WO2012063595A1 - 立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 - Google Patents
立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 Download PDFInfo
- Publication number
- WO2012063595A1 WO2012063595A1 PCT/JP2011/073554 JP2011073554W WO2012063595A1 WO 2012063595 A1 WO2012063595 A1 WO 2012063595A1 JP 2011073554 W JP2011073554 W JP 2011073554W WO 2012063595 A1 WO2012063595 A1 WO 2012063595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- stereoscopic image
- image data
- stereoscopic
- eye
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
- G09G3/003—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/128—Adjusting depth or disparity
Definitions
- the present invention relates to a device for displaying a stereoscopic image, and more particularly to a display method for continuously switching and displaying a stereoscopic image, a stereoscopic image display program, and a computer-readable recording medium recording the same.
- stereoscopic images Humans have the ability to grasp the space from the difference in images obtained by two eyes with a fixed interval.
- the shift of the corresponding points in the image obtained from different viewpoints by the left and right eyes is called parallax, and the positional relationship of the target is grasped three-dimensionally using parallax as one of the cues.
- a means for displaying a right eye image and a left eye image on the right eye is provided, and stereoscopic images can be displayed by presenting parallax images as the right eye image and the left eye image. It is known to be possible.
- a plurality of images provided with parallax for the purpose of stereoscopic viewing are referred to as stereoscopic images.
- image display called a slide show, in which a plurality of images, mainly still images, are continuously displayed has been performed.
- Many slideshows have been devised to switch images and achieve special effects, which makes the image switching interesting.
- Patent Document 1 discloses a method of generating an interpolated image that gradually changes the parallax between a stereoscopic image before switching and a stereoscopic image after switching, and smoothly changing the parallax at the time of switching. It is shown.
- Patent Document 1 it is possible to reduce a sense of discomfort and fatigue due to a sudden change in parallax.
- an image that interpolates the parallax between the two images when switching between the two images, an image in which the depth sensation is continuously changed is displayed, and the viewer can see between the images.
- the display object is perceived as approaching or moving away.
- the observer himself is as if in the depth direction, i.e. For the person, it feels as if it moved in the front-rear direction. If there is a sense of movement that is not accompanied by movement, a sense of incongruity (Sensory Conflict) is felt, and depending on the conditions, motion sickness, which is close to motion sickness, especially movement in the depth direction inherent to stereoscopic vision May cause so-called 3D sickness.
- the present invention has been made in view of such circumstances, and a stereoscopic image display device that achieves comfortable stereoscopic vision while avoiding discomfort and 3D sickness of an observer associated with switching and displaying a stereoscopic image,
- a stereoscopic image display method, a program for causing a computer to execute the method, and a recording medium on which the program is recorded are provided.
- a stereoscopic image including a right-eye image and a left-eye image is displayed, and the stereoscopic image can be displayed by presenting the right-eye image to the right eye and the left-eye image to the left eye.
- a stereoscopic image display device that outputs stereoscopic image data including a right-eye image and a left-eye image, the stereoscopic image data, and the stereoscopic image data.
- a switching unit that switches between different images, and a display unit that presents the right-eye image and the left-eye image of the stereoscopic image data to the right and left eyes, respectively, and displays a stereoscopic image.
- the image data output unit switches the first stereoscopic image data to the second stereoscopic image data different from the first stereoscopic image data, and outputs the first stereoscopic image data as the stereoscopic image data.
- the other image having a perceivable length is displayed between the display screen before switching based on the first stereoscopic image data and the display screen after switching based on the second stereoscopic image data.
- a stereoscopic image display device characterized by switching so as to be performed is provided.
- the another image is an image that covers a part of the image based on the stereoscopic image data. As a result, the image can be switched without a sense of discomfort to the viewer.
- the another image is preferably a uniform image without a pattern. Thereby, it is realizable with simple hardware.
- the another image is preferably composed of an image having a uniform parallax. Thereby, the convergence angle of the observer during the image conversion can be set to an intended angle.
- the parallax of the other image takes a value between the parallax of the image before switching based on the first stereoscopic image data and the parallax of the image after switching based on the second stereoscopic image data. Is preferred. Thereby, parallax can be changed smoothly.
- the another image may be a plurality of images whose parallax is continuously changed. Thereby, the vergence angle of the observer during image conversion can be controlled intentionally.
- the part in which the parallax is changed may be a part of the screen. 3D sickness can be avoided because the area where the parallax is changed can be made smaller and there is no need to look there.
- the portion where the parallax is changed is preferably a portion including a characteristic portion of an image based on the stereoscopic image data. . By changing the parallax of the characteristic portion, the parallax can be changed without a sense of incongruity.
- the portion where the parallax is changed is the position on the screen of the main subject of the image based on the stereoscopic image data Further, it may depend on at least one of the parallax amount.
- the another image including a plurality of images whose parallax is continuously changed is selected so that the parallax is continuously changed from the parallax of the image before the adjustment to the parallax of the image after the adjustment. Also good. Thereby, parallax can be changed smoothly.
- the time for displaying the another image is 0.3 seconds or more.
- the time for displaying the different image changes depending on at least one of the position on the main subject screen and the amount of parallax of the display screen before switching and the display screen after switching. And Video sickness can be prevented by making it 0.3 seconds or more.
- At least one of the display screen at the time of switching from the display screen before the switching to the other image and the display screen at the time of switching from the other image to the image after the switching is subjected to crossfading processing. Also good. Thereby, it is possible to weaken the stimulation of the image and reduce fatigue.
- a wipe process may be performed on at least one of the display screen when switching from the display screen before switching to the another image and the display screen when switching from the other image to the image after switching. Thereby, it is possible to weaken the stimulation of the image and reduce fatigue.
- the present invention displays a stereoscopic image including a right-eye image and a left-eye image, and provides stereoscopic viewing by presenting the right-eye image to the right eye and the left-eye image to the left eye.
- An image generation apparatus a stereoscopic image data output unit that outputs stereoscopic image data including a right-eye image and a left-eye image, an image different from the stereoscopic image data and the stereoscopic image data
- a switching unit that switches between the first stereoscopic image data and the first stereoscopic image data as the stereoscopic image data, wherein the stereoscopic image data output unit is different from the first stereoscopic image data.
- the switching unit When switching to the second stereoscopic image data and outputting, the switching unit performs switching based on the display screen before switching based on the first stereoscopic image data and the second stereoscopic image data. Between subsequent display screens A stereoscopic image generation apparatus characterized by switching so as to display the different image length perceptible.
- a stereoscopic image including a right-eye image and a left-eye image is displayed, and stereoscopic viewing is possible by presenting the right-eye image to the right eye and the left-eye image to the left eye.
- a stereoscopic image adjustment method in the stereoscopic image generation apparatus wherein the stereoscopic image data output step for outputting stereoscopic image data including a right-eye image and a left-eye image, and the stereoscopic image data, A switching step of switching between an image different from the stereoscopic image data, and in the stereoscopic image data output step, as the stereoscopic image data, the first stereoscopic image data is the first stereoscopic image data.
- the table before switching based on the first stereoscopic image data in the switching step when switching to and outputting second stereoscopic image data different from the stereoscopic image data of A stereoscopic image adjustment method is provided, wherein switching is performed so that the perceivable length of the other image is displayed between the screen and the display screen after switching based on the second stereoscopic image data.
- the present invention may be a program that causes a computer to execute the above-described stereoscopic image display method, or may be a computer-readable recording medium that records the program.
- the present invention it is possible to avoid a viewer's discomfort and 3D sickness associated with switching and displaying a stereoscopic image, and to realize a comfortable stereoscopic view.
- FIG. 1 is a block diagram illustrating a configuration example of the stereoscopic image display apparatus according to the present embodiment.
- a stereoscopic image display apparatus A has an input unit 10 that accepts input of image data, and display data that can be stereoscopically displayed by processing the input image data (hereinafter “stereoscopic”).
- 3D image processing unit 100 that performs image processing to generate “image data for viewing”, an image conversion unit 101 that performs image conversion, and a display control unit 102 that performs display control by matching an image with the display unit.
- FIG. 2 is a diagram illustrating a configuration example of the image conversion unit 101.
- the image conversion unit 101 constitutes a switching unit that switches between stereoscopic image data and an image different from the stereoscopic image data.
- the image conversion unit 101 includes image conversion processing units 1013 and 1014, a converted image recording unit 1015, and a communication / control unit 1016.
- the image data input via the input unit 10 is developed and input into left-eye image data and right-eye image data by the stereoscopic image processing unit 100 according to the input format. If there is additional information in the image data, the additional information is extracted and transmitted to the system control unit 104.
- the input image data may be anything such as one read electronically from a recording medium, one transmitted from a network, one using broadcast waves, and the like. That is, the input unit 10 may be a semiconductor memory reading device, or may have a communication function with an optical disk or magnetic disk reading device, a radio wave receiver, or a network.
- any data can be used as long as it can input data that can be interpreted as a stereoscopic image.
- the right-eye image data and the left-eye image data may be created from a single piece of image data. That is, a multi-viewpoint image synthesized from image data and depth data may be a multi-viewpoint image created by estimating depth information from a two-dimensional image.
- the developed left-eye image data and right-eye image data are sent to the image conversion unit 101 and subjected to image conversion processing.
- a communication / control unit 1016 that communicates with the system control unit 104 controls each unit.
- the converted image recording unit 1015 receives an instruction from the system control unit 104 via the communication / control unit 1016 and outputs another image to be a converted image to the image conversion processing units 1013 and 1014.
- the image conversion processing units 1013 and 1014 receive an instruction from the system control unit 104 via the communication / control unit 1016 and perform a process of converting an image between the input left and right eye images and the converted image.
- the left-eye image and right-eye image that have undergone the image conversion process are sent to the display control unit 102.
- the display control unit 102 performs display control in accordance with the display unit 103 and sends a signal to the glasses synchronization unit 106.
- the glasses synchronization unit 106 sends a synchronization signal to the shutter glasses worn by the user, and synchronization processing with the display unit 103 is performed.
- a liquid crystal display panel is used for the display unit 103, a left-eye image and a right-eye image are alternately displayed, and stereoscopic viewing is performed in synchronization with the shutter glasses 107 worn by the observer.
- the display control unit 102 alternately outputs the left-eye image and the right-eye image to the display unit 103.
- the output frequency is, for example, 120 images for the left eye and for the right eye, each per second.
