WO2012056977A1 - はんだボールの製造方法 - Google Patents

はんだボールの製造方法 Download PDF

Info

Publication number
WO2012056977A1
WO2012056977A1 PCT/JP2011/074099 JP2011074099W WO2012056977A1 WO 2012056977 A1 WO2012056977 A1 WO 2012056977A1 JP 2011074099 W JP2011074099 W JP 2011074099W WO 2012056977 A1 WO2012056977 A1 WO 2012056977A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
solder
core
layer
opening
Prior art date
Application number
PCT/JP2011/074099
Other languages
English (en)
French (fr)
Inventor
孝志 荘司
丈和 堺
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to SG2013029020A priority Critical patent/SG189919A1/en
Priority to CN201180051311.5A priority patent/CN103189159B/zh
Priority to KR1020137009198A priority patent/KR101422425B1/ko
Publication of WO2012056977A1 publication Critical patent/WO2012056977A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps

Definitions

  • the present invention relates to a solder ball manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2010-2441029 filed in Japan on October 27, 2010, the contents of which are incorporated herein by reference.
  • a circuit pattern is provided on a plastic substrate, a ceramic substrate, or an insulating substrate coated with plastic, and an electronic component such as an IC element, a semiconductor chip, a resistor, or a capacitor is provided thereon. Solder joining methods are widely used.
  • a step of joining the lead terminals of the electronic component to a predetermined portion of the circuit board a step of forming a solder thin layer in advance on the surface of the conductive circuit electrode on the circuit board, and a solder paste or A step of printing a flux, a step of positioning and placing a predetermined electronic component, a step of reflowing a solder thin layer and a solder paste, a step of solidifying the solder and joining the electronic component and the conductive circuit electrode, are generally performed sequentially.
  • solder bump manufacturing method by the electroless plating method it is difficult to increase the thickness of the solder layer, and thus the electronic component and the conductive circuit electrode cannot be firmly bonded.
  • the method for producing solder bumps by electroplating it is difficult to pass a current for plating formation through a complicated circuit, so that it is not possible to form solder bumps with a fine pattern shape.
  • the method of printing a solder paste it is difficult to cope with a fine pitch pattern, so that it is impossible to form a solder bump with a fine pattern shape.
  • Patent Document 1 As a method of attaching a solder ball on a circuit, a method is known in which a tackifying compound is reacted on the surface of a conductive circuit electrode of a circuit board to impart adhesiveness, and the solder ball is attached to the adhesive portion. ing. Then, solder bumps are formed by melting the solder balls (Patent Document 1). Further, as an application of the method described in Patent Document 1, a technique for attaching only one solder ball to a necessary portion on a conductive circuit electrode has been developed. (See Patent Document 2)
  • solder bump such as a semiconductor device having a BGA (ball grid array) structure
  • a conventional solder ball is used to reflow the semiconductor chip and the circuit board.
  • solder bumps cannot be maintained at a certain height, and the semiconductor chip may sink unevenly and may be joined in an inclined state.
  • a high melting point solder ball is once melted at a high temperature to form a solder bump, and then a semiconductor chip and a circuit board are joined with a solder having a lower melting point than the high melting point solder ball. It is used.
  • a method of using a metal ball (copper core solder ball) such as copper plated with a solder layer as a solder ball is also known. According to this method, it is possible to form a solder bump by placing a copper core solder ball on a circuit board and melting it once, but since the core serves as a spacer, the distance between the electronic component and the circuit board is constant. Can be kept in.
  • the material of the high melting point solder is limited, and a high melting point solder containing a composition containing lead at a high concentration is used.
  • a high melting point solder is a lead having a high lead concentration containing 95% or 80%, and ⁇ rays emitted from the lead cause malfunction of LSIs and the like. Therefore, there is a demand for high-melting-point solder that uses expensive lead obtained by extracting only lead isotopes with less ⁇ rays or is completely lead-free.
  • the method using a copper core solder ball has a problem that it is technically difficult to uniformly attach the solder to the copper core ball, and the manufacturing cost is extremely high. Therefore, it has not been used for general purposes.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a solder ball that can cope with a fine pattern shape and can be formed at low cost.
  • the present invention [1] A first step of attaching a core to the first adhesive layer applied to the surface of the substrate, and a tackifying compound is applied to the surface of the core to form a second adhesive layer A second step, a third step of attaching solder particles on the second adhesive layer on the surface of the core, and a fourth step of melting the solder particles to form a solder layer on the surface of the core. And a fifth step of peeling off the base material from the core to obtain a solder ball. [2] The solder ball manufacturing method of [1], wherein the core is made of Cu.
  • the first member includes a first layer and a second layer
  • a pre-process for arranging the first member on the first adhesive layer is as follows: Placing the first layer of the first member having an opening on the first adhesive layer; On the first layer of the first member, the second layer of the first member having an opening having a diameter smaller than that of the opening, and the center of the opening of the first layer and the second layer Arranging the center of the opening so that they overlap, Consists of [3], further comprising a step of peeling the second layer of the first member from the first layer of the first member between the first step and the second step.
  • the pre-process for forming the first adhesive layer includes A step of disposing a second member having a dot-shaped opening that exposes a part of the surface of the base material on the base material, and forming the first adhesive layer using the second member as a mask. Applying the adhesive substance to obtain a plurality of dot-shaped first adhesive layers.
  • the pre-process for forming the dot-shaped first adhesive layer includes: Forming a dot-shaped metal film on the surface of the substrate for transfer so as to be spaced apart from each other; Applying a tackifying compound to the metal film; A step of forming a first adhesive layer by transferring the tackifier compound from the transfer substrate to the surface of the substrate, and the solder ball according to [6], Production method. [9] The pre-process for forming the dot-shaped first adhesive layer covers the substrate surface with a mask having an opening, and then transfers the substrate to the substrate surface exposed from the opening of the mask.
  • the second adhesive layer is formed on the core while the surface of the base material is covered with a mask.
  • the pre-process for forming the first adhesive layer includes Forming a dot-shaped metal film on the surface of the substrate so as to be spaced apart from each other; and forming the first adhesive layer by applying a tackifier compound to the metal film. [6] The method for producing a solder ball as set forth in [6].
  • the pre-process for forming the first adhesive layer includes: Forming a dot-shaped metal film on the surface of the substrate so as to be spaced apart from each other; The method according to [10], further comprising a step of applying the tackifying compound to the surface of the metal film exposed from the first opening after covering the surface of the base material with a mask having an opening.
  • Solder ball manufacturing method [12] The method for manufacturing a solder ball according to any one of [10] and [11], wherein the metal film is made of tungsten.
  • the solder particles are melted after adhering the solder particles to the surface of the core body via the second adhesive layer, so that the solder layer is uniformly formed on the surface of the core body. Can be formed. Further, the solder layer can be easily formed as compared with the conventional method of forming the solder layer by plating or the like. Also, since the solder layer is formed on the core body with the core body attached to the surface of the base material via the first adhesive layer, it is possible to treat more core bodies simultaneously than in the conventional method. it can.
  • a core body can be easily removed from a base material after solder layer formation.
  • the solder ball forming process can be greatly simplified and the production can be efficiently performed as compared with the conventional method. For this reason, the manufacturing cost of a solder ball can be lowered.
  • the core functions as a spacer when forming solder bumps with the solder balls formed from these. For this reason, even if the solder layer is melted, the solder bumps can be kept at a certain height. For this reason, even if an electronic component is mounted on the solder bump, the electronic component does not sink due to its own weight. Therefore, the distance between the electronic component and the circuit board can be kept constant.
  • the manufacturing method of the solder ball 70 of the first embodiment includes a first step of attaching the core 11 to the surface 1a of the base material 1 provided with the first adhesive layer 5, and a surface 11a of the core 11; A second step of forming the second adhesive layer 13; a third step of attaching the solder particles 14 to the surface of the second adhesive layer 13; and melting the solder particles 14 to place the solder layer 15 on the core 11
  • This is roughly composed of a fourth step to be formed and a fifth step of peeling the base material 1 from the core body 11.
  • a member 21 (first member) having an opening is disposed on the adhesive layer 13 before the core 11 is attached.
  • the adhesive layer 5 exposed in the opening of the member 21 is disposed.
  • the nucleus 11 is attached.
  • the base material 1 provided with the first adhesive layer 5 is prepared.
  • the base material for example, a base material made of polyimide, a base material made of acid-resistant resin, a ceramic base material, a glass base material, or the like can be used.
  • the substrate 1 is not limited to the materials listed here, and any substrate can be used as the substrate of the present invention as long as it is made of a material that can withstand the heat of melting the solder particles 14 described later. .
  • the base 1 is provided with a first adhesive layer 5.
  • a material for forming the first adhesive layer 5 any material may be used as long as it can attach the core 11 and can withstand heat at the time of melting the solder particles 14 described later.
  • an adhesive material having heat resistance such as a silicon-based adhesive material can be used.
  • a polyimide tape can be used as the base material 1 provided with the first adhesive layer 5.
  • the first member 21 is disposed so as to cover the surface 5 a of the first adhesive layer 5.
  • the first member 21 is a member for disposing the core 11 on the surface 5a of the first adhesive layer 5 with a gap in the first step described later.
  • the first member 21 is provided with a plurality of dot-shaped first openings 31 at intervals.
  • positioning form of an opening part can be selected arbitrarily.
  • the first adhesive layer 5 a material having a property that the adhesiveness of the surface 5a is eliminated by ultraviolet irradiation, heating, or the like may be used. When such a material is used, ultraviolet irradiation or heating for losing the adhesiveness of the first adhesive layer 5 may be performed at an arbitrary stage.
  • a metal plate-like member having an opening which is generally used for disposing the core body 11, can be used.
  • stainless steel or nickel having a thickness of about 60 ⁇ m can be used as the material of the first member 21.
  • the material of the first member 21 is not limited to metal, and in the step of forming the second adhesive layer 13 to be described later on the core 11, the property that the adhesiveness is not imparted to the portion covered by the first member 21.
  • the material is not limited, as long as it has the following.
  • the first member 21 is not limited to a plate-like member, and may be a solder resist paste applied to the surface of the first adhesive layer 5 by screen printing.
  • the thickness H of the first member 21 (the step between the one surface 1a of the base member 1 and the upper surface of the first member 21) is appropriately set according to the particle diameter D of the core 11, but the thickness H is the nucleus. It is preferable to set it smaller than the particle diameter D of the body 11, and it is particularly preferable to set it within a range of 1 ⁇ m or more and half or less of the particle diameter D.
  • the core 11 is not preferable because it is difficult to enter the first opening 31. Further, if the thickness H is less than 1 ⁇ m, the core 11 is likely to fall off, which is not preferable.
  • the diameter F 1 of the first opening 31 is such that the thickness H of the first member 21 and the particle diameter D of the core 11 are such that two or more cores 11 are not disposed in the first opening 31. It is preferable to set appropriately according to the above.
  • the range of the diameter F 1 can be expressed by the following mathematical formula (1).
  • the diameter F 1 of the first opening 31 is 80 ⁇ m or more and less than 180 ⁇ m. It becomes.
  • a particularly preferable range of the diameter F 1 of the first opening 31 can be expressed by the following formula (2), where d is the diameter of the solder particles 14 attached to the surface of the core 11.
  • the core body 11 can be easily attached in the first opening 31.
  • the interval G 1 between the adjacent first openings 31 is preferably set as appropriate according to the particle diameter D of the core 11, the particle diameter d of the solder particles 14, and the thickness H of the first member 21. .
  • Distance G 1 between the first opening 31 adjacent can be expressed by the following equation (3).
  • particularly preferred range of spacing G 1 between the first opening 31 adjacent, when the diameter of the solder particles 14 is d may be expressed by the following equation (4).
