WO2012064003A1 - 이차전지 전극의 용접 장치 및 방법 - Google Patents

이차전지 전극의 용접 장치 및 방법 Download PDF

Info

Publication number
WO2012064003A1
WO2012064003A1 PCT/KR2011/004194 KR2011004194W WO2012064003A1 WO 2012064003 A1 WO2012064003 A1 WO 2012064003A1 KR 2011004194 W KR2011004194 W KR 2011004194W WO 2012064003 A1 WO2012064003 A1 WO 2012064003A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
laser beam
welding
welding device
Prior art date
Application number
PCT/KR2011/004194
Other languages
English (en)
French (fr)
Inventor
한유희
Original Assignee
아이피지 포토닉스 코리아(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이피지 포토닉스 코리아(주) filed Critical 아이피지 포토닉스 코리아(주)
Publication of WO2012064003A1 publication Critical patent/WO2012064003A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/22Ferrous alloys and copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a welding apparatus and method, and more particularly to a welding apparatus and method of a secondary battery electrode.
  • lithium ion batteries examples include lead-acid batteries, nickel-cadmium batteries (NIi-Cd), nickel-hydrogen batteries (Ni-MH, Nikel Metal Hydride), and lithium ion batteries (Li-Ion).
  • NIi-Cd nickel-cadmium batteries
  • Ni-MH nickel-hydrogen batteries
  • Li-Ion lithium ion batteries
  • lithium ion batteries have the highest evaluation among commercially available secondary batteries because of their excellent electrochemical properties, and the amount of use of them is the highest.
  • Lithium-ion batteries use a single battery alone when a small amount of power is required, such as a mobile phone. However, when a large amount of power is required, such as an electric vehicle, several batteries are connected in series. In order to combine a lithium ion battery in series, aluminum (Al) used as an anode of the battery and copper plate (Cu) used as a cathode should be bonded. The thickness of these electrodes is usually 0.2 to 0.5 mm.
  • the mechanical fastening method is fastening with bolts and nuts.
  • the welding method there are many problems such as higher contact resistance, higher resistance due to corrosion of aluminum and copper when used for a long time, and weakening force due to vibration during movement. Holding it.
  • Methods using welding include resistance welding and laser welding.
  • Resistance welding means that a large current flows under pressure applied to the welded material, and heat is obtained by the contact resistance generated at the contact surface between the metals and the specific resistance of the metal.As a result, when the metal is heated or melted, the welding is performed by the applied pressure. It is a method of making it happen. By the way, aluminum and copper, as shown in [Table 1], have very low electrical resistance, so resistance welding is difficult. In addition, the joining method by resistance welding is inappropriate because the difference between the melting points of these two metals is extreme.
  • the second problem is metallurgical, in which aluminum and copper form intermetallic compounds in the molten state.
  • intermetallic compounds have a problem of so-called brittleness, which is vulnerable to mechanical vibration and thermal fluctuations.
  • the third problem is that it is difficult to design the base material shape in consideration of productivity improvement. That is, the base material shape design of aluminum and copper electrode should be designed in consideration of reflectance of laser beam, large melting point difference between two base materials, minimization of intermetallic compound formation, and base metal fixing method.
  • FIG. 1 is a view for explaining a welding method of a typical secondary battery electrode.
  • FIG. 1 shows a butt joint method, (b) and (c) a lap joint method, and (d) shows an edge welding method. Also, (e) shows a method of welding while oscillating the laser beam emitted through the scanner. In addition, (f) shows that Al electrode is welded by Al and Cu electrode is welded by Cu to prevent the formation of highly brittle intermetallic compounds generated by Cu-Al electrode welding. It shows how.
  • the electrode which is a thin plate of about 0.4mm, must be exactly butted.
  • a laser beam may pass through the gap between the two electrodes and irradiate the electrode assembly, which may cause breakage of the unit cell, fire, or the like.
  • a method of irradiating the laser beam from the side as shown in FIG. 1C may be considered, but this may cause a variation in the irradiation position of the laser beam, and there is a problem such as deterioration of the work efficiency.
  • the present invention has a technical problem to provide an apparatus and method for welding secondary battery electrodes that can minimize the electrical resistance.
  • Another technical problem of the present invention is to provide an apparatus and method for welding secondary battery electrodes that can prevent the production of intermetallic compounds.
  • Welding device for a secondary battery electrode for achieving the above technical problem is a welding device for the first electrode provided in the first secondary battery and the second electrode provided in the second secondary battery, A beam irradiator which emits a laser beam of energy higher than the melting point of the first electrode and lower than the melting point of the second electrode; And an optical system that focuses the laser beam emitted from the beam irradiator and irradiates the contact region between the first electrode and the second electrode.
  • the welding method of the secondary battery electrode is a welding method for the first electrode provided in the first secondary battery and the second electrode provided in the second secondary battery, the first electrode and the Contacting the second electrode; Emitting a laser beam of energy higher than the melting point of the first electrode and lower than the melting point of the second electrode; And condensing the laser beam and irradiating the contact portion between the first electrode and the second electrode.
  • the laser beam may cause multiple reflections between the two electrodes so that the two electrodes may be connected even when the laser beam is irradiated or the electrodes are misaligned.
  • FIG. 1 is a view for explaining a welding method of a typical secondary battery electrode
  • FIG. 3 is a block diagram of a welding device of a secondary battery electrode according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining an example of a secondary battery electrode structure applied to the welding device shown in FIG.
  • FIG. 5 is a view for explaining another example of a secondary battery electrode structure applied to the welding device shown in FIG.
  • FIG. 6 is a view for explaining a welding method for the electrode of the secondary battery shown in FIG.
  • FIG. 7 is a view for explaining a welding method for the electrode of the secondary battery shown in FIG.
  • FIG. 9 is a flowchart illustrating a welding method of a secondary battery electrode according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a welding device of a secondary battery electrode according to an embodiment of the present invention.
  • the welding device 10 is a control unit 110 for controlling the overall operation, the beam irradiator 130 for outputting the laser beam emitted from the light source 120 at a specified power and size ), A motor 140 for driving the optical system 150, an optical system 150 for condensing a laser beam output from the beam irradiator 130, and irradiating the welding object, that is, a contact portion to a pair of electrodes, a pair of electrodes And a pressing unit 160 for linearly moving the first and second pressing means 162 and 164 and the first and second pressing means 162 and 164 to press the electrode to be in close contact with the outside of the contact portion.
  • the optical system may be configured using a telecentric lens or an f-theta lens.
  • the optical system reciprocates at high speed by the driving force of the motor 140 to irradiate a laser beam to the contact portion of the electrode. To be possible.
  • the first and second pressing means 162, 164 may be configured in a cylindrical or semi-cylindrical shape, the length can be determined in consideration of the width of the electrode. In addition, the diameters of the first and second pressing means 162 and 164 may be determined in consideration of the contact area of the electrode. Preferably, the larger the contact area between the first and second pressurizing means 162 and 164 and the electrode is, the more advantageous it is to increase the contact area between the two electrodes to lower the electrical resistance.
  • the pressing unit 160 is driven through the control unit 110.
  • the pressurizing unit 160 linearly moves the first and second pressurizing means 162 and 164 to closely adhere the pair of electrodes to be welded from the outside to the welding site.
  • the laser beam collected by the optical system 150 is irradiated to the contact portion of the electrode.
  • the pressing unit 160 When the temperature of the electrode rises to a preset temperature by the laser beam, the pressing unit 160 vertically raises the first and second pressing means 162 and 164 in a pressurized state by the rotational force. Accordingly, it is possible to enlarge the contact portion for the pair of electrodes to be welded.
  • the melting point of aluminum and copper used as electrodes of a lithium-ion secondary battery is very different. That is, the melting point of copper is as high as 1,083 °C while the melting point of aluminum is relatively low as 646 °C.
