WO2012062007A1 - 螺杆膨胀机液体泵 - Google Patents
螺杆膨胀机液体泵 Download PDFInfo
- Publication number
- WO2012062007A1 WO2012062007A1 PCT/CN2010/079371 CN2010079371W WO2012062007A1 WO 2012062007 A1 WO2012062007 A1 WO 2012062007A1 CN 2010079371 W CN2010079371 W CN 2010079371W WO 2012062007 A1 WO2012062007 A1 WO 2012062007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- expander
- liquid pump
- rotor
- chamber
- male
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/12—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
- F01C1/14—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F01C1/16—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C13/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01C13/04—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C11/00—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
- F04C11/001—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
- F04C11/003—Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/12—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C2/14—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C2/16—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/04—Units comprising pumps and their driving means the pump being fluid driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/20—Fluid liquid, i.e. incompressible
- F04C2210/206—Oil
Definitions
- the invention belongs to the field of organic Rankine cycle technology, and relates to an organic Rankine cycle power generation system, in particular to a screw expander liquid pump of the above organic Rankine cycle power generation system.
- Figure 1 shows a typical Organic Rankin Cycle (OCC), including expander, generator 2', evaporator 3', liquid pump 4', condenser 5'.
- OCC Organic Rankin Cycle
- the low temperature and low pressure liquid refrigerant is pressurized in the liquid pump 4'; then enters the evaporator 3' to be heated and vaporized until it becomes superheated gas (high temperature and high pressure), then enters the expander 1 'expanding work, driving the generator 2' Power generation.
- the low temperature and low pressure gas after the work enters the condenser 5' is cooled and condensed into a liquid; and then returned to the liquid pump 4' to complete a cycle.
- the drawbacks of the gear pump are: The gear pump always has one gear to drive another gear, and half of the work consumed is consumed during the drive; at the same time, in the 0RC cycle, the viscosity of the liquid is usually low and the gear is subject to wear.
- the drawbacks of the centrifugal pump are: After the centrifugal pump draws in the liquid, the pressure during the suction process is reduced, the liquid is easily vaporized, and the efficiency of the centrifugal pump is reduced; thus affecting the efficiency of the entire 0RC cycle.
- a drawback of the open type liquid pump is that the working fluid is easily leaked through the shaft seal.
- the technical problem to be solved by the present invention is to provide a screw expander liquid pump which can improve the reliability of the liquid pump.
- a screw expander liquid pump comprising a half-sealed or fully sealed housing, An expander unit and a liquid pump unit are disposed in the casing; the expander unit includes a screw rotor, and the liquid pump unit includes a screw rotor; the rotor of the expander unit is fixedly connected with a rotor of the liquid pump unit, and the rotor of the liquid pump unit Rotating under the drive of the rotor of the expander unit.
- the expander unit includes an expander male rotor and an expander female rotor
- the liquid pump unit includes a liquid pump male rotor and a liquid pump female rotor; and one end of the expander male rotor and the liquid pump
- the male rotor is fixedly connected, and the liquid pump male rotor rotates under the driving of the expander male rotor.
- the housing includes an expander chamber and a liquid pump chamber that are isolated from each other; all or a main portion of the expander rotor disposed in the expander chamber, the expander rotor, and the liquid pump chamber are placed All or a main part of the liquid pump male rotor, the liquid pump female rotor; the housing is provided with an expander suction inlet, an expander exhaust outlet, a liquid pump inlet, and a liquid pump outlet.
- the expander male rotor includes an integrally designed first rotor portion and a first connecting portion; the first rotor portion is disposed in the expander cavity and mates with the expander negative rotor; The first connecting portion extends into the interior of the liquid pump male rotor in the liquid pump chamber.
- the liquid pump male rotor includes a second rotor portion and a second connecting portion of an integrated design; the second rotor portion is disposed in the liquid pump chamber and cooperates with the liquid pump female rotor; The second connecting portion extends into the interior of the expander male rotor in the expander chamber.