  • planar view shape of the first opening 31 is preferably circular, but may be an ellipse or a square.
  • the core 11 is attached to the surface 5 a of the first adhesive layer 5 exposed from the first opening 31.
  • the method of attaching the core 11 to the first adhesive layer 5 can be selected as necessary.
  • the core 11 is attached to the first adhesive layer 5 in air or in an inert atmosphere.
  • a method of directly supplying or a method of dispersing the core 11 in a dispersion (not shown) to form a slurry and supplying the slurry to the first adhesive layer 5 can be employed.
  • the core 11 is put into a container filled with air or inert gas.
  • the amount of the nucleus 11 at this time can be arbitrarily selected.
  • the base material 1 on which the first adhesive layer 5 is formed is placed in the container.
  • the first adhesive layer 5 and the core 11 are brought into contact with each other by a method such as tilting or vibrating the container. Thereby, the nucleus 11 adheres to the surface 5 a of the first adhesive layer 5. Nucleus that has not adhered may be removed as necessary.
  • a dispersion liquid such as water is put in a container (not shown), and the core 11 is added to the dispersion liquid.
  • the substrate 1 is placed in the container so that the substrate 1 does not come into contact with the dispersion or the core 11.
  • the first adhesive layer 5 on the substrate 1 and the core 11 are brought into contact with each other in the dispersion by tilting the container left and right. As a result, the core 11 adheres to the first adhesive layer 5.
  • the method of attaching the nucleus 11 in the liquid is particularly preferable when the minute nucleus 11 is used.
  • the method of attaching the nucleus 11 to the first adhesive layer 5 is not limited to the method of attaching in the liquid, and a method suitable for the conditions such as the size of the nucleus 11 may be adopted as appropriate.
  • the material of the core 11 it is preferable to use a metal such as tin (Sn), and it is particularly preferable to use copper (Cu).
  • the material of the core 11 is not limited to these, and any conductive substance can be used as long as it has a melting point higher than that of the solder particles 14 described later and can be tackified by the second tackifying compound.
  • Other materials such as alloys may be used.
  • examples of such materials include metals and alloys such as Ni, Ni—Au, or Au—Sn.
  • the average particle diameter D of the core 11 is suitably in the range of 20 ⁇ m to 200 ⁇ m from the viewpoint of workability, preferably in the range of 30 ⁇ m to 130 ⁇ m, and in the range of 50 ⁇ m to 80 ⁇ m. It is particularly preferable to use the inside.
  • a tackifying compound is applied to the surface 11 a of the core 11 to form the second adhesive layer 13.
  • the tackifying compounds first tackifying compounds shown below are dissolved in water or acidic water, and adjusted to slightly acidic, preferably about pH 3-4. . Thereby, an adhesive solution is formed.
  • the second adhesive layer 13 is formed on the surface 11 a of the core 11 by immersing the substrate 1 obtained in the first step in the adhesive solution or by applying the adhesive solution to the substrate 1. Is done.
  • the tackifier compound is arbitrarily selected.
  • a naphthotriazole derivative for example, a benzotriazole derivative, an imidazole derivative, a benzoimidazole derivative, a mercaptobenzobenzothiazole derivative, and a benzothiazole.
  • Thio fatty acids and the like can be used.
  • These tackifying compounds have a strong effect of imparting tackiness, particularly to copper, to metals and the like.
  • tackiness can be imparted to other conductive materials other than copper.
  • benzotriazole derivative suitably used in the present invention is represented by the general formula (1).
  • R1 to R4 are independently a hydrogen atom, an alkyl group having 1 to 16 carbon atoms (preferably 5 to 16), an alkoxy group, F, Br, Cl, I, a cyano group, amino Group or OH group.
  • the naphthotriazole derivative suitably used in the present invention is represented by the general formula (2).
  • R5 to R10 are independently hydrogen atoms, alkyl groups having 1 to 16 carbon atoms (preferably 5 to 16), alkoxy groups, F, Br, Cl, I, cyano groups, amino groups Group or OH group.
  • imidazole derivative suitably used in the present invention is represented by the general formula (3).
  • R11 and R12 are independently hydrogen atoms, alkyl groups having 1 to 16 carbon atoms (preferably 5 to 16), alkoxy groups, F, Br, Cl, I, cyano groups, amino groups Group or OH group.
  • benzoimidazole derivative suitably used in the present invention is represented by the general formula (4).
  • R13 to R17 are independently hydrogen atoms, alkyl groups having 1 to 16 carbon atoms (preferably 5 to 16), alkoxy groups, F, Br, Cl, I, cyano groups, amino groups Group or OH group.
  • mercaptobenzothiazole derivative suitably used in the present invention is represented by the general formula (5).
  • R18 to R21 are each independently a hydrogen atom, an alkyl group having 1 to 16 carbon atoms (preferably 5 to 16), an alkoxy group, F, Br, Cl, I, a cyano group, amino Group or OH group.
  • benzothiazole thio fatty acid derivative suitably used in the present invention is represented by the general formula (6).
  • R22 to R26 are independently a hydrogen atom, an alkyl group having 1 to 16 carbon atoms (preferably 1 or 2), an alkoxy group, F, Br, Cl, I, a cyano group, amino Group or OH group.
  • R1 to R4 generally have higher tackiness as the carbon number is larger.
  • R11 to R17 of the imidazole derivatives and benzoimidazole derivatives represented by the general formulas (3) and (4) generally, the higher the number of carbon atoms, the stronger the adhesiveness.
  • R22 to R26 preferably have 1 or 2 carbon atoms.
  • substances used for adjusting the pH of the adhesive solution include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids.
  • organic acids formic acid, lactic acid, acetic acid, propionic acid, malic acid, oxalic acid, malonic acid, succinic acid, tartaric acid and the like can be used.
  • concentration of the tackifier compound in the adhesive solution is not particularly limited, and may be appropriately adjusted according to solubility and use conditions, and may be 0.05% by mass to 20% by mass with respect to the entire adhesive solution. It is particularly preferable that it is within the range.
  • the concentration of the tackifying compound is within this range, sufficient tackiness can be imparted to the core 11.
  • concentration of the tackifying compound is within this range, sufficient tackiness can be imparted to the core 11.
  • it is less than 0.05% by mass relative to the entire adhesive solution sufficient tackiness cannot be imparted, and if it exceeds 20% by mass relative to the entire adhesive solution, a large amount of tackifier compound is consumed, Since it becomes inefficient, it is not preferable.
  • the treatment temperature for imparting adhesiveness to the surface 11a of the core 11 is slightly higher than room temperature. Thereby, the formation speed and formation amount of the second adhesive layer 13 are sufficient.
  • the optimum treatment temperature varies depending on the concentration of the tackifier compound and the type of material metal of the second adhesive layer 13, but is generally in the range of about 30 ° C to 60 ° C. Further, it is preferable to adjust other conditions so that the immersion time in the adhesive solution is in the range of about 5 seconds to 5 minutes.
  • solder particles 14 are attached on the second adhesive layer 13 on the surface of the core 11.
  • Examples of the method of attaching the solder particles 14 to the second adhesive layer 13 include a method of directly supplying the solder particles 14 to the second adhesive layer 13 in the air or in an inert atmosphere, or in a dispersion liquid (not shown). There is a method in which the solder particles 14 are dispersed to form a slurry and the slurry is supplied to the second adhesive layer 13.
  • the method for attaching the solder particles 14 to the second adhesive layer 13 is the same as the method for attaching the core 11 to the surface 1a of the substrate 1 in the first step, and thus detailed description thereof is omitted.
  • the nucleus 11 is 1st.
  • the first member 21 may be peeled off after being provided on the adhesive layer 5. In this case, it is possible to prevent the solder particles 14 from adhering to the surface 5a of the first adhesive layer by removing the adhesiveness of the surface 5a by irradiating ultraviolet rays or heating after peeling off the first member 21. it can.
  • the particle diameter d of the solder particles 14 is smaller than the average particle diameter D of the cores 11 so that the plurality of solder particles 14 adhere to one core body 11.
  • the particle diameter d of the solder particles 14 may be appropriately set according to the particle diameter D of the core 11, but is preferably 1 ⁇ m or more and 1 ⁇ 2 times or less of the particle diameter D. When the particle diameter d of the solder particles 14 is within this range, a plurality of solder particles 14 can be attached to one core body 11.
  • the particle size d of the solder particles 14 is less than 1 ⁇ m, the film thickness of the solder layer 15 becomes too thin, and the amount of solder when the formed solder balls 70 are reflowed becomes insufficient. For this reason, when the solder balls 70 are reflowed, the solder bumps are easily peeled off from the circuit board, which is not preferable. That is, the solder layer 15 is insufficient, which is not desirable. Further, if the particle diameter d of the solder particles 14 is equal to or more than half of the average particle diameter D of the cores 11, a sufficient number of solder particles 14 cannot be attached to one core body 11, It is not preferable.
  • Examples of the metal composition of the solder particles 14 include Sn—Pb, Sn—Pb—Ag, Sn—Pb—Bi, Sn—Pb—Bi—Ag, and Sn—Pb—Cd. . Further, from the viewpoint of eliminating Pb in recent industrial waste, Sn—In, Sn—Bi, In—Ag, In—Bi, Sn—Zn, Sn—Ag, Sn—Cu, which do not contain Pb.
  • Sn-Sb type Sn-Au type, Sn-Bi-Ag-Cu type, Sn-Ge type, Sn-Bi-Cu type, Sn-Cu-Sb-Ag type, Sn-Ag-Zn type, Sn -Cu-Ag, Sn-Bi-Sb, Sn-Bi-Sb-Zn, Sn-Bi-Cu-Zn, Sn-Ag-Sb, Sn-Ag-Sb-Zn, Sn-Ag A —Cu—Zn system and a Sn—Zn—Bi system are preferable.
  • the metal composition are 62Sn / 36Pb / 2Ag, 62.6Sn / 37Pb / 0, centering on eutectic solder (hereinafter referred to as 63Sn / 37Pb) with Sn of 63% by mass and Pb of 37% by mass.
  • solder particles 14 are adhered to the core 11 in the dispersion in the third step, the substrate 1 is first dried.
  • Fixing is a reaction in which the constituent material of the core 11 is diffused toward the solder particles 14 between the core 11 and the solder particles 14.
  • the fixing temperature is preferably in the range of minus 50 ° C. to plus 50 ° C., more preferably in the range of minus 30 ° C. to plus 30 ° C., relative to the melting point of the solder used.
  • the fixing temperature is within this range, the solder particles 14 do not melt, or even if the inside melts, the solder particles 14 will not melt and flow out due to the effect of the oxide film present on the surface. Therefore, fixing can be performed while maintaining the shape of the solder particles 14.
  • a water-soluble flux is applied to the base material 1 provided with the core 11 on which the solder particles 14 are fixed.
  • a water-soluble flux for example, a flux described in JP-A-2004-282062 can be used.
  • the heating temperature at this time is preferably in the range of 200 ° C. to 300 ° C., and particularly preferably the melting point of the solder plus 10 ° C. to 50 ° C. By heating at a temperature within such a range, the molten solder of the solder particles 14 and the surface 11a of the core 11 can sufficiently react to form a diffusion layer.
  • the first member 21 is peeled from the surface 5 a of the first adhesive layer 5.
  • the core body 11 is peeled from the substrate 1.
  • the method of peeling the core 11 from the substrate 1 may be appropriately selected depending on the material of the first adhesive layer 5. Specifically, for example, a method of applying vibration to the substrate 1 with an ultrasonic cleaner or a method of dissolving the first adhesive layer 5 with a solvent can be used.
