buoyancy due to waves assumed during the installation work of the windmill, a hull motion, a decrease in the weight of the cargo immediately after the installation of the windmill, etc. Is set to have.
  • the mooring line 26 For the mooring cable 26, a steel wire rope or a synthetic fiber cable is preferably used.
  • the mooring line 26 has a specification that has sufficient rigidity to withstand the buoyancy increase caused by waves assumed during work, the hull motion, the weight reduction immediately after installation of the windmill, and the tension load due to all loads of the initial tension.
  • the initial tension means a load corresponding to a buoyancy fluctuation due to a wave amplitude assumed during a windmill installation operation when the anchor 28 is seated on the seabed.
  • a plurality of thrusters 30 which are propeller propulsion devices are provided on the lower surface of the lower hull 20.
  • the position and posture of the hull can be more stably fixed by a DPS (Dynamic Positioning System) that controls the thrusters 30.
  • DPS Dynamic Positioning System
  • Installation of the offshore wind turbine using the above-described ship 1 is performed as follows.
  • the wind turbine 3 is pre-assembled on a pedestal for loading at the shore quay, and then the pedestal is loaded on the deck 12 of the ship 1 by the land crane or the crane 14 of the ship 1.
  • the ship 1 is self-navigated or towed to the windmill-installed sea area and transported.
  • the winch is lowered, and the anchor 28 is seated on the seabed.
  • the tension is adjusted by the winch so that the load corresponding to the buoyancy fluctuation due to the wave amplitude assumed during the windmill installation work is applied to the mooring line 26 as the initial tension.
  • the horizontal movement of the hull under steady loads such as waves, tidal currents, and winds is controlled by DPS, and the hull is held at a fixed position.
  • the entire wind turbine 3 is lifted by the crane 14 on the deck 12 and installed on the foundation 10.
  • the winch is wound up to lift the anchor 28 from the seabed and move to the next installation location.
  • the combination of a small waterline area catamaran (SWATH) ship and a tension mooring platform (TLP) can greatly reduce the hull sway, eliminating the need for fixing the scaffolding by jacking up like a jack-up ship.
  • the installation work time of the windmill 3 and the foundation 10 can be shortened.
  • jack-up since jack-up is not used, installation work can be performed even under sea conditions that are severer than the maximum wave height of jack-up work, and downtime can be reduced due to sea conditions.
  • FIGS. 1 and 2 a second embodiment of the present invention will be described with reference to FIGS.
  • This embodiment uses a so-called windmill integrated installation that transports and installs a pre-assembled windmill as it is to the sea where the windmill is installed, a small waterline area catamaran (SWATH) ship, a tension mooring platform (TLP) and a DSP.
  • SWATH small waterline area catamaran
  • TLP tension mooring platform
  • DSP tension mooring platform
  • the anchor 32 includes an anchor body 34 and a plurality of tanks 36.
  • the anchor main body 34 is made of metal and has, for example, a rectangular parallelepiped box shape extending in the longitudinal direction of the hull as illustrated.
  • a plurality of tanks 36 are fixed on the upper surface of the anchor main body 34 along the longitudinal direction of the anchor main body 34.
  • the tank 36 has a spherical shape, and a submerged pump (not shown) is provided inside. By this submerged pump, the seawater in the tank 36 is discharged to the outside, and the outside seawater is sucked in.
  • the tank 36 is connected to an air supply hose (not shown). Air is supplied into the tank 36 by the air supply hose (gas supply means).
  • the anchor 32 of this embodiment is used as follows. During navigation, as shown in FIG. 3, the anchor 32 is in a state of being pulled up to the vicinity of the ship bottom. At this time, the seawater in the tank 36 is full. However, a predetermined buoyancy may be obtained by supplying air into the tank 36. When the windmill installation sea area is reached and the windmill installation work is performed, the mooring cable 26 is extended and the anchor 32 is seated on the seabed to perform the windmill installation work. This is the same as in the first embodiment. When the windmill installation work is completed, the work of lifting the anchor 32 is performed.
  • seawater in the tank 36 is discharged to the outside by the submersible pump, and air is supplied into the tank 36 by the air supply hose so that the pressure in the tank 36 does not become negative.
  • the weight of the anchor 32 is very large, the required capacity of the winch can be reduced and the number of mooring lines 26 can be reduced.
  • the number of wind turbines mounted on the ship 1 is large, and the larger the size of the ship 1, the more effective.
  • the anchor 40 includes an anchor body 42 having a box shape.
  • the anchor main body 42 is a rectangular parallelepiped extending in the longitudinal direction of the ship 1.
  • the anchor main body 42 of the present embodiment also serves as the tank shown in the second embodiment.
  • a submerged pump 44 is disposed in the anchor main body 42.
  • a power feeding cable 46 is led to the submerged pump 44 from the ship 1 side.
  • the power supply cable 46 is fed out from a power supply cable reel 48 installed on the ship 1 side and wound up.
  • a tank lift cable 50 is connected to the upper end of the anchor main body 42.
  • the tank lifting / lowering cable 50 is fed from a tank lifting / lowering cable reel 52 installed on the ship 1 side and wound up.
  • Mooring lines 26 are connected to the four corners at the upper end of the anchor main body 42, respectively.
  • the mooring line 26 is unwound from a mooring line reel 54 installed on the ship 1 side and is wound up.
  • the tension applied to the mooring line 26 is adjusted by the mooring line reel 54.
  • An air supply hose 56 for supplying air into the anchor body 42 is connected to the upper end of the anchor body 42.
  • the air supply hose 56 is unwound from an air supply hose reel 58 installed on the ship 1 side and is wound up.
  • a predetermined amount of fixed ballast is accommodated inside the anchor main body 42.
  • the anchor 40 of this embodiment is used as follows.
  • the mooring cable 26 is drawn out and the anchor 40 is seated on the seabed to perform the windmill installation work. This is the same as in the above embodiments.
  • the work of lifting the anchor 40 is performed.
  • the seawater in the anchor main body 42 is discharged to the outside by the submersible pump 44 in the anchor main body 42, and the air supply hose 56 enters the anchor main body 42 so that the pressure in the anchor main body 42 does not become negative. Supply air.
  • a buoyancy can be given and the load of the winch which winds up the anchor 40 can be reduced.
  • the required capacity of the winch can be reduced and the number of mooring lines 26 can be reduced.
  • the number of wind turbines mounted on the ship 1 is large, and the larger the size of the ship 1, the more effective.
  • it can be set as a simple structure with few components by the point which does not require the tank 36 (refer FIG. 2).
  • tank type anchor 40 of this embodiment can also be used as an anchor of the ship 1 of 1st Embodiment mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