  • the pair of electrodes are strongly adhered by the first and second pressing means 162 and 164 from the outside to the inside of the contact portion, and the laser beam is irradiated to set the temperature of the electrode, preferably the temperature of the aluminum electrode.
  • the pressing means 162 and 164 are rotated so as to vertically move upward, thereby preventing the laser beam from being irradiated, and ensuring a sufficient contact area.
  • the electrode of the secondary battery may be configured as shown in FIGS. 4 and 5.
  • FIG. 4 is a view for explaining an example of a secondary battery electrode structure applied to the welding device shown in FIG.
  • the secondary battery 20 has an electrode tab 24 having an electrode assembly embedded therein and one end thereof connected to the body 22 and extending out of the body 22. It includes.
  • the electrode tab 24 includes a reflector 241 configured to bend at an angle ⁇ specified at the other end.
  • the reflector 241 may be formed to be bent to a length (a; 0.2 to 5 mm) specified to the opposite side of the contact portion to contact the electrode of the adjacent unit cell. That is, the bending angle ⁇ of the reflecting portion 241 may be 0 ° ⁇ ⁇ 90 °, preferably 2 ° ⁇ ⁇ 45 ° with respect to the vertical side.
  • the electrode tab 24 further includes lead portions 243 and 245 connecting the reflecting portion 241 and the main body 22.
  • the lead portions 243 and 245 connect the first plate portion 243 and the first plate portion 243 and the main body which are vertically formed in the longitudinal direction of the main body 22 from the reflecting portion 241 to the main body 22 side. It may be formed to include the second plate portion 245.
  • the 1st board part 243 is flat form,
  • the length b can be formed in 1-10 mm.
  • FIG. 5 is a view for explaining another example of the structure of a secondary battery electrode applied to the welding apparatus shown in FIG. 3.
  • the secondary battery 30 illustrated in FIG. 5 includes a main body 32 having an electrode assembly embedded therein and an electrode tab 34 having one end connected to the main body 32 and extending out of the main body 32.
  • the electrode tab 34 includes a reflector 341 configured to bend at an angle specified at the other end. Similar to the case of FIG. 4, the reflector 341 may be formed to be bent to a length (0.2 to 5 mm) designated to the opposite side of the contact portion to contact the electrode of the adjacent unit cell. That is, the bending angle of the reflecting portion 341 can be set to 0 ° ⁇ ⁇ 90 ° with respect to the vertical side.
  • the electrode tab 34 further includes lead portions 343, 345, and 347 connecting the reflective portion 341 and the main body 32.
  • the lead portions 343, 345, and 347 are curved from the first plate portion 343 and the first plate portion 343 vertically formed in the longitudinal direction of the body 32 from the reflecting portion 341 to the body 32. It may be formed to include a refracting portion 345 extending to have, a second plate portion 347 connecting the refracting portion 345 and the main body.
  • FIG. 6 is a view for explaining a welding method for the electrode of the secondary battery shown in FIG.
  • the first plate portions 243a and 243b are brought into contact with each other.
  • the first and second pressing means 162 and 164 shown in FIG. 1 are located outside the contact portions of the first plate portions 243a and 243b, and when pressed to the contact portion side, the first plate portions 243a and 243b. The adhesion characteristic of is greatly improved.
  • a laser beam of energy lower than the melting point of copper and higher than the melting point of aluminum is irradiated through the beam irradiator 130, which is focused by the optical system 150, and irradiated to the contact portion of the two electrodes.
  • the optical system 150 irradiates a laser beam to the contact portion of the two electrodes while reciprocating at a high speed by the driving of the motor 140, and the first and second pressing means 162 and 164 strongly press the two electrodes. Since it is in close contact, the two electrodes can be welded strongly without generating an intermetallic compound.
  • the first and second pressing means 162 and 164 are raised by the rotational force to further improve the adhesion characteristics of the two electrodes as well as to enlarge the contact area. can do.
  • the contact area of the two electrodes is secured by the length b of the first plate portions 243a and 243b, thereby minimizing electrical resistance and Can be strongly contacted.
  • FIG. 7 is a view for explaining a welding method for the electrode of the secondary battery shown in FIG.
  • a laser beam of energy lower than the melting point of copper and higher than the melting point of aluminum is irradiated through the beam irradiator 130, which is focused by the optical system 150, and irradiated to the contact portion of the two electrodes.
  • the optical system 150 irradiates a laser beam to the contact portion of the two electrodes while reciprocating at a high speed by the driving of the motor 140, and the first and second pressing means 162 and 164 strongly press the two electrodes. Since it is in close contact, the two electrodes can be welded strongly without generating an intermetallic compound.
  • the first and second pressurizing means 162 and 164 are raised by the rotational force to further improve the adhesion characteristics of the two electrodes and to further expand the contact area. can do.
  • the contact area of the two electrodes is secured by the lengths of the first plate portions 343a and 343b, so that the two electrodes can be strongly contacted while minimizing electrical resistance. have.
  • the electrode tab shown in FIG. 5 includes refractive portions 345a and 345b.
  • the refraction parts 345a and 345b are fastened to each other. Therefore, even when the first plate portions 343a and 343b do not exactly contact and form a gap, the laser beam is reflected from the refraction portions 345a and 345b without being irradiated to the main bodies 32a and 32b. The destruction of 32a, 32b, etc. can be prevented beforehand.
  • FIG. 8 is a view for explaining the principle of laser welding according to the present invention.
  • a laser beam of energy lower than the melting point of copper and higher than the melting point of aluminum is irradiated to dissolve aluminum to assure the copper side. That is, since copper maintains a solid phase, two electrodes can be contacted without the occurrence of an intermetallic compound.
  • the reflecting portion 241a of the one electrode is irradiated.
  • Multiple reflection phenomenon occurs in which the beam is reflected to the other electrode. Therefore, the laser beam dissolves the aluminum electrode while reflecting the movement between the first plate portions 243a and 243b, and the dissolved aluminum diffuses to the copper electrode side so that the two electrodes can be strongly contacted.
  • FIG. 9 is a flowchart illustrating a welding method of a secondary battery electrode according to an embodiment of the present invention.
  • the secondary battery unit cells to be welded are aligned, and a control parameter including a laser output energy, an output time, etc. is set through the controller 110 (S10).
  • the pressing unit 160 is driven under the control of the control unit 110 (S20) to press the first and second pressing means 162 and 164 toward the contact portion side of the secondary battery electrode.
  • the motor 140 is driven to reciprocate the optical system 150 (S30), and the laser beam of a predetermined energy is irradiated to the optical system 150 through the beam irradiator 130 (S40).
  • the optical system 150 reciprocating by the motor 140 irradiates a laser beam of a predetermined energy to the contact portion of the two electrodes, wherein the first and second pressing means 162 and 164 contact the two electrodes. Since it presses toward a site
  • the laser beam irradiated to the contact site dissolves aluminum and diffuses to the copper side while causing a reflection phenomenon between the two electrodes, whereby the two electrodes are electrically connected.
  • the two electrodes can secure a contact area corresponding to the length of the first plate part 243a and 243b (FIG. 6, 343a and 343b), thereby minimizing electrical resistance. It is possible to connect the two electrodes with excellent contact characteristics in a state where no intermetallic compound is caused by Naga not dissolving copper but dissolving only aluminum to make contact.
  • the head of the optical system 150 constituting the welding device 10 and the first and second pressing means (162, 164) are moved to the same coordinate value in the X, Y, Z axis It can be designed to be.
  • the arrival point of the laser beam and the welding line of the electrode to be welded can always be controlled identically. Therefore, it is very advantageous to build an automated system since no welding line tracking device is required.
  • the absorption rate of Cu-Al's low laser beam is inversely high. Accordingly, by actively utilizing the high reflectance of the Cu—Al electrode, a reflector is introduced at the other end of the electrode, thereby allowing the laser beam to multi-reflection by the high reflectance. In addition, since the whole plate part extended from the reflecting part to the main body side is welded, the electrical resistance between two electrodes after welding can be maintained at the base material level substantially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