- the two ends of the expander negative rotor are respectively provided with expander female rotor bearings, and the liquid pump female rotors are respectively provided with liquid pump female rotor bearings; the expander male rotor is far away
- One end of the liquid pump male rotor is provided with a first male rotor bearing, and the first connecting portion is provided with a second male rotor bearing between the first rotor portion of the expander and the second rotor portion of the liquid pump.
- the expander chamber and the liquid pump chamber are separated by an isolation mechanism such that a hole is formed between the expander chamber and the liquid pump chamber, and the first connecting portion passes through the hole.
- the isolation mechanism such that a hole is formed between the expander chamber and the liquid pump chamber, and the first connecting portion passes through the hole.
- the beneficial effects of the invention are: the organic Rankine cycle power generation system and the screw thereof proposed by the invention
- the liquid pump of the expander, the resistance distance of the liquid pump and the negative rotor is very small, and the liquid viscosity is low, the wear is not good, and the dischargeability is good.
- the liquid pump is driven by the screw expander, so that the power generation efficiency of the organic Rankine cycle can be further improved.
- the semi-sealed or fully sealed housing can effectively prevent leakage of working fluid.
- Figure 1 is a schematic diagram of the composition of an organic Rankine cycle power generation system.
- FIG. 2 is a schematic view showing the composition of an organic Rankine cycle power generation system using the present invention.
- Figure 3 is a cross-sectional view showing the liquid pump of the screw expander in the vertical direction of the present invention.
- Figure 4 is a cross-sectional view showing the horizontal direction of the screw expander liquid pump of the present invention.
- liquid pump female rotor 4051 first male rotor bearing
- Liquid pump female rotor bearing 408 seal ring
- the organic Rankine cycle power generation system includes a condenser 5, a liquid pump 4, an evaporator 3, an expander 1, and a generator 2.
- the improvement of the present invention is mainly in the liquid pump 4, and in the present embodiment, the liquid pump 4 is a screw expander liquid pump 4.
- the screw expander liquid pump 4 includes a half-sealed or fully-sealed casing, and the casing is composed of a plurality of components, and a seal ring 409 is disposed at a gap of each component.
- the housing is provided with an expander suction inlet 410, an expander exhaust outlet 411, a liquid pump inlet 412, and a liquid pump outlet 413.
- the expander suction inlet 410 and the expander exhaust outlet 411 are connected to the outlet of the evaporator 3 and the inlet of the condenser 5, respectively.
- the liquid pump inlet 412 and the liquid pump outlet 413 are connected to the outlet of the condenser 5 and the inlet of the evaporator 3, respectively.
- An expander unit and a liquid pump unit are disposed in the casing; the expander unit includes a screw rotor, and the liquid pump unit includes a screw rotor; the rotor of the expander unit is fixedly connected with a rotor of the liquid pump unit, and the rotor of the liquid pump unit Rotating under the drive of the rotor of the expander unit.
- the expander unit includes an expander male rotor 401 and an expander female rotor 402.
- the liquid pump unit includes a liquid pump male rotor 403 and a liquid pump female rotor 404.
- One end of the expander male rotor 401 is The liquid pump male rotor 403 is fixedly coupled, and the liquid pump male rotor 403 is rotated by the expander male rotor 401.
- the housing includes an expander chamber and a liquid pump chamber that are isolated from each other; all or a main portion of the expander male rotor 401 is placed in the expander chamber, the expander rotor 402 is placed, and the liquid pump anode rotor 403 is placed in the liquid pump chamber. Or body portion, liquid pump female rotor 404.
- the expander male rotor 401 extends into the interior of the liquid pump male rotor 403 in the liquid pump chamber.
- the expander male rotor 401 includes a first rotor portion of an integrated design, a first connecting portion; the first rotor portion is disposed in the expander cavity, and the expander rotor 402 Cooperating; the first connecting portion extends into the interior of the liquid pump male rotor 403 in the liquid pump chamber.