  • the method of peeling the core 11 from the base material 1 is not limited to the above method, and when the base material 1 has flexibility, the core body 11 is peeled by bending the base material 1. May be. Thus, the solder ball 70 is formed.
  • the core The solder layer 15 can be uniformly formed on the surface 11a of the electrode 11. Further, the solder layer 15 can be easily formed as compared with the conventional method of forming the solder layer by plating or the like.
  • the solder layer 15 is formed in a state where the core 11 is attached to the surface 1a of the substrate 1 via the first adhesive layer 5, a larger number of cores 11 can be processed simultaneously than in the conventional method. can do. Further, since the core body 11 is attached to the surface 1 a of the base material 1 via the first adhesive layer 5, the core body 11 can be easily detached from the base material 1 after the solder layer 15 is formed. As described above, as compared with the conventional method, the process of forming the solder balls 70 can be greatly simplified and the production can be efficiently performed. For this reason, the manufacturing cost of the solder ball 70 can be reduced.
  • the core 11 becomes a spacer when the solder bump is formed by the manufactured solder ball 70. For this reason, even if the solder layer 15 melts, the solder bumps can be kept at a certain height. For this reason, even if an electronic component is mounted on the solder bump, the electronic component does not sink due to its own weight. Therefore, the distance between the electronic component and the circuit board can be kept constant.
  • the core 11 is made of metal, when used as the solder ball 70, electrical connection between the electronic component and the circuit board can be ensured.
  • the core 11 is made of copper, since the electrical resistance of copper is low, good conduction between the electronic component and the circuit board can be ensured.
  • the adhesive compound can be more easily applied.
  • the 2nd adhesion layer 13 of sufficient thickness can be formed.
  • the solder particles 14 adhere to the surface 11 a of the core 11 via the second adhesive layer 13.
  • the solder layer 15 having a uniform and sufficient thickness can be formed.
  • the solder balls 70 having a uniform particle diameter can be formed, and the electronic component and the circuit board can be satisfactorily joined.
  • the manufacturing method according to the present embodiment is a method suitable for a fine base material, and can provide an electronic device having a high degree of integration and high reliability.
  • the solder ball 70 can be formed without using a high melting point solder containing a large amount of lead. For this reason, the lead-free solder balls 70 can be realized. For this reason, alpha rays are not radiated
  • the first member can be repeatedly used in the manufacture of the solder ball 70. For this reason, the manufacturing cost in the solder ball 70 manufacturing process can be suppressed.
  • the core 11 can easily enter the first opening 31. For this reason, workability
  • the second adhesive layer 13 is not formed.
  • the material used for the core such as a conductive substance or metal is a material to which the tackiness is imparted by the tackifier.
  • the materials used for the first member and the first pressure-sensitive adhesive are materials that are not imparted with tackiness by the tackifier. For this reason, the solder particles 14 can be selectively attached to the core 11.
  • the core 11 since the core 11 is adhered to the inside of the first opening 31, the core 11 is prevented from dropping out of the first opening 31 even when the adhesive force of the first adhesive layer 5 is weak. Can be prevented. For this reason, the core 11 can be reliably attached to all the first openings 31.
  • solder ball 70 (Second embodiment) Next, a method for manufacturing the solder ball 70 according to the second embodiment of the present invention will be described with reference to the drawings.
  • 2A to 2E are process diagrams for explaining a method of manufacturing the solder ball 70 of the second embodiment.
  • the manufacturing method of the solder ball 70 according to the second embodiment includes a first step of attaching the core 11 to the surface 5a of the first adhesive layer 5 applied to the surface 1a of the substrate 1, and a surface of the core 11 11a, a second step of forming the second adhesive layer 13, a third step of attaching the solder particles 14 to the surface of the second adhesive layer 13, and melting the solder particles 14 to form the solder layer 15.
  • the fourth step and the fifth step of peeling the base material 1 from the core 11 are roughly configured. *
  • the first member 21 is composed of a first layer 21a (first layer of the first member) and a second layer 21b (second layer of the first member), and Except having the process of peeling said 2nd layer 21b from the 1st layer 21a between a 1st process and said 2nd process, it is the same as that of 1st embodiment. Therefore, detailed description of the same part is omitted.
  • the first step will be described.
  • the first step in the second embodiment is a step (i) having an opening 32a (second opening lower portion) as a step (previous step) for placing the first member 21 on the first adhesive layer 5.
  • each step will be described in detail.
  • the first layer 21 a of the first member is arranged so as to cover the surface 5 a of the first adhesive layer 5.
  • the first layer 21a of the first member is provided with an opening 32a that exposes the surface 5a of the first adhesive layer 5 at an interval.
  • the material of the first layer 21a of the first member is not particularly limited. Specifically, for example, a material obtained by applying a solder resist paste to the substrate 1 by screen printing can be used.
  • the range of the diameter F 2a of the opening 32a of the first layer 21a is a diameter of the opening 32b of the second layer 21b to be described later
  • F 2b can be expressed by the following equation (5).
  • the particularly preferable range of the opening 32a can be expressed by the following mathematical formula (6).
  • the second layer 21b of the first member is disposed on the first layer 21a of the first member.
  • the second layer 21b of the first member is provided with an opening 32b having a smaller diameter than the opening 32a of the first layer 21a.
  • a metal plate-like member can be used as the second layer 21b of the first member.
  • H is 1 ⁇ 2 or more of the particle diameter D of the core 11 and the diameter F 2b of the opening 32b is The range can be expressed by the following mathematical formula (7).
  • a particularly preferable range of the diameter F 2b of the opening 32b can be expressed by the following mathematical formula (8).
  • the distance G 2 between the adjacent opening 32b is the thickness of the second layer 21b of the first member when the H b, can be expressed by the following equation (9).
  • the nucleus 11 is attached to the surface 5 a of the first adhesive layer 5.
  • the second layer 21b of the first member is peeled off from the first layer 21a of the first member. Since the diameter F 2b of the opening 32b is smaller than the diameter F 2a of the opening 32a, the core 11 is placed in the center of the second opening lower portion 32a.
  • the tackifier compound is applied to the surface 11 a of the core 11.
  • the second adhesive layer 13 is formed.
  • the core 11 is formed of a material to which tackiness is imparted by the tackifier compound, but the first layer 21a of the first member and the first adhesive layer are materials to which tackiness is not imparted by the tackifier compound. Formed from. Therefore, the adhesive layer 13 is not formed on the first layer 21a.
  • the third step, the fourth step, and the fifth step are performed, but the steps after the third step are the same as those in the first embodiment. Detailed description of the third and subsequent steps will be omitted.
  • the second layer 21b of the first member having the opening 32b having a diameter smaller than the opening 32a on the first layer 21a of the first member. is arranged so that the center of the opening 32a and the center of the opening 32b overlap, so that the opening 32b is positioned on the center of the opening 32a.
  • the second layer 21b of the first member is peeled from the first layer 21a of the first member. A sufficient distance from the first layer of the member can be maintained. That is, when the core 11 is attached to the first adhesive layer 5, the core 11 can be disposed at the center of the opening 32a.
  • the joining of the adjacent solder balls 70 can be more effectively prevented.
  • 3A to 3F are process diagrams illustrating a method for manufacturing the solder ball 70 according to the third embodiment.
  • the first step of attaching the core 11 to the surface 5a of the first adhesive layer 5 applied to the substrate 1, and the surface 11a of the core 11 are: A second step of forming the second adhesive layer 13, a third step of attaching the solder particles 14 to the surface of the second adhesive layer 13, and a fourth step of melting the solder particles 14 to form the solder layer 15 And a fifth step of peeling the base material 1 from the core 11.
  • 3rd embodiment it has the process of peeling the 1st member 21 between a 1st process and a 2nd process, and also 1st so that the surface 5a of the 1st adhesion layer 5 may be covered.
  • grains which have the diameter r smaller than the thickness H of the member 21 on a 1st adhesion layer, and forms the mask 41 (1st mask) differs from 1st embodiment. For this reason, the detailed description of the same steps as those in the first embodiment is omitted.
  • the core 11 is attached to the surface 5 a of the first adhesive layer 5 of the substrate 1 having the first member 21.
  • the openings 33 spacing G 3 of the (third opening) between adjacent of the first member to be 10-20 times the diameter d of the solder particles 14 used in the third step preferable.
  • the thickness H of the first member 21 is preferably at least 1/2 times the particle size D of the core 11.
  • the diameter F 3 of the opening 33 of the first member may be larger than the particle diameter D of the core 11 and less than twice the particle diameter D of the core 11, but is larger than the particle diameter D.
  • a size of 10 to 20 ⁇ m is particularly preferable.
  • the first member 21 is peeled off from the first adhesive layer 5. Thereby, the surface 5a of the 1st adhesion layer 5 is exposed.
  • a mask 41 made of a granular material is attached so as to cover the surface 5a of the first adhesive layer 5.
  • the material of the mask 41 for example, glass, ceramic, polymer, and the like can be used. However, the material is not limited as long as it does not melt in water and the second adhesive layer 13 is not formed on the surface. .
  • the diameter r of the material of the mask 41 is smaller than the thickness H of the first member 21.
  • the smaller the diameter and the height r the better. From the viewpoint of work efficiency, it is preferably about sub ⁇ m to several ⁇ m.
  • a material having a diameter of 0.5 ⁇ m to 2 ⁇ m can be preferably used.
  • the solder particles 14 are not sufficiently adhered to the vicinity of the contact surface between the core 11 and the first adhesive layer 5, which is not preferable. Further, when the mask 41 is attached so as to cover the surface 5a of the first adhesive layer 5, a gap is generated between the materials of the adjacent masks 41. Therefore, in the third step, the surface of the first adhesive layer 5 There is a risk that the solder particles 14 adhere to the surface. For this reason, in the fourth step, the solder particles 14 attached to the surface of the first adhesive layer 5 may be melted and joined to the solder ball 70. For this reason, the particle diameter of the solder ball 70 becomes non-uniform, which is not preferable.
  • the second step, the third step, and the fourth step are performed.
  • the steps of the second step to the fourth step are the same as in the first embodiment. Therefore, detailed description thereof is omitted here.
  • a method of peeling the first mask 41 from the first adhesive layer 5 can be arbitrarily selected. Specifically, for example, the substrate 1 is vibrated with an ultrasonic cleaner. The method can be adopted. Thus, the solder ball 70 is formed.
  • the first member 21 is used to peel off the first member 21 after disposing the core body 11 on the surface 5a of the adhesive layer 5, thereby The interval between the bodies 11 can be kept moderate.
  • the solder particles 14 are attached to the surface 11a of the core 11, so that the core 11 and the first adhesive layer 5 The solder particles 14 can be attached to the vicinity of the contact surface. For this reason, the solder layer 15 can be formed on the entire surface 11 a of the core 11.
  • the second adhesive is applied to the surface of the first mask 41 in the second step. Formation of the layer 13 can be prevented. For this reason, adhesion of the solder particles 14 to the surface of the first mask 41 can be prevented.
  • the thickness of the solder layer 15 of the solder ball 70 can be formed uniformly.
  • the manufacturing method of the solder ball 70 in the fourth embodiment includes a first step of attaching the core 11 to the surface 5a of the first adhesive layer 5 applied to the substrate 1, and a surface 11a of the core 11; A second step of forming the second adhesive layer 13, a third step of attaching the solder particles 14 to the surface of the second adhesive layer 13, and a fourth step of melting the solder particles 14 to form the solder layer 15 And a fifth step of peeling the base material 1 from the core 11.
  • the plurality of first adhesive layers 5 in the form of dots are separated from each other on the surface 1a of the substrate 1 by applying an adhesive layer through a mask.
  • the point to form differs from the 1st embodiment which arrange
  • the second member 22 is arranged so as to cover the surface 1a of the substrate 1.
