WO2012064115A2 - 폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법 - Google Patents

폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법 Download PDF

Info

Publication number
WO2012064115A2
WO2012064115A2 PCT/KR2011/008541 KR2011008541W WO2012064115A2 WO 2012064115 A2 WO2012064115 A2 WO 2012064115A2 KR 2011008541 W KR2011008541 W KR 2011008541W WO 2012064115 A2 WO2012064115 A2 WO 2012064115A2
Authority
WO
WIPO (PCT)
Prior art keywords
fire
value
cctv camera
flame
image
Prior art date
Application number
PCT/KR2011/008541
Other languages
English (en)
French (fr)
Other versions
WO2012064115A3 (ko
WO2012064115A9 (ko
Inventor
이강
서범석
박찬호
허영수
Original Assignee
(주)선인유니텍
(주)아이아이에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)선인유니텍, (주)아이아이에스티 filed Critical (주)선인유니텍
Publication of WO2012064115A2 publication Critical patent/WO2012064115A2/ko
Publication of WO2012064115A9 publication Critical patent/WO2012064115A9/ko
Publication of WO2012064115A3 publication Critical patent/WO2012064115A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke

Definitions

  • the present invention relates to a real-time fire monitoring system, and more particularly, to a fire monitoring system and method for real-time monitoring of the occurrence of a fire based on the image captured by a closed circuit television camera (CCTV) camera It is about.
  • CCTV closed circuit television camera
  • the fire monitoring system distributes sensors to detect fires such as temperature sensors or smoke sensors in the monitoring area, and when the sensors detect a fire, it reports to the central control system through a communication means to generate an alarm or major It is a system that notifies the institution.
  • fire monitoring systems are installed in most major locations, such as train stations, to minimize the risk of fire.
  • the conventional fire monitoring system using a fire detection sensor has a problem that a false alarm occurs due to the difficulty of installing the sensor in the field and the malfunction of the sensor.
  • a technology was developed to determine whether a fire occurred by analyzing a video signal photographed at a surveillance site.
  • a fire monitoring technology using an open video signal analysis analyzes infrared and visible light images to determine whether a fire has occurred. .
  • a fire monitoring system which is a method of monitoring and searching in a fire monitoring system connected to a general camera, and has a high cost of purchasing and maintaining an expensive monitoring system.
  • a system for remotely controlling a camera at a corresponding location and receiving a fire report first has a problem of delaying an initial response to a fire occurrence.
  • the new technology could monitor the fire using robots or unmanned aerial vehicles (UAVs) on behalf of humans, but it still appears premature in terms of cost.
  • UAVs unmanned aerial vehicles
  • the technical problem to be solved by the present invention for solving the above problems is a real-time fire monitoring system using a CCTV camera for monitoring the occurrence of fire by determining whether the image captured by the CCTV camera is a flame (flame) image in real time and the It is to provide a method.
  • Another technical problem to be achieved by the present invention is a real-time fire monitoring system using a CCTV camera that can directly detect the presence or absence of fire in the CCTV camera installed on the site by incorporating a fire monitoring device in the CCTV camera and notify the relevant organizations or user terminals; It is to provide a method.
  • a real-time fire monitoring system using a CCTV camera according to the present invention, CCTV camera for providing an original image by real-time shooting the image of the area to monitor the presence of fire; And a fire monitoring device embedded in the CCTV camera and configured to monitor whether or not a fire occurs by determining whether an original image photographed from the CCTV camera is a flame (flame) image, wherein the fire monitoring device is photographed from the CCTV camera.
  • a sample image obtaining unit obtaining a sample image from the original image;
  • a luminance value extraction unit for extracting an RGB luminance value for each pixel from the sample image;
  • a wavelet converter configured to calculate a wavelet luminance value by wavelet converting the RGB luminance value to determine a change value of the boundary line of the original image; Identify the frequency corresponding to the calculated change value of the luminance value of the wavelet and compare the frequency with a predetermined flame characteristic frequency value to determine whether it is a spark suspected area, and fire according to the occurrence probability of the spark suspected area in the corresponding image.
  • a control unit for determining whether or not occurrence;
  • a transmission unit for transmitting the fire occurrence information when the controller determines that the fire has occurred.
  • control unit of the fire monitoring apparatus obtains a cumulative crossing count value at each pixel position in order to grasp the frequency which is the change value of the calculated wavelet value, and calculates the red luminance at each pixel position.
  • the value is greater than the green luminance value and the blue luminance value, and if the accumulated crossing count value corresponds to a preset flame characteristic frequency value, it is determined that there is a flame suspicion region in the corresponding image, / Time) * 100%] to determine whether or not a fire occurs by comparing with a predetermined probability value.
  • the real-time fire monitoring system using a CCTV camera may further include a user terminal for receiving the fire occurrence information transmitted from the transmitter of the fire monitoring device by wire or wirelessly.
  • the real-time fire monitoring method using a CCTV camera in the method of detecting a fire in real time by the built-in fire monitoring device in the CCTV camera, a) CCTV Acquiring a sample image from a real time original image photographed through a camera; b) extracting an RGB luminance value for each pixel from the sample image; c) calculating a wavelet transform value by performing a wavelet transform on the luminance value of each pixel to determine a change value of the boundary line of the original image; d) identifying a frequency corresponding to a change value of the calculated wavelet luminance value; e) comparing whether the red luminance value at each pixel position among the RGB luminance values is greater than a green luminance value and a blue luminance value; f) if the red luminance value is greater than the green luminance value and the blue luminance value, comparing the frequency with a preset flame characteristic frequency value to determine whether a spark suspected
  • the flame characteristic frequency of step f) may be a flame boundary region frequency value for the flame boundary region.
  • step g) the probability value of step g) is given as [(number of flame suspicions / time) * 100%], and when the probability value is 80% or more, it is recognized as a fire.
  • the real-time fire monitoring method using a CCTV camera according to the present invention, h) when it is determined that the fire occurs, may further comprise the step of transmitting the fire occurrence information to the user terminal.
  • the present invention it is possible to easily monitor the presence or absence of a fire by determining whether the image photographed by the CCTV camera is a flame (flame) image in real time. Accordingly, it is possible to easily monitor the occurrence of the fire through the image captured by the CCTV camera without the existing expensive infrared camera or the central control unit.
  • a fire monitoring device in the CCTV camera can directly detect the presence of a fire in the CCTV camera installed on the site and notify the relevant organizations or user terminals. For example, information and images can be sent directly to relevant organizations, recipients and DVRs.
  • 1 is a diagram illustrating the shape of a flame that changes shape in general irregular.
  • FIG. 2 is a diagram illustrating a change in luminance value of a flame.
  • 3 is a view showing the RGB value at the corresponding position of the flame.
  • FIG. 4 is a block diagram of a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • 5A and 5B are views illustrating a case where a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention is implemented in hardware.
  • FIG. 6 is an operation flowchart of a real-time fire monitoring method using a CCTV camera according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining image sampling in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • FIG 8 is a view for explaining a wavelet transform (Wavelet) for the original image in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • Wavelet wavelet transform
  • FIGS. 9A and 9B are diagrams illustrating a luminance image and a wavelet transform image in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • FIGS. 10A and 10B are diagrams illustrating graphs of specific pixel positions and wavelet transform values of a fire image in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • 11A and 11B are graphs illustrating a crossing count value resulting from a cycle of a fire image in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • 12A and 12B are graphs illustrating a crossing count value resulting from a cycle of a street image in a real-time fire monitoring system using a CCTV camera according to an exemplary embodiment of the present invention.
  • FIGS. 13A and 13B are diagrams illustrating that a real-time fire monitoring system using a CCTV camera according to an exemplary embodiment of the present invention photographs a sidewalk to determine whether a fire occurs.
  • 14A and 14B are diagrams illustrating that a real-time fire monitoring system using a CCTV camera according to an exemplary embodiment of the present invention determines whether a fire occurs by photographing a sidewalk after a predetermined time elapses.
  • 15A and 15B are diagrams illustrating that a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention determines a spark suspected area generated in India.
  • 16A and 16B are diagrams illustrating that a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention determines a spark suspected area generated in a spark image.
  • FIG. 1 is a diagram illustrating a form of a flame that is changed in a general irregular shape
  • FIG. 2 is a diagram illustrating a change in luminance value of the flame
  • FIG. 3 is a diagram showing an RGB value at a corresponding position of the flame.
  • the shape of the flame generated in the fire has the characteristic that the shape changes irregularly with time.
  • this flicker of light is called flicker, and the number of changes in the flame image is higher than that of a general object that is usually seen on a CCTV camera, that is, a person walking and an image of a general object. Appear larger.
  • reference numeral 11 has 37 as a luminance value in a dark place
  • reference numeral 12 has a luminance value near a flame and 127 and 13 denotes a luminance value of a flame as 255. It is shown for, but is not limited to.
  • the flame region in the image photographed at the time of fire shows that the Red value is larger than the Green value and the Red value is larger than the Blue value among the RGB values.
  • reference numeral 21 denotes a dark place and each luminance value of the RGB has a small luminance value with almost no difference
  • reference numeral 22 denotes a luminance near each flame which shows a large luminance value with almost no difference.
  • 23 indicates that the red value is larger than the green value, and the red value is larger than the blue value among the RGB values as the flame region.
  • a fire monitoring system and method for determining the occurrence of a fire in the image taken from the CCTV camera in real time based on the above-described flame characteristics For such fire monitoring, 1) extraction of a fire occurrence area, 2) determination of the presence or absence of a fire characteristic, and 3) circuit design of a fire monitoring device in a CCTV camera are required, which will be described below with reference to FIGS. 4 to 16B.
  • FIG. 4 is a block diagram of a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • a real-time fire monitoring system using a CCTV camera includes a CCTV camera 100, a fire monitoring device 200 and the user terminal 300.
  • the fire monitoring apparatus 200 may include a sample image acquisition unit 210, a luminance value extractor 220, a wavelet converter 230, a controller 240, a memory 250, and a transmitter 260. Can be.
  • the CCTV camera 100 provides an original image by capturing an image of a corresponding area to monitor the occurrence of a fire in real time, and preferably includes a fire monitoring apparatus 200 in the CCTV camera 100.
  • CCTV Closed Circuit Television
  • CCTV is a television system for transmitting an image to a specific recipient.
  • general wired and wireless broadcasting is called an open circuit television system, and in contrast, transmitting image information to a specific screen winner is called a closed circuit television system, that is, CCTV.
  • the transmission and reception of images by wire or wireless (usually wired is a common form, and in the case of wireless, is regulated by related agencies such as the Radio Transmission Act). do.
