WO2012065530A1 - 通信设备和天线的测试装置 - Google Patents

通信设备和天线的测试装置 Download PDF

Info

Publication number
WO2012065530A1
WO2012065530A1 PCT/CN2011/082134 CN2011082134W WO2012065530A1 WO 2012065530 A1 WO2012065530 A1 WO 2012065530A1 CN 2011082134 W CN2011082134 W CN 2011082134W WO 2012065530 A1 WO2012065530 A1 WO 2012065530A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
port
level
communication device
radio frequency
Prior art date
Application number
PCT/CN2011/082134
Other languages
English (en)
French (fr)
Inventor
刘伟
Original Assignee
意法⋅爱立信半导体(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 意法⋅爱立信半导体(北京)有限公司 filed Critical 意法⋅爱立信半导体(北京)有限公司
Priority to US13/885,506 priority Critical patent/US20140002316A1/en
Publication of WO2012065530A1 publication Critical patent/WO2012065530A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/19Self-testing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present invention relates to the field of communications, and in particular, to a test apparatus for a communication device and an antenna. Background technique
  • Planar Inverted-F Antenna Inverted (also known as inverted-F antenna) has the advantages of small size and simple structure, so it has been widely used, for example,
  • the F antenna is often used as a transmitting and receiving antenna for a portable terminal (for example, a mobile phone, a notebook computer, etc.).
  • the self-test of the terminal product enables the terminal product to complete the test itself without using any external equipment, and through self-test, it can timely discover the problems caused by improper placement and assembly of the internal electronic components of the product, and the management personnel can As a result of the self-test, the products in question are adjusted and repaired before the product goes on the market, thereby effectively reducing the repair rate of electronic products, improving the automation of production and production efficiency, and reducing the cost of production testing.
  • the self-test of the terminal product can cover more than 90% of the device pins inside the terminal.
  • the antenna has a grounding point or a grounding pin.
  • the ground pin can be grounded normally.
  • the test method is not only costly but also increases the terminal modification. the complexity.
  • the present invention proposes a testing apparatus for a communication device and an antenna, which can effectively save cost and reduce equipment complexity.
  • a communication device capable of self-testing an antenna disposed thereon, wherein the antenna has at least one grounding point, and the communication device includes a radio frequency matching circuit and an antenna a port, the antenna, the radio frequency matching circuit is connected to the antenna via the antenna port, and the communication device further includes a first blocking component, a second blocking component, a detecting port, and a reference level providing module,
  • the first blocking component is disposed between the radio frequency matching circuit and the antenna port, and is configured to block a direct current from entering the radio frequency matching circuit;
  • the second blocking component is an alternating current resistor spacer, and one end thereof is connected to
  • the detection port is connected to the radio frequency line between the first blocking component and the antenna port;
  • the reference level module is connected between the detection port and the second blocking component;
  • the detection port is used for level detection, and the determined level is determined if the detected level is zero level The antenna is connected properly.
  • the first blocking component may be a capacitor.
  • the second blocking component may be a resistor or an inductor.
  • the detection port is configured to be in a pull-up state.
  • the communication device may further include a level pull-up component, wherein one end of the level pull-up component is connected to the reference level providing module, and the other end is connected to the detection port and the Between the second barrier members.
  • the level pull-up component is a pull-up resistor.
  • the detection port is a digital port, and is configured to determine that the antenna connection is abnormal when the detected level is 1.
  • the normal connection of the antenna means that: the radio frequency line is normally connected to the antenna port, the antenna port is normally connected to the antenna, and a ground point in the antenna is normally grounded.
  • an antenna testing apparatus for implementing a self-test of an antenna having at least one grounding point, wherein the terminal includes a radio frequency matching circuit, an antenna port, and the antenna, The radio frequency matching circuit is connected to the antenna via the antenna port, wherein the testing device includes a first blocking component, a second blocking component, a detecting port, and a reference level providing module, specifically, the first a blocking component is disposed between the radio frequency matching circuit and the antenna port for blocking a direct current from entering the radio frequency matching circuit; the second blocking component is an alternating current resistor spacer, one end of which is connected to the detecting port, and another One end is connected to the radio frequency line between the first blocking component and the antenna port; the detecting port is used for level detection, and the antenna connection is determined to be normal when the detected level is low level .
  • the detection port can be configured to be in a pull up state.
  • the apparatus can further include a level pull-up component, wherein one end of the level pull-up component is coupled to the reference level providing module, and the other end is coupled to the detection port and the second barrier Between parts.
  • the invention realizes the isolation of the RF circuit during the test by the capacitor, and realizes the isolation of the detection port when the antenna is in normal working state through the resistor or the inductance, can avoid the mutual influence of the test process and the normal operation of the antenna, and can realize the voltage through the detection port. Detection, so as to accurately determine whether the antenna is properly connected, avoiding the use of complex and expensive components, can effectively save costs and reduce the complexity of the device.