 短い作業時間で、しかも海象条件による大きな制約を伴わずに船体を定位置に維持することが出来る洋上風車設置用船舶およびこれを用いた洋上風車設置方法を提供する。 タワー(5)、ナセル(7)及び風車翼(9)が組み立てられた風車(3)をデッキ(12)上に搭載し、風車設置海域まで自航または曳航し、デッキ(12)上に設けられたクレーン(14)によって風車(3)を吊り上げて洋上の目標設置位置に設置する洋上風車設置用船舶(1)であって、小水線面積双胴船とされるとともに、アンカー(28)、アンカー(28)を船底側と海底との間で移動可能とするウインチ、及びアンカー(28)と船体との間に所定の張力を与える係留索(26)を備えた緊張係留式プラットフォームとされている洋上風車設置用船舶(1)である。

Description

洋上風車設置用船舶およびこれを用いた洋上風車設置方法
 本発明は、洋上風車設置用船舶およびこれを用いた洋上風車設置方法に関するものである。
 現在、欧州では、洋上風車建設が盛んに行われており、今後益々その規模が拡大し、洋上における設置工事量が大幅に増大する傾向にある。さらに、風車の設置海域も岸からより遠く、大水深海域での風車設置が計画されており、使用される風車自体も大型化の傾向にある。
 洋上風車の設置作業は、ジャッキアップ装置及びデッキクレーンを備えた自動昇降台船が用いられる。この自動昇降台船上に、分割または一部接合された風車翼、発電機・増速機を内包したナセル、タワーといった風車パーツや、洋上に風車を設置するために海底から築かれる基礎構造が積込まれる。そして、自動昇降台船を自航または曳航により風車設置海域まで運搬した後、ジャッキアップ装置のジャッキアップ脚を海底へ降ろして船体を海面上へ完全に持ち上げた状態で台船上のデッキクレーンを用いて風車の組立作業が行われる。
 既存の大半の風車設置用台船では、風車2~3台分の風車パーツおよび基礎構造を一度に積載できるようになっている。風車パーツおよび基礎構造を集積港にて船積みした後、設置海域へ移動して積載した基数分の風車および基礎構造を設置した後、再び集積港へ戻り、風車の輸送・設置を繰り返している。
 また、風車の設置海域に自動昇降台船を風車設置作業専用として常駐させ、一方で別の自動昇降台船をパーツ輸送用として用いる場合もある。すなわち、集積港から複数の風車パーツ、基礎構造をパーツ輸送用台船に積載し、常駐している風車設置作業専用台船の隣へ停船し、ジャッキアップした後、設置作業専用台船のデッキクレーンでパーツ輸送用台船上に積載された風車パーツおよび基礎構造を吊り上げ、そのまま設置作業を行う。
 しかし、上記のような現状の工法では設置工事時間および台船用船コストの観点で洋上での設置工事に莫大なコストが必要となることが見込まれ、その削減、改善が大きな課題となっている。
 設置工事時間の問題は、風車の設置海域が岸から現状よりも更に遠くなることから集積港から設置海域までの回航時間が増大すること、設置海域の水深がこれまで以上に深まることで台船をジャッキアップ装置により昇降する時間が増大すること、また使用する風車の大型化により現状使用している機材で一度に輸送できる風車の台数が減ることにより時間的作業効率が下がることが挙げられる。
 台船用船コストの問題は、工事量の増大により作業台船需要が増大すること、使用する風車の大型化に伴い台船のサイズ、ジャッキアップ装置やデッキクレーンの容量が大きくなることで台船の船価が増大することが挙げられる。
 一方、下記特許文献1には、風車の基礎を浮体とし、設置海域まで曳航し、浮体を海中に沈めて着座させることによって洋上風車を設置する方式が開示されている。このように、風車を組み立てた状態で設置海域まで運搬して設置するので、設置現場での組み立て作業が発生しないという利点がある。
特開2005-69025号公報
 しかし、特許文献1では、風車を設置する際に、クレーン船によって風車を支持して姿勢を保ちながら浮体を海中に沈める必要があり、困難な作業が伴う。また、曳航船に加えてクレーン船をも手配する必要があるので、コストの低減を図ることが難しい。
 また、組み立てられた風車を船舶で設置海域まで運搬し設置するいわゆる風車一体設置を行う際に、船体を固定するために上述のようなジャッキアップ船を用いた場合、ジャッキアップによる足場固定作業に時間がかかるという問題がある。さらに、ジャッキアップ作業限界波高を超えた場合には作業が中止されるので海象によるダウンタイムが問題となる。
 本発明は、このような事情に鑑みてなされたものであって、組み立てられた状態の風車を運搬して設置海域にて設置する場合に、短い作業時間で、しかも海象条件による大きな制約を伴わずに船体を定位置に維持することができる洋上風車設置用船舶およびこれを用いた洋上風車設置方法を提供することを目的とする。