제 1 이차전지에 구비된 제 1 전극과 제 2 이차전지에 구비된 제 2 전극에 대한 용접 장치로서, 제 1 전극의 용융점보다 높고 제 2 전극의 용융점보다 낮은 에너지의 레이저 빔을 출사하는 빔 조사기 및 빔 조사기에서 출사되는 레이저 빔을 집광하여 제 1 전극 및 제 2 전극의 접촉 부위로 조사하는 광학계를 포함하는 이차전지 전극의 용접 장치를 제시한다.

Description

이차전지 전극의 용접 장치 및 방법
본 발명은 용접 장치 및 방법에 관한 것으로, 보다 구체적으로는 이차전지 전극의 용접 장치 및 방법에 관한 것이다.
최근 들어, 대한민국에서는 저속 전기차에 대한 특례 규정에 의해서 시내에서 전기 자동차 주행이 허용되었으며, 골프장이나 공항 등에서 이용되고 있는 전동 카트 등도 역시 대용량의 이차 전지를 필요로 한다. 또한 2011년부터는 고속도로를 주행하는 전기 자동차가 등장할 전망이어서 대용량의 이차 전지는 전기 자동차의 보급과 더불어 그 소요가 급증할 것으로 예상된다.
이차 전지로는 납축 전기, 니켈-카드뮴 전지(NIi-Cd), 니켈-수소 전지(Ni-MH, Nikel Metal Hydride), 리튬이온 전지(Li-Ion) 등을 들 수 있다. 이 중에서 리튬이온 전지는 전기화학적 특성이 우수하여 현재까지 상용화된 이차 전지 중 가장 높은 평을 받고 있으며 그만큼 사용량이 가장 많다.
리튬이온 전지는 휴대 전화기와 같이 소용량의 전력이 필요할 경우는 하나의 전지를 단독으로 사용하지만, 전기 자동차와 같이 대용량의 전력이 필요할 경우는 여러 개의 전지를 직렬로 연결하여 사용한다. 리튬이온 전지를 직렬로 결합하기 위해서는 전지의 양극(anode)으로 사용되는 알루미늄(Al)과 음극(cathode)으로 사용되는 동판(Cu)을 접합해야 하며 이들 전극의 두께는 통상 0.2~0.5mm이다.
Cu-Al 전극을 접합하는 방법으로는 용접 방식과 기계적인 체결방식이 적용되고 있다. 먼저 기계적인 체결방식은 볼트와 너트로 체결하는 방식인데 용접 방식에 비해 접촉 저항이 높고 장시간 사용시 알루미늄과 동의 부식으로 인해 저항이 지속적으로 높아지며 이동 중 진동으로 인해 체결력이 약화될 수 있는 등 많은 문제를 안고 있다.
용접을 이용한 방법에는 저항 용접 및 레이저 용접이 있다.
저항 용접이란 피용접재에 압력을 가한 상태에서 큰 전류를 흘려주어 금속끼리의 접촉면에서 생기는 접촉저항과 금속의 고유저항에 의해 열을 얻고, 이로 인하여 금속이 가열 또는 용융하면 가해진 압력에 의해 접합이 이루어지도록 하는 공법을 말한다. 그런데, 알루미늄과 동은 [표 1]에 나타낸 것과 같이 전기 저항이 매우 낮기 때문에 저항 용접이 곤란하다. 아울러, 이들 두 금속의 융점 차이가 극심하기 때문에 저항 용접에 의한 접합 방식은 부적절하다.
표 1
특성 Cu(Cu-ETP) Al(Al 99.5%)
결정구조 fcc fcc
밀도 [g/cm3] 8.9 2.7
전기전도율[106*S/m] 57 34
열전도율[W/m*K] 394 210
열팽창 계수 [10-6/m] 16.8 23.5
용융점[℃] 1,083 646
비등점 [℃] 2,567 2,467
이에 따라, 레이저를 이용하여 양극의 알루미늄과 음극의 동판을 용접하는 공정이 개발되고 있는 추세에 있다.
그런데, 알루미늄과 동판을 레이저 용접하기 위해서는 여러가지 문제점이 있다. 첫 번째, 알루미늄과 동은 레이저 흡수율이 낮다는 것인데, 한 연구에 의하면 산업용 레이저의 파장대에서 알루미늄과 동의 빔 흡수율은 5% 이하인 것으로 보고되었다. 즉, 반사율이 높고 빔 흡수율이 낮기 때문에 효율적인 레이저 용접이 곤란하다.
두 번째 문제점은 야금학적인 문제점으로, 알루미늄과 동은 용융상태에서 금속간 화합물을 형성한다는 것이다. 이러한 금속간 화합물은 기계적 진동 및 열 변동에 취약한, 이른바 취성이 강한 문제점이 있다.
세 번째 문제점은 생산성 향상을 고려하여 모재 형상을 설계하는 데 어려움이 따른다는 것이다. 즉, 알루미늄과 동 전극의 모재 형상 설계는 레이저 빔의 반사율, 두 모재의 큰 용융점차, 금속간 화합물 형성의 최소화, 모재 고정 방안 등을 모두 고려하여 설계되어져야 한다.
이러한 어려움에도 불구하고, 이차 전지의 용접에는 레이저 용접이 가장 효율적이므로 다양한 용접 방법이 제안되고 있다.
도 1은 일반적인 이차 전지 전극의 용접 방법을 설명하기 위한 도면이다.
도 1의 (a)는 맞대기(butt joint) 방식, (b) 및 (c)는 겹치기(lap joint) 방식, (d)는 모서리(edge) 용접 방식을 나타낸다. 또한, (e)는 스캐너를 통해 출사되는 레이저 빔을 요동(oscillation)하면서 용접하는 방식을 나타낸다. 아울러, (f)는 Cu-Al 전극 용접에서 발생되는 취성이 강한 금속간 화합물의 생성을 방지하기 위해서 Cu-Al의 클래드(clad)를 매개로 Al 전극은 Al으로 용접하고 Cu 전극은 Cu로 용접하는 방법을 나타낸 것이다.
도 2는 맞대기 및 겹치기 용접의 문제점을 설명하기 위한 도면이다.
맞대기 용접을 하기 위해서는 0.4mm 내외의 박판인 전극을 정확하게 맞대어야 한다. 하지만 조밀하게 배열된 리튬이온 전지들 사이에서 기계적으로 상하 좌우의 갭(G1, G2)을 일정하게 유지한다는 것은 현실적으로 곤란한 방법이며 특히 용접선 추적(Seam tracking)에 큰 어려움이 있다.
