WO2012057161A1 - 一酸化炭素の製造方法及び製造装置 - Google Patents

一酸化炭素の製造方法及び製造装置 Download PDF

Info

Publication number
WO2012057161A1
WO2012057161A1 PCT/JP2011/074582 JP2011074582W WO2012057161A1 WO 2012057161 A1 WO2012057161 A1 WO 2012057161A1 JP 2011074582 W JP2011074582 W JP 2011074582W WO 2012057161 A1 WO2012057161 A1 WO 2012057161A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
gas
carbon dioxide
oxide
cerium
Prior art date
Application number
PCT/JP2011/074582
Other languages
English (en)
French (fr)
Inventor
肇 名井
八島 勇
菅野 明弘
陽介 柴田
雄一 妹尾
和也 木下
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN2011800354481A priority Critical patent/CN103003198A/zh
Priority to JP2012540889A priority patent/JPWO2012057161A1/ja
Publication of WO2012057161A1 publication Critical patent/WO2012057161A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a method and apparatus for producing carbon monoxide using carbon dioxide as a raw material. Moreover, this invention relates to the conversion agent used for this manufacturing method.
  • an oxygen deficient iron oxide is used to decompose carbon dioxide gas into carbon monoxide gas and oxygen gas, and the oxygen gas generated generates oxygen deficient iron oxide.
  • a technique for returning to the original iron oxide and recovering only carbon monoxide gas has been proposed (see Patent Document 1).
  • the above technique is a technique for producing carbon monoxide gas from carbon dioxide by a stoichiometric reaction with carbon dioxide using an iron oxide having oxygen deficiency, whereas catalytic catalytic reduction.
  • a technique for generating carbon monoxide gas from carbon dioxide has also been proposed.
  • carbon monoxide gas or carbon is obtained by catalytic reduction of carbon dioxide using a metal oxide such as WO 3 , Y 2 O 3 , ZnO or the like as a catalyst and hydrogen or methane as a reducing agent. It has been reported that it can be generated.
  • Patent Document 2 proposes a method of separating carbon dioxide into carbon monoxide and oxygen using a solid reaction membrane having an oxygen ion conductor made of CeO 2 and a catalyst.
  • oxygen is separated from carbon dioxide by a catalyst supported on an oxygen ion conductor made of CeO 2 , and this oxygen is diffused in the oxygen ion conductor by a potential generated due to a difference in oxygen concentration. .
  • Patent Document 3 discloses an oxygen ion conductive ceramic conductor which is a ceramic material selected from the group consisting of Bi 2 O 3 , ZrO 2 , CeO 2 and the like and mixtures thereof and doped with rare earth metal oxides. Are listed. The same document also discloses that an oxygen ion conductive ceramic conductor is brought into contact with carbon dioxide and saturated with oxygen to produce carbon monoxide, and an oxygen ion conductive ceramic conductor saturated with oxygen is brought into contact with a hydrocarbon gas. The removal of oxygen from oxygen ion conducting ceramic conductors.
  • cerium oxide containing rare earth elements excluding cerium
  • zirconium oxide containing rare earth elements has a reversible oxygen deficiency, or carbon dioxide to carbon monoxide. There is no mention that a reversible oxygen deficiency is required to produce.
  • Non-Patent Document 1 In the technique described in Non-Patent Document 1, it is necessary to introduce hydrogen and methane simultaneously with carbon dioxide. In addition to carbon monoxide and carbon as a product, unreacted carbon dioxide, hydrogen, methane, and the like are mixed. Therefore, it is economically disadvantageous in that it requires a separation step in the end, and when the product is carbon, the catalytic activity tends to decrease due to the precipitation on the catalyst. .
  • Patent Document 2 The technique described in Patent Document 2 is economically disadvantageous because a noble metal catalyst is used to decompose carbon dioxide into carbon monoxide and oxygen. Moreover, cerium oxide carrying a noble metal catalyst is only used as an ion pump for diffusing oxygen ions, and cerium oxide is not directly involved in the production of carbon monoxide from carbon dioxide.
  • an object of the present invention is to provide a method for producing carbon monoxide from carbon dioxide that can eliminate the various disadvantages of the above-described conventional technology.
  • a metal oxide having oxygen ion conductivity and a reversible oxygen deficiency is brought into contact with a carbon dioxide-containing gas under heating, and carbon dioxide is reduced by a stoichiometric reaction to produce a monoxide.
  • a method for producing carbon monoxide that produces carbon comprising: The present invention provides a method for producing carbon monoxide using cerium oxide containing rare earth elements (excluding cerium) or zirconium oxide containing rare earth elements as the metal oxide.
  • the present invention provides a suitable apparatus for carrying out the manufacturing method as described above.
  • the inner tube includes a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency,
  • a gas containing carbon dioxide is circulated between the outer tube and the inner tube, and a reducing gas is circulated in the inner tube, or reduction is performed between the outer tube and the inner tube.
  • a carbon dioxide-containing gas is circulated in the inner pipe.
  • the present invention provides an apparatus for producing carbon monoxide using cerium oxide containing rare earth elements (excluding cerium) or zirconium oxide containing rare earth elements as the metal oxide.
  • the present invention provides another suitable apparatus for carrying out the above manufacturing method.
  • This is a carbon monoxide production apparatus in which plate-like bodies comprising a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies and plate-like separators are alternately stacked.
  • a plurality of ridges and ridges extending in one direction are alternately arranged on each surface of each separator,
  • a carbon dioxide-containing gas is circulated through a concave portion located on the opposing surface of one separator and the plate-like body in two separators facing each other with the plate-like body sandwiched therebetween, and the other separator and the plate-like body Is configured to circulate the reducing gas through the concave portion located on the opposite surface
  • the present invention provides an apparatus for producing carbon monoxide using cerium oxide containing rare earth elements (excluding cerium) or zirconium oxide containing rare earth elements as the metal oxide.
  • the present invention provides an exhaust gas containing carbon dioxide generated from a steel mill, a smelter or a thermal power plant, and a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency.
  • a metal oxide having oxygen ion conductivity and having a reversible oxygen deficiency Contact with heating using waste heat generated from a steel plant or a thermal power plant, and reduce carbon dioxide in the exhaust gas by a stoichiometric reaction to produce carbon monoxide.
  • a system for converting carbon to carbon monoxide The present invention provides a system for converting carbon dioxide to carbon monoxide using cerium oxide containing rare earth elements (excluding cerium) or zirconium oxide containing rare earth elements as the metal oxide.
  • the present invention comprises a metal oxide having oxygen ion conductivity and having reversible oxygen vacancies, wherein the metal oxide contains a cerium oxide or a rare earth element containing a rare earth element (excluding cerium).
  • the present invention provides a converter for converting carbon dioxide to carbon monoxide comprising zirconium oxide.
  • carbon monoxide can be efficiently generated using carbon dioxide as a raw material. There is no carbon by-product in the production of carbon monoxide.
  • cerium oxide containing rare earth elements (but excluding cerium) or zirconium oxide containing rare earth elements used in the present invention produces carbon monoxide from carbon dioxide compared to cerium oxide or zirconium oxide containing no rare earth elements. This is advantageous in that the temperature at which the reaction occurs can be lowered, and the temperature at which oxygen deficiency occurs can be lowered. Note that the temperature at which the reaction for generating carbon monoxide occurs and the temperature at which oxygen vacancies are generated are not necessarily correlated. Factors for the efficient generation of carbon monoxide are not only the low temperature at which oxygen vacancies are generated, but the inclusion of rare earth elements also reduces the temperature at which the reaction to generate carbon monoxide from carbon dioxide occurs. One of the factors.
  • FIG. 1 is a schematic view showing an apparatus suitably used in the method for producing carbon monoxide of the present invention.
  • FIG. 2 is a schematic view showing another apparatus suitably used in the method for producing carbon monoxide of the present invention.
  • FIG. 3 is a schematic view showing still another apparatus suitably used in the method for producing carbon monoxide of the present invention.
  • FIG. 4 is a schematic diagram showing the apparatus used in the example.
  • FIG. 5 is an explanatory diagram showing a method for obtaining T red and T CO2 from a TG curve obtained using a differential thermothermal gravimetric simultaneous measurement apparatus.
  • carbon dioxide-containing gas is heated with a specific metal oxide (hereinafter, this metal oxide is also referred to as “converter to carbon monoxide” or simply “converter”).
  • this metal oxide is also referred to as “converter to carbon monoxide” or simply “converter”.
  • the reaction between the conversion agent and carbon dioxide gas is a stoichiometric reaction utilizing the reducing power of the conversion agent. That is, the conversion agent made of this metal oxide is not used as a catalyst, but as a reactant itself.
  • cerium oxide containing rare earth elements (excluding cerium) or zirconium oxide containing rare earth elements is used as the specific metal oxide. In the following description, when a rare earth element is doped into cerium oxide, it is assumed that the rare earth element does not contain cerium.
  • the conversion agent comprising the specific metal oxide
  • one having oxygen ion conductivity and having reversible oxygen vacancies is used. Since this conversion agent has a reversible oxygen deficiency, the conversion agent acquires the reducibility of carbon dioxide.
  • deletion is produced
  • a reversible defect is a defect in which oxygen can be taken into a deficient site. For example, when the metal oxide is cerium oxide containing a rare earth element, in the cerium oxide containing a rare earth element having a reversible defect, a charge unbalanced state caused by oxygen deficiency A part of it is reduced to trivalent to compensate.
  • Trivalent cerium is unstable and easily returns to tetravalent. Therefore, by incorporating oxygen into the deficient site, trivalent cerium returns to tetravalent, and the charge balance is always kept at zero. By incorporating oxygen into the deficient site, the deficiency disappears, but oxygen deficiency is generated again by treatment under strong reducing conditions. “Reversible oxygen deficiency” is used in this sense. The same applies to zirconium oxide containing rare earth elements.
  • Irreversible oxygen deficiency is formed by doping a metal oxide with an element having a valence lower than that of the metal.
  • Irreversible oxygen vacancies unlike reversible oxygen vacancies, are not vacancies generated by treatment under strong reducing conditions.
  • Irreversible oxygen vacancies include, for example, mixing a metal oxide with an oxide of a valence element lower than the valence of the metal, firing in the atmosphere, etc. To obtain.
  • the inorganic oxide is, for example, cerium oxide, all valences of cerium in cerium oxide having irreversible oxygen vacancies are tetravalent. Therefore, oxygen is not taken into the deficient site.
  • this oxygen deficiency is not capable of absorbing oxygen.
  • the irreversible oxygen deficiency is not caused by forced extraction of oxygen but is caused by charge compensation in the metal oxide.
  • the conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity as described above.
  • the oxygen ion conductivity may be developed at a temperature at which the production method of the present invention is performed. Since this conversion agent has oxygen ion conductivity, almost all of the reversible oxygen vacancies present in this conversion agent can be effectively utilized for the reaction with carbon dioxide.
  • the reason is as follows. That is, since the production method of the present invention is a reaction between a solid metal oxide and a gaseous carbon dioxide gas, the reaction mainly proceeds on the solid surface. And the oxygen deficiency which exists in the surface of a metal oxide couple
  • the metal oxide since the metal oxide has oxygen ion conductivity, oxygen associated with oxygen vacancies existing on the surface of the metal oxide is in the state of oxygen ions (O 2 ⁇ ). The oxygen vacancies disappear inside the metal oxide, and reversible oxygen vacancies are generated again on the surface of the metal oxide. By repeating this, almost all of the reversible oxygen vacancies present in the conversion agent can contribute to the reaction with carbon dioxide.
  • the iron oxide having oxygen vacancies described in Patent Document 1 described in the background section does not have oxygen ion conductivity, so that oxygen vacancies remain in the oxide. Even so, when all the oxygen vacancies present on the surface of the oxide disappear, the reactivity with carbon dioxide is greatly reduced.
  • the conversion agent comprising the metal oxide used in the present invention has oxygen ion conductivity and has the following advantages. That is, in this conversion agent, the reversible oxygen deficiency present in the converter can also contribute to the reaction with carbon dioxide, so that the reactivity with carbon dioxide can be achieved without excessively increasing the specific surface area of this conversion agent. Is hard to decline. Therefore, there is a degree of freedom that the reactant containing the conversion agent can be formed into a desired shape such as a granular shape, a pellet shape, a plate shape, or a cylindrical shape.
  • a metal oxide that does not have oxygen ion conductivity for example, an iron oxide having an oxygen vacancy described in Patent Document 1 described in the background section, has an oxygen vacancy existing therein.
  • the conversion agent comprising the metal oxide used in the production method of the present invention is essential to have oxygen ion conductivity and to have reversible oxygen vacancies.
  • cerium oxide containing a rare earth element or zirconium oxide containing a rare earth element is used as the metal oxide having the above.
  • the rare earth element may exist as a solid solution in cerium oxide and zirconium oxide, or may exist in an oxide state. Generally speaking, when the ratio of rare earth elements in cerium oxide and zirconium oxide is low, the rare earth elements tend to exist as solid solutions.
  • rare earth elements doped in cerium oxide or zirconium oxide include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (however, cerium oxide)
  • one or two or more rare earth elements selected from (except Ce) can be used, but one kind selected from Sc, Y, La, Pr, Sm, Gd and Yb
  • one or more rare earth elements selected from La, Pr, and Gd are used. It is preferable to use an element.
  • the ratio of the number of moles of rare earth elements to the total number of moles of cerium and rare earth elements Is preferably 0.001 to 0.5, more preferably 0.02 to 0.3, and particularly preferably 0.02 to 0.2.