 上記課題を解決するために、本発明の洋上風車設置用船舶およびこれを用いた洋上風車設置方法は以下の手段を採用する。
 すなわち、本発明の第1の態様にかかる洋上風車設置用船舶は、タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、下端が海底に固定されるとともに上端に風車が固定される基礎をデッキ上に搭載し、風車設置海域まで自航または曳航し、前記デッキ上に設けられたクレーンによって前記風車または前記基礎を吊り上げて洋上の目標設置位置に設置する洋上風車設置用船舶であって、小水線面積双胴船とされるとともに、アンカー、該アンカーを船底側と海底との間で移動可能とするウィンチ、及び該アンカーと船体との間に所定の張力を与える係留索を備えた緊張係留式プラットフォームとされたものである。
 本発明の第1の態様にかかる洋上風車設置用船舶は、タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、基礎をそのまま風車設置海域まで運搬し設置するいわゆる風車一体設置を行う。したがって、風車の設置海域における組み立て作業を省略することができる。
 また、デッキ上に設けたクレーンによって風車や基礎を吊り上げることとしたので、クレーンの他に大きな装備品を設ける必要がなくなる。これにより、広いデッキスペースを確保することができる。
 また、水線面積を最小限とした双胴船である小水線面積双胴船すなわちSWATH(Small Waterplane Area Twin Hull)船とされているので、波浪による船体の動揺を低減することができる。加えて、アンカー、ウィンチ及び係留索を備えた緊張係留式プラットフォーム(TLP;Tension Leg Platform)とされているので、さらに船体の動揺を低減することができる。このように、SWATHとTLPとの組み合わせにより船体の動揺を大幅に低減することができるので、ジャッキアップ船のようにジャッキアップによる足場固定作業を省略することができ、風車や基礎の設置作業時間を短縮できる。また、ジャッキアップを用いないので、ジャッキアップ作業限界波高よりも厳しい海象条件下でも設置作業が可能となり、海象によるダウンタイム削減が可能となる。
 なお、スラスタを用いたDPS(Dynamic
Positioning System)によって船体の位置および姿勢を更に安定化することとしても良い。
 さらに、本発明の第1の態様にかかる洋上風車設置用船舶においては、前記アンカーは、バラスト水を出し入れ可能とされたタンクを備え、該タンク内に気体を供給する気体供給手段が設けられていることが好ましい。
 アンカーは、バラスト水を出し入れ可能とされたタンクを備え、このタンク内に空気等の気体を供給する気体供給手段を設けることとした。これにより、アンカーの重量および浮力を調整することができる。アンカーの巻上の際には、タンク内のバラスト水を排出とともに気体をタンク内に供給することで、アンカーの重量を減じるとともに浮力を与える。これにより、アンカーを巻き上げるウィンチの負荷を減らすことができ、ウィンチの必要容量を小さくすることができるとともに、係留索の本数を減らすことができる。
 また、本発明の第2の態様にかかる洋上風車設置方法は、タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、下端が海底に固定されるとともに上端に風車が固定される基礎をデッキ上に搭載し、風車設置海域まで自航または曳航し、前記デッキ上に設けられたクレーンによって前記風車または前記基礎を吊り上げて洋上の目標設置位置に設置する洋上風車設置用船舶を用いた洋上風車設置方法であって、前記洋上風車設置用船舶は、小水線面積双胴船とされるとともに、アンカー、該アンカーを船底側と海底との間で移動可能とするウィンチ、及び該アンカーと船体との間に所定の張力を与える係留索を備えた緊張係留式プラットフォームとされていることを特徴とする。
 本発明の第2の態様にかかる洋上風車設置方法は、タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、基礎をそのまま風車設置海域まで運搬し設置するいわゆる風車一体設置を行う。したがって、風車の設置海域における組み立て作業を省略することができる。
 また、デッキ上に設けたクレーンによって風車や基礎を吊り上げることとしたので、クレーンの他に大きな装備品を設ける必要がなくなる。これにより、広いデッキスペースを確保することができる。