겹치기 이음의 경우 역시 박판인 Cu-Al 전극을 갭(G3) 없이 일정한 간격으로 유지하는 것은 기구적으로 곤란하다.
더욱이, 두 전극 간의 갭 사이로 레이저 빔이 통과하여 전극 조립체에 조사될 수 있으며, 이는 단위 셀의 파손, 화재 등을 유발할 수 있다. 이를 해결하기 위해 도 1의 (c)와 같이 레이저 빔을 측면에서 조사하는 방법을 생각할 수 있으나, 이는 레이저 빔의 조사 위치에 변이가 발생할 가능성이 있으며, 작업 효율이 저하되는 등의 문제가 있다.
본 발명은 전기 저항을 최소화할 수 있는 이차전지 전극의 용접 장치 및 방법을 제공하는 데 그 기술적 과제가 있다.
본 발명의 다른 기술적 과제는 금속간 화합물의 생성을 방지할 수 있는 이차전지 전극의 용접 장치 및 방법을 제공하는 데 있다.
상술한 기술적 과제를 달성하기 위한 본 발명의 일 실시예에 의한 이차전지 전극의 용접 장치는 제 1 이차전지에 구비된 제 1 전극과 제 2 이차전지에 구비된 제 2 전극에 대한 용접 장치로서, 상기 제 1 전극의 용융점보다 높고 상기 제 2 전극의 용융점보다 낮은 에너지의 레이저 빔을 출사하는 빔 조사기; 및 상기 빔 조사기에서 출사되는 레이저 빔을 집광하여 상기 제 1 전극 및 상기 제 2 전극의 접촉 부위로 조사하는 광학계;를 포함한다.
한편, 본 발명의 일 실시예에 의한 이차전지 전극의 용접 방법은 제 1 이차전지에 구비된 제 1 전극과 제 2 이차전지에 구비된 제 2 전극에 대한 용접 방법으로서, 상기 제 1 전극 및 상기 제 2 전극을 접촉시키는 단계; 상기 제 1 전극의 용융점보다 높고 상기 제 2 전극의 용융점보다 낮은 에너지의 레이저 빔을 출사하는 단계; 및 상기 레이저 빔을 집광하여 상기 제 1 전극 및 상기 제 2 전극의 접촉 부위로 조사하는 단계;를 포함한다.
본 발명에서는 구리의 용융점보다 낮고 알루미늄의 용융점보다 낮은 에너지의 레이저 빔을 조사하여 이차전지의 전극을 레이저 용접한다. 따라서, 구리는 고상을 유지한 상태에서 액화된 알루미늄이 구리 측으로 확산되어 두 전극 간을 접촉시킴으로써 금속간 화합물의 발생을 억제할 수 있다.
더욱이, 종단에 반사부가 구비된 이차전극에 대해 본 발명을 적용하는 경우 레이저 빔이 두 전극 간에 다중 반사를 일으켜 레이저 빔의 오조사되거나 전극이 오정렬된 경우에도 두 전극을 접속시킬 수 있게 된다.
또한, 가압 수단에 의해 두 전극을 밀착시킨 상태에서 용접이 이루어지므로, 두 전극 간의 접촉 면적이 증가하고, 결과적으로 전기저항을 모재 수준으로 낮출 수 있는 이점이 있다.
도 1은 일반적인 이차 전지 전극의 용접 방법을 설명하기 위한 도면,
도 2는 맞대기 및 겹치기 용접의 문제점을 설명하기 위한 도면,
도 3은 본 발명의 일 실시예에 의한 이차전지 전극의 용접 장치의 구성도,
도 4는 도 3에 도시한 용접 장치에 적용되는 이차전지 전극 구조의 일 예를 설명하기 위한 도면,
도 5는 도 3에 도시한 용접 장치에 적용되는 이차전지 전극 구조의 다른 예를 설명하기 위한 도면,
도 6은 도 4에 도시한 이차전지의 전극에 대한 용접 방법을 설명하기 위한 도면,
도 7은 도 5에 도시한 이차전지의 전극에 대한 용접 방법을 설명하기 위한 도면,
도 8은 본 발명에 의한 레이저 용접의 원리를 설명하기 위한 도면,
도 9는 본 발명의 일 실시예에 의한 이차전지 전극의 용접 방법을 설명하기 위한 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 구체적으로 설명한다.
도 3은 본 발명의 일 실시예에 의한 이차전지 전극의 용접 장치의 구성도이다.
도시한 것과 같이, 본 발명의 일 실시예에 의한 용접 장치(10)는 전체적인 동작을 제어하는 제어부(110), 광원(120)에서 출사되는 레이저 빔을 지정된 파워 및 크기로 출력하는 빔 조사기(130), 광학계(150)를 구동하는 모터(140), 빔 조사기(130)에서 출력되는 레이저 빔을 집광하여 용접 대상물 즉, 한 쌍의 전극에 대한 접촉부로 조사하는 광학계(150), 한 쌍의 전극에 대한 접촉부 외측에서 전극이 밀착되도록 가압하는 제 1 및 제 2 가압수단(162, 164) 및 제 1 및 제 2 가압수단(162, 164)를 직선운동시키는 가압부(160)를 포함한다.
광학계는 텔레센트릭(telecentric) 렌즈, 또는 에프-세타(f-theta) 렌즈를 이용하여 구성할 수 있으며, 모터(140)의 구동력에 의해 고속으로 왕복 운동하여 전극의 접촉 부위에 레이저 빔이 조사될 수 있도록 한다.
제 1 및 제 2 가압수단(162, 164)은 원통형상 또는 반원통형상으로 구성할 수 있으며, 그 길이는 전극의 너비를 고려하여 결정할 수 있다. 아울러, 제 1 및 제 2 가압수단(162, 164)의 직경은 전극의 접촉 면적을 고려하여 결정할 수 있다. 바람직하게는 두 전극 간의 접촉 면적을 넓게 하여 전기저항을 낮출 수 있도록, 제 1 및 제 2 가압수단(162, 164)과 전극과의 접촉 면적은 넓게 할수록 유리하다.
이러한 용접 장치(10)를 이용하여, 제어부(110)를 통해 가압부(160)를 구동한다. 가압부(160)는 제 1 및 제 2 가압수단(162, 164)을 직선운동시켜 용접하고자 하는 한 쌍의 전극을 외측으로부터 용접 부위 측으로 강하게 밀착시킨다.
이러한 상태에서, 광학계(150)에서 집광된 레이저 빔을 전극의 접촉 부위로 조사한다.