- the display unit 103 displays the image sent from the display control unit 102 as needed.
- the left-eye image is displayed on the display unit 103
- the left-eye shutter of the shutter glasses 107 is opened and the right-eye shutter is closed.
- the left-eye image is displayed on the left eye, and when the right-eye image is displayed, the left-eye shutter is closed and the right-eye shutter is opened, whereby the right-eye image is displayed on the right eye, thereby realizing stereoscopic viewing.
- the observer uses the user input unit 105 to select a stereoscopic image to be displayed and execute display.
- the user input unit 105 can be realized by, for example, an operation button or a remote control provided in the housing, but can be realized by various means such as a keyboard, a mouse, a touch panel, and a dial. It may be.
- the input operation data is transmitted to the stereoscopic image processing unit 100 and the image conversion unit 101 via the system control unit 104.
- the stereoscopic image processing unit 100 develops the selected image and outputs it in accordance with the image conversion timing generated by the system control unit 104.
- the image conversion unit 101 converts the stereoscopic image and the converted image developed by the stereoscopic image processing unit, and the converted image and the stereoscopic image in accordance with the image conversion timing.
- the display screen on the display unit 103 during input from the user input unit may be a user interface screen.
- a user interface screen may be realized using the display control unit 102 from the system control unit.
- FIG. 3 is a top view of the viewer and the display.
- 3 (a) is a conventional two-dimensional display state, at the time of displaying the stereoscopic image, corresponding points of the right eye image and the left eye image is a state in the same position P 1 on the display (display surface). In this case, the corresponding point P 1 is perceived to be on display.
- FIG. 3B shows a state where the corresponding points P 2 and P 3 between the right-eye image and the left-eye image are shifted to the right on the display and the left-eye image to the left on the display. In this state, the observer perceives this point behind the display surface (P 4 ).
- FIG. 3C shows a state where the corresponding points P 5 and P 6 of the right-eye image and the left-eye image are shifted to the left on the display and the left-eye image to the right on the display. In this state, the observer perceives this point in front of the display surface (P 7 ).
- FIG. 3D is a diagram summarizing these.
- the corresponding point between the right eye image and the left eye image is displayed with the right eye image shifted to the right and the left eye image shifted to the left, and the distance between the corresponding points is equal to the binocular distance, this point is Although it is perceived at infinity, if the distance between corresponding points exceeds the distance between both eyes, the line of sight does not become a divergent direction and cannot be fused.
- the corresponding points of the right-eye image and the left-eye image on the display are greatly shifted to the left for the right-eye image and to the right for the left-eye image (P 8 , P 9 )
- the line of sight is extremely crossed. It becomes a state and cannot be fused. Accordingly, the depth range in which stereoscopic viewing can be comfortably performed, that is, the comfortable fusion range shown in FIG. 3D is inside the display surface with respect to the fusion range.
- FIG. 4 is a diagram illustrating a display example of the display unit 103 in the stereoscopic image display apparatus A.
- the display unit 103 displays a plurality of images 103x, a slide bar S that slides the plurality of images 103x and operates a display area, and operation buttons OB.
- the “start” button is in the state where the operation cursor is hit.
- the user operates the user input unit 105 to move the cursor, selects an image, an operation button OB, or the like, selects an image to be displayed as a slide show, or starts a slide show.
- the method of selecting images may be a method of individually specifying images, or may be selected collectively. Images may be listed and displayed in units of lists. Further, during image selection, it is preferable to select an image using the display unit 103, but an image selection unit may be provided in addition to that.
- the selected screen may be a two-dimensional display or a three-dimensional display. When an image is selected, an operation for starting display is performed.
- the system control unit 104 instructs the image conversion unit 101 to convert the current display to a converted image and displays the stereoscopic image processing unit 100 on the display. Specify the image to be used.
- the image conversion unit 101 receives an instruction from the system control unit 104, the image conversion unit 101 performs processing to convert the displayed user interface screen into a converted image.
- the stereoscopic image processing unit 100 reads data from the input unit 10 in accordance with the instruction and develops the stereoscopic image.
- the developed stereoscopic image is output to the image conversion unit 101 in accordance with the timing from the system control unit 104.
- the stereoscopic image sent from the stereoscopic image processing unit 100 and the stereoscopic image read from the converted image recording unit 1015 in the image conversion unit 101 are synchronized with the timing from the system control unit 104. Perform the conversion process.
- the stereoscopic image processing unit 100 expands / switches the stereoscopic image at a timing when the image conversion processing units 1013 and 1014 select the stereoscopic image read from the converted image recording unit 1015, thereby the stereoscopic image processing unit 100.
- the output of the stereoscopic image processing unit 100 can be in a state where it is not displayed on the display unit 103.
- the stereoscopic image processing unit 100 does not display the state of image switching to the observer, and it is not necessary to perform quick image switching, so that the hardware configuration can be simplified.
- the image conversion unit 101 When receiving the image conversion instruction, the image conversion unit 101 performs image conversion according to the following three steps.
- FIG. 5 is a flowchart showing a flow of image conversion processing according to this embodiment.
- FIG. 6 is a diagram illustrating a display example along the flow of processing.
- the process is started (Start: Step S1).
- the left-eye and right-eye image conversion processing units 1013 and 1014 gradually cross fade, that is, gradually reduce the current image display shown in FIG. 5 (step S2 in FIG. 5 and (a) to (b) in FIG. 6), finally, a process of “another image” recorded in the converted image recording unit 1015 is performed (step in FIG. 5).
- S3, (c) of FIG. This process is sometimes referred to as dissolve.
- “another image” is preferably an image with little light stimulation, and may be a black screen as an example. In FIG. 6C, a black image is displayed.
- a fade process or fade-out In general, the process of gradually darkening an image and finally setting it to a black screen is called a fade process or fade-out.
- these processes are also regarded as a process for converting to a black screen, and are a kind of crossfade. Will be treated as
- the relationship between convergence and adjustment differs depending on which position on the screen the observer is looking at. More specifically, the adjustment corresponds to the distance from the screen.
- the congestion is in the state of perceiving the depth according to the parallax of the object being observed. If the screen is changed in this state, the parallax at the position that was viewed on the screen is changed abruptly.
- the line of sight is guided by the displayed parallax image, and is set to a convergence corresponding to the image.
- the change in the parallax before and after the screen change can be performed via the intended state.
- stereoscopic viewing can be facilitated.
- an image that is easy to recognize is preferable, but for example, a character may be used.
- the image conversion unit 101 performs a process of holding another image display for 0.3 seconds or longer (step S4 in FIG. 5, (c) to (d) in FIG. 6).
- PES photosensitive seizures
- the image conversion unit 101 crosses the display from “another image” recorded in the conversion image recording unit 1015 to the image after image conversion in the image conversion processing units 1013 and 1014 for the left eye and the right eye. Processing for fading is performed (step S5 in FIG. 5, (d)-(e) in FIG. 6). Next, the image after the image conversion is displayed (step S6 in FIG. 5, (f) in FIG. 6), thereby completing the image conversion process (step S7 in FIG. 5).
- the image conversion unit 101 By performing the processing shown in FIGS. 5 and 6, the image conversion unit 101 once resets the state of congestion and adjustment of the observer to an intended state, and further presents the screen after the image conversion to the observer. .
- a uniform black image is used as another image. Since a uniform black screen does not have corresponding points input to the left and right eyes, congestion is considered to return to a natural state.
- the image conversion unit once resets the state of convergence and adjustment of the observer to the intended state, and presents the next stereoscopic image to the observer.
- the observer can perform image conversion without feeling a sense of incongruity in which the parallax is suddenly changed or a sense of movement accompanying the parallax being gradually changed.
- the other image is an image having a uniform parallax, and it is more preferable that the other image has an intermediate parallax between the pre-adjustment image and the post-adjustment image, for example, the main subject.
- the respective images are converted by the cross-fade process, which is a process for suppressing the movement of the image and reducing the light stimulus. Therefore, this process is not limited to the crossfade process, and the object can be achieved by, for example, a wipe process.
- two images a right-eye image and a left-eye image
- the number of images is not limited to two, and may be image data for a multi-viewpoint image.
- a time-division type stereoscopic display unit using shutter glasses is shown as a stereoscopic display system.
- the stereoscopic display system is not limited to the time-division type, and uses a parallax barrier or a lenticular lens. Any type of display system capable of stereoscopic viewing, such as a projector, may be used. As described above, a display for multi-viewpoint images may be used.
- the processing block for inserting another image to be a conversion image is configured as the image conversion processing units 1013 and 1014 in the image conversion unit 101.
- the conversion image insertion process is performed between the image conversion unit and the display unit. It can be executed anywhere.
- the hardware configuration is merely an example, and any configuration method may be used. In short, the above-described series of processing may be realized.
- FIG. 7 is a flowchart showing the flow of processing in the present embodiment.
- the image conversion unit 101 displays a mask pattern prepared in advance on the current display (FIG. 7: Step S12, FIG. 8: ( a)-(b)).
- the mask pattern is an image that blocks a partial area of the image, and in this embodiment, a pattern WP like a window that transmits only a partial area of the image is used.
- the mask pattern may be translucent, but it is desirable that the mask pattern has a pattern and can guide the line of sight to the pattern itself. By guiding the line of sight to the pattern itself, the vergence of the observer can be changed in accordance with the parallax of the pattern.
- the display of the mask pattern is preferably performed by moving the mask pattern itself and performing a process of gradually shielding with a cross fade or the like.
- the image conversion unit 101 performs a process of displaying the mask pattern for 0.3 seconds or longer (step S13 in FIG. 7, (c) to (d) in FIG. 8). During this time, the image conversion unit 101 switches the input stereoscopic image before conversion to the converted stereoscopic image in a stepwise manner (step S14 in FIG. 7, (c) to (d) in FIG. 8). That is, a shape in which the input stereoscopic image gradually changes is observed from the transmission area of the mask pattern.
- the conversion of the input stereoscopic images is preferably performed by crossfading or wiping, but it is preferable to perform processing that softens the light stimulus.
- the image conversion unit 101 performs a display process for removing the mask pattern (step S15 in FIG. 7, (e) to (f) in FIG. 8). It is preferable to perform a process of removing the mask pattern gradually by crossfade without moving the mask pattern itself.
- the characteristic part of the image in which the main subject is contained not the background part of the image or the like for the transmission region (pattern like a window) WP shown in FIG.