 また、水線面積を最小限とした双胴船である小水線面積双胴船すなわちSWATH(Small Waterplane Area Twin Hull)船とされているので、波浪による船体の動揺を低減することができる。加えて、アンカー、ウィンチ及び係留索を備えた緊張係留式プラットフォーム(TLP;Tension Leg Platform)とされているので、さらに船体の動揺を低減することができる。このように、SWATHとTLPとの組み合わせにより船体の動揺を大幅に低減することができるので、ジャッキアップ船のようにジャッキアップによる足場固定作業を省略することができ、風車や基礎の設置作業時間を短縮できる。また、ジャッキアップを用いないので、ジャッキアップ作業限界波高よりも厳しい海象条件下でも設置作業が可能となり、海象によるダウンタイム削減が可能となる。
 なお、スラスタを用いたDPS(Dynamic
Positioning System)によって船体の位置および姿勢を更に安定化することとしても良い。
 さらに、本発明の第2の態様にかかる洋上風車設置方法では、前記アンカーは、バラスト水を出し入れ可能とされたタンクを備え、該タンク内に気体を供給する気体供給手段が設けられ、前記アンカーの巻上の際には、前記タンク内のバラスト水を排出とともに気体を該タンク内に供給することが好ましい。
 アンカーは、バラスト水を出し入れ可能とされたタンクを備え、このタンク内に空気等の気体を供給する気体供給手段を設けることとした。これにより、アンカーの重量および浮力を調整することができる。そして、アンカーの巻上の際には、タンク内のバラスト水を排出とともに気体をタンク内に供給することで、アンカーの重量を減じるとともに浮力を与える。これにより、アンカーを巻き上げるウィンチの負荷を減らすことができ、ウィンチの必要容量を小さくすることができるとともに、係留索の本数を減らすことができる。
 本発明の洋上風車設置用船舶によれば、タワー、ナセル及び風車翼が組み立てられた風車や基礎をそのまま風車設置海域まで運搬し設置するいわゆる風車一体設置を行うので、風車の設置海域における組み立て作業を省略することができる。
 また、デッキ上に設けたクレーンによって風車や基礎を吊り上げることとしたので、クレーンの他に大きな装備品を設ける必要がなくなる。これにより、広いデッキスペースを確保することができる。
 また、小水線面積双胴(SWATH)船と緊張係留式プラットフォーム(TLP)との組み合わせにより船体の動揺を大幅に低減することができるので、ジャッキアップ船のようにジャッキアップによる足場固定作業を省略することができ、風車や基礎の設置作業時間を短縮できる。また、ジャッキアップを用いないので、ジャッキアップ作業限界波高よりも厳しい海象条件下でも設置作業が可能となり、海象によるダウンタイム削減が可能となる。
本発明の第1実施形態にかかる洋上風車設置用船舶を示した斜視図である。 本発明の第2実施形態にかかる洋上風車設置用船舶を示した斜視図である。 図2の洋上風車設置用船舶を下方から見た斜視図である。 本発明の第3実施形態にかかる洋上風車設置用船舶を示した横断面図である。 図4に示したアンカーを船底側からみた底面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 図1には、本実施形態にかかる洋上風車設置用船舶1(以下、単に「船舶1」という。)が示されている。この船舶1は、予め組み立てられた風車をそのまま風車設置海域まで運搬し設置するいわゆる風車一体設置を行うものである。すなわち、陸側にてタワー5、ナセル7及び風車翼9を予め組み立てておき、この風車3をそのまま船舶1に積み込む。そして、設置海域まで自航または曳航船によって曳航され、図1に示すように設置海域に予め設置されている基礎10上に風車を設置する。なお、船舶1は、基礎10を陸側にてそのまま積み込み、設置海域まで運搬して所定位置に基礎10を設置する際にも使用することができる。
 船舶1のデッキ12上には、クレーン14が設けられている。クレーン14は、風車3をデッキ12上にて移送するとともに、基礎10上に風車を設置することができる。なお、クレーン14は、陸上の岸壁からデッキ12上に風車3を積み込むことができるようになっていてもよい。
 船体の一端側には、船橋16及び居住区18が設けられている。
 船舶1は、水線面積を最小限とした双胴船である小水線面積双胴船すなわちSWATH(Small Waterplane Area Twin Hull)船とされている。具体的には、船体の下方には船体の長手方向に延在するロワーハル20が2つ並列に設けられている。各ロワーハル20は、略鉛直方向に立設したストラット22によって船体上部24に接続されている。ロワーハル20は所定の浮力を与えるだけの大きさで水中に位置し、ロワーハル20内に海水等のバラストの出し入れによって重心を下げ所定の復原力を与える。このバラストの調整によって、喫水は、おおよそストラット22の中間位置に保たれる。