- Both ends of the expander female rotor 402 are respectively provided with expander female rotor bearings 4061, 4062, and liquid pump female rotor bearings 404 are respectively provided with liquid pump female rotor bearings 4071, 4072.
- a first male rotor bearing 4051 is disposed at an end of the expander male rotor 401 away from the liquid pump male rotor 403, and the first connecting portion is disposed between the first rotor portion of the expander and the second rotor portion of the liquid pump Male rotor bearing 4052.
- the expander chamber and the liquid pump chamber are separated by an isolating mechanism such that a hole is formed between the expander chamber and the liquid pump chamber, and the first connecting portion passes through the hole into the liquid pump chamber.
- Seal ring 408 is used to seal and block the rotor cavity (liquid pump cavity) and bearing cavity (expander cavity) to ensure effective lubrication of the bearing.
- the screw expander liquid pump proposed by the present invention has a small resistance distance between the liquid pump and the female rotor, and the liquid viscosity is low, and the wear resistance is good.
- the liquid pump is driven by the screw expander, which can further improve the power generation efficiency of the organic Rankine cycle.
- the semi-sealed or fully sealed housing can effectively prevent leakage of working fluid.
- the liquid pump male rotor includes a second rotor portion and a second connecting portion that are integrally designed; the second rotor portion is disposed in the liquid pump chamber and cooperates with the liquid pump female rotor; the second connecting portion Extends into the interior of the expander rotor in the expander cavity.
- the expander unit and the liquid pump unit each include two screws.
- the expander unit and the screw of the liquid pump unit may be other numbers.