- the position on the screen and the amount of parallax of the transmissive area WP, that is, the portion where the parallax is changed as the display image is changed are at least the position and the amount of parallax on the screen of the main subject of the image based on the stereoscopic image data.
- the roof portion of the house arranged at the center in the image includes the house that is the main subject, and the parallax of this portion is changed as the image changes.
- the difference in parallax before and after the image change is large, if the main subject part is a window, even if the parallax difference before and after the main subject part change is large, the displayed parallax range is limited, In addition to making it easier to change the convergence, it is possible to familiarize the eyes with the parallax of the main subject in advance, so that the influence of parallax changes before and after image conversion can be mitigated. Further, since an observable region of the image to be converted is a part of the image, the observer feels not to be moving but to observe an object changing from the window. Thereby, an observer can perform image conversion without feeling a sense of incongruity in which images with depth are replaced or a sense of movement.
- the position of the window is selected based on at least one of the position of the main subject on the screen and the amount of parallax so that the change in parallax before and after the image conversion becomes less uncomfortable for the observer, and the image conversion is performed. It is good to.
- the transmission area of the mask pattern is a part of the image, but the size of the transmission area may be as long as the observer does not feel a sense of movement.
- FIG. 1 shows the entire configuration as in the first embodiment.
- FIG. 9 shows the configuration of the image conversion unit 101.
- the image conversion unit 101 includes image buffer units 1011 and 1012, image conversion processing units 1013 and 1014, a converted image recording unit 1015, a communication / control unit 1016, and a parallax acquisition unit 1017.
- the image data input to the stereoscopic image display apparatus A via the input unit 10 is developed into left-eye image data and right-eye image data by the stereoscopic image processing unit 100 according to the input format.
- the additional information is extracted and transmitted to the system control unit.
- the input image data may be anything such as one read electronically from a recording medium, one transmitted from a network, one using broadcast waves, and the like. That is, the input unit 10 may be a semiconductor memory reading device, or may have a communication function with an optical disk or magnetic disk reading device, a radio wave receiver, or a network. In short, any data can be used as long as it can input data that can be interpreted as a stereoscopic image.
- the right-eye image data and the left-eye image data may be created from a single piece of image data. That is, it may be a multi-viewpoint image synthesized from image data and depth data, or a multi-viewpoint image created by estimating depth information.
- the developed left-eye image data and right-eye image data are sent to the image conversion unit 101.
- a communication / control unit 1016 that communicates with the system control unit 104 controls each unit.
- the image buffer units 1011 and 1012 temporarily store the left-eye image data and the right-eye image data input to the image conversion unit 101, respectively.
- the instruction is output to the image conversion processing units 1013 and 1014, and an instruction from the system control unit 104 is received and output to the parallax acquisition unit 1017.
- the parallax acquisition unit 1017 reads data from the image buffer units 1011 and 1012 and calculates the parallax of the left and right images.
- the communication / control unit 1016 is obtained in the form of a parallax map in which the amount of deviation between corresponding points of the left and right images is obtained by a technique such as block matching, and the amount of parallax is obtained in association with pixels on the image.
- the system control unit 104 analyzes the acquired parallax map and acquires the position and parallax of the main subject predicted to be watched by the observer. More specifically, the parallax value obtained from the parallax map is subjected to histogram processing, and the farthest appearance parallax value is regarded as the background image and the closest one as the main subject, and the corresponding main subject is displayed on the screen. Get position and parallax.
- the acquired position and parallax of the main subject are managed by the system control unit 104, and the position and parallax of the main subject before and after image conversion are transmitted to the converted image recording unit 1015 via the communication / control unit 1016. .
- the converted image recording unit 1015 converts the input stereoscopic image and the converted image, and based on the transmitted position and parallax of the main subject, the same parallax as the main subject at the position on the screen of the main subject before conversion. Display another object you have. Another object or background image to be displayed may be recorded in the converted image recording unit 1015. Another object should be easy to recognize and should not be too large. For example, it is about 1/100 of the screen area. Thereafter, the converted image recording unit moves another object toward the position and parallax of the main subject after conversion. The movement may be linear or curvilinear, but is preferably continuous and not accompanied by intense movement. If the size of another object is too large during the movement, the observer feels a sense of movement, which may cause video sickness.
- the left-eye image and right-eye image that have undergone the image conversion process are sent to the display control unit 102.
- the display control unit 102 performs display control in accordance with the display unit 103 and simultaneously sends a signal to the glasses synchronization unit 106.
- the glasses synchronization unit 106 sends a synchronization signal to the shutter glasses worn by the user, and synchronization processing with the display unit is performed. Specifically, for example, when a liquid crystal display panel is used for the display unit 103, a left-eye image and a right-eye image are alternately displayed, and stereoscopic viewing is performed in synchronization with the shutter glasses 107 worn by the observer.
- the display control unit 102 alternately outputs a left-eye image and a right-eye image to the display unit 103.
- the output frequency is, for example, 120 images for the left eye and for the right eye, each per second.
- the display unit 103 displays the image sent from the display control unit 102 as needed.
- the left-eye image is displayed on the display unit 103
- the left-eye shutter of the shutter glasses 107 is opened and the right-eye shutter is closed.
- the left-eye image is displayed on the left eye
- the right-eye image is displayed, the left-eye shutter is closed and the right-eye shutter is opened, whereby the right-eye image is displayed on the right eye, thereby realizing stereoscopic viewing.
- the observer uses the user input unit 105 to select a stereoscopic image to be displayed and execute display.
- the user input unit 105 can be realized by, for example, an operation button or a remote controller provided in the housing, but can be realized by various means such as a keyboard, a mouse, a touch panel, and a dial, and can be used for gesture recognition regardless of the format. Also good.
- the input operation data is transmitted to the stereoscopic image processing unit 100 and the image conversion unit 101 via the system control unit 104.
- the stereoscopic image processing unit develops the selected image and outputs it in accordance with the image conversion timing generated by the system control unit 104.
- the image conversion unit 101 converts the stereoscopic image and the converted image developed by the stereoscopic image processing unit, and the converted image and the stereoscopic image in accordance with the image conversion timing.
- the screen being input from the user input unit may be a user interface screen.
- a user interface screen may be realized using the display control unit 102 from the system control unit.
- FIG. 10 is a flowchart showing the flow of processing in the present embodiment.
- Step S21 When the process is started (Start: Step S21), as a first step, the current display is cross-faded, that is, gradually darkened in the image conversion processing units 1013 and 1014, and finally the converted image recording unit 1015 is obtained.
- a process for generating another image is performed (step S22). This process is sometimes referred to as dissolve.
- Another image is preferably one with less light stimulation.
- another object is superimposed and displayed on another image (step S23). It is assumed that another object has a parallax and a position on the screen of the main subject before image conversion acquired by the method described above. The size of another object is a part of the screen, for example, 1% or less in terms of area. In FIG. 11, a cross pattern is displayed as another object.
- Another image has parallax, and may be a parallax amount between the parallax of the background image before and after the image conversion.
- the image conversion unit 101 displays another image for 0.3 seconds or longer.
- Humans may experience photosensitive seizures (PSS) when subjected to intense light stimuli, such as blinking light.
- PSS photosensitive seizures
- it is recommended to avoid more than 3 blinks per second, which can be a strong light stimulus. It is generally said that it takes about 0.2 seconds for a human to adjust the focus with respect to an object. Therefore, it is estimated that it takes about the same time to return from the state where the convergence and the adjustment of the focus position do not coincide with each other to the state where the convergence and the adjustment coincide with each other. For these reasons, it is desirable that the duration of the second step be 0.3 seconds or longer.
- the image conversion unit 101 changes the position of the main subject (the position of the house) before changing another object (cross pattern) from the parallax and the position of the main subject (the position of the cat) after changing from the parallax as described above. ) And display processing for continuously moving to parallax (steps S23 to S24).
- the duration of the second step may be extended according to this moving distance. In this case, the moving speed of another object due to the change in the display position and depth of the main subject accompanying the image conversion can be kept below a certain level, and the stimulus to the observer can be reduced.
- the image conversion unit 101 causes the image conversion processing units 1013 and 1014 to crossfade the display from another image generated by the conversion image recording unit 1015 to the next stereoscopic image developed by the stereoscopic image processing unit 100. Is performed (step S25). Thereby, the process ends (step S26: end).
- FIG. 11 is a diagram showing a series of flows.
- a cross pattern shown in white on the screen
- a uniform black image is used as a background image.
- the main subject character: house
- the cross pattern is replaced with another object (cross pattern) (b)
- the cross pattern is gradually moved to be replaced with the main subject (cat) of the converted image ( e).
- the part where the parallax is changed depends on at least one of the position on the screen and the amount of parallax of the characteristic part of the main subject of the image based on the stereoscopic image data. That is, as shown in FIG. 11B, the cross pattern corresponding to the roof portion of the house arranged near the center in the image corresponds to the position of the house that is the main subject.
- the parallax of the cross pattern is also changed with the movement of the cross pattern to the position of the cat accompanying switching to another image.
- the time for displaying another image is the position and the amount of parallax on the main subject screen of the display screen before switching (FIG. 11A) and the display screen after switching (FIG. 11F). It is good to change depending on at least one of them. That is, when the movement distance of the cross pattern is long, the time for displaying another image is increased so that the movement speed of the cross pattern does not exceed a certain value, for example, 20 cm per second on the display screen. Note that the movement distance of the cross pattern includes not only the plane position on the display screen but also the depth direction, that is, a change in parallax.
- the depth of movement is defined as the change in the convergence angle of the observer's eyes when observed from a standard viewing distance (for example, a distance three times the screen height). For example, a direction restriction may be provided.
- the image conversion unit 101 can set the observer's convergence and adjustment state continuously without difficulty, and can present the next stereoscopic image to the observer.
- the observer can perform image conversion without feeling a sense of incongruity in which the parallax is suddenly changed or a feeling of movement accompanying a gradually changing parallax in a wide range of the visual field.
- the parallax of the stereoscopic image is obtained from the left and right images, and there are several known methods for obtaining the parallax, such as block matching.
- a stereoscopic image processing is performed using a personal computer (PC), and a display device capable of stereoscopic display is used. 3D display.
- a user performs a stereoscopic image process by operating a GUI application using an operation device of the PC, such as a mouse, a keyboard, or a touch panel. That is, a CPU provided in the PC processes a moving image or a still image according to stereoscopic display application software recorded on a storage device, for example, a hard disk or a CD-ROM, and performs stereoscopic display on the stereoscopic display device.