  • FIG. 1 is a block diagram showing the structure of a communication device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific configuration example of the communication device shown in FIG. 1;
  • FIG. 3 is a structural block diagram of a communication device according to another embodiment of the present invention.
  • FIG. 4 is a block diagram showing a specific configuration example of the communication device shown in FIG. 3;
  • FIG. 5 is a schematic diagram showing an abnormality in an antenna port connection in the communication device shown in FIG. 4.
  • FIG. 6 is a schematic diagram showing an abnormality in a grounding point connection in an antenna in the communication device shown in FIG. 4.
  • FIG. 7 is in TD-SCDMA/EDGE. The structure of the terminal after adopting the test scheme of the present invention in the terminal Block diagram. detailed description
  • the present invention contemplates that if such an antenna having a grounding point is abnormally connected (whether the connection between the antenna and the radio frequency portion of the communication device is abnormal) Or the grounding abnormality occurs inside the antenna, and the antenna side is in a state of being suspended (opened). Therefore, the present application tests the connection of the antenna for this characteristic.
  • the invention can know whether the antenna is normally connected by simple level judgment, not only the accuracy of the judgment is high, but also the use of high-cost components and complicated circuits can be avoided.
  • a communication device is provided that is capable of self-testing an antenna having at least one ground point disposed thereon.
  • a radio frequency module 1, a radio frequency matching circuit 2, an antenna port 4, and an antenna 5 are generally included in a communication device.
  • the radio frequency matching circuit 1 is connected to the antenna 5 via an antenna port 4, wherein the antenna and the communication device are constructed.
  • antenna 5 is shown in FIG. 1 to have a ground point, but does not show how the ground point should be connected to other components within the antenna and other components of the communication device. Structure and composition.
  • the communication device according to an embodiment of the present invention further includes a first blocking member 3, a second blocking member 6, a reference level providing module 7, and a detecting port 8.
  • the first blocking component 3 is disposed between the RF matching circuit 2 and the antenna port 4 (may be disposed at a position of the RF path close to the antenna port) for blocking DC current from entering the RF matching circuit 2;
  • the second blocking component 6 is An AC resistance spacer (the second blocking member may also be referred to as a radio frequency signal blocking member) having one end connected to the detection port 8 and the other end connected to the RF line between the first blocking member 3 and the antenna port 4;
  • Reference level module 7 Connected between the detection port 8 and the second blocking member 6; the detection port 8 is used for level detection, and determines that the antenna connection is normal if the detected level is zero level.
  • the antenna connection is normal: the radio frequency line is properly connected to the antenna port 4, the antenna port 4 is normally connected to the antenna 5, and the grounding point in the antenna 5 is normally grounded.
  • the detecting port 8 is equivalent to pulling down through the grounding point in the second blocking member 6 and the antenna 5.
  • the port reading state is 0, gp, and the detecting port 8 detects the level to be low level (zero level). ).
  • the detecting port 8 detects the level to a high level, thereby passing a simple electric The determination can determine whether the antenna is connected properly, and the detection scheme of the present invention does not need to add high-cost components such as couplers to the communication device, which not only saves cost, but also can reduce the modification of the communication device and reduce the complexity of implementation. degree.
  • the first blocking member 3 may be any device capable of blocking direct current, and needs to ensure that the blocking is straight while not affecting the RF impedance matching.
  • the first blocking member 3 may be a capacitor, optionally, for a common
  • the capacitor can have a capacitance of 20pF to 80pF.
  • the second blocking member (RF signal blocking member) 6 can be any component that can effectively block the AC current, for example, it can be a resistor or an inductor.
  • the inductance of the inductor should be large enough to ensure that the RF matching is not affected, for example, for a communication system operating at 500 MHz to 3 GHz, the preferred inductance value can be greater than 50 nH;
  • the second blocking member 6 can also employ a resistor.
  • the second blocking member 6 is capable of normally conducting a voltage signal.
  • the detection port 8 may be a digital port, and in the case where the level detected by the detection port 8 is 1, the detection port may determine that the antenna 5 is not properly connected.
  • the detection port can be configured to be pulled up (for example, configured as a weak pull-up state, which can be implemented by a pull-up resistor inside the port), and accordingly, the second blocking component can It is a high-resistance resistor, and the resistance can be selected from 20 ⁇ to 60 ⁇ or other values.
  • the specific resistance value selection can be determined according to the resistance of the weak pull-up resistor inside the detection port.
  • the first blocking member is realized by a capacitor C1
  • the second blocking member is realized by R1
  • the detecting port is realized by a digital port.
  • a level pull-up unit can be separately set in the communication device.
  • the communication device includes a radio frequency module 1, a radio frequency matching circuit 2, an antenna port 4, and an antenna 5, and the radio frequency matching circuit is connected to the antenna via an antenna port.
