WO2012060185A1 - エステルの製法 - Google Patents

エステルの製法 Download PDF

Info

Publication number
WO2012060185A1
WO2012060185A1 PCT/JP2011/073340 JP2011073340W WO2012060185A1 WO 2012060185 A1 WO2012060185 A1 WO 2012060185A1 JP 2011073340 W JP2011073340 W JP 2011073340W WO 2012060185 A1 WO2012060185 A1 WO 2012060185A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
nmr
mhz
cdcl
catalyst
Prior art date
Application number
PCT/JP2011/073340
Other languages
English (en)
French (fr)
Inventor
石原 一彰
ムハメット ウヤヌク
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to EP11837836.3A priority Critical patent/EP2636665B1/en
Priority to JP2012541793A priority patent/JP5920889B2/ja
Priority to US13/881,544 priority patent/US8853426B2/en
Publication of WO2012060185A1 publication Critical patent/WO2012060185A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
    • C07D313/02Seven-membered rings
    • C07D313/04Seven-membered rings not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B33/00Oxidation in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • C07C37/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms by replacing a carboxyl or aldehyde group by a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/42Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of secondary alcohols or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/82Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/83Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/88Benzo [c] furans; Hydrogenated benzo [c] furans with one oxygen atom directly attached in position 1 or 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • C07D307/935Not further condensed cyclopenta [b] furans or hydrogenated cyclopenta [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/16Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D309/28Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/30Oxygen atoms, e.g. delta-lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D323/00Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
    • C07D323/04Six-membered rings

Abstract

 本発明は、バイヤー・ビリガー酸化反応により過酸化水素を用いて反応基質であるケトン又はアルデヒドからエステルを製造する方法であって、触媒として、金属ボレートであるM(BAr4n(Mはアルカリ金属又はアルカリ土類金属、Arはアリール、nはMの価数と同じ数である)を用いるものである。例えば、反応基質としてシクロヘキサノン、触媒としてSr[B(3,5-CF36342を用いた場合、単離収率82%でε-カプロラクトンが得られた。