- FIG. 12 is a diagram illustrating a display screen of a stereoscopic display device according to the fourth embodiment of the present invention, and a screen 103 by a stereoscopic image display application is displayed on the stereoscopic display device.
- the user can perform a slide show based on a stereoscopic image by operating a file selection screen 201 on the GUI, a setting button 203, or the like using an operation device such as a mouse or a keyboard (not shown).
- the adjustment tab is provided with a screen selection button, a display time button, a switching time, a loop playback button, and the like, and a slide show can be displayed by pressing the start button 205.
- the present invention can also be applied to information terminals such as mobile phones.
- a program for realizing the functions described in the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to execute processing of each unit. May be performed.
- the “computer system” here includes an OS and hardware such as peripheral devices.
- the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
- the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
- the program may be a program for realizing a part of the above-described functions, or may be a program that can realize the above-described functions in combination with a program already recorded in a computer system.
- the present invention can be used for a stereoscopic image display device such as a 3D television or a 3D digital photo frame.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Controls And Circuits For Display Device (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像生成装置であって、右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力部と、前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替部と、を備え、前記立体視用画像データ出力部が、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替部が、前記第1の立体視用画像データに基づく切り替え前の表示画面と前記第2の立体視用画像データに基づく切り替え後の表示画面との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像生成装置である。これにより立体画像の切り替え表示を行う際、奥行き方向の画像位置変動に対して観察者の違和感や3D酔いを避け、快適な立体視を実現することができる。
Description
本発明は、立体画像を表示する装置に関し、特に立体画像を連続して切り替え表示する際の表示方法、立体画像表示プログラム、及びこれを記録したコンピュータ読み取り可能な記録媒体に関するものである。
人間は一定の間隔を持つ2つの目により得られる画像の違いから空間を把握する能力を持つ。左右の眼による異なる視点から得られる画像中の対応点のずれを視差と呼び、視差を手掛かりの一つとして対象物の位置関係を立体的に把握している。このことを利用して、右目用画像を右目に表示し、左目用画像を左目に表示する手段を設けて、右目用画像、左目用画像として視差を設けた画像を提示することにより立体視が可能であることが知られている。ここでは、立体視を意図して視差を設けた複数の画像のことを立体画像と称する。
立体視において、人間は視差に応じた両眼の光軸のなす角度、すなわち輻輳の大きさを対象物までの距離に対応付けていると言われている。よって、右目用画像を右に、左目用画像を左に相対的にずらし、視差を付けた画像を見せると、実際の表示面より遠くに表示物を知覚させることができる。同様に、前述とは逆向きの視差を付けることにより近距離側でも実際の表示面より近くに表示物を知覚させることができる。これらの原理に基づき、右目用画像、左目用画像をそれぞれ右目、左目に、例えばシャッタメガネを用いて時分割で表示することにより、立体画像の立体視が可能となる。
また、従来から、複数の画像、主に静止画を連続して表示する、スライドショーなどと呼ばれる画像表示が行われている。スライドショーでは画像の切り替えに工夫を凝らし、特殊な効果を実現しているものなども多くみられ、画像切り替えに面白味を持たせている。
しかし、立体画像に対しスライドショーを実施する際、立体画像を連続的に切り替えると、それぞれの画像の奥行き表現も同時に切り替えられることになる。前述のとおり、この奥行き感は立体画像の視差によりもたらされるものであるので、これらの画像を切り替えることにより画像の奥行き感が突然変更されると、立体視を行うユーザに違和感を与え、連続的に画像を切り替えながら呈示することにより疲労感が残るものとなる。
この現象を改善するものとして、特許文献1には、切り替え前の立体画像と切り替え後の立体画像の視差を徐々に変更するような補間画像を生成し、切り替え時の視差をスムーズに変更する方法が示されている。
特許文献1の方法によれば、急激に視差が変更されることによる違和感や疲労感を軽減することができる。しかしながら、2つの画像の視差を補間する画像を表示することにより、2つの画像の間の切り替え時には、奥行き感が連続的に変更される画像が表示され、観察者には画像と画像の間で表示物が近寄ってきたり、遠ざかったりするように知覚される。
特に観察者の視界に占める表示画面の大きさが大きい場合や、集中して画面を観察している場合には、観察者は視差量の変化に伴い、観察者自身があたかも奥行き方向、すなわち観察者にとっては前後方向に移動したかのような感覚を得る。移動を伴わないにもかかわらず移動した感覚があると、感覚の不一致(Sensory Conflict)として違和感を覚え、条件によっては乗り物酔いに近い状態である映像酔い、特に立体視に固有の奥行き方向の移動に関しての問題である、いわゆる3D酔いを生ずることがある。
3D酔いを避けるために、画像転換を人間に知覚できないほどゆっくり行う方法がある。しかしながら、一般的に船酔いの起きやすい振動周期は6秒といわれる。映像酔いと乗り物酔いは必ずしも同じメカニズムによるものとはいえないが、仮にこの6秒周期より十分に長い周期で、移動を知覚できないほどゆっくりと画像転換を行うとすると、かなりの長時間が必要となってしまう。前述の特許文献1の方法ではこの3D酔いを避けることに関して考慮されていない。また、切り替えの前後の画像が大きく異なると適切な補間画像を生成することができない。
本発明は、このような事情に鑑みてなされたものであり、立体画像を切り替えて表示することに伴う観察者の不快感や3D酔いを避け、快適な立体視を実現する立体画像表示装置、立体画像表示方法、その方法をコンピュータに実行させるためのプログラム及びそのプログラムを記録した記録媒体を提供することである。
本発明の一観点によれば、右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像表示装置であって、右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力部と、前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替部と、前記立体視用画像データの前記右目用画像及び前記左目用画像をそれぞれ右目及び左目に呈示し、立体画像を表示する表示部と、を備え、前記立体視用画像データ出力部が、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替部が、前記第1の立体視用画像データに基づく切り替え前の表示画面と前記第2の立体視用画像データに基づく切り替え後の表示画面との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像表示装置が提供される。前記別の画像は、前記立体視用画像データに基づく画像の一部を覆い隠す画像であることを特徴とする。これにより、視聴者に違和感なく画像切り替えすることができる。
前記別の画像は、模様のない一様な画像であることが好ましい。これにより、簡単なハードウェアで実現することができる。前記別の画像は、一様な視差を持つ画像で構成されていることが好ましい。これにより、画像転換中の観察者の輻輳角を意図した角度に設定することができる。前記別の画像の視差は、前記第1の立体視用画像データに基づく切り替え前の画像の視差と前記第2の立体視用画像データに基づく切り替え後の画像の視差の間の値を取ることが好ましい。これにより、視差をスムーズに変更することができる。前記別の画像は、連続的に視差が変更される複数の画像であっても良い。これにより、画像転換中の観察者の輻輳角を意図的に制御することができる。
前記連続的に視差が変更される複数の画像からなる前記別の画像において、視差が変更される部分が画面の一部であっても良い。視差が変更される領域を小さくするとともに、そこを見なくても良いため、3D酔いを避けることができる。前記連続的に視差が変更される複数の画像からなる前記別の画像のうち、前記視差が変更される部分は、前記立体視用画像データに基づく画像の特徴部分を含む部分であることが好ましい。特徴部分の視差を変更することで、視差を違和感なく変更することができる。同様に、前記連続的に視差が変更される複数の画像からなる前記別の画像のうち、前記視差が変更される部分は、前記立体視用画像データに基づく画像の主要被写体の画面上の位置及び視差量のうち、少なくとも一方に依存するようにしても良い。
前記連続的に視差が変更される複数の画像からなる前記別の画像は、前記調整前の画像の視差から前記調整後の画像の視差へと連続的に視差が変更されるように選択しても良い。これにより、視差をスムーズに変更することができる。
前記別の画像を表示する時間は0.3秒以上であることを特徴とする。前記別の画像を表示する時間は、前記切り替え前の表示画面と前記切り替え後の表示画面の、それぞれの主要被写体画面上の位置及び視差量のうち、少なくとも一方に依存して変化することを特徴とする。0.3秒以上にすることで、映像酔いを防ぐことができる。
前記切り替え前の表示画面から前記別の画像への転換時、及び前記別の画像から前記切り替え後の画像への転換時の表示画面のうち、少なくともいずれか一方にクロスフェード処理を施すようにしても良い。これにより、映像の刺激を弱め、疲労を軽減することができる。
前記切り替え前の表示画面から前記別の画像への転換時、及び前記別の画像から前記切り替え後の画像への転換時の表示画面のうち、少なくともいずれか一方にワイプ処理を施しても良い。これにより、映像の刺激を弱め、疲労を軽減することができる。