  • zirconium oxide containing rare earth elements hereinafter referred to as rare earth element-containing zirconium oxide
  • the rare earth element content relative to the total number of moles of zirconium and rare earth elements.
  • the ratio of the number of moles is preferably 0.001 to 0.5, more preferably 0.02 to 0.3, and particularly preferably 0.02 to 0.2.
  • the temperature at which the rare earth element-containing cerium oxide and rare earth element-containing zirconium oxide react with carbon dioxide can be further lowered. Carbon monoxide can be efficiently generated using carbon dioxide as a raw material.
  • the temperature of the heat treatment in a reducing atmosphere when the oxygen deficiency is caused again in the rare earth element-containing cerium oxide and rare earth element-containing zirconium oxide whose oxygen deficiency has disappeared by the reaction with carbon dioxide is lowered.
  • cerium, zirconium and rare earth elements used in the production of the rare earth element-containing cerium oxide and rare earth element-containing zirconium oxide described later are used. The amount of element may be adjusted.
  • one or more elements selected from Bi, Zr and alkaline earth metal elements may be further added as a doping element.
  • one or more elements selected from Bi and an alkaline earth metal element may be further added as a doping element to the rare earth element-containing zirconium oxide.
  • the alkaline earth metal it is preferable to use one or more elements selected from Mg, Ca, Sr and Ba.
  • the ratio of the number of moles of the element to the total amount of cerium, the rare earth element and the number of moles of the element is preferably 0.001 to 0.2, More preferably, it is 0.01 to 0.2, and particularly preferably 0.02 to 0.2.
  • the ratio of the number of moles of the element to the total amount of zirconium, the rare earth element and the number of moles of the element is preferably 0.001 to 0.2, More preferably, it is 0.01 to 0.2, and particularly preferably 0.02 to 0.2.
  • the rare earth element-containing cerium oxide can be suitably produced, for example, by the following method.
  • Cerium carbonate and rare earth oxide are pulverized and mixed using a media mill such as a ball mill.
  • the obtained mixed powder is preferably 150 to 700 ° C., more preferably 150 to 600 ° C., particularly preferably 250 to 500 ° C., preferably 0.5 to 10 hours, more preferably 2 to 10 in an air atmosphere.
  • the obtained calcined product is pulverized with a mortar or the like, and the pulverized product is finally calcined at 400 to 1600 ° C., more preferably 1000 to 1600 ° C. in an air atmosphere.
  • the temperature for the main baking is set higher than the temperature for the preliminary baking.
  • the firing time is preferably 0.5 to 10 hours, more preferably 2 to 10 hours, provided that the firing temperature is within the above range.
  • zirconium carbonate may be used in place of cerium carbonate in the above production method.
  • a commercially available composite oxide of cerium oxide and rare earth oxide or a composite oxide of zirconium oxide and rare earth oxide is fired under the same conditions as the above firing conditions.
  • a rare earth element-containing cerium oxide or rare earth element-containing zirconium oxide in which reversible oxygen deficiency has not yet occurred can be obtained.
  • Such composite oxides are available from, for example, Anan Kasei Co., Ltd. and Daiichi Rare Element Chemical Co., Ltd.
  • a rare earth having a reversible oxygen deficiency used in the production method of the present invention by strongly reducing the rare earth element-containing cerium oxide and the rare earth element-containing zirconium oxide obtained by the above-described method to generate a reversible oxygen deficiency.
  • Element-containing cerium oxide and rare earth element-containing zirconium oxide can be obtained.
  • a hydrogen-containing atmosphere having a hydrogen concentration of not less than the lower explosion limit, preferably not less than 20% by volume is used as the reducing atmosphere.
  • the hydrogen concentration may be 100% by volume.
  • the present inventors consider that this reason is due to the addition of rare earth elements to cerium oxide and zirconium oxide.
  • the temperature during the strong reduction is preferably 300 to 1050 ° C, more preferably 320 to 1050 ° C, still more preferably 400 to 1050 ° C, and still more preferably 400 to 820 ° C.
  • the time for strong reduction is preferably 0.5 to 10 hours, more preferably 2 to 10 hours, provided that the temperature is in the above-mentioned range.
  • an OSC (oxygen storage and release capability) material is known as a metal oxide capable of absorbing oxygen.
  • OSC materials are often used as promoters for automotive catalysts.
  • the OSC material uses oxygen ion conductivity and valence change of cerium oxide, releases oxygen for oxidation reaction and absorbs oxygen for reduction reaction, so that the gas composition in exhaust gas Is used for the purpose of stably purifying exhaust gas with a three-way catalyst. Therefore, the OSC material is a co-catalyst for converting carbon monoxide in the exhaust gas to carbon dioxide, and is used in a reaction process opposite to the production method of the present invention that generates carbon monoxide from carbon dioxide. Is.
  • the reaction between the conversion agent and the carbon dioxide-containing gas used in the production method of the present invention is performed under heating.
  • the heating temperature is set at, for example, 280 to 1000 ° C., particularly 400 to 1000 ° C., particularly 400 to 800 ° C., particularly 400 to 600 ° C., to increase the conversion efficiency from carbon dioxide to carbon monoxide, and once generated This is preferable from the viewpoint of effectively preventing the conversion agent from being reduced and carbon dioxide from being regenerated by the action of carbon monoxide.
  • the reaction may be carried out batchwise or continuously. Since the reaction of this production method is a stoichiometric reaction, the amount of the conversion agent and the carbon dioxide-containing gas is 1 equivalent or more with respect to 1 equivalent of carbon dioxide when the reaction is carried out batchwise.
  • the carbon dioxide-containing gas brought into contact with the conversion agent may be composed of 100% by volume of carbon dioxide gas, or composed of carbon dioxide gas and one or more other gases. Also good. Examples of other gases include oxygen gas, nitrogen gas, carbon monoxide gas, methane gas, and acetylene gas.
  • the carbon dioxide-containing gas contains other gases, the carbon dioxide-containing gas is not particularly limited in the concentration of carbon dioxide gas, but considering the cost, carbon dioxide gas is contained in an amount of 1% by volume or more. Preferably, it is contained more than 15 volume%.
  • the other gas is oxygen gas, it is desirable that the ratio of oxygen gas to the total amount of gas to be supplied is as small as possible.
  • the carbon dioxide-containing gas including other gases include blast furnace gas and converter gas.
  • Blast furnace gas is a gas generated when pig iron is produced in a blast furnace, and its main components are nitrogen, carbon monoxide and carbon dioxide.
  • the blast furnace gas contains about 52 to 53% by volume of nitrogen, about 18 to 25% by volume of carbon monoxide, and about 20 to 24% by volume of carbon dioxide.
  • Converter gas is a gas generated when steel is produced in the converter, and its main components are carbon monoxide and carbon dioxide.
  • the converter gas contains about 50 to 80% by volume of carbon monoxide and about 15 to 17% by volume of carbon dioxide.
  • the temperature at which the conversion agent and the reducing gas are brought into contact with each other may be set to, for example, 300 to 1050 ° C., more preferably 320 to 1050 ° C., more preferably 400 to 1050 ° C., and still more preferably 400 to 820 ° C. preferable.
  • a hydrogen-containing gas or an acetylene-containing gas described later can be used as the reducing gas.
  • the hydrogen-containing gas include coke oven gas.
  • the coke oven gas is a gas generated when coke is produced in the coke oven, and its main components are hydrogen and methane.
  • the coke oven gas contains about 50 to 60% by volume of hydrogen and about 25 to 30% by volume of methane.
  • FIG. 1 schematically shows a carbon monoxide production apparatus suitably used in the production method of the present invention.
  • the apparatus shown in the figure is of a continuous type and has a double tube structure.
  • the apparatus 10 shown in the figure includes an outer tube 11 and an inner tube 12 disposed in the outer tube 11.
  • a heating device 13 such as a heater is disposed in the inner tube 12.
  • the inner tube 12 contains the conversion agent.
  • a carbon dioxide-containing gas is circulated in the space between the outer tube 11 and the inner tube 12. While the carbon dioxide-containing gas circulates in the space, carbon dioxide and the conversion agent contained in the inner tube 12 react to generate carbon monoxide.
  • the apparatus 10 shown in FIG. 1 is configured to circulate a reducing gas in the inner pipe 12 in addition to circulating the carbon dioxide-containing gas in the space between the outer pipe 11 and the inner pipe 12.
  • a reducing gas which is a typical example of a reducing gas, is described.
  • oxygen is extracted from the conversion agent oxidized by contact with carbon dioxide, and lost oxygen vacancies are generated again.
  • the conversion agent brought into contact with carbon dioxide to generate carbon monoxide and then the conversion agent oxidized by the contact with carbon dioxide is reduced to a reducing gas.
  • the metal oxide can be regenerated by carrying out strong reduction by contacting with the metal.
  • the conversion agent has oxygen ion conductivity.
  • a hydrogen-containing gas or an acetylene-containing gas can be used. It is particularly preferable to use a hydrogen-containing gas.
  • the concentration of hydrogen gas in such a reducing gas is preferably not less than the lower limit of explosion to 100% by volume, more preferably 20% to 100% by volume.
  • a relatively low temperature is sufficient for the processing temperature.
  • the reason for this is that rare earth elements are added to cerium oxide and zirconium oxide.
  • the treatment temperature is preferably 300 to 1050 ° C, more preferably 320 to 1050 ° C, still more preferably 400 to 1050 ° C, and still more preferably 400 to 820 ° C.
  • Strong reducing gas is generally at atmospheric pressure.
  • the heating device 13 is disposed inside the inner tube 12, but a heating device may be disposed around the outer tube 11 instead.
  • the heating device 13 is disposed inside the inner tube 12. It is advantageous in terms of ease of forced extraction of oxygen.
  • the temperature for forced extraction of oxygen can be set lower than when no rare earth element is contained. Therefore, the temperature at which the conversion agent 24 reacts with carbon dioxide and the temperature at which the oxidized conversion agent 24 is subjected to strong reduction treatment can be set substantially the same. Therefore, there are few restrictions on the arrangement position of the heating device 13. That is, the device 10 has a high degree of design freedom.
  • the flow direction of the carbon dioxide-containing gas and the flow direction of the reducing gas are the same direction, but instead, the flow direction of the carbon dioxide-containing gas and the flow direction of the reducing gas are changed. It may be in the opposite direction.
  • a configuration may be adopted in which a reducing gas is circulated in the space between the outer tube 11 and the inner tube 12 and a carbon dioxide-containing gas is circulated in the inner tube 12. it can.
  • a heating device around the outer tube 11.
  • the apparatus 20 shown in FIG. 2 includes two batch-type reaction apparatuses 21 and 22. Furthermore, the device 20 includes a switching valve 23.
  • the switching valve 23 has input parts 23a and 23b respectively connected to a carbon dioxide-containing gas source and a reducing gas source (in FIG. 2, hydrogen, which is a representative example of the reducing gas, is described). Yes. Furthermore, the switching valve 23 has output parts 23c and 23d connected to the reaction devices 21 and 22, respectively.
  • the conversion agent 24 can be disposed in the reaction apparatuses 21 and 22.
  • a heating device 25 is disposed around each of the reaction devices 21 and 22.
  • the carbon dioxide-containing gas or the reducing gas is alternatively and simultaneously supplied to the reaction apparatuses 21 and 22 via the switching valve 23.
  • the type of gas supplied to each reactor can be switched by switching the switching valve 23.
  • the switching valve 23 is set to the position shown in FIG. 2, the carbon dioxide-containing gas is supplied to the second reactor 22, and the reducing gas is supplied to the first reactor. 21 to be supplied. And each reaction apparatus 21 and 22 is heated with the heating apparatus 25, and reducing gas and a carbon dioxide containing gas are supplied to each reaction apparatus 21 and 22.
  • FIG. 1 In this way, in the first reaction device 21, the conversion agent 24 placed inside is strongly reduced, oxygen is forcibly extracted, and a reversible oxygen deficiency is generated in the conversion agent 24. .
  • the second reactor 22 carbon monoxide is generated by the reaction between carbon dioxide and the conversion agent 24 that has been strongly reduced in advance, and the number of oxygen vacancies in the conversion agent 24 gradually decreases.
  • the switching valve 23 is switched so that the carbon dioxide-containing gas is supplied to the first reactor 21 and the reducing gas is supplied to the second reactor 22.
  • the conversion agent 24 that is left in the first reactor 21 is highly active that is not in contact with carbon dioxide, the amount of carbon monoxide produced increases by bringing this into contact with carbon dioxide.
  • the conversion agent 24 whose activity is reduced due to a decrease in the number of oxygen vacancies is strongly reduced, oxygen is forcibly extracted, and a reversible oxygen vacancy is generated again in the conversion agent 24. .
  • the heating temperatures of the first reaction apparatus 21 and the second reaction apparatus 22 may be set to the same or different temperatures.
  • the temperature at which oxygen is forcibly extracted from the oxidized conversion agent 24 is higher than the temperature at which the reaction between carbon dioxide and the conversion agent 24 occurs. It is preferable to set the heating temperature higher than the heating temperature of the reactor that produces carbon monoxide.
  • the conversion agent 24 contains a rare earth element, and therefore, the temperature at which the conversion agent 24 reacts with the carbon dioxide-containing gas, and the oxidized conversion agent 24.
  • the temperature at which the strong reduction treatment is performed can be set to be almost the same. Therefore, the heating temperature of the first reactor 21 and the second reactor 22 can be determined without any particular limitation. That is, the device 20 has a high degree of design freedom.
  • the apparatus 30 shown in FIG. 3 has a structure in which plate-like bodies 31 including the conversion agent and plate-like separators 32 are alternately stacked. A plurality of convex portions 33 and concave portions 34 extending in one direction are alternately arranged on each surface of each separator 32. As a result, a space is formed between the plate-like body 31 and the pair of separators that are opposed to each other with the gas formed by the concave portions 34. Moreover, although not shown in figure, the apparatus 30 is equipped with the heating apparatus arrange