  • the communication device according to the present embodiment includes level pull-up in addition to the first blocking member 3, the second blocking member 6, the reference level providing module 7, and the detecting port 8.
  • Component 9, and the detection port 8 is configured to be in a floating state (non-pull state).
  • the first blocking component 3 is disposed between the RF matching circuit 2 and the antenna port 4 for blocking DC current from entering the RF matching circuit 2;
  • the second blocking component 6 is an AC resistance spacer, and one end thereof is connected to the detection port 8, The other end is connected to the RF line between the first blocking member 3 and the antenna port 4; one end of the level pull-up member 9 is connected to the reference level providing module 7, and the other end is connected to the detecting port 8 and the second blocking member 6.
  • the detection port 8 is used for level detection, and determines that the antenna connection is normal when the detected level is low.
  • the first blocking member 3 can be a capacitor.
  • the second blocking member 6 can be a resistor or an inductor, and the inductance value can be greater than 50 nH (other values can also be taken). If a resistor is used, the resistance value can be greater than 20 ⁇ ⁇ to 60 ⁇ ⁇ , and other resistance values can be selected. An enumeration.
  • the detection port is a digital port, and is used to determine that the antenna connection is abnormal when the detected level is 1.
  • the above-mentioned level pull-up component may be a pull-up resistor, and optionally, the resistance of the resistor may be greater than 300 ⁇ .
  • the first blocking member is realized by a capacitor C1
  • the second blocking member is realized by R1
  • the detecting port is realized by a digital port
  • the level pulling member is realized by R2.
  • the detection principle of the communication device is the same as that of the previous embodiment, and the case shown in FIG. 4 will be described below as an example.
  • the state of the port connected to the resistor R1 is read through the read function of the digital port. Only when the antenna port and the ground point are properly connected, the digital port is equivalent to being connected through the resistor R1 and the antenna. The location is pulled down. At this point, the status of the digital port read is 0, indicating that the antenna connection is normal, as shown in Figure 4.
  • the antenna port When the antenna port is disconnected from the antenna feeding circuit abnormally (as shown in Figure 5) or the antenna grounding point is not grounded (as shown in Figure 6), because one end of the RF line is open to the antenna (not grounded through the antenna) The other end is a DC blocking capacitor. At this time, both ends of the RF line are DC open, and R1 is equivalent to floating. At this time, due to internal or external weak pull-up, the digital port reads in the state of 1, indicating the antenna. The connection is abnormal.
  • the high-resistance resistor R1 connected to the RF line is equivalent to one-end grounding, forming a parallel resistance to the RF line. Since the resistance of R1 is relatively high, the influence on the matching of the RF circuit can be neglected. Similarly, a reasonable value of the series DC blocking capacitor is equivalent to the direct connection of the RF signal, and will not affect the RF circuit and RF performance.
  • the terminal includes TD-SCDMA/ EDGE RF front-end module (also referred to as TD / EDGE RF front-end module, equivalent to the above-mentioned RF module), the terminal baseband hardware provides a GPIO universal digital port with weak pull-up (equivalent to the above detection port), this port can be configured to read
  • the write state when in the read state, is internally set to a weak pull-up of 470 ⁇ (since the GPIO port itself can be configured as a weak pull-up state, the terminal shown in Figure 7 does not have to be additionally set with a level pull-up component), this GPIO port After a 60 ⁇ high resistance resistor (corresponding to the second blocking member described above) is connected to the RF line in front of the antenna port, preferably
  • the terminal may further include a radio frequency matching circuit, and the radio frequency matching circuit further includes a capacitor C2 and a grounded inductor HI, the capacitance value of the C2 may be 56 pF, and the inductance of the HI may be 47 nH.
  • the GPIO port When the terminal is in the transceiver state, the GPIO port is set to the low level output state. At this time, Parallel connection of 60 ⁇ high resistance and series 30pF capacitor on the RF line does not affect RF matching, and the RF circuit and antenna work normally.
  • the RF circuit When the terminal is in the self-test state of the inverted F antenna, the RF circuit does not work. You can set the GPIO port to the weak pull-up input and read the status of the port. If the inverted F antenna port and the grounding point are properly connected, the GPIO port will be pulled down through the antenna grounding point, and the read port status is 0. If the inverted F antenna port is not connected or the grounding point is not grounded, the GPIO port is left floating and internally weak. Pull, the status of the read port is 1, so that the judgment of the antenna connection state is realized by the self-detection of the terminal.
  • the isolation of the RF circuit during the test process is realized by the capacitor, and the isolation of the detection port during the normal working state of the antenna is realized by the resistor or the inductor, thereby avoiding the test process and the normal operation of the antenna. They interact with each other and can detect the voltage through the detection port, so as to accurately determine whether the antenna is normally connected, avoid complicated and expensive components, and can effectively save costs and reduce the complexity of the communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种通信设备和天线的测试装置,该通信设备包括射频匹配电路、天线端口、天线、第一阻隔部件、第二阻隔部件、检测端口、及参考电平提供模块,其中,第一阻隔部件设置于射频匹配电路与天线端口之间,用于阻隔直流电流进入射频匹配电路;第二阻隔部件为交流电阻隔部件,其一端连接至检测端口,另一端连接至第一阻隔部件与天线端口之间的射频线;参考电平模块连接至检测端口与第二阻隔部件之间;检测端口用于进行电平检测,并在检测的电平为零电平的情况下确定天线连接正常。本发明的装置能够在避免测试过程和天线的工作彼此影响的前提下,通过电压的检测准确判断出天线是否正常连接,节省成本并降低复杂度。