  • a plate-like member can be used as the second member 22.
  • the second member 22 is provided with openings 34 (fourth openings) that expose a part of the surface 1a of the substrate 1 in a dot shape so as to be separated from each other.
  • the second member 22 may be separated from the substrate 1 or may be in contact with the substrate 1.
  • the range of the diameter F 4 of the opening 34, the thickness of the adhesive material when the H can be represented by the following equation (10).
  • a particularly preferable range of the diameter F 4 of the opening 34 can be expressed by the following mathematical formula (11).
  • the gap G 4 between the adjacent openings 34 can be expressed by the following formula (12), where the thickness of the adhesive material is H and the diameter of the fourth opening 34 is F 4 .
  • an adhesive substance is applied so as to fill the opening 34 using the second member 22 as a mask. You may use methods other than application
  • the thickness H, diameter F 4 a plurality of first pressure-sensitive layer 5 of the dot shape is formed so as to be separated from each other on a surface 1a of the substrate 1.
  • the 2nd member 22 is peeled from the surface 1a of the base material 1, and the surface 1a is exposed.
  • the core body 11 is attached to the first adhesive layer 5.
  • the second step, the third step, the fourth step, and the fifth step are performed.
  • the second and subsequent steps are the same as those in the first embodiment. Therefore, detailed description thereof is omitted here.
  • the solder ball 70 is formed.
  • the plurality of dot-shaped first adhesive layers 5 are formed on the surface 1a of the substrate 1 so as to be separated from each other, and then the second By peeling the member 22 from the substrate 1, the dot-shaped first adhesive layer 5 can be formed. For this reason, it becomes easy to adhere the core 11 to the first adhesive layer 5. Further, since the surface 1a of the base material 1 is exposed when the solder particles 14 are attached to the surface 11a of the core body 11, the solder particles 14 are in the vicinity of the bonding surface between the core body 11 and the first adhesive layer 5. Can be fully attached. For this reason, the solder layer 15 can be formed on the entire surface 11 a of the core 11.
  • the thickness of the solder layer 15 of the solder ball 70 can be formed uniformly.
  • FIG. 5A to FIG. 5E are process diagrams illustrating a method for manufacturing the solder ball 70 of the fifth embodiment.
  • the manufacturing method of the solder ball 70 in the fifth embodiment includes a first step of attaching the core 11 to the surface 5a of the first adhesive layer 5 applied to the substrate 1, and a surface 11a of the core 11; A second step of forming the second adhesive layer 13, a third step of attaching the solder particles 14 to the surface of the second adhesive layer 13, and a fourth step of melting the solder particles 14 to form the solder layer 15 And a fifth step of peeling the base material 1 from the core 11.
  • the tackifying compound before the first step, is transferred to the substrate using the transfer substrate, whereby the plurality of dot-shaped first adhesive layers are mutually attached to the surface of the substrate.
  • the first embodiment is different from the first embodiment in which the first member is formed on the adhesive layer on the substrate before the first step.
  • the detailed description is abbreviate
  • the first step in the fifth embodiment includes a step of forming a plurality of dot-shaped metal films 51 (first metal films) on the surface 61a of the transfer substrate 61 so as to be separated from each other, and a metal film A step of adhering the tackifier compound 5b (first tackifier compound) to 51, and a first adhesive layer by transferring the tackifier compound from the transfer substrate 61 to the surface 1a of the substrate 1; 5, and a step of attaching the core 11 to the first adhesive layer 5.
  • first metal films first metal films
  • a material of the metal film 51 for example, tin (Sn) is preferably used, and copper (Cu) is particularly preferably used.
  • the material of the first metal film 51 is not limited to these, and any other material may be used as long as it is a substance that can achieve tackiness with the tackifier compound. Examples of such a material include materials containing, for example, Ni, Ni—Au, Au—Sn alloy, etc. in addition to copper and tin.
  • the tackifying compound 5b is attached to the first metal film 51 by any method such as coating. Since this step is substantially the same as the second step of the first embodiment, detailed description thereof is omitted. Thereby, the tackifier compound 5b covering the surface of the metal film 51 is formed. Unlike the second step of the first embodiment, in this step, it is necessary to attach the tackifier compound 5b to the metal film 51, but any method may be selected.
  • the tackifier compound 5 b is transferred from the transfer substrate 61 to the surface 1 a of the substrate 1.
  • the surface 1a of the substrate 1 is preferably covered with a mask 42 (second mask).
  • a material of the mask 42 a plate-like member can be used.
  • the material specifically, it is possible to use stainless steel, nickel, glass, ceramic, polymer, etc., but it is a substance that does not melt in water and does not form the second adhesive layer 13. If there is, the material is not limited.
  • the mask 42 has an opening 35 of diameter F 5 (fifth opening) is provided.
  • the opening 35 has a function of preventing the solder ball 70 from being detached after the fourth step. Therefore, the value of F 5 may be set as appropriate according to the diameter D of the core 11, the diameter d of the solder particles 14, and the thickness H of the mask 42.
  • the thickness H of the mask 42 needs to be smaller than the sum of the thickness of the metal film 51 and the thickness of the tackifier compound 5b, but it is particularly preferable that the thickness H is approximately the same as the thickness of the metal film 51. If the thickness H of the mask 42 is larger than the sum of the thickness of the metal film 51 and the thickness of the tackifying compound 5b, the tackifying compound 5b cannot be transferred to the surface 1a of the substrate 1, which is preferable. Absent. As a result, a plurality of dot-shaped first adhesive layers 5 are formed on the surface 1a of the substrate 1 so as to be separated from each other.
  • the core 11 is attached to the surface 5 a of the first adhesive layer 5.
  • the second step, the third step, the fourth step, and the fifth step are performed, but the second and subsequent steps are replaced with the first member 21.
  • the process is substantially the same as in the first embodiment, and a detailed description thereof is omitted here.
  • the solder ball 70 is formed.
  • the first tackiness layer 5 is formed by applying the tackiness imparting compound 5b on the dot-shaped metal film 51.
  • the amount of 5b can be minimized.
  • the base material for transfer since the base material for transfer is used, it can respond to a fine pattern rather than the case where the 1st adhesion layer 5 is formed only using a mask.
  • the 1st adhesion layer 5 is formed in a more exact position by transcribe
  • the 2nd adhesion layer 13 adheres to the surface 1a of the base material 1 Is prevented. Therefore, it is possible to prevent the solder particles 14 from adhering to the surface 1a of the substrate 1.
  • the formation position of the solder ball 70 can be made to correspond to a finer pattern.
  • FIGS. 6A to 6E are process diagrams illustrating a method for manufacturing the solder ball 70 of the sixth embodiment.
  • the first step of attaching the core 11 to the surface 5a of the first adhesive layer 5 applied to the substrate 1, and the surface 11a of the core 11 are A second step of forming the second adhesive layer 13, a third step of attaching the solder particles 14 to the surface of the second adhesive layer 13, and a fourth step of melting the solder particles 14 to form the solder layer 15 And a fifth step of peeling the base material 1 from the core 11.
  • a dot-shaped second metal film is formed on the surface of the substrate so as to be separated from each other, and the tackifier compound is applied onto the second metal film.
  • the first step in the sixth embodiment includes a step of attaching the core 11 to the first adhesive layer 5 on the base material 1 and, as a previous step, (i) a dot shape on the surface 1a of the base material 1 Forming a plurality of second metal films 52, and (ii) applying a tackifier compound (first tackifier compound) to the exposed second metal film 52 surface to form a first adhesive Forming the layer 5.
  • first tackifier compound first tackifier compound
  • the dot-shaped metal film 52 (second metal film) is formed on the surface 1a of the substrate 1 so as to be separated from each other by an arbitrary method.
  • the material of the metal film 52 is preferably a metal that exhibits wettability with respect to solder, and can be selected as necessary, but it is particularly preferable to use tungsten.
  • a mask 43 (third mask) having an opening 36 (sixth opening) is disposed so as to cover the surface 1 a of the substrate 1.
  • the mask 43 may be arranged after the first adhesive layer 5 is formed.
  • the mask 43 is provided with an opening 36 of the F 6 diameter.
  • the opening 36 has a function of preventing the solder ball 70 from being detached after the fourth step. Therefore, the value of F 6 may be appropriately set according to the diameter D of the core 11, the diameter d of the solder particles 14, and the thickness H of the mask 43.
  • the material of the mask 43 preferably has a property that the second adhesive layer 13 is not formed on the surface.
  • the interval G 6 between the opening 36 adjacent the thickness of the mask 43 H, D the diameter of the karyoplast 11, when the diameter of the solder particles 14 is d may be expressed by the following equation (15) .
  • the thickness H of the mask 43 needs to be smaller than the sum of the thickness of the metal film 52 and the thickness of the first adhesive layer 5, but is about 20 ⁇ m thicker than the thickness of the second metal film 52. Particularly preferred. If the thickness H of the mask 43 is larger than the sum of the thickness of the metal film 52 and the thickness of the first adhesive layer 5, it is difficult to attach the core 11 to the surface 5a of the first adhesive layer 5, It is not preferable.
  • the first adhesive layer 5 is formed so as to cover the surface of the metal film 52.
  • the method of forming the 1st adhesion layer 5 it can form by apply
  • a mask having an opening or the like may be used.
  • the plurality of dot-shaped first adhesive layers 5 are formed on the surface 1a of the substrate 1 so as to be separated from each other.
  • the core 11 is attached to the surface 5 a of the first adhesive layer 5.
  • the second step, the third step, the fourth step, and the fifth step are performed, but the second and subsequent steps are replaced with the first member 21. Since the third embodiment is substantially the same as the first embodiment except that the third mask 43 is used, detailed description thereof is omitted here. Thus, the solder ball 70 is formed.
  • the first adhesive layer 5 is formed by applying the tackifier compound 5b on the metal film 52. Can be minimized. Moreover, it can respond to a fine pattern rather than the case where the 1st adhesion layer 5 is formed only using a mask. Moreover, since the 1st adhesion layer 5 is directly formed in the metal film 52 surface on the base material 1, the shift
  • solder layer 15 when the solder layer 15 is formed in the fourth step, even if the solder layer 15 adheres to the second metal film, it can be easily peeled off. Therefore, even if the solder ball 70 is formed on the second metal film 52, the solder ball 70 can be easily removed.
  • the formation position of the solder ball 70 can be made to correspond to a finer pattern.
  • FIG. 7A shows a state in which the core body 11 is attached to the surface 1 a of the substrate 1.
  • a tackifying compound was applied to the surface 11 a of the core 11 to form a second adhesive layer 13.
  • a sticky solution containing tackifying compound an alkyl group of R12 in the general formula (3) is a C 11 H 23
  • R11 is prepared 2% by weight aqueous solution of imidazole compound is a hydrogen atom .
  • the adhesive solution was adjusted to pH 4 with acetic acid and then heated to 40 ° C. Subsequently, the base material 1 was immersed in the adhesive solution for 3 minutes, and the second adhesive layer 13 was formed on the surface 11 a of the core 11.
  • a reflow process was performed as shown in FIG. 1D to form a solder layer 15.
  • the substrate 1 was heated in an oven at 180 ° C. for 20 minutes to fix the core 11 and the solder particles 14.
  • a flux (manufactured by Showa Denko, SJ-FL2000) was sprayed on the surface of the substrate 1.
  • the base material 1 was heated in a nitrogen atmosphere in a reflow furnace at 240 ° C. for 3 minutes to form a solder layer 15 having a thickness of 5 ⁇ m so as to cover the surface 11 a of the core 11.
  • FIG. 1E a solder ball 70 having a diameter of about 60 ⁇ m was manufactured.