  • CCTVs basically consist of three parts: an imaging device, a transmission device, and a display device. Recently, there is a growing tendency to add a digital video recorder (DVR). In addition, there is a tendency to switch from a conventional analog transmission method to a digital transmission method for signal transmission. CCTV is an essential equipment in security-related systems because it is mainly used for security purpose for intruder surveillance.
  • DVR digital video recorder
  • the fire monitoring apparatus 200 is embedded in the CCTV camera 100, and determines whether the original image photographed from the CCTV camera 100 is a flame (flame) image to monitor the fire occurrence.
  • the user terminal 300 receives the fire occurrence information transmitted from the transmitter of the fire monitoring apparatus 200 by wire or wirelessly.
  • the user terminal 300 may be a mobile phone, a smart phone, a PC, and the like, but is not limited thereto, and any device capable of receiving fire occurrence information transmitted from a transmitter of the fire monitoring apparatus 200 may be used. Do.
  • the sample image acquisition unit 210 of the fire monitoring apparatus 200 obtains a sample image from the original image photographed by the CCTV camera 100. Details thereof will be described later with reference to FIG. 7.
  • the luminance value extracting unit 220 of the fire monitoring apparatus 200 extracts an RGB luminance value for each pixel from the sample image.
  • the wavelet converter 230 of the fire monitoring apparatus 200 calculates a wavelet luminance value by wavelet converting the RGB luminance value to grasp the change value of the boundary line of the original image.
  • the control unit 240 of the fire monitoring device 200 identifies the frequency corresponding to the calculated change value of the brightness of the wavelet and compares the frequency with a predetermined flame characteristic frequency value to determine whether the area is a flame suspect area, It is determined whether a fire has occurred according to a probability of occurrence of the flame suspected region in the image.
  • the flame characteristic frequency may be a flame boundary region frequency value with respect to the flame boundary region.
  • the controller 240 obtains a cumulative crossing count value at each pixel position in order to determine a frequency which is a change value of the calculated wavelet value, and calculates a red luminance at each pixel position.
  • the value is greater than the green luminance value and the blue luminance value, and if the accumulated crossing count value corresponds to a preset flame characteristic frequency value, it is determined that there is a flame suspicion region in the corresponding image, / Time) * 100%] is compared with a preset probability value to determine whether a fire has occurred.
  • the probability value is given as [(number of flame suspicions / time) * 100%], and the probability value may be recognized as a fire when the probability value is 80% or more, but is not limited thereto. It will be described later in detail with reference to 16b.
  • the memory 250 of the fire monitoring apparatus 200 stores data about the original image, the sample image, the RGB luminance value, the wavelet luminance value, and the flame characteristic frequency value.
  • the transmitter 260 of the fire monitoring apparatus 200 transmits fire occurrence information to the user terminal 300.
  • the present invention it is possible to easily monitor the occurrence of a fire by real-time discriminating whether the image photographed by the camera is a flame (flame) image, and installed in the field by embedding a fire monitoring apparatus 200 in the CCTV camera 100
  • the CCTV camera 100 may directly detect the presence of fire and notify the related organizations or user terminals. For example, information and images can be sent directly to relevant organizations, recipients and DVRs.
  • 5A and 5B are views illustrating a case where a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention is implemented in hardware.
  • CCTV camera 100 includes an input circuit unit 110 and an output circuit unit 120
  • the fire monitoring device is a hardware in the form of fire monitoring control board 200 It can be implemented as a built-in.
  • the fire monitoring control board 200 may include, for example, the MCU 201, the power supply unit 202, the ITU-656 input unit 203, the RS-485 204, and the CVBS output.
  • the unit 205, the S-Video output unit 206, the RGB output unit 207, the EEPROM 208, the switch control unit 209, and the like may be included, but are not limited thereto.
  • the fire detection chip may be mounted in the form of an FPGA 200a, and by embedding the fire monitoring control board 200 equipped with an embedded-based operating system (OS) in the CCTV camera 100, By detecting a fire directly through the FPGA (200a) to the image taken by the CCTV camera 100, by implementing a system capable of transmitting a text message or a PC system of the user terminal by wireless communication, Internet communication and RS485 / 232 communication, Even without an expensive central fire monitoring system, it is possible to implement a system capable of transmitting a general fire image and fire detection from the CCTV camera 100.
  • a field-programmable gate array (FPGA) refers to an integrated circuit (IC) in the form of an intermediate development, which is manufactured to finally verify the operation and performance of the hardware just before producing the designed hardware into the semiconductor.
  • Figure 6 is a flow chart of the real-time fire monitoring method using a CCTV camera according to an embodiment of the present invention.
  • the real-time fire monitoring method using a CCTV camera as a method for detecting a fire in real time by embedding a fire monitoring device in the CCTV camera, first, from a real-time original image taken through a CCTV camera A sample image is obtained (S110). This will be described later with reference to FIG. 7.
  • the wavelet transform value is calculated by performing a wavelet transform on the luminance value of each pixel to determine the change value of the boundary line of the original image (S130).
  • the frequency corresponding to the calculated change value of the wavelet luminance value is determined (S140). That is, the cumulative count value is obtained for the case where the comparison values before and after the same position pixel are crossed with the wavelet luminance value of the specific level (S140).
  • the frequency is compared with a preset flame characteristic frequency value to determine whether the flame is a suspected region. That is, it is determined whether the cumulative count value is the flame boundary region frequency value for the flame boundary region which is a flame characteristic (S170).
  • the probability value of the flame suspected region in the image is given as [(number of flame suspicions / time) * 100%], and when the probability value is 80% or more, it is recognized as a fire, but is not limited thereto.
  • the fire occurrence information is transmitted to the user terminal (S200).
  • Figure 7 is a view for explaining the image sampling in the real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention.
  • the real-time fire monitoring system using a CCTV camera uses image sampling for flame detection. That is, as shown in Figure 7, in consideration of the data processing time for the real-time operation on the original image 401 received through the above-described CCTV camera 110, the luminance signal of each frame image is smaller than the original resolution Obtain a sample image 402 with.
  • the calculation speed is significantly faster than the data processing time for the entire original image 401, and the data is sampled with regularity and thus compared with the original image 401.
  • the average value and the error rate come out less.
  • Figure 8 is a view for explaining the conversion of the wavelet (Wavelet) to the original image in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention
  • Figures 9a and 9b is an embodiment of the present invention
  • FIG. 3 is a diagram illustrating a luminance image and a wavelet transform image in a real-time fire monitoring system using a CCTV camera.
  • the captured image is converted into a luminance value (Y) 403 in order to find out the change value of the boundary line of the original image captured by the CCTV camera. Then, by calculating the wavelet transform value 404 for each luminance value 403, it is possible to obtain data emphasizing the boundary portion.
  • the operation value is inserted at the corresponding position using a high-pass filter.
  • the low-pass filter as well as the high-pass filter can be used to search for fires in a similar manner with a calculated value. Accordingly, a wavelet luminance value in which an outline of the luminance of the original image is emphasized may be calculated. If you look at the actual wavelet transform value 406 from which the value 240 is converted from the actual original luminance value 405 to 16, you can see a more pronounced difference.
  • FIG. 9A shows the luminance image 408.
  • FIG. 9B is a diagram showing that the contour of the flame is clearly visible 409 by wavelet transformation.
  • FIGS. 10A and 10B are diagrams illustrating graphs of specific pixel positions and wavelet transform values of a fire image in a real-time fire monitoring system using a CCTV camera according to an exemplary embodiment of the present invention.
  • each frame number (X-axis) and the luminance-changed value (Y-axis) are obtained, and a frequency value that is a period is also obtained.
  • the Red value is smaller than Green or the Red value is smaller than Blue according to the characteristics of the flame, it is not included in the period.
  • the graph of FIG. 10B is a graph showing a wavelet change value of a specific pixel position of a fire video.
  • the red line represents a period
  • the crossing count value for the period of the flame blue pixel position is 9, for example.
  • FIGS. 11A and 11B are graphs showing a crossing count value resulting from a cycle of a fire image in a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention
  • FIGS. 12A and 12B illustrate the present invention.
  • a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention is a diagram showing a cross-counting value resulting from the cycle of the street image in a graph.
  • 11B and 12B are graphs showing a crossing count value resulting from a cycle, and are graphs of counting values at respective pixel positions as 30 frame data for one second of an image as a distribution of total counting numbers.
  • the x-axis count value is counted twice based on the Wavelet luminance value of a certain level, and the flicker value of the flame, that is, the flicker frequency, is calculated as the flame boundary frequency value.
  • the flame suspect region may be primarily determined.
  • Figure 13a and 13b is a diagram illustrating a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention to determine whether the fire by shooting the sidewalk
  • Figures 14a and 14b is an embodiment of the present invention
  • the real-time fire monitoring system using a CCTV camera according to the figure is a diagram illustrating the determination of the fire by taking a sidewalk after a predetermined time elapsed.
  • the persistence of the time detected by the flame suspect area and the time detected by the flame suspect area is determined. It is implemented to recognize as a fire only when it occurs more than the set probability value, that is, [(flame suspicion / time) * 100%].
  • the image of the CCTV camera does not appear as a flame boundary frequency value only for the flame image, but was also found in the sidewalk image as shown in FIG. 13A.
  • the portion indicated by reference numeral 411 in FIG. 13A corresponds to the flame boundary region frequency value as the portion indicated by reference numeral 412 in FIG. 13B.
  • the suspected flame region was searched again after 8 seconds after the first suspected flame region was searched.
  • the portion indicated by reference numeral 413 in FIG. 14A corresponds to the flame boundary region frequency value as shown by the reference numeral 414 in FIG. 14B.
  • Figures 15a and 15b is a view illustrating a real-time fire monitoring system using a CCTV camera according to an embodiment of the present invention to determine the suspected area of the fire occurred in India
  • Figures 16a and 16b is an embodiment of the present invention According to the real-time fire monitoring system using a CCTV camera according to Figures illustrating an example of determining the spark suspected area generated in the flame image.
  • the probability value, [(number of flame suspicions / times) * 100%] of the suspected flame region of the delivered image of FIG. 15A was 20%, but about 80% of the flame image of FIG. 16A was calculated.
  • 80% is for the purpose of example only and that value may vary.
  • a fire monitoring device in the CCTV camera can directly detect the presence of a fire in the CCTV camera installed on the site to notify the relevant organizations or user terminals. For example, information and images can be sent directly to relevant organizations, recipients and DVRs.
  • the present invention can monitor in real time the presence of fire of cultural assets, subways and buildings using a CCTV camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