 船体の下方には、係留索26を介して船体に接続された複数(本実施形態では6つ)のアンカー28が設けられている。船体には、係留索26を巻き上げ又は巻き下げることによってアンカー28を昇降するためのウィンチ(図示せず)が設けられている。これら、係留索26、アンカー28及びウィンチによって緊張係留式プラットフォーム(TLP;Tension Leg Platform)が構成される。すなわち、係留索26に所定の張力を与えて船体を水中側に引き込むことで、船体の垂直方向の動揺を低減する。したがって、アンカー28の総重量は、風車の設置作業中に想定される波浪による浮力増加や、船体運動、風車設置直後の載貨重量減少などが生じた場合に、海底から浮き上がらないために十分な重量を有するように設定されている。
 係留索26には、鋼製ワイヤーロープや合成繊維索が好適に用いられる。また、係留索26は、作業中に想定される波浪による浮力増加や、船体運動、風車設置直後の載貨重量減少、初期張力の全ての荷重による緊張荷重に十分耐えうる剛性を備えた仕様とされている。ここで、初期張力とは、アンカー28を海底に着座させる際、風車設置作業中に想定される波浪振幅による浮力変動分の荷重を意味する。
 ロワーハル20の下面には、プロペラ推進装置である複数のスラスタ30が設けられている。風車3や基礎10の設置作業時には、これらスラスタ30を制御するDPS(Dynamic Positioning System)によって、船体の位置および姿勢を更に安定的に固定することができるようになっている。
 上述の船舶1を用いた洋上風車の設置は以下のように行われる。
 風車3を陸上の岸壁にて、船積み用の台座上で予め組立てた後、台座ごと陸上クレーンまたは船舶1のクレーン14により船舶1のデッキ12上へ積載する。
 所定台数の風車3をデッキ12上に積載した後、風車設置海域まで船舶1を自航または曳航させて輸送する。風車設置海域に到達すると、予め設置されている基礎10の近傍で停船し、ウィンチを巻き下げてアンカー28を海底へ着座させる。アンカー28を着座させる際、風車設置作業中に想定される波浪振幅による浮力変動分の荷重を初期張力として係留索26に加わるようにウィンチで張力を調整する。
 また、波浪、潮流、風など定常荷重による船体の水平移動をDPSにより制御し、船体を定位置に保持する。
 そして、デッキ12上のクレーン14によって風車3を1台丸ごと吊り上げ、基礎10上へ据付ける。
 風車3を基礎10上に設置した後に、ウィンチを巻き上げてアンカー28を海底から引き上げ、次の設置場所へ移動する。デッキ12上に搭載してある台数分の風車3を設置し終えたら、基地港へ戻り再度風車を必要台数積込み、上述の作業を繰り返す。
 本実施形態によれば、以下の作用効果を奏する。
 タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、基礎をそのままデッキ12上に搭載して風車設置海域まで運搬し、デッキ12上に設置したクレーン14によって洋上に風車を設置するいわゆる風車一体設置を行うこととしたので、風車設置海域における組み立て作業を省略することができる。
 また、デッキ12上に設けたクレーン14によって風車3や基礎10を吊り上げることとしたので、クレーン14の他に大きな装備品を設ける必要がなくなる。これにより、広いデッキスペースを確保することができる。
 また小水線面積双胴(SWATH)船と緊張係留式プラットフォーム(TLP)との組み合わせにより船体の動揺を大幅に低減することができるので、ジャッキアップ船のようにジャッキアップによる足場固定作業を省略することができ、風車3や基礎10の設置作業時間を短縮できる。また、ジャッキアップを用いないので、ジャッキアップ作業限界波高よりも厳しい海象条件下でも設置作業が可能となり、海象によるダウンタイム削減が可能となる。
[第2実施形態]
 次に、本発明の第2実施形態について、図2及び図3を用いて説明する。
 本実施形態は、予め組み立てられた風車をそのまま風車設置海域まで運搬し設置するいわゆる風車一体設置を行う点、小水線面積双胴(SWATH)船、緊張係留式プラットフォーム(TLP)及びDSPを用いて船体の動揺を低減する点については同様であり、TLPに用いるアンカーの形式が異なる。したがって、第1実施形態と同様の構成については同一符号を付してその説明を省略し、第1実施形態との相違点について説明する。
 アンカー32は、アンカー本体34と、複数のタンク36とを備えている。
 アンカー本体34は、金属製とされており、例えば図示のように船体の長手方向に延在する直方体の箱形形状とされている。