Description

通信设备和天线的测试装置 技术领域
本发明涉及通信领域, 尤其涉及一种通信设备和天线的测试装置。 背景技术
为了实现终端与外界的无线通信, 很多终端都具有内置的天线, 用于实 现信号的收发。
在常用的天线中, 平面倒 F天线 (Planar Inverted-F Antenna Inverted, 简 称为 PIFA) (也可称为倒 F天线) 具有体积小及结构简单等优势, 因此得到 了广泛的应用, 例如, 倒 F天线常常被用作便携终端 (例如, 手机、 笔记本 电脑等) 的收发天线。
随着便携终端等通讯产品生产线自动化程度的日益提高, 便携终端在产 线上的自测试的重要性也越来越大。 终端产品的自测试能够在不利用任何外 部仪器设备的情况下, 使终端产品自身完成测试, 通过进行自测试, 能够及 时发现由产品内部电子器件贴装、 组装不当造成的问题, 管理人员能够根据 自测试的结果, 在产品上市前对出现问题的产品进行调整和修复, 从而有效 降低电子产品的返修率, 提高生产自动化程度及生产效率, 并且能够降低生 产测试成本, 目前, 在一些终端制造商的生产线上, 终端产品的自测已经能 覆盖终端内部 90%以上的器件管脚。
对于倒 F天线, 该天线的内部具有接地点或接地管脚等, 为了保证倒 F 天线能够正常工作, 就需要保证终端的射频部分能够与天线端口正常连接, 并且需要保证天线内的接地点和接地管脚能够正常接地。 对于如何对终端中 的倒 F天线进行自测试, 目前已经有人提出, 在终端内设置耦合器, 用于对 天线进行测量, 并设置专门的检测装置来对耦合器的测量结果进行判断, 从 而完成对天线的自测试。 并且, 为了基于耦合器进行天线的自测试, 还需要 设置模 /数转换装置、 以及数 /模转换装置等多个功能模块, 因此, 这种测试方 式不仅成本很高, 而且会增加终端改造的复杂度。
类似地, 对于其他具有接地点和接地管脚的天线自测试, 同样没有简单 而又有效的解决方案。
针对相关技术中具有接地点的天线进行自测试的成本和复杂度高的问 题, 目前尚未提出有效的解决方案。 发明内容
针对相关技术中具有接地点的天线进行自测试的成本和复杂度高的问 题, 本发明提出一种通信设备和天线的测试装置, 能够有效节省成本并降低 设备的复杂度。
本发明的技术方案是这样实现的:
根据本发明的一个方面, 提供了一种通信设备, 所述通信设备能够对其 上设置的天线进行自测试, 其中, 所述天线具有至少一个接地点, 所述通信 设备包括射频匹配电路、 天线端口、 所述天线, 所述射频匹配电路经由所述 天线端口与所述天线连接, 并且, 所述通信设备还包括第一阻隔部件、 第二 阻隔部件、 检测端口、 以及参考电平提供模块, 其中, 所述第一阻隔部件设 置于所述射频匹配电路与所述天线端口之间, 用于阻隔直流电流进入所述射 频匹配电路; 所述第二阻隔部件为交流电阻隔部件, 其一端连接至所述检测 端口, 另一端连接至所述第一阻隔部件与所述天线端口之间的射频线; 所述 参考电平模块连接至所述检测端口与所述第二阻隔部件之间; 所述检测端口 用于进行电平检测, 并在检测的电平为零电平的情况下确定所述天线连接正 常。
其中, 所述第一阻隔部件可以为电容。
可选地, 所述第二阻隔部件可以为电阻或电感。
另外, 一方面, 所述检测端口被配置为上拉状态。
或者, 另一方面, 该通信设备可以进一步包括电平上拉部件, 其中, 所 述电平上拉部件的一端连接至所述参考电平提供模块, 另一端连接至所述检 测端口与所述第二阻隔部件之间。
优选地, 所述电平上拉部件为上拉电阻。
另外, 所述检测端口为数字端口, 并且, 用于在检测的电平为 1 的情况 下, 确定所述天线连接不正常。 另外, 所述天线连接正常是指: 所述射频线与所述天线端口连接正常、 所述天线端口与所述天线连接正常、 并且所述天线内的接地点正常接地。
根据本发明的另一方面, 提供了一种天线的测试装置, 用于实现终端对 具有至少一个接地点的天线进行自测试, 其中, 所述终端包括射频匹配电路、 天线端口以及所述天线, 所述射频匹配电路经由所述天线端口与所述天线连 接, 其中, 所述测试装置包括第一阻隔部件、 第二阻隔部件、 检测端口、 以 及参考电平提供模块, 具体地, 所述第一阻隔部件设置于所述射频匹配电路 与所述天线端口之间, 用于阻隔直流电流进入所述射频匹配电路; 所述第二 阻隔部件为交流电阻隔部件, 其一端连接至所述检测端口, 另一端连接至所 述第一阻隔部件与所述天线端口之间的射频线; 所述检测端口用于进行电平 检测, 并在检测的电平为低电平的情况下确定所述天线连接正常。
一方面, 所述检测端口可以被配置为上拉状态。
另一方面, 该装置可以进一步包括电平上拉部件, 其中, 所述电平上拉 部件的一端连接至所述参考电平提供模块, 另一端连接至所述检测端口与所 述第二阻隔部件之间。