  • FIG. 7B shows the solder ball 70.
  • Example 2 Next, Example 2 will be described. First, as shown to FIG. 2A, the 1st adhesion layer 5 which consists of silicon adhesives was apply
  • coated to the base material 1 which consists of a glass piece. Next, the first layer 21 a of the first member made of the solder resist paste was formed by screen printing so as to cover the surface 5 a of the first adhesive layer 5. At this time, as the first layer 21a of the first member, a layer provided with an opening 32a (second opening lower portion) having a diameter F 2a 80 ⁇ m was used.
  • the first member second layer 21b made of metal was disposed on the first layer 21a of the first member.
  • positioning the 2nd layer 21b of a 1st member the 1st member so that the center part of the opening part 32a of the 1st layer 21a and the center part of the opening part 32b of the 2nd layer 21b may overlap.
  • the position at which the second layer 21b was arranged was adjusted.
  • the distance G 2 between the openings 32b be adjacent to the 200 [mu] m.
  • the second layer 21b of the first member was peeled off from the first layer 21a of the first member.
  • a tackifying compound was applied to the surface 11 a of the core 11 to form a second adhesive layer 13.
  • a sticky solution containing tackifying compound an alkyl group of R12 in the general formula (3) is a C 11 H 23
  • R11 is prepared 2% by weight aqueous solution of imidazole compound is a hydrogen atom .
  • the adhesive solution was adjusted to pH 4 with acetic acid and then heated to 40 ° C. Subsequently, the base material 1 was immersed in the adhesive solution for 3 minutes, and the second adhesive layer 13 was formed on the surface 11 a of the core 11.
  • a reflow process was performed as shown in FIG. 2D to form a solder layer 15.
  • the substrate 1 was heated in an oven at 180 ° C. for 20 minutes to fix the core 11 and the solder particles 14.
  • the flux was sprayed on the surface of the substrate 1.
  • the base material 1 was heated in a nitrogen atmosphere in a reflow furnace at 240 ° C. for 3 minutes to form a solder layer 15 having a thickness of 5 ⁇ m so as to cover the surface 11 a of the core 11.
  • a solder ball 70 having a diameter of about 60 ⁇ m was manufactured.
  • the first member 21 was peeled off.
  • a first mask 41 made of glass particles having a diameter of about 1 ⁇ m was attached so as to cover the surface 5 a of the first adhesive layer 5.
  • a tackifying compound was applied to the surface 11 a of the core 11 to form a second adhesive layer 13.
  • a sticky solution containing tackifying compound an alkyl group of R12 in the general formula (3) is a C 11 H 23
  • R11 is prepared 2% by weight aqueous solution of imidazole compound is a hydrogen atom .
  • the adhesive solution was adjusted to pH 4 with acetic acid and then heated to 40 ° C. Subsequently, the base material 1 was immersed in the adhesive solution for 3 minutes, and the second adhesive layer 13 was formed on the surface 11 a of the core 11.
  • a reflow process was performed as shown in FIG. 3F to form a solder layer 15.
  • the substrate 1 was heated in an oven at 180 ° C. for 20 minutes to fix the core 11 and the solder particles 14.
  • the flux was sprayed on the surface of the substrate 1.
  • the base material 1 was heated in a nitrogen atmosphere in a reflow furnace at 240 ° C. for 3 minutes to form a solder layer 15 having a thickness of 5 ⁇ m so as to cover the surface 11 a of the core 11.
  • a solder ball 70 having a diameter of about 60 ⁇ m was manufactured.
  • a tackifying compound was applied to the surface 11 a of the core 11 to form a second adhesive layer 13.
  • a sticky solution containing tackifying compound an alkyl group of R12 in the general formula (3) is a C 11 H 23
  • R11 is prepared 2% by weight aqueous solution of imidazole compound is a hydrogen atom .
  • the adhesive solution was adjusted to pH 4 with acetic acid and then heated to 40 ° C. Subsequently, the base material 1 was immersed in the adhesive solution for 3 minutes, and the second adhesive layer 13 was formed on the surface 11 a of the core 11.
  • a reflow process was performed as shown in FIG. 4E to form a solder layer 15.
  • the substrate 1 was heated in an oven at 180 ° C. for 20 minutes to fix the core 11 and the solder particles 14.
  • the flux was sprayed on the surface of the substrate 1.
  • the base material 1 was heated in a nitrogen atmosphere in a reflow furnace at 240 ° C. for 3 minutes to form a solder layer 15 having a thickness of 5 ⁇ m so as to cover the surface 11 a of the core 11.
  • a solder ball 70 having a diameter of about 60 ⁇ m was manufactured.
  • Example 5 a metal film 51 (first metal film) made of copper having a film thickness of 18 ⁇ m was formed on the surface 61 a of the transfer substrate 61.
  • the pattern of the metal film 51 was 25 ⁇ m in diameter, and the distance between adjacent patterns of the metal film 51 was 200 ⁇ m.
  • the interval between adjacent openings 35 was 200 ⁇ m.
  • the tackifier compound 5 b was attached to the surface of the metal film 51.
  • a sticky solution containing tackifying compound an alkyl group of R12 in the general formula (3) is a C 11 H 23, R11 is prepared 2% by weight aqueous solution of imidazole compound is a hydrogen atom .
  • the adhesive solution was adjusted to pH 4 with acetic acid and then heated to 40 ° C.
  • the substrate 1 was immersed in an adhesive solution for 10 minutes, and the tackifier compound 5 b was adhered to the surface of the metal film 51.
  • the tackifying compound 5 b was transferred from the transfer substrate 61 to the surface 1 a of the substrate 1 to form the first adhesive layer 5.
  • a tackifying compound was applied to the surface 11 a of the core 11 to form a second adhesive layer 13.
  • a reflow process was performed as shown in FIG. 5E to form a solder layer 15.
  • the substrate 1 was heated in an oven at 180 ° C. for 20 minutes to fix the core 11 and the solder particles 14.
  • the flux was sprayed on the surface of the substrate 1.
  • the base material 1 was heated in a nitrogen atmosphere in a reflow furnace at 240 ° C. for 3 minutes to form a solder layer 15 having a thickness of 5 ⁇ m so as to cover the surface 11 a of the core 11.
  • a solder ball 70 having a diameter of about 60 ⁇ m was manufactured.
  • Example 6 Next, Example 6 will be described. First, as shown in FIG. 6A, tungsten paste was applied in a dot shape to the surface 1a of the substrate 1 made of alumina by screen printing. Next, the tungsten paste was baked to form a metal film 52 (second metal film) made of dot-shaped tungsten. At this time, the pattern of the metal film 52 was a dot having a diameter of 25 ⁇ m, and the interval between adjacent patterns of the metal film 52 was 200 ⁇ m.
  • tungsten paste was applied in a dot shape to the surface 1a of the substrate 1 made of alumina by screen printing.
  • the tungsten paste was baked to form a metal film 52 (second metal film) made of dot-shaped tungsten.
  • the pattern of the metal film 52 was a dot having a diameter of 25 ⁇ m, and the interval between adjacent patterns of the metal film 52 was 200 ⁇ m.
  • a mask 43 (third mask) was disposed so as to cover the surface 1 a of the substrate 1.
  • the interval between adjacent openings 36 was 200 ⁇ m. Further, the position where the mask 43 is arranged is adjusted so that the dot made of the metal film 52 is located at the center of the opening 36.
  • a tackifier compound (first tackifier compound) was adhered to the surface of the metal film 52.
  • a sticky solution containing tackifying compound an alkyl group of R12 in the general formula (3) is a C 11 H 23, R11 is prepared 2% by weight aqueous solution of imidazole compound is a hydrogen atom .
  • the adhesive solution was adjusted to pH 4 with acetic acid and then heated to 40 ° C. Subsequently, the base material 1 was immersed in the adhesive solution for 10 minutes, and the first adhesive layer 5 was formed on the surface of the metal film 52 as shown in FIG. 6A.
  • a tackifying compound was applied to the surface 11 a of the core 11 to form a second adhesive layer 13.
  • a reflow process was performed as shown in FIG. 6E to form a solder layer 15.
  • the substrate 1 was heated in an oven at 180 ° C. for 20 minutes to fix the core 11 and the solder particles 14.
  • the flux was sprayed on the surface of the substrate 1.
  • the base material 1 was heated in a nitrogen atmosphere in a reflow furnace at 240 ° C. for 3 minutes to form a solder layer 15 having a thickness of 5 ⁇ m so as to cover the surface 11 a of the core 11.
  • a solder ball 70 having a diameter of about 60 ⁇ m was manufactured.
  • a suitable solder ball 70 can be formed without using a high melting point solder containing a large amount of lead. For this reason, the lead-free solder balls 70 can be realized. For this reason, alpha rays are not radiated
  • This method is a method suitable for the fine substrate 1, and can provide an electronic device having a high degree of integration and high reliability.
  • An object of this invention is to provide the manufacturing method of the solder ball which can respond to a fine pattern shape and can be formed in low cost.