 アンカー本体34の上面には、複数のタンク36がアンカー本体34の長手方向に沿って固定されている。タンク36は、球形とされており、内部に没水式ポンプ(図示せず)が設けられている。この没水式ポンプによって、タンク36内の海水が外部へと排出され、また、外部の海水を吸い込むようになっている。また、タンク36には、図示しないが、空気供給ホースが接続されており。この空気供給ホース(気体供給手段)によって、タンク36内に空気が供給される。
 本実施形態のアンカー32は、以下のように用いられる。
 航行中は、図3に示したように、アンカー32は、船底近傍まで引き上げられた状態とされている。この際、タンク36内の海水は満水とされている。ただし、タンク36内に空気を供給して所定の浮力を得るようにしても良い。
 風車設置海域に到達し、風車設置作業を行う場合には、係留索26を繰り出してアンカー32を海底に着座させ、風車設置作業を行う。これは、第1実施形態と同様である。
 風車設置作業が終了すると、アンカー32を引き上げる作業を行う。先ず、没水式ポンプによってタンク36内の海水を外部へと排出するとともに、タンク36内の圧力が負圧とならないように空気供給ホースによってタンク36内に空気を供給する。これにより、アンカー32の重量を減じるとともに浮力を与え、アンカー32を巻き上げるウィンチの負荷を減らすことができる。このように、本実施形態によれば、アンカー32の重量が非常に大きい場合であっても、ウィンチの必要容量を小さくすることができるとともに、係留索26の本数を減らすことができる。
 特に、船舶1に搭載する風車の台数が多く、船舶1のサイズが大きいほど効果的である。
[第3実施形態]
 次に、本発明の第3実施形態について、図4及び図5を用いて説明する。
 本実施形態は、第2実施形態に対してアンカーの形式が異なり、その他は同様である。したがって、同一の構成については同一符号を付しその説明を省略する。
 図4に示されているように、アンカー40は、箱形形状とされたアンカー本体42を備えている。アンカー本体42は、図5に示されているように、船舶1の長手方向に延在する直方体とされている。本実施形態のアンカー本体42は、第2実施形態に示したタンクの役割も果たす。
 アンカー本体42内には、没水式ポンプ44が配置されている。没水式ポンプ44には、船舶1側から給電ケーブル46が導かれている。給電ケーブル46は、船舶1側に設置した給電ケーブル用リール48から繰り出されるとともに、巻き上げられるようになっている。
 アンカー本体42の上端には、タンク昇降ケーブル50が接続されている。タンク昇降ケーブル50は、船舶1側に設置したタンク昇降ケーブル用リール52から繰り出されるとともに、巻き上げられるようになっている。
 アンカー本体42の上端の四隅には、それぞれ、係留索26が接続されている。係留索26は、船舶1側に設置した係留索用リール54から繰り出されるとともに、巻き上げられるようになっている。この係留索用リール54によって、係留索26に加わる張力が調整される。
 アンカー本体42の上端には、アンカー本体42内に空気を供給する空気供給ホース56が接続されている。空気供給ホース56は、船舶1側に設置した空気供給ホース用リール58から繰り出されるとともに、巻き上げられるようになっている。
 なお、アンカー本体42の内部には、図示していないが、所定量の固定バラストが収容されている。
 本実施形態のアンカー40は、以下のように用いられる。
 風車設置作業を行う際に、係留索26を繰り出してアンカー40を海底に着座させ、風車設置作業を行う。これは、上記の各実施形態と同様である。
 風車設置作業が終了すると、アンカー40を引き上げる作業を行う。先ず、アンカー本体42内の没水式ポンプ44によってアンカー本体42内の海水を外部へと排出するとともに、アンカー本体42内の圧力が負圧とならないように空気供給ホース56によってアンカー本体42内に空気を供給する。これにより、アンカー40の重量を減じるとともに浮力を与え、アンカー40を巻き上げるウィンチの負荷を減らすことができる。このように、本実施形態によれば、アンカー40の重量が非常に大きい場合であっても、ウィンチの必要容量を小さくすることができるとともに、係留索26の本数を減らすことができる。
 特に、船舶1に搭載する風車の台数が多く、船舶1のサイズが大きいほど効果的である。
 また、第2実施形態にくらべて、タンク36(図2参照)を必要としない点で、構成要素が少なく簡便な構成とすることができる。
 なお、本実施形態のタンク式のアンカー40は、上述した第1実施形態の船舶1のアンカーとして用いることもできる。
  1 船舶(洋上風車設置用船舶)
  3 風車
  5 タワー
  7 ナセル
  9 風車翼
 10 基礎
 14 クレーン
 26 係留索
 28,32,40 アンカー