그리고, 레이저 빔에 의해 전극의 온도가 기 설정된 온도까지 상승하면 가압부(160)에 의해 가압 상태에 있는 제 1 및 제 2 가압수단(162, 164)을 회전력에 의해 수직 상승시킨다. 이에 따라 용접하고자 하는 한 쌍의 전극에 대한 접촉 부위를 확대할 수 있다.
리튬-이온 이차전지의 전극으로 사용되는 알루미늄 및 구리는 그 용융점이 매우 차이가 난다. 즉, 구리의 용융점은 1,083℃로 높은 반면 알루미늄의 용융점은 646℃로 상대적으로 낮다.
따라서, 구리는 용융되지 않고 알루미늄이 용융될 정도의 에너지로 레이저 빔을 조사하면 액상으로 변환된 알루미늄이 고상을 유지하는 구리 측으로 확산되어 두 전극이 용접되게 된다. 즉, 구리가 고상을 유지하기 때문에 금속간 화합물이 발생하는 것을 방지할 수 있다.
더욱이, 한 쌍의 전극이 접촉부위 외측으로부터 내측으로 제 1 및 제 2 가압수단(162, 164)에 의해 강하게 밀착시키고, 레이저 빔이 조사되어 전극의 온도, 바람직하게는 알루미늄 전극의 온도가 기 설정된 압접 온도까지 상승하면 가압수단(162, 164)을 회전시켜 상측으로 수직 이동시키기 때문에 레이저 빔이 오조사되는 것을 방지할 수 있을 뿐 아니라 접촉 면적을 충분히 확보할 수 있다.
본 발명의 용접 장치(10)에서 용접 효율을 극대화하기 위해 이차전지의 전극은 도 4 및 도 5와 같이 구성할 수 있다.
도 4는 도 3에 도시한 용접 장치에 적용되는 이차전지 전극 구조의 일 예를 설명하기 위한 도면이다.
도 4를 참조하면, 본 발명에 적용되는 이차전지(20)는 전극 조립체가 내장된 본체(22) 및 일단이 본체(22)에 접속되어 본체(22)의 외부로 연장되는 전극 탭(24)을 포함한다. 아울러, 전극 탭(24)은 타단에 지정된 각도(θ)로 휘어지도록 구성되는 반사부(241)를 포함한다. 반사부(241)는 인접 단위 셀의 전극과 접촉을 위해 접촉 부위의 반대측으로 지정된 길이(a; 0.2~5mm) 휘어지도록 형성할 수 있다. 즉, 반사부(241)의 휨 각도(θ)는 수직측에 대해 0°<θ<90° 바람직하게는 2°<θ<45° 되도록 할 수 있다.
이에 더하여, 전극 탭(24)은 반사부(241)와 본체(22)를 연결하는 리드부(243, 245)를 더 포함한다. 그리고, 리드부(243, 245)는 반사부(241)로부터 본체(22)측으로 본체(22)의 길이방향으로 수직 형성되는 제 1 판부(243) 및 제 1 판부(243)와 본체를 연결하는 제 2 판부(245)를 포함하도록 형성할 수 있다.
여기에서, 제 1 판부(243)는 평판형이며, 그 길이(b)는 1~10mm로 형성할 수 있다.
도 5는 도 3에 도시한 용접 장치에 적용되는 이차전지 전극 구조의 다른 예를 설명하기 위한 도면이다.
도 5에 도시한 이차전지(30)는 전극 조립체가 내장된 본체(32) 및 일단이 본체(32)에 접속되어 본체(32)의 외부로 연장되는 전극 탭(34)을 포함한다. 아울러, 전극 탭(34)은 타단에 지정된 각도로 휘어지도록 구성되는 반사부(341)를 포함한다. 도 4의 경우와 유사하게, 반사부(341)는 인접 단위 셀의 전극과 접촉을 위해 접촉 부위의 반대측으로 지정된 길이(0.2~5mm) 휘어지도록 형성할 수 있다. 즉, 반사부(341)의 휨 각도는 수직측에 대해 0°<θ<90°가 되도록 할 수 있다.
이에 더하여, 전극 탭(34)은 반사부(341)와 본체(32)를 연결하는 리드부(343, 345, 347)를 더 포함한다. 그리고, 리드부(343, 345, 347)는 반사부(341)로부터 본체(32)측으로 본체(32)의 길이 방향으로 수직 형성되는 제 1 판부(343), 제 1 판부(343)로부터 굴곡을 갖도록 연장되는 굴절부(345), 굴절부(345)와 본체를 연결하는 제 2 판부(347)를 포함하도록 형성할 수 있다.
도 6은 도 4에 도시한 이차전지의 전극에 대한 용접 방법을 설명하기 위한 도면이다.
한 쌍의 이차전지의 각 본체(22a, 22b)에 각각 구비된 인접하는 전극 탭을 접촉시키면, 제 1 판부(243a, 243b)가 상호 접촉되게 된다. 아울러, 도 1에 도시한 제 1 및 제 2 가압수단(162, 164)을 제 1 판부(243a, 243b)의 접촉 부위 외측에 위치시키고, 이를 접촉 부위 측으로 가압하면 제 1 판부(243a, 243b)의 밀착 특성이 대폭 향상된다.
이러한 상태에서, 구리의 용융점보다 낮고 알루미늄의 용융점보다 높은 에너지의 레이저 빔을 빔 조사기(130)를 통해 조사하고, 이를 광학계(150)에 의해 집광하여 두 전극의 접촉 부위로 조사한다.
광학계(150)는 모터(140)의 구동에 의해 고속으로 왕복 운동하면서 두 전극의 접촉 부위에 레이저 빔을 조사하게 되며, 이와 함께 제 1 및 제 2 가압수단(162, 164)이 두 전극을 강하게 밀착시키고 있으므로, 금속간 화합물의 발생 없이 두 전극을 강하게 용접할 수 있다. 아울러, 레이저 빔이 조사되어 전극의 온도가 기 설정된 온도까지 상승하면 제 1 및 제 2 가압수단(162, 164)을 회전력에 의해 상승시킴으로써 두 전극의 밀착 특성이 더욱 향상됨은 물론 접촉 면적을 더욱 확대할 수 있다.
더욱이, 이차전지의 전극탭이 도 4에 도시한 것과 같은 구조를 갖는 경우, 제 1 판부(243a, 243b)의 길이(b)만큼 두 전극의 접촉 면적이 확보되므로 전기 저항을 최소화하면서도, 두 전극을 강하게 접촉시킬 수 있다.