CCTV 카메라에 의해 촬영된 이미지가 불꽃(화염) 이미지인지 실시간 판별함으로써 화재의 발생 유무를 용이하게 감시할 수 있고, CCTV 카메라 내에 화재 감시장치를 내장함으로써 현장에 설치된 CCTV 카메라에서 화재 유무를 직접 탐색하여 관련 기관이나 사용자 단말에게 통보할 수 있는, CCTV 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법이 제공된다.

Description

폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법
본 발명은 실시간 화재 감시 시스템에 관한 것으로, 보다 구체적으로, 폐쇄회로 텔레비전 카메라(Closed Circuit Television: CCTV) 카메라에 의해 촬영된 이미지를 바탕으로 화재의 발생 유무를 실시간 감시하는 화재 감시 시스템 및 그 방법에 관한 것이다.
일반적으로, 화재감시 시스템은 감시지역에 온도센서나 연기센서 등 화재발생을 감지하기 위한 센서를 분산 설치한 후, 센서가 화재를 감지하면 통신수단을 통해 중앙관제 시스템에 보고하여 경보를 발생하거나 주요기관에 통지하는 시스템이다. 예를 들면, 전철역사와 같은 주요 장소에는 대부분 화재 감시 시스템이 설치되어 화재발생에 따른 위험을 최소화하고 있다.
최근, 대한민국 국보1호 숭례문(남대문)의 화재사건이 크게 이슈화 되면서 문화재, 지하철 및 건축물의 화재에 대한 근본적인 대응 방안이 요구되고 있으며, 특히, 화재 감시 인력에 대한 예산확보의 어려움과 사설 경비업체의 외주 업무에 대한 불만족 및 불신감 등의 이유로 감시 인력을 대체할 수 있는 화재 감시장치의 필요성이 증대되고 있다.
그런데 화재감지 센서를 이용한 종래의 화재감시 시스템은 현장에 센서를 설치해야하는 어려움과 센서의 오작동으로 인해 오경보가 발생하는 문제점이 있다.
한편, 감시현장을 촬영한 영상신호를 분석하여 화재발생 여부를 판단하고자 하는 기술이 개발되었는데, 공개된 영상신호분석을 이용한 화재감시기술은 적외선 및 가시광선 영상을 분석하여 화재발생 여부를 판단하고 있다.
전술한 바와 같이, 종래 기술들은 화재 감시 시스템이라 하여 일반 카메라와 연결되어 있는 화재 감시 시스템에서 감시와 탐색을 하는 방식으로서, 고가의 감시 시스템을 구매 및 유지하는 비용 부담이 큰 문제점이 있다. 또한, 다른 방법으로는, 먼저 화재 신고가 접수되어야 해당 위치의 카메라를 원격 조정하여 현장을 파악하는 시스템은 화재 발생에 대하여 초기 대응이 늦어지는 문제점이 있다. 또한, 신규 기술로 사람을 대신하여 로봇이나 무인비행기(UAV)를 이용하여 화재를 감시할 수 있지만, 아직 비용면에서 시기상조로 보인다.
[선행기술문헌]
[특허문헌]
1) 대한민국 등록특허번호 제10-0268771호(출원일: 1998년 03월 07일), 발명의 명칭: "화상에 확률 분포함수를 이용한 화재 감시 방법"
2) 대한민국 등록특허번호 제10-0648319호(출원일: 2005년 12월 13일), 발명의 명칭: "화염의 동적 특성을 이용한 적외선 화재 감시 방법 및 시스템"
3) 대한민국 등록특허번호 제10-0638120호(출원일: 2006년 02월 10일), 발명의 명칭: "화재감시 시스템"
4) 대한민국 등록특허번호 제10-0851601호(출원일: 2007년 01월 10일), 발명의 명칭: "화재 발생 감시 방법 및 시스템"
5) 대한민국 등록특허번호 제10-0839090호(출원일: 2008년 03월 17일), 발명의 명칭: "영상기반 화재감시 시스템"
전술한 문제점을 해결하기 위한 본 발명이 이루고자 하는 기술적 과제는, CCTV 카메라에 의해 촬영된 이미지가 불꽃(화염) 이미지인지 실시간 판별함으로써 화재의 발생 유무를 감시하는 CCTV 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법을 제공하기 위한 것이다.
본 발명이 이루고자 하는 다른 기술적 과제는, CCTV 카메라 내에 화재 감시장치를 내장함으로써 현장에 설치된 CCTV 카메라에서 화재 유무를 직접 탐색하여 관련 기관이나 사용자 단말에게 통보할 수 있는 CCTV 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법을 제공하기 위한 것이다.
전술한 기술적 과제를 달성하기 위한 수단으로서, 본 발명에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템은, 화재 발생 유무를 감시할 해당 영역의 이미지를 실시간 촬영하여 원본 이미지를 제공하는 CCTV 카메라; 및 상기 CCTV 카메라 내에 내장되며, 상기 CCTV 카메라로부터 촬영된 원본 이미지가 불꽃(화염) 이미지인지 판별하여 화재 발생 유무를 감시하는 화재 감시장치를 포함하되, 상기 화재 감시장치는, 상기 CCTV 카메라로부터 촬영된 원본 이미지로부터 샘플 이미지(Sample Image)를 획득하는 샘플 이미지 획득부; 상기 샘플 이미지로부터 해당 픽셀별로 RGB 휘도값을 추출하는 휘도값 추출부; 상기 원본 이미지의 경계선에 대한 변화값을 파악하기 위해 상기 RGB 휘도값을 웨이브렛 변환하여 웨이브렛 휘도값을 산출하는 웨이브렛(Wavelet) 변환부; 상기 산출된 웨이브렛 휘도값의 변화값에 대응하는 주파수를 파악하고 상기 주파수를 기설정된 불꽃 특성 주파수 값과 비교하여 불꽃 의심 영역인지를 확인하고, 해당 이미지 내의 상기 불꽃 의심 영역의 발생 확률에 따라 화재 발생 여부를 판별하는 제어부; 및 상기 제어부가 화재 발생으로 판별한 경우, 화재 발생 정보를 송신하는 송신부를 포함하여 구성된다.
여기서, 상기 화재 감시장치의 제어부는, 상기 산출된 웨이브렛 값의 변화값인 주파수를 파악하기 위해 각각의 픽셀 위치에서의 누적된 크로싱(Crossing) 카운트 값을 구하여, 각각의 픽셀 위치에서의 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰지 비교하고, 상기 누적된 크로싱 카운트 값이 기설정된 불꽃 특성 주파수 값에 해당하는 경우, 해당 이미지 내에 불꽃 의심 영역이 있는 것으로 확인하며, [(불꽃의심 발생 횟수/시간) * 100%]을 기설정된 확률값과 비교하여 화재 발생 여부를 판별하는 것을 특징으로 한다.
본 발명에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템은, 상기 화재 감시장치의 송신부로부터 송신된 화재 발생 정보를 유선 또는 무선으로 수신하는 사용자 단말을 추가로 포함할 수 있다.
한편, 전술한 기술적 과제를 달성하기 위한 다른 수단으로서, 본 발명에 따른 CCTV 카메라를 이용한 실시간 화재 감시 방법은, CCTV 카메라 내에 화재 감시장치가 내장되어 실시간으로 화재를 감지하는 방법에 있어서, a) CCTV 카메라를 통해 촬영된 실시간 원본 이미지로부터 샘플 이미지를 획득하는 단계; b) 상기 샘플 이미지로부터 해당 픽셀별로 RGB 휘도값을 추출하는 단계; c) 상기 원본 이미지의 경계선에 대한 변화값을 파악하도록 상기 해당 픽셀별 휘도값에 대한 웨이브렛(Wavelet) 변환을 수행하여 웨이브렛 변환값을 산출하는 단계; d) 상기 산출된 웨이브렛 휘도값의 변화값에 대응하는 주파수를 파악하는 단계; e) 상기 RGB 휘도값 중에서 각각의 픽셀 위치에서의 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰지 비교하는 단계; f) 상기 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰 경우, 상기 주파수를 기설정된 불꽃 특성 주파수 값과 비교하여 불꽃 의심 영역인지 확인하는 단계; 및 g) 해당 이미지 내의 상기 불꽃 의심 영역의 확률값에 따라 화재 발생 여부를 판별하는 단계를 포함할 수 있다.
여기서, 상기 f) 단계의 불꽃 특성 주파수는 불꽃 경계지역에 대한 불꽃 경계지역 주파수 값인 것일 수 있다.
여기서, 상기 g) 단계의 확률값은 [(불꽃의심 발생 횟수/시간) * 100%]로 주어지고, 상기 확률값이 80% 이상인 경우 화재로 인식하는 것을 특징으로 한다.
본 발명에 따른 CCTV 카메라를 이용한 실시간 화재 감시 방법은, h) 화재 발생으로 판별된 경우, 화재 발생 정보를 사용자 단말에게 송신하는 단계를 추가로 포함할 수 있다.