  • Base material 1a Surface 5 of base material 1st adhesion layer 5a Surface 5b of 1st adhesion layer 1st tackifying compound 11 Core 11a Surface of nucleus 13 Second adhesion layer 14 Solder particle 15 Solder layer 21 1st member 21a 1st member 1st layer 21b 1st member 2nd layer 22 2nd member 31 1st opening part 32a 2nd opening lower part 32b 2nd opening upper part 33 3rd opening part 34 4th opening part 35 5th opening part 36 6th opening part 41 1st mask 42 2nd mask 43 3rd mask 51 1st metal film 52 2nd metal film 61 Base material for transfer 61a Surface of transfer substrate 70 Solder ball F 1 Diameter of first opening F 2a Diameter of second opening F 2b Diameter of second opening upper part 32b F 3 Diameter of third opening F 4 Diameter of the fourth opening F 5 Diameter of the fifth opening F 6 Diameter of the sixth opening D Core particle diameter d Solder particle diameter r First mask diameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本発明は、第一の粘着層(5)が付与された基材(1)の表面(1a)に核体(11)を付着する第一工程と、核体(11)の表面(11a)に、第二の粘着層(13)を形成する第二工程と、第二の粘着層(13)表面に、はんだ粒子(14)を付着する第三工程と、はんだ粒子(14)を溶融してはんだ層(15)を形成する第四工程と、核体(11)から基材1を剥離してはんだボールを得る第五工程と、を具備してなるはんだボール(70)の製造方法を採用する。

Description

はんだボールの製造方法
 本発明は、はんだボールの製造方法に関する。
 本願は、2010年10月27日に、日本に出願された特願2010-241029号に基づき優先権を主張し、その内容をここに援用する。
 近年、電子回路を形成する手段として、プラスチック基板、セラミック基板、あるいはプラスチック等がコートされた絶縁性基板上に回路パターンを設け、その上にIC素子、半導体チップ、抵抗またはコンデンサ等の電子部品をはんだ接合する方法が広く採用されている。
 このうち、回路基板の所定の部分に電子部品のリード端子を接合させる方法としては、回路基板上の導電性回路電極表面に予めはんだ薄層を形成する工程と、はんだ薄層上にはんだペーストまたはフラックスを印刷する工程と、所定の電子部品を位置決め載置する工程と、はんだ薄層及びはんだペーストをリフローする工程と、はんだを凝固させて電子部品と導電性回路電極とを接合する工程と、を順次行うことが一般的である。
 また、最近では電子製品や回路基板の小型化に伴い、電子部品のファインピッチ化が要求されている。このようなファインピッチ化を実現する電子部品としては、例えば0.3mmピッチのQFP(Quad Flat Package)、CSP(Chip Size Package)、0.15mmピッチのFC(Flip Chip)、BGA構造のLSIチップなどが知られている。また、電子部品を回路基板に搭載する方法としては、電子部品のリード端子に形成されたはんだバンプと、回路基板の所定の部分に形成されたはんだバンプとを重ねてリフローする方法が知られている。このような方法においては、電子部品のファインピッチに対応できるように、はんだバンプは精細なパターン形状であることが要求される。
 また、回路基板上にはんだバンプを形成する方法としては、電気めっき法、無電解めっき法、はんだ粉末のペーストを印刷してリフローする方法などが知られている。しかし、無電解めっき法によるはんだバンプの製造方法では、はんだ層を厚くすることが困難であるため、電子部品と導電性回路電極とを強固に接合することができない。また、電気めっき法によるはんだバンプの製造方法では、めっき形成用の電流を複雑な回路に流すことが困難であるため、精細なパターン形状のはんだバンプを形成することができない。また、はんだペーストを印刷する方法では、ファインピッチパターンへの対応が困難であるため、精細なパターン形状のはんだバンプを形成することができない。
 このような事情から、精細なパターン形状に対応可能な、一定でかつ揃った高さを持つはんだバンプを形成する方法として、略球状のはんだからなる、はんだボールを回路基板上に付着させる方法が用いられている。
 はんだボールを回路上に付着させる方法としては、回路基板の導電性回路電極の表面に粘着性付与化合物を反応させて粘着性を付与するとともに前記粘着部に、はんだボールを付着させる方法が知られている。この後、はんだボールを溶融することにより、はんだバンプが形成される(特許文献1)。さらに、特許文献1記載の方法を応用したものとして、導電性回路電極上の必要な部分に、はんだボールを1個だけ付着させる技術も開発されている。(特許文献2参照)
特開平7-7244号公報 特開2008-41803号公報
 しかし、BGA(ボール・グリッド・アレイ)構造の半導体装置のように、はんだバンプに一定の高さが必要とされる場合には、従来のはんだボールを用いると、半導体チップと回路基板とをリフローにより接続する際に、はんだボールが溶融して、元の形状を保てないという問題があった。このため、はんだバンプは一定の高さを保つことができず、半導体チップが不均一に沈み込み、傾いた状態で接合されるおそれがあった。
 この問題に対し、現在は高融点のはんだボールを一旦高温で溶融してはんだバンプを形成した後、高融点のはんだボールよりも低融点のはんだにより、半導体チップと回路基板とを接合する方法が用いられている。その他の方法としては、はんだ層がめっきされた銅などの金属のボール(銅核はんだボール)を、はんだボールとして用いる方法も知られている。この方法によれば、銅核はんだボールを回路基板に配置して一旦溶融することによりはんだバンプを形成することができるが、核体がスペーサとなるため、電子部品と回路基板との距離を一定に保つことができる。
 しかし、前述の方法によれば、高融点はんだは、その材料が限られており、高濃度に鉛を含む組成のものが用いられている。また、高融点はんだとして実用化されているものは鉛を95%或いは80%含むような鉛濃度の高いものであり、鉛から放出されるα線がLSIなどの誤動作の原因になる。そのため、α線の少ない鉛の同位体のみを抽出した高価な鉛を使用するか、完全鉛フリーの高融点はんだが求められている。
 また、銅核はんだボールを用いる方法は、銅核のボールにはんだを均一に付着させることが技術的に難しく、製造コストが著しく高いという問題がある。そのため、汎用的に用いられるには至っていない。
 本発明は上記事情に鑑みてなされたものであり、精細なパターン形状に対応可能であり、かつ、安価に形成可能なはんだボールの製造方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意努力検討した結果、本発明に到達した。即ち本発明は、
〔1〕 基材の表面に付与された第一の粘着層に核体を付着する第一工程と、前記核体の表面に、粘着性付与化合物を塗布して第二の粘着層を形成する第二工程と、前記核体表面の第二の粘着層上に、はんだ粒子を付着する第三工程と、前記はんだ粒子を溶融して前記核体の表面にはんだ層を形成する第四工程と、前記核体から前記基材を剥離して、はんだボールを得る第五工程と、を具備してなることを特徴とするはんだボールの製造方法。
〔2〕 前記核体がCuからなることを特徴とする〔1〕に記載のはんだボールの製造方法。
〔3〕 前記第一工程の前に、前記第一の粘着層表面の一部を露出させる開口部を有する第一の部材を、前記第一の粘着層上に配置する、前工程を含み、
この後に、前記第一工程において、前記開口部から露出する前記第一の粘着層表面に、核体を付着させることを特徴とする〔1〕または〔2〕のいずれかに記載のはんだボールの製造方法。
〔4〕 前記第一の部材が、第一層と第二層とからなり、
前記第一の部材を前記第一の粘着層上に配置する前工程が、
開口部を有する第一の部材の第一層を、前記第一の粘着層上に配置する工程と、
前記第一の部材の第一層上に、前記開口部よりも直径の小さい開口部を有する第一の部材の第二層を、第一層の前記開口部の中心部と第二層の前記開口部の中心部が重なるように配置する工程と、
からなり、
前記第一工程と前記第二工程との間に、前記第一の部材の第二層を前記第一の部材の第一層上から剥離する工程をさらに有することを特徴とする〔3〕に記載のはんだボールの製造方法。
〔5〕 前記第一工程と前記第二工程との間に、
前記第一の部材を前記第一の粘着層上から剥離する工程と、
前記第一の粘着層表面を覆うように、前記第一の部材の厚みよりも小さい直径を有する粒子からなるマスクを付着させる工程と、を有することを特徴とする〔3〕に記載のはんだボールの製造方法。
〔6〕 前記第一工程の前に、ドット形状の複数の前記第一の粘着層を前記基材の表面に相互に離間させて形成する前工程を有することを特徴とする〔1〕または〔2〕のいずれかに記載のはんだボールの製造方法。
〔7〕 前記第一の粘着層を形成する前工程が、
前記基材表面の一部を露出させるドット形状の開口部を有する第二の部材を前記基材上に配置する工程と、前記第二の部材をマスクにして、前記第一の粘着層を形成する粘着性物質を塗布して、ドット形状の複数の前記第一の粘着層を得る工程と、を有することを特徴とする〔6〕に記載のはんだボールの製造方法。
〔8〕 前記ドット形状の第一の粘着層を形成する前工程が、
転写用基材表面に、ドット形状の金属膜を相互に離間させて形成する工程と、
前記金属膜に粘着性付与化合物を塗布する工程と、
前記転写用基材から、前記基材表面に前記粘着性付与化合物を転写することにより、第一の粘着層を形成する工程と、を有することを特徴とする〔6〕に記載のはんだボールの製造方法。
〔9〕 前記ドット形状の第一の粘着層を形成する前工程が、開口部を有するマスクにより前記基材表面を覆ったのちに、マスクの前記開口部から露出する前記基材表面に、転写用基材から前記粘着性付与化合物を転写する工程を含み、
第二工程では、前記基材表面をマスクで覆ったまま、核体上に前記第二の粘着層を形成することを特徴とする〔8〕に記載のはんだボールの製造方法。
〔10〕 前記第一の粘着層を形成する前工程が、
前記基材表面にドット形状の金属膜を相互に離間させて形成する工程と、前記金属膜に粘着性付与化合物を塗布することにより前記第一の粘着層を形成する工程と、を有することを特徴とする〔6〕に記載のはんだボールの製造方法。
〔11〕 前記第一の粘着層を形成する前工程が、
前記基材表面にドット形状の金属膜を相互に離間させて形成する工程と、
前記基材表面を開口部を有するマスクで覆ったのちに、前記第開口部から露出する前記金属膜表面に前記粘着性付与化合物を塗布する工程を有することを特徴とする〔10〕に記載のはんだボールの製造方法。
〔12〕 前記金属膜がタングステンからなることを特徴とする〔10〕または〔11〕のいずれかに記載のはんだボールの製造方法。
〔13〕 前記はんだ粒子の平均粒径が、前記核体の平均粒径の1/2倍以下であることを特徴とする〔1〕乃至〔12〕のいずれか一項に記載のはんだボールの製造方法。
 本発明のはんだボールの製造方法の製造方法によれば、核体の表面に第二の粘着層を介してはんだ粒子を付着させた後にはんだ粒子を溶融するため、核体表面にはんだ層を均一に形成できる。また、めっき等ではんだ層を形成する従来の方法に比べ、はんだ層を容易に形成できる。
 また、核体を第一の粘着層を介して基材の表面に付着させた状態ではんだ層を核体上に形成するため、従来の方法に比べ、多くの核体を同時に処理することができる。また、基材の表面に第一の粘着層を介して核体を付着させるため、はんだ層形成の後に、核体を基材から容易に取り外すことができる。
 以上により、従来の方法に比べて、はんだボールの形成工程を大幅に簡素化するとともに、効率よく生産することができる。このため、はんだボールの製造コストを低くすることができる。
 また、核体表面をはんだ層で覆うことにより、これらより形成されたはんだボールによりはんだバンプを形成する際に、核体がスペーサとして働く。このため、はんだ層が溶融しても、はんだバンプは一定の高さを保つことができる。このため、はんだバンプ上に電子部品を搭載しても、電子部品が自身の重さで沈み込むことがない。よって、電子部品と回路基板との距離を一定に保つことができる。