  • the extending direction of the convex portion 33 and the concave portion 34 formed on one surface and the other surface is shifted by 90 degrees.
  • the extending direction of the convex portion 33 and the concave strip portion 34 formed on each surface of the separator 32 is not limited to this.
  • the extending direction of the convex part 33 and the concave line part 34 formed on each surface of the separator 32 may intersect at an angle other than 90 degrees, or the same direction.
  • the direction of the gas flowing through the concave line part 34 on one surface side of the separator 32 and the other may be the same direction or the opposite direction.
  • a system for converting carbon dioxide into carbon monoxide using the conversion agent is also provided.
  • an exhaust gas containing carbon dioxide generated from an ironworks, a smelter, or a thermal power plant, which is a main source of carbon dioxide is contacted with the conversion agent.
  • the exhaust gas containing carbon dioxide generated from a steel mill, a smelter, or a thermal power plant include blast furnace gas and converter gas.
  • the produced carbon monoxide can be effectively used as a raw material for C1 chemistry.
  • the produced carbon monoxide can be fed back to, for example, a blast furnace at a steel mill and reused.
  • hydrogen-containing gas In the steelworks or smelter, in addition to generating gas exhaust gas containing carbon dioxide, hydrogen-containing gas is also generated. Particularly in steelworks, a large amount of hydrogen-containing gas is generated. If this hydrogen-containing gas is used to regenerate the conversion agent oxidized by contact with carbon dioxide, the conversion agent having a reversible oxygen deficiency can be obtained without preparing a separate hydrogen gas. Therefore, energy efficiency is further increased, which is advantageous.
  • Examples of the hydrogen-containing gas produced in the steelworks or smelter include coke oven gas.
  • the conversion agent used in the present invention contains a rare earth element, the temperature for generating reversible oxygen vacancies in the conversion agent can be set low.
  • the conversion agent can be successfully regenerated by using waste heat generated from a thermal power plant or a thermal power plant.
  • the facility to which the present system is applied is not limited to a steel mill or a smelter, but can be advantageously applied to a facility that produces a large amount of hydrogen as a by-product, such as a facility having a coke oven.
  • Example 1 (1) Production of lanthanum-containing cerium oxide having reversible oxygen vacancies (a) Synthesis of lanthanum-containing cerium oxide Powder of cerium oxide-lanthanum oxide composite oxide was used. The composite oxide was prepared so that the ratio of the number of moles of lanthanum to the total amount of moles of cerium and lanthanum was 0.2. The composite oxide (50 g) was placed in a heating furnace and baked by heating while circulating air. Heating was started from room temperature, heated at a rate of temperature increase of 5 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 2 hours. The air flow rate was 0.5 L / min.
  • the supply amount was 280 mL (0 ° C., 1 atm conversion value).
  • the valve V1 was closed and left for 1 hour. Thereafter, the valve V2 was opened, and nitrogen gas was supplied into the tubular furnace until the gas recovery bag was slightly expanded. Next, the valve V2 was closed and the gas recovery bag was heat sealed and separated from the tube. In this state, the temperature of the tubular furnace was lowered and cooled to room temperature. After completion of cooling, the valve V1 was opened and nitrogen gas was supplied into the tubular furnace. The supply was continued until the pressure in the tubular furnace reached atmospheric pressure. Finally, the valves V3 and V5 were opened, and carbon monoxide in the tubular furnace was extruded with nitrogen gas.
  • the recovered gas after the reaction was qualitatively and quantitatively analyzed using gas chromatography, and the conversion from carbon dioxide to carbon monoxide at 600 ° C. was evaluated according to the following criteria. Apart from this evaluation, the conversion from carbon dioxide to carbon monoxide at 400 ° C. was evaluated in the same manner as described above except that the heating temperature of the tubular furnace was lowered to 400 ° C. These results are shown in Table 1 below. ⁇ : 0.5% or more of carbon dioxide was converted to carbon monoxide. X: Less than 0.5% of carbon dioxide was converted to carbon monoxide.
  • T CO2 Reaction temperature with carbon dioxide
  • TG / DTA differential thermothermal gravimetric simultaneous measurement device
  • 30 mg of lanthanum-containing cerium oxide having no reversible oxygen deficiency was raised to 700 ° C. in a reducing gas atmosphere, The state of 700 ° C. was maintained for 30 minutes for reduction.
  • the flow rate of the reducing gas was 300 mL / min, and the heating rate was 20 ° C./min.
  • a hydrogen / nitrogen mixed gas hydrogen 4 vol%, nitrogen 96 vol%) was used. In this way, lanthanum-containing cerium oxide having reversible oxygen deficiency was obtained.
  • T CO2 is the temperature at the intersection of the tangent L1 before the increase in mass starts and the tangent L2 after the increase in mass occurs in the TG curve.
  • T red Oxygen deficiency generation temperature
  • T red The temperature at which the lanthanum-containing cerium oxide having no reversible oxygen deficiency used in Example 1 generates reversible oxygen deficiency (hereinafter referred to as “T red ”) is as follows. It measured by the method of. The results are shown in Table 1 below.
  • TG / DTA differential thermothermal gravimetric simultaneous measurement apparatus
  • Examples 2 to 7 and Reference Example 1 In place of the composite oxide of cerium oxide-lanthanum oxide, a composite of cerium oxide-praseodymium oxide prepared such that the ratio of the number of moles of praseodymium to the total amount of moles of cerium and praseodymium is a value shown in Table 1 Contains praseodymium having no reversible oxygen deficiency of Example 2 except that an oxide is used and the firing conditions are 1400 ° C. and 3 hours instead of 1000 ° C. and 2 hours. Cerium oxide was obtained.
  • Example 3 is not obtained in the same manner as in Example 1 except that the composite oxide is used and the firing conditions are 1400 ° C. and 3 hours instead of 1000 ° C. and 2 hours. Gadolinium-containing cerium oxide was obtained.
  • a composite of cerium oxide-yttrium oxide adjusted such that the ratio of the number of moles of yttrium to the total number of moles of cerium and yttrium is the value shown in Table 1.
  • Cerium oxide was obtained.
  • the complex of cerium oxide-ytterbium oxide adjusted so that the ratio of the number of moles of ytterbium to the total number of moles of cerium and ytterbium becomes the value shown in Table 1. It contains ytterbium without reversible oxygen deficiency in Example 6 except that an oxide is used and the firing conditions are 1500 ° C. and 5 hours instead of 1000 ° C. and 2 hours. Cerium oxide was obtained.
  • a composite of cerium oxide-scandium oxide in which the ratio of the number of moles of scandium to the total number of moles of cerium and scandium is the value shown in Table 1 Scandium containing no reversible oxygen deficiency of Example 7 in the same manner as in Example 1 except that an oxide was used and the firing conditions were changed to 1500 ° C. and 5 hours instead of 1000 ° C. and 2 hours. Cerium oxide was obtained.
  • Example 2 the conversion evaluation of carbon dioxide gas to carbon monoxide gas was performed as it was without reducing hydrogen of praseodymium-containing cerium oxide having no reversible oxygen deficiency. Further, the praseodymium-containing cerium oxide was directly reacted with carbon dioxide gas without performing a reversible oxygen deficiency generating step with a reducing gas, and T CO2 was measured. The results are shown in Table 1 below.
  • Example 1 except that the cerium oxide-lanthanum oxide composite oxide was prepared so that the ratio of the number of moles of lanthanum to the total number of moles of cerium and lanthanum was the value shown in Table 2. Similarly, lanthanum-containing cerium oxide having no reversible oxygen vacancies of Examples 8 and 9 was obtained. In the lanthanum-containing cerium oxide having no reversible oxygen vacancies in Examples 8 and 9 as measured by XRD, no diffraction peak derived from La 2 O 3 was observed, but only a diffraction peak derived from CeO 2 was observed. . From this result, it was confirmed that lanthanum was dissolved in cerium oxide.
  • lanthanum-containing cerium oxide having reversible oxygen vacancies of Examples 8 and 9 was obtained from lanthanum-containing cerium oxide having no reversible oxygen vacancies.
  • the obtained lanthanum-containing cerium oxide having no reversible oxygen deficiency was measured for T CO2 and T red as in Example 1. Further, the lanthanum-containing cerium oxide having reversible oxygen deficiency was evaluated for conversion from carbon dioxide gas to carbon monoxide gas in the same manner as in Example 1. The results are shown in Table 2 below.
  • Example 10 A cerium oxide-lanthanum oxide-gadolinium composite oxide (manufactured by Daiichi Rare Element Co., Ltd.) containing lanthanum as the first rare earth element and gadolinium as the second rare earth element was used.
  • the composite oxide the ratio of the number of moles of lanthanum to the total number of moles of cerium, lanthanum and gadolinium, and the ratio of the number of moles of gadolinium to the total number of moles of cerium, lanthanum and gadolinium are shown in Table 3. It was prepared as shown.
  • the composite oxide (50 g) was placed in a heating furnace, and pre-baked by heating while circulating air.
  • Heating was started from room temperature, heated at a rate of temperature increase of 5 ° C./min, and after reaching 700 ° C., this temperature was maintained for 3 hours.
  • the obtained calcined organism was pulverized with a mortar and the like, and then left in a heating furnace, and heated while circulating air to perform main firing. Heating was started from room temperature, heated at a rate of temperature increase of 5 ° C./min, reached 1400 ° C., and this temperature was maintained for 3 hours.
  • the air flow rate in the pre-baking and the main baking was 0.5 L / min. Thereafter, it was naturally cooled to obtain lanthanum / gadolinium-containing cerium oxide having no reversible oxygen deficiency.
  • Example 11 In addition to lanthanum as the first rare earth element, a complex oxide of cerium oxide-lanthanum oxide-praseodymium containing praseodymium as the second rare earth element was used (manufactured by Anan Kasei Co., Ltd.). In the composite oxide, the ratio of the number of moles of lanthanum to the total number of moles of cerium, lanthanum and praseodymium, and the ratio of the number of moles of praseodymium to the total number of moles of cerium, lanthanum and praseodymium are shown in Table 3. It was prepared as shown.
  • the composite oxide 50g was subjected to calcination and main calcination similar to those of Example 10 to obtain lanthanum / praseodymium-containing cerium oxide having no reversible oxygen deficiency.
  • diffraction peaks derived from La 2 O 3 and Pr 6 O 11 were not observed, but only diffraction peaks derived from CeO 2 were observed by XRD. From this result, it was confirmed that lanthanum and praseodymium were dissolved in cerium oxide in the lanthanum / praseodymium-containing cerium oxide.
  • lanthanum / praseodymium-containing cerium oxide having reversible oxygen vacancies was obtained in the same manner as in Example 1.
  • the obtained lanthanum praseodymium-containing cerium oxide having no reversible oxygen deficiency was measured for T CO2 and T red as in Example 1. Further, the lanthanum / praseodymium-containing cerium oxide having reversible oxygen deficiency was evaluated for conversion from carbon dioxide gas to carbon monoxide gas in the same manner as in Example 1. The results are shown in Table 3 below.
  • Examples 12 and 13 A complex oxide of cerium oxide-praseodymium oxide prepared so that the molar ratio of cerium to praseodymium was 0.79: 0.2 was used, and 49.389 g of the complex oxide and 0.611 g of bismuth oxide (sum) Photopure drug (purity 99.9%) was mixed with pure water to prepare a slurry having a solid component of 20% by weight. The slurry was put in a polypropylene container, and zirconia beads having a diameter of 3 mm were added so that the bead volume was about 40% with respect to the total amount of the slurry volume and the bead volume.
  • the mixture was mixed for 5 hours at a frequency of 640 rpm in a paint shaker (manufactured by Asada Tekko).
  • the slurry separated from the beads and collected was dried at 120 ° C. for 12 hours.
  • the dried slurry was allowed to stand in a heating furnace and pre-baked by heating while circulating air. Heating was started from room temperature, heated at a heating rate of 5 ° C./min, and after reaching 300 ° C., this temperature was maintained for 2 hours.
  • the obtained calcined organism was pulverized with a mortar and the like, and then left in a heating furnace, and heated while circulating air to perform main firing.
  • Heating was started from room temperature, heated at a rate of temperature increase of 5 ° C./min, and after reaching 1000 ° C., this temperature was maintained for 2 hours.
  • the air flow rate in the pre-baking and the main baking was 0.5 L / min. After pulverizing the powder after the main firing, which was naturally cooled, in a mortar, the bismuth / praseodymium-containing cerium oxide having no reversible oxygen deficiency of Example 12 was obtained.
  • Example 13 bismuth and lanthanum were dissolved in cerium oxide. Thereafter, the bismuth / praseodymium-containing cerium oxide having no reversible oxygen deficiency in Example 12 and the bismuth / lanthanum-containing cerium oxide having no oxygen deficiency in Example 13 were each reversible in the same manner as in Example 1. Bismuth / praseodymium-containing cerium oxide and bismuth / lanthanum-containing cerium oxide having typical oxygen vacancies were obtained.
  • T red and T CO2 were measured as in Example 1. It was.
  • bismuth / praseodymium-containing cerium oxide having reversible oxygen deficiency and bismuth / lanthanum-containing cerium oxide having reversible oxygen deficiency were evaluated for conversion from carbon dioxide gas to carbon monoxide gas as in Example 1. went. The results are shown in Table 4 below.
  • Example 12 the conversion evaluation from carbon dioxide gas to carbon monoxide gas was performed as it was without hydrogen reduction of bismuth / praseodymium-containing cerium oxide having no reversible oxygen deficiency. Further, the bismuth / praseodymium-containing cerium oxide was directly reacted with carbon dioxide gas without performing a reversible oxygen deficiency generation step using a reducing gas, and T CO2 was measured. The results are shown in Table 4 below.
  • the bismuth / lanthanum-containing cerium oxide of Example 13 has the same ratio of the number of moles of lanthanum to the total amount of moles of cerium, lanthanum and bismuth as the lanthanum-containing cerium oxide of Example 9 which does not contain bismuth.
  • T red and T CO2 were lower than the lanthanum-containing cerium oxide of Example 9. From this, it can be seen that the addition of bismuth is effective in that it lowers the temperature of the reaction for producing carbon monoxide from carbon dioxide and lowers the temperature at which oxygen deficiency occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