また、本発明は、右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像生成装置であって、右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力部と、前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替部と、を備え、前記立体視用画像データ出力部が、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替部が、前記第1の立体視用画像データに基づく切り替え前の表示画面と前記第2の立体視用画像データに基づく切り替え後の表示画面との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像生成装置である。
本発明の他の観点によれば、右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体画像生成装置における立体視画像調整方法であって、右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力ステップと、前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替ステップと、を含み、前記立体視用画像データ出力ステップにおいて、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替ステップにおいて、前記第1の立体視用画像データに基づく切り替え前の表示画面と前記第2の立体視用画像データに基づく切り替え後の表示画面との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像調整方法が提供される。前記別の画像として、前記立体視用画像データに基づく画像の一部を覆い隠す画像を表示させることが好ましい。
本発明は、上記の立体視用画像表示方法をコンピュータに実行させるプログラムであっても良く、また、当該プログラムを記録するコンピュータ読み取り可能な記録媒体であっても良い。
本明細書は本願の優先権の基礎である日本国特許出願2010-253162号の明細書および/または図面に記載される内容を包含する。
本発明によれば、立体画像を切り替えて表示することに伴う観察者の不快感や3D酔いを避け、快適な立体視を実現することができる。
<第1の実施形態>
以下に、本発明の第1の実施形態による立体画像表示装置について、図面を参照して説明する。図1は、本実施形態による立体画像表示装置の構成例を示すブロック図である。図1が示すように、本実施形態による立体画像表示装置Aは、画像データの入力を受け付ける入力部10と、入力された画像データを処理し、立体表示が可能な表示データ(以下、「立体視用画像データ」と称する。)を生成するための画像処理を行う立体画像処理部100と、画像の転換を行う画像転換部101と、画像を表示部に合わせ表示制御を行う表示制御部102と、画像を表示する表示部103と、システム全体を制御するシステム制御部104と、ユーザが入力を行うユーザ入力部105と、シャッタメガネの同期を行うメガネ同期部106と、ユーザが装着するシャッタメガネ107から構成される。
以下に、本発明の第1の実施形態による立体画像表示装置について、図面を参照して説明する。図1は、本実施形態による立体画像表示装置の構成例を示すブロック図である。図1が示すように、本実施形態による立体画像表示装置Aは、画像データの入力を受け付ける入力部10と、入力された画像データを処理し、立体表示が可能な表示データ(以下、「立体視用画像データ」と称する。)を生成するための画像処理を行う立体画像処理部100と、画像の転換を行う画像転換部101と、画像を表示部に合わせ表示制御を行う表示制御部102と、画像を表示する表示部103と、システム全体を制御するシステム制御部104と、ユーザが入力を行うユーザ入力部105と、シャッタメガネの同期を行うメガネ同期部106と、ユーザが装着するシャッタメガネ107から構成される。
図2は画像転換部101の構成例を示す図である。画像転換部101は、立体視用画像データと、立体画像データとは別の画像とを切り替える切替部を構成する。図2に示すように、画像転換部101は、画像転換処理部1013及び1014、転換画像記録部1015、通信・制御部1016から構成される。
次に、各構成部の動作について説明する。立体画像表示装置Aにおいて、入力部10を経由して入力された画像データは、立体画像処理部100にて入力形式に合わせて左目用画像データと右目用画像データに展開されるとともに、入力された画像データに付加情報がある場合は付加情報を抽出し、システム制御部104に伝送する。ここで、入力される画像データは、記録メディアから電子的に読みだされたもの、ネットワークから伝送されたもの、放送波によるものなど、どのようなものでも良い。すなわち、入力部10は、半導体メモリ読み出し装置であっても良いし、光ディスクや磁気ディスクの読み出し装置、電波の受信機や、ネットワークとの通信機能を持つものであっても良い。要するに、立体画像として解釈可能なデータを入力できるものであればよい。また、右目用画像データ、左目用画像データは、1枚の画像データから作成されたものでも良い。すなわち、画像データと奥行きデータから合成された複数視点画像、2次元画像から奥行き情報を推定して作成された複数視点画像であってもよい。
展開された左目用画像データと右目用画像データは、画像転換部101に送られ、画像転換処理をされる。画像転換部101の内部では、システム制御部104と通信する通信・制御部1016が各部を制御している。転換画像記録部1015は通信・制御部1016を経由してシステム制御部104からの指示を受け、転換画像となる別の画像を画像転換処理部1013及び1014に出力する。画像転換処理部1013及び1014は、システム制御部104の指示を、通信・制御部1016を経由して受け、入力された左右目用画像及び転換画像の間で画像を転換する処理を行う。
画像転換処理された左目用画像と右目用画像は表示制御部102に送られる。表示制御部102は、表示部103に合わせた表示制御をするとともに、メガネ同期部106に対し信号を送る。メガネ同期部106は、ユーザの装着するシャッタメガネに対し同期信号を送り、表示部103と同期処理が行われる。
より具体的には、例えば、表示部103に液晶表示パネルを用い、左目用画像と右目用画像を交互に表示し、観察者の装着したシャッタメガネ107と同期して立体視を行う方式の場合、表示制御部102は表示部103に対し、左目用画像と右目用画像を交互に出力する。出力の頻度は、例えば左目用画像と右目用画像をそれぞれ毎秒120枚とする。表示部103は表示制御部102から送られる画像を随時表示するが、表示部103に左目用画像が表示されているときはシャッタメガネ107の左目用シャッタを開、右目用シャッタを閉とすることにより左目用画像を左目に表示し、右目用画像が表示されているときには左目用シャッタを閉、右目用シャッタを開とすることにより右目用画像を右目に表示して、立体視を実現する。
観察者は、ユーザ入力部105を用いて、表示する立体画像を選択し、表示を実行する。ユーザ入力部105は、例えば筐体に備えた操作ボタンやリモコンなどで実現できるが、キーボードやマウス、タッチパネル、ダイヤルなど、いろいろな手段により実現することができ、その形式を問わず、ジェスチャ認識などであっても良い。入力された操作データは、システム制御部104を経由して立体画像処理部100及び画像転換部101に伝達される。立体画像処理部100では、選択された画像を展開し、システム制御部104の発する画像転換タイミングに合わせて出力する。画像転換部101では、画像転換タイミングに合わせて、立体画像処理部の展開した立体画像と転換画像、及び転換画像と立体画像の転換を行う。ユーザ入力部から入力中の表示部103における表示画面はユーザインタフェース画面であるとよい。この場合は、システム制御部から表示制御部102を利用してユーザインタフェース画面を実現するとよい。
次に、視差と奥行き表示との関係を図3に示す。図3は観察者とディスプレイを上から見た図である。図3(a)は、通常の2次元表示状態であり、立体画像表示時には、右目用画像と左目用画像の対応点がディスプレイ(表示面)上で同じ位置P1にある状態である。この場合、この対応点P1はディスプレイ上にあるように知覚される。図3(b)は、ディスプレイ上で、右目用画像と左目用画像との対応点P2、P3が、右目用画像は右に、左目用画像は左にずれた状態である。この状態では、観察者にはこの点はディスプレイ面よりも奥に知覚される(P4)。
図3(c)は、ディスプレイ上で、右目用画像と左目用画像の対応点P5、P6が、右目用画像は左に、左目用画像は右にずれた状態である。この状態では、観察者にはこの点はディスプレイ面よりも手前に知覚される(P7)。
図3(d)は、これらをまとめた図である。前述したとおり、右目用画像と左目用画像の対応点が、右目用画像が右、左目用画像が左にずれて表示され、かつ対応点間の距離が両眼距離に等しい場合、この点は無限遠に知覚されるが、対応点間の距離が両眼距離を超えた場合、視線は開散方向にはならず、融合できなくなる。同様に、ディスプレイ上で、右目用画像と左目用画像の対応点が、右目用画像は左に、左目用画像は右に大きくずれた状態では(P8、P9)、視線は極端な寄り目状態となり、融合できなくなる。従って、快適に立体視できる奥行きの範囲、すなわち、図3(d)に示した快適融合範囲は、これらの融合範囲よりもディスプレイ面に対し内側となる。
これらの原理を応用し、左右目用画像を相対的に左右にずらすことによって、立体画像の奥行き感を全体的に奥や手前に移動することができる。
ここで、観察者の実際の操作例を示す。観察者は、ユーザ入力部105を操作して、表示する画像を選択する。図4は、立体画像表示装置Aにおける表示部103の表示例を示す図である。図4に示す状態では、表示部103には複数の画像103xと、複数の画像103xをスライドして表示領域を操作するスライドバーSと、操作ボタンOBとが表示されており、操作ボタンOBの「開始」ボタンに操作用のカーソルが当たっている状態である。この状態でユーザはユーザ入力部105を操作してカーソルを移動させ、画像や操作ボタンOBなどを選択してスライドショー表示する画像を選択したり、スライドショーを開始したりする。画像の選択の仕方は、画像を個別に指定する方法でもよいし、まとめて選択しても良い。画像をリスト化しておいて、リスト単位で表示するようにしても良い。また、画像選択中は表示部103を用いて画像を選択するとよいが、それ以外に画像選択手段を設けても良い。選択中の画面は二次元表示でも立体表示でも良い。画像を選択すると、表示を開始する操作を行う。
観察者による上記の操作により画像表示が開始されると、システム制御部104は画像転換部101に対して現在の表示を転換画像に転換するよう指示するとともに、立体画像処理部100に対して表示すべき画像を指示する。画像転換部101は、システム制御部104からの指示を受けると、表示中のユーザインタフェース画面を転換画像に転換する処理を行う。立体画像処理部100は、指示に合わせて入力部10からデータを読み出し、立体画像を展開する。展開された立体画像は、システム制御部104からのタイミングに合わせて画像転換部101に出力される。画像転換部101では、同様にシステム制御部104からのタイミングに合わせて、立体画像処理部100から送られた立体画像と画像転換部101内の転換画像記録部1015から読み出された立体画像を転換する処理を行う。このとき、画像転換処理部1013及び1014が転換画像記録部1015から読み出した立体画像を選択しているタイミングで立体画像処理部100は立体画像の展開・切り替えを行なうことにより、立体画像処理部100の立体画像切り替えの瞬間は立体画像処理部100の出力は表示部103では表示されていない状態とすることができる。このことにより、立体画像処理部100は画像切り替えの様子が観察者に表示されず、素早い画像切り替えをする必要がないので、ハードウェアの構成を簡略化することができる。
画像転換部101では、画像転換の指示を受けると、以下の3ステップに従って画像転換を行う。
図5は、本実施の形態による画像転換処理に流れを示すフローチャート図である。図6は、処理の流れに沿った表示例を示す図である。
処理を開始し(Start:ステップS1)、第1ステップとして、左目用及び右目用の画像転換処理部1013及び1014において、図4に示す現在の画像表示を、クロスフェード、すなわち、徐々に薄くしていき(図5のステップS2、図6の(a)から(b))、最終的には、転換画像記録部1015に記録された「別の画像」とする処理を行う(図5のステップS3、図6の(c))。この処理はディゾルブ等と称されることもある。ここで、「別の画像」は光刺激の少ないものが好ましく、一例として黒画面でもよい。図6(c)では、黒画像を表示させている。なお、一般的に画像を徐々に暗くしていき、最終的に黒画面とする処理をフェード処理あるいはフェードアウトと称するが、ここではこれらの処理も黒画面への転換処理とみなし、クロスフェードの一種として扱うこととする。