Claims (4)

  1.  タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、下端が海底に固定されるとともに上端に風車が固定される基礎をデッキ上に搭載し、風車設置海域まで自航または曳航し、前記デッキ上に設けられたクレーンによって前記風車または前記基礎を吊り上げて洋上の目標設置位置に設置する洋上風車設置用船舶であって、
     小水線面積双胴船とされるとともに、
     アンカー、該アンカーを船底側と海底との間で移動可能とするウィンチ、及び該アンカーと船体との間に所定の張力を与える係留索を備えた緊張係留式プラットフォームとされている洋上風車設置用船舶。
  2.  前記アンカーは、バラスト水を出し入れ可能とされたタンクを備え、
     該タンク内に気体を供給する気体供給手段が設けられている請求項1に記載の洋上風車設置用船舶。
  3.  タワー、ナセル及び風車翼が組み立てられた風車、及び/又は、下端が海底に固定されるとともに上端に風車が固定される基礎をデッキ上に搭載し、風車設置海域まで自航または曳航し、前記デッキ上に設けられたクレーンによって前記風車または前記基礎を吊り上げて洋上の目標設置位置に設置する洋上風車設置用船舶を用いた洋上風車設置方法であって、
     前記洋上風車設置用船舶は、小水線面積双胴船とされるとともに、
     アンカー、該アンカーを船底側と海底との間で移動可能とするウィンチ、及び該アンカーと船体との間に所定の張力を与える係留索を備えた緊張係留式プラットフォームとされている洋上風車設置方法。
  4.  前記アンカーは、バラスト水を出し入れ可能とされたタンクを備え、
     該タンク内に気体を供給する気体供給手段が設けられ、
     前記アンカーの巻上の際には、前記タンク内のバラスト水を排出とともに気体を該タンク内に供給する請求項3に記載の洋上風車設置方法。
PCT/JP2011/050480 2010-11-18 2011-01-13 洋上風車設置用船舶およびこれを用いた洋上風車設置方法 WO2012066790A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257883A JP2012107585A (ja) 2010-11-18 2010-11-18 洋上風車設置用船舶およびこれを用いた洋上風車設置方法
JP2010-257883 2010-11-18