도 7은 도 5에 도시한 이차전지의 전극에 대한 용접 방법을 설명하기 위한 도면이다.
한 쌍의 이차전지의 각 본체(32a, 32b)에 각각 구비된 인접하는 전극 탭을 접촉시키면, 제 1 판부(343a, 343b)가 상호 접촉되게 된다. 아울러, 도 1에 도시한 제 1 및 제 2 가압수단(162, 164)을 제 1 판부(343a, 343b)의 접촉 부위 외측에 위치시키고, 이를 접촉 부위 측으로 가압하면 제 1 판부(343a, 343b)의 밀착 특성이 대폭 향상된다.
이러한 상태에서, 구리의 용융점보다 낮고 알루미늄의 용융점보다 높은 에너지의 레이저 빔을 빔 조사기(130)를 통해 조사하고, 이를 광학계(150)에 의해 집광하여 두 전극의 접촉 부위로 조사한다.
광학계(150)는 모터(140)의 구동에 의해 고속으로 왕복 운동하면서 두 전극의 접촉 부위에 레이저 빔을 조사하게 되며, 이와 함께 제 1 및 제 2 가압수단(162, 164)이 두 전극을 강하게 밀착시키고 있으므로, 금속간 화합물의 발생 없이 두 전극을 강하게 용접할 수 있다.
아울러, 레이저 빔이 조사되어 전극의 온도가 기 설정된 온도까지 상승하면 제 1 및 제 2 가압수단(162, 164)을 회전력에 의해 상승시켜 두 전극의 밀착 특성이 더욱 향상됨은 물론 접촉 면적을 더욱 확대할 수 있다.
이차전지의 전극탭이 도 5에 도시한 것과 같은 구조를 갖는 경우, 제 1 판부(343a, 343b)의 길이만큼 두 전극의 접촉 면적이 확보되므로 전기 저항을 최소화하면서도, 두 전극을 강하게 접촉시킬 수 있다.
나아가, 도 5에 도시한 전극 탭은 굴절부(345a, 345b)를 구비한다. 따라서, 두 전극을 접촉시킬 때 굴절부(345a, 345b)가 상호 체결되는 결과를 가져온다. 따라서, 제 1 판부(343a, 343b)가 정확히 접촉되지 않고 갭을 형성하는 경우에도 레이저 빔이 본체(32a, 32b)에 조사되지 않고 굴절부(345a, 345b)에서 반사되기 때문에 화제 발생이나 본체(32a, 32b)의 파괴 등을 미연에 방지할 수 있다.
도 8은 본 발명에 의한 레이저 용접의 원리를 설명하기 위한 도면이다.
본 발명에서는 구리의 용융점보다 낮고 알루미늄의 용융점보다 높은 에너지의 레이저 빔을 조사하여 알루미늄을 용해시켜 구리 측으로 확신시킨다. 즉, 구리는 고상을 유지하기 때문에 금속간 화합물이 발생하는 일 없이 두 전극을 접촉시킬 수 있다.
더욱이, 도 8에 도시한 것과 같이, 레이저 빔의 어긋남, 또는 박판으로 이루어지는 전극의 변형 및 어긋남 등의 이유로 인해 레이저 빔이 접촉 부위에 정확히 조사되지 않는 경우에도 일측 전극의 반사부(241a)에 조사된 빔이 타측 전극으로 반사되는 다중 반사 현상이 일어나게 된다. 따라서, 레이저 빔이 제 1 판부(243a, 243b) 간을 반사 이동하면서 알루미늄 전극을 용해시키고, 용해된 알루미늄이 구리 전극 측으로 확산되어 두 전극이 강하게 접촉될 수 있다.
도 9는 본 발명의 일 실시예에 의한 이차전지 전극의 용접 방법을 설명하기 위한 흐름도이다.
먼저, 용접하고자 하는 이차전지 단위 셀을 정렬시키고, 제어부(110)를 통해 레이저 출력 에너지, 출력 시간 등을 포함하는 제어 파라미터를 설정한다(S10).
이후, 제어부(110)의 제어에 의해 가압부(160)를 구동하여(S20) 제 1 및 제 2 가압수단(162, 164)을 이차전지 전극의 접촉부위 측으로 압박한다.
이와 함께, 모터(140)를 구동하여 광학계(150)를 왕복 운동시키며(S30), 빔 조사기(130)를 통해 기 설정된 에너지의 레이저 빔을 광학계(150)로 조사한다(S40).
모터(140)에 의해 왕복운동하는 광학계(150)는 기 설정된 에너지의 레이저 빔을 두 전극의 접촉 부위로 조사하게 되며, 이 때 제 1 및 제 2 가압수단(162, 164)이 두 전극을 접촉 부위 측으로 압박하고 있으므로 제 1 판부(도 6의 243a, 243b)(도 7의 343a, 343b)가 서로 강하게 접촉된 상태를 유지한다.
접촉 부위로 조사되는 레이저 빔은 두 전극 간에 반사 현상을 일으키면서 알루미늄을 용해시켜 구리 측으로 확산시키고, 이에 의해 두 전극이 전기적으로 접속되게 된다.
결국, 두 전극은 제 1 판부(도 6의 243a, 243b)(도 7의 343a, 343b)의 길이에 해당하는 만큼 접촉 면적을 확보할 수 있어 전기 저항을 최소화할 수 있다. 나가가 구리를 용해시키지 않고 알루미늄만을 용해시켜 접촉이 이루어지도록 함으로써 금속간 화합물이 유발되지 않은 상태로 두 전극을 우수한 접촉 특성으로 접속시킬 수 있다.
또한, 레이저 빔이 조사되어 전극의 온도가 기 설정된 온도까지 상승하면 제 1 및 제 2 가압수단(162, 164)을 회전력에 의해 상승시키는 경우 두 전극의 밀착 특성이 더욱 향상됨은 물론 접촉 면적을 더욱 확대할 수 있다.
한편, 본 발명의 바람직한 실시예에서, 용접 장치(10)를 구성하는 광학계(150)의 헤드와 제 1 및 제 2 가압수단(162, 164)은 X, Y, Z축에서 동일한 좌표값으로 이동할 수 있도록 설계할 수 있다. 이 경우, 레이저 빔의 도달점과 용접해야할 전극의 용접선은 항상 동일하게 제어될 수 있다. 따라서, 용접선 추적 장치 등이 불필요하므로 자동화 시스템 구축에 매우 유리하다.