また、「別の画像」によって、意図的に目の光軸のなす角度である輻輳と目のピントを表す調節の状態を意図した状態に設定し直すことも可能であり、それに合わせた画像を用意しておくとよい。
例えば、奥行きを持つ立体画像を観察している時、観察者は画面上のどの位置を見ているかによって輻輳と調節の関係が異なり、より具体的には、調節は画面との距離に対応している状態で、輻輳は観察している物体の視差に合わせ、奥行きを知覚している状態にある。この状態で画面が転換されると、画面上の見ていた位置の視差は急激に転換されることになる。この現象を避けるために、例えば模様のない一様な背景画面の小領域に意図した視差の画像を表示すると、視線は表示した視差画像に誘導され、画像に合わせた輻輳に設定される。この状態で次の画面に転換すれば、画面の転換前後の視差変化を意図した状態を経由して行うことができ、例えば転換後の画像のうち、融像しやすい視差のない領域に視線を誘導することにより立体視を容易にすることができる。画像としては認識しやすいものが好ましいが、例えば文字などでもよい。
次に、第2ステップとして、画像転換部101は、別の画像の表示を0.3秒以上保持する処理を行う(図5のステップS4、図6の(c)-(d))。
人間は、光の明滅など、強い光刺激を受けると光感受性発作(PSS)を起こすことがある。光感受性発作を避ける目的で、強い光刺激となりうる1秒間に3回以上の明滅を避けるよう勧告されている。また、一般的に人間が物体に対しピントを調節するのにおよそ0.2秒かかると言われている。従って、立体視により輻輳とピント位置の調節が不一致の状態から、輻輳と調節が一致した状態に一旦戻すのにも同程度かかると推測される。これらのことから、第2ステップの継続時間は0.3秒以上とするのが望ましい。
第3ステップとして、画像転換部101は、左目用及び右目用の画像転換処理部1013及び1014において、表示を転換画像記録部1015に記録された「別の画像」から画像転換後の画像へクロスフェードさせる処理を行う(図5のステップS5、図6の(d)-(e))。次いで、画像転換後の画像を表示させる(図5のステップS6、図6の(f)。これにより、画像転換処理を終了する(図5のステップS7)。
図5、図6に示す処理を行うことにより、画像転換部101は、観察者の輻輳と調節の状態を一旦意図した状態に設定し直し、更に画像転換を行った画面を観察者に呈示する。また、図6では別の画像として一様な黒画像を用いている。一様な黒画面は左右の目に入力される対応点を持たないため、輻輳は自然な状態に戻るものと考えられる。
これらのステップを踏むことにより、画像転換部は、観察者の輻輳と調節の状態を一旦意図した状態に設定し直し、更に次の立体画像を観察者に呈示する。それにより観察者が、急激に視差が変更される違和感や、徐々に視差が変更されることに伴う移動の感覚を感じることなく、画像転換を行うことができる。上記の理由で、別の画像は一様な視差を持つ画像であるとよりよく、さらに調整前と調整後の画像の、例えば主要被写体などの持つ視差の中間の視差を持つとなお良い。
なお、第1のステップと第3のステップでは、それぞれの画像をクロスフェード処理で転換しているが、これは画像の移動を抑え、かつ光刺激を低減させるための処理である。従って、この処理はクロスフェード処理に限定されるものではなく、例えばワイプ処理などでも目的を果たすことができる。
また、立体画像として右目用画像と左目用画像の2つを挙げたが、画像は2つに限定されるものではなく、多視点画像用の画像データであっても良い。
また、立体視可能な表示システムとしてシャッタメガネを用いた時分割方式の立体表示手段を示したが、立体表示システムは時分割方式に限定するものではなく、パララクスバリアによるもの、レンチキュラレンズを用いるもの、プロジェクタによるものなど、立体視が可能な表示システムなら形式を問わない。前述のとおり、多視点画像を対象としたディスプレイであっても良い。
さらに、転換画像となる別の画像を挿入する処理ブロックを画像転換部101の中に画像転換処理部1013及び1014として構成したが、転換画像挿入処理は画像転換部と表示部の間で行われればどこで実行されても良い。そのほか、ハードウェア構成はあくまでも一例であり、構成の仕方はどのようなものでもよく、要するに前述の一連の処理が実現できればよい。
<第2の実施形態>マスクパターン
以下に、本発明の第2の実施形態による立体画像表示装置について説明する。第2の実施形態においては、第1の実施形態の中の画像転換のステップの内容のみが第1の実施形態の内容と異なる。それ以外のハードウェア構成やユーザインタフェースの実現の仕方は第1の実施形態において説明したもので実現可能であり、その詳細な説明を省略する。
以下に、本発明の第2の実施形態による立体画像表示装置について説明する。第2の実施形態においては、第1の実施形態の中の画像転換のステップの内容のみが第1の実施形態の内容と異なる。それ以外のハードウェア構成やユーザインタフェースの実現の仕方は第1の実施形態において説明したもので実現可能であり、その詳細な説明を省略する。
本実施の形態においては、図1の画像転換部101は、表示開始の指示を受けると、以下の3ステップに従って画像転換を行う。図7は、本実施の形態における処理の流れを示すフローチャート図である。
処理を開始すると、(Start:ステップS11)、第1のステップとして、画像転換部101は、現在の表示に予め用意したマスクパターンを重畳して表示する(図7:ステップS12、図8:(a)-(b))。ここで、マスクパターンとは、画像の一部領域を遮蔽する画像であり、本実施形態では画像の一部の領域のみ透過する、窓のようなパターンWPを用いている。なお、本マスクパターンは半透明であっても良いが、模様があり、パターン自体に視線を誘導できるものの方が望ましい。パターン自体に視線を誘導することにより、パターンの持つ視差に合わせて観察者の輻輳を変化させることができる。マスクパターンの表示は、マスクパターン自体を動かさず、かつクロスフェード等により徐々に遮蔽するような処理を行った方が好ましい。
第2のステップとして、画像転換部101は、マスクパターンを0.3秒以上表示する処理を行う(図7のステップS13、図8の(c)-(d))。この間に画像転換部101は、入力された転換前の立体画像を段階的に転換後の立体画像に切り替える(図7のステップS14、図8の(c)-(d))。すなわち、マスクパターンの透過領域から、入力された立体画像が徐々に転換していくさまが観察されるような形とする。入力された立体画像同士の転換はクロスフェードやワイプ処理で行うのが良いが、光刺激をやわらげるような処理とするのがよい。
第3のステップとして、画像転換部101は、マスクパターンを取り除く表示処理を行う(図7のステップS15、図8の(e)-(f))。マスクパターン自体を動かさず、かつ徐々にクロスフェードで取り除くような処理を行った方が好ましい。
尚、図8に示す透過領域(窓のようなパターン)WPは、画像の背景部分などではなく、主要被写体が入っているような画像の特徴部分を選択することが好ましい。透過領域WP、すなわち表示画像の転換に伴い視差が変更される部分の画面上の位置及び視差量は、立体視用画像データに基づく画像の主要被写体の画面上の位置及び視差量のうち、少なくとも一方に依存する。すなわち、図8に示すように、画像中の中心に配置される家の屋根の部分が主要被写体である家を含んでおり、画像の転換に伴ってこの部分の視差を変更する。
画像の転換前後の視差の差が大きい場合、主要被写体の部分を窓とすると、その主要被写体部分の転換前後の視差の差が大きくても、表示されている部分の持つ視差範囲は限定され、輻輳を変更しやすくなるうえ、主要被写体の視差に予め目を慣らすことができるので、画像の転換前後の視差変化の影響を緩和できる。また、画像転換を行う画像のうち観察できる領域は画像の一部であることから、観察者は自分が移動しているのではなく、窓から変化する物体を観察する感覚を得る。それにより観察者が、奥行きのある画像が入れ替わる違和感や、移動の感覚を感じることなく、画像転換を行うことができる。また、主要被写体の転換前後の視差の差が小さい場合でも、その部分を窓とすると、画像の転換中は窓から見える画像の視差の変化は小さく、転換後にクロスフェードやワイプ処理で画像のその他の部分が徐々に見えてくることから、やはり観察者にとって違和感が少なくなる。要するに、画像の転換前後の視差の変化が、観察者にとって違和感の少なくなるように、主要被写体の画面上の位置及び視差量の少なくとも一方を手掛かりに窓の位置を選択し、画像転換を行うようにするとよい。
なお、マスクパターンの透過領域は画像の一部としたが、透過領域の大きさは、観察者が移動感覚を感じない程度の大きさであればよい。
<第3の実施形態>主要被写体位置を検出し、視差を連続的に変化
以下に、本発明の第3の実施形態による立体画像表示装置について説明する。第3の実施形態においては、第1の実施形態の中の画像転換部101の構成及び画像転換の内容が第1の実施形態の内容と異なる。それ以外のハードウェア構成やユーザインタフェースの実現の仕方は第1の実施形態に準ずる。すなわち、第1の実施形態と同様に図1が全体の構成を表す。
以下に、本発明の第3の実施形態による立体画像表示装置について説明する。第3の実施形態においては、第1の実施形態の中の画像転換部101の構成及び画像転換の内容が第1の実施形態の内容と異なる。それ以外のハードウェア構成やユーザインタフェースの実現の仕方は第1の実施形態に準ずる。すなわち、第1の実施形態と同様に図1が全体の構成を表す。
図9に画像転換部101の構成を示す。画像転換部101は、画像バッファ部1011及び1012、画像転換処理部1013及び1014、転換画像記録部1015、通信・制御部1016、視差取得部1017から構成される。
次に、各構成部の動作を説明する。
立体画像表示装置Aに入力部10を経由して入力された画像データは、立体画像処理部100にて入力形式に合わせて左目用画像データと右目用画像データに展開される。同時に、入力された画像データに付加情報がある場合は付加情報を抽出し、システム制御部に伝送する。ここで、入力される画像データは、記録メディアから電子的に読みだされたもの、ネットワークから伝送されたもの、放送波によるものなど、どのようなものでも良い。すなわち、入力部10は、半導体メモリ読み出し装置であっても良いし、光ディスクや磁気ディスクの読み出し装置、電波の受信機や、ネットワークとの通信機能を持つものであっても良い。要するに、立体画像として解釈可能なデータを入力できるものであればよい。また、右目用画像データ、左目用画像データは、1枚の画像データから作成されたものでも構わない。すなわち、画像データと奥行きデータから合成された複数視点画像、奥行き情報を推定して作成された複数視点画像であってもよい。
展開された左目用画像データと右目用画像データは画像転換部101に送られる。画像転換部101内部では、システム制御部104と通信する通信・制御部1016が各部を制御している。画像バッファ部1011及び1012は、通信・制御部1016を経由してシステム制御部104からの指示を受け、画像転換部101に対して入力された左目用画像データ及び右目用画像データをそれぞれ一時的に保持し、システム制御部104からの指示を受けて画像転換処理部1013及び1014に出力するとともに、システム制御部104からの指示を受けて視差取得部1017に対して出力する。視差取得部1017では、画像バッファ部1011及び1012からデータを読み込み、左右画像の視差を計算する。
具体的には、ブロックマッチング等の手法により左右画像の対応点同士のずれ量を求めて視差を求め、画像上の画素と対応付けて視差量を表した視差マップの形で通信・制御部1016を経由してシステム制御部104に出力する。システム制御部104では、取得された視差マップを分析処理し、観察者が注視すると予測される主要被写体の位置と視差を取得する。より具体的には、視差マップから得られる視差値をヒストグラム処理し、出現頻度の高い視差値のうち一番遠いものを背景画像、近いものを主要被写体とみなし、対応する主要被写体の画面上の位置と視差を取得する。取得された主要被写体の位置と視差はシステム制御部104で管理され、画像転換の前と後の主要被写体の位置と視差が通信・制御部1016を経由して転換画像記録部1015に伝送される。
