WO2012062708A2 - Générateur de vapeur à combustibles fossiles - Google Patents

Générateur de vapeur à combustibles fossiles Download PDF

Info

Publication number
WO2012062708A2
WO2012062708A2 PCT/EP2011/069558 EP2011069558W WO2012062708A2 WO 2012062708 A2 WO2012062708 A2 WO 2012062708A2 EP 2011069558 W EP2011069558 W EP 2011069558W WO 2012062708 A2 WO2012062708 A2 WO 2012062708A2
Authority
WO
WIPO (PCT)
Prior art keywords
flow
steam generator
fossil
economizer
flow medium
Prior art date
Application number
PCT/EP2011/069558
Other languages
German (de)
English (en)
Other versions
WO2012062708A3 (fr
Inventor
Martin Effert
Frank Thomas
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012062708A2 publication Critical patent/WO2012062708A2/fr
Publication of WO2012062708A3 publication Critical patent/WO2012062708A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays

Definitions

  • the invention relates to a fossil-fueled steam generator for a steam power plant with a number of forming a flow, flowed through by a flow medium Ecom- mizer, evaporator and superheater heating, in which in a high-pressure stage, an overflow line is connected to the inlet side with the flow path and to a in the High-pressure stage flow medium side before a superheater heating in the flow path arranged injector leads. It also relates to a method for operating such a steam generator.
  • a fossil-fueled steam generator produces superheated steam using the heat generated by burning fossil fuels.
  • Fossil fueled steam generators are mostly used in steam power plants, which are mainly used for power generation.
  • the steam is supplied to a steam turbine ⁇ leads.
  • the fossil-fueled steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture.
  • the first (high) pressure level the flow medium passing through the flow path on its first economizer, use the residual heat to Vorierr ⁇ mung of the flow medium, and then various levels of dene ⁇ evaporator and superheater.
  • the evaporator the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater. Thereafter, the superheated steam in the high pressure part of the steam turbine flows, is there decompressed, and the following print ⁇ stage of the steam generator is supplied.
  • Such power changes of a power plant block in the se ⁇ customer area are possible only by a coordinated interaction of steam generator and steam turbine.
  • the contribution of fossil fuel-fired steam generator can do this is by using his memory, ie the steam but also the fuel storage, as well as rapid changes in the controlling variable ⁇ SEN feedwater, injection water, fuel and air.
  • the transfer ⁇ ström founded has two feed lines, wherein the first supply line branches off the flow medium side behind an economizer from ⁇ and the second supply line branches off the flow-medium side upstream of the economizer.
  • the invention is based on the consideration that injections of feedwater can make a further contribution to the rapid change in performance.
  • additional injections in the superheater namely the steam mass flow can be increased.
  • injections are triggered by reducing the temperature setpoint at the outlet of the respective pressure stage.
  • the higher the enthalpy level of the injection water the more injection mass flow is needed to meet the newly demanded to reach the temperature setpoint.
  • results from a higher Enthalpielic of the injection water a ver ⁇ tively larger amount of steam.
  • the injection water can be removed in front of the economizer during start-up and in circulation operation and switchover to the removal behind the economizer in load operation with frequency support.
  • the first supply line branches off on the flow medium side behind all economizer heating surfaces.
  • the second supply line branches off on the flow medium side from all economizer heating surfaces.
  • a check valve is arranged in the first supply line and arranged in the first and / or the second supply line, a flow control valve.
  • a flow measuring device is arranged in the first supply line and in the flow path on the flow medium side between the branch of the first and the second supply line.
  • a steam power plant comprises such a fossil-fired steam generator.
  • the object is achieved by depending on the operating condition of the steam generator flow medium with different enthalpy is removed.
  • ⁇ advantage adhesive enough is taken from the full load state flow medium with a higher enthalpy than in a partial load condition.
  • the advantages achieved by the invention are in particular that by the possibility of using injection water for high pressure superheating from supply lines before and after the economizer on the one hand always a sufficient supercooling of the injection water can be guaranteed even in low load operation, on the other hand with respect to Be ⁇ provision of immediate reserve With absolutely safe injection operation without vapor formation, a maximum of additional power release can be realized via a correspondingly increased injection quantity.
  • the load of all the affected components such as injection point, heating surfaces and turbine can be reduced at the same power release compared to previous concepts, since for the same power release a lesser drop in temperature of the steam is expected.
  • interconnection and the associated increase in the power deduction by using the injection system is independent of other measures, so that, for example, throttled turbine valves can be additionally opened to increase the power increase of the steam turbine yet.
  • the effectiveness of the procedure remains largely unaffected by these parallel measures.
  • FIG. 1 shows flow-medium side, schematic view of the high-pressure section of a fossil-fueled steam generator be optimized with Einspritzwasserzulei ⁇ processing.
  • the steam generator 1 also includes other, not shown, pressure levels.
  • the figure shows schematically a part of the flow path 4 of the flow medium M.
  • the medium flow ⁇ M is initially fed through a feed pump 6 into the high-pressure stage 2 ⁇ .
  • economizer 10 in which usually flue gas waste heat is used for further heating of the Strö ⁇ mung medium and evaporator heating surfaces 12, in which the flow medium M is evaporated using the heat produced from fossil fuel.
  • the spatial Anord ⁇ voltage of the individual heating surfaces 10, 12 in the hot gas channel is not shown and may vary.
  • the heating surfaces 10, 12 shown may each representative of a multi ⁇ number series-connected heating surfaces are provided, which are not shown differentiated on the basis of clarity.
  • the evaporator 12 After exiting the evaporator 12 is possibly existing residual moisture in a non-illustrated Water Separator (separator or drum) deposited and the remaining vapor of a first superheater 14, which are shown in the figure in the figure in the figure for simplicity with the evaporator heating surfaces 12 for simplicity. This is followed by further superheater heating surfaces 16, 18 and finally the overheated steam is expanded in the high-pressure section of a steam turbine. Subsequently, the Strö ⁇ mung medium M flows into the not shown medium-pressure part of the steam generator, where it heating surfaces in a number of reheater is superheated again and is then fed to the with ⁇ teldruckteil the steam turbine.
  • a non-illustrated Water Separator separatator or drum
  • an injection valve 20, 22 is arranged in each case on the flow medium side.
  • cooler and unevaporated flow medium M to be injected to control the outlet temperature at the outlet 24 of the high-pressure stage 2 of the fossil fuel-fired steam generator 1, a ⁇ .
  • the amount of flow medium M inserted ⁇ brought into the injection valves 20, 22 is controlled via a respective single injection control valve 26, 28th
  • the flow medium M is then fed through a previously branching in the flow path 4 About ⁇ strömtechnisch 30th
  • the injection system for a required, increasing the enthalpy of the water injection ⁇ is designed.
  • the overflow line has a first supply line 32, which branches off behind all economizer heating surfaces 10, so that here flow medium M with comparatively higher temperature is introduced into the overflow line 30. Thereby, a considerable amount of steam increase is achieved at a comparatively larger ⁇ A injection and the performance of the downstream steam turbine increases.
  • the flow of the first supply line 32 is controlled by a flow control valve 34.
  • the overflow line 30 has a second supply line 36 which branches off on the flow medium side between economizer heating surfaces 10 and high-pressure preheaters 8 and supplies flow medium M with a relatively low temperature to the overflow line 30.
  • the flow through the second supply line 36 is regulated by a flow control valve 38.
  • the first supply line 32 has a check valve 40, which reliably prevents a return flow of colder medium from the second supply line 36 into the region behind the economizer heating surfaces 10.
  • a first flow measuring device 42 is located directly in front of the economizer heating surfaces 10, d. H. arranged after the branch of the second supply line 36; a second flow measuring device 44 is arranged in the first supply line 32.
  • a equipped with such a fossil fuel-fired steam generator 1 steam power plant is able to provide a so ⁇ diate power delivery of the steam turbine fast an increase in power, which serves to support the composite frequency of the power system. Because it is power ⁇ reserve achieved by a double use of the injection valves in addition to the usual temperature control, a permanent throttling of the steam valves for providing ⁇ position a reserve can be reduced or eliminated, whereby a particularly high efficiency is achieved during normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