本发明通过电容实现测试过程中射频电路的隔离、 并通过电阻或电感实 现天线正常工作状态时检测端口的隔离, 能够避免测试过程和天线的正常工 作彼此相互影响, 并且能够通过检测端口实现电压的检测, 从而准确判断出 天线是否正常连接, 避免采用复杂、 昂贵的部件, 能够有效节省成本并降低 设备的复杂度。 附图说明
图 1是根据本发明实施例的通信设备的结构框图;
图 2是图 1所示的通信设备的具体结构实例的框图;
图 3是根据本发明另一实施例的通信设备的结构框图;
图 4是图 3所示的通信设备的具体结构实例的框图;
图 5是图 4所示的通信设备中天线端口连接出现异常的示意图; 图 6是图 4所示的通信设备中天线内的接地点连接出现异常的示意图; 图 7是在 TD-SCDMA/EDGE终端中采用本发明的测试方案后终端的结构 框图。 具体实施方式
针对相关技术中无法通过简单而又有效的方案对具有接地点的天线进行 测试的问题, 本发明考虑到, 如果这种具有接地点的天线连接异常 (不论是 天线与通信设备射频部分的连接异常还是天线内部出现接地异常),就会使天 线侧处于悬空 (断路) 的状态, 因此, 本申请针对这一特性对天线的连接进 行测试。 本发明能够通过简单的电平判断得知天线是否正常连接, 不仅判断 的准确性高, 而且能够避免采用高成本的部件和复杂的电路。
下面将结合附图, 详细描述本发明的实施例。
根据本发明的一个实施例, 提供了一种通信设备, 该通信设备能够对其 上设置的具有至少一个接地点的天线进行自测试。
如图 1所示, 在通信设备中通常包括射频模块 1, 射频匹配电路 2、 天线 端口 4以及天线 5, 射频匹配电路 1经由天线端口 4与天线 5连接, 其中, 由于天线和通信设备的构造对于本领域技术人员是公知的, 所以出于清楚的 目的, 图 1中仅示出天线 5具有一个接地点, 但是并未示出接地点与天线内 的其他部件应当如何连接以及通信设备的其他结构组成。 为了实现对天线的 自测试, 根据本发明实施例的通信设备还包括第一阻隔部件 3、 第二阻隔部 件 6、 参考电平提供模块 7、 以及检测端口 8。
具体地, 第一阻隔部件 3设置于射频匹配电路 2与天线端口 4之间 (可 以设置在射频通路靠近天线端口的位置),用于阻隔直流电流进入射频匹配电 路 2; 第二阻隔部件 6为交流电阻隔部件 (第二阻隔部件也可称为射频信号 阻隔部件), 其一端连接至检测端口 8, 另一端连接至第一阻隔部件 3与天线 端口 4之间的射频线; 参考电平模块 7连接至检测端口 8与第二阻隔部件 6 之间; 检测端口 8用于进行电平检测, 并在检测的电平为零电平的情况下确 定天线连接正常。
其中, 天线连接正常是指: 射频线与天线端口 4连接正常、 天线端口 4 与所述天线 5连接正常、 并且所述天线 5内的接地点正常接地。
如图 1所示, 如果天线端口 4与射频匹配电路 2之间连接的射频线正常 连接、 天线端口 4与天线内的电路(例如, 天线内的馈电电路) 的连接正常、 并且天线 5内的接地点正常接地, 则第二阻隔部件 6就相当于经由天线 5接 地, 此时, 检测端口 8相当于通过第二阻隔部件 6和天线 5中的接地点实现 下拉, 此时端口读入的状态为 0, gp, 检测端口 8检测的电平将为低电平(零 电平)。
相反, 如果天线端口 4与射频匹配电路 2之间连接的射频线非正常连接 (即, 断路)、 或者天线端口 4与天线内的电路 (例如, 天线内的馈电电路) 的连接正常(例如, 断路)、 或者天线 5内的接地点正常接地(未正常接地), 则第二阻隔部件 6就相当于被断路, 此时, 检测端口 8检测电平为高电平, 从而通过简单的电平判断就能够确定天线是否连接正常, 并且, 本发明的检 测方案不需要对通信设备增加耦合器等高成本的部件, 不仅能够节省成本, 而且能够减小对通信设备的改造, 降低实现的复杂度。
在上述通信设备中, 第一阻隔部件 3可以是任何能够阻隔直流的器件, 并且需要保证隔直的同时不影响射频阻抗匹配, 例如, 第一阻隔部件 3可以 是电容, 可选地, 对于常用的 500MHz至 3GHz的通信系统, 该电容的电容 值可以是 20pF至 80pF。
第二阻隔部件 (射频信号阻隔部件) 6 可以是任何能够有效阻隔交流电 流的部件, 例如, 可以是电阻或电感。 优选地, 如果采用电感, 则该电感的 感值应当足够大,以保证不影响射频匹配,例如,针对工作于 500MHz至 3GHz 的通信系统, 优选的电感值可以大于 50nH; 而考虑到实现的成本, 第二阻隔 部件 6还可以采用电阻。 不论连接高值电阻或电感, 其目的是在通信设备的 射频电路工作时, 保证整个器件的射频阻抗足够大, 基本相当于开路, 从而 避免对射频匹配的影响, 而在工作于低频数字信号时, 第二阻隔部件 6能够 正常传导电压信号。
另外, 检测端口 8可以是数字端口, 并且, 在检测端口 8检测的电平为 1的情况下, 检测端口就可以确定天线 5连接不正常。