転換画像記録部1015は、入力された立体画像と転換画像を転換しつつ、伝送された主要被写体の位置と視差に基づき、転換前の主要被写体の画面上の位置に、主要被写体と同じ視差を持つ別の物体を表示する。表示する別の物体や背景画像は転換画像記録部1015に記録されているものでよい。別の物体は認識しやすく、大きさはあまり大きくない方が良い。例えば、画面の面積の1/100程度のものである。その後、転換画像記録部は、転換後の主要被写体の位置及び視差に向かって別の物体を移動させる。移動の仕方は直線的でも曲線的でも良いが、連続的で激しい動きを伴わないのが好ましい。この移動時に、別の物体の大きさが大きすぎると、観察者に移動感を感じさせるため、映像酔いの原因となり得る。
画像転換処理された左目用画像と右目用画像は表示制御部102に送られる。表示制御部102は、表示部103に合わせた表示制御をすると同時に、メガネ同期部106に対し信号を送る。メガネ同期部106はユーザの装着するシャッタメガネに対し同期信号を送り、表示部と同期処理が行われる。具体的には、例えば、表示部103に液晶表示パネルを用い、左目用画像と右目用画像を交互に表示し、観察者の装着したシャッタメガネ107と同期して立体視を行う方式の場合、表示制御部102は表示部103に対し、左目用画像と右目用画像を交互に出力する。出力の頻度は、例えば左目用画像と右目用画像をそれぞれ毎秒120枚とする。表示部103は表示制御部102から送られる画像を随時表示するが、表示部103に左目用画像が表示されているときはシャッタメガネ107の左目用シャッタを開、右目用シャッタを閉とすることにより左目用画像を左目に表示し、右目用画像が表示されているときには左目用シャッタを閉、右目用シャッタを開とすることにより右目用画像を右目に表示して、立体視を実現する。
観察者は、ユーザ入力部105を用いて、表示する立体画像を選択し、表示を実行する。ユーザ入力部105は、例えば筐体に備えた操作ボタンやリモコンなどで実現できるが、キーボードやマウス、タッチパネル、ダイヤルなど、いろいろな手段により実現でき、その形式を問わず、ジェスチャ認識などであっても良い。入力された操作データは、システム制御部104を経由して立体画像処理部100及び画像転換部101に伝達される。立体画像処理部では、選択された画像を展開し、システム制御部104の発する画像転換タイミングに合わせて出力する。画像転換部101では、画像転換タイミングに合わせて、立体画像処理部の展開した立体画像と転換画像、及び転換画像と立体画像の転換を行う。ユーザ入力部から入力中の画面はユーザインタフェース画面であるとよい。この場合は、システム制御部から表示制御部102を利用してユーザインタフェース画面を実現するとよい。
画像転換部101では、画像転換の指示を受けると、以下の3ステップに従って画像転換を行う。図10は、本実施の形態における処理の流れを示すフローチャート図である。
処理を開始すると、(Start:ステップS21)、第1ステップとして、画像転換処理部1013及び1014において現在の表示をクロスフェード、すなわち、徐々に暗くしていき、最終的には転換画像記録部1015の生成する別の画像とする処理を行う(ステップS22)。この処理はディゾルブ等と称されることもある。別の画像は光刺激の少ないものが好ましい。更に別の画像上に別の物体を重畳して表示する(ステップS23)。別の物体は前述の通りの方法で取得した、画像転換前の主要被写体の画面上の位置と視差を持つものとする。別の物体の大きさは、画面の一部、例えば面積にして1%以下とする。図11では別の物体として十字パターンを表示している。別の画像は視差を持ち、画像転換前及び画像転換後の背景画像の視差の間の視差量としてもよい。
第2ステップとして、画像転換部101は、別の画像の表示を0.3秒以上行う。人間は、光の明滅など、強い光刺激を受けると光感受性発作(PSS)を起こすことがある。光感受性発作を避ける目的で、強い光刺激となりうる1秒間に3回以上の明滅を避けるよう勧告されている。また、一般的に人間が物体に対しピントを調節するのにおよそ0.2秒かかると言われている。従って、立体視により輻輳とピント位置の調節が不一致の状態から、輻輳と調節が一致した状態に一旦戻すのにも同程度かかると推測される。これらのことから、第2ステップの継続時間は0.3秒以上とするのが望ましい。この継続時間の間に、画像転換部101は、前述の通り別の物体(十字パターン)を転換前の主要被写体の位置(家の位置)及び視差から転換後の主要被写体の位置(猫の位置)及び視差まで連続的に移動させる表示処理を行う(ステップS23~ステップS24)。この移動距離に従って、第2ステップの継続時間を延長しても良い。この場合、画像転換に伴う主要被写体の画面上の表示位置や奥行きの変化による別の物体の移動速度を一定以下に保つことができ、観察者に対する刺激を軽減することができる。
第3ステップとして、画像転換部101は、画像転換処理部1013及び1014にて、表示を転換画像記録部1015の生成した別の画像から立体画像処理部100の展開した次の立体画像へクロスフェードさせる処理を行う(ステップS25)。これにより処理が終了する(ステップS26:end)。
図11は、一連の流れを示す図である。図11では、別の画像を構成する別の物体として十字パターン(画面において白抜きで示されている)を、背景画像として一様な黒画像を、用いている。一連の流れにおいて、主要被写体(特徴部分:家)は別の物体(十字パターン)に置き換えられ(b)、十字パターンが徐々に移動され、転換後の画像の主要被写体(猫)に置き換えられる(e)。
尚、図11に示す別の物体(十字パターン)は、画像の背景部分などではなく、主要被写体の位置に対応する画像の特徴部分の位置を選択することが好ましい。この視差が変更される部分は、立体視用画像データに基づく画像の主要被写体の特徴部分の画面上の位置及び視差量のうち、少なくとも一方に依存する。すなわち、図11(b)に示すように、画像中の中心付近に配置される家の屋根の部分に対応する十字パターンが主要被写体である家の位置と対応している。別の画像への切換に伴う十字パターンの猫の位置への移動に伴い、十字パターンの視差も変更される。また、別の画像を表示する時間は、切り替え前の表示画面(図11(a))と切り替え後の表示画面(図11(f))の、それぞれの主要被写体画面上の位置及び視差量のうち、少なくとも一方に依存して変化するようにするとよい。すなわち、十字パターンの移動速度が一定以上、例えば表示画面上で秒速20cmを超えないよう、十字パターンの移動距離が長い場合は別の画像を表示する時間を長くとる。なお、十字パターンの移動距離には、表示画面上の平面位置のほか、奥行き方向つまり視差の変化も含まれる。すなわち、両目で十字パターンを観察した時の知覚位置が平面上で同じであったとしても、奥行きの変化を伴う場合はその視差変化量を考慮して別の画像を表示する時間を長くとる。立体画像の奥行き距離を定義するのは困難であるので、標準視距離(例えば画面高の3倍の距離)から観察した時の観察者の目の輻輳角の変化を奥行き方向の移動速度として奥行き方向の制限を設けるなどの方法を取っても良い。
これらのステップを踏むことにより、画像転換部101は、観察者の輻輳と調節の状態を無理なく連続的に設定し、更に次の立体画像を観察者に呈示することができる。それにより観察者は、急激に視差が変更される違和感や、徐々に視野のうち広い範囲の視差が変更されることに伴う移動の感覚を感じることなく、画像転換を行うことができる。この場合、立体画像の視差は左右画像から得られ、視差を得る方法はブロックマッチングなど、いくつかの公知の方法がある。
<第4の実施形態>パーソナルコンピュータ(PC)を用いた形態
本発明の第4の実施形態においては、パーソナルコンピュータ(PC)を用いて立体画像処理を行い、立体表示可能な表示デバイスを用いて立体表示する。PC上では、ユーザがPCの操作デバイス、例えばマウスやキーボード、タッチパネル等を用いて、GUIアプリケーションを操作して立体画像処理を行う。すなわち、PCに供えられたCPUが記憶装置、例えばハードディスクやCD-ROMに記録されている立体表示アプリケーションソフトに従って、動画や静止画に対し処理を行い、立体表示デバイスに立体表示をする。
本発明の第4の実施形態においては、パーソナルコンピュータ(PC)を用いて立体画像処理を行い、立体表示可能な表示デバイスを用いて立体表示する。PC上では、ユーザがPCの操作デバイス、例えばマウスやキーボード、タッチパネル等を用いて、GUIアプリケーションを操作して立体画像処理を行う。すなわち、PCに供えられたCPUが記憶装置、例えばハードディスクやCD-ROMに記録されている立体表示アプリケーションソフトに従って、動画や静止画に対し処理を行い、立体表示デバイスに立体表示をする。
図12は、本発明の第4の実施形態による立体表示デバイスの表示画面を説明する図であり、立体表示デバイス上に立体画像表示アプリケーションによる画面103が表示されている。ユーザは図示しないマウスやキーボード等の操作デバイスを用いて、GUI上のファイル選択画面201や設定ボタン203等を操作することにより、立体画像によるスライドショーを実施することができる。ここでは、調整タブに、画面選択ボタン、表示時間ボタン、転換時間、ループ再生ボタンなどが設けられており、また、開始ボタン205を押すことで、スライドショーを表示させることができる。また、本発明は、携帯電話などの情報端末に応用することも可能である。
尚、上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
本発明は、立体画像表示装置、例えば3Dテレビジョンや3Dデジタルフォトフレーム等に利用可能である。
10 入力部
100 立体画像処理部
101 画像転換部
102 表示制御部
103 表示部
104 システム制御部
105 ユーザ入力部
106 メガネ同期部
107 シャッタメガネ
1011 画像バッファ部
1012 画像バッファ部
1013 画像転換処理部
1014 画像転換処理部
1015 転換画像記録部
1016 通信・制御部
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
100 立体画像処理部
101 画像転換部
102 表示制御部
103 表示部
104 システム制御部
105 ユーザ入力部
106 メガネ同期部
107 シャッタメガネ
1011 画像バッファ部
1012 画像バッファ部
1013 画像転換処理部
1014 画像転換処理部
1015 転換画像記録部
1016 通信・制御部
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
Claims (18)
- 右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像表示装置であって、
右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力部と、
前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替部と、
前記立体視用画像データの前記右目用画像及び前記左目用画像をそれぞれ右目及び左目に呈示し、立体画像を表示する表示部と、
を備え、
前記立体視用画像データ出力部が、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替部が、前記第1の立体視用画像データに基づく切り替え前の表示画像と前記第2の立体視用画像データに基づく切り替え後の表示画像との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像表示装置。 - 前記別の画像は、前記立体視用画像データに基づく画像の一部を覆い隠す画像であることを特徴とする請求項1に記載の立体画像表示装置。
- 前記別の画像は、一様な視差を持つ画像で構成されていることを特徴とする、請求項1又は2に記載の立体画像表示装置。
- 前記別の画像の視差は、前記第1の立体視用画像データに基づく切り替え前の画像の視差と前記第2の立体視用画像データに基づく切り替え後の画像の視差の間の値であることを特徴とする、請求項3に記載の立体画像表示装置。
- 前記別の画像は、連続的に視差が変更される複数の画像であることを特徴とする、請求項1又は2に記載の立体画像表示装置。
- 前記連続的に視差が変更される複数の画像からなる前記別の画像において、視差が変更される部分が画面の一部であることを特徴とする、請求項5に記載の立体画像表示装置。
- 前記連続的に視差が変更される複数の画像からなる前記別の画像のうち、前記視差が変更される部分は、前記立体視用画像データに基づく画像の特徴部分を含むことを特徴とする、請求項6に記載の立体画像表示装置。