본 발명에 따르면, CCTV 카메라에 의해 촬영된 이미지가 불꽃(화염) 이미지인지 실시간 판별함으로써 화재의 발생 유무를 용이하게 감시할 수 있다. 이에 따라, 기존의 고가의 적외선 카메라 또는 중앙제어장치 없이도 CCTV 카메라에 의해 촬영된 이미지를 통해 화재의 발생 유무를 용이하게 감시할 수 있다.
본 발명에 따르면, CCTV 카메라 내에 화재 감시장치를 내장함으로써 현장에 설치된 CCTV 카메라에서 화재 유무를 직접 탐색하여 관련 기관이나 사용자 단말에게 통보할 수 있다. 예를 들면, 관련 기관, 수신자 및 DVR에게 정보 및 이미지를 바로 송신할 수 있다.
도 1은 일반적인 불규칙적으로 형태가 변화하는 불꽃의 형태를 예시하는 도면이다.
도 2는 불꽃의 휘도값 변화를 예시하는 도면이다.
도 3은 불꽃의 해당 위치에서의 RGB값을 보여주는 도면이다.
도 4는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템의 구성도이다.
도 5a 및 도 5b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 하드웨어로 구현된 경우를 예시하는 도면들이다.
도 6은 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 방법의 동작흐름도이다.
도 7은 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 이미지 샘플링을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 원본 이미지에 대한 웨이브렛(Wavelet) 변환을 설명하기 위한 도면들이다.
도 9a 및 도 9b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 휘도 이미지 및 웨이브렛(Wavelet) 변환 이미지를 예시하는 도면들이다.
도 10a 및 도 10b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 화재 동이미지의 특정 픽셀 위치 및 웨이브렛(Wavelet) 변환값의 그래프를 예시하는 도면들이다.
도 11a 및 도 11b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 화재 이미지의 주기에 의하여 나온 크로싱 카운트 값을 그래프로 표시한 도면들이다.
도 12a 및 도 12b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 길거리 이미지의 주기에 의하여 나온 크로싱 카운트 값을 그래프로 표시한 도면들이다.
도 13a 및 도 13b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 인도를 촬영하여 화재 여부를 판단하는 것을 예시하는 도면들이다.
도 14a 및 도 14b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 소정 시간 경과 이후 인도를 촬영하여 화재 여부를 판단하는 것을 예시하는 도면들이다.
도 15a 및 도 15b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 인도에서 발생한 불꽃 의심 영역을 판별하는 것을 예시하는 도면들이다.
도 16a 및 도 16b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 불꽃 이미지에서 발생한 불꽃 의심 영역을 판별하는 것을 예시하는 도면들이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
먼저, 도 1 내지 도 3을 참조하여, 화재시 발생하는 불꽃(화염)의 특성에 대해 살펴본다.
도 1은 일반적인 불규칙적으로 형태가 변화하는 불꽃의 형태를 예시하는 도면이고, 도 2는 불꽃의 휘도값 변화를 예시하는 도면이며, 도 3은 불꽃의 해당 위치에서의 RGB값을 보여주는 도면이다.
일반적으로 화재시 발생하는 불꽃의 형태는, 도 1의 a) 내지 c)에 도시된 바와 같이, 시간에 대하여 불규칙적으로 형태가 변화하는 특성을 가지고 있다. 통상적으로, 이러한 빛의 깜빡임을 플리커(Flicker)라고 하며, 보통 CCTV 카메라에 비춰지는 일반적인 객체, 즉 사람이 걸어가는 모습 및 일반적인 객체의 이미지에 비하여 불꽃 이미지의 변화 횟수가 많으며, 또한 그 변화 영역이 더 크게 나타난다.
도 2에 도시된 바와 같이, 이러한 불꽃은 빛을 발산하기 때문에 CCTV 카메라에서 촬영된 이미지의 휘도값은 가장 밝은 값을 가지며, 어두운 곳은 작은 휘도값을 갖는다. 예를 들면, 도면부호 11은 어두운 곳의 휘도값으로 37을 가지며, 도면부호 12는 불꽃 근처의 휘도값으로 127을 가지며, 도면부호 13은 불꽃의 휘도값으로 255를 갖는 것을 예시하는데, 단지 예를 위해 도시되며, 이에 국한되는 것은 아니다.
도 3을 참조하면, 화재시 촬영된 이미지에서 불꽃 영역은 RGB값 중에서 Red 값이 Green 값보다 크고, 또한, Red 값이 Blue 값보다 더 크게 나타나는 것을 예시한다. 예를 들면, 도면부호 21은 어두운 곳으로서 RGB 각각의 휘도값이 차이가 거의 없이 작은 휘도값을 갖는 것을 나타내며, 도면부호 22는 불꽃 근처로서 RGB 각각의 휘도값이 차이가 거의 없이 큰 휘도값을 갖는 것을 나타내며, 도면부호 23은 불꽃 영역으로서 RGB값 중에서 Red 값이 Green 값보다 크고, 또한, Red 값이 Blue 값보다 더 크게 나타나는 것을 나타낸다.
이하 본 발명의 실시예로서, 전술한 불꽃 특성에 근거하여 실시간으로 CCTV 카메라로부터 촬영된 이미지로 화재 발생 유무를 판단하는 화재 감시 시스템 및 그 방법이 제공된다. 이러한 화재 감시를 위해서는, 1) 화재 발생 영역의 추출, 2) 화재 특성의 유무 판단 및 3) CCTV 카메라 내에 화재 감시장치의 회로 설계 등이 요구되며, 이하 도 4 내지 도 16b를 참조하여 설명한다.
도 4는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템의 구성도이다.
도 4를 참조하면, 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템은 크게 CCTV 카메라(100), 화재 감시장치(200) 및 사용자 단말(300)을 포함한다. 여기서, 화재 감시장치(200)는 샘플 이미지 획득부(210), 휘도값 추출부(220),웨이브렛 변환부(230), 제어부(240), 메모리(250) 및 송신부(260)를 포함할 수 있다.
CCTV 카메라(100)는 화재 발생 유무를 감시할 해당 영역의 이미지를 실시간 촬영하여 원본 이미지를 제공하며, CCTV 카메라(100) 내에 화재 감시장치(200)가 내장되는 것이 바람직하다. 여기서, CCTV(Closed Circuit Television)는 폐쇄회로 텔레비전으로서, CCTV는 특정 수신자를 대상으로 화상을 전송하는 텔레비전 방식이다. 넓은 개념으로는 일반 유무선 방송을 개회로 텔레비전 시스템이라 하고, 이와 대비하여 특정한 화면 수상자에게 화상정보를 전송하는 것을 폐쇄회로 텔레비전 시스템, 즉, CCTV라고 부른다. 화상의 송수신을 유선 또는 무선으로 연결하며(대개 유선이 보편적인 형태이며, 무선의 경우, 전파송출법 등 관계기관의 규제를 받는다.), 수신 대상 이외는 임의로 수신할 수 없기 때문에 폐쇄회로 텔레비전이라고도 한다.
이러한 CCTV는 기본적으로 촬상장치, 전송장치 및 표시장치의 3개의 부분으로 구성되는데, 최근엔 여기에 기록장치(Digital Video Recorder: DVR)를 부가하는 경향이 높아지고 있다. 또한, 신호의 전송에는 종래의 아날로그 전송 방식부터 디지털 전송방식으로 전환해 가는 경향도 있다. 주로 침입자 감시를 위한 보안의 목적으로 많이 사용하기 때문에 CCTV는 보안 관련 시스템에서 필수적인 장비라고 할 수 있다.
화재 감시장치(200)는 상기 CCTV 카메라(100) 내에 내장되며, 상기 CCTV 카메라(100)로부터 촬영된 원본 이미지가 불꽃(화염) 이미지인지 판별하여 화재 발생 유무를 감시한다.
사용자 단말(300)은 상기 화재 감시장치(200)의 송신부로부터 송신된 화재 발생 정보를 유선 또는 무선으로 수신한다. 예를 들면, 사용자 단말(300)은 휴대폰, 스마트폰, PC 등일 수 있지만, 이에 국한되는 것은 아니며, 상기 화재 감시장치(200)의 송신부로부터 송신된 화재 발생정보를 수신할 수 있는 어떠한 장치도 무방하다.