为了保证电平能够被明确地表示出来, 可以将检测端口被配置为上拉状 态 (例如, 配置为弱上拉状态, 可通过端口内部的上拉电阻实现), 相应地, 第二阻隔部件可以是高阻值电阻, 阻值可以选择 20ΚΩ至 60ΚΩ或其他值, 具体的电阻值选择可以根据检测端口内部弱上拉电阻阻值而定。
例如, 如图 2所示, 第一阻隔部件通过电容 C1实现, 第二阻隔部件通过 R1实现, 检测端口通过数字端口实现。
为了实现电平的准确检测, 除了将检测端口配置为上拉以外, 还可以在 通信设备中单独设置电平上拉部件。 如图 3所示, 该通信设备包括射频模块 1、 射频匹配电路 2、 天线端口 4以及天线 5, 射频匹配电路经由天线端口与 天线连接。 与前述实施例的通信设备不同, 根据本实施例的通信设备除了包 括第一阻隔部件 3、 第二阻隔部件 6、 参考电平提供模块 7、 以及检测端口 8 之外, 还包括电平上拉部件 9, 并且检测端口 8被配置为悬空状态 (非上拉 状态)。
这样, 即使检测端口不能够被配置为上拉状态, 也能够通过电平上拉部 件实现电平的准确表示, 避免误操作。
具体地, 第一阻隔部件 3设置于射频匹配电路 2与天线端口 4之间, 用 于阻隔直流电流进入射频匹配电路 2; 第二阻隔部件 6为交流电阻隔部件, 其一端连接至检测端口 8, 另一端连接至第一阻隔部件 3与天线端口 4之间 的射频线; 电平上拉部件 9的一端连接至参考电平提供模块 7, 另一端连接 至检测端口 8与第二阻隔部件 6之间; 检测端口 8用于进行电平检测, 并在 检测的电平为低电平的情况下确定天线连接正常。
同样地, 第一阻隔部件 3可以是电容。 第二阻隔部件 6可以是电阻或电 感, 电感值可以大于 50nH (也可以取其他值), 如果采用电阻, 则电阻值可 以为大于 20ΚΩ至 60ΚΩ, 也可以选择其他的电阻值, 本文不再一一列举。
另外, 检测端口为数字端口, 并且, 用于在检测的电平为 1 的情况下, 确定天线连接不正常。
此外, 上述电平上拉部件可以是上拉电阻, 可选地, 该电阻的阻值可以 大于 300ΚΩ。
例如, 如图 4所示, 第一阻隔部件通过电容 C1实现, 第二阻隔部件通过 R1实现, 检测端口通过数字端口实现, 电平上拉部件通过 R2实现。
具体地, 根据本实施例的通信设备的检测原理与之前实施例的检测原理 相同, 下面将以图 4所示的情况为例进行说明。 当进行天线连接自检测时,通过数字端口的读功能读入与电阻 R1相连的 端口的状态, 只有当天线端口及接地点都处于正确连接时, 数字端口才会相 当于通过电阻 R1和天线接地点实现下拉, 此时数字端口读入的状态为 0, 表 示天线连接正常, 如图 4所示。
而当天线端口与天线馈电电路非正常断开 (如图 5所示) 或者天线接地 点未实现接地时(如图 6所示), 因为射频线的一端为天线开路(没有通过天 线接地), 另一端为隔直电容, 此时, 射频线的两端都是直流开路的状态, R1 相当于悬空, 此时由于内部或外部弱上拉, 所以数字端口读入的状态为 1, 表示天线连接异常。
当天线处于正常的收发状态时,与射频线相连的高阻值电阻 R1相当于一 端接地, 对射频线形成并联电阻, 由于 R1的阻值相当高, 对射频电路匹配的 影响可忽略。 同样, 合理取值的串联隔直电容对于射频信号相当于直连, 也 不会影响射频电路及射频性能。
通过上述通信设备, 能够在不影响正常射频工作和天线性能的基础上, 通过简单和低成本的部件对天线是否正常连接进行测试, 能够有效降低成本 和实现的复杂度。
以对 TD-SCDMA/EDGE双模手机中的倒 F天线实现自检测为例描述本 发明在终端中实现倒 F 天线检测的方案, 如图 7 所示, 在该终端中, 包括 TD-SCDMA/EDGE射频前端模块(也可简称为 TD /EDGE射频前端模块, 相 当于上述射频模块), 终端基带硬件提供一个带弱上拉的 GPIO通用数字端口 (相当于上述检测端口), 此端口可配置读写状态, 在处于读状态时, 内部设 为 470ΚΩ的弱上拉 (由于 GPIO端口本身可以配置为弱上拉状态, 因此图 7 所示的终端不必额外设置电平上拉部件), 此 GPIO端口经过一个 60ΚΩ的高 阻值电阻 (相当于上述的第二阻隔部件) 与天线端口前的射频线相连, 优选 地, 该电阻应当尽量靠近射频线。 射频线的一端连接天线端口, 另一端接一 个 30pF隔直电容 (相当于上述第一阻隔部件), 与射频匹配电路隔离。 该终 端还可以包括射频匹配电路,且该射频匹配电路中进一步包括电容 C2和接地 的电感 HI , C2的电容值可以为 56pF, HI的电感值可以为 47nH。
当终端处于收发工作状态时, GPIO端口设置为低电平输出状态, 此时, 射频线上的并联 60ΚΩ高阻和串联 30pF电容不对射频匹配产生影响,射频电 路和天线正常工作。