- the description and application of the present invention are intended to be illustrative, and not intended to limit the scope of the invention. Variations and modifications of the embodiments disclosed herein are possible, for those in the field Alternative and equivalent components of the embodiments are well known to those of ordinary skill in the art. It is apparent to those skilled in the art that the present invention may be embodied in other forms, configurations, arrangements, ratios, and other components, materials and components without departing from the spirit or essential characteristics of the invention. Other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
螺杆膨胀机液体泵 技术领域
本发明属于有机朗肯循环技术领域, 涉及一种有机朗肯循环发电系统, 尤其涉及上述有机朗肯循环发电系统的螺杆膨胀机液体泵。 背景技术
请参阅图 1, 图 1为一个典型的有机朗肯循环 (Organic Rankin Cycle, 0RC), 包括膨胀机 、 发电机 2' 、 蒸发器 3' 、 液体泵 4' 、 冷凝器 5' 。
低温低压的液体制冷工质在液体泵 4' 中被升压; 然后进入蒸发器 3 ' 被 加热汽化, 直至成为过热气体(高温高压)后, 进入膨胀机 1 ' 膨胀做功, 驱 动发电机 2 ' 发电。做功后的低温低压气体进入冷凝器 5' 被冷却凝结成液体; 再回到液体泵 4' 中, 完成一个循环。
现有的液体泵多为开启式的齿轮泵或离心泵。 齿轮泵的缺陷在于: 齿轮 泵中总是一个齿轮驱动另外一个齿轮, 消耗的功有一半消耗在驱动过程中; 同时, 0RC循环中, 液体的粘度通常较低, 齿轮易磨损。 离心泵的缺陷在于: 离心泵将液体吸入后, 吸入过程中压力降低, 液体易汽化, 导致离心泵的效 率降低; 从而影响整个 0RC循环的效率。 开启式的液体泵的缺陷在于, 工质 容易通过轴封泄露。
此外, 0RC循环发电系统的发电效率本身就比较低, 而现有的齿轮泵或离 心泵通过电机驱动而耗电, 因此就更加降低了 0RC循环发电系统的发电效率。 发明内容
本发明所要解决的技术问题是: 提供一种螺杆膨胀机液体泵, 可提高液 体泵的可靠性。
为解决上述技术问题, 本发明采用如下技术方案:
一种螺杆膨胀机液体泵, 所述螺杆膨胀机液体泵包括半封或全封的壳体,
壳体内设置膨胀机单元、 液体泵单元; 所述膨胀机单元包括螺杆转子, 液体 泵单元包括螺杆转子; 所述膨胀机单元的转子与液体泵单元的转子固定连接, 所述液体泵单元的转子在膨胀机单元的转子的带动下转动。
作为本发明的一种优选方案, 所述膨胀机单元包括膨胀机阳转子、 膨胀 机阴转子, 液体泵单元包括液体泵阳转子、 液体泵阴转子; 所述膨胀机阳转 子的一端与液体泵阳转子固定连接, 所述液体泵阳转子在膨胀机阳转子的带 动下转动。
作为本发明的一种优选方案, 所述壳体包括相互隔离的膨胀机腔、 液体 泵腔; 膨胀机腔中放置膨胀机阳转子的全部或主体部分、 膨胀机阴转子, 液 体泵腔中放置液体泵阳转子的全部或主体部分、 液体泵阴转子; 所述壳体上 设置膨胀机吸气入口、 膨胀机排气出口、 液体泵入口、 液体泵出口。
作为本发明的一种优选方案, 所述膨胀机阳转子包括一体化设计的第一 转子部分、 第一连接部分; 所述第一转子部分设置于膨胀机腔内、 与膨胀机 阴转子配合; 所述第一连接部分伸入液体泵腔中的液体泵阳转子内部。
作为本发明的一种优选方案, 所述液体泵阳转子包括一体化设计的第二 转子部分、 第二连接部分; 所述第二转子部分设置于液体泵腔内、 与液体泵 阴转子配合; 所述第二连接部分伸入膨胀机腔中的膨胀机阳转子内部。
作为本发明的一种优选方案, 所述膨胀机阴转子的两端分别设有膨胀机 阴转子轴承, 液体泵阴转子的两端分别设有液体泵阴转子轴承; 所述膨胀机 阳转子远离液体泵阳转子的一端设置第一阳转子轴承, 所述第一连接部分在 膨胀机的第一转子部分和液体泵的第二转子部分之间设置第二阳转子轴承。
作为本发明的一种优选方案, 所述膨胀机腔、 液体泵腔通过一隔离机构 相隔开, 使得膨胀机腔、 液体泵腔之间形成一孔洞, 所述第一连接部分穿过 该孔洞至液体泵腔内。
本发明的有益效果在于: 本发明提出的有机朗肯循环发电系统及其螺杆
膨胀机液体泵, 液体泵阴转子的阻力距很小, 液体粘度很低时也不会磨损, 可排性好。 同时, 液体泵通过螺杆膨胀机驱动, 从而可以进一歩地提高有机 朗肯循环的发电效率。 此外, 半封或全封的壳体可以有效地防止工质的泄露。 附图说明