 本発明の一酸化炭素の製造方法は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素含有ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させる一酸化炭素の製造方法であって、前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いることを特徴とする。希土類元素(ただし、セリウムを除く)を含む酸化セリウムにおいて、セリウム及び希土類元素(ただし、セリウムを除く)のモル数の合計量に対する希土類元素(ただし、セリウムを除く)のモル数の割合が0.001~0.5であることが好ましい。また、希土類元素を含む酸化ジルコニウムにおいて、ジルコニウム及び希土類元素のモル数の合計量に対する希土類元素のモル数の割合が0.001~0.5であることも好ましい。

Description

一酸化炭素の製造方法及び製造装置
 本発明は、二酸化炭素を原料とする一酸化炭素の製造方法及び製造装置に関する。また本発明は、該製造方法に用いられる変換剤に関する。
 二酸化炭素は温室効果ガスとして知られている。大気中の二酸化炭素の濃度は上昇を続けており、地球温暖化の一因とされている。したがって地球温暖化防止の観点から、環境中に放出される二酸化炭素を回収する技術は、非常に重要である。
 二酸化炭素を回収する技術として、例えば酸素欠損状態の鉄の酸化物を用いて二酸化炭素ガスを一酸化炭素ガスと酸素ガスとに分解し、生成した酸素ガスによって酸素欠損状態の鉄の酸化物を元の鉄酸化物に戻し、一酸化炭素ガスのみを回収する技術が提案されている(特許文献1参照)。
 前記の技術は、酸素欠損を有する鉄の酸化物を用いた二酸化炭素との化学量論的な反応によって二酸化炭素から一酸化炭素ガスを生成する技術であるのに対して、触媒的な接触還元によって二酸化炭素から一酸化炭素ガスを生成する技術も提案されている。例えば非特許文献1においては、WO3、Y23、ZnOなどの金属酸化物を触媒とし、水素やメタンなどを還元剤として用いた二酸化炭素の接触還元によって、一酸化炭素ガスや炭素の生成が可能であることが報告されている。
 これらの技術とは別に、特許文献2には、CeO2からなる酸素イオン伝導体と触媒とを有する固体反応膜を用いて二酸化炭素を一酸化炭素と酸素に分離する方法が提案されている。この方法においては、CeO2からなる酸素イオン伝導体に担持された触媒によって二酸化炭素から酸素を分離させて、この酸素を、酸素濃度差のために生じる電位によって酸素イオン伝導体内を拡散させている。
 また、特許文献3には、Bi23、ZrO2、CeO2等及びこれらの混合物からなる群から選ばれ、希土類金属酸化物等でドープされたセラミック物質である酸素イオン伝導性セラミック導体について記載されている。また同文献には、酸素イオン伝導性セラミック導体を二酸化炭素に接触させて酸素で飽和させ、一酸化炭素を生成すること、及び酸素で飽和した酸素イオン伝導性セラミック導体を炭化水素ガスに接触させて酸素イオン伝導性セラミック導体から酸素を除去することが記載されている。しかし、同文献には、酸素イオン伝導性セラミック導体において希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムが可逆的な酸素欠損を有することや二酸化炭素から一酸化炭素を生成するには可逆的な酸素欠損が必要なことは、何ら記載されていない。
特開平5-68853号公報 特開2001-322958号公報 US2002/0064494A1
石原、滝田、「二酸化炭素の固体炭素への化学的固定のための触媒の開発」、ファインケミカル、vol21、No.14、1992年、pp.5-13
 特許文献1に記載の技術によれば、確かに二酸化炭素ガスから一酸化炭素ガスが生成する。しかし、鉄の酸化物は、酸素イオン伝導性が低く、表面が酸化されてしまうと、たとえ該酸化物の内部に酸素欠損が存在していても、該酸素欠損は二酸化炭素ガスと接触することができない。したがって二酸化炭素ガスから一酸化炭素ガスへの変換効率を高めたい場合には、酸素欠損を有する鉄の酸化物を多量に使用する必要があり、経済的に不利になる。
 非特許文献1に記載の技術では、二酸化炭素と同時に水素やメタンを投入する必要があり、生成物としての一酸化炭素や炭素の他に、未反応の二酸化炭素や水素、メタンなどが混在してしまうので、最終的に分離工程を要するという点で経済的に不利であり、しかも生成物が炭素である場合には、それが触媒上に析出することに起因して触媒活性が低下しやすい。
 特許文献2に記載の技術では、二酸化炭素を一酸化炭素と酸素に分解させるために貴金属触媒を用いているので経済的に不利である。また、貴金属触媒を担持している酸化セリウムは、酸素イオンを拡散させるためのイオンポンプとして使用されているに過ぎず、酸化セリウムは二酸化炭素からの一酸化炭素の生成に直接関与していない。
 したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る二酸化炭素からの一酸化炭素の製造方法を提供することにある。
 本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素含有ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させる一酸化炭素の製造方法であって、
 前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる一酸化炭素の製造方法を提供するものである。
 また本発明は、前記の製造方法を実施するための好適な装置として、
 外管と、該外管内に配置された内管とを備え、
 該内管は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成されており、
 該外管と該内管との間に二酸化炭素含有ガスを流通させ、かつ該内管内に還元性ガスを流通させるように構成されているか、又は
 該外管と該内管との間に還元性ガスを流通させ、かつ該内管内に二酸化炭素含有ガスを流通させるように構成されており、
 前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる一酸化炭素の製造装置を提供するものである。
 更に本発明は、前記の製造方法を実施するための別の好適な装置として、
 酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成される板状体と、板状のセパレータとが交互にスタックされてなる一酸化炭素の製造装置であって、
 各セパレータの各面には、一方向に延びる複数の凸条部及び凹条部が交互に配置されており、
 前記の板状体を挟んで対向する2つのセパレータにおける一方のセパレータと該板状体との対向面に位置する凹条部に二酸化炭素含有ガスを流通させ、かつ他方のセパレータと該板状体との対向面に位置する凹条部に還元性ガスを流通させるように構成されており、
 前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる一酸化炭素の製造装置を提供するものである。
 更に、本発明は、製鉄所、精錬所又は火力発電所から発生した二酸化炭素を含む排気ガスと、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物とを、精錬所、製鉄所又は火力発電所から発生した廃熱を用いた加熱下に接触させ、化学量論反応によって該排気ガス中の二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする二酸化炭素を一酸化炭素に変換するシステムであって、
 前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる二酸化炭素を一酸化炭素に変換するシステムを提供するものである。
 更に、本発明は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物からなり、金属酸化物が、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムからなる二酸化炭素の一酸化炭素への変換剤を提供するものである。
 本発明によれば、二酸化炭素を原料として、効率的に一酸化炭素を生成させることができる。一酸化炭素の生成に際して、炭素の副生もない。特に、本発明で用いる希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムは、希土類元素を含まない酸化セリウム又は酸化ジルコニウムに比べて、二酸化炭素から一酸化炭素を生成する反応が起こる温度を低くすることができ、かつ酸素欠損を生じさせる温度を低くすることができる点で有利である。なお、一酸化炭素を生成する反応が起こる温度と、酸素欠損を生じさせる温度とは必ずしも相関はない。一酸化炭素が効率的に生成するための要因は、酸素欠損を生じさせる温度が低いことだけでなく、希土類元素を含むことで二酸化炭素から一酸化炭素を生成する反応が起こる温度が下がることも要因の一つである。
図1は、本発明の一酸化炭素の製造方法に好適に用いられる装置を示す模式図である。 図2は、本発明の一酸化炭素の製造方法に好適に用いられる別の装置を示す模式図である。 図3は、本発明の一酸化炭素の製造方法に好適に用いられる更に別の装置を示す模式図である。 図4は、実施例で用いた装置を示す模式図である。 図5は、示差熱熱重量同時測定装置を用いて得られたTG曲線からTredとTCO2を求める方法を示す説明図である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明においては、二酸化炭素含有ガスを特定の金属酸化物(以下、この金属酸化物のことを「二酸化炭素の一酸化炭素への変換剤」又は単に「変換剤」とも言う。)と加熱下に接触させて一酸化炭素ガスを生成させる。この変換剤と、二酸化炭素ガスとの反応は、この変換剤の還元力を利用した化学量論反応である。つまり、この金属酸化物からなる変換剤は、触媒として用いられるものではなく、反応物そのものとして用いられるものである。本発明においては、特定の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる。なお、以下の説明において、希土類元素が酸化セリウムにドープされる場合には、その希土類元素にはセリウムは含まれないものとする。
 前記の特定の金属酸化物からなる変換剤としては、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有するものが用いられる。この変換剤が、可逆的な酸素欠損を有することによって、該変換剤は二酸化炭素の還元性を獲得する。可逆的な欠損とは、強力な還元条件下の処理によって金属酸化物から酸素が強制的に引き抜かれることで生成するものである。可逆的な欠損は、欠損したサイトに酸素が取り込まれることが可能な欠損である。例えば金属酸化物が、希土類元素を含む酸化セリウムである場合、可逆的な欠損を有する、希土類元素を含む酸化セリウムにおいては、酸素不足に起因する電荷のアンバランスな状態を、四価のセリウムの一部が三価に還元されることで補償している。三価のセリウムは不安定であり、四価に戻りやすいものである。したがって、欠損したサイトに酸素が取り込まれることで、三価となっているセリウムが四価に戻り、電荷のバランスが常にゼロに保たれる。欠損したサイトに酸素が取り込まれることで、該欠損は消失するが、再び強力な還元条件下の処理によって酸素欠損が生成する。「可逆的な酸素欠損」とは、この意味で用いられる。希土類元素を含む酸化ジルコニウムに関しても同様である。
 これに対して、不可逆的な酸素欠損も知られている。不可逆的な酸素欠損とは、金属酸化物に、該金属の価数よりも低価数の元素をドープすることで形成されるものである。不可逆的な酸素欠損は、可逆的な酸素欠損と異なり、強力な還元条件下の処理で発生した欠損ではない。不可逆的な酸素欠損は、例えば、金属酸化物に、該金属の価数よりも低価数の元素の酸化物を混合し、大気下で焼成するなどして低価数の元素で置換固溶させることによって得られる。無機酸化物が、例えば酸化セリウムである場合、不可逆的な酸素欠損を有する酸化セリウムにおけるセリウムの価数はすべて四価である。したがって、欠損したサイトに酸素が取り込まれることはない。例えば、CeO2に20mol%のCaを固溶させた場合、陽イオンの平均価数は4×0.8+2×0.2=3.6なので、酸素の電荷をこの価数にバランスさせるために必要な酸素原子の数は3.6÷2=1.8個となる。この数は、化学量論量の酸素原子の数である2個よりも少なく、その分だけ酸素欠損が生じる。しかし、この酸素欠損は酸素の吸収が可能なものではない。このように、不可逆的な酸素欠損は、酸素の強制的な引き抜きによって生じるものではなく、金属酸化物における電荷補償によって生じるものである。
 本発明において用いられる前記の金属酸化物からなる変換剤は、上述のとおり酸素イオン伝導性を有している。酸素イオン伝導性は、本発明の製造方法を実施する温度において発現すればよい。この変換剤が酸素イオン伝導性を有することで、この変換剤中に存在する可逆的な酸素欠損の概ねすべてが二酸化炭素との反応に有効活用できる。その理由は次のとおりである。すなわち、本発明の製造方法は、固体である金属酸化物と、気体である二酸化炭素ガスとの反応なので、反応は主として固体表面において進行する。そして、金属酸化物の表面に存在する酸素欠損が、二酸化炭素中の酸素と結合することで、該表面における酸素欠損が消失するとともに、二酸化炭素が一酸化炭素へ変換される。この場合、該金属酸化物が酸素イオン伝導性を有することで、該金属酸化物の表面に存在する酸素欠損と結びついた酸素は、酸素イオン(O2-)の状態で該金属酸化物の内部に移動し、該金属酸化物の内部において酸素欠損が消失するとともに、該金属酸化物の表面には可逆的な酸素欠損が再び生成する。この繰り返しによって、変換剤中に存在する可逆的な酸素欠損の概ねすべてを二酸化炭素との反応に寄与させることができる。これに対して、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、酸素イオン伝導性を有していないので、該酸化物の内部に酸素欠損が残存していても、該酸化物の表面に存在するすべて酸素欠損が消失した時点で、二酸化炭素との反応性が非常に低下してしまう。
 本発明において用いられる前記の金属酸化物からなる変換剤が酸素イオン伝導性を有することには次の利点もある。すなわち、この変換剤においては、その内部に存在する可逆的な酸素欠損も二酸化炭素との反応に寄与できるので、この変換剤の比表面積を過度に大きくしなくても、二酸化炭素との反応性は低下しづらい。したがって、この変換剤を含む反応体を、例えば粒状やペレット状、板状、筒状などの所望の形状に成形できるという自由度がある。これに対して、酸素イオン伝導性を有していない金属酸化物、例えば背景技術の項で述べた特許文献1に記載の酸素欠損を有する鉄の酸化物は、その内部に存在する酸素欠損は二酸化炭素との反応にほとんど寄与しないので、該酸素欠損を有効活用しようとすれば、該酸化物の比表面積を非常に大きくする必要がある。換言すれば、微粉末の状態で使用することが必須となり、それに起因して取り扱い性や、反応装置の設計の自由度が低い。
 以上のとおり、本発明の製造方法で用いられる金属酸化物からなる前記の変換剤は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有することが必須であるところ、そのような性質を有する金属酸化物として、本発明においては、上述のとおり、希土類元素を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる。希土類元素は、酸化セリウム及び酸化ジルコニウム中において、固溶体として存在していてもよく、あるいは酸化物の状態で存在していてもよい。一般的に言って、酸化セリウム及び酸化ジルコニウム中での希土類元素の割合が低い場合には、希土類元素は固溶体として存在している傾向にある。
 酸化セリウム又は酸化ジルコニウムにドープする希土類元素としてはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu(ただし、酸化セリウムにドープする場合には、Ceは除く)から選択される1種又は2種以上の希土類元素を用いることができるが、Sc、Y、La、Pr、Sm、Gd及びYbから選択される1種又は2種以上の希土類元素を用いることが好ましく、特に、価格及び酸化セリウム又は酸化ジルコニウムへの固溶の容易性の観点から、La、Pr及びGdから選択される1種又は2種以上の希土類元素を用いることが好ましい。とりわけ、LaとGdとの組み合わせ、又はLaとPrとの組み合わせを用いることが好ましい。