- 前記連続的に視差が変更される複数の画像からなる前記別の画像のうち、前記視差が変更される部分は、前記立体視用画像データに基づく画像の主要被写体の画面上の位置及び視差量のうち、少なくとも一方に依存することを特徴とする、請求項6に記載の立体画像表示装置。
- 前記連続的に視差が変更される複数の画像からなる前記別の画像は、前記切り替え前の画像の視差から前記切り替え後の画像の視差へと連続的に視差が変更されるように選択されることを特徴とする、請求項5から7までのいずれか1項に記載の立体画像表示装置。
- 前記別の画像を表示する時間は生体への影響度に基づいた時間であることを特徴とする、請求項1から9までのいずれか1項に記載の立体画像表示装置。
- 前記別の画像を表示する時間は、前記切り替え前の表示画面と前記切り替え後の表示画面の、それぞれの主要被写体画面上の位置及び視差量のうち、少なくとも一方に依存して変化することを特徴とする、請求項1から9までのいずれかに記載の立体画像表示装置。
- 前記切り替え前の表示画面から前記別の画像への転換時、及び前記別の画像から前記切り替え後の画像への転換時の表示画面のうち、少なくともいずれか一方にクロスフェード処理を施すことを特徴とする、請求項1から11までのいずれか1項に記載の立体画像表示装置。
- 前記切り替え前の表示画面から前記別の画像への転換時、及び前記別の画像から前記切り替え後の画像への転換時の表示画面のうち、少なくともいずれか一方にワイプ処理を施すことを特徴とする、請求項1から11までのいずれか1項に記載の立体画像表示装置。
- 右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体視画像生成装置であって、
右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力部と、
前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替部と、を備え、
前記立体視用画像データ出力部が、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替部が、前記第1の立体視用画像データに基づく切り替え前の表示画面と前記第2の立体視用画像データに基づく切り替え後の表示画面との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像生成装置。 - 右目用画像と左目用画像からなる立体視用画像を表示し、前記右目用画像を右目に、前記左目用画像を左目に呈示することにより立体視を可能とする立体画像生成装置における立体視画像調整方法であって、
右目用画像と左目用画像からなる立体視用画像データを出力する立体視用画像データ出力ステップと、
前記立体視用画像データと、前記立体画像データとは別の画像とを切り替える切替ステップと、
を含み、
前記立体視用画像データ出力ステップにおいて、前記立体視用画像データとして、第1の立体視用画像データを、前記第1の立体視用画像データとは異なる第2の立体視用画像データに切り替えて出力する際に、前記切替ステップにおいて、前記第1の立体視用画像データに基づく切り替え前の表示画像と前記第2の立体視用画像データに基づく切り替え後の表示画像との間に、知覚できる長さの前記別の画像を表示させるように切り替えることを特徴とする立体画像調整方法。 - 前記別の画像として、前記立体視用画像データに基づく画像の一部を覆い隠す画像を表示させることを特徴とする請求項15に記載の立体画像調整方法。
- 請求項15又は16に記載の立体画像調整方法をコンピュータに実行させるためのプログラム。
- 請求項17に記載のプログラムを格納するコンピュータ読み取り可能な記録媒体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010253162A JP2012105153A (ja) | 2010-11-11 | 2010-11-11 | 立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 |
JP2010-253162 | 2010-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012063595A1 true WO2012063595A1 (ja) | 2012-05-18 |
Family
ID=46050748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073554 WO2012063595A1 (ja) | 2010-11-11 | 2011-10-13 | 立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012105153A (ja) |
WO (1) | WO2012063595A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104270625A (zh) * | 2014-10-09 | 2015-01-07 | 成都斯斐德科技有限公司 | 一种减弱自由立体显示赝立体像的合成图生成方法 |
CN104811681A (zh) * | 2013-11-22 | 2015-07-29 | 三星显示有限公司 | 显示器和用于调节3d图像的方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210314557A1 (en) * | 2018-05-22 | 2021-10-07 | Sony Corporation | Information processing apparatus, information processing method, and program |
JP2023076458A (ja) * | 2022-04-05 | 2023-06-01 | 株式会社東芝 | 電子機器および表示方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209858A (ja) * | 2002-01-17 | 2003-07-25 | Canon Inc | 立体画像生成方法及び記録媒体 |
WO2007148434A1 (ja) * | 2006-06-22 | 2007-12-27 | Nikon Corporation | 画像再生装置 |
JP2009239388A (ja) * | 2008-03-26 | 2009-10-15 | Fujifilm Corp | 立体動画像処理装置および方法並びにプログラム |
JP2010199740A (ja) * | 2009-02-23 | 2010-09-09 | Fujifilm Corp | 立体画像表示装置及び立体画像表示方法 |
-
2010
- 2010-11-11 JP JP2010253162A patent/JP2012105153A/ja active Pending
-
2011
- 2011-10-13 WO PCT/JP2011/073554 patent/WO2012063595A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209858A (ja) * | 2002-01-17 | 2003-07-25 | Canon Inc | 立体画像生成方法及び記録媒体 |
WO2007148434A1 (ja) * | 2006-06-22 | 2007-12-27 | Nikon Corporation | 画像再生装置 |
JP2009239388A (ja) * | 2008-03-26 | 2009-10-15 | Fujifilm Corp | 立体動画像処理装置および方法並びにプログラム |
JP2010199740A (ja) * | 2009-02-23 | 2010-09-09 | Fujifilm Corp | 立体画像表示装置及び立体画像表示方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104811681A (zh) * | 2013-11-22 | 2015-07-29 | 三星显示有限公司 | 显示器和用于调节3d图像的方法 |
CN104811681B (zh) * | 2013-11-22 | 2019-04-02 | 三星显示有限公司 | 显示器和用于调节3d图像的方法 |
CN104270625A (zh) * | 2014-10-09 | 2015-01-07 | 成都斯斐德科技有限公司 | 一种减弱自由立体显示赝立体像的合成图生成方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2012105153A (ja) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5933916B2 (ja) | Gui提供方法及びこれを用いたディスプレイ装置と3d映像提供システム | |
JP5059922B2 (ja) | 立体画像生成装置、立体画像表示装置、立体画像調整方法、立体画像調整方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 | |
WO2010084724A1 (ja) | 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体 | |
WO2018055332A1 (en) | Compositing an image for display | |
JP5884073B2 (ja) | 没入位置情報生成方法 | |
WO2007117471A2 (en) | Vertical surround parallax correction | |
JPH11164328A (ja) | 立体映像表示装置 | |
WO2012063595A1 (ja) | 立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 | |
JP2018157331A (ja) | プログラム、記録媒体、画像生成装置、画像生成方法 | |
JP2010171628A (ja) | 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体 | |
JP2013128181A (ja) | 表示装置、表示方法および表示プログラム | |
JP2012257252A (ja) | 立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 | |
JP5562122B2 (ja) | 画像処理装置及びその制御方法 | |
CA2820322A1 (en) | Method and system for disparity adjustment during stereoscopic zoom | |
JP2013057697A (ja) | 立体映像表示装置 | |
JP5036088B2 (ja) | 立体画像処理装置、立体画像処理方法およびプログラム | |
WO2012036056A1 (ja) | 立体画像表示装置、立体画像表示方法、立体画像表示方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 | |
KR20110062983A (ko) | 3d 영상의 입체감 조절 요소를 설정하는 gui를 표시하는 디스플레이 장치 및 이에 적용되는 gui 제공 방법 | |
KR100662248B1 (ko) | 주시거리 조절기능을 가지는 입체영상 디스플레이 시스템 | |
JP2013150103A (ja) | 映像処理装置および映像処理方法 | |
JPH10172004A (ja) | 立体画像表示方法 | |
WO2014199127A1 (en) | Stereoscopic image generation with asymmetric level of sharpness | |
KR101182739B1 (ko) | 시력교정용 입체영상표시장치 및 시력교정용 입체영상표시 프로그램을 기록한 기록매체 | |
JP5501150B2 (ja) | 表示装置及びその制御方法 | |
KR20140124263A (ko) | 디스플레이장치 및 디스플레이장치의 3d 효과 설정 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11840643 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11840643 Country of ref document: EP Kind code of ref document: A1 |