L'invention concerne un générateur de vapeur (1) à combustibles fossiles destiné à une centrale thermique à vapeur, ce générateur de vapeur (1) comprenant un certain nombre de surfaces chauffantes d'économiseur, d'évaporateur et de surchauffeur (10, 12, 14, 16, 18) qui forment un trajet d'écoulement (4) et sont parcourues par un fluide d'écoulement (M). Dans un étage haute pression (2), une conduite de décharge (30) est reliée côté entrée au trajet d'écoulement (4) et conduit à une soupape d'injection (20, 22) disposée dans l'étage haute pression (2) du côté du fluide d'écoulement en amont d'une surface chauffante de surchauffeur (16, 18) dans le trajet d'écoulement (4). L'invention vise à proposer un générateur de vapeur à combustibles fossiles de ce type qui n'affecte pas outre mesure le rendement du processus de vapeur. En outre, une augmentation de puissance à court terme doit être possible indépendamment du modèle du générateur de vapeur à combustibles fossiles, sans nécessiter de modifications structurales invasives du système général. À cet effet, la conduite de décharge (30) présente deux conduites d'alimentation, la première (32) de ces conduites d'alimentation étant raccordée du côté du fluide d'écoulement en aval d'une surface chauffante d'économiseur (10) et la deuxième (36) étant raccordée du côté du fluide d'écoulement en amont de la surface chauffante d'économiseur (10).
PCT/EP2011/069558 2010-11-10 2011-11-07 Générateur de vapeur à combustibles fossiles WO2012062708A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010043683 DE102010043683A1 (de) 2010-11-10 2010-11-10 Fossil befeuerter Dampferzeuger
DE102010043683.6 2010-11-10

Publications (2)