 本発明の製造方法で用いられる金属酸化物として、希土類元素を含む酸化セリウム(以下、希土類元素含有酸化セリウム)を用いる場合、セリウム及び希土類元素のモル数の合計量に対する希土類元素のモル数の割合は、好ましくは0.001~0.5、更に好ましくは0.02~0.3、特に好ましくは0.02~0.2である。一方、本発明の製造方法で用いられる金属酸化物として、希土類元素を含む酸化ジルコニウム(以下、希土類元素含有酸化ジルコニウムと言う)を用いる場合、ジルコニウム及び希土類元素のモル数の合計量に対する希土類元素のモル数の割合は、好ましくは0.001~0.5、更に好ましくは0.02~0.3、特に好ましくは0.02~0.2である。希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムにおける希土類元素割合がこの範囲内であることによって、希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムが二酸化炭素と反応する温度を一層低くすることができ、二酸化炭素を原料として効率的に一酸化炭素を生成させることができる。しかも、後述するように、二酸化炭素との反応によって酸素欠損が消滅した希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムに、再び酸素欠損を生じさせるときに行う還元雰囲気下での熱処理の温度を低くできるという利点もある。希土類元素の割合が上述の範囲の希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムを得るためには、後述する希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムの製造時に、使用するセリウム及びジルコニウム並びに希土類元素の量を調節すればよい。
 本発明の製造方法で用いられる希土類元素含有酸化セリウムには、Bi、Zr及びアルカリ土類金属元素から選択される1種又は2種以上の元素をドープ元素として更に添加してもよい。また、希土類元素含有酸化ジルコニウムにはBi及びアルカリ土類金属元素から選択される1種又は2種以上の元素をドープ元素として更に添加してもよい。アルカリ土類金属としては、Mg、Ca、Sr及びBaから選択される1種又は2種以上の元素を用いることが好ましい。希土類元素含有酸化セリウム又は希土類元素含有酸化ジルコニウムがそれぞれ前記の各元素を含むことにより、希土類元素含有酸化セリウム又は希土類元素含有酸化ジルコニウムを強還元し、酸素欠損を生成させる際の反応温度を更に低くすることができるという効果が奏される。希土類元素含有酸化セリウムが前記の元素を含む場合には、セリウム、希土類元素及び前記の元素のモル数の合計量に対する前記の元素のモル数の割合は、好ましくは0.001~0.2、更に好ましくは0.01~0.2、特に好ましくは0.02~0.2である。希土類元素含有酸化ジルコニウムが前記の元素を含む場合には、ジルコニウム、希土類元素及び前記の元素のモル数の合計量に対する前記の元素のモル数の割合は、好ましくは0.001~0.2、更に好ましくは0.01~0.2、特に好ましくは0.02~0.2である。
 希土類元素含有酸化セリウムは、例えば、以下の方法で好適に製造することができる。炭酸セリウムと希土類酸化物とを、ボールミル等のメディアミルを用いて粉砕・混合する。得られた混合粉を大気雰囲気下で、好ましくは150~700℃、更に好ましくは150~600℃、特に好ましくは250~500℃で、好ましくは0.5~10時間、更に好ましくは2~10時間仮焼成する。得られた仮焼成物を乳鉢等によって粉砕し、粉砕物を大気雰囲気下で、好ましくは400~1600℃、更に好ましくは1000~1600℃で本焼成する。本焼成の温度は、仮焼成の温度よりも高く設定する。本焼成の時間は、焼成温度は前記の範囲内であることを条件として、好ましくは0.5~10時間、更に好ましくは2~10時間とする。この操作によって、可逆的な酸素欠損が未だ生じていない希土類元素含有酸化セリウムが得られる。希土類元素含有酸化ジルコニウムを製造する場合には、前記の製造方法において、炭酸セリウムに代えて炭酸ジルコニウムを用いればよい。
 前記の製造方法に代えて、市販されている酸化セリウムと希土類酸化物との複合酸化物又は酸化ジルコニウムと希土類酸化物との複合酸化物を、上述の焼成条件と同じ条件で焼成することによって、可逆的な酸素欠損が未だ生じていない希土類元素含有酸化セリウム又は希土類元素含有酸化ジルコニウムを得ることができる。そのような複合酸化物としては、例えば阿南化成(株)や第一稀元素化学工業(株)から入手可能である。
 上述の方法で得られた希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムを強還元し、可逆的な酸素欠損を生成させることで、本発明の製造方法で用いられる可逆的な酸素欠損を有する希土類元素含有酸化セリウム及び希土類元素含有酸化ジルコニウムを得ることができる。強還元においては、還元雰囲気として、水素濃度が爆発下限以上、好ましくは20体積%以上の含水素雰囲気が用いられる。もちろん水素濃度が100体積%でもよい。強還元時の温度は、比較的低温でも十分であることが本発明者らの検討の結果判明した。この理由は、酸化セリウム及び酸化ジルコニウムに希土類元素を添加していることに起因するものであると、本発明者らは考えている。特に希土類元素が酸化セリウム及び酸化ジルコニウムに固溶していると、強還元時の温度を低く設定しても可逆的な酸素欠損を首尾よく生成させられる点から有利である。強還元時の温度は、具体的には好ましくは300~1050℃、更に好ましくは320~1050℃、一層好ましくは400~1050℃、更に一層好ましくは400~820℃である。強還元の時間は、温度が上述の範囲であることを条件として、好ましくは0.5~10時間、更に好ましくは2~10時間である。
 ところで、本発明で用いられる、可逆的な酸素欠損を有する金属酸化物の他に、酸素の吸収が可能な金属酸化物として、OSC(酸素吸蔵放出能力)材料が知られている。OSC材料は自動車用触媒の助触媒としてよく用いられる。OSC材料は酸化セリウムが有する酸素イオン伝導性と価数変化を利用して、酸化反応に対しては酸素を放出し、還元反応に対しては酸素を吸収することで、排気ガス中のガス組成を安定化し、三元触媒による排気ガスの浄化を安定的に行うことを目的として用いられるものである。したがって、OSC材料は排気ガス中の一酸化炭素を二酸化炭素へ変換するための助触媒であって、二酸化炭素から一酸化炭素を生成させる本発明の製造方法とは、正反対の反応プロセスに用いられるものである。
 本発明の製造方法において用いられる前記の変換剤と二酸化炭素含有ガスとの反応は、加熱下に行われる。加熱温度は例えば280~1000℃、特に400~1000℃、とりわけ400~800℃、中でも400~600℃に設定することが、二酸化炭素から一酸化炭素への変換効率を高める点、及び一旦生成した一酸化炭素の作用によって、前記の変換剤が還元されかつ二酸化炭素が再生されることを効果的に防止する点から好ましい。反応はバッチ式で行ってもよく、あるいは連続式で行ってもよい。変換剤と二酸化炭素含有ガスとの量は、本製造方法の反応が化学量論反応であることから、反応をバッチ式で行う場合、二酸化炭素1当量に対して、該変換剤を1当量以上、特に3当量以上とすることが好ましい。ここで言う1当量とは、例えば変換剤がCe(1-y)Lny(2-y/2-x)(式中、Lnは希土類元素(ただし、セリウムは除く)を表し、0<y<1、0≦x<2)で表される希土類元素含有酸化セリウムである場合、該希土類元素含有酸化セリウムに対し、xmolの二酸化炭素が反応し、xmolの一酸化炭素が生成することを言う。
 前記の変換剤は、種々の形態で二酸化炭素含有ガスと接触させることができる。例えばバッチ式反応装置であれば、粉末状の前記の変換剤を静置(又は充填)して反応を行うことができる他、前記の変換剤を造粒したもの、ペレット状、塊状、板状、ハニカム状、ラシヒリング状、ベルサドル状等の形状へ成型したものも静置(又は充填)して使用することも可能である。一方、連続式反応装置であれば、筒状、板状、円盤状等の緻密膜で二酸化炭素を一酸化炭素へ変換する反応面と還元性ガスで酸素欠損を生成する再生面とが隔絶されている構造であればよい。いずれの形態を採用する場合であっても、前記の変換剤と二酸化炭素との反応によって、炭素が副生されないことを本発明者らは確認している。
 前記の変換剤と接触させる二酸化炭素含有ガスは、二酸化炭素ガス100体積%からなるものであってよいし、二酸化炭素ガスと、1種又は2種以上のその他のガスとからなるものであってもよい。その他のガスとしては、酸素ガス、窒素ガス、一酸化炭素ガス、メタンガス、アセチレンガス等が挙げられる。二酸化炭素含有ガスがその他のガスを含んでいる場合、該二酸化炭素含有ガスにおいては、二酸化炭素ガスの濃度に特に制限はないが、コスト面を考えると、二酸化炭素ガスが1体積%以上含まれていることが好ましく、15体積%以上含まれていることが更に好ましい。その他のガスが酸素ガスである場合、供給するガス全量に対する酸素ガスの割合は極力少量であることが望ましい。
 その他のガスを含む二酸化炭素含有ガスの具体例としては、高炉ガス、転炉ガス等が挙げられる。高炉ガスは、高炉において銑鉄を製造するときに発生するガスであり、その主成分は窒素、一酸化炭素及び二酸化炭素である。高炉ガス中には、窒素が約52~53体積%、一酸化炭素が約18~25体積%、二酸化炭素が約20~24体積%含まれている。転炉ガスは、転炉で鋼を製造するときに発生するガスであり、その主成分は一酸化炭素及び二酸化炭素である。転炉ガス中には、一酸化炭素が約50~80体積%、二酸化炭素が約15~17体積%含まれる。
 本発明の製造方法においては、二酸化炭素との接触によって酸化された前記の変換剤を、還元性ガスと接触させて該変換剤を再生することが好ましい。変換剤と還元性ガスとを接触させるときの温度は、例えば300~1050℃、更に好ましくは320~1050℃、一層好ましくは400~1050℃、更に一層好ましくは400~820℃に設定することが好ましい。還元性ガスとしては、例えば後述する水素含有ガスやアセチレン含有ガスを用いることができる。水素含有ガスとしては、例えば、コークス炉ガスが挙げられる。コークス炉ガスは、コークス炉においてコークスを製造するときに発生するガスであり、その主成分は水素及びメタンである。コークス炉ガス中には水素が約50~60体積%、メタンが約25~30体積%含まれている。
 図1には、本発明の製造方法で好適に用いられる一酸化炭素の製造装置が模式的に示されている。同図に示す装置は連続式のものであり、二重管構造になっている。詳細には、同図に示す装置10は、外管11と、該外管11内に配置された内管12とを備えている。内管12内にはヒーター等の加熱装置13が配置されている。内管12は前記の変換剤を含有している。この装置においては、外管11と内管12との間の空間に二酸化炭素含有ガスを流通させる。この空間内を二酸化炭素含有ガスが流通する間に、二酸化炭素と、内管12に含まれる前記の変換剤とが反応して一酸化炭素が生成する。
 図1に示す装置10においては、外管11と内管12との間の空間に二酸化炭素含有ガスを流通させることに加えて、内管12内に還元性ガスを流通させるように構成されている(図1においては、還元性ガスの代表例である水素が記載されている。)。これによって、二酸化炭素との接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、同図に示す装置10を用いれば、前記の変換剤を二酸化炭素と接触させて一酸化炭素を生成させた後に、二酸化炭素との接触によって酸化された該変換剤を還元性ガスと接触させて強還元を行い、該金属酸化物を再生することができる。このような繰り返しの再生処理が可能な理由は、前記の変換剤が酸素イオン伝導性を有しているからである。還元性ガスとしては、例えば水素含有ガスやアセチレン含有ガスを用いることができる。特に水素含有ガスを用いることが好ましい。そのような還元性ガスにおける水素ガスの濃度は、好ましくは爆発下限以上~100体積%、更に好ましくは20体積%~100体積%である。処理温度に関しては、先に述べたとおり、比較的低温でも十分である。この理由が、酸化セリウム及び酸化ジルコニウムに希土類元素を添加しているからであることも、先に述べたとおりである。処理温度は、具体的には好ましくは300~1050℃、更に好ましくは320~1050℃、一層好ましくは400~1050℃、更に一層好ましくは400~820℃である。強還元ガスは一般に常圧である。
 図1に示す装置においては、内管12の内部に加熱装置13を配置したが、これに代えて外管11の周囲に加熱装置を配置してもよい。一般に、二酸化炭素と変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、内管12の内部に加熱装置13を配置することが、酸素の強制的な引き抜きのしやすさの点から有利である。尤も、本発明においては、変換剤24が希土類元素を含んでいることに起因して、希土類元素が含まれていない場合に比べて、酸素の強制的な引き抜きの温度を低く設定することができるので、変換剤24と二酸化炭素とを反応させる温度と、酸化された変換剤24を強還元処理する温度とをほぼ同一に設定することもできる。したがって、加熱装置13の配置位置の制限は少ない。すなわち、装置10は設計の自由度が高いものである。
 なお図1に示す装置においては、二酸化炭素含有ガスの流通方向と還元性ガスの流通方向が同方向であったが、これに代えて二酸化炭素含有ガスの流通方向と還元性ガスの流通方向を反対方向にしてもよい。また、図1に示す装置の変形例として、外管11と内管12との間の空間に還元性ガスを流通させ、内管12内に二酸化炭素含有ガスを流通させるように構成することもできる。この場合には、内管12に含まれている前記の変換剤の再生を効率的に行うために、外管11の周囲に加熱装置を配置することが好ましい。
 図2に示す装置20は、二基のバッチ式反応装置21,22を備えている。更に装置20は、切替弁23を備えている。切替弁23は、二酸化炭素含有ガス源及び還元性ガス源(図2においては、還元性ガスの代表例である水素が記載されている。)にそれぞれ接続する入力部23a,23bを有している。更に切替弁23は、各反応装置21,22のそれぞれに接続する出力部23c,23dを有している。反応装置21,22内には、前記の変換剤24の配置が可能になっている。また、各反応装置21,22の周囲には、加熱装置25が配置されている。
 図2に示す装置20においては、切替弁23を介して各反応装置21,22に二酸化炭素含有ガス又は還元性ガスが択一的にかつ同時に供給されるようになっている。これに加えて、切替弁23の切り替えによって、各反応装置に供給されるガスの種類を切り替えられるようになっている。
 図2に示す装置を運転する場合には、まず、切替弁23を図2に示す位置に設定し、二酸化炭素含有ガスが第2反応装置22に供給され、かつ還元性ガスが第1反応装置21に供給されるようにする。そして、加熱装置25によって各反応装置21,22を加熱して、各反応装置21,22に還元性ガス及び二酸化炭素含有ガスを供給する。このようにすると、第1反応装置21においては、その内部に静置された前記の変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に生じる。一方、第2反応装置22においては、二酸化炭素と、あらかじめ強還元した変換剤24との反応によって一酸化炭素が生成するとともに、該変換剤24中の酸素欠損の数が次第に減少してくる。そして、第2反応装置22における一酸化炭素の生成量が減少してきたら、切替弁23を切り替えて、二酸化炭素含有ガスが第1反応装置21に供給され、かつ還元性ガスが第2反応装置22に供給されるようにする。第1反応装置21内に静置されている変換剤24は、二酸化炭素と接触していない活性の高いものなので、これを二酸化炭素と接触させることで、一酸化炭素の生成量が増加に転じる。一方第2反応装置22においては、酸素欠損の数が減少して活性の低下した変換剤24が強還元されて、酸素が強制的に引き抜かれ、可逆的な酸素欠損が変換剤24に再び生じる。