图 1为有机朗肯循环发电系统的组成示意图。
图 2为使用本发明的有机朗肯循环发电系统的组成示意图。
图 3为本发明螺杆膨胀机液体泵垂直方向的剖视图。
图 4为本发明螺杆膨胀机液体泵水平方向的剖视图。
附图主要组件符号说明如下:
1, 发电机
3, 液体泵
1: 膨胀机 2: 发电机
3: 蒸发器 4: 螺杆膨胀机液体泵
5: 冷凝器 401: 膨胀机阳转子
402: 膨胀机阴转子 403: 液体泵阳转子
404: 液体泵阴转子 4051: 第一阳转子轴承
4052: 第二阳转子轴承 4061: 膨胀机阴转子轴承
4062: 膨胀机阴转子轴承 4071: 液体泵阴转子轴承
4072: 液体泵阴转子轴承 408: 密封环
409: 密封圈 410: 膨胀机吸气入口
411: 膨胀机排气出口 412: 液体泵入口
413: 液体泵出口
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例一
请参阅图 2, 图 2显示了使用本发明的有机朗肯循环发电系统, 所述有机 朗肯循环发电系统包括冷凝器 5、 液体泵 4、 蒸发器 3、 膨胀机 1、 发电机 2。 本发明的改进主要在于其液体泵 4, 本实施例中, 液体泵 4为螺杆膨胀机液体 泵 4。
具体地, 请参阅图 3、 图 4, 所述螺杆膨胀机液体泵 4包括半封或全封的 壳体, 壳体由多个部件组成, 各部件的间隙处设置密封圈 409。所述壳体上设 置膨胀机吸气入口 410、 膨胀机排气出口 411、 液体泵入口 412、 液体泵出口 413。 所述膨胀机吸气入口 410、 膨胀机排气出口 411分别连接所述蒸发器 3 的出口、冷凝器 5的入口。液体泵入口 412、 液体泵出口 413分别连接冷凝器 5的出口、 蒸发器 3的入口。
壳体内设置膨胀机单元、 液体泵单元; 所述膨胀机单元包括螺杆转子, 液体泵单元包括螺杆转子; 所述膨胀机单元的转子与液体泵单元的转子固定 连接, 所述液体泵单元的转子在膨胀机单元的转子的带动下转动。
如图 4所示,所述膨胀机单元包括膨胀机阳转子 401、膨胀机阴转子 402, 液体泵单元包括液体泵阳转子 403、液体泵阴转子 404;所述膨胀机阳转子 401 的一端与液体泵阳转子 403固定连接, 所述液体泵阳转子 403在膨胀机阳转 子 401的带动下转动。
所述壳体包括相互隔离的膨胀机腔、 液体泵腔; 膨胀机腔中放置膨胀机 阳转子 401的全部或主体部分、膨胀机阴转子 402, 液体泵腔中放置液体泵阳 转子 403的全部或主体部分、 液体泵阴转子 404。 本实施例中, 膨胀机阳转子 401伸入液体泵腔中的液体泵阳转子 403内部。
请继续参阅图 4,所述膨胀机阳转子 401包括一体化设计的第一转子部分、 第一连接部分; 所述第一转子部分设置于膨胀机腔内、 与膨胀机阴转子 402
配合; 所述第一连接部分伸入液体泵腔中的液体泵阳转子 403内部。
所述膨胀机阴转子 402的两端分别设有膨胀机阴转子轴承 4061、 4062, 液体泵阴转子 404的两端分别设有液体泵阴转子轴承 4071、 4072。 所述膨胀 机阳转子 401远离液体泵阳转子 403的一端设置第一阳转子轴承 4051, 所述 第一连接部分在膨胀机的第一转子部分和液体泵的第二转子部分之间设置第 二阳转子轴承 4052。
所述膨胀机腔、 液体泵腔通过一隔离机构相隔开, 使得膨胀机腔、 液体 泵腔之间形成一孔洞, 所述第一连接部分穿过该孔洞至液体泵腔内。
密封环 408用来密封和阻隔转子腔 (液体泵腔) 和轴承腔 (膨胀机腔), 从而保证轴承的有效润滑。 综上所述, 本发明提出的螺杆膨胀机液体泵, 液体泵阴转子的阻力距很 小, 液体粘度很低时也不会磨损, 可排性好。 同时, 液体泵通过螺杆膨胀机 驱动, 从而可以进一歩地提高有机朗肯循环的发电效率。 此外, 半封或全封 的壳体可以有效地防止工质的泄露。 实施例二
本实施例与实施例一的区别在于, 本实施例中, 液体泵阳转子伸入膨胀 机阳转子中。
具体地, 所述液体泵阳转子包括一体化设计的第二转子部分、 第二连接 部分; 所述第二转子部分设置于液体泵腔内、 与液体泵阴转子配合; 所述第 二连接部分伸入膨胀机腔中的膨胀机阳转子内部。
此外, 以上实施例中, 膨胀机单元、 液体泵单元均包括两个螺杆, 当然, 膨胀机单元、 液体泵单元的螺杆可以为其他数目。 这里本发明的描述和应用是说明性的, 并非想将本发明的范围限制在上 述实施例中。 这里所披露的实施例的变形和改变是可能的, 对于那些本领域
的普通技术人员来说实施例的替换和等效的各种部件是公知的。 本领域技术 人员应该清楚的是, 在不脱离本发明的精神或本质特征的情况下, 本发明可 以以其它形式、 结构、 布置、 比例, 以及用其它组件、 材料和部件来实现。 在不脱离本发明范围和精神的情况下, 可以对这里所披露的实施例进行其它 变形和改变。