本発明の第一の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第一の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第一の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第一の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第一の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第二の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第二の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第二の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第二の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第二の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第三の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第三の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第三の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第三の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第三の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第三の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第四の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第四の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第四の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第四の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第四の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第五の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第五の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第五の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第五の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第五の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第六の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第六の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第六の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第六の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の第六の実施形態であるはんだボールの製造工程を説明する工程図である。 本発明の核体とはんだボールを模式的に説明する平面写真である。 本発明の核体とはんだボールを模式的に説明する平面写真である。
 以下に本願発明の好ましい例について説明するが、本発明はこれら例のみに限定されるものではない。発明を逸脱しない範囲で数や位置や大きさや数値などの変更や追加をする事ができる。
(第一の実施形態)
 以下、本発明の第一の実施形態であるはんだボール70の製造方法について図面を参照にして説明する。図1Aから図1Eは本実施形態のはんだボールの製造方法を説明する工程図である。
 第一の実施形態のはんだボール70の製造方法は、第一の粘着層5が付与された基材1の表面1aに核体11を付着する第一工程と、核体11の表面11aに、第二の粘着層13を形成する第二工程と、第二の粘着層13表面に、はんだ粒子14を付着する第三工程と、はんだ粒子14を溶融してはんだ層15を核体11上に形成する第四工程と、核体11から基材1を剥離する第五工程と、から概略構成されている。
 粘着層13上には、核体11が付着される前に、開口部を有する部材21(第一の部材)が配置され、第一工程において、部材21の開口部内で露出する粘着層5の表面上に、核体11が付着される。
 以下、各工程について、詳細に説明する。
 はじめに、第一の粘着層5が付与された基材1を準備する。
 基材1としては、例えば、ポリイミドからなる基材、耐酸性樹脂からなる基材、セラミック基材、及び硝子基材等を用いることができる。また、基材1はここに挙げた材料に限られず、後述するはんだ粒子14の溶融の際の熱に耐えうる材料からなる基材であれば、制限なく本発明の基材として用いることができる。
 基材1には、第一の粘着層5が付与されている。第一の粘着層5を形成する材料としては、核体11を付着可能であり、後述するはんだ粒子14溶融の際の熱に耐えうるものであれば、どのような材料を用いても構わない。具体的には、シリコン系粘着材等の耐熱性を有する粘着材を用いることができる。また、第一の粘着層5が付与された基材1として、ポリイミドテープを用いることができる。
 次いで、第一の粘着層5の表面5aを覆うように、第一の部材21を配置する。
 第一の部材21は、後述する第一工程において、核体11を第一の粘着層5の表面5aに間隔を空けて配置するための部材である。第一の部材21には、間隔を空けて、ドット状の複数の第一の開口部31が設けられている。なお開口部の間隔や配置形態は任意で選択できる。第一の部材21を第一の粘着層5の表面5aを覆うように配置することにより、第一の粘着層5の表面5aの一部がドット状に露出する。
 また、第一の粘着層5としては、紫外線照射や加熱等により表面5aの粘着性が無くなる性質の材料を使用してもよい。またそのような材料を用いた場合には、任意の段階で、第一の粘着層5の粘着性を失わせる為の紫外線照射や加熱等を行ってもよい。
 第一の部材21には、核体11の配置に一般的に用いられる、開口部を設けた金属製の板状の部材を用いることができる。具体的には、第一の部材21の材料として、60μm厚程度のステンレスやニッケルを用いることができる。
 また、第一の部材21の材料は金属に限られず、後述する第二の粘着層13を核体11に形成する工程において、粘着性が第一の部材21によって覆われた部分に付与されない性質を有するものであれば良く、その材料は限定されない。また、第一の部材21は、板状の部材に限られず、スクリーン印刷によりソルダーレジスト用ペーストを、第一の粘着層5の表面に塗布したものであってもかまわない。
 また、第一の部材21の厚みH(基材1の一面1aと第一の部材21の上面との段差)は、核体11の粒径Dに合わせて適宜設定するが、厚みHは核体11の粒径Dよりも小さく設定することが好ましく、特に、1μm以上であって粒径Dの2分の1以下の範囲に設定することが好ましい。
 一方、厚みHが粒径Dよりも大きいと、核体11が第一の開口部31内に入りづらくなり好ましくない。また、厚みHが1μm未満であると、核体11が脱落しやすくなるため、このましくない。
 また、第一の開口部31の直径Fは、第一の開口部31内に2以上の核体11が配置されないように、第一の部材21の厚みHと核体11の粒径Dとに合わせて適宜設定することが好ましい。直径Fの範囲は、下記数式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 上記数式によれば、具体的には、例えば、粒径Dが100μm、かつ第一の部材21の厚みHが20μmの場合、第一の開口部31の直径Fは80μm以上、かつ180μm未満となる。
 また、第一の開口部31の直径Fの特に好ましい範囲は、核体11表面に付着されるはんだ粒子14の直径をdとすると、下記数式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 直径Fが数式(2)の範囲内であることにより、核体11を第一の開口部31内に容易に付着させることができる。
 また、隣接する第一の開口部31同士の間隔Gは、核体11の粒径Dとはんだ粒子14の粒径dと第一の部材21の厚みHに応じて適宜設定することが好ましい。隣接する第一の開口部31同士の間隔Gは、下記数式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 また、隣接する第一の開口部31同士の間隔Gの特に好ましい範囲は、はんだ粒子14の直径をdとすると、下記数式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 隣接する第一の開口部31同士の間隔Gが数式(4)の範囲内であることにより、基材1上に高い密度ではんだボール70を形成できるとともに、隣接するはんだボール70同士の接合を防ぐことができる。
 一方、第一の開口部31同士の間隔Gが数式(3)で示される最小値よりも小さいと、はんだボール70同士が接合する恐れがあるため好ましくない。また、第一の開口部31同士の間隔が広すぎると、一度に形成できるはんだボール70の数が抑えられるため、製造効率が低下し好ましくない。
 また、第一の開口部31の平面視形状は円状であることが望ましいが、楕円であっても、四角であっても構わない。
(第一工程)
 次に、図1Aに示すように、第一の開口部31から露出する第一の粘着層5の表面5aに核体11を付着させる。
 この際、第一の粘着層5に核体11を付着させる方法としては必要に応じて選択可能であるが、例えば、空気中または不活性雰囲気中で第一の粘着層5に核体11を直接供給する方法や、図示しない分散液中に核体11を分散させてスラリー状態にし、そのスラリーを第一の粘着層5に供給する方法を採用できる。
 はじめに、空気中または不活性ガス雰囲気中で、核体11を第一の粘着層5に付着させる方法の例について説明する。はじめに、空気または不活性ガスを満たした容器内に核体11を投入する。この時の核体11の量は任意で選択できる。次いで、容器内に第一の粘着層5が形成された基材1を設置する。次いで、容器を傾斜または振動させる等の方法で、第一の粘着層5と核体11を接触させる。これにより、第一の粘着層5の表面5aに核体11が付着する。付着しなかった核体は必要に応じて取り除いても良い。
 次いで、液体中で核体11を第一の粘着層5に付着させる方法の例を説明する。まず、水等の分散液を図示しない容器内に入れ、更に核体11を分散液中に添加する。次いで、容器を傾けて分散液と核体11を一方に寄せたのちに、基材1が分散液や核体11に接触しないように容器内に設置する。次いで、容器を左右に傾動させることにより、分散液中で基材1上の第一の粘着層5と核体11とを接触させる。これにより、第一の粘着層5に核体11が付着する。
 このように、液体中で核体11を付着させることにより、核体11が静電気により粘着性の無い部分に付着することや、核体11が静電気により凝集することを防止できる。そのため、液体中で核体11を付着させる方法は、微小な核体11を用いる場合に特に好ましい。
 核体11を第一の粘着層5に付着させる方法は、液体中で付着させる方法に限られず、核体11の大きさ等、条件によって適した方法を、適宜採用すればよい。
 核体11の材料としては金属、例えばスズ(Sn)を用いることが好ましく、銅(Cu)を用いることが特に好ましい。なお核体11の材料は、これらに限られず、後述するはんだ粒子14の融点よりも高い融点を有し、かつ第二の粘着性付与化合物によって粘着性が得られる物質であれば、導電性物質や合金など、他のものを用いてもかまわない。銅やスズの他に、このような物質の例としては、例えば、Ni、Ni-Au、又はAu-Sn、等の金属や合金等を例示できる。
 また、核体11の平均粒径Dは、作業性の面からは、20μm~200μmの範囲内とすることが適当であり、30μm~130μmの範囲内とすることが好ましく、50μm~80μmの範囲内とすることが特に好ましい。
(第二工程)
 次に、図1Bに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成する。
 まず、以下に示す粘着性付与化合物(第一の粘着性付与化合物)のうち、少なくとも1種または2種以上を、水または酸性水に溶解し、好ましくはpH3~4程度の微酸性に調整する。これにより、粘着性溶液が形成される。次いで、粘着性溶液に第一工程で得られた基材1を浸漬するか、または基材1に粘着性溶液を塗布することにより、核体11の表面11aに第二の粘着層13が形成される。
 ここで、粘着性付与化合物としては任意で選択されるが、例えばナフトトリアゾール系誘導体、べンゾトリアゾール系誘導体、イミダゾール系誘導体、べンゾイミダゾール系誘導体、メルカプトべンゾチアゾール系誘導体及びべンゾチアゾールチオ脂肪酸等を用いることができる。これらの粘着性付与化合物は、金属等に対して、特に銅に対しての粘着性を付与する作用効果が強い。また、銅以外の、他の導電性物質等にも粘着性を付与することができる。
 また、本発明において好適に用いられるべンゾトリアゾール系誘導体は、一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
 但し、式(1)中、R1~R4は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 また、本発明において好適に用いられるナフトトリアゾール系誘導体は、一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000006
 但し、式(2)中、R5~R10は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 更に、本発明において好適に用いられるイミダゾール系誘導体は、一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000007
 但し、式(3)において、R11、R12は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 更にまた、本発明において好適に用いられるべンゾイミダゾール系誘導体は、一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000008
 但し、式(4)において、R13~R17は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 また、本発明において好適に用いられるメルカプトべンゾチアゾール系誘導体は、一般式(5)で表される。
Figure JPOXMLDOC01-appb-C000009
 但し、式(5)中、R18~R21は、独立に水素原子、炭素数が1~16(好ましくは5~16)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 更に、本発明において好適に用いられるべンゾチアゾールチオ脂肪酸系誘導体は、一般式(6)で表される。
Figure JPOXMLDOC01-appb-C000010
 但し、式(6)において、R22~R26は、独立に水素原子、炭素数が1~16(好ましくは1または2)のアルキル基、アルコキシ基、F、Br、Cl、I、シアノ基、アミノ基またはOH基である。