Publications (1)

Publication Number Publication Date
WO2012066790A1 true WO2012066790A1 (ja) 2012-05-24

Family

ID=46083737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050480 WO2012066790A1 (ja) 2010-11-18 2011-01-13 洋上風車設置用船舶およびこれを用いた洋上風車設置方法

Country Status (2)

Country Link
JP (1) JP2012107585A (ja)
WO (1) WO2012066790A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103670946A (zh) * 2012-08-30 2014-03-26 远景能源(江苏)有限公司 安装离岸风力涡轮机的方法及其运输船
WO2016112919A1 (en) * 2015-01-14 2016-07-21 Envision Energy (Denmark) Aps Method for providing a stable working platform and a vessel thereof
CN111550371A (zh) * 2020-05-29 2020-08-18 中交一航局第二工程有限公司 搭岸装置、搭岸式风电安装船及海上风电安装施工方法
CN113306677A (zh) * 2021-07-09 2021-08-27 江苏亨通蓝德海洋工程有限公司 一种浮式船舶起吊结构及其方法
CN113320646A (zh) * 2021-06-25 2021-08-31 广州星际海洋工程设计有限公司 海上风机安装平台
WO2022098246A1 (en) * 2020-11-09 2022-05-12 Equinor Energy As Installing offshore floating wind turbines
US20220341397A1 (en) * 2019-09-16 2022-10-27 Siemens Gamesa Renewable Energy A/S Method of offshore mounting a wind turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511308A (zh) * 2021-05-14 2021-10-19 福建海电运维科技有限责任公司 一种海上风电运维船的使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262596U (ja) * 1985-10-11 1987-04-18
JP2004001750A (ja) * 2003-06-25 2004-01-08 Penta Ocean Constr Co Ltd 特殊作業船及び洋上構造物の施工方法
JP2009013829A (ja) * 2007-07-03 2009-01-22 Penta Ocean Construction Co Ltd 洋上風力発電装置設置用の双胴船および洋上風力発電装置の設置方法
JP2010076764A (ja) * 2003-05-01 2010-04-08 Navatek Ltd 低抗力没水非対称排水浮揚体
JP2010234980A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd 固定用着底部材、緊張係留浮体システム及びその設置方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433161A (en) * 1993-12-01 1995-07-18 Pacific Marine Supply Co., Ltd. SWAS vessel
JP4575061B2 (ja) * 2004-07-23 2010-11-04 第一建設機工株式会社 洋上風力発電施設の施工方法
CN102079477A (zh) * 2009-11-27 2011-06-01 三一电气有限责任公司 一种风机抱举装置及移动式水上作业平台
CN102079476A (zh) * 2009-11-27 2011-06-01 三一电气有限责任公司 一种风机抱举装置及移动式水上作业平台
PT2436593E (pt) * 2010-10-01 2013-12-05 Nordic Yards Holding Gmbh Navio e processo para o transporte e a instalação de estruturas offshore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262596U (ja) * 1985-10-11 1987-04-18
JP2010076764A (ja) * 2003-05-01 2010-04-08 Navatek Ltd 低抗力没水非対称排水浮揚体
JP2004001750A (ja) * 2003-06-25 2004-01-08 Penta Ocean Constr Co Ltd 特殊作業船及び洋上構造物の施工方法
JP2009013829A (ja) * 2007-07-03 2009-01-22 Penta Ocean Construction Co Ltd 洋上風力発電装置設置用の双胴船および洋上風力発電装置の設置方法
JP2010234980A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd 固定用着底部材、緊張係留浮体システム及びその設置方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103670946A (zh) * 2012-08-30 2014-03-26 远景能源(江苏)有限公司 安装离岸风力涡轮机的方法及其运输船
WO2016112919A1 (en) * 2015-01-14 2016-07-21 Envision Energy (Denmark) Aps Method for providing a stable working platform and a vessel thereof
DK178601B1 (en) * 2015-01-14 2016-08-08 Envision Energy Denmark Aps Method for providing a stable working platform and a vessel thereof
US20220341397A1 (en) * 2019-09-16 2022-10-27 Siemens Gamesa Renewable Energy A/S Method of offshore mounting a wind turbine
CN111550371A (zh) * 2020-05-29 2020-08-18 中交一航局第二工程有限公司 搭岸装置、搭岸式风电安装船及海上风电安装施工方法
WO2022098246A1 (en) * 2020-11-09 2022-05-12 Equinor Energy As Installing offshore floating wind turbines
GB2600927A (en) * 2020-11-09 2022-05-18 Equinor Energy As Installing offshore floating wind turbines
GB2600927B (en) * 2020-11-09 2023-02-15 Equinor Energy As Installing offshore floating wind turbines
CN113320646A (zh) * 2021-06-25 2021-08-31 广州星际海洋工程设计有限公司 海上风机安装平台
CN113306677A (zh) * 2021-07-09 2021-08-27 江苏亨通蓝德海洋工程有限公司 一种浮式船舶起吊结构及其方法

Also Published As

Publication number Publication date
JP2012107585A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
US9061744B2 (en) Working system for floating structure, floating structure, working ship, and working method for floating structure
KR101412094B1 (ko) 오프쇼어 구조물을 운반 및 설치하기 위한 선박 및 방법
EP2724021B1 (en) A self-propelled offshore wind farm installation vessel, and method of installation used in the construction of an offshore wind turbine farm
US11560277B2 (en) Method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
CN100579860C (zh) 运输风轮机的船舶、移动风轮机的方法和近海风力农场的风轮机
WO2012066790A1 (ja) 洋上風車設置用船舶およびこれを用いた洋上風車設置方法
KR102401161B1 (ko) 선박과 해양 설비 사이에서 적재물을 고정 및 이송하기 위한 방법 및 이를 위한 장치
KR101401985B1 (ko) 수상구조물 설치용 잭업식 플로팅 크레인
US20230407844A1 (en) Wind turbine offshore support structure
CA2916763A1 (en) Platform for tidal turbines
WO2012060112A1 (ja) 洋上風車設置用船舶およびこれを用いた洋上風車設置方法
JP2018203195A (ja) 洋上施工用浮体
WO2023135165A1 (en) Hull structure for a semi-submersible wind power turbine platform
KR101297669B1 (ko) 해상풍력발전기 설치 전용선을 이용한 해상풍력발전기 설치방법
WO2022098246A1 (en) Installing offshore floating wind turbines
NL2031010B1 (en) A method and system of installing a floating foundation, assembly of floating foundation and ballasting frame, and ballasting frame
KR20240015186A (ko) 부유식 해상 풍력 발전 구조물 설치 시스템 및 방법
WO2023156474A1 (en) A method and system of installing a floating foundation, assembly of floating foundation and ballasting frame, and ballasting frame
KR20240022037A (ko) 부유식 지그 및 이를 이용한 해상풍력발전기용 지지구조물 설치 방법
NL2033898A (en) A method and system of installing a floating foundation, assembly of floating foundation and ballasting frame, and ballasting frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841364

Country of ref document: EP

Kind code of ref document: A1