 図2に示す装置20においては、第1反応装置21と第2反応装置22の加熱温度は同じに設定してもよく、あるいは異なる温度に設定してもよい。一般に、二酸化炭素と変換剤24との反応が起こる温度に比べて、酸化された変換剤24から酸素を強制的に引き抜く温度の方が高いことから、還元性ガスを供給する方の反応装置の加熱温度を、一酸化炭素を生成させる方の反応装置の加熱温度よりも高く設定することが好ましい。しかし変換剤24を用いた装置20においては、変換剤24が希土類元素を含んでいることに起因して、変換剤24と二酸化炭素含有ガスとを反応させる温度と、酸化された変換剤24を強還元処理する温度とをほぼ同一に設定することもできる。したがって、第1反応装置21と第2反応装置22の加熱温度については、特に制限なく決定することができる。すなわち、装置20は設計の自由度が高いものである。
 このように、二酸化炭素ガスと変換剤24との反応を、第1反応装置21と第2反応装置22とで交互に行うことで、該変換剤24を再生しつつ、一酸化炭素の生成を半連続的に行うことが可能になる。なお、図2に示す装置20においてはバッチ式反応装置を二基用いたが、これに代えて三基以上の反応装置を用いてもよい。
 図3に示す装置30は、前記の変換剤を含んで構成される板状体31と、板状のセパレータ32とが交互にスタックされた構造を有している。各セパレータ32の各面には、一方向に延びる複数の凸状部33及び凹条部34が交互に配置されている。これによって、板状体31と、これを挟んで対向する一対のセパレータとの間には、凹条部34によって形成されたガスの流通が可能な空間が形成される。また図示していないが、装置30は、スタック構造体の周囲に配置された加熱装置を備えている。
 図3に示す装置30を運転する場合には、加熱装置(図示せず)によってスタック構造体を所定温度に加熱した状態下に、板状体31を挟んで対向する2つのセパレータ32a,32bにおける一方のセパレータ32aと板状体31との対向面に位置する凹条部34aに二酸化炭素含有ガスを流通させる。この凹条部34a内を二酸化炭素含有ガスが流通する間に、二酸化炭素と、板状体31に含まれる前記の変換剤とが反応して一酸化炭素が生成する。これに加えて、かつ他方のセパレータ32bと板状体31との対向面に位置する凹条部34bに還元性ガスを流通させるように構成する(図3においては、還元性ガスの代表例である水素が記載されている。)。これによって、二酸化炭素との接触によって酸化された前記の変換剤から酸素が引き抜かれ、消失した酸素欠損が再び生成する。このように、装置30を用いれば、先に説明した図1に示す装置10と同様に、前記の変換剤を二酸化炭素含有ガスと接触させて一酸化炭素を生成させた後、二酸化炭素含有ガスとの接触によって酸化された該変換剤を還元性ガスと接触させて強還元を行い、該金属酸化物を再生することができる。
 図3に示す装置30の各セパレータ32は、その一方の面と他方の面に形成されている凸状部33及び凹条部34の延びる方向が90度ずれている。しかし、セパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向は、これに限られない。例えばセパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向は、90度以外の角度で交差していてもよく、あるいは同方向でもよい。セパレータ32の各面に形成されている凸状部33及び凹条部34の延びる方向が同方向である場合、セパレータ32の一方の面側の凹条部34に流通させるガスの方向と、他方の面側の凹条部34に流通させるガスの方向とは同方向でもよく、あるいは反対方向でもよい。
 なお、図2及び図3に示す装置に関して、特に説明しない点については、図1に示す装置に関する説明が適宜適用される。
 また、本発明によれば、前記の変換剤を用いた、二酸化炭素を一酸化炭素に変換するシステムも提供される。このシステムにおいては、産業上、二酸化炭素の主要な発生源である製鉄所、精錬所又は火力発電所から発生した二酸化炭素を含む排気ガスと、前記の変換剤とを接触させる。製鉄所、精錬所又は火力発電所から発生する二酸化炭素を含む排気ガスとしては、高炉ガス、転炉ガス等が挙げられる。このとき、製鉄所、精錬所又は火力発電所から発生した廃熱を用いた加熱下に接触させれば、エネルギー効率を高めることができて有利である。この加熱下の接触によって一酸化炭素が生成する。このシステムによれば、二酸化炭素が大気中に放出されることが抑制されるだけでなく、生成した一酸化炭素を、C1ケミストリーの原料として有効活用できるという利点がある。あるいは、生成した一酸化炭素を、例えば製鉄所の高炉にフィードバックして、再使用することもできる。
 製鉄所又は精錬所においては、二酸化炭素を含むガス排気ガスが生成する他、水素含有ガスも生成する。特に製鉄所においては、水素含有ガスが多量に生成する。この水素含有ガスを、二酸化炭素との接触によって酸化された前記の変換剤の再生に用いれば、別途水素ガスを用意することなく、可逆的な酸素欠損を有する前記の変換剤を得ることができるので、エネルギー効率が一層高くなり有利である。製鉄所又は精錬所において生成する水素含有ガスとしては、コークス炉ガス等が挙げられる。しかも、本発明で用いられる前記の変換剤は、希土類元素を含んでいることに起因して、該変換剤に可逆的な酸素欠損を生成させるための温度を低く設定できるので、精錬所、製鉄所又は火力発電所から発生した廃熱を利用して、前記の変換剤の再生を首尾よく行うことができるという利点もある。本システムが適用される施設は製鉄所又は精錬所に限られず、コークス炉を有する施設等、水素を多量に副生する施設に有利に適用することができる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り「%」は「質量%」を意味する。
  〔実施例1〕
(1)可逆的な酸素欠損を有するランタン含有酸化セリウムの製造
(a)ランタン含有酸化セリウムの合成
 酸化セリウム-酸化ランタンの複合酸化物の粉末を用いた。該複合酸化物は、セリウムとランタンのモル数の合計量に対するランタンのモル数の割合が0.2となるように調製されたものであった。該複合酸化物50gを加熱炉内に静置し、空気を流通させながら加熱して焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を2時間保持した。空気の流通量は0.5L/minとした。その後、自然放冷し、可逆的な酸素欠損を有さないランタン含有酸化セリウムを得た。XRDによる測定で、このランタン含有酸化セリウムにおいてはLa23に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、ランタンは酸化セリウムに固溶していることが確認された。
(b)可逆的な酸素欠損を有するランタン含有酸化セリウムの合成
 前項(a)で得られた希土類元素含有酸化セリウム(50g)を雰囲気制御型加熱炉内に静置し、100体積%の水素ガスを流通させながら加熱して還元を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、600℃に到達したのち、この温度を3時間保持した。その後、自然放冷した。水素ガスの流通量は1.5L/minとした。このようにして、可逆的な酸素欠損を有するランタン含有酸化セリウムを得た。
(2)二酸化炭素ガスからの一酸化炭素ガスの変換評価
 図4に示す装置を用いた、管状炉を窒素ガス雰囲気のグローブボックス内に設置した。管状炉内には、前項(1)で得られた可逆的な酸素欠損を有するランタン含有酸化セリウムの粉末8.5gが静置されている。まず、バルブV5を閉じ、他のバルブはすべて開けて、管状炉内を真空吸引した。この状態のまま、バルブV1を閉じて管状炉を600℃まで加熱した。次いでバルブV2及びV3を閉じた後に管状炉内の吸引を停止した。バルブV4を締めて管状炉内に二酸化炭素ガス(100体積%)を供給した。供給量は280mLとした(0℃、1atm換算値)。そしてバルブV1を閉じて1時間放置した。その後バルブV2を開け、更にガス回収袋が少し膨らむまで窒素ガスを管状炉内に供給した。次いで、バルブV2を閉じるとともに、ガス回収袋を熱シールして管から切り離した。この状態のまま管状炉を降温し、室温になるまで冷却した。冷却完了後、バルブV1を開けて管状炉内に窒素ガスを供給した。供給は、管状炉内の圧力が大気圧になるまで行った。最後に、バルブV3及びV5を開け、窒素ガスによって管状炉内の一酸化炭素を押し出した。回収された反応後のガスは、ガスクロマトグラフィーを用いて定性と定量を行い、以下の基準で、600℃における二酸化炭素から一酸化炭素への変換を評価した。この評価とは別に、管状炉の加熱温度を400℃に低下させた以外は上述の方法と同様にして、400℃における二酸化炭素から一酸化炭素への変換を評価した。これらの結果を、以下の表1に示す。
 ○:0.5%以上の二酸化炭素が一酸化炭素に変換された。
 ×:0.5%未満の二酸化炭素が一酸化炭素に変換された。
 (3)二酸化炭素との反応温度
 実施例1で用いたランタン含有酸化セリウムが、二酸化炭素と反応する温度(以下「TCO2」と言う。)を以下の方法で測定した。その結果を以下の表1に示す。
 示差熱熱重量同時測定装置(TG/DTA)(SII社製 EXSTAR6000)を用いて、可逆的な酸素欠損を有さないランタン含有酸化セリウム30mgを、還元ガス雰囲気下で700℃まで昇温後、700℃の状態を30分保持して還元させた。還元ガスの流通速度は300mL/min、昇温速度は20℃/minとした。還元ガスとしては水素・窒素混合ガス(水素4体積%、窒素96体積%)を用いた。このようにして、可逆的な酸素欠損を有するランタン含有酸化セリウムを得た。次いで、降温速度40℃/minで室温まで降温させた後、二酸化炭素ガス(100体積%)を流通させて、再び前記の昇温速度で昇温し、可逆的な酸素欠損を有するランタン含有酸化セリウムと二酸化炭素ガスとを反応させた。二酸化炭素ガスの流通速度は300mL/minとした。可逆的な酸素欠損を有するランタン含有酸化セリウムの質量変化を測定し、酸素の結合に起因する質量増加が観察される温度をTCO2とした。TCO2は、図5に示すように、TG曲線における、質量増が生じ始める前の接線L1と、質量増が生じた後の接線L2との交点における温度とした。
 (4)酸素欠損の生成温度
 実施例1で用いた可逆的な酸素欠損を有さないランタン含有酸化セリウムが、可逆的な酸素欠損を生成する温度(以下「Tred」と言う。)を以下の方法で測定した。その結果を以下の表1に示す。
 示差熱熱重量同時測定装置(TG/DTA)(SII社製 EXSTAR6000)を用いて、可逆的な酸素欠損を有さないランタン含有酸化セリウム30~35mgを還元ガス雰囲気下で昇温させた。酸素の離脱に起因する質量変化が観察される温度をTredとした。還元ガスとしては水素・窒素混合ガス(水素4体積%、窒素96体積%)を用いた。還元ガスの流通速度は300mL/min、昇温速度は20℃/minとした。図5に示すように、TG曲線における、質量減が生じ始める前の接線L3と、質量減が生じた後の接線L4との交点における温度をTredとした。
  〔実施例2ないし7並びに参考例1〕
 酸化セリウム-酸化ランタンの複合酸化物の代わりに、セリウムとプラセオジムのモル数の合計量に対するプラセオジムのモル数の割合が、表1に示す値となるように調製された酸化セリウム-酸化プラセオジムの複合酸化物を用い、かつ、焼成条件を1000℃・2時間の代わりに1400℃・3時間とした以外は実施例1と同様にして、実施例2の可逆的な酸素欠損を有さないプラセオジム含有酸化セリウムを得た。
 また、酸化セリウム-酸化ランタンの複合酸化物の代わりに、セリウムとガドリニウムのモル数の合計量に対するガドリニウムのモル数の割合が、表1に示す値となるように調整された酸化セリウム-酸化ガドリニウムの複合酸化物を用い、かつ、焼成条件を1000℃・2時間の代わりに1400℃・3時間とした以外は実施例1と同様にして、実施例3の可逆的な酸素欠損を有さないガドリニウム含有酸化セリウムを得た。
 酸化セリウム-酸化ランタンの複合酸化物の代わりに、セリウムとイットリウムのモル数の合計量に対するイットリウムのモル数の割合が、表1に示す値となるように調整された酸化セリウム-酸化イットリウムの複合酸化物を用い、かつ、焼成条件を1000℃・2時間の代わりに1500℃・5時間とした以外は実施例1と同様にして、実施例4の可逆的な酸素欠損を有さないイットリウム含有酸化セリウムを得た。
 酸化セリウム-酸化ランタンの複合酸化物の代わりに、セリウムとサマリウムのモル数の合計量に対するサマリウムのモル数の割合が、表1に示す値となるように調整された酸化セリウム-酸化サマリウムの複合酸化物を用い、かつ、焼成条件を1000℃・2時間の代わりに1500℃・5時間とした以外は実施例1と同様にして、実施例5の可逆的な酸素欠損を有さないサマリウム含有酸化セリウムを得た。
 酸化セリウム-酸化ランタンの複合酸化物の代わりに、セリウムとイッテルビウムのモル数の合計量に対するイッテルビウムのモル数の割合が、表1に示す値となるように調整された酸化セリウム-酸化イッテルビウムの複合酸化物を用い、かつ、焼成条件を1000℃・2時間の代わりに1500℃・5時間とした以外は実施例1と同様にして、実施例6の可逆的な酸素欠損を有さないイッテルビウム含有酸化セリウムを得た。
 酸化セリウム-酸化ランタンの複合酸化物の代わりに、セリウムとスカンジウムのモル数の合計量に対するスカンジウムのモル数の割合が、表1に示す値となるように調整された酸化セリウム-酸化スカンジウムの複合酸化物を用い、かつ、焼成条件を1000℃・2時間の代わりに1500℃・5時間とした以外は実施例1と同様にして、実施例7の可逆的な酸素欠損を有さないスカンジウム含有酸化セリウムを得た。
 XRDによる測定で、実施例2のプラセオジム含有酸化セリウム、実施例3のガドリニウム含有酸化セリウム、実施例4のイットリウム含有酸化セリウム、実施例5のサマリウム含有酸化セリウム、実施例6のイッテルビウム含有酸化セリウム、及び実施例7のスカンジウム含有酸化セリウムにおいては、それぞれPr611、Gd23、Y23、Sm23、Yb23及びSc23に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、各実施例においては、プラセオジム、ガドリニウム、イットリウム、サマリウム、イッテルビウム及びスカンジウムは、それぞれ酸化セリウムに固溶していることが確認された。
 上記物質を用いた以外は実施例1と同様にしていずれも可逆的な酸素欠損を有するプラセオジム含有酸化セリウム、ガドリニウム含有酸化セリウム、イットリウム含有酸化セリウム、サマリウム含有酸化セリウム、イッテルビウム含有酸化セリウム及びスカンジウム含有酸化セリウムを得た。また、参考例1として、酸化セリウムを用いて実施例1と同様にして、可逆的な酸素欠損を有する酸化セリウムを得た。
 前記のようにして得られたいずれも可逆的な酸素欠損を有さないプラセオジム含有酸化セリウム、ガドリニウム含有酸化セリウム、イットリウム含有酸化セリウム、サマリウム含有酸化セリウム、イッテルビウム含有酸化セリウム、及びスカンジウム含有酸化セリウム(実施例2ないし7)並びに酸化セリウム(参考例1)について、実施例1と同様のTCO2とTredの測定をした。その結果を以下の表1に示す。
 また、前記のようにして得られたいずれも可逆的な酸素欠損を有するプラセオジム含有酸化セリウム、ガドリニウム含有酸化セリウム、イットリウム含有酸化セリウム、サマリウム含有酸化セリウム、イッテルビウム含有酸化セリウム及びスカンジウム含有酸化セリウム(実施例2ないし7)並びに酸化セリウム(参考例1)について、実施例1と同様の二酸化炭素から一酸化炭素への変換評価を行った。その結果を以下の表1に示す。
  〔参考例2〕
 実施例2において、可逆的な酸素欠損を有さないプラセオジム含有酸化セリウムを水素還元せずに、そのまま二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。また、該プラセオジム含有酸化セリウムについて、還元ガスによる可逆的な酸素欠損の生成工程を行わず、直接二酸化炭素ガスと反応させて、TCO2を測定した。その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001