当终端处于倒 F天线的自检测状态时, 射频电路不工作, 可以将 GPIO 端口设置为弱上拉输入, 读取端口的状态。 如果倒 F天线端口和接地点都正 常连接, 则 GPIO端口将通过天线接地点下拉, 读到的端口状态为 0; 如果倒 F天线端口没有连接或接地点未接地, GPIO端口悬空且内部弱上拉, 读到的 端口状态为 1, 这样, 就通过终端的自检测实现了天线连接状态的判断。
综上所述, 借助于本发明的上述技术方案, 通过电容实现测试过程中射 频电路的隔离、并通过电阻或电感实现天线正常工作状态时检测端口的隔离, 能够避免测试过程和天线的正常工作彼此相互影响, 并且能够通过检测端口 实现电压的检测, 从而准确判断出天线是否正常连接, 避免采用复杂、 昂贵 的部件, 能够有效节省成本并降低通信设备的复杂度。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权利 要 求 书
1. 一种通信设备, 所述通信设备能够对其上设置的天线进行自测试, 其 中, 所述天线具有至少一个接地点, 所述通信设备包括射频匹配电路、 天线 端口、 所述天线, 所述射频匹配电路经由所述天线端口与所述天线连接, 其 特征在于, 所述通信设备还包括第一阻隔部件、 第二阻隔部件、 检测端口、 以及参考电平提供模块, 其中,
所述第一阻隔部件设置于所述射频匹配电路与所述天线端口之间, 用于 阻隔直流电流进入所述射频匹配电路;
所述第二阻隔部件为交流电阻隔部件, 其一端连接至所述检测端口, 另 一端连接至所述第一阻隔部件与所述天线端口之间的射频线;
所述参考电平模块连接至所述检测端口与所述第二阻隔部件之间; 所述检测端口用于进行电平检测, 并在检测的电平为零电平的情况下确 定所述天线连接正常。
2. 根据权利要求 1所述的通信设备, 其特征在于, 所述第一阻隔部件为 电容。
3. 根据权利要求 1所述的通信设备, 其特征在于, 所述第二阻隔部件为 电阻或电感。
4. 根据权利要求 1所述的通信设备, 其特征在于, 所述检测端口被配置 为上拉状态。
5. 根据权利要求 1所述的通信设备, 其特征在于, 进一步包括电平上拉 部件, 其中, 所述电平上拉部件的一端连接至所述参考电平提供模块, 另一 端连接至所述检测端口与所述第二阻隔部件之间。
6. 根据权利要求 5所述的通信设备, 其特征在于, 所述电平上拉部件为 上拉电阻。
7. 根据权利要求 4至 6中任一项所述的通信设备, 其特征在于, 所述检 测端口为数字端口, 并且, 用于在检测的电平为 1 的情况下, 确定所述天线 连接不正常。
8. 根据权利要求 1至 5中任一项所述的通信设备, 其特征在于, 所述天 线连接正常是指:
所述射频线与所述天线端口连接正常、 所述天线端口与所述天线连接正 常、 并且所述天线内的接地点正常接地。
9. 一种天线的测试装置, 用于实现终端对具有至少一个接地点的天线进 行自测试, 其中, 所述终端包括射频匹配电路、 天线端口以及所述天线, 所 述射频匹配电路经由所述天线端口与所述天线连接, 其特征在于, 所述测试 装置包括第一阻隔部件、 第二阻隔部件、 检测端口、 以及参考电平提供模块, 其中,
所述第一阻隔部件设置于所述射频匹配电路与所述天线端口之间, 用于 阻隔直流电流进入所述射频匹配电路;
所述第二阻隔部件为交流电阻隔部件, 其一端连接至所述检测端口, 另 一端连接至所述第一阻隔部件与所述天线端口之间的射频线;
所述检测端口用于进行电平检测, 并在检测的电平为低电平的情况下确 定所述天线连接正常。
10. 根据权利要求 9所述的测试装置, 其特征在于, 所述检测端口被配 置为上拉状态。
11. 根据权利要求 9 所述的测试装置, 其特征在于, 进一步包括电平上 拉部件, 其中, 所述电平上拉部件的一端连接至所述参考电平提供模块, 另 一端连接至所述检测端口与所述第二阻隔部件之间。
PCT/CN2011/082134 2010-11-16 2011-11-14 通信设备和天线的测试装置 WO2012065530A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/885,506 US20140002316A1 (en) 2010-11-16 2011-11-14 Communication Device and Antenna Testing Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010547217.6A CN102013927B (zh) 2010-11-16 2010-11-16 通信设备和天线的测试装置
CN201010547217.6 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012065530A1 true WO2012065530A1 (zh) 2012-05-24