Cu-Al의 낮은 레이저 빔의 흡수율은 역으로 보면 반사율이 높다라는 것이다. 따라서, Cu-Al 전극의 높은 반사율을 적극적으로 활용하여, 전극의 타단에 반사부를 도입하고, 이를 통해 레이저 빔이 높은 반사율에 의해 다중 반사(multi-reflection)시킨다. 또한, 반사부로부터 본체 측으로 연장 형상되는 판부 전체를 용접하기 때문에 용접 후 두 전극 간의 전기저항을 거의 모재 수준으로 유지할 수 있다.
이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 제 1 이차전지에 구비된 제 1 전극과 제 2 이차전지에 구비된 제 2 전극에 대한 용접 장치로서,
    상기 제 1 전극의 용융점보다 높고 상기 제 2 전극의 용융점보다 낮은 에너지의 레이저 빔을 출사하는 빔 조사기; 및
    상기 빔 조사기에서 출사되는 레이저 빔을 집광하여 상기 제 1 전극 및 상기 제 2 전극의 접촉 부위로 조사하는 광학계;
    를 포함하는 이차전지 전극의 용접 장치.
  2. 제 1 항에 있어서,
    상기 제 1 전극은 종단에 상기 접촉부위의 반대측으로 지정된 각도 휘어진 반사부를 구비하는 이차전지 전극의 용접 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제 2 전극은 종단에 상기 접촉부위의 반대측으로 지정된 각도 휘어진 반사부를 구비하는 이차전지 전극의 용접 장치.
  4. 제 1 항에 있어서,
    상기 제 1 전극 및 상기 제 2 전극의 접촉부위 외측에 각각 위치되는 제 1 및 제 2 가압 수단; 및
    상기 제 1 및 제 2 가압 수단을 상기 접촉부위측으로 이동시키는 가압부;
    를 더 포함하는 이차전지 전극의 용접 장치.
  5. 제 4 항에 있어서,
    상기 빔 조사기에서 출사되는 레이저 빔에 의해 상기 제 1 전극 또는 상기 제 2 전극의 온도가 기 설정된 온도까지 상승하는 경우, 상기 가압부가 상기 제 1 및 제 2 가압수단을 회전 상승시키는 이차전지 전극의 용접 장치.
  6. 제 4 항에 있어서,
    상기 제 1 전극은 종단에 상기 접촉부위의 반대측으로 지정된 각도 휘어진 반사부를 구비하는 이차전지 전극의 용접 장치.
  7. 제 6 항에 있어서,
    상기 제 1 전극은 상기 반사부로부터 상기 제 1 이차전지의 본체 측으로 수직 연장 형성되는 판부를 구비하는 이차전지 전극의 용접 장치.
  8. 제 7 항에 있어서,
    상기 제 1 전극은 상기 판부로부터 상기 제 1 이차전지의 본체 측으로 굴곡되도록 연장 형성되는 굴절부를 구비하는 이차전지 전극의 용접 장치.
  9. 제 4 항에 있어서,
    상기 제 2 전극은 종단에 상기 접촉부위의 반대측으로 지정된 각도 휘어진 반사부를 구비하는 이차전지 전극의 용접 장치.
  10. 제 9 항에 있어서,
    상기 제 2 전극은 상기 반사부로부터 상기 제 2 이차전지의 본체 측으로 수직 연장 형성되는 판부를 구비하는 이차전지 전극의 용접 장치.
  11. 제 10 항에 있어서,
    상기 제 2 전극은 상기 판부로부터 상기 제 2 이차전지의 본체 측으로 굴곡되도록 연장 형성되는 굴절부를 구비하는 이차전지 전극의 용접 장치.
  12. 제 4 항에 있어서,
    상기 광학계의 헤드, 상기 제 1 및 제 2 가압수단은 동일한 좌표값으로 이동하는 이차전지 전극의 용접 장치.
  13. 제 1 이차전지에 구비된 제 1 전극과 제 2 이차전지에 구비된 제 2 전극에 대한 용접 방법으로서,
    상기 제 1 전극 및 상기 제 2 전극을 접촉시키는 단계;
    상기 제 1 전극의 용융점보다 높고 상기 제 2 전극의 용융점보다 낮은 에너지의 레이저 빔을 출사하는 단계; 및
    상기 레이저 빔을 집광하여 상기 제 1 전극 및 상기 제 2 전극의 접촉 부위로 조사하는 단계;
    를 포함하는 이차전지 전극의 용접 방법.
  14. 제 13 항에 있어서,
    상기 레이저 빔을 출사하기 전, 상기 제 1 전극 및 상기 제 2 전극의 접촉 부위 외측에서 제 1 가압수단 및 제 2 가압수단을 통해 상기 제 1 전극 및 상기 제 2 전극을 상기 접촉부위 측으로 밀착시키는 단계를 더 포함하는 이차전지 전극의 용접 방법.
  15. 레이저 빔을 조사한 후 상기 제 1 전극 또는 상기 제 2 전극의 온도가 기 설정된 온도까지 상승하면, 상기 제 1 및 제 2 가압수단을 회전 상승시키는 단계를 더 포함하는 이차전지 전극의 용접 방법.
  16. 제 13 항에 있어서,
    상기 제 1 전극 및 상기 제 2 전극의 접촉 부위로 조사하는 단계는, 상기 레이저 빔이 상기 제 1 전극 및 상기 제 2 전극 상에서 다중 반사를 일으키는 단계인 이차전지 전극의 용접 방법.
PCT/KR2011/004194 2010-11-12 2011-06-08 이차전지 전극의 용접 장치 및 방법 WO2012064003A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0112453 2010-11-12
KR1020100112453A KR101240453B1 (ko) 2010-11-12 2010-11-12 이차전지 전극의 용접 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2012064003A1 true WO2012064003A1 (ko) 2012-05-18