구체적으로, 상기 화재 감시장치(200)의 샘플 이미지 획득부(210)는 상기 CCTV 카메라(100)로부터 촬영된 원본 이미지로부터 샘플 이미지(Sample Image)를 획득한다. 이에 대한 구체적인 내용은 도 7을 참조하여 후술하기로 한다.
상기 화재 감시장치(200)의 휘도값 추출부(220)는 상기 샘플 이미지로부터 해당 픽셀별로 RGB 휘도값을 추출한다.
상기 화재 감시장치(200)의 웨이브렛 변환부(230)는 상기 원본 이미지의 경계선에 대한 변화값을 파악하기 위해 상기 RGB 휘도값을 웨이브렛 변환하여 웨이브렛 휘도값을 산출한다.
상기 화재 감시장치(200)의 제어부(240)는 상기 산출된 웨이브렛 휘도값의 변화값에 대응하는 주파수를 파악하고 상기 주파수를 기설정된 불꽃 특성 주파수 값과 비교하여 불꽃 의심 영역인지를 확인하고, 해당 이미지 내의 상기 불꽃 의심 영역의 발생 확률에 따라 화재 발생 여부를 판별한다. 예를 들면, 상기 불꽃 특성 주파수는 불꽃 경계지역에 대한 불꽃 경계지역 주파수 값일 수 있다.
구체적으로, 상기 제어부(240)는, 상기 산출된 웨이브렛 값의 변화값인 주파수를 파악하기 위해 각각의 픽셀 위치에서의 누적된 크로싱(Crossing) 카운트 값을 구하여, 각각의 픽셀 위치에서의 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰지 비교하고, 상기 누적된 크로싱 카운트 값이 기설정된 불꽃 특성 주파수 값에 해당하는 경우, 해당 이미지 내에 불꽃 의심 영역이 있는 것으로 확인하며, [(불꽃의심 발생 횟수/시간) * 100%]을 기설정된 확률값과 비교하여 화재 발생 여부를 판별하게 된다. 예를 들면, 상기 확률값은 [(불꽃의심 발생 횟수/시간) * 100%]로 주어지고, 상기 확률값이 80% 이상인 경우 화재로 인식할 수 있지만, 이에 국한되는 것은 아니며, 이에 대해서는 도 8 내지 도 16b를 참조하여 구체적으로 후술하기로 한다.
상기 화재 감시장치(200)의 메모리(250)는 상기 원본 이미지, 상기 샘플 이미지, 상기 RGB 휘도값, 웨이브렛 휘도값 및 상기 불꽃 특성 주파수 값 등에 대한 데이터를 저장한다.
상기 화재 감시장치(200)의 송신부(260)는 상기 제어부(240)가 화재 발생으로 판별한 경우, 화재 발생 정보를 상기 사용자 단말(300)에게 송신한다.
본 발명에 따르면, 카메라에 의해 촬영된 이미지가 불꽃(화염) 이미지인지 실시간 판별함으로써 화재의 발생 유무를 용이하게 감시할 수 있고, CCTV 카메라100) 내에 화재 감시장치(200)를 내장함으로써 현장에 설치된 CCTV 카메라(100)에서 화재 유무를 직접 탐색하여 관련 기관이나 사용자 단말에게 통보할 수 있다. 예를 들면, 관련 기관, 수신자 및 DVR에게 정보 및 이미지를 바로 송신할 수 있다.
도 5a 및 도 5b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 하드웨어로 구현된 경우를 예시하는 도면들이다.
도 5a에 도시된 바와 같이, 본 발명의 실시예에 따른 CCTV 카메라(100)는 입력 회로부(110) 및 출력 회로부(120)를 포함하며, 화재 감시장치가 화재 감시 제어보드(200) 형태의 하드웨어로 구현되어 내장될 수 있다. 또한, 도 5b에 도시된 바와 같이, 화재 감시 제어보드(200)는, 예를 들면, MCU(201), 전원부(202), ITU-656 입력부(203), RS-485(204), CVBS 출력부(205), S-Video 출력부(206), RGB 출력부(207), EEPROM(208) 및 스위치 제어부(209) 등을 포함할 수 있지만, 이에 국한되는 것은 아니다.
다시 말하면, 화재탐지 칩은 FPGA(200a) 형태로 탑재될 수 있고, 임베디드-기반 운영체제(Operating System: OS)가 탑재된 해당 화재 감시 제어보드(200)를 CCTV 카메라(100) 내에 내장함으로써, 상기 CCTV 카메라(100)를 통해 촬영된 이미지를 직접 FPGA(200a)로 통하여 화재를 탐지하며, 무선통신, 인터넷 통신 및 RS485/232 통신으로 사용자 단말인 PC 시스템이나 핸드폰 문자 전송이 가능한 시스템을 구현함으로써, 고가의 중앙 화재 감시 시스템이 없이도, CCTV 카메라(100)에서 일반 화재 이미지 전송 및 화재탐지가 가능한 시스템을 구현할 수 있다. 여기서, FPGA(field-programmable gate array)는 이미 설계된 하드웨어를 반도체로 생산하기 직전 최종적으로 하드웨어의 동작 및 성능을 검증하기 위해 제작하는 중간 개발물 형태의 집적 회로(IC)를 말한다.
본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에 따르면, 일반적인 CCTV 카메라와 함께 필요했었던 기존의 고가의 중앙감시 시스템 없이도 해당 화재 감시용 CCTV 카메라(100)와 간단한 모니터링 장비를 가지고도 화재 감시 및 모니터링이 가능해진다.
한편, 도 6은 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 방법의 동작흐름도이다.
도 6을 참조하면, 본 발명에 따른 CCTV 카메라를 이용한 실시간 화재 감시 방법은, CCTV 카메라 내에 화재 감시장치가 내장되어 실시간으로 화재를 감지하는 방법으로서, 먼저, CCTV 카메라를 통해 촬영된 실시간 원본 이미지로부터 샘플 이미지를 획득한다(S110). 이에 대해서는 도 7을 참조하여 후술하기로 한다.
다음으로, 상기 샘플 이미지로부터 해당 픽셀별로 RGB 휘도값을 추출한다(S120). 이에 대해서는 도 8을 참조하여 구체적으로 설명하기로 한다.
다음으로, 상기 원본 이미지의 경계선에 대한 변화값을 파악하도록 상기 해당 픽셀별 휘도값에 대한 웨이브렛(Wavelet) 변환을 수행하여 웨이브렛 변환값을 산출한다(S130).
다음으로, 상기 산출된 웨이브렛 휘도값의 변화값에 대응하는 주파수를 파악한다(S140). 즉, 같은 위치 픽셀의 전후의 비교값이 특정 레벨의 웨이브렛 휘도값으로 크로싱된 경우에 대해서 누적 카운트 값을 구한다(S140).
다음으로, 전술한 S110 내지 S140 단계가 소정 횟수, 예를 들면, 30회 반복되었는지 확인한다(S150). 여기서, 반복 횟수는 임의로 달라질 수 있다.
다음으로, 상기 RGB 휘도값 중에서 각각의 픽셀 위치에서의 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰지 비교한다(S160).
다음으로, 상기 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰 경우, 상기 주파수를 기설정된 불꽃 특성 주파수 값과 비교하여 불꽃 의심 영역인지 확인한다. 즉, 누적 카운트 값이 불꽃 특성인 불꽃 경계지역에 대한 불꽃 경계지역 주파수 값인지 판단한다(S170).
다음으로, 누적 카운트 값이 불꽃 특성인 불꽃 경계지역 주파수 값에 포함되는 경우, 불꽃 의심 영역인 것으로 판단한다(S180).
다음으로, 해당 이미지 내의 상기 불꽃 의심 영역의 확률값에 따라 화재 발생 여부를 판별한다(S190). 예를 들면,상기 확률값은 [(불꽃의심 발생 횟수/시간) * 100%]로 주어지고, 상기 확률값이 80% 이상인 경우 화재로 인식하게 되지만, 이에 국한되는 것은 아니다.
다음으로, 화재 발생으로 판별된 경우, 화재 발생 정보를 사용자 단말에게 송신한다(S200).
전술한 바와 같이, CCTV 카메라에 화재탐지 알고리즘을 적용함으로써, CCTV 카메라에서 화재 발생을 자동으로 감지하여 각 지정된 관련 기관으로의 이미지 정보 및 알람신호를 송신할 수 있으며, 이에 따라 인력비용으로 인한 예산낭비를 줄일 수 있고, 화재에 대한 초기 대응 시스템 구축 가능성을 높일 수 있다.
한편, 도 7은 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 이미지 샘플링을 설명하기 위한 도면이다.
본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템은, 불꽃 탐지를 위한 이미지 샘플링을 사용한다. 즉, 도 7에 도시된 바와 같이, 전술한 CCTV 카메라(110)를 통해 받은 원본 이미지(401)에 대해서 실시간 연산을 위한 데이터 처리 시간을 감안하여 각각의 프레임 이미지의 휘도 신호를 원래 해상도 보다 작은 해상도를 갖는 샘플 이미지(402)를 획득한다.