Family

ID=43843963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082134 WO2012065530A1 (zh) 2010-11-16 2011-11-14 通信设备和天线的测试装置

Country Status (3)

Country Link
US (1) US20140002316A1 (zh)
CN (1) CN102013927B (zh)
WO (1) WO2012065530A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104580629A (zh) * 2013-10-23 2015-04-29 厦门雅迅网络股份有限公司 一种基于信号改进的手机模块天线开路检测装置和方法
CN114325539A (zh) * 2016-08-16 2022-04-12 南线有限责任公司 用于微控制器单元和天线的两步自测电路

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013927B (zh) * 2010-11-16 2014-09-10 意法·爱立信半导体(北京)有限公司 通信设备和天线的测试装置
DE102011115309A1 (de) * 2011-09-29 2013-04-04 Infineon Technologies Ag Radarschaltung, Radarsystem und Verfahren zum Testen einer Verbindung zwischen einer Radarschaltung und einer Radarantenne in einem Fahrzeug
CN102970084B (zh) * 2012-11-15 2016-06-08 惠州Tcl移动通信有限公司 用于3g移动通讯终端的测试系统及相应的天线耦合器
GB2516617B (en) * 2013-06-12 2018-02-21 Analog Devices Global Communication unit or method for identifying a connectivity relationship between a logical channel and an antenna element of an active antenna system
CN104714116A (zh) * 2013-12-12 2015-06-17 上海博泰悦臻网络技术服务有限公司 天线检测电路
CN104931847B (zh) * 2015-07-09 2017-08-29 广东欧珀移动通信有限公司 一种判断nfc天线是否接触不良的终端及方法
CN105866611A (zh) * 2016-04-28 2016-08-17 乐视控股(北京)有限公司 天线插接状态检测装置
DE112017003246T5 (de) * 2016-06-28 2019-03-28 R & D Microwaves, LLC Antenne
CN107688131B (zh) * 2016-08-06 2020-11-10 国基电子(上海)有限公司 Mimo天线系统
CN109804655B (zh) 2016-10-11 2021-02-09 华为技术有限公司 射频网络中信号传输的方法、射频系统和检测设备
US10256529B2 (en) 2016-11-15 2019-04-09 Starkey Laboratories, Inc. Hearing device incorporating conformal folded antenna
CN108132408B (zh) * 2017-12-20 2020-10-02 深圳市万普拉斯科技有限公司 检测电路及电子设备
CN109946528A (zh) * 2017-12-20 2019-06-28 中国电信股份有限公司 天线在位检测电路、方法、装置和系统、无线终端
CN109358238A (zh) * 2018-09-27 2019-02-19 普联技术有限公司 一种天线防呆电路及装置
CN110932797B (zh) * 2019-11-30 2022-03-25 惠州Tcl移动通信有限公司 连接电路、连接电路组、验证天线有源性能的系统及方法
TWI756138B (zh) * 2019-12-05 2022-02-21 鴻勁精密股份有限公司 射頻電子元件測試裝置及其應用之測試設備
CN113296031B (zh) * 2020-02-21 2022-04-19 荣耀终端有限公司 射频线安装检测装置及终端
CN112285440A (zh) * 2020-10-26 2021-01-29 深圳市卓睿通信技术有限公司 一种天线测试工装及天线测试设备
CN113572544B (zh) * 2021-08-02 2023-07-18 Tcl通讯(宁波)有限公司 天线通信装置、天线装置连接检测方法、终端及存储介质
CN113655406B (zh) * 2021-08-12 2024-06-11 惠州Tcl云创科技有限公司 一种rf同轴线缆连接检测电路、检测方法以及移动终端
CN116298556B (zh) * 2023-05-22 2023-09-29 荣耀终端有限公司 检测方法和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090302A (zh) * 2007-07-31 2007-12-19 中兴通讯股份有限公司 移动终端的自校或自测方法及具有该方法的移动终端
CN201273928Y (zh) * 2008-12-30 2009-07-15 深圳市广和通实业有限公司 无线终端天线自动检测装置
CN101741482A (zh) * 2009-12-07 2010-06-16 深圳市远望谷信息技术股份有限公司 天线、接收电路及解码电路的检测方法及电路
CN101949999A (zh) * 2009-07-06 2011-01-19 Em微电子-马林有限公司 用于发送和接收信号的电路的运行测试方法
CN102013927A (zh) * 2010-11-16 2011-04-13 意法·爱立信半导体(北京)有限公司 通信设备和天线的测试装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112060A (en) * 1997-09-15 2000-08-29 Motorola, Inc. Communication device with a signal switch assembly
US7206600B2 (en) * 2002-12-26 2007-04-17 Intel Corporation Method and apparatus of antenna detection and authentication
US20060197538A1 (en) * 2005-03-07 2006-09-07 Nokia Corporation Self-test method for antennas
KR100712482B1 (ko) * 2005-09-27 2007-04-30 삼성전자주식회사 무선통신모듈과 이를 포함하는 무선통신장치 및 그제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090302A (zh) * 2007-07-31 2007-12-19 中兴通讯股份有限公司 移动终端的自校或自测方法及具有该方法的移动终端
CN201273928Y (zh) * 2008-12-30 2009-07-15 深圳市广和通实业有限公司 无线终端天线自动检测装置
CN101949999A (zh) * 2009-07-06 2011-01-19 Em微电子-马林有限公司 用于发送和接收信号的电路的运行测试方法
CN101741482A (zh) * 2009-12-07 2010-06-16 深圳市远望谷信息技术股份有限公司 天线、接收电路及解码电路的检测方法及电路
CN102013927A (zh) * 2010-11-16 2011-04-13 意法·爱立信半导体(北京)有限公司 通信设备和天线的测试装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104580629A (zh) * 2013-10-23 2015-04-29 厦门雅迅网络股份有限公司 一种基于信号改进的手机模块天线开路检测装置和方法
CN104580629B (zh) * 2013-10-23 2018-08-24 厦门雅迅网络股份有限公司 一种基于信号改进的手机模块天线开路检测装置和方法
CN114325539A (zh) * 2016-08-16 2022-04-12 南线有限责任公司 用于微控制器单元和天线的两步自测电路

Also Published As

Publication number Publication date
CN102013927A (zh) 2011-04-13
CN102013927B (zh) 2014-09-10
US20140002316A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
WO2012065530A1 (zh) 通信设备和天线的测试装置
CN108270494A (zh) 检测装置、方法及通信设备
CN101493486B (zh) 一种诊断电磁干扰的装置及方法
CN2869870Y (zh) 用于电磁兼容性近场测试的电场探头
CN101813728A (zh) 电磁干扰检测装置
CN201699689U (zh) 一种射频电路、射频测试接口装置和射频测试系统
CN105472082A (zh) 辐射杂散辅助测试电路
EP1423716A1 (en) Emi analyzer capable of analyzing and reducing each electromagnetic interference component
CN101135710A (zh) 一种检测射频功率放大器输出端口连接状态的电路
US9635492B2 (en) Systems and methods for performing radio-frequency testing on near-field communications circuitry
US20070072562A1 (en) Wireless communication module, wireless communication apparatus having wireless communication module, and control method thereof
CN105141378A (zh) 一种专变终端无线公网通信测试系统及方法
CN201242552Y (zh) 射频同轴连接器信号测试连接装置
CN208424379U (zh) 电子设备的天线的测试装置
CN105245296B (zh) 一种集中器gprs通信测试系统及方法
CN106841863A (zh) 射频测试座、印刷电路板及终端
CN103728502A (zh) 一种天线测试的方法和系统、以及无线终端
US10393790B2 (en) Method for testing connectivity
CN201392383Y (zh) 测试制具
CN103605099B (zh) 接口转换检测装置及接口检测方法
CN105162534A (zh) 一种集中器无线公网通信测试系统及方法
CN105677524A (zh) 测试组件、连接器和测试主板
CN104714116A (zh) 天线检测电路
CN208623043U (zh) 维修调试转接板
CN105243834A (zh) 一种采集终端gprs通信测试系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13885506

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11841205

Country of ref document: EP

Kind code of ref document: A1