Claims
权利 要 求书 、 一种螺杆膨胀机液体泵, 其特征在于, 所述螺杆膨胀机液体泵包括半封或 全封的壳体, 壳体内设置膨胀机单元、 液体泵单元;
所述膨胀机单元包括螺杆转子, 液体泵单元包括螺杆转子; 所述膨胀机单元的转子与液体泵单元的转子固定连接,所述液体泵单 元的转子在膨胀机单元的转子的带动下转动。 、 根据权利要求 1所述的螺杆膨胀机液体泵, 其特征在于:
所述膨胀机单元包括膨胀机阳转子、膨胀机阴转子, 液体泵单元包括 液体泵阳转子、 液体泵阴转子;
所述膨胀机阳转子的一端与液体泵阳转子固定连接,所述液体泵阳转 子在膨胀机阳转子的带动下转动。 、 根据权利要求 2所述的螺杆膨胀机液体泵, 其特征在于:
所述壳体包括相互隔离的膨胀机腔、 液体泵腔; 膨胀机腔中放置膨胀 机阳转子的全部或主体部分、膨胀机阴转子, 液体泵腔中放置液体泵阳转 子的全部或主体部分、 液体泵阴转子;
所述壳体上设置膨胀机吸气入口、 膨胀机排气出口、 液体泵入口、 液 体泵出口。 、 根据权利要求 3所述的螺杆膨胀机液体泵, 其特征在于:
所述膨胀机阳转子包括一体化设计的第一转子部分、 第一连接部分; 所述第一转子部分设置于膨胀机腔内、 与膨胀机阴转子配合; 所述第 一连接部分伸入液体泵腔中的液体泵阳转子内部。 、 根据权利要求 3所述的螺杆膨胀机液体泵, 其特征在于:
所述液体泵阳转子包括一体化设计的第二转子部分、 第二连接部分;
所述第二转子部分设置于液体泵腔内、 与液体泵阴转子配合; 所述第 二连接部分伸入膨胀机腔中的膨胀机阳转子内部。 、 根据权利要求 4所述的螺杆膨胀机液体泵, 其特征在于:
所述膨胀机阴转子的两端分别设有膨胀机阴转子轴承,液体泵阴转子 的两端分别设有液体泵阴转子轴承;
所述膨胀机阳转子远离液体泵阳转子的一端设置第一阳转子轴承,所 述第一连接部分在膨胀机的第一转子部分和液体泵的第二转子部分之间 设置第二阳转子轴承。 、 根据权利要求 6所述的螺杆膨胀机液体泵, 其特征在于:
所述膨胀机腔、 液体泵腔通过一隔离机构相隔开, 使得膨胀机腔、 液 体泵腔之间形成一孔洞, 所述第一连接部分穿过该孔洞至液体泵腔内。 、 一种螺杆膨胀机液体泵, 其特征在于, 所述螺杆膨胀机液体泵用于有机朗 肯循环; 该螺杆膨胀机液体泵包括半封或全封的壳体, 壳体内设置膨胀机 阳转子、 膨胀机阴转子、 液体泵阳转子、 液体泵阴转子; 所述膨胀机阳转 子的一端与液体泵阳转子固定连接,所述液体泵阳转子在膨胀机阳转子的 带动下转动;
所述壳体包括相互隔离的膨胀机腔、 液体泵腔; 膨胀机腔中放置膨胀 机阳转子的全部或主体部分、膨胀机阴转子, 液体泵腔中放置液体泵阳转 子的全部或主体部分、 液体泵阴转子; 所述壳体上设置膨胀机吸气入口、 膨胀机排气出口、 液体泵入口、 液体泵出口;
所述膨胀机阳转子包括一体化设计的第一转子部分、 第一连接部分; 所述第一转子部分设置于膨胀机腔内、 与膨胀机阴转子配合; 所述第一连 接部分伸入液体泵腔中的液体泵阳转子内部;
所述膨胀机阴转子的两端分别设有膨胀机阴转子轴承,液体泵阴转子
的两端分别设有液体泵阴转子轴承;所述膨胀机阳转子远离液体泵阳转子 的一端设置第一阳转子轴承,所述第一连接部分在膨胀机的第一转子部分 和液体泵的第二转子部分之间设置第二阳转子轴承;
所述膨胀机腔、 液体泵腔通过一隔离机构相隔开, 使得膨胀机腔、 液 体泵腔之间形成一孔洞, 所述第一连接部分穿过该孔洞至液体泵腔内。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10859603.2A EP2639530B1 (en) | 2010-11-08 | 2010-12-02 | Screw expander liquid pump |
US13/634,870 US20130008159A1 (en) | 2010-11-08 | 2010-12-02 | Liquid pump of screw expander |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010535274.2 | 2010-11-08 | ||
CN201010535274A CN101975094B (zh) | 2010-11-08 | 2010-11-08 | 螺杆膨胀机液体泵 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012062007A1 true WO2012062007A1 (zh) | 2012-05-18 |
Family
ID=43575000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/079371 WO2012062007A1 (zh) | 2010-11-08 | 2010-12-02 | 螺杆膨胀机液体泵 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130008159A1 (zh) |