이와 같이 샘플 이미지(402)를 처리할 경우, 전체 원본 이미지(401)에 대한 데이터 처리시간 보다 확연히 빠른 연산속도를 보여주며, 또한, 규칙성을 두고 샘플링한 데이터이기 때문에 원본 이미지(401)와 비교하여 평균값 및 오차율이 적게 나온다.
한편, 도 8은 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 원본 이미지에 대한 웨이브렛(Wavelet) 변환을 설명하기 위한 도면들이고, 도 9a 및 도 9b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 휘도 이미지 및 웨이브렛(Wavelet) 변환 이미지를 예시하는 도면들이다.
본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템의 경우, CCTV 카메라에 의해 촬영된 원본 이미지의 경계선에 대한 변화값을 알아보기 위해서 촬영 이미지를 휘도값(Y)(403)로 변환한 후, 각각의 휘도값(403)에 대한 웨이브렛(Wavelet) 변환값(404)을 산출함으로써, 경계선 부분을 강조한 데이터를 구할 수 있다.
도 8에 도시된 바와 같이, 고대역 통과 필터(High-Pass Filter)를 이용하여 연산값을 해당 위치에 삽입한다. 이때, 고대역 통과 필터뿐만 아니라 저대역 통과 필터(Low-Pass Filter)로도 연산값을 가지고 유사한 방법으로 화재를 탐색할 수 있다. 이에 따라 원본 이미지의 휘도에 대한 윤곽선이 강조된 웨이브렛(Wavelet) 휘도값이 산출될 수 있다. 실제 원본의 휘도값(405)이 양쪽 16값을 가지고 있는 240의 값이 변환되어 나온 실제 웨이브렛 변환값(406)을 보면, 더 확연한 차이가 나오는 것을 볼 수 있다.
도 9a는 휘도 이미지(408)를 나타내며, 도 9b는 웨이브렛 변환을 하여 불꽃에서의 윤곽선만 뚜렷이 나타난 것(409)을 나타내는 도면이다.
한편, 도 10a 및 도 10b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 화재 동이미지의 특정 픽셀 위치 및 웨이브렛(Wavelet) 변환값의 그래프를 예시하는 도면들이다.
전술한 바와 같이 산출된 웨이브렛 값의 변화값인 주파수를 파악하기 위해서, 예를 들면, 1초당 나온 30프레임 이미지에 대해서 시간에 대하여 특정 레벨의 웨이브렛(Wavelet) 값을 기준으로 크로싱하는 카운트 값을 구한다. 이와 같이 산출된 데이터값을 바탕으로 각각의 프레임 번호(X축) 및 휘도 변화된 값(Y축)을 구하고, 또한, 주기인 주파수 값을 구한다. 이때, 전술한 바와 같이, 불꽃의 특성에 따라 Red값이 Green보다 작거나, Red값이 Blue보다 작으면 주기에 포함되지 않는다.
도 10b의 그래프는 화재 동영상의 특정 픽셀 위치의 Wavelet 변화값을 그래프로 나타내고 있다. 예를 들면, 도 10b에 도시된 바와 같이, 빨간 선은 주기를 나타내며, 그래프의 녹색 원으로 되어 있는 11번째 프레임에서의 Wavelet 휘도값 '160'으로 나온 위치는 Red 값보다 Green 값이 크기 때문에 주기에 포함하지 않는다. 또한, 도 10b에 도시된 바와 같이, 불꽃 파란색 픽셀 위치의 주기에 대한 크로싱 카운트 값은, 예를 들면, 9가 나온다.
한편, 도 11a 및 도 11b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 화재 이미지의 주기에 의하여 나온 크로싱 카운트 값을 그래프로 표시한 도면들이고, 도 12a 및 도 12b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템에서 길거리 이미지의 주기에 의하여 나온 크로싱 카운트 값을 그래프로 표시한 도면들이다.
도 11b와 도 12b는 주기에 의하여 나온 크로싱 카운트 값을 그래프로 표시한 것으로서, 이미지의 1초간의 30프레임 데이터로 각각의 픽셀 위치에서의 카운팅 값을 전체 카운팅 숫자의 분포로 그래프로 표시한 것이다.
예를 들면, 한 주기 발생할 경우, x축의 카운트 값은 특정 레벨의 Wavelet 휘도값을 기준으로 두 번 카운팅 되며, 불꽃에 대한 플리커 값, 즉, 깜빡거림의 주파수는 불꽃 경계지역 주파수 값으로 산출되었다.
도 11a에 도시된 화재 이미지에 대해서는 도 11b에서 빨간색 영역에 불꽃 경계지역 주파수 값에 해당하는 주파수가 있었지만, 도 12a의 길거리 이미지에 대해서는 도 12b에서 빨간색 영역에 탐색되어 나오지 않았다. 이에 따라 해당 불꽃 경계지역 주파수 값에 해당된 값이 있을 경우, 불꽃의심 영역으로 1차적으로 판단할 수 있다.
한편, 도 13a 및 도 13b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 인도를 촬영하여 화재 여부를 판단하는 것을 예시하는 도면들이고, 도 14a 및 도 14b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 소정 시간 경과 이후 인도를 촬영하여 화재 여부를 판단하는 것을 예시하는 도면들이다.
본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템의 경우, 설정 주파수 값에 대한 지속성을 파악하기 위해서, 불꽃의심 영역으로 검색된 사건 처음시간과 그 다음 불꽃의심 영역으로 탐지되는 시간에 대해서 지속성을 가지고 불꽃의심 영역이 발생하는지 비교하여 설정된 확률값, 즉, [(불꽃의심 발생 횟수/시간) * 100 %] 이상으로 발생될 경우에만 화재로 인식을 하도록 구현된다.
예를 들면, CCTV 카메라를 통한 이미지에 중에서 불꽃 이미지에 대해서만 불꽃 경계지역 주파수 값으로 나오는 것은 아니며, 도 13a와 같은 인도 이미지에서도 발견되었다. 예를 들면, 도 13a에서 도면부호 411로 도시된 부분이, 도 13b에서 도면부호 412로 도시된 부분처럼 불꽃 경계지역 주파수 값에 해당하는 것으로 확인되었다.
또한, 도 14a와 같이 도보거리의 이미지는 맨 처음 불꽃 의심 영역이 검색된 이후 8초 이후에 다시 불꽃 의심 영역이 검색이 되었다. 예를 들면, 도 14a에서 도면부호 413로 도시된 부분이, 도 14b에서 도면부호 414로 도시된 부분처럼 불꽃 경계지역 주파수 값에 해당하는 것으로 확인되었다.
한편, 도 15a 및 도 15b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 인도에서 발생한 불꽃 의심 영역을 판별하는 것을 예시하는 도면들이고, 도 16a 및 도 16b는 본 발명의 실시예에 따른 CCTV 카메라를 이용한 실시간 화재 감시 시스템이 불꽃 이미지에서 발생한 불꽃 의심 영역을 판별하는 것을 예시하는 도면들이다.
도 15a의 인도 이미지에 대해서 불꽃 의심 영역의 확률값, [(불꽃의심 발생 횟수/시간) * 100 %]이 20%로 나왔지만, 도 16a의 불꽃 이미지에 대해서는 약 80%로 산출되었다. 여기서, 80%는 단지 예를 위한 것으로 그 값이 달라질 수 있다는 점은 당업자에게 자명하다.
도 16b를 참조하면, 이와 같이 불꽃 및 화재의 이미지와 같은 경우, 10초 동안에 기준값으로 8번 이상의 불꽃 의심 영역이 발생되므로, 즉, 10초 동안의 의심영역의 발생 횟수를 비교하여, 시간에 대하여 80% 이상의 이벤트 발생 횟수를 보일 경우, 화재가 발생한 것으로 판단하게 된다.
결국, 본 발명의 실시예에 따르면, CCTV 카메라에 의해 촬영된 이미지가 불꽃(화염) 이미지인지 실시간 판별함으로써 화재의 발생 유무를 용이하게 감시할 수 있다. 이에 따라, 기존의 고가의 적외선 카메라 또는 중앙제어장치 없이도 CCTV 카메라에 의해 촬영된 이미지를 통해 화재의 발생 유무를 용이하게 감시할 수 있다. 또한, 본 발명의 실시예에 따르면, CCTV 카메라 내에 화재 감시장치를 내장함으로써 현장에 설치된 CCTV 카메라에서 화재 유무를 직접 탐색하여 관련 기관이나 사용자 단말에게 통보할 수 있다. 예를 들면, 관련 기관, 수신자 및 DVR에게 정보 및 이미지를 바로 송신할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 문화재, 지하철 및 건축물의 화재의 발생 유무를 CCTV 카메라를 이용하여 실시간으로 감시할 수 있다.