Family

ID=46051126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004194 WO2012064003A1 (ko) 2010-11-12 2011-06-08 이차전지 전극의 용접 장치 및 방법

Country Status (2)

Country Link
KR (1) KR101240453B1 (ko)
WO (1) WO2012064003A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170227406A1 (en) * 2016-02-05 2017-08-10 Ngk Spark Plug Co., Ltd. Temperature sensor and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045388A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 케이블 전지용 전극층의 금속탭 용접 방법 및 이에 의하여 제조된 전극
WO2015057024A1 (ko) * 2013-10-18 2015-04-23 주식회사 엘지화학 케이블 전지용 전극층의 금속탭 용접 방법 및 이에 의하여 제조된 전극
KR102140212B1 (ko) 2014-02-07 2020-07-31 삼성에스디아이 주식회사 배터리모듈 및 그 제조방법
KR101809208B1 (ko) * 2015-06-16 2017-12-14 주식회사 엘지화학 이차전지 및 그 제조방법
FR3048906B1 (fr) * 2016-03-17 2018-04-27 Accuwatt Procede de soudage entre un element conducteur et un pole de batterie et batteries assemblees avec un tel procede

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238249A (ja) * 2004-02-24 2005-09-08 Fujisaki Denki Kk レーザ照射による異種材料の接合方法と装置
WO2006016441A1 (ja) * 2004-08-09 2006-02-16 Nec Corporation 異金属薄板の溶接方法、異金属薄板接合体、電気デバイスおよび電気デバイス集合体
JP2007330972A (ja) * 2006-06-12 2007-12-27 Nissan Motor Co Ltd 異種材料の接合方法、接合装置及び接合構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238249A (ja) * 2004-02-24 2005-09-08 Fujisaki Denki Kk レーザ照射による異種材料の接合方法と装置
WO2006016441A1 (ja) * 2004-08-09 2006-02-16 Nec Corporation 異金属薄板の溶接方法、異金属薄板接合体、電気デバイスおよび電気デバイス集合体
JP2007330972A (ja) * 2006-06-12 2007-12-27 Nissan Motor Co Ltd 異種材料の接合方法、接合装置及び接合構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170227406A1 (en) * 2016-02-05 2017-08-10 Ngk Spark Plug Co., Ltd. Temperature sensor and method for manufacturing the same
US10302507B2 (en) * 2016-02-05 2019-05-28 Ngk Spark Plug Co., Ltd. Temperature sensor and method for manufacturing the same

Also Published As

Publication number Publication date
KR20120051163A (ko) 2012-05-22
KR101240453B1 (ko) 2013-03-11

Similar Documents

Publication Publication Date Title
WO2012064003A1 (ko) 이차전지 전극의 용접 장치 및 방법
CN219658930U (zh) 电芯模组、电芯总成及激光焊接工装
JP5112429B2 (ja) バッテリーセル用電極板及びその製造方法
WO2017130706A1 (ja) 電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法
CN100344022C (zh) 用于自动化叠置燃料电池的材料层的装置和方法
KR102094210B1 (ko) 레이저 용접된 전극 탭과 전극리드를 구비한 전지셀
WO2011155724A2 (ko) 전지모듈 및 전지의 셀 단자를 상호 접속부재에 결합하는 방법들
US20070099074A1 (en) Secondary battery for medium and large size battery module
WO2015005676A1 (ko) 이종 금속 용접 방법, 이에 의해 제조된 이종 금속 버스 바 및 이를 포함하는 이차전지
WO2012026692A2 (ko) 전지모듈 및 전지셀의 셀 단자들의 연결 방법
KR20150143049A (ko) 음극에 리드를 용접하는 방법, 이에 의해 제조된 배터리용 음극 및 이를 포함하는 이차전지
WO2012077878A1 (ko) 배터리 전극 용접용 지그, 용접 장치 및 방법
WO2015002495A1 (ko) 이종 금속들로 이루어진 접속부재를 포함하는 전지모듈
CN106271071A (zh) 一种激光焊接工作站
CN106964896B (zh) 自动双工位动力电池盖板极片激光焊接系统及工艺
KR20210138400A (ko) 전극 탭 용접 장치 및 방법
JP2011159445A (ja) バッテリ装置及びバッテリ装置の端子間接続方法
CN218311729U (zh) 一种方形电池焊接夹具
TW202333878A (zh) 雷射加工裝置及雷射加工方法
WO2022102910A1 (ko) 레이저 용접법으로 회로기판과 전극 리드를 직접 접합한 배터리 팩
WO2021261254A1 (ja) 切断装置および切断方法
CN111906455A (zh) 超高频光纤激光器切割材料的设备及其工作方法
WO2023128373A1 (ko) 복수 레이저를 이용한 가공장치 및 방법
KR20210025848A (ko) 원통형 이차전지의 음극과 커넥터의 연결 방법
CN217142721U (zh) 焊接机构、焊接工站及电池制造设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839015

Country of ref document: EP

Kind code of ref document: A1