Description

エステルの製法
 本発明は、エステルの製法に関し、特にバイヤー・ビリガー酸化反応によるエステルの製法に関する。
 バイヤー・ビリガー酸化反応は、ケトンやアルデヒドを利用価値のあるエステル(環状エステルであるラクトンを含む)に変換する方法として有機合成において広く用いられてきた。例えば、シクロヘキサノンから得られるε-カプロラクトンはポリエステルやポリアミドの原料として有用であり、その効率的な合成法の開発は重要である。シクロヘキサノンのバイヤー・ビリガー酸化反応は、環ひずみが小さく安定な6員環から、環ひずみが大きく不安定な7員環への環拡大反応であるため、反応性が低く一般的に難しいとされている。そのため酸化力の強い有機過酸がよく使われている。しかし、有機過酸の爆発性や化学選択性、酸化反応にかかるコスト、廃液の処理方法等、様々な課題が残されている。それに対して、過酸化水素水は安全・安価な酸化剤であり、副生成物として水が出るだけで理想的な酸化剤とされている。過酸化水素水を酸化剤に用いる触媒的方法も報告されている。代表的な4つの方法を以下に示す。
 第1に、HFIP(1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール)溶媒中、TsOHを触媒とする方法が挙げられる(例えば非特許文献1,2)。第2に、有機セレン試薬を触媒とする方法が挙げられる(例えば非特許文献4,5)。第3に、フルオラス2層系でスズのパーフルオロアルカンスルホン酸コンプレックスをルイス酸触媒とする方法が挙げられる(例えば非特許文献6,特許文献1)。第4に、Mg、Mg-Al、Sn等系のハイドロタルサイトの固体触媒を用いる不均一酸化方法が挙げられる(例えば非特許文献7~10)。
特開2003-190804号公報
Organic Letters,2000, vol.2,p2861 Tetrahedron Letters, 2001, vol. 42, p2293 Angew. Chem.Int. Ed.,2002, vol.41,p4481 J. Org.Chem., 2001,vol.66, p2429 Tetrahedron Letters,2005, vol.46,p8665 Green Chem.,2003, vol.5,p524 J. Mol.Catal. A:Chem., 2003,vol.191. p93 Tetrahedron, 2007,vol.63, p1435 App. Catal.B: Environ.,2007, vol.72,p18 Catal. Lett.,2009, vol.131,p618
 しかしながら、第1の方法では、オレフィンのエポキシ化も促進されるため、反応基質としてオレフィンを含む環状ケトンを用いた場合の官能基選択性がよくないという問題があった。また、第2の方法では、触媒である有機セレン試薬の毒性が高いという問題があり、第3の方法では、シクロヘキサノンからε-カプロラクトンを得る収率が低いという問題があり、第4の方法では、基質一般性に欠けるという問題があった。
 本発明はこのような課題を解決するためになされたものであり、低毒性の触媒を用いて高収率でケトンやアルデヒドからエステル(ラクトンを含む)を得ることを主目的とする。
 上述した目的を達成するために、本発明者らは、低毒性又は無毒のアルカリ金属やアルカリ土類金属のボレート塩(M(BAr4n;M=Li,Na,Ca,Sr等)が、過酸化水素によるケトン又はアルデヒドのバイヤー・ビリガー酸化反応において優れた触媒活性を示すことを初めて見いだし、本発明を完成するに至った。
 即ち、本発明のエステルの製法は、バイヤー・ビリガー酸化反応により過酸化水素を用いて反応基質であるケトン又はアルデヒドからエステルを製造する方法であって、触媒として、ボレート塩であるM(BAr4n(Mはアルカリ金属、アルカリ土類金属又はトリアリールメチルであり、4つのArは電子吸引性基を有するアリールであって4つとも同じであっても異なっていてもよく、nはMの価数と同じ数である)を用いるものである。
 本発明のエステルの製法によれば、低毒性の触媒を用いて高収率で反応基質であるケトン又はアルデヒドからエステルを得ることができる。また、有機過酸ではなく過酸化水素を用いるため、過酸化物由来の副生成物は水のみであり、環境に優しいバイヤー・ビリガー酸化反応といえる。更に、反応基質として環状ケトンを用いた場合、温和な条件下で酸化反応が効率よく進行し、ラクトンを高収率で得ることができる。
 本発明のエステルの製法は、バイヤー・ビリガー酸化反応により過酸化水素を用いて反応基質であるケトン又はアルデヒドからエステルを製造する方法であって、触媒として、ボレート塩であるM(BAr4n(Mはアルカリ金属、アルカリ土類金属又はトリアリールメチルであり、4つのArは電子吸引性基を有するアリールであって4つとも同じであっても異なっていてもよく、nはMの価数と同じ数である)を用いるものである。
 本発明のエステルの製法において、ボレート塩であるM(BAr4nのMはアルカリ金属、アルカリ土類金属又はトリアリールメチルである。アルカリ金属としては、Li,Na,Kなどが挙げられ、アルカリ土類金属としては、Mg,Ca,Sr,Baなどが挙げられる。トリアリールメチルのアリールは、3つとも同じであってもよいし異なっていてもよい。異なっている場合には、すべて別々でもよいし、2つが同じで残りは別でもよい。トリアリールメチルとしては、トリフェニルメチル(トリチル)やトリス(ペンタフルオロフェニル)メチルなどが挙げられる。なお、Mがアルカリ金属やトリアリールメチルの場合にはnは1であり、Mがアルカリ土類金属の場合にはnは2である。4つのArは、電子吸引性基を有するアリールであって、4つとも同じであってもよいし異なっていてもよい。異なっている場合には、すべて別々でもよいし、2つが同じで残りは別々でもよいし、2つが同じで残り2つも同じでもよいし、3つが同じであってもよい。電子吸引性基としては、例えばハロゲン原子やトリハロメチル基、ニトロ基、ニトリル基などが挙げられる。ハロゲン原子としては、フッ素原子が好ましく、トリハロメチル基としてはトリフルオロメチル基が好ましい。また、電子吸引性基を有するアリールとしては、ペンタフルオロフェニルや3,5-ビス(トリフルオロメチル)フェニルなどが好ましい。
 本発明のエステルの製法において、ボレート塩であるM(BAr4nの使用量は、触媒量であれば特に限定するものではないが、例えば、反応基質に対して0.01~20mol%が好ましい。0.01mol%を下回ると、反応速度が遅くなるとか副生成物の比率が高くなる等の不具合が生じることがあるため好ましくなく、20mol%を上回ったとしても、それによって収率が大きく向上することがないため経済的見地から好ましくない。反応速度の促進効果を考慮すると、反応基質に対して0.1mol%を加減とすることが好ましい。また、経済的見地からすると、反応基質に対して5mol%を上限とすることがより好ましい。
 本発明のエステルの製法において、反応基質に用いられるケトンとしては、特に限定するものではないが、環状ケトンや鎖状ケトン、クロマノン類などが挙げられる。環状ケトンとしては、例えば、シクロプロパノン類、シクロブタノン類、シクロペンタノン類、シクロヘキサノン類、シクロヘプタノン類のほか、縮合環ケトン類などが挙げられる。こうした環状ケトンを反応基質として用いた場合には、反応生成物としてラクトンが得られる。一般的に、シクロヘキサノン類は、環ひずみが小さく安定であるため、環ひずみが大きく不安定な7員環のε-カプロラクトンへのバイヤー・ビリガー酸化反応は進行しにくいとされるが、本発明のエステルの製法によれば、高収率で反応が進行する。なお、環状ケトンとしては、その他にも、例えば天然物の合成中間体や医薬、農薬の合成中間体、重合体のモノマーなどが部分構造として環状ケトン骨格を有している場合、その合成中間体やモノマーを反応基質として使用することもできる。鎖状ケトンとしては、例えば、ジペンチルケトンのようなジアルキルケトンや、アセトフェノンのようなアリールアルキルケトン、またはベンゾフェノンのようなジアリールケトンなどが挙げられる。クロマノン類としては、例えば、4-クロマノン、3-クロマノンなどが挙げられる。また、反応基質に用いられるアルデヒドとしては、ベンズアルデヒド、4-クロロベンズアルデヒド、1-ナフチルアルデヒドなどの芳香族アルデヒドなどが挙げられる。こうした反応基質は、炭素-炭素二重結合(すなわちオレフィン結合)や炭素-炭素三重結合、ハロゲン基、ヒドロキシ基、シリル基又はシロキシ基を有していてもよい。オレフィンは過酸化水素によってエポキシに変換される可能性があるが、本発明のエステルの製法ではその可能性が小さく、エステルが選択的に生成する。オレフィン結合を有する反応基質としては、例えば、ビニル基、アリル基、イソプロペニル基などを有するケトン又はアルデヒドが挙げられる。炭素-炭素三重結合を有する反応基質としては、例えば、エチニル基、プロピニル基などを有するケトン又はアルデヒドが挙げられる。シリル基を有する反応基質としては、例えば、トリメチルシリル基、ジメチルフェニルシリル基、ジメチルt-ブチルシリル基などを有するケトン又はアルデヒドが挙げられる。シロキシ基を有する反応基質としては、例えば、トリメチルシロキシ基、ジメチルフェニルシロキシ基、ジメチルt-ブチルシロキシ基などを有するケトン又はアルデヒドが挙げられる。
 本発明のエステルの製法において、反応溶媒は、反応基質や触媒に応じて適宜選択すればよいが、例えば、ハロゲン化炭化水素、芳香族炭化水素、ニトリル系溶媒、エステル系溶媒及びこれらのうちの2種以上を混合した溶媒などが挙げられる。また、反応基質や触媒によっては、先に例示列挙した反応溶媒と水との混合溶媒を用いてもよい。ハロゲン化炭化水素としては、1,2-ジクロロエタン(DCE)や1,4-ジクロロブタン(DCB)などが挙げられ、芳香族炭化水素としてはトルエンやキシレン、ベンゼンなどが挙げられ、ニトリル系溶媒としてはアセトニトリルやプロピオニトリル、ブチロニトリルなどが挙げられ、エステル系溶媒としては酢酸メチルや酢酸エチルなどが挙げられる。
 本発明のエステルの製法において、反応温度は、反応基質や触媒に応じて適宜設定すればよい。反応温度が低すぎると、反応速度が遅くなり反応が終了するまでに長期間を要することがあるため好ましくなく、反応温度が高すぎると、反応基質が分解したり副反応が支配的になったりすることがあるため好ましくないが、適正な反応温度は反応基質や触媒によって異なる。そのため、一概に反応温度の好適な範囲を定めることはできないが、一つの目安として、0℃から100℃の間、好ましくは25℃(室温)から70℃の間で適宜設定してもよい。
 本発明のエステルの製法において、助触媒として、ブレンステッド酸を用いてもよい。ボレート塩触媒と共に助触媒としてブレンステッド酸を用いると、反応活性が更に向上する。こうした助触媒としては、例えば、芳香環上に1以上のOH基を持つフェノール類、カルボン酸、オキソカーボン酸、リン酸モノ又はジエステルなどが挙げられる。フェノール類としては、ペンタフルオロフェノール、カテコール、3-フルオロカテコール、テトラフルオロカテコール、テトラクロロカテコール、レゾルシノール、4-フルオロレゾルシノール、テトラフルオロレゾルシノール、テトラクロロレゾルシノールなどが挙げられる。カルボン酸としては、酢酸、マンデル酸、シュウ酸、マロン酸、コハク酸、サリチル酸、フタル酸などが挙げられる。オキソカーボン酸としては、デルタ酸、スクアリン酸、クロコン酸、ロジゾン酸、ヘプタゴン酸などが挙げられる。リン酸モノ又はジエステルとしては、ビナフチルハイドロゲンホスフェート(BP)などが挙げられる。これらの中で、テトラフルオロカテコール及びシュウ酸が反応促進効果が高いため好ましい。更に、安価な点を考慮すると、シュウ酸が好ましい。
 本発明のエステルの製法において、助触媒は、例えば、反応基質に対して0.01~100mol%が好ましい。また、ボレート塩に対して1~10倍モルが好ましく、1~5倍モルがより好ましい。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 以下の実施例及び比較例においては、1H NMRスペクトルをJEOL ECS-400 (400 MHz)スペクトロメータで、13C NMRスペクトルをJEOL ECS-400(100MHz)スペクトロメータで測定した。反応の進行は、薄層クロマトグラフィー(TLC)で、Merck precoated TLCプレート(シリカゲル60 GF254,0.25mm)を用いてモニタリングした。溶媒や試薬は市販のものをそのまま反応に用いた。
[参考例]
 以下の実施例及び比較例で触媒として使用したボレート塩について説明する。NaB(3,5-CF3634,LiB(C654とPh3CB(C654は市販品をそのまま反応に用いた。LiB(3,5-CF3634とKB(3,5-CF3634は文献(Organomet., 1992, vol.11, p3920)に記載された方法に従って合成した。
 Sr[B(3,5-CF3634 ]2・10H2Oは、以下のようにして合成した。すなわち、LiB(3,5-CF3634・4H2O(470mg,0.5mmol)のEtO(5mL)と純水(5mL)の混合液にSrCl2・6H2O(1.33g,5mmol)を加え、室温で2日間撹拌した。反応終了後、水層をEtOで抽出し、得られた有機層を純水で5回洗った。溶媒をエバポレーターで除いた後、得られた固体を純水とヘキサンで良く洗い、Sr[B(3,5-CF36342・10H2Oを得た(435mg,0.22mmol,収率87%(ボレートに基づいて算出))。
 また、Ca[B(3,5-CF3634 ]2・8H2O及びBa[B(3,5-CF3634 ]2・7H2Oは、SrCl2の代わりにそれぞれCaCl2及びBaCl2を用いた以外は、Sr[B(3,5-CF3634 ]2・10H2Oと同様にして合成した。更に、Sr[B(C654 ]2 は、LiB(3,5-CF3634・4H2Oの代わりにLiB(C654 を用いた以外は、Sr[B(3,5-CF3634 ]2・10H2Oと同様にして合成した。
 合成したボレート塩の性状及びスペクトルデータは以下の通り。
・LiB(3,5-CF3634
 白色粉末。1H NMR (CD3CN, 400 MHz)δ 7.65-7.70 (m, 12H); 13C NMR (CD3CN, 100 MHz) δ118.7, 125.5 (q, JC-F = 270 Hz), 129.9 (q, JC-F = 31.5 Hz), 135.7, 162.6 (q, JB-C = 49.6 Hz); 19F NMR (CD3CN) δ-63.1. Anal. Calcd. for C32H20BF24LiO4: C, 40.79; H, 2.14. Found: C, 41.00; H, 1.88.
・KB(3,5-CF3634
 白色粉末。 1H NMR (CD3CN, 400 MHz)δ 7.65-7.70 (m, 12H); 13C NMR (CD3CN, 100 MHz) δ118.7, 125.5 (q, JC-F = 271 Hz), 130.0 (q, JC-F = 32.4 Hz), 135.7, 162.7 (q, JB-C = 49.6 Hz); 19F NMR (CD3CN) δ-63.1. Anal. Calcd. for C32H16BF24LiO2: C, 40.96; H, 1.72. Found: C, 41.01; H, 1.70.
・Sr[B(3,5-CF3634 ]2・10H2
 白色粉末。 1H NMR (CD3CN, 400 MHz)δ7.65-7.70 (m, 24H); 13C NMR (CD3CN, 100 MHz) δ118.7, 125.5 (q, JC-F = 271 Hz), 129.9 (q, JC-F = 31.5 Hz), 135.7, 162.7 (q, JB-C = 49.6 Hz); 19F NMR (CD3CN) δ-63.1. Anal. Calcd. For C64H44BF48O10Sr: C, 38.55; H, 2.22. Found: C, 38.56; H, 2.13.
・Ca[B(3,5-CF3634 ]2・8H2
 白色粉末。1H NMR (CD3CN, 400 MHz)δ7.65-7.70 (m, 24H); 13C NMR (CD3CN, 100 MHz) δ118.6, 125.4 (q, JC-F = 271 Hz), 129.9 (q, JC-F = 31.5 Hz), 135.6, 162.6 (q, JB-C = 48.6 Hz); 19F NMR (CD3CN) δ-63.1. Anal. Calcd. for C64H40BCaF48O8: C,40.23; H, 2.11. Found: C, 40.23; H, 2.30.
・Ba[B(3,5-CF3634 ]2・7H2
 淡茶色粉末。1H NMR (CD3CN, 400 MHz)δ77.65-7.70 (m, 24H); 19F NMR (CD3CN) δ-63.1. Anal. Calcd. For C64H38BBaF24O7: C, 38.63; H, 1.92. Found: C, 38.65; H, 2.08.
・Sr[B(C654 ]2
 白色粉末。 19F NMR (CD3CN) δ-168.3, -163.8 (t, J = 24.6 Hz), -133.7.
[実施例1~11、比較例1,2]
 表1に示すように、実施例1~11では、各種のボレート塩を触媒とし、バイヤー・ビリガー酸化反応により過酸化水素を用いて市販のシクロヘキサノンからε-カプロラクトンを製造した。比較例1,2では、それぞれTsOH及びSc(OTf)3を触媒とし、同様にしてε-カプロラクトンを製造した。各実施例、各比較例で用いた触媒及び反応条件の詳細は表1に示したとおりである。また、この反応では、ε-カプロラクトンのほか、このラクトンが加水分解したヒドロキシカルボン酸やバイヤー・ビリガー酸化反応の反応中間体であるCriegee中間体(表1の欄外の※4参照)が二量化したスピロビスペルオキシドが生成した。表1には、シクロヘキサノンから反応生成物への転換率及び各反応生成物の収率を示した。なお、表1のシクロヘキサノンの転換率や各生成物の収率は、反応溶液から少量をサンプリングし、1H NMR解析により算出した。
 代表例として実施例4について詳細な実験手順を以下に説明する。シクロヘキサノン(50mg,0.5mmol)とSr[B(3,5-CF36342・10H2O(10mg,0.005mmol)の1,2-ジクロロエタン(10mL)溶液に30%過酸化水素水(57μL,0.55mmol)を入れ、反応容器を70℃のオイルバスに入れた。この反応では、生成するε-カプロラクトンの加水分解によるヒドロキシカルボン酸の副生が大きな課題であるため、反応溶媒として1,2-ジクロロエタンと水との混合溶媒ではなく、1,2-ジクロロエタンのみを使用した(系内には過酸化水素水に含まれる水のみ存在する)。反応開始から2時間後に、反応容器をオイルバスから出して0℃に冷やし、NaHSO3水溶液でクエンチした。水層はEt2Oで2回抽出し、得られた有機層を水と食塩水で洗った。得られた有機層を無水Na2SO4で乾燥し、溶媒はエバポレーターで除いた後、シリカゲルカラムクロマトグラフィ(展開溶媒:Hexane-Et2O)によって生成物(47mg,0.41mmol,単離収率82%)を得た。この生成物の物性、TLCの保持時間及び1H NMRの化学シフトは市販のε-カプロラクトンと一致した。なお、他の実施例、比較例についても、実施例4に準じて反応を行った。
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~6から明らかなように、触媒として用いたボレート塩の金属種は、アルカリ金属及びアルカリ土類金属のいずれにおいても良好な結果を与えた。中でも、特にCaやSrの反応活性及びラクトン選択性が良かった。また、実施例5に示すように、触媒量を1mol%から0.1mol%に下げても反応は効率よく進行した。一方、実施例7~9に示すように、触媒のカウンターアニオンをテトラキス(3,5-ビス(トリフルオロメチル)フェニル)ボレートからテトラキス(ペンタフルオロフェニル)ボレートに変更したところ、反応活性は大幅に改善した。更に、実施例10,11に示すように、溶媒を検討したところ、1,4-ジクロロブタンは1,2-ジクロロエタンと同様に良好な結果を与えたが、トルエンでは反応活性がやや低下した。なお、表1には示していないが、実施例4の反応温度を50℃や室温(25℃)に下げたところ、反応の進行が遅くなると共にスピロビスペルオキシドの生成量が増加する傾向が見られた。一方、比較例1では、触媒としてプロトン酸であるトシル酸を使用し、比較例2では、触媒としてルイス酸であるSc(OTf)3を使用したが、いずれも反応活性が低く、ラクトンの収率も満足する値は得られなかった。
 なお、各生成物の性状及びスペクトルデータは以下のとおり。
・ラクトン(ε-カプロラクトン)
 無色液体。 TLC, R= 0.11 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ1.76-1.87 (m, 6H), 2.63-2.66 (m, 2H), 4.23-4.26 (m, 2H).
・ヒドロキシカルボン酸(6-ヒドロキシカプロン酸)
 無色固体。1H NMR (CDCl3, 400 MHz) δ1.41 (m, 2H), 1.63 (m, 4H), 2.36 (t, J= 7.4 Hz, 2H), 3.65 (t, J= 6.5 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ24.4, 25.1, 31.9,33.9, 62.3, 178.8.
・スピロビスペルオキシド(7,8,15,16-テトラオキサジスピロ[5.2.5.2]ヘキサデカン
 白色固体。TLC, R= 0.67 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ1.47 (bs, 4H), 1.57 (bs, 12H), 2.28 (bs, 4H).
[実施例12~23、比較例3~6]
 表2に示すように、実施例12~23では、各種のボレート塩を触媒とし、バイヤー・ビリガー酸化反応により過酸化水素を用いて市販の4-tert-ブチルシクロヘキサノンから対応するε-カプロラクトンを製造した。比較例3では無触媒、比較例4~6ではそれぞれNaBF4、NaBPh4、LiNTf2を触媒とし、同様のε-カプロラクトンを製造した。各実施例、各比較例では、表2に示した触媒及び反応条件を採用し、上述した実施例4に準じて反応を行った。また、この反応では、ε-カプロラクトンのほか、スピロビスペルオキシドが生成した。表2には、シクロヘキサノンから反応生成物への転換率及び各反応生成物の収率を示した。なお、表2の転換率や各生成物の収率は、反応溶液から少量をサンプリングし、1H NMR解析により算出した。
Figure JPOXMLDOC01-appb-T000002
 表2の比較例3から明らかなように、この反応は無触媒では進行しなかった。実施例12では、1,2-ジクロロエタン中、2モル当量の過酸化水素を使用し、反応基質に対して5mol%のNaB(3,5-CF3634 を触媒として反応を行ったところ、ラクトンが収率73%、副生成物であるスピロビスペルオキシドが収率27%で得られた。実施例13では、反応溶媒として、1,2-ジクロロエタンと水とを体積比で2:1となるように混合した溶媒を用いたところ、ラクトンの収率が89%に向上した。実施例14及び実施例15では、実施例13の1,2-ジクロロエタンの代わりに、それぞれトルエン及びアセトニトリルを用いたところ、反応活性は低下したが、ラクトンが選択的に得られた。この実施例14及び実施例15では、反応の進行は遅いものの、ラクトン以外の化合物は生成していないため、反応時間を長くすればラクトンの収率が向上すると予測される。実施例16では、反応溶媒として、1,2-ジクロロエタンと水とを体積比で10:1となるように混合した溶媒を用いたところ、実施例13よりも反応活性が大幅に改善され、ラクトンの収率も向上した。
 実施例17~20では、実施例16と同様の反応溶媒中、2モル当量の過酸化水素を使用し、反応基質に対して1mol%の金属ボレート(金属種はそれぞれLi,Na,K,Ca)を触媒として反応を行ったところ、いずれも反応活性が高く、転換率が90%以上、ラクトンの収率も84%以上という良好な結果が得られた。金属種によって反応結果に大きな差はみられなかったが、強いていえば反応活性の順は高い方からCa,Li,Na,Kとなった。
 実施例21~23では、実施例16と同様の反応溶媒中、1.1モル当量の過酸化水素を使用し、反応基質に対して1mol%のボレート塩を触媒として反応を行ったところ、いずれも反応活性が高く、転換率が89%以上、ラクトンの収率も85%以上という良好な結果が得られた。実施例23で使用したボレート塩は、カチオンがトリチルカチオンであったが、良好な結果が得られた。
 なお、各生成物の性状及びスペクトルデータは以下のとおり。
・ラクトン(5-tert-ブチロキセパン-2-オン)
 無色固体。TLC, R= 0.35 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 0.89(s, 9H), 1.25-1.40 (m 2H), 1.48-1.55 (m, 1H), 2.0-2.1 (m, 2H), 2.53-2.59 (m, 1H), 2.69-2.74 (m, 1H), 4.11-4.18 (m, 1H), 4.34 (ddd, J = 1.9, 5.9, 12.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ23.6, 27.3, 30.1, 32.3, 33.3, 50.6, 69.0, 177.8.
・スピロビスペルオキシド(3,12-ジ-tert-ブチル-7,8,15,16-テトラオキサジスピロ[5.2.5.2]ヘキサデカン)
 白色固体。TLC, R= 0.75 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 0.86(bs, 18H), 1.05-1.12 (m, 2H), 1.20-1.32 (m, 4H), 1.41-1.51 (m, 4H), 1.74 (bs, 6H), 3.17 (bs, 2H); 13C NMR (CDCl3, 100 MHz) δ 22.8, 23.1, 27.6, 29.7, 32.0, 32.3, 47.4, 47.5, 108.1.
[実施例24~30]
 実施例24~30では、化1に示すように、バイヤー・ビリガー酸化反応により過酸化水素を用いて種々の環状ケトンからラクトンを合成した。実施例24では、非対称の環状ケトンである2-メチルシクロヘキサノンを用いたところ、高収率で対応するε-カプロラクトンが通常の位置選択性でもって得られた。実施例25では、オレフィン結合を持つ置換基を有する環状ケトンである4-イソプロペニルシクロヘキサノンを用いたところ、対応するε-カプロラクトンが収率56%で得られ、オレフィンのエポキシ化は見られなかった。実施例26では、4-ヒドロキシシクロヘキサノンを用いたところ、ヒドロキシエチル基を有する5員環ラクトンが得られた。このラクトンは、一旦、対応するε-カプロラクトンが生成したあと、環の歪みの少ない5員環に巻き直したものと考えられる。実施例27~29では、5員環ケトンや4員環ケトンを用いたところ、対応する6員環ラクトンや5員環ラクトンが高収率で得られた。実施例30では、環内にオレフィン結合を有する縮合環ケトンを用いたところ、対応する縮合環ラクトンが通常の位置選択性でもって高収率で得られ、オレフィンのエポキシ化は見られなかった。
 なお、実施例24の2-メチルシクロヘキサノン及び実施例27のシクロペンタノンは市販品を使用し、他の実施例の出発原料は文献(化1に示した※1~5)に記載された方法にしたがって合成した。
Figure JPOXMLDOC01-appb-C000003
 各実施例の生成物の性状及びスペクトルデータは以下のとおり。
・実施例24のメジャー生成物:無色オイル。TLC, R= 0.12 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.36 (d, J = 6.5 Hz, 3H), 1.50-1.74 (m, 3H), 1.82-2.02(m, 3H), 2.53-2.74 (m, 2H), 4.39-4.52 (m, 1H).
・実施例24のマイナー生成物:無色オイル。TLC, R= 0.13 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.21 (d, J = 6.6 Hz, 3H), 1.45-1.81 (m, 4H), 1.88-2.03(m, 2H), 2.65-2.81 (m, 1H), 4.16-4.35 (m, 2H).
・実施例25の生成物:無色固体。TLC, R= 0.12 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.59-1.67 (m, 1H), 1.72 (s, 3H), 1.77-1.83 (m, 1H), 1.92-2.02 (m, 2H), 2.21-2.28 (m, 1H), 2.60-2.66 (m, 1H), 2.71-2.76 (m, 1H), 4.17-4.23 (m, 1H), 4.32-4.37 (m, 1H), 4.74 (s, 1H), 4.78 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 20.7, 27.9, 33.5, 34.4, 48.2, 68.3, 110.6, 148.2, 176.1.
・実施例26の生成物:無色オイル。TLC, R= 0.22 (EtOAc); 1H NMR (CDCl3, 400 MHz) δ 1.89-1.97 (m, 3H), 2.35-2.43 (m, 1H), 2.54-2.58 (m, 2H), 3.82-3.85 (m, 2H),4.68-4.75 (m, 1H).
・実施例27の生成物:無色オイル。TLC, R= 0.13 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.86-1.93 (m, 4H), 2.55 (t, J= 6.9 Hz, 2H), 4.35 (t, J= 6.9 Hz, 2H).
・実施例28の生成物:無色固体。TLC, R= 0.37 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 2.68 (dd, J= 9.2, 17.4 Hz, 1H), 2.93 (dd, J= 8.7, 17.4 Hz, 1H), 3.76-3.84 (m, 1H), 4.28 (dd, J = 7.8, 9.2 Hz, 1H), 4.68 (dd, J = 7.8, 9.2 Hz, 1H), 7.23-7.46 (m, 5H).
・実施例29の生成物:無色固体。TLC, R= 0.1 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ1.22 (t, J= 6.9, 3H), 2.58 (dd, J= 17.9, 2.7 Hz, 1H), 2.68 (dd, J= 17.9, 6.4 Hz, 1H), 3.49 (q, J= 6.9 Hz, 2H), 4.25-4.29 (m, 1H), 4.34 (dd, J= 10.1, 2.3 Hz, 1H), 4.38 (dd, J= 10.1, 4.6 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ15.1, 35.0, 64.6, 73.3, 74.3, 175.9.
・実施例30のメジャー生成物(A)とマイナー生成物(B)との単離混合物:黄色オイル。 TLC, R= 0.16 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 2.45 (dd, J= 18.3, 1.8 Hz, 1H, for A), 2.70-2.84 (m, 3H, for A, B), 3.14 (ddd, J= 7.8, 7.8, 1.8 Hz, 1H, for B), 3.49-3.55 (m, 1H, for A), 3.57-3.63 (m, 1H, for B), 4.25 (dd, J= 9.2, 1.4 Hz, 1H, for B), 4.43 (dd, J= 9.2, 6.9 Hz, 1H, for B), 5.11-5.16 (m, 1H, for A), 5.57-5.61 (m, 1H, for A), 5.65-5.68 (m, 1H, for B), 5.78-5.82 (m, 1H, for A), 5.86-5.89 (m, 1H, for B); 13C NMR (CDCl3, 100 MHz) δ 32.3(A), 36.5(B), 39.5(A), 41.7(B), 45.6(A), 46.4(B), 71.5(B), 83.1(A), 129.7(A), 130.7(B), 131.3(A), 132.4(B), 176.8(A), 181.0(B).
[実施例31~56,比較例7,8]
 表3に示すように、実施例31では、ボレート塩触媒のみを用いてバイヤー・ビリガー酸化反応によりシクロペンタノンからδ-バレロラクトンを合成した。また、実施例32~56では、ボレート塩触媒とブレンステッド酸助触媒とを用いてバイヤー・ビリガー酸化反応によりシクロペンタノンからδ-バレロラクトンを合成した。実施例で使用した助触媒の構造式を表4に示す。
 触媒と助触媒とを用いたバイヤー・ビリガー酸化反応の代表例として、実施例39について詳細な実験手順を以下に説明する。なお、他の実施例、比較例についても、実施例39に準じて反応を行った。シクロペンタノン(84mg,1.0mmol)、Li[B(C654]・2.5Et2O(10.4mg,0.01mmol)とシュウ酸(4.6mg,0.05mmol)の1,2-ジクロロエタン(10mL)溶液に30%過酸化水素水(115μL,1.1mmol)を入れ、反応容器を50℃のオイルバスに入れた。反応開始から6時間後に、反応容器をオイルバスから出して0℃に冷やし、NaHSO3水溶液でクエンチした。水層はEt2Oで2回抽出し、得られた有機層を水と食塩水で洗った。得られた有機層を無水Na2SO4で乾燥し、溶媒をエバポレーターで除いた後、シリカゲルカラムクロマトグラフィ(展開溶媒:ヘキサン-Et2O)によって生成物(94mg,0.94mmol,単離収率94%)を得た。この生成物の物性、TLCの保持時間及び1H NMRの化学シフトは市販のδ-バレロラクトンと一致した。表3に、反応開始から1時間目と4時間目における変換率を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例32~45では、DCE溶媒中、触媒としてLiB(C654を1mol%、助触媒を5mol%用いて反応を行った。その結果、助触媒としてフェノール類(実施例32~36)、カルボン酸(実施例37~44)、リン酸ジエステル(実施例45)を用いた場合、助触媒を用いない実施例31に比べて、反応が速くなり、変換率も高くなることが分かった。その中でも、テトラフルオロカテコール(実施例36)と安価なシュウ酸(実施例39)が最も効果的であった。なお、ボレート塩触媒を用いず、実施例36,39で用いたブレンステッド酸のみでは、反応は全く進行しなかった(比較例7,8)。
 実施例46~48,49~51では、テトラフルオロカテコール又はシュウ酸を助触媒に用いて、触媒及び助触媒の使用量の削減を検討した。その結果、触媒の使用量を0.01mol%まで、助触媒の使用量を0.05mol%まで下げることができた(実施例48,51)。
 実施例52~56では、トルエンやベンゼンを溶媒に使用して、同様に助触媒の効果を検討した。その結果、助触媒を用いなかった実施例52,53に比べて、助触媒を用いた実施例54~56では助触媒による活性化効果があることが分かった。
[実施例57~76]
 表5及び表6に示すように、様々な反応基質のバイヤービリガー酸化反応を検討した。触媒としては、Li又はCaのボレート塩を用いた。一般的に、触媒活性はCaのボレート塩の方が高いが、Liのボレート塩は市販品であり、分子量が小さいため絶対的な使用量が少ないことから、まずLiのボレート塩を使用した(実施例57,58,66-71,73)。しかし、反応基質によってはLiのボレート塩では不十分で、生成物の化学収率が低い場合には、Caのボレート塩を触媒として用いた(実施例59-65,72,74-76)。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 シュウ酸の助触媒としての添加効果はどの反応基質にもみられたが、6員環の脂肪族環状ケトンの酸化では反応速度が速くなったものの、生成するラクトンの加水分解も助触媒によって促進されるため、結果として収率の大きな改善は見られなかった。こうしたことから、実施例57,58では、シュウ酸を用いなかった場合について例示した。実施例58の反応基質は、オレフィン部位を有するものであるが、このオレフィン部位は酸化されなかった。
 実施例59,60では、反応基質として4-ヒドロキシシクロヘキサノンを用いたところ、一旦、対応するε-カプロラクトンが生成したあと、環のひずみの少ない5員環にまき直した生成物が高収率で得られた。これらの反応基質は、炭素-炭素二重結合や炭素-炭素三重結合を有するものであるが、これらの部位は酸化されなかった。なお、表5において、実施例59には助触媒を用いなかった例を示したが、カッコ内にシュウ酸を助触媒として用いた例を示した。また、実施例60にはシュウ酸を助触媒として用いた例を示したが、カッコ内に助触媒を用いなかった例を示した。
 実施例61では、反応基質として4-クロマノンを用いたところ、生成したラクトンは加水分解され、対応するヒドロキシカルボン酸が得られた。
 実施例62では、反応基質としてケトンのα位に不斉点を有する光学活性なシクロペンタノンを用いたところ、ラセミ化は一切進行することなく、生成したラクトンは不斉収率をそのまま保持した。この実施例62や実施例63~65では、Criegee中間体から二通りの転位が起こる反応基質を用いたが、従来と同様な位置選択性で生成物が得られた。
 実施例66~72では、反応基質としてシクロブタノン誘導体を用いたところ、いずれも高収率で対応するラクトンが得られた。このうち、実施例69,70では、隣接する2つの炭素の一方にハロゲン基、もう一方に水酸基又はシロキシ基を有する、エポキシ化しやすい不安定な反応基質を用いたにもかかわらず、エポキシ化は起こらなかった。
 実施例73では、反応基質として鎖状ケトンを用いたところ、対応する鎖状エステルが高い収率で得られた。実施例74では、反応基質として芳香族アルデヒドであるベンザルデヒドを用いたところ、対応するギ酸エステルが系内で加水分解し、対応するフェノールが高収率で得られた。
 実施例75,76では、反応基質としてβ位にシリル基を有する環状ケトンを用いたところ、シリル側のα-炭素の転位によって得られる生成物が高い選択性で得られるとともに、系内で、生成するラクトンのβ脱離反応が起こることによって、対応するアルケノイック酸が一挙に高い収率で得られた。β位のシリル基がバイヤー・ビリガー反応において位置選択性に与える影響については既に報告されているが、従来法では対応するラクトンが得られていた(Hudrlik, et al. J. Am. Chem. Soc. 1980, vol.102, p6894)。例えば、化2に示すように小槻らは(+)-sporochnol Aの合成において、環状ケトンを従来法(mCPBAを用いて)で酸化して対応するラクトンを高い収率で得たが、鍵中間体アルケノイック酸は過剰量のBF3・Et2Oを用いるβ脱離によって中程度の収率で得られた(Kotsuki, et al. Org. Lett. 2010, vol.12, p1616)。一方、本発明の手法では、β脱離反応も容易に進行するため、このような有用性の高いアルケノイック酸も高収率で合成することが可能になった。尚、本発明の手法では、シリル基はPhMe2Siでもβ脱離が起こるが、Me3Siの方が原料合成も用意で脱離もより早いため、実施例75,76ではMe3Siを用いた。
Figure JPOXMLDOC01-appb-C000008
 各実施例の生成物の性状及びスペクトルデータは以下のとおり。
・実施例57の生成物:無色オイル。TLC, R= 0.35 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.00 (d, J= 6.9 Hz, 3H), 1.29-1.44 (m, 1H), 1.44-1.55 (m, 1H), 1.84-1.98 (m, 3H), 2.56-2.72 (m, 2H), 4.18 (dd, J= 12.8, 10.6 Hz, 1H), 4.29 (dd, J = 1.8, 6.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 22.0, 30.6, 33.1, 35.1, 37.1, 68.0, 176.0.
・実施例58の生成物:無色固体。実施例25と同じ生成物である。
・実施例59の生成物:無色オイル。 TLC, R= 0.43 (EtOAc only); 1H NMR (CDCl3, 400 MHz) δ 1.54 (bs, 1H), 1.92-2.04 (m, 2H), 2.15 (t, J= 8.7 Hz, 2H), 2.42-2.50 (m, 2H), 2.60 (ddd, J= 8.7, 8.7, 3.2 Hz, 2H), 3.78-3.90 (m, 2H), 5.18-5.22 (m, 2H), 5.73-5.83 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 29.0, 30.7, 41.2, 43.6, 58.2, 87.5, 120.3, 131.7, 177.0.
・実施例60の生成物:無色オイル。 TLC, R= 0.5 (EtOAc only); 1H NMR (CDCl3, 400 MHz) δ 1.80 (brs, 1H), 2.11-2.23 (m, 2H), 2.28-2.38 (m, 1H), 2.50-2.63 (m, 2H), 2.69 (s, 1H), 2.76-2.85 (m, 1H), 3.90-4.04 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 28.5, 36.1, 42.9, 59.0, 75.8, 80.2, 81.8, 175.7.
・実施例61の生成物:白色固体。 TLC, R= 0.4 (EtOAc only); 1H NMR (CDCl3, 400 MHz) δ 2.90 (t, J= 6.0 Hz, 2H), 4.28 (t, J= 6.0 Hz, 2H), 6.15 (brs, 1H), 6.81-6.86 (m, 1H), 6.92-6.97 (m, 3H); 13C NMR (CD3CN, 100 MHz) δ 34.5, 66.2, 115.5, 116.2, 120.9, 123.3, 147.0, 147.9, 174.0.
・実施例62のメジャー生成物:無色オイル。 TLC, R= 0.18 (EtOAc only);  1H NMR (CDCl3, 400 MHz) δ 1.70-1.75 (m, 1H), 1.86-2.00 (m, 4H), 2.44-2.52 (m, 1H), 2.60-2.66 (m, 1H), 3.65-3.71 (m, 1H), 3.81 (ddd, J= 12.4, 7.3, 3.2 Hz, 1H), 4.40-4.45 (m, 1H). 13C NMR (CDCl3, 100 MHz) δ 18.5, 23.7, 29.7, 65.0, 81.2, 171.7.
・実施例62のマイナー生成物:無色オイル。 TLC, R= 0.24 (EtOAc only); 1H NMR (CDCl3, 400 MHz) δ 1.63-1.72 (m, 1H), 1.92-2.08 (m, 3H), 2.64-2.72 (m, 1H), 2.91 (dd, J= 8.2, 5.0 Hz, 1H), 3.72-3.83 (m, 2H), 4.33-4.36 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 21.3, 22.0, 42.0, 62.9, 68.8, 175.0.
・実施例63のメジャー生成物:無色オイル。 TLC, R= 0.21 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 0.88 (t, J= 6.9 Hz, 3H), 1.21-1.40 (m, 9H), 1.43-1.61 (m, 3H), 1.66-1.75 (m, 1H), 1.79-1.93 (m, 3H), 2.40-2.48 (m, 1H), 2.55-2.63 (m, 1H), 4.24-4.30 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 14.1, 18.6, 22.7, 25.0, 27.8, 29.2, 29.4, 29.5, 31.8, 35.9, 80.7, 172.1.
・実施例63のマイナー生成物:無色オイル。 TLC, R= 0.26 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 0.88 (t, J= 6.9 Hz, 3H), 1.23-1.40 (m, 9H), 1.44-1.59 (m, 1H), 1.84-1.95 (m, 3H), 2.05-2.14 (m, 1H), 2.41-2.49 (m, 1H), 4.25-4.35 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 14.2, 22.1, 22.8, 24.7, 27.0, 29.3, 29.6, 31.3, 31.9, 39.7, 68.5, 174.9.
・実施例64のメジャー生成物:無色オイル。 TLC, R= 0.13 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.60-1.81 (m, 2H), 1.87-2.05 (m, 4H), 2.12-2.23 (m, 1H), 2.46-2.56 (m, 2H), 2.69-2.76 (m, 1H), 4.87 (m, 1H).
・実施例64のマイナー生成物:無色オイル。 TLC, R= 0.15 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.70-1.81 (m, 2H), 1.89-2.03 (m, 4H), 2.47 (m, 1H), 2.93 (t, J= 9.6 Hz, 1H), 4.12 (d, J= 10.6 Hz, 1H), 4.32 (dd, J= 10.6, 2.3 Hz, 1H).
・実施例65のメジャー生成物(A)とマイナー生成物(B)の単離混合物:白色固体。 TLC, R= 0.16 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 0.90 (s, 3H for A), 0.97 (s, 3H, for B), 1.09 (s, 3H, for B), 1.10 (s, 3H, for A), 1.17 (s, 3H, for B), 1.30 (s, 3H, for A), 1.33-1.47 (m, 2H, for A), 1.70-1.92 (m, 1H for A, 3H for B), 2.05-2.17 (m, 1H for A, 2H for B), 2.35 (d, J= 17.4 Hz, 1H, for A), 2.59 (ddd, J= 10.6, 2.3 Hz, 1H, for A), 2.89 (dd, J= 17.9, 9.2 Hz, 1H, for A), 4.10 (d, J= 10.6 Hz, 1H, for B), 4.47 (m, 1H, for B); 13C NMR (CDCl3, 100 MHz) δ 14.3(B), 18.7(A), 20.0(B), 21.9(A), 22.5(B), 23.9(A), 24.7(B), 27.0(B), 30.2(A), 36.2(B), 36.7(B), 37.9(A), 38.5(A), 43.0(A), 44.6(B), 45.3(A), 74.2(B), 98.9(A), 175.3(B), 177.4(A).
・実施例66の生成物:無色オイル。実施例29と同じ生成物である。
・実施例67の生成物:無色オイル。 TLC, R= 0.1 (hexane-EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 2.54 (d, J= 17.8, 1H), 2.58 (brs, 1H), 2.77 (dd, J= 17.9, 5.6 Hz, 1H), 4.32 (d, J= 10.1 Hz, 1H), 4.43 (dd, J= 10.5, 4.6 Hz, 1H), 4.71 (m, 1H).
・実施例68の生成物:無色固体。 TLC, R= 0.25 (hexane-EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 1.53 (s, 3H), 2.68 (d, J= 17.0 Hz, 1H), 2.92 (d, J= 17.0, 1H), 4.42 (m, 2H), 7.18-7.40 (m, 5H); 13C NMR (CDCl3, 100 MHz) δ 28.1, 42.1, 44.2, 78.5, 125.3, 127.3, 129.1, 144.4, 176.3.
・実施例69のメジャー生成物(A)とマイナー生成物(B)との単離混合物:白色固体。 TLC, R= 0.38 (hexane-EtOAc = 1: 2); 1H NMR (CDCl3, 400 MHz) δ 2.15-2.26 (m, 1H, for A, B), 2.59-2.69 (m, 2H, for A, B), 2.87 (dd, J= 18.3, 11.4 Hz, 1H, for A), 3.18 (ddd, 10.1, 10.1, 2.3 Hz, for B), 3.32-3.38 (m, 1H, for A), 4.02-4.07 (m, 1H, for A, B), 4.29 (dd, 10.1, 3.7 Hz, 1H, for B), 4.46-4.56 (m, 1H for A, 2H for B), 5.16 (t, J= 6.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 35.9(A), 36.1(B), 38.3(A), 42.3(B), 48.1(A), 48.5(B), 58.0(B), 58.3(A), 72.7(B), 79.3(B), 79.4(A), 84.7(A), 177.7(A), 181.0(B).
・実施例70のメジャー生成物:白色固体。 TLC, R= 0.28 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 0.09 (s, 3H), 0.10 (s, 3H), 0.87 (s, 9H), 2.15 (d, J= 15.6 Hz, 1H), 2.52-2.58 (m, 1H), 2.61 (dd, J= 18.3, 4.1 Hz, 1H), 2.85 (dd, J= 18.3, 11.9 Hz, 1H), 3.39 (m, 1H), 4.06 (m, 1H), 4.42 (m, 1H), 5.20 (t, J= 7.3 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ  -4.9, 18.0, 25.7, 35.9, 39.1, 48.3, 58.9, 80.4, 84.0, 176.1.
・実施例70のマイナー生成物:白色固体。 TLC, R= 0.36 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 0.08 (s, 3H), 0.09 (s, 3H), 0.86 (s, 9H), 2.22 (d, J= 13.0 Hz, 1H), 2.56-2.62 (m, 1H), 3.18 (t, J= 9.6 Hz, 1H), 3.37 (ddd, J= 9.6, 9.6, 3.6 Hz, 1H), 4.00 (m, 1H), 4.20 (dd, J= 9.6, 4.1 Hz, 1H), 4.37 (m, 1H), 4.53 (t, J= 9.6 Hz, 1H) ); 13C NMR (CDCl3, 100 MHz) δ  -5.1, 17.9, 25.5, 36.9, 42.3, 48.6, 58.7, 72.5, 80.0, 179.6.
・実施例71のメジャー生成物(A)とマイナー生成物(B)との単離混合物:実施例30と同じ生成物である。
・実施例72のメジャー生成物:白色固体。 TLC, R= 0.17 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 5.34 (s, 2H), 7.50 (d, J= 7.8 Hz, 1H), 7.55(t, J= 7.3 Hz, 1H), 7.70 (t, J= 7.3 Hz, 1H), 7.94 (d, J= 7.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 69.8, 122.2, 125.8, 129.1, 134.1, 146.6, 171.2.
・実施例72のマイナー生成物:無色オイル。 TLC, R= 0.36 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 3.75 (s, 2H), 7.10-7.16 (m, 2H), 7.28-7.33(m, 2H); 13C NMR (CDCl3, 100 MHz) δ 33.1, 110.9, 123.2, 124.2, 124.8, 129.0, 154.8, 174.2.
・実施例73の生成物:無色オイル。 TLC, R= 0.73 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 0.88-0.95 (m, 6H), 1.28-1.39 (m, 8H), 1.58-1.66 (m, 4H), 2.29 (t, J= 7.4 Hz, 2H), 4.06 (t, J= 6.4 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 14.0(2C), 22.5(2C), 24.8, 28.3, 28.6, 31.5, 34.5, 64.4, 173.9.
・実施例74の生成物:黄色オイル。 TLC, R= 0.32 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 4.76 (brs, 1H), 6.75-6.79 (m, 2H), 7.17-7.21 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 116.8, 125.8, 129.7, 154.2.
・実施例75のメジャー生成物:無色オイル。 TLC, R= 0.14 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 1.20 (d, J= 6.8 Hz, 3H), 1.48-1.57 (m, 1H), 1.77-1.86 (m, 1H), 2.08-2.14 (m, 2H), 2.46-2.55 (m, 1H), 5.00-5.03 (m 2H), 5.74-5.84 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ 16.9, 31.4, 32.6, 38.8, 115.4, 137.8, 182.8.
・実施例75のマイナー生成物:無色オイル。 TLC, R= 0.30 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 0.32 (s, 9H), 1.04-1.10 (m, 1H), 1.36 (d, J= 6.4 Hz, 3H), 1.75-1.84 (m, 4H), 2.65 (dd, J= 14.7, 6.0 Hz, 1H), 2.92 (dd, J= 14.2, 6.8 Hz, 1H), 4.53-4.456 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ -2.4, 20.7, 21.9, 27.0, 35.8, 36.0, 75.6, 175.1.
・実施例76のメジャー生成物:無色オイル。 TLC, R= 0.1 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) δ 1.00 (s, 6H), 1.63-1.67 (m, 2H), 2.26-2.30 (m, 1H), 4.91-5.00 (m, 2H), 5.72 (dd, J= 17.4, 11.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 26.6, 30.0, 36.3, 36.8, 111.8, 147.0, 181.0.
・実施例76のマイナー生成物:無色オイル。 TLC, R= 0.23 (hexane-EtOAc = 4: 1); 1H NMR (CDCl3, 400 MHz) d 0.14 (s, 9H), 1.00-1.09 (m, 1H), 1.07 (s, 3H), 1.09 (s, 3H), 1.67 (m, 2H), 2.52-2.67 (m, 2H), 4.12-4.18 (m, 1H), 4.22-4.28 (m, 1H); 13C NMR (CDCl3, 100 MHz) d 0.3, 24.8, 29.8, 31.8, 34.0, 35.2, 45.5, 176.8.
 本出願は、2010年11月2日に出願された日本国特許出願第2010-245944号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、主に薬品化学産業に利用可能である。特に、ラクトンであるε-カプロラクトンは、生分解性ポリマーやナイロン-6の合成中間体として有用である。

Claims (9)

  1.  バイヤー・ビリガー酸化反応により過酸化水素を用いて反応基質であるケトン又はアルデヒドからエステルを製造する方法であって、
     触媒として、ボレート塩であるM(BAr4n(Mはアルカリ金属、アルカリ土類金属又はトリアリールメチルであり、4つのArは電子吸引性基を有するアリールであって4つとも同じであっても異なっていてもよく、nはMの価数と同じ数である)を用いる、
     エステルの製法。
  2.  前記ボレート塩のArは、ペンタフルオロフェニル又は3,5-ビストリフルオロメチルフェニルである、
     請求項1に記載のエステルの製法。
  3.  前記触媒は、前記反応基質に対して0.1~5mol%使用する、
     請求項1又は2に記載のエステルの製法。
  4.  前記反応基質は、炭素-炭素二重結合、炭素-炭素三重結合、ハロゲン基、ヒドロキシル基、シリル基又はシロキシ基を有している、
     請求項1~3のいずれか1項に記載のエステルの製法。
  5.  前記反応基質は、環状ケトン、鎖状ケトン、クロマノン類又は芳香族アルデヒド類である、
     請求項1~4のいずれか1項に記載のエステルの製法。
  6.  助触媒として、ブレンステッド酸を用いる、
     請求項1~5のいずれか1項に記載のエステルの製法。
  7.  前記助触媒は、芳香環上に1以上のOH基を持つフェノール類、カルボン酸、オキソカーボン酸、リン酸モノエステル又はリン酸ジエステルである、
     請求項6に記載のエステルの製法。
  8.  前記助触媒は、テトラフルオロカテコール又はシュウ酸である、
     請求項6又は7に記載のエステルの製法。
  9.  前記助触媒は、前記触媒に対して1~5倍モル使用する、
     請求項6~8のいずれか1項に記載のエステルの製法。
PCT/JP2011/073340 2010-11-02 2011-10-11 エステルの製法 WO2012060185A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11837836.3A EP2636665B1 (en) 2010-11-02 2011-10-11 Method for producing ester
JP2012541793A JP5920889B2 (ja) 2010-11-02 2011-10-11 エステルの製法
US13/881,544 US8853426B2 (en) 2010-11-02 2011-10-11 Method for manufacturing ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010245944 2010-11-02
JP2010-245944 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060185A1 true WO2012060185A1 (ja) 2012-05-10

Family

ID=46024304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073340 WO2012060185A1 (ja) 2010-11-02 2011-10-11 エステルの製法

Country Status (4)

Country Link
US (1) US8853426B2 (ja)
EP (1) EP2636665B1 (ja)
JP (1) JP5920889B2 (ja)
WO (1) WO2012060185A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942548A (zh) * 2012-11-20 2013-02-27 南京理工大学 一种δ-十二内酯的合成方法
WO2015074162A1 (es) 2013-11-22 2015-05-28 Pontificia Universidad Catolica De Chile Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona.

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208394B2 (en) * 2018-09-17 2021-12-28 Regents Of The University Of Minnesota Chemical process to manufacture branched-caprolactone
JP7336541B2 (ja) 2019-06-12 2023-08-31 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップ 過酸化ジアシルを生成するためのプロセス
BR112021024870A2 (pt) * 2019-06-12 2022-01-18 Nouryon Chemicals Int Bv Método para isolar ácido carboxílico de uma corrente lateral aquosa de um processo de produção de peróxido orgânico
US11976034B2 (en) 2019-06-12 2024-05-07 Nouryon Chemicals International B.V. Process for the production of diacyl peroxides
CN110452212B (zh) * 2019-07-30 2020-08-14 浙江大学 一种11-十一内酯类化合物和己内酯类化合物的制备方法
CN115057998B (zh) * 2022-07-07 2023-07-25 武汉理工大学 一种联合生产ε-己内酯与聚丁二酸丁二醇酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104681A (ja) * 1995-10-06 1997-04-22 Nippon Peroxide Co Ltd δ−ラクトン化合物の製造方法
JP2003190804A (ja) 2001-12-25 2003-07-08 Asahi Kasei Corp ケトン化合物の酸化触媒
JP2004352636A (ja) * 2003-05-28 2004-12-16 Takasago Internatl Corp ラクトン類又はエステル類の製造方法
JP2010245944A (ja) 2009-04-08 2010-10-28 Mitsubishi Electric Corp 高周波増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104681A (ja) * 1995-10-06 1997-04-22 Nippon Peroxide Co Ltd δ−ラクトン化合物の製造方法
JP2003190804A (ja) 2001-12-25 2003-07-08 Asahi Kasei Corp ケトン化合物の酸化触媒
JP2004352636A (ja) * 2003-05-28 2004-12-16 Takasago Internatl Corp ラクトン類又はエステル類の製造方法
JP2010245944A (ja) 2009-04-08 2010-10-28 Mitsubishi Electric Corp 高周波増幅器

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 41, 2002, pages 4481
APP. CATAL.B: ENVIRON., vol. 72, 2007, pages 18
CATAL. LETT., vol. 131, 2009, pages 618
DAISUKE NAKAJIMA ET AL.: "Alcali-Alcali Dorui Kinzoku no Kasadakai Borate-en Shokubai to Kasanka Suiso ni yoru Baeyer-Villiger Sanka Hanno", 91ST ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN, 11 March 2011 (2011-03-11), KOEN YOKOSHU, pages 1221, XP008168374 *
DAISUKE NAKAJIMA ET AL.: "Kasanka Suisosui o Sankazai ni Mochiiru Kankyo Chowagata Shokubaiteki Baeyer-Villiger Sanka Hanno", DAI 41 KAI ANNUAL MEETING OF UNION OF CHEMISTRY- RELATED SOCIETIES IN CHUBU AREA, 6 November 2010 (2010-11-06), JAPAN KOEN, pages 199, XP008169387 *
FUJIKI K. ET AL.: "Evaluation of Lewis Acidity of "Naked" Lithium Ion through Diels-Alder Reaction Catalyzed by Lithium TFPB in Nonpolar Organic Solvents", CHEMISTRY LETTERS, vol. 29, 2000, pages 62 - 63, XP009097713 *
GREEN CHEM., vol. 5, 2003, pages 524
HUDRLIK ET AL., J. AM. CHEM. SOC., vol. 102, 1980, pages 6894
J. MOL. CATAL. A:CHEM., vol. 191, 2003, pages 93
J. ORG. CHEM., vol. 66, 2001, pages 2429
KOTSUKI ET AL., ORG. LETT., vol. 12, 2010, pages 1616
LIAO B.-S. ET AL.: "An Efficient Preparation of Bis(indole)methanes Catalyzed by Tetrakis [3,5-bis(trifluoromethyl)phenyl]borate Salts in Aqueous Medium", SYNTHESIS, no. 20, 2007, pages 3125 - 3128, XP055085511 *
NEIMANN K. ET AL.: "Electrophilic Activation of Hydrogen Peroxide: Selective Oxidation Reactions in Perfluorinated Alcohol Solvents", ORGANIC LETTERS, vol. 2, no. 18, 2000, pages 2861 - 2863, XP008116670 *
ORGANIC LETTERS, vol. 2, 2000, pages 2861
ORGANOMET., vol. 11, 1992, pages 3920
See also references of EP2636665A4
TETRAHEDRON LETTERS, vol. 42, 2001, pages 2293
TETRAHEDRON LETTERS, vol. 46, 2005, pages 8665
TETRAHEDRON, vol. 63, 2007, pages 1435

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942548A (zh) * 2012-11-20 2013-02-27 南京理工大学 一种δ-十二内酯的合成方法
CN102942548B (zh) * 2012-11-20 2015-04-22 南京理工大学 一种δ-十二内酯的合成方法
WO2015074162A1 (es) 2013-11-22 2015-05-28 Pontificia Universidad Catolica De Chile Variantes de enzima fenilacetona monooxigenasa (pamo) capaces de catalizar conversión de ciclohexanona a caprolactona.

Also Published As

Publication number Publication date
US20130217898A1 (en) 2013-08-22
EP2636665B1 (en) 2016-06-22
JPWO2012060185A1 (ja) 2014-05-12
US8853426B2 (en) 2014-10-07
JP5920889B2 (ja) 2016-05-18
EP2636665A1 (en) 2013-09-11
EP2636665A4 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5920889B2 (ja) エステルの製法
Ohrai et al. Effects of solvents and additives in the asymmetric Heck reaction of alkenyl triflates: catalytic asymmetric synthesis of decalin derivatives and determination of the absolute stereochemistry of (+)-vernolepin
Oare et al. Stereochemistry of the Base‐Promoted Michael Addition Reaction
Hiratake et al. Irreversible and highly enantioselective acylation of 2-halo-1-arylethanols in organic solvents catalyzed by a lipase from Pseudomonas fluorescens
Caron et al. An optimized sequential kinetic resolution of trans-1, 2-cyclohexanediol
Thummel et al. Base-induced rearrangement of epoxides. V. Phenyl-substituted epoxides
Chenal et al. Carbon monoxide as a building block in organic synthesis: Part II. One-step synthesis of esters by alkoxycarbonylation of naturally occurring allylbenzenes, propenylbenzenes and monoterpenes
JP3251525B2 (ja) 3−オキソカルボン酸エステルの製造方法
CN109956850B (zh) 3,7-二甲基-7-辛烯醇和3,7-二甲基-7-辛烯基羧酸酯化合物的生产方法
Simpura et al. Tandem aldol-transfer–Tischtschenko reaction of aldehydes and β-hydroxyketones catalyzed by trimethylaluminum
CN106946705B (zh) 一种合成(1r,2s)-二氢茉莉酮酸甲酯的方法
Yadav et al. InBr3-catalyzed stereoselective synthesis of trans-2, 6-disubstituted 3, 6-dihydro-2H-pyrans
EP0676404A2 (en) Oxotitanium complexes useful as asymmetric reaction catalysts particularly for producing beta-hydroxy ketones or alpha-hydroxy carboxylic acid esters
Lattanzi et al. Synthesis of a renewable hydroperoxide from (+)-norcamphor: influence of steric modifications of the bicyclic framework on asymmetric sulfoxidation
EP2948245B1 (en) Process for the preparation of 4-methylpent-3-en-1-ol derivatives
US3202704A (en) Ech=che
Yadav et al. Indium (III) chloride catalyzed allylation of gem-diacetates: a facile synthesis of homoallyl acetates
JP3626520B2 (ja) 3−置換−3−メチルブタナールの製造方法
JP2838656B2 (ja) ヒノキチオール及びその中間生成物の製造方法
RU2565059C1 (ru) Способ получения амидов карбоновых кислот
CN114292163B (zh) 一种香茅醛制备异胡薄荷醇的方法
Guo Mild Electrocyclization of Heptatrienyl Anions
Soorukram et al. Reactions of the vicinal dianion of di-(-)-menthyl succinate with carbonyl compounds and benzyl bromide
SU615056A1 (ru) Способ получени 1,5-диметилциклооктадиена-1,5
CN108484554B (zh) 一种抗锥虫、抗癌天然产物Cryptofolione的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541793

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011837836

Country of ref document: EP