 表1に示す結果から明らかなように、各実施例で得られた変換剤を用いると、二酸化炭素を一酸化炭素に変換できることが判る。特に温度400℃における実施例1~7と参考例1との対比から明らかなように、酸化セリウムにランタン等の希土類元素(ただし、セリウムは除く)を添加させることで、一層低温でも二酸化炭素から一酸化炭素を生成させられることが判る。また、Tredの測定結果から、酸化セリウムにランタン等の希土類元素(ただし、セリウムは除く)を添加させることで、一層低温で酸素欠損を生じさせることができることが判る。更に、参考例2に示す結果から明らかなように、プラセオジム含有酸化セリウムに、酸素欠損を生じさせない場合には、二酸化炭素ガスとの反応が起こらないことが判る。
 なお表には示していないが、各実施例においては、炭素の副生は観察されなかった。
  〔実施例8及び9〕
 酸化セリウム-酸化ランタンの複合酸化物として、セリウムとランタンのモル数の合計量に対するランタンのモル数の割合が表2に示す値となるように調製したものを用いた以外は、実施例1と同様にして、実施例8及び9の可逆的な酸素欠損を有さないランタン含有酸化セリウムを得た。XRDによる測定で実施例8及び9の可逆的な酸素欠損を有さないランタン含有酸化セリウムにおいてはLa23に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、ランタンは酸化セリウムに固溶していることが確認された。実施例1と同様にして、可逆的な酸素欠損を有さないランタン含有酸化セリウムから、実施例8及び9の可逆的な酸素欠損を有するランタン含有酸化セリウムを得た。得られた可逆的な酸素欠損を有さないランタン含有酸化セリウムについて、実施例1と同様のTCO2とTredの測定をした。また、可逆的な酸素欠損を有するランタン含有酸化セリウムについて、実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す結果から、セリウム及び希土類元素のモル数の合計量に対する希土類元素のモル数の割合が0.05や0.1の場合も、0.2の場合と同様に、二酸化炭素から一酸化炭素を生成する反応の温度を低下させることができることが判る。また、酸化セリウムに対する希土類元素の添加量が増加するに伴い、酸素欠損を生じさせる温度を一層低くできることが判る。なお表2には示していないが、実施例8及び9においても、炭素の副生は観察されなかった。
 〔実施例10〕
 第1の希土類元素としてのランタン及び第2の希土類元素としてのガドリニウムを含有する酸化セリウム-酸化ランタン-酸化ガドリニウムの複合酸化物(第一稀元素社製)を用いた。該複合酸化物は、セリウム、ランタン及びガドリニウムのモル数の合計量に対するランタンのモル数の割合、並びに、セリウム、ランタン及びガドリニウムのモル数の合計量に対するガドリニウムのモル数の割合が、表3に示すものとなるように調製したものであった。該複合酸化物50gを加熱炉内に静置し、空気を流通させながら加熱して仮焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、700℃に到達した後、この温度を3時間保持した。その後、得られた仮焼生物を乳鉢等で粉砕した後に加熱炉内に静置し、空気を流通させながら加熱して本焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、1400℃に到達したのち、この温度を3時間保持した。仮焼成及び本焼成における空気の流通量は0.5L/minとした。その後、自然放冷し、可逆的な酸素欠損を有さないランタン・ガドリニウム含有酸化セリウムを得た。XRDによる測定で、このランタン・ガドリニウム含有酸化セリウムにおいてはLa23及びGd23に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、ランタン及びガドリニウムは酸化セリウムに固溶していることが確認された。得られたランタン・ガドリニウム含有酸化セリウムから、実施例1と同様にして、可逆的な酸素欠損を有するランタン・ガドリニウム含有酸化セリウムを得た。得られた可逆的な酸素欠損を有さないランタン・ガドリニウム含有酸化セリウムについて実施例1と同様のTCO2とTredの測定をした。また、可逆的な酸素欠損を有するランタン・ガドリニウム含有酸化セリウムについて、実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を以下の表3に示す。
 〔実施例11〕
 第1の希土類元素としてのランタンのほか、第2の希土類元素としてプラセオジムを含有する酸化セリウム-酸化ランタン-酸化プラセオジムの複合酸化物を用いた(阿南化成社製)。該複合酸化物は、セリウム、ランタン及びプラセオジムのモル数の合計量に対するランタンのモル数の割合、並びに、セリウム、ランタン及びプラセオジムのモル数の合計量に対するプラセオジムのモル数の割合が、表3に示すものとなるように調製したものであった。該複合酸化物50gに対し、実施例10と同様の仮焼成及び本焼成を行い、可逆的な酸素欠損を有さないランタン・プラセオジム含有酸化セリウムを得た。XRDによる測定で、このランタン・プラセオジム含有酸化セリウムにおいてはLa23及びPr611に由来する回折ピークは観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、該ランタン・プラセオジム含有酸化セリウムにおいてはランタン及びプラセオジムが酸化セリウムに固溶していることが確認された。得られたランタン・プラセオジム含有酸化セリウムから、実施例1と同様にして、可逆的な酸素欠損を有するランタン・プラセオジム含有酸化セリウムを得た。得られた可逆的な酸素欠損を有さないランタン・プラセオジム含有酸化セリウムについて、実施例1と同様のTCO2とTredの測定をした。また、可逆的な酸素欠損を有するランタン・プラセオジム含有酸化セリウムについて、実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなように、2種類以上の希土類元素を含む酸化セリウムを用いた場合も、二酸化炭素から一酸化炭素を生成する反応の温度を低下させることができるとともに、酸素欠損を生じさせる温度を低くできることが判る。また、実施例11のランタン・プラセオジム含有酸化セリウムに関しては、セリウム及び希土類元素のモル数の合計量に対する希土類元素のモル数の割合が、実施例9のランタン含有酸化セリウムと同じであるところ、該実施例9のランタン含有酸化セリウムよりもTCO2とTredが低かった。このことから、酸化セリウムに2種類以上の希土類元素を含有させる場合、1種類の希土類元素を含有させる場合に比べて、二酸化炭素から一酸化炭素を生成する反応の温度を低下させかつ、酸素欠損を生じさせる温度を低下させ得ることが判る。なお表3には示していないが、実施例10及び11においても、炭素の副生は観察されなかった。
  〔実施例12及び13〕
 セリウムとプラセオジムのモル数の比が0.79:0.2となるように調製された酸化セリウム-酸化プラセオジムの複合酸化物を用い、該複合酸化物49.389g及び酸化ビスマス0.611g(和光純薬 純度99.9%)を、純水と混合させ、固体成分が20重量%のスラリーを作製した。ポリプロピレン製の容器にスラリーを入れ、直径3mmのジルコニアビーズを、スラリー体積とビーズ体積との合計量に対するビーズ体積が約40%となるように添加した。ペイントシェーカー(浅田鉄工社製)にて640rpmの振動数で5時間混合した。ビーズから分離して回収したスラリーを、120℃で12時間乾燥させた。乾燥後のスラリーを加熱炉内に静置し、空気を流通させながら加熱して仮焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、300℃に到達した後、この温度を2時間保持した。その後、得られた仮焼生物を乳鉢等で粉砕した後に加熱炉内に静置し、空気を流通させながら加熱して本焼成を行った。加熱は、室温から開始し、5℃/分の昇温速度で加熱を行い、1000℃に到達したのち、この温度を2時間保持した。仮焼成及び本焼成における空気の流通量は0.5L/minとした。自然放冷した本焼成後の粉末を乳鉢にて粉砕した後、実施例12の可逆的な酸素欠損を有さないビスマス・プラセオジム含有酸化セリウムを得た。
 また、酸化セリウム-酸化プラセオジムの複合酸化物の代わりに、セリウムとランタンとのモル比が0.89:0.1となるように調製された酸化セリウム-酸化ランタンの複合酸化物を用い、該複合酸化物49.391g及び酸化ビスマス0.609g(和光純薬 純度99.9%)を、純水と混合させて固体成分が20重量%のスラリーを作製した以外は、実施例12と同様にして、実施例13の可逆的な酸素欠損を有さないビスマス・ランタン含有酸化セリウムを得た。
 XRDによる測定で、実施例12のビスマス・プラセオジム含有酸化セリウムにおいてはBi23及びPr611に由来する回折ピークはそれぞれ観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、実施例12のビスマス・プラセオジム含有酸化セリウムにおいてはビスマス及びプラセオジムが酸化セリウムに固溶していることが確認された。また、実施例13のビスマス・ランタン含有酸化セリウムにおいてはBi23及びLa23に由来する回折ピークはそれぞれ観察されず、CeO2に由来する回折ピークのみ観察された。この結果から、実施例13においてはビスマス及びランタンが酸化セリウムに固溶していることが確認された。
 その後、実施例12の可逆的な酸素欠損を有さないビスマス・プラセオジム含有酸化セリウム、及び実施例13の酸素欠損を有さないビスマス・ランタン含有酸化セリウムそれぞれから、実施例1と同様にして可逆的な酸素欠損を有するビスマス・プラセオジム含有酸化セリウム及びビスマス・ランタン含有酸化セリウムを得た。
 得られた可逆的な酸素欠損を有さないビスマス・プラセオジム含有酸化セリウム及び可逆的な酸素欠損を有さないビスマス・ランタン含有酸化セリウムについて実施例1と同様のTredとTCO2の測定を行った。また、可逆的な酸素欠損を有するビスマス・プラセオジム含有酸化セリウム及び可逆的な酸素欠損を有するビスマス・ランタン含有酸化セリウムについて実施例1と同様の二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。その結果を以下の表4に示す。
  〔参考例3〕
 実施例12において、可逆的な酸素欠損を有さないビスマス・プラセオジム含有酸化セリウムを水素還元せずに、そのまま二酸化炭素ガスからの一酸化炭素ガスへの変換評価を行った。また、該ビスマス・プラセオジム含有酸化セリウムについて、還元ガスによる可逆的な酸素欠損の生成工程を行わず、直接二酸化炭素ガスと反応させて、TCO2の測定を行った。その結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から明らかなように、実施例12のビスマス・プラセオジム含有酸化セリウムは、セリウム、プラセオジム及びビスマスのモル数の合計量に対するプラセオジムのモル数の割合が、ビスマスを含有しない実施例2のプラセオジム含有酸化セリウムと同じであるところ、実施例2のプラセオジム含有酸化セリウムよりもTredとTCO2が低くなった。同様に、実施例13のビスマス・ランタン含有酸化セリウムは、セリウム、ランタン及びビスマスのモル数の合計量に対するランタンのモル数の割合が、ビスマスを含有しない実施例9のランタン含有酸化セリウムと同じであるところ、実施例9のランタン含有酸化セリウムよりもTredとTCO2が低くなった。このことから、ビスマスの添加が、二酸化炭素から一酸化炭素を生成する反応の温度を低下させ、かつ酸素欠損を生じさせる温度を低下させる点で有効であることが判る。更に、参考例3に示す結果から明らかなように、ビスマス・プラセオジム含有酸化セリウムに、酸素欠損を生じさせない場合には、二酸化炭素ガスとの反応が起こらないことが判る。なお表4には示していないが、実施例12及び13においても、炭素の副生は観察されなかった。