Claims (8)

  1. 화재 발생 유무를 감시할 해당 영역의 이미지를 실시간 촬영하여 원본 이미지를 제공하는 CCTV 카메라; 및
    상기 CCTV 카메라 내에 내장되며, 상기 CCTV 카메라로부터 촬영된 원본 이미지가 불꽃(화염) 이미지인지 판별하여 화재 발생 유무를 감시하는 화재 감시장치
    를 포함하되, 상기 화재 감시장치는,
    상기 CCTV 카메라로부터 촬영된 원본 이미지로부터 샘플 이미지(Sample Image)를 획득하는 샘플 이미지 획득부;
    상기 샘플 이미지로부터 해당 픽셀별로 RGB 휘도값을 추출하는 휘도값 추출부;
    상기 원본 이미지의 경계선에 대한 변화값을 파악하기 위해 상기 RGB 휘도값을 웨이브렛 변환하여 웨이브렛 휘도값을 산출하는 웨이브렛(Wavelet) 변환부;
    상기 산출된 웨이브렛 휘도값의 변화값에 대응하는 주파수를 파악하고 상기 주파수를 기설정된 불꽃 특성 주파수 값과 비교하여 불꽃 의심 영역인지를 확인하고, 해당 이미지 내의 상기 불꽃 의심 영역의 발생 확률에 따라 화재 발생 여부를 판별하는 제어부; 및
    상기 제어부가 화재 발생으로 판별한 경우, 화재 발생 정보를 송신하는 송신부
    를 포함하는 CCTV 카메라를 이용한 실시간 화재 감시 시스템.
  2. 제1항에 있어서,
    상기 화재 감시장치의 제어부는, 상기 산출된 웨이브렛 값의 변화값인 주파수를 파악하기 위해 각각의 픽셀 위치에서의 누적된 크로싱(Crossing) 카운트 값을 구하여, 각각의 픽셀 위치에서의 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰지 비교하고, 상기 누적된 크로싱 카운트 값이 기설정된 불꽃 특성 주파수 값에 해당하는 경우, 해당 이미지 내에 불꽃 의심 영역이 있는 것으로 확인하며, [(불꽃의심 발생 횟수/시간) * 100%]을 기설정된 확률값과 비교하여 화재 발생 여부를 판별하는 것을 특징으로 하는 CCTV 카메라를 이용한 실시간 화재 감시 시스템.
  3. 제1항에 있어서,
    상기 화재 감시장치의 송신부로부터 송신된 화재 발생 정보를 유선 또는 무선으로 수신하는 사용자 단말을 추가로 포함하는 CCTV 카메라를 이용한 실시간 화재 감시 시스템.
  4. CCTV 카메라 내에 화재 감시장치가 내장되어 실시간으로 화재를 감지하는 방법에 있어서,
    a) CCTV 카메라를 통해 촬영된 실시간 원본 이미지로부터 샘플 이미지를 획득하는 단계;
    b) 상기 샘플 이미지로부터 해당 픽셀별로 RGB 휘도값을 추출하는 단계;
    c) 상기 원본 이미지의 경계선에 대한 변화값을 파악하도록 상기 해당 픽셀별 휘도값에 대한 웨이브렛(Wavelet) 변환을 수행하여 웨이브렛 변환값을 산출하는 단계;
    d) 상기 산출된 웨이브렛 휘도값의 변화값에 대응하는 주파수를 파악하는 단계;
    e) 상기 RGB 휘도값 중에서 각각의 픽셀 위치에서의 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰지 비교하는 단계;
    f) 상기 Red 휘도값이 Green 휘도값 및 Blue 휘도값보다 큰 경우, 상기 주파수를 기설정된 불꽃 특성 주파수 값과 비교하여 불꽃 의심 영역인지 확인하는 단계; 및
    g) 해당 이미지 내의 상기 불꽃 의심 영역의 확률값에 따라 화재 발생 여부를 판별하는 단계
    를 포함하는 CCTV 카메라를 이용한 실시간 화재 감시 방법.
  5. 제4항에 있어서,
    상기 f) 단계의 불꽃 특성 주파수는 불꽃 경계지역에 대한 불꽃 경계지역 주파수 값인 것을 특징으로 하는 CCTV 카메라를 이용한 실시간 화재 감시 방법.
  6. 제4항에 있어서,
    상기 g) 단계의 확률값은 [(불꽃의심 발생 횟수/시간) * 100%]로 주어지는 것을 특징으로 하는 CCTV 카메라를 이용한 실시간 화재 감시 방법.
  7. 제6항에 있어서,
    상기 확률값이 80% 이상인 경우 화재로 인식하는 것을 특징으로 하는 CCTV 카메라를 이용한 실시간 화재 감시 방법.
  8. 제4항에 있어서,
    h) 화재 발생으로 판별된 경우, 화재 발생 정보를 사용자 단말에게 송신하는 단계를 추가로 포함하는 CCTV 카메라를 이용한 실시간 화재 감시 방법.
PCT/KR2011/008541 2010-11-10 2011-11-10 폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법 WO2012064115A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0111397 2010-11-10
KR1020100111397A KR101200433B1 (ko) 2010-11-10 2010-11-10 폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법