 これらの化合物のうち、一般式(1)で示されるべンゾトリアゾール系誘導体において、R1~R4は炭素数が多いほうが一般的に粘着性が強い。
 また、一般式(3)及び一般式(4)で示されるイミダゾール系誘導体及びべンゾイミダゾール系誘導体のR11~R17においても、一般に炭素数の多いほうが粘着性が強い。
 更に、一般式(6)で示されるべンゾチアゾールチオ脂肪酸系誘導体においては、R22~R26は炭素数1または2が好ましい。
 また、粘着性溶液のpH調整に用いる物質の例としては、塩酸、硫酸、硝酸、リン酸等の無機酸や、有機酸をあげることができる。また有機酸の例としては、蟻酸、乳酸、酢酸、プロピオン酸、リンゴ酸、シュウ酸、マロン酸、コハク酸、酒石酸等を用いることができる。
 粘着性溶液における粘着性付与化合物の濃度は、特に限定されないが、溶解性、及び使用状況に応じて適宜調整して用いればよく、粘着性溶液全体に対し0.05質量%~20質量%の範囲内であることが特に好ましい。粘着性付与化合物の濃度がこの範囲内であることにより、核体11に十分な粘着性を付与することができる。一方、粘着性溶液全体に対し0.05質量%未満であると十分な粘着性を付与できず、また、粘着性溶液全体に対し20質量%を超えると粘着性付与化合物が多量に消費され、非効率となるため好ましくない。
 粘着性を核体11の表面11aに付与する際の処理温度は、室温よりは若干高めにすることが好ましい。これにより、第二の粘着層13の形成速度、及び形成量が十分なものとなる。また、最適な処理温度は、粘着性付与化合物の濃度や第二の粘着層13の材料金属の種類などにより異なるが、一般的には30℃~60℃位の範囲が好適である。また、粘着性溶液への浸漬時間は5秒~5分間位の範囲になるよう、その他の条件を調整することが好ましい。
 また、粘着性溶液中には、イオンとして銅を50~1000ppm共存させることが好ましい。銅イオンがこの範囲の量共存することにより、第二の粘着層13の形成速度、及び形成量などの形成効率を高めることができる。
(第三工程)
 次に、図1Cに示すように、核体11表面上の第二の粘着層13上に、はんだ粒子14を付着させる。
 第二の粘着層13にはんだ粒子14を付着させる方法の例としては、空気中または不活性雰囲気中で第二の粘着層13にはんだ粒子14を直接供給する方法や、図示しない分散液中にはんだ粒子14を分散させてスラリー状態にし、そのスラリーを第二の粘着層13に供給する方法がある。第二の粘着層13にはんだ粒子14を付着させる方法については、第一工程における、基材1の表面1aに核体11を付着させる方法と同様であるため、詳細な説明を省略する。
 なお、核体11を付着させる前の段階で第一の粘着層5として、紫外線照射や加熱等により表面5aの粘着性が無くなる性質の材料を用いている場合は、核体11が第一の粘着層5上に設けられた後に、第一の部材21を剥離してもかまわない。この場合は、第一の部材21を剥離した後に紫外線照射や加熱等により表面5aの粘着性をなくす処理をすることにより、はんだ粒子14が第一の粘着層の表面5aに付着することを防止できる。
 また、はんだ粒子14の粒径dは、1粒の核体11に複数のはんだ粒子14が付着するように、核体11の平均粒径Dよりも小さいものを使用する。はんだ粒子14の粒径dは、核体11の粒径Dに応じて適宜設定すればかまわないが、1μm以上かつ粒径Dの1/2倍以下であることが望ましい。はんだ粒子14の粒径dがこの範囲内であることにより、1粒の核体11に複数のはんだ粒子14を付着することができる。
 一方、はんだ粒子14の粒径dが1μm未満であると、はんだ層15の膜厚が薄くなりすぎ、形成されたはんだボール70をリフローした際のはんだ量が不十分となる。このため、はんだボール70をリフローする際に、はんだバンプが回路基板からはがれやすくなり好ましくない。すなわち、はんだ層15が不足してしまうため望ましくない。また、はんだ粒子14の粒径dが核体11の平均粒径Dの2分の1以上であると、1粒の核体11に十分な数のはんだ粒子14を付着することができず、好ましくない。
 また、はんだ粒子14の金属組成としては、例えばSn-Pb系、Sn-Pb-Ag系、Sn-Pb-Bi系、Sn-Pb-Bi-Ag系、及びSn-Pb-Cd系が挙げられる。また最近の産業廃棄物におけるPb排除の観点から、Pbを含まないSn-In系、Sn-Bi系、In-Ag系、In-Bi系、Sn-Zn系、Sn-Ag系、Sn-Cu系、Sn-Sb系、Sn-Au系、Sn-Bi-Ag-Cu系、Sn-Ge系、Sn-Bi-Cu系、Sn-Cu-Sb-Ag系、Sn-Ag-Zn系、Sn-Cu-Ag系、Sn-Bi-Sb系、Sn-Bi-Sb-Zn系、Sn-Bi-Cu-Zn系、Sn-Ag-Sb系、Sn-Ag-Sb-Zn系、Sn-Ag-Cu-Zn系、及びSn-Zn-Bi系であることが好ましい。
 上記金属組成の具体例としては、Snが63質量%、Pbが37質量%の共晶はんだ(以下63Sn/37Pbと表す。)を中心として、62Sn/36Pb/2Ag、62.6Sn/37Pb/0.4Ag、60Sn/40Pb、50Sn/50Pb、30Sn/70Pb、25Sn/75Pb、10Sn/88Pb/2Ag、46Sn/8Bi/46Pb、57Sn/3Bi/40Pb、42Sn/42Pb/14Bi/2Ag、45Sn/40Pb/15Bi、50Sn/32Pb/18Cd、48Sn/52In、43Sn/57Bi、97In/3Ag、58Sn/42In、95In/5Bi、60Sn/40Bi、91Sn/9Zn、96.5Sn/3.5Ag、99.3Sn/0.7Cu、95Sn/5Sb、20Sn/80Au、90Sn/10Ag、90Sn/7.5Bi/2Ag/0.5Cu、97Sn/3Cu、99Sn/1Ge、92Sn/7.5Bi/0.5Cu、97Sn/2Cu/0.8Sb/0.2Ag、95.5Sn/3.5Ag/1Zn、95.5Sn/4Cu/0.5Ag、52Sn/45Bi/3Sb、51Sn/45Bi/3Sb/1Zn、85Sn/10Bi/5Sb、84Sn/10Bi/5Sb/1Zn、88.2Sn/10Bi/0.8Cu/1Zn、89Sn/4Ag/7Sb、88Sn/4Ag/7Sb/1Zn、98Sn/1Ag/1Sb、97Sn/1Ag/1Sb/1Zn、91.2Sn/2Ag/0.8Cu/6Zn、89Sn/8Zn/3Bi、86Sn/8Zn/6Bi、及び89.1Sn/2Ag/0.9Cu/8Znなどを挙げることができる。また、本実施形態のはんだ粒子14としては、異なる組成のはんだ粒子を2種類以上混合したものであってもかまわない。
(第四工程)
 次いで、図1Dに示すようにリフロー工程を行い、はんだ層15を形成する。
 第三工程においてはんだ粒子14を分散液中で核体11に付着させた場合は、まず基材1を乾燥させる。
 次に、核体11及びはんだ粒子14の定着を行う。定着とは、核体11とはんだ粒子14の間で、核体11の構成材料をはんだ粒子14側に拡散させる反応である。この反応が進行することにより、はんだ粒子14は核体11に固定される。
 このとき、定着の温度は、使用されたはんだの融点に対し、マイナス50℃からプラス50℃の範囲内であることが好ましく、マイナス30℃からプラス30℃の範囲内であることがさらに好ましい。定着の温度がこの範囲内の場合、はんだ粒子14は溶融しないか、或いは仮に内部が溶解しても、表面に存在する酸化膜の効果により溶融して流れ出すことは無い。そのため、はんだ粒子14の形状を保ったまま定着を行うことができる。
 次いで、はんだ粒子14が定着された核体11を上に設けた基材1に、水溶性フラックスを塗布する。水溶性フラックスとしては、たとえば特開2004-282062号公報に記載されたフラックスを用いることができる。基材1に水溶性フラックスを塗布することにより、はんだ粒子14表面と核体11の表面11aの酸化膜を除去できる。
 次いで、リフローを行い、はんだ粒子14を溶融する。このリフローにより、はんだ粒子14は溶融して、核体11の表面11a全体に行き渡り、はんだ層15となる。このときの加熱温度は、200℃~300℃の範囲が好ましく、はんだの融点プラス10℃~50℃であることが特に望ましい。このような範囲内の温度で加熱することにより、はんだ粒子14の溶融はんだと、核体11の表面11aとが十分に反応し、拡散層を形成できる。
(第五工程)
 次いで、図1Eに示すように、第一の粘着層5の表面5aから、第一の部材21を剥離する。その後、基材1から核体11を剥離する。このとき、核体11を基材1から剥離する方法は、第一の粘着層5の材料により適宜選択すればよい。具体的には例えば、超音波洗浄機で基材1に振動を与える方法や、溶剤により第一の粘着層5を溶解する方法を用いることができる。核体11を基材1から剥離する方法は上記の方法に限られず、基材1が可撓(かとう)性を備えるものである場合は、基材1を曲げることにより、核体11を剥離してもよい。
 以上により、はんだボール70が形成される。
 第一の実施形態におけるはんだボール70の製造方法によれば、核体11の表面11aに第二の粘着層13を介してはんだ粒子14を付着させた後にはんだ粒子14を溶融するため、核体11の表面11aにはんだ層15を均一に形成できる。また、めっき等ではんだ層を形成する従来の方法に比べ、はんだ層15を容易に形成できる。
 また、核体11を、第一の粘着層5を介して基材1の表面1aに付着させた状態ではんだ層15を形成するため、従来の方法に比べ、多くの核体11を同時に処理することができる。また、基材1の表面1aに第一の粘着層5を介して核体11を付着させるため、はんだ層15形成の後に、核体11を基材1から容易に取り外すことができる。
 以上により、従来の方法に比べて、はんだボール70の形成工程を大幅に簡素化するとともに、効率よく生産することができる。このため、はんだボール70の製造コストを低くすることができる。
 また、核体11の表面11aをはんだ層15で覆うことにより、製造されたはんだボール70によりはんだバンプを形成する際に、核体11がスペーサとなる。このため、はんだ層15が溶融しても、はんだバンプは一定の高さを保つことができる。このため、はんだバンプ上に電子部品を搭載しても、電子部品が自身の重さで沈み込むことがない。よって、電子部品と回路基板との距離を一定に保つことができる。
 また、核体11が金属からなることにより、はんだボール70として用いる際に、電子部品と回路基板との導通を確保できる。特に、核体11が銅からなる場合には、銅の電気抵抗が低いため、電子部品と回路基板との間の良好な導通を確保できる。
 また、核体11がCuからなることにより、粘着性化合物をより塗布しやすい。このため、十分な厚さの第二の粘着層13を形成できる。このため、核体11の表面11aに、第二の粘着層13を介してはんだ粒子14を付着させやすくなる。このため、均一でかつ十分な膜厚のはんだ層15を形成できる。このため、粒径の均一なはんだボール70を形成でき、電子部品と回路基板との接合を良好に行うことができる。
 また、核体11がスペーサになることにより、電子部品と基材との距離を一定に保つことができる。そのため、搭載された電子部品が基材上で不均一に沈み込む問題を解決でき、核体11に対する高さが一定である、信頼性の高い基材を得ることができる。また、はんだ粒子14を第二の粘着層13を介して核体11に付着させるため、従来の高価な銅核はんだボールを使用せずに済む。そのため、低コスト化と工程の簡略化を実現することができる。以上により、本実施形態の製造方法は、微細な基材に適した方法であり、集積度が高く、かつ、信頼性の高い電子機器を提供出来るようになる。
 また、以上の方法によれば、はんだボール70を、鉛を多く含む高融点はんだを使用することなく形成できる。このため、はんだボール70の鉛フリー化を実現できる。このため、はんだバンプ中に含まれるPbからα線が放射されることがない。このため、α線による電子部品の誤動作を防ぐことができる。
 また、第一の部材21として金属製の板状の部材を用いることにより、はんだボール70の製造において第一の部材を繰り返し使用することができる。このため、はんだボール70製造工程における製造コストを抑えることができる。
 また、第一の部材21の厚みHを、1μm以上かつ粒径Dの2分の1以下の範囲に設定することにより、核体11が第一の開口部31内に入りやすくなる。このため、作業性が向上し、はんだボール70を効率よく製造できる。また、核体11の側面が第一の開口部31の側壁によって保持されるため、核体11の脱落を防ぐことができる。
 また、基材1上に第一の開口部31を有する第一の部材21を配置した状態で、核体11に第二の粘着層13を形成するため、核体11の表面11a以外の部分には第二の粘着層13が形成されない。第二の粘着層が第一の部材21上に形成されない理由は、導電性物質や金属等の核体に使用される材料は、粘着性付与物質により粘着性を付与される材料である一方で、第一の部材や第一の粘着剤に使用される材料は、粘着性付与物質により粘着性を付与されない材料であるからである。このため、はんだ粒子14を核体11に選択的に付着することができる。また、第一の開口部31の内側に核体11を付着させるため、第一の粘着層5の粘着力が弱い場合でも、核体11が第一の開口部31の外に脱落するのを防ぐことができる。このため、全ての第一の開口部31に確実に核体11を付着させることができる。
(第二の実施形態)
 次いで、本発明の第二の実施形態である、はんだボール70の製造方法について図面を参照にして説明する。図2Aから図2Eは第二の実施形態のはんだボール70の製造方法を説明する工程図である。
 第二の実施形態におけるはんだボール70の製造方法は、基材1の表面1aに付与された第一の粘着層5の表面5aに核体11を付着する第一工程と、核体11の表面11aに、第二の粘着層13を形成する第二工程と、第二の粘着層13表面に、はんだ粒子14を付着する第三工程と、はんだ粒子14を溶融してはんだ層15を形成する第四工程と、核体11から基材1を剥離する第五工程と、から概略構成されている。 
 このうち、第一工程において、第一の部材21が、第一層21a(第一の部材の第一層)と第二層21b(第一の部材の第二層)からなること、及び、第一工程と前記第二工程との間に、前記第二層21bを第一層21aから剥離する工程を有すること以外については、第一の実施形態と同様である。よって、同じ部分についての詳細な説明については省略する。
 以下、第一工程について説明する。
(第一工程)
 第二の実施形態における第一工程は、第一の部材21を第一の粘着層5上に配置する工程(前工程)として、(i)開口部32a(第二の開口下部)を有する第一の部材の第一層21aを第一の粘着層5上に配置する工程と、(ii)第一の部材の第一層21a上に、開口部32よりも直径の小さい開口部32b(第二の開口上部)を有する第一の部材の第二層21bを、開口部32aと開