EP (1) | EP2639530B1 (zh) |
CN (1) | CN101975094B (zh) |
WO (1) | WO2012062007A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5891192B2 (ja) * | 2013-03-25 | 2016-03-22 | 株式会社神戸製鋼所 | 発電装置及び発電システム |
CN103266924B (zh) * | 2013-05-02 | 2015-04-29 | 上海维尔泰克螺杆机械有限公司 | 水蒸汽的高效发电系统及方法 |
CN107461221A (zh) * | 2017-08-16 | 2017-12-12 | 无锡锡压压缩机有限公司 | 一种大功率柴油机余热回收用两级螺杆膨胀机结构 |
CN107859620B (zh) * | 2017-10-31 | 2020-02-18 | 北京精密机电控制设备研究所 | 一种基于双出轴伺服电机的高压低噪音伺服电机泵 |
CN108252743B (zh) * | 2018-01-22 | 2023-10-27 | 中国石油大学(华东) | 一种用于地热能的全流循环发电装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2621303A1 (de) * | 1975-05-13 | 1976-11-25 | Maekawa Seisakusho Kk | Vorrichtung zur kompression und expansion von gas |
JP2002310081A (ja) * | 2001-04-12 | 2002-10-23 | Hitachi Ltd | 燃料電池用スクリュー式流体機械 |
WO2003093649A1 (en) * | 2002-05-01 | 2003-11-13 | City University | Screw compressor-expander machine |
JP2005016742A (ja) * | 2003-06-23 | 2005-01-20 | Kobe Steel Ltd | ヒートポンプ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2185803A (en) * | 1937-03-12 | 1940-01-02 | Gen Electric | Elastic fluid power plant |
GB8605033D0 (en) * | 1986-02-28 | 1986-04-09 | Shell Int Research | Fluid driven pumping apparatus |
JPH06103035B2 (ja) * | 1986-08-20 | 1994-12-14 | 株式会社日立製作所 | スクリユ−式エキスパンダ−コンプレツサ− |
CN2355134Y (zh) * | 1999-01-11 | 1999-12-22 | 天津市科技投入公司 | 双螺杆泵 |
EP2014880A1 (en) * | 2007-07-09 | 2009-01-14 | Universiteit Gent | An improved combined heat power system |
JP2009257119A (ja) * | 2008-04-14 | 2009-11-05 | Kobe Steel Ltd | 蒸気膨張機駆動空気圧縮装置 |
CN201857998U (zh) * | 2010-11-08 | 2011-06-08 | 上海维尔泰克螺杆机械有限公司 | 螺杆膨胀机液体泵 |
JP6103035B2 (ja) * | 2013-03-14 | 2017-03-29 | 日本電気株式会社 | 電力増幅器、故障検出方法 |
-
2010
- 2010-11-08 CN CN201010535274A patent/CN101975094B/zh active Active
- 2010-12-02 EP EP10859603.2A patent/EP2639530B1/en active Active
- 2010-12-02 WO PCT/CN2010/079371 patent/WO2012062007A1/zh active Application Filing