Publication Number Publication Date
WO2012062708A2 true WO2012062708A2 (fr) 2012-05-18
WO2012062708A3 WO2012062708A3 (fr) 2013-04-04

Family

ID=45001721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/069558 WO2012062708A2 (fr) 2010-11-10 2011-11-07 Générateur de vapeur à combustibles fossiles

Country Status (2)

Country Link
DE (1) DE102010043683A1 (fr)
WO (1) WO2012062708A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180106166A1 (en) * 2016-10-18 2018-04-19 General Electric Technology Gmbh Feedwater bypass system for a desuperheater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202249A1 (de) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Dampftemperatur-Regeleinrichtung für eine Gas- und Dampfturbinenanlage
DE102016104538B3 (de) 2016-03-11 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Thermisches Dampfkraftwerk mit verbesserter Abwärmenutzung und Verfahren zum Betrieb desselben

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1055167B (de) * 1957-11-16 1959-04-16 Siemens Ag Regeleinrichtung fuer Dampfkraftanlagen mit Zwangdurchlaufkesseln
CH357413A (de) * 1958-05-22 1961-10-15 Sulzer Ag Verfahren und Einrichtung zum Ableiten von flüssigem Arbeitsmedium aus dem Abscheider eines Zwangdurchlauf-Dampferzeugers
FR1246629A (fr) * 1959-03-12 1960-11-18 Siemens Ag Dispositif de régulation d'installations à vapeur
DE1948914A1 (de) * 1969-09-27 1971-04-15 Kraftwerk Union Ag Muehlheim Dampfkraftanlage mit dampftbeheizten Regenerativ-Vorwaermern
CH609138A5 (en) * 1976-05-14 1979-02-15 Sulzer Ag Forced-flow steam generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180106166A1 (en) * 2016-10-18 2018-04-19 General Electric Technology Gmbh Feedwater bypass system for a desuperheater
CN107957061A (zh) * 2016-10-18 2018-04-24 通用电器技术有限公司 用于减温器的给水旁通系统

Also Published As

Publication number Publication date
WO2012062708A3 (fr) 2013-04-04
DE102010043683A1 (de) 2012-05-10

Similar Documents

Publication Publication Date Title
EP2603672B1 (fr) Générateur de vapeur à récupération de chaleur
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP1848925B1 (fr) Générateur de vapeur de type horizontal
DE112016003348B4 (de) Wasserversorgungssystem, wasserversorgungsverfahren, und dampf erzeugende anlage, die mit wasserversorgungssystem bereitgestellt wird
EP2606206B1 (fr) Procédé pour réguler une augmentation de puissance à court terme d'une turbine à vapeur
WO2009106563A2 (fr) Procédé de régulation d'un générateur de vapeur et circuit de régulation pour générateur de vapeur
EP2467601A2 (fr) Centrale solaire thermique comprenant un échangeur de chaleur dans la section de préchauffage d'eau d'alimentation, et procédé d'exploitation de cette centrale
DE10001995A1 (de) Verfahren zur Einstellung bzw. Regelung der Dampftemperatur des Frischdampfes und/oder Zwischenüberhitzerdampfers in einem Verbundkraftwerk sowie Verbundkraftwerk zur Durchführung des Verfahrens
EP3017152B1 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
EP2616643B1 (fr) Procédé de régulation d'une augmentation de puissance à court terme d'une turbine à vapeur
WO2012062708A2 (fr) Générateur de vapeur à combustibles fossiles
EP3475539A1 (fr) Procédé d'adaptation à court terme de la puissance d'une turbine à vapeur d'une centrale à gaz et à vapeur pour la régulation primaire
WO2015003898A1 (fr) Système de préchauffage et procédé utilisant un tel système de préchauffage
EP1050667A1 (fr) Centrale combinée avec brûleur auxiliaire
DE102010038883C5 (de) Zwangdurchlaufdampferzeuger
EP2409078B1 (fr) Procédé de conception d'un évaporateur continu
WO2015028366A2 (fr) Procédé permettant de faire fonctionner un générateur de vapeur à circulation forcée chauffé par l'extérieur
EP2625390B1 (fr) Générateur de vapeur à combustibles fossiles
DE19944920A1 (de) Kombikraftwerk mit Einspritzvorrichtung zum Einspritzen von Wasser in den Frischdampf
EP2655811B1 (fr) Procédé pour ajuster une augmentation de puissance de courte durée d'une turbine à vapeur
WO2015024886A1 (fr) Centrale thermique à vapeur et procédé permettant de faire fonctionner une centrale thermique à vapeur
WO2016188671A1 (fr) Circuit de vapeur d'eau d'une installation de turbine à gaz et à vapeur
DE4441008A1 (de) Anlage zur Dampferzeugung nach dem Naturumlaufprinzip und Verfahren zum Anstoß des Wasserumlaufs in einer derartigen Anlage
EP3224541A1 (fr) Générateur de vapeur à récupération de chaleur
AT512176A4 (de) Abhitzedampferzeuger

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11785366

Country of ref document: EP

Kind code of ref document: A2