Publications (3)

Publication Number Publication Date
WO2012064115A2 true WO2012064115A2 (ko) 2012-05-18
WO2012064115A9 WO2012064115A9 (ko) 2012-07-12
WO2012064115A3 WO2012064115A3 (ko) 2012-08-30

Family

ID=46051426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008541 WO2012064115A2 (ko) 2010-11-10 2011-11-10 폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법

Country Status (2)

Country Link
KR (1) KR101200433B1 (ko)
WO (1) WO2012064115A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501914A (zh) * 2018-05-18 2019-11-26 佛山市顺德区美的电热电器制造有限公司 一种安全监控方法、设备及计算机可读存储介质
WO2020148459A1 (en) 2019-01-18 2020-07-23 Ffe Limited Flame detector
CN111539239A (zh) * 2019-01-22 2020-08-14 杭州海康微影传感科技有限公司 明火检测的方法、装置及存储介质
CN115346331A (zh) * 2022-08-12 2022-11-15 四川长虹电器股份有限公司 基于电视摄像头实现烟雾报警的智能看家方法
CN117518175A (zh) * 2023-11-09 2024-02-06 大庆安瑞达科技开发有限公司 一种红外周扫雷达广域范围快速发现火源的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695251B1 (ko) * 2012-05-22 2017-01-12 한화테크윈 주식회사 원격으로 카메라 fpga 배열을 변경하기 위한 시스템 및 카메라 제어 방법
KR101447528B1 (ko) * 2013-08-13 2014-10-10 주식회사 하이맥스 Cctv를 이용한 화재 경보 제어 장치 및 시스템
US9292746B2 (en) 2014-05-20 2016-03-22 Broan-Nutone Llc Automated emissions capture determination
CN105759826A (zh) * 2015-11-03 2016-07-13 天津艾思科尔科技有限公司 带有智能型消防探测装置的飞行器
KR20190041227A (ko) 2017-10-12 2019-04-22 (주)한국아이티에스 화재 감시 시스템 및 방법
KR102166709B1 (ko) 2019-02-13 2020-10-16 엔씨엔스페이스(주) 데이터 기반 관제 시스템 및 그 방법
KR102477559B1 (ko) * 2019-06-10 2022-12-13 삼성중공업 주식회사 선박용 화재 감지 시스템
KR102254152B1 (ko) 2019-11-14 2021-05-21 엔씨엔스페이스(주) 상황 관제실 운영 시나리오 설계 및 제어 시스템 및 그 방법
KR20210144455A (ko) 2020-05-22 2021-11-30 엔씨엔스페이스(주) 센서 데이터와 영상 데이터의 실시간 시각화 기술 기반의 융복합 관제 시스템 및 그 방법
KR102438433B1 (ko) 2020-09-16 2022-09-01 엔씨엔스페이스(주) 데이터 기반의 3d 시각화가 가능한 관제 시스템 및 방법
CN112347937B (zh) * 2020-11-06 2023-11-10 南京朗联消防科技有限公司 一种基于视觉感知的室内火灾监测系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030225A (ja) * 2002-06-26 2004-01-29 Mitsubishi Heavy Ind Ltd 白煙検出方法及び装置
KR100858140B1 (ko) * 2007-02-20 2008-09-10 (주)에이치엠씨 영상처리를 이용한 화재 감지 방법 및 시스템
KR100918436B1 (ko) * 2007-11-27 2009-09-24 계명대학교 산학협력단 비전 기반의 화재 감지 시스템 및 방법
KR100948128B1 (ko) * 2006-12-12 2010-03-18 인더스트리얼 테크놀로지 리서치 인스티튜트 연기 검출 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030225A (ja) * 2002-06-26 2004-01-29 Mitsubishi Heavy Ind Ltd 白煙検出方法及び装置
KR100948128B1 (ko) * 2006-12-12 2010-03-18 인더스트리얼 테크놀로지 리서치 인스티튜트 연기 검출 방법 및 장치
KR100858140B1 (ko) * 2007-02-20 2008-09-10 (주)에이치엠씨 영상처리를 이용한 화재 감지 방법 및 시스템
KR100918436B1 (ko) * 2007-11-27 2009-09-24 계명대학교 산학협력단 비전 기반의 화재 감지 시스템 및 방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501914A (zh) * 2018-05-18 2019-11-26 佛山市顺德区美的电热电器制造有限公司 一种安全监控方法、设备及计算机可读存储介质
CN110501914B (zh) * 2018-05-18 2023-08-11 佛山市顺德区美的电热电器制造有限公司 一种安全监控方法、设备及计算机可读存储介质
WO2020148459A1 (en) 2019-01-18 2020-07-23 Ffe Limited Flame detector
CN111539239A (zh) * 2019-01-22 2020-08-14 杭州海康微影传感科技有限公司 明火检测的方法、装置及存储介质
CN111539239B (zh) * 2019-01-22 2023-09-22 杭州海康微影传感科技有限公司 明火检测的方法、装置及存储介质
CN115346331A (zh) * 2022-08-12 2022-11-15 四川长虹电器股份有限公司 基于电视摄像头实现烟雾报警的智能看家方法
CN117518175A (zh) * 2023-11-09 2024-02-06 大庆安瑞达科技开发有限公司 一种红外周扫雷达广域范围快速发现火源的方法
CN117518175B (zh) * 2023-11-09 2024-05-31 大庆安瑞达科技开发有限公司 一种红外周扫雷达广域范围快速发现火源的方法

Also Published As

Publication number Publication date
WO2012064115A3 (ko) 2012-08-30
WO2012064115A9 (ko) 2012-07-12
KR101200433B1 (ko) 2012-11-22
KR20120050073A (ko) 2012-05-18

Similar Documents

Publication Publication Date Title
WO2012064115A9 (ko) 폐쇄회로 텔레비전 카메라를 이용한 실시간 화재 감시 시스템 및 그 방법
US11842564B2 (en) Imaging apparatus and imaging system
WO2014196721A1 (ko) 합성 영상을 이용한 화재감지시스템 및 방법
KR101635000B1 (ko) 복수의 카메라를 이용한 화재감지장치 및 그 시스템
WO2011062304A1 (ko) 유비쿼터스를 이용한 다기능 홈네트워크 시스템
WO2020235819A1 (ko) 인공지능을 이용한 영상 기반의 실시간 침입 감지 방법 및 감시카메라
WO2015190744A1 (ko) 영상열선장치 및 이를 이용한 침입 감지 시스템
WO2012060535A1 (ko) 보안기능이 강화된 도어록 시스템 및 그 제어방법
WO2016122154A1 (ko) 영상을 이용한 적외선감지기와 그 동작방법 및 이를 이용한 보안시설물 통합관리시스템
WO2017146313A1 (ko) 사물인터넷과 광대역 레이더 센싱 기술을 이용한 가정용 인텔리전트 스마트 모니터링시스템
WO2016099084A1 (ko) 비콘신호를 이용한 안전 서비스 제공 시스템 및 방법
WO2021167374A1 (ko) 영상 검색 장치 및 이를 포함하는 네트워크 감시 카메라 시스템
JP2016178363A (ja) 処理装置、制御装置、ロビーインターホン装置、及びインターホンシステム
WO2012137994A1 (ko) 영상인식장치 및 그 영상 감시방법
WO2018097384A1 (ko) 밀집도 알림 장치 및 방법
JP2022189835A (ja) 撮像装置
KR101425598B1 (ko) 스마트폰을 이용한 주요 설비 모니터링 시스템
WO2011043498A1 (ko) 지능형 영상 감시 장치
WO2021071025A1 (ko) 감시 카메라 시스템 및 그 동작 방법
JP4260325B2 (ja) 監視カメラシステム
AU2006344505A1 (en) Video verification system and method for central station alarm monitoring
WO2019194351A1 (ko) 360도 영상을 지원하는 지능형 감시 카메라 및 이를 이용한 지능형 감시 시스템
WO2016024692A1 (ko) 영상을 이용한 복합 적외선 감지센서와 그 동작방법 및 이를 이용한 보안시설물 통합관리시스템
WO2023210839A1 (ko) 다중 카메라 및 이동 카메라를 이용한 영상 분석 장치
CN105590392A (zh) 一种智能小区在线安防方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840232

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840232

Country of ref document: EP

Kind code of ref document: A2