Claims (16)

  1.  酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物と二酸化炭素含有ガスとを加熱下に接触させ、化学量論反応によって二酸化炭素を還元して、一酸化炭素を生成させる一酸化炭素の製造方法であって、
     前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる一酸化炭素の製造方法。
  2.  希土類元素(ただし、セリウムを除く)を含む酸化セリウムにおいて、セリウム及び希土類元素(ただし、セリウムを除く)のモル数の合計量に対する希土類元素(ただし、セリウムを除く)のモル数の割合が0.001~0.5であり、
     希土類元素を含む酸化ジルコニウムにおいて、ジルコニウム及び希土類元素のモル数の合計量に対する希土類元素のモル数の割合が0.001~0.5である請求項1に記載の製造方法。
  3.  前記の金属酸化物として、希土類元素(ただし、セリウムを除く)が固溶した酸化セリウム又は希土類元素が固溶した酸化ジルコニウムを用いる請求項2に記載の製造方法。
  4.  希土類元素としてSc、Y、La、Pr、Sm、Gd及びYbから選択される1種又は2種以上の希土類元素を用いる請求項1ないし3のいずれか一項に記載の製造方法。
  5.  前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウムに、Bi、Zr及びアルカリ土類金属元素から選択される1種又は2種以上のドープ元素が添加されており、セリウム、希土類元素及びドープ元素のモル数の合計量に対するドープ元素のモル数の割合が、0.001~0.2であるものを用いるか、又は
     前記の金属酸化物として、希土類元素を含む酸化ジルコニウムに、Bi及びアルカリ土類金属元素から選択される1種又は2種以上のドープ元素が添加されており、ジルコニウム、希土類元素及びドープ元素のモル数の合計量に対するドープ元素のモル数の割合が、0.001~0.2であるものを用いる、請求項1ないし4のいずれか一項に記載の製造方法。
  6.  前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウムにBiを添加したものを用いるか、又は
     前記の金属酸化物として、希土類元素を含む酸化ジルコニウムにBiを添加したものを用いる、請求項5に記載の製造方法。
  7.  二酸化炭素含有ガスとして高炉ガス又は転炉ガスを用いる請求項1ないし6のいずれか一項に記載の製造方法。
  8.  前記の金属酸化物を二酸化炭素含有ガスと接触させて一酸化炭素を生成させた後、二酸化炭素含有ガスとの接触によって酸化された該金属酸化物を還元性ガスと接触させて該金属酸化物を再生する請求項1ないし7のいずれか一項に記載の製造方法。
  9.  還元性ガスとしてコークス炉ガスを用いる請求項8に記載の製造方法。
  10.  外管と、該外管内に配置された内管とを備え、
     該内管は、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成されており、
     該外管と該内管との間に二酸化炭素含有ガスを流通させ、かつ該内管内に還元性ガスを流通させるように構成されているか、又は
     該外管と該内管との間に還元性ガスを流通させ、かつ該内管内に二酸化炭素含有ガスを流通させるように構成されており、
     前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる一酸化炭素の製造装置。
  11.  酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物を含んで構成される板状体と、板状のセパレータとが交互にスタックされてなる一酸化炭素の製造装置であって、
     各セパレータの各面には、一方向に延びる複数の凸条部及び凹条部が交互に配置されており、
     前記の板状体を挟んで対向する2つのセパレータにおける一方のセパレータと該板状体との対向面に位置する凹条部に二酸化炭素含有ガスを流通させ、かつ他方のセパレータと該板状体との対向面に位置する凹条部に還元性ガスを流通させるように構成されており、
     前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる一酸化炭素の製造装置。
  12.  製鉄所、精錬所又は火力発電所から発生した二酸化炭素を含む排気ガスと、酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物とを、精錬所、製鉄所又は火力発電所から発生した廃熱を用いた加熱下に接触させ、化学量論反応によって該排気ガス中の二酸化炭素を還元して、一酸化炭素を生成させることを特徴とする二酸化炭素を一酸化炭素に変換するシステムであって、
     前記の金属酸化物として、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムを用いる二酸化炭素を一酸化炭素に変換するシステム。
  13.  前記の排気ガスとして高炉ガス又は転炉ガスを用いる請求項12に記載のシステム。
  14.  二酸化炭素との接触によって酸化された該金属酸化物を、精錬所又は製鉄所から発生した水素含有ガスと接触させて、該金属酸化物に可逆的な酸素欠損を生じさせる請求項12又は13に記載のシステム。
  15.  水素含有ガスとしてコークス炉ガスを用いる請求項14に記載のシステム。
  16.  酸素イオン伝導性を有し、かつ可逆的な酸素欠損を有する金属酸化物からなり、金属酸化物が、希土類元素(ただし、セリウムを除く)を含む酸化セリウム又は希土類元素を含む酸化ジルコニウムからなる二酸化炭素の一酸化炭素への変換剤。
PCT/JP2011/074582 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置 WO2012057161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800354481A CN103003198A (zh) 2010-10-26 2011-10-25 一氧化碳的制造方法及制造装置
JP2012540889A JPWO2012057161A1 (ja) 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240087 2010-10-26
JP2010-240087 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012057161A1 true WO2012057161A1 (ja) 2012-05-03

Family

ID=45993867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074582 WO2012057161A1 (ja) 2010-10-26 2011-10-25 一酸化炭素の製造方法及び製造装置

Country Status (3)

Country Link
JP (1) JPWO2012057161A1 (ja)
CN (1) CN103003198A (ja)
WO (1) WO2012057161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075776A (ja) * 2019-09-24 2021-05-20 積水化学工業株式会社 製鉄システムおよび製鉄方法
WO2021192871A1 (ja) * 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法
WO2024203921A1 (ja) * 2023-03-31 2024-10-03 Eneos株式会社 ケミカルルーピングシステム、ケミカルルーピングシステム用材料および一酸化炭素の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464134B (zh) * 2013-09-03 2015-08-19 中国科学院山西煤炭化学研究所 二氧化碳分解制备一氧化碳的催化剂及制法和应用
CN108529625A (zh) * 2018-06-13 2018-09-14 昆明理工大学 一种利用煤制备一氧化碳的方法
CN112067607B (zh) * 2020-09-09 2022-04-15 深圳九星印刷包装集团有限公司 一氧化碳指示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769603A (ja) * 1993-09-02 1995-03-14 Sekiyu Shigen Kaihatsu Kk メタンを原料とする水素,一酸化炭素の製造方法
JP2007056159A (ja) * 2005-08-25 2007-03-08 Nippon Steel Corp 高熱量ガスの生成方法
WO2008001745A1 (fr) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Agent déshumidifiant/désoxydant
WO2008140004A1 (ja) * 2007-05-10 2008-11-20 Mitsui Mining & Smelting Co., Ltd. 脱酸素剤及び脱酸素剤の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568853A (ja) * 1991-09-11 1993-03-23 Nissan Motor Co Ltd Co2 ガス分解回収法
US6464955B2 (en) * 1999-05-13 2002-10-15 The Boc Group, Inc. Production of hydrogen and carbon monoxide
JP2001322958A (ja) * 2000-05-12 2001-11-20 Mitsubishi Electric Corp 二酸化炭素の固定方法および二酸化炭素の固定装置
CN1264606C (zh) * 2003-12-12 2006-07-19 天津化工研究设计院 一种铈基稀土复合氧化物材料的制法及用途
JP4210310B2 (ja) * 2006-06-29 2009-01-14 三井金属鉱業株式会社 除湿・脱酸素方法
EP1920831B1 (en) * 2006-11-08 2020-06-03 Nissan Motor Co., Ltd. Compound oxide-based particulate matter oxidizing catalyst
JP5428103B2 (ja) * 2007-02-21 2014-02-26 国立大学法人 大分大学 低温水素製造用触媒及びその製造方法と水素製造方法
JP2008258120A (ja) * 2007-04-09 2008-10-23 Nissan Motor Co Ltd 燃料電池のエージング装置およびその方法
JP2009292706A (ja) * 2008-06-09 2009-12-17 Tdk Corp 燃料改質モジュール及びその運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769603A (ja) * 1993-09-02 1995-03-14 Sekiyu Shigen Kaihatsu Kk メタンを原料とする水素,一酸化炭素の製造方法
JP2007056159A (ja) * 2005-08-25 2007-03-08 Nippon Steel Corp 高熱量ガスの生成方法
WO2008001745A1 (fr) * 2006-06-29 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Agent déshumidifiant/désoxydant
WO2008140004A1 (ja) * 2007-05-10 2008-11-20 Mitsui Mining & Smelting Co., Ltd. 脱酸素剤及び脱酸素剤の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075776A (ja) * 2019-09-24 2021-05-20 積水化学工業株式会社 製鉄システムおよび製鉄方法
WO2021192871A1 (ja) * 2020-03-25 2021-09-30 積水化学工業株式会社 還元剤およびガスの製造方法
CN115335326A (zh) * 2020-03-25 2022-11-11 积水化学工业株式会社 还原剂和气体的制造方法
EP4129920A4 (en) * 2020-03-25 2024-06-05 Sekisui Chemical Co., Ltd. REDUCING AGENT AND GAS PRODUCTION METHOD
WO2024203921A1 (ja) * 2023-03-31 2024-10-03 Eneos株式会社 ケミカルルーピングシステム、ケミカルルーピングシステム用材料および一酸化炭素の製造方法

Also Published As

Publication number Publication date
JPWO2012057161A1 (ja) 2014-05-12
CN103003198A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5858926B2 (ja) 一酸化炭素の製造方法及び製造装置
WO2012017916A1 (ja) 製鉄所における二酸化炭素からの一酸化炭素への変換システム
Ding et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas
Hare et al. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures
TWI603779B (zh) 熱化學燃料製造用觸媒及熱化學燃料製造方法
WO2012057161A1 (ja) 一酸化炭素の製造方法及び製造装置
Scheffe et al. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review
JP6111070B2 (ja) 一酸化炭素の製造方法及び製造装置
Call et al. Thermogravimetric analysis of zirconia-doped ceria for thermochemical production of solar fuel
KR102184878B1 (ko) 케미컬 루핑 연소에 의한 일산화탄소의 제조방법
Zhu et al. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping
WO2011136045A1 (ja) 一酸化炭素の製造方法及び製造装置
Hussein et al. Production of CO from CO2 over mixed-metal oxides derived from layered-double-hydroxides
Bader et al. Solar thermochemical processes
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
US9580326B1 (en) Method for carbon dioxide splitting
KR20160098085A (ko) 연료개질용 선택적 산화반응 촉매 및 그 제조방법
US20160181639A1 (en) Energy generation process
Jiang et al. B-site cobalt-doped perovskite oxide BaNiO 3 oxygen sorbents for performance improvement of oxygen enriched gas production
KR101768001B1 (ko) 산소공여입자를 이용한 하이브리드 태양열-화학적 순환공정
JP2010058043A (ja) 水蒸気改質用触媒および水素の製造方法
Abad Secades et al. Evaluation of the redox capability of manganese‑titanium mixed oxides for thermochemical energy storage and chemical looping processes
US9868636B1 (en) Thermochemically active iron titanium oxide materials
Alshankiti Study of Redox Reactions for Solar Thermochemical Cycles
Wang et al. Pr doped CeO2 for chemical looping air separation at ultra-low temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540889

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836294

Country of ref document: EP

Kind code of ref document: A1