- 2010-12-02 US US13/634,870 patent/US20130008159A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2621303A1 (de) * | 1975-05-13 | 1976-11-25 | Maekawa Seisakusho Kk | Vorrichtung zur kompression und expansion von gas |
JP2002310081A (ja) * | 2001-04-12 | 2002-10-23 | Hitachi Ltd | 燃料電池用スクリュー式流体機械 |
WO2003093649A1 (en) * | 2002-05-01 | 2003-11-13 | City University | Screw compressor-expander machine |
JP2005016742A (ja) * | 2003-06-23 | 2005-01-20 | Kobe Steel Ltd | ヒートポンプ |
Also Published As
Publication number | Publication date |
---|---|
EP2639530A4 (en) | 2016-06-08 |
CN101975094B (zh) | 2012-10-17 |
CN101975094A (zh) | 2011-02-16 |
US20130008159A1 (en) | 2013-01-10 |
EP2639530A1 (en) | 2013-09-18 |
EP2639530B1 (en) | 2018-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012065319A1 (zh) | 一种螺杆膨胀发电装置 | |
EP3947922B1 (en) | Power generation system and method to generate power by operation of such power generation system | |
WO2012062007A1 (zh) | 螺杆膨胀机液体泵 | |
WO2012065320A1 (zh) | 双螺杆液体泵 | |
RU2011118724A (ru) | Установка для выработки энергии (варианты) и турбодетандер | |
US9376938B2 (en) | Waste heat power generator | |
WO2015083458A1 (ja) | 冷媒ポンプ及び当該冷媒ポンプを用いたバイナリ発電システム | |
CN205840927U (zh) | 一种以超临界二氧化碳为工质的透平发电机组 | |
WO2012062006A1 (zh) | 螺杆膨胀发电装置 | |
CN201891440U (zh) | 螺杆膨胀发电装置 | |
CN205823447U (zh) | 一种以超临界二氧化碳为工质的压气机系统 | |
US9932829B2 (en) | Expander | |
CN203175621U (zh) | 螺杆膨胀发电装置、有机朗肯循环发电系统 | |
CN103591025B (zh) | 带吸气涡轮增压的旋转式压缩机 | |
CN201865909U (zh) | 双螺杆液体泵 | |
CN103195481A (zh) | 一种螺杆膨胀发电装置、有机朗肯循环发电系统 | |
CN201857998U (zh) | 螺杆膨胀机液体泵 | |
CN201904689U (zh) | 一种螺杆膨胀发电装置 | |
CN220489770U (zh) | 一种冷凝器 | |
CN103643998B (zh) | 复合转子动力机 | |
CN109185137A (zh) | 一种永磁一体无油螺杆空压机的转子冷却结构 | |
CN108087038A (zh) | 一种旋转式动力机 | |
CN113661307B (zh) | 发电系统和通过操作这种发电系统来发电的方法 | |
JP2010127157A (ja) | ドライ真空ポンプユニット | |
CN116499278A (zh) | 一种冷凝器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10859603 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7761/DELNP/2012 Country of ref document: IN Ref document number: 2010859603 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13634870 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |