WO2012058809A1 - 可调式流体喷射器 - Google Patents
可调式流体喷射器 Download PDFInfo
- Publication number
- WO2012058809A1 WO2012058809A1 PCT/CN2010/078391 CN2010078391W WO2012058809A1 WO 2012058809 A1 WO2012058809 A1 WO 2012058809A1 CN 2010078391 W CN2010078391 W CN 2010078391W WO 2012058809 A1 WO2012058809 A1 WO 2012058809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- opening
- needle valve
- section
- diffuser
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0441—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
- B05B7/045—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being parallel just upstream the mixing chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/30—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
- B05B1/3013—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the controlling element being a lift valve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/12—Spray pistols; Apparatus for discharge designed to control volume of flow, e.g. with adjustable passages
Definitions
- This invention relates to fluid ejection devices, and more particularly to an adjustable fluid injector.
- the injector is a very widely used fluid mechanical device. After the fluid passes through the device, it is mixed with another fluid and exchanges energy to form a mixed fluid having a pressure between the two fluid pressures.
- the ejector effect of the ejector is related to the external fluid parameters and the internal structural parameters of the ejector. If the two are well matched, the ejector effect is better, and vice versa.
- the ejector efficiency is defined as the ratio of the useful energy obtained by the ejector fluid to the useful energy lost by the working fluid.
- the accuracy of the injector processing will directly affect the performance of the injector in practical applications. If the concentricity of the nozzle and the mixing section is deviated during processing, that is, the two concentric axes cannot completely overlap, the mixing efficiency of the two fluids in the diffuser is reduced, that is, the two fluids cannot perform sufficient momentum and energy exchange, and thus Reduce injector efficiency.
- the nozzle extension joint and the diffuser were welded together by a joint. Due to processing conditions, it is difficult to ensure that the nozzle extension joint has the same concentric axis as the diffuser.
- the accuracy of the needle adjustment will be affected.
- the axes of the two are deviated, the refrigerant ejected through the nozzles does not enter the mixing chamber well.
- the technical problem to be solved by the present invention is to provide a fluid ejector with adjustable internal parameters, and in particular to provide a high processing precision and can simultaneously adjust the cross-sectional area of the nozzle throat and the cross-sectional area of the mixing section. Modulated fluid ejector.
- a tunable fluid ejector comprising:
- an injector body consisting of a nozzle body, a receiving chamber cavity and a diffuser; wherein the nozzle body is constituted by a nozzle extension joint and a nozzle; and the nozzle extension joint is provided to be connected to a high pressure fluid inlet passage
- the inlet of the nozzle is provided with a nozzle constriction portion, a nozzle throat and a nozzle expansion portion in sequence, the cross-sectional area of the nozzle throat being the smallest in the nozzle body, so that the nozzle can be used for decompressing and expanding fluid ;
- the outer casing of the receiving chamber cavity is a T-shaped three-way joint, and the T-shaped three-way joint is provided with a first opening, a second opening and a third opening, wherein the first opening and the second opening are the same a horizontal interface of the shaft, the third opening is a vertical interface;
- the diffuser is composed of a tapered inlet section, a variable section mixing chamber and a diffusing section, and the section of the variable section mixing chamber is reduced from an end near the tapered inlet section to an end near the diffusing section.
- the tapered inlet section and the variable section mixing chamber constitute a mixing section;
- the needle valve body is composed of a valve stem and a needle valve
- the needle valve is composed of a tapered portion of the needle valve, a cylindrical portion of the needle valve and a tapered portion of the needle valve;
- the driving device with the control device is connected to one end of the nozzle extension joint, the other end of the nozzle extension joint is sealed with the first opening; the nozzle is located inside the injector body, An end of the nozzle is located in the tapered inlet section; an end of the diffuser adjacent to the tapered inlet section is sealingly sleeved with the second opening, and the diffuser is adjacent to the other end of the diffusing section a fluid outlet passage connected; the third opening being connected to the low pressure fluid inlet passage;
- the needle valve body passes through the interior of the nozzle body, and the movable range of the end of the needle valve extends at least from the nozzle throat to the mixing section, and the end of the valve stem is
- the driving device with the control device is connected;
- the nozzle body, the needle valve body, the diffuser, and the horizontal passage formed by the first opening and the second opening have the same axial center line.
- the driving device with the control device adopts manual adjustment control, pneumatic adjustment control or electric adjustment control.
- the drive device with the control device is preferably a linear spiral coil motor.
- one end of the nozzle body adjacent to the nozzle is provided with a support frame for fixing the needle valve body.
- the support frame is a circular plate having a plurality of evenly distributed flow holes for the passage of fluid; the center of the plate of the circular plate is provided with a circular hole having the same diameter as the outer diameter of the end of the needle valve.
- the needle valve is passed through.
- the T-shaped three-way joint is a T-shaped reducer tee joint, which is convenient for adapting to different sizes of nozzle extension joints and diffusers, and is also suitable for low-pressure fluids of various characteristics.
- the first opening and the second opening of the T-shaped three-way joint have the same inner diameter, which is convenient for fitting with the nozzle extension joint and the diffuser, and is also applicable to low-pressure fluids of various characteristics.
- the first opening, the second opening and the third opening of the T-shaped three-way joint are circular passages, which are convenient for processing and installation.
- the tapered portion of the needle valve is conical.
- the fluid is in any of a gas-liquid two-phase state, a liquid state, or a supercritical state.
- the high pressure fluid after the high pressure fluid enters from the inlet passage on the nozzle extension joint, it flows through the nozzle body to expand under pressure, forming a low-pressure high-speed fluid to be ejected from the nozzle outlet and sucking the low-pressure fluid from the low-pressure fluid passage in the chamber.
- the mixing section Enter the mixing section to convert the momentum and energy. After the two fluid pressures and speeds are evenly mixed, they enter the expansion section to pressurize and then flow out from the mixed fluid passage.
- the diffuser is brought close to the taper by fastening the outer surface of the other end of the nozzle extension joint to the inner surface of the first opening of the T-shaped tee joint to form a sealing sleeve.
- the outer surface of one end of the inlet section is fastened with the inner surface of the second opening of the T-shaped tee to form a sealing sleeve, so that the nozzle body and the diffuser have the same concentric axis, due to the needle
- the valve body is coaxial with the nozzle body, so that it is also ensured that the needle valve body and the diffuser have the same concentric axis.
- the horizontal channels, which are also formed by the first opening and the second opening also have the same axial line.
- the same axial center line of the nozzle body, the diffuser, and the horizontal passage formed by the first opening and the second opening is referred to as the axial direction of the injector body.
- the needle valve body is controlled and driven to move axially by a driving device with a control device, so that the needle valve also moves along the axial direction of the injector body, and the nozzle throat fluid passage can be simultaneously adjusted and The cross-sectional area of the mixing section fluid passage.
- the cross-sectional area of the inner flow area of the nozzle throat and the mixing section and the actual fluid flow defined by the needle valve varies according to the taper of the needle valve.
- the T-type three-way joint is used instead of the connecting member, which solves the problem that the processing of the nozzle extension joint and the diffuser is difficult, the processing precision is low, and the processing is convenient and the cost is low. Etc.
- the present invention has the following beneficial technical effects:
- the adjustable fluid ejector of the invention can not only adjust the cross-sectional area of the nozzle throat, but also adjust the cross-sectional area of the mixing section at the same time to improve the efficiency of the ejector when the external working condition is changed.
- the parameter adjustment can be performed by controlling the movement of the needle valve body along the axial direction of the injector body, thereby improving the injector. effectiveness.
- the outer casing of the receiving chamber cavity is a T-shaped three-way joint for connecting the nozzle extension joint and the diffuser, and the coaxiality of the nozzle body and the diffuser is easily realized, which greatly improves the The processing accuracy of the injector. Since the coaxiality of the nozzle body and the diffuser is ensured, it is equivalent to ensuring the coaxiality of the needle valve body and the diffuser coaxial with the nozzle body, so that the nozzle body, the needle valve body and the diffuser Both are coaxial and the precision of the needle valve adjustment is high.
- the nozzle body, the needle valve body and the diffuser are all coaxial, the fluid sprayed through the nozzle smoothly enters the mixing chamber, and there is no phenomenon that a large amount of high-speed fluid accumulates in the receiving chamber and is recirculated in the chamber, thereby effectively protecting The ability of the injector to ignite low pressure fluids increases the efficiency of the injector.
- Figure 1 is a schematic view showing the structure of the adjustable fluid ejector of the present invention
- Figure 2 is an enlarged schematic view showing the structure of the nozzle and the mixing section of the present invention
- Figure 3 is a schematic view showing the structure of a needle valve in the present invention.
- Figure 4 is a schematic view showing the movement of the needle valve in the axial direction of the injector body in the present invention
- FIG. 5 is a schematic structural view of an adjustable fluid ejector using a linear spiral coil motor as a driving device with a control device according to the present invention
- FIG. 6 is a schematic structural view of a T-shaped reducer tee joint of the present invention.
- Figure 7 is a schematic view of a spray cycle of a first embodiment of an adjustable fluid ejector to which the present invention is applied;
- Figure 8 is a schematic illustration of a spray cycle of a second embodiment of a tunable fluid ejector to which the present invention is applied.
- an adjustable fluid ejector includes: a drive device 6 with a control device, a nozzle extension joint 7, a nozzle 2, a valve stem 3', a needle valve 3, a receiving chamber cavity 12, and a diffuser. 13.
- the outer casing of the receiving chamber cavity 12 is a T-shaped reducing tee joint 1, and the T-shaped reducing tee joint 1 is provided with a first opening 1a, a second opening 1b and a third opening 1c, wherein the first opening 1a and the second opening 1b are inter-level horizontal interfaces, both of which have the same axial line; the third opening 1c is a vertical interface, and the structure of the T-shaped reducing tee 1 is as shown in FIG.
- the diffuser 13 is composed of a mixing section 4 and a diffusing section 5, wherein the mixing section 4 is divided into a tapered inlet section 4a and a variable section mixing chamber 4b.
- the tapered inlet section 4a is adjacent to the receiving chamber cavity 12
- the diffuser section 5 is adjacent the injector outlet end
- the end of the diffuser section 5 is provided with an outlet connected to the mixed fluid outlet passage 10.
- the variable section mixing chamber 4b is located between the tapered inlet section 4a and the diffusing section 5, and the section of the variable section mixing chamber 4b is reduced from one end near the tapered inlet section 4a to the end near the diffusing section 5.
- the nozzle 2 is provided with a nozzle contraction portion 2c, a nozzle throat portion 2a and a nozzle expansion portion 2b in this order.
- the cross-sectional area of the nozzle throat portion 2a is the smallest among the nozzle bodies constituted by the nozzle 2 and the nozzle extension joint 7, so that Nozzle 2 can be used to decompress and expand fluid.
- the nozzle extension joint 7 is provided with an inlet connected to the high pressure fluid inlet passage 8.
- the nozzle 2 and the nozzle extension joint 7 constitute a nozzle body.
- the nozzle body is fixed by the connection of the nozzle extension joint 7 to the drive unit 6 of the belt control device.
- the nozzle body, the receiving chamber cavity 12 and the diffuser 13 constitute an injector body.
- the needle valve 3 is constituted by a needle valve tapered portion 3a, a needle valve cylindrical portion 3b, and a needle valve tapered portion 3c, and the valve stem 3' and the needle valve 3 constitute a needle valve body.
- the needle valve body passes through the inside of the nozzle body and is coaxial with the nozzle body.
- the support member 11 is a circular plate having a plurality of evenly distributed flow holes for the passage of fluid; the center of the plate of the circular plate is provided with a circular hole having the same diameter as the outer diameter of the end portion of the needle valve 3, for the needle valve 3 by.
- the inner surface of the first opening 1a is fastened to the outer surface of the other end of the nozzle extension joint 7 to form a sealing sleeve, and the diffuser 13 is adjacent to the outer surface of one end of the tapered inlet section 4a and the inner surface of the second opening 1b. Fastened together to form a sealed sleeve, which ensures that fluid does not ooze out within the receiving chamber cavity 12, while also ensuring that the nozzle body and the diffuser 13 have the same concentric axis. That is, the needle valve body has the same axial center line as the diffuser 13; the horizontal passages, which are also constituted by the first opening 1a and the second opening 1b, also have the same axial center line. The same axial center line of the nozzle body, the diffuser, and the horizontal passage formed by the first opening and the second opening is referred to as the axial direction of the injector body.
- the movable range of the end of the needle valve 3 extends at least from the nozzle throat 2a into the mixing section 4, as shown in FIG.
- the end of the valve stem 3' is connected to a drive device 6 with a control device, and the drive device 6 with the control device controls and drives the needle valve body along the axial direction of the nozzle 2 and the mixing section 4 (i.e., the axial direction of the injector body) Moving in the direction such that the needle valve 3 also moves along the axial direction of the nozzle 2 and the mixing section 4 (i.e., the axial direction of the injector body) to simultaneously adjust the cross-sectional area of the nozzle throat fluid passage and the mixing section fluid passage. effect.
- the tapered portion 3c of the needle valve causes the cross-sectional area of the variable-section mixing chamber 4b to be continuously reduced, realizing the required area adjustment.
- the cross-sectional area of the nozzle throat 2a is correspondingly increased by the adjustment of the tapered portion 3a of the needle valve, and the needle valve is moved backward in the axial direction of the injector body [from Fig. 4(b)
- the tapered portion 3c of the needle valve causes the cross section of the variable section mixing section 4b to be continuously increased, and the required area adjustment is achieved.
- the third opening 1c is connected to the low pressure fluid inlet passage 9, and the low pressure fluid enters the receiving chamber cavity 12 from the third opening 1c; at the same time, the high pressure fluid enters from the inlet on the nozzle extension joint 7 connected to the high pressure fluid inlet passage 8.
- the nozzle expansion portion is ejected by the low-pressure high-speed fluid, and the low-pressure fluid in the cavity 12 of the receiving chamber is mixed in the mixing section 4, and then diffused by the diffusing section 5, Flowing out of the mixed fluid outlet passage 10 in the form of a mixed fluid of intermediate pressure.
- the driving device 6 with the control device is a linear spiral coil motor.
- the working principle of the driving device 6 with the control device is as follows: firstly, by collecting the operating parameters of the system such as the gas cooler refrigerant outlet temperature, the high pressure side pressure, etc., and then using the control algorithm to make the output signal control the step size of the linear spiral tube coil stepping motor The predetermined movement of the needle valve body is realized, and finally the optimal control is achieved.
- water vapor acts as a refrigerant.
- the water vapor is heated and vaporized in the boiler 19 by constant pressure, and then the water vapor is injected into the nozzle 2 at a high speed, and the water vapor which is vaporized by the evaporator 22 is sucked at the nozzle outlet due to the turbulent diffusion of the jet boundary layer.
- the water vapor is subjected to a balance of speed and an increase in pressure in the mixing section 4.
- the mixture is cooled down, and a mixed fluid having a centering pressure is formed at the outlet of the injector.
- the condenser 21 condenses and dissipates the mixed fluid from the ejector diffuser section 5, and a part of the exothermic mixed fluid is throttled and depressurized into the evaporator through the throttle valve 23, and the mixed fluid exchanges heat with the outdoor air. Achieve steam jet refrigeration. Another portion of the mixed fluid is lifted by the circulation pump 20 and then enters the boiler 19 for the next cycle.
- ammonia, a halogenated hydrocarbon, air or a component thereof, carbon dioxide or the like and a mixture containing one or more of them may be used as the refrigerant.
- the following is a description of the implementation of the injection cycle by taking a heat pump water heater using carbon dioxide as a refrigerant as an example.
- the compressor 14 draws and compresses the refrigerant.
- the high-pressure side heat exchanger 15 gas cooler
- the low-pressure side heat exchanger 18 evaporates the liquid refrigerant by heat exchange between the outdoor air and the liquid refrigerant.
- the ejector entrains the vaporized refrigerant in the evaporator 18 while decompressing and expanding the refrigerant coming out of the gas cooler 15, and increasing the pressure of the refrigerant to be compressed by converting kinetic energy into pressure energy.
- Machine 14 The gas-liquid separator 17 separates the refrigerant from the injector into a gas refrigerant and a liquid refrigerant.
- the gas refrigerant outlet of the gas-liquid separator 17 is connected to the suction port of the compressor 14, and its liquid refrigerant outlet is connected to the inlet of the evaporator 18.
- the throttle valve 16 is installed on the refrigerant line between the liquid refrigerant outlet of the gas-liquid separator 17 and the inlet of the evaporator 18, and decompresses the liquid refrigerant entering the evaporator 18.
- the exothermicly cooled refrigerant passing through the gas cooler 15 expands into the nozzle of the injector, forming a high velocity low pressure fluid at the outlet of the injector nozzle 2, entraining the gaseous refrigerant from the evaporator 18, and the two streams are in the mixing section of the injector 4 Performing momentum and energy exchange, and after the pressure is boosted by the expansion section 5, a mixed fluid having a centering pressure between the evaporation pressure and the compressor discharge pressure is formed at the injector outlet.
- variable cross-section mixing section 4b is mainly characterized by a tapered tapered mixing section, and the variable cross-section mixing chamber structure is adjusted by the tapered portion 3c of the needle valve to achieve an approximately optimal adjustment.
- the adjustment of the different sections of the mixing section can be realized flexibly by the movement of the tapered portion of the needle valve on the axis, and the cross-sectional area of the mixing chamber and the critical cross-sectional area of the nozzle can be realized.
- the ratio ⁇ is always at the optimal value ⁇ opt.
- the cross-sectional area of the inner flow area of the mixing section 4, the nozzle throat 2a and the nozzle expansion section 2c and the actual fluid defined by the needle valve 3 varies according to the taper of the needle valve 3.
- the driving device 6 with the control device is flexibly implemented to adjust the cross-sectional area of the throat 2a of the nozzle and the cross-sectional area of the mixing section 4.
Landscapes
- Jet Pumps And Other Pumps (AREA)
Description
本发明涉及流体喷射装置,尤其涉及一种可调式流体喷射器。
喷射器是一种应用非常广泛的流体机械装置。流体通过这种装置后,与另外一股流体混合,并发生能量交换,从而形成一股压力介于两股流体压力之间的混合流体。
喷射器的引射效果与外部流体参数以及喷射器的内部结构参数有关,如果两者匹配较好,则引射效果较好,反之,则较差。当实际工况中外部参数变化时,特别是进入喷嘴的流体的流率变化时,将导致喷射器外部流体参数与内部结构参数匹配的失调,从而大大降低喷射器的效率。喷射器效率定义为引射流体所获得的有用能与工作流体所丧失的有用能之比。
此外,喷射器加工精度的高低将直接影响到喷射器在实际应用中其性能的好坏。如果喷嘴与混合段的同心轴在加工中出现偏差,即两同心轴不能完全重合,会降低两种流体在扩压器内的混合效率,即两种流体不能进行充分的动量和能量交换,进而降低喷射器效率。
在以往的喷射器设计中,喷嘴延伸接头与扩压器是通过连接件焊在一起的,由于加工条件的限制,很难保证喷嘴延伸接头与扩压器具有相同的同心轴。这样,一方面,由于喷射器喷嘴喉部直径、混合室内径等计算尺寸很小(几个毫米),只要两者轴心存在微小的偏离,都将会影响喷针调节的精度。另一方面,假若两者轴心偏离,经喷嘴喷出的制冷剂不能很好的进入混合室,此时高速流体大量堆积在接受室,并在接受室内有可能会出现回流现象,从而大大降低引射低压流体的能力,导致喷射器的效率下降。
本发明所要解决的技术问题是:提供一种内部结构主要参数可调的流体喷射器,尤其是提供一种具有高加工精度的、且可同时调节喷嘴喉部截面积和混合段截面积的可调式流体喷射器。
一种可调式流体喷射器,包括:
(1)带控制装置的驱动装置;
(2)喷射器主体,由喷嘴主体、接受室空腔和扩压器构成;其中,所述的喷嘴主体,由喷嘴延伸接头和喷嘴构成;所述喷嘴延伸接头设有与高压流体进口通道连接的入口,所述喷嘴的端部依次设有喷嘴收缩部分、喷嘴喉部和喷嘴扩张部分,所述喷嘴喉部的截面积在喷嘴主体中最小,这样,所述喷嘴可用于减压和膨胀流体;
所述接受室空腔的外壳为T型三通接头,所述T型三通接头上设有第一开口、第二开口和第三开口,所述第一开口和第二开口为互通的同轴水平接口,所述第三开口为垂直接口;
所述扩压器由锥形入口段、变截面混合室和扩压段依次构成,所述的变截面混合室的截面自靠近锥形入口段的一端到靠近扩压段的一端减小,所述的锥形入口段和变截面混合室构成混合段;
(3)针阀主体,由阀杆和针阀构成,所述针阀由针阀渐缩部分、针阀圆柱部分和针阀锥形部分依次构成;
其中,所述带控制装置的驱动装置与所述喷嘴延伸接头的一端连接,所述喷嘴延伸接头的另一端与所述第一开口密封套接;所述喷嘴位于所述喷射器主体内部,所述喷嘴的端部位于所述锥形入口段内;所述扩压器靠近锥形入口段的一端与所述第二开口密封套接,所述扩压器靠近扩压段的另一端与混合流体出口通道相连;所述第三开口与低压流体进口通道相连;
所述的针阀主体从所述喷嘴主体内部穿过,所述针阀的端部的可移动范围至少从所述喷嘴喉部延伸至所述的混合段内,所述阀杆的端部与所述带控制装置的驱动装置连接;
所述的喷嘴主体、针阀主体、扩压器以及由所述的第一开口和第二开口构成的水平通道具有相同的轴心线。
可选地,所述带控制装置的驱动装置采取手动调节控制、气动调节控制或电动调节控制。所述带控制装置的驱动装置优选为线性螺旋管线圈电动机。
可选地,所述喷嘴主体靠近喷嘴的一端设有一支撑架,用于固定所述针阀主体。
可选地,所述支撑架为一圆形板,具有均匀分布的多个流孔,供流体通过;所述圆形板的板中心设有一直径与针阀端部外径相同的圆孔,供所述针阀通过。
可选地,所述T型三通接头为T型的异径三通接头,方便与不同尺寸的喷嘴延伸接头和扩压器适配,同时,也适用于各种不同特性的低压流体。
可选地,所述T型三通接头的第一开口和第二开口的内径相等,方便与喷嘴延伸接头和扩压器适配,同时,也适用于各种不同特性的低压流体。
可选地,所述T型三通接头的第一开口、第二开口和第三开口均为圆形通道,便于加工和安装。
可选地,所述针阀锥形部分为圆锥状。
可选地,所述流体处于气-液两相状态、液态或超临界状态中的任一种状态。
本发明中,高压流体自喷嘴延伸接头上的入口通道进入后,流经喷嘴主体减压膨胀,形成一股低压高速的流体从喷嘴出口喷射出去并卷吸接受室内来自低压流体通道的低压流体一起进入混合段进行动量和能量的转化,待两股流体压力和速度混合均匀后进入扩压段增压,之后从混合流体通道流出。
本发明中,通过将所述喷嘴延伸接头的另一端的外表面与所述T型三通接头的第一开口的内表面紧固在一起形成密封套接,将所述扩压器靠近锥形入口段的一端的外表面与所述T型三通接头的第二开口的内表面紧固在一起形成密封套接,就可以保证喷嘴主体与扩压器具有相同的同心轴,由于所述针阀主体与所述喷嘴主体同轴,所以,也保证了所述针阀主体与扩压器具有相同的同心轴。同样由第一开口和第二开口构成的水平通道也具有相同的轴心线。喷嘴主体、扩压器、由第一开口和第二开口构成的水平通道所具有的相同的轴心线称为喷射器主体的轴向。
本发明中,通过带控制装置的驱动装置来控制和驱动所述的针阀主体沿轴向移动,这样,针阀也沿着喷射器主体的轴向移动,可以同时调节喷嘴喉部流体通道和混合段流体通道的截面积。喷嘴喉部和混合段的内流通面积与针阀限定的实际流体流通的截面面积根据针阀的锥形相应的进行变化。
本发明中,使用T型三通接头代替连接件,很好的解决了为保证喷嘴延伸接头与扩压器同轴而存在的加工难度大、加工精度低的难题,并且具有加工方便,成本低廉等优点。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的可调式流体喷射器,不仅能调整喷嘴喉部截面积,而且能同时对混合段截面积也进行相应的调整,以提高喷射器在外界工况改变时的效率。当实际工况中各参数变化时,特别是进入喷嘴的流体的流率变化时,可通过控制针阀主体沿着喷射器主体的轴向方向的移动,来进行参数调节,从而提高喷射器的效率。
本发明的可调式流体喷射器,所述接受室空腔的外壳为T型三通接头,用于连接喷嘴延伸接头和扩压器,容易实现喷嘴主体和扩压器的同轴,大大提高了喷射器的加工精度。由于保证了喷嘴主体和扩压器的同轴,就相当于同时保证了与喷嘴主体同轴的针阀主体和扩压器的同轴,这样一来,喷嘴主体、针阀主体和扩压器均实现同轴,针阀调节的精度高。此外,由于喷嘴主体、针阀主体和扩压器均实现同轴,经喷嘴喷出的流体顺利进入混合室,不会出现高速流体在接受室的大量堆积以及在接受室内回流的现象,有效保障了喷射器引射低压流体的能力,从而提高喷射器的效率。
图1为本发明的可调式流体喷射器的结构示意图;
图2为本发明中喷嘴和混合段的结构放大示意图;
图3为本发明中针阀的结构示意图;
图4为本发明中针阀沿着喷射器主体的轴向方向移动的示意图;
图5为本发明中采用线性螺旋管线圈电动机作为带控制装置的驱动装置的可调式流体喷射器的结构示意图;
图6为本发明中T型的异径三通接头的结构示意图;
图7为应用本发明的可调式流体喷射器的第一种实施例的喷射循环示意图;
图8为应用本发明的可调式流体喷射器的第二种实施例的喷射循环示意图。
下面结合附图和实施例对本发明的结构及实施方案作进一步的说明。
如图1所示,一种可调式流体喷射器,包括:带控制装置的驱动装置6、喷嘴延伸接头7、喷嘴2、阀杆3′、针阀3、接受室空腔12和扩压器13。
接受室空腔12的外壳为T型的异径三通接头1、T型的异径三通接头1上设有第一开口1a、第二开口1b和第三开口1c,其中,第一开口1a和第二开口1b为互通的水平接口,两者具有相同的轴心线;第三开口1c为垂直接口,T型的异径三通接头1的结构如图6所示。
扩压器13由混合段4和扩压段5构成,其中,混合段4分为锥形入口段4a和变截面混合室4b。锥形入口段4a靠近接受室空腔12,扩压段5靠近喷射器出口端,扩压段5的端部设有与混合流体出口通道10连接的出口。变截面混合室4b位于锥形入口段4a和扩压段5之间,变截面混合室4b的截面自靠近锥形入口段4a的一端到靠近扩压段5的一端减小。
如图2所示,喷嘴2依次设有喷嘴收缩部分2c、喷嘴喉部2a和喷嘴扩张部分2b,喷嘴喉部2a的截面积在喷嘴2和喷嘴延伸接头7构成的喷嘴主体中最小,这样,喷嘴2可用于减压和膨胀流体。
喷嘴延伸接头7上设有与高压流体进口通道8连接的入口。喷嘴2和喷嘴延伸接头7构成喷嘴主体。喷嘴主体通过喷嘴延伸接头7与带控制装置的驱动装置6的连接固定。
喷嘴主体、接受室空腔12和扩压器13构成喷射器主体。
如图3所示,针阀3由针阀渐缩部分3a、针阀圆柱部分3b和针阀锥形部分3c依次构成,阀杆3′和针阀3构成针阀主体。针阀主体从所述喷嘴主体内部穿过,与喷嘴主体同轴。
针阀主体靠近阀杆3′的一端与带控制装置的驱动装置6连接,同时通过设在喷嘴主体靠近喷嘴2的一端上的支撑件11固定。支撑件11为一圆形板,具有均匀分布的多个流孔,供流体通过;所述圆形板的板中心设有一直径与针阀3端部外径相同的圆孔,供针阀3通过。
第一开口1a的内表面与喷嘴延伸接头7的另一端的外表面紧固在一起形成密封套接,扩压器13靠近锥形入口段4a的一端的外表面与第二开口1b的内表面紧固在一起形成密封套接,这样,既保证了流体在接受室空腔12内不会渗出,同时,也保证了喷嘴主体与扩压器13具有相同的同心轴。也即是,针阀主体与扩压器13具有相同的轴心线;同样由第一开口1a和第二开口1b构成的水平通道也具有相同的轴心线。喷嘴主体、扩压器、由第一开口和第二开口构成的水平通道所具有的相同的轴心线称为喷射器主体的轴向。
针阀3的端部的可移动范围至少从喷嘴喉部2a延伸至混合段4内,如图2所示。
阀杆3′的端部与带控制装置的驱动装置6连接,带控制装置的驱动装置6可控制和驱动针阀主体沿着喷嘴2和混合段4的轴向(即喷射器主体的轴向)方向移动,这样,针阀3也沿着喷嘴2和混合段4的轴向(即喷射器主体的轴向)移动,起到同时调节喷嘴喉部流体通道和混合段流体通道的截面积的作用。
喷射器的调节方式如图4所示:
当制冷剂流量减小时,通过针阀渐缩部分3a调节喷嘴喉部2a截面积相应的减小,在推动针阀沿喷射器主体的轴向向前移动【从图4(a)到图4(b)】的过程中,相应地,针阀锥形部分3c使得变截面混合室4b的截面积也不断减小,实现了所需的面积调节。
当制冷剂流量增大时,通过针阀渐缩部分3a的调节,喷嘴喉部2a截面积相应的增大,在推动针阀沿喷射器主体的轴向向后移动【从图4(b)到图4(a)】的过程中,相应地,针阀锥形部分3c使得变截面混合段4b的截面也不断增大,且实现所需的面积调节。
第三开口1c与低压流体进口通道9相连,低压流体从第三开口1c进入到接受室空腔12;同时,高压流体从与高压流体进口通道8相连的喷嘴延伸接头7上的入口进入,流经喷嘴主体并经喷嘴减压膨胀后,从喷嘴扩张部分以低压高速流体喷射出,并卷吸接受室空腔12中的低压流体在混合段4混合,再经扩压段5扩压后,以居中压力的混合流体的形式自混合流体出口通道10流出。
如图5所示,带控制装置的驱动装置6为线性螺旋管线圈电动机。带控制装置的驱动装置6的工作原理如下:首先通过采集系统工作参数如气体冷却器制冷剂出口温度、高压侧压力等,然后运用控制算法使输出信号控制线性螺旋管线圈步进电机的步长,实现针阀主体的预定移动,最终实现最优的控制。
将上述的可调式流体喷射器替压缩制冷的压气机应用在蒸汽喷射制冷中的喷射循环过程,如图7所示:
在蒸汽喷射制冷循环中,水蒸汽作为制冷剂。水蒸汽在锅炉19中定压加热汽化,随后水蒸汽进入喷嘴2高速喷出,并在喷嘴出口处由于射流边界层的紊动扩散作用卷吸在蒸发器22吸热汽化的水蒸汽,两股水蒸汽在混合段4进行速度的均衡和压力的升高。最后,混合流体进入扩压段5降速升压后,在喷射器出口形成居中压力的混合流体。冷凝器21将从喷射器扩压段5出来的混合流体冷凝放热,放热后的混合流体一部分通过节流阀23节流降压进入蒸发器,这部分混合流体与室外空气进行热交换,实现蒸汽喷射制冷。另一部分混合流体通过循环泵20提升压力后进入锅炉19进行下一轮的循环。
将上述的可调式流体喷射器应用在空调和热泵系统中的喷射循环过程,如图8所示:
在压缩喷射循环中,可以用氨、卤代烃、空气或其中的某一组分、二氧化碳等及其含有它们一种或几种的混合物作制冷剂。以下将以二氧化碳做制冷剂的热泵热水器为例说明其喷射循环的实施过程。压缩机14抽吸和压缩制冷剂。高压侧热交换器15(气体冷却器)通过压缩机排出的制冷剂与使用水进行热交换,获得热水。低压侧热交换器18(蒸发器)通过室外空气与液体制冷剂之间进行热交换使液体制冷剂蒸发。喷射器卷吸蒸发器18中的蒸发的制冷剂,同时使从气体冷却器15中出来的制冷剂减压和膨胀,并通过把动能转化成压力能来增加制冷剂的压力使其抽入压缩机14。气液分离器17把来自喷射器的制冷剂分离成气体制冷剂和液体制冷剂。气液分离器17的气体制冷剂出口连接压缩机14的吸入口,其液体制冷剂出口连接蒸发器18的入口。节流阀16安装在气液分离器17液体制冷剂出口和蒸发器18入口之间的制冷剂管路上,对进入蒸发器18的液体制冷剂减压。经气体冷却器15放热冷却的制冷剂进入喷射器的喷嘴膨胀,在喷射器喷嘴2出口处形成高速低压流体,卷吸来自蒸发器18的气体制冷剂,两股气流在喷射器的混合段4进行动量和能量交换,并经扩压段5降速升压后,在喷射器出口形成介于蒸发压力和压缩机排气压力之间的居中压力的混合流体。
在实际的喷射循环中,外部环境因素的变化(例如环境温度,风速等),导致气体冷却器15制冷剂出口温度变化,最终引起最优高压侧压力的变化。为调整高压侧压力,必须改变制冷剂流量,通过调节喷射器喷嘴的喉部2a截面积实现制冷剂流量的调节。而喷射器工作性能与混合段截面积与喷嘴的临界截面积的比值密切相关。若制冷剂的流量变化时,仅喷嘴喉部2a截面积被控制,而喷射器的混合段截面积不能调节,喷射器性能会受到较大的影响。所述的变截面混合段4b主要特征是为锥形渐缩混合段,通过针阀的锥形部分3c调节变截面混合室结构实现近似于最优调节。与固定式喷射器等截面混合段相比,可以通过针阀的锥形部分在轴线上的移动灵活的实现混合段流道不同面积的调节,能够实现混合室截面积与喷嘴的临界截面积的比值Ψ总是处于最优值Ψopt。相应的将混合段4、喷嘴喉部2a和喷嘴扩张段2c的内流通面积与针阀3限定的实际流体流通的截面面积根据针阀3的锥形相应的进行变化。应用带控制装置的驱动装置6灵活的实现针阀对喷嘴的喉部2a截面积和混合段4截面积的调节。
Claims (10)
- 一种可调式流体喷射器,其特征在于,包括:(1)带控制装置的驱动装置;(2)喷射器主体,由喷嘴主体、接受室空腔和扩压器构成;其中,所述的喷嘴主体,由喷嘴延伸接头和喷嘴构成;所述喷嘴延伸接头设有与高压流体进口通道连接的入口,所述喷嘴的端部依次设有喷嘴收缩部分、喷嘴喉部和喷嘴扩张部分,所述喷嘴喉部的截面积在喷嘴主体中最小;所述接受室空腔的外壳为T型三通接头,所述T型三通接头上设有第一开口、第二开口和第三开口,所述第一开口和第二开口为互通的同轴水平接口,所述第三开口为垂直接口;所述扩压器由锥形入口段、变截面混合室和扩压段依次构成,所述的变截面混合室的截面自靠近锥形入口段的一端到靠近扩压段的一端减小,所述的锥形入口段和变截面混合室构成混合段;(3)针阀主体,由阀杆和针阀构成,所述针阀由针阀渐缩部分、针阀圆柱部分和针阀锥形部分依次构成;其中,所述带控制装置的驱动装置与所述喷嘴延伸接头的一端连接,所述喷嘴延伸接头的另一端与所述第一开口密封套接;所述喷嘴位于所述喷射器主体内部,所述喷嘴的端部位于所述锥形入口段内;所述扩压器靠近锥形入口段的一端与所述第二开口密封套接,所述扩压器靠近扩压段的另一端与混合流体出口通道相连;所述第三开口与低压流体进口通道相连;所述的针阀主体从所述喷嘴主体内部穿过,所述针阀的端部的可移动范围至少从所述喷嘴喉部延伸至所述的混合段内,所述阀杆的端部与所述带控制装置的驱动装置连接;所述的喷嘴主体、针阀主体、扩压器以及由所述的第一开口和第二开口构成的水平通道具有相同的轴心线。
- 如权利要求1所述的可调式流体喷射器,其特征在于:所述带控制装置的驱动装置采取手动调节控制、气动调节控制或电动调节控制。
- 如权利要求1所述的可调式流体喷射器,其特征在于:所述带控制装置的驱动装置为线性螺旋管线圈电动机。
- 如权利要求1所述的可调式流体喷射器,其特征在于:所述喷嘴主体靠近喷嘴的一端设有一支撑架,用于固定所述针阀主体。
- 如权利要求4所述的可调式流体喷射器,其特征在于:所述支撑架为一圆形板,具有均匀分布的多个流孔,供流体通过;所述圆形板的板中心设有一直径与针阀端部外径相同的圆孔,供所述针阀通过。
- 如权利要求1所述的可调式流体喷射器,其特征在于:所述T型三通接头为T型的异径三通接头。
- 如权利要求1或6所述的可调式流体喷射器,其特征在于:所述T型三通接头的第一开口和第二开口的内径相等。
- 如权利要求1或6所述的可调式流体喷射器,其特征在于:所述T型三通接头的第一开口、第二开口和第三开口均为圆形通道。
- 如权利要求1所述的可调式流体喷射器,其特征在于:所述针阀锥形部分为圆锥状。
- 如权利要求1所述的可调式流体喷射器,其特征在于其所述流体处于气-液两相状态、液态或超临界状态中的任一种状态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/078391 WO2012058809A1 (zh) | 2010-11-04 | 2010-11-04 | 可调式流体喷射器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2010/078391 WO2012058809A1 (zh) | 2010-11-04 | 2010-11-04 | 可调式流体喷射器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012058809A1 true WO2012058809A1 (zh) | 2012-05-10 |
Family
ID=46023932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/078391 WO2012058809A1 (zh) | 2010-11-04 | 2010-11-04 | 可调式流体喷射器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012058809A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013185164A1 (en) * | 2012-06-12 | 2013-12-19 | Endless Solar Corporation Ltd | An ejector |
CN105855084A (zh) * | 2016-05-16 | 2016-08-17 | 浙江大学 | 可调式喷射器 |
CN109578806A (zh) * | 2018-12-07 | 2019-04-05 | 江苏中圣压力容器装备制造有限公司 | 一种lng闪蒸汽(bog)增压冷凝回收的工艺装置 |
CN110224156A (zh) * | 2019-07-18 | 2019-09-10 | 中山大洋电机股份有限公司 | 一种引射器及其应用的燃料电池进氢调节回氢装置 |
CN113432879A (zh) * | 2021-06-23 | 2021-09-24 | 中国航发沈阳发动机研究所 | 一种引射装置 |
CN114427409A (zh) * | 2020-09-09 | 2022-05-03 | 中国石油化工股份有限公司 | 可调式蒸汽临界流文丘里喷嘴和临界流量调控方法 |
CN115750468A (zh) * | 2022-11-28 | 2023-03-07 | 重庆长安新能源汽车科技有限公司 | 引射器、燃料电池系统及其控制方法 |
CN117983625A (zh) * | 2024-04-07 | 2024-05-07 | 牡丹江师范学院 | 一种艺术设计用颜料盘除垢设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4159082A (en) * | 1976-10-15 | 1979-06-26 | Firma Ernst Mueller Kg | Spray gun |
JP2002056868A (ja) * | 2000-08-10 | 2002-02-22 | Honda Motor Co Ltd | 燃料電池の流体供給装置 |
CN1470821A (zh) * | 2002-07-09 | 2004-01-28 | ��ʽ�����װ | 带有节流可控喷嘴的喷射器和使用它的喷射循环 |
CN101412011A (zh) * | 2008-11-07 | 2009-04-22 | 浙江大学 | 可调式喷射器 |
CN101491794A (zh) * | 2009-01-08 | 2009-07-29 | 浙江大学 | 高速喷射的气液混合相喷射器 |
-
2010
- 2010-11-04 WO PCT/CN2010/078391 patent/WO2012058809A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4159082A (en) * | 1976-10-15 | 1979-06-26 | Firma Ernst Mueller Kg | Spray gun |
JP2002056868A (ja) * | 2000-08-10 | 2002-02-22 | Honda Motor Co Ltd | 燃料電池の流体供給装置 |
CN1470821A (zh) * | 2002-07-09 | 2004-01-28 | ��ʽ�����װ | 带有节流可控喷嘴的喷射器和使用它的喷射循环 |
CN101412011A (zh) * | 2008-11-07 | 2009-04-22 | 浙江大学 | 可调式喷射器 |
CN101491794A (zh) * | 2009-01-08 | 2009-07-29 | 浙江大学 | 高速喷射的气液混合相喷射器 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013185164A1 (en) * | 2012-06-12 | 2013-12-19 | Endless Solar Corporation Ltd | An ejector |
CN105855084A (zh) * | 2016-05-16 | 2016-08-17 | 浙江大学 | 可调式喷射器 |
CN105855084B (zh) * | 2016-05-16 | 2018-05-15 | 浙江大学 | 可调式喷射器 |
CN109578806A (zh) * | 2018-12-07 | 2019-04-05 | 江苏中圣压力容器装备制造有限公司 | 一种lng闪蒸汽(bog)增压冷凝回收的工艺装置 |
CN109578806B (zh) * | 2018-12-07 | 2024-01-23 | 江苏中圣压力容器装备制造有限公司 | 一种lng闪蒸汽(bog)增压冷凝回收的工艺装置 |
CN110224156A (zh) * | 2019-07-18 | 2019-09-10 | 中山大洋电机股份有限公司 | 一种引射器及其应用的燃料电池进氢调节回氢装置 |
CN110224156B (zh) * | 2019-07-18 | 2023-10-10 | 中山大洋电机股份有限公司 | 一种引射器及其应用的燃料电池进氢调节回氢装置 |
CN114427409A (zh) * | 2020-09-09 | 2022-05-03 | 中国石油化工股份有限公司 | 可调式蒸汽临界流文丘里喷嘴和临界流量调控方法 |
CN113432879A (zh) * | 2021-06-23 | 2021-09-24 | 中国航发沈阳发动机研究所 | 一种引射装置 |
CN115750468A (zh) * | 2022-11-28 | 2023-03-07 | 重庆长安新能源汽车科技有限公司 | 引射器、燃料电池系统及其控制方法 |
CN117983625A (zh) * | 2024-04-07 | 2024-05-07 | 牡丹江师范学院 | 一种艺术设计用颜料盘除垢设备 |
CN117983625B (zh) * | 2024-04-07 | 2024-06-11 | 牡丹江师范学院 | 一种艺术设计用颜料盘除垢设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012058809A1 (zh) | 可调式流体喷射器 | |
CN1207524C (zh) | 具有节流可控喷嘴的喷射器减压装置 | |
CN1170097C (zh) | 喷射器循环系统 | |
CN101412011A (zh) | 可调式喷射器 | |
CN2585137Y (zh) | 喷射泵循环系统 | |
CN1470821B (zh) | 带有节流可控喷嘴的喷射器和使用它的喷射循环 | |
CN1267686C (zh) | 有节流阀可变喷嘴的喷射器及用该喷射器的循环系统 | |
CN106861961B (zh) | 一种可自动调节的喷射器 | |
CN106322807A (zh) | 喷射器热泵 | |
WO2018077045A1 (zh) | 喷嘴位置可调的喷射器及装置 | |
CN103380336B (zh) | 喷射器 | |
CN2583578Y (zh) | 用于喷射器循环系统的喷射器 | |
CN1460824A (zh) | 用于蒸汽压缩致冷系统的喷射器型减压器 | |
CN1776324A (zh) | 替代制冷机节流元件的两相流喷射器 | |
CN105855084B (zh) | 可调式喷射器 | |
KR100801658B1 (ko) | 연료전지용 양방향 가변노즐 이젝터 | |
CN117588467B (zh) | 一种宽速域稳定流场的背压生成系统和方法 | |
CN106938224A (zh) | 一种基于电子膨胀阀的可变面积比喷射器 | |
JP2003185275A (ja) | エジェクタ方式の減圧装置 | |
JPH1137577A (ja) | ノズル装置 | |
CN207974940U (zh) | 压缩机组件、制冷系统组件以及冰箱 | |
CN105752942A (zh) | 硫磺喷射器 | |
JP2557216Y2 (ja) | 液体ヘリウム液化冷凍装置冷媒循環用エジェクター | |
CN115264983B (zh) | 一种带有异型连喷结构喷射器的双效喷射式热泵循环系统 | |
CN115846074B (zh) | 一种可调式喷射装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10859157 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10859157 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10859157 Country of ref document: EP Kind code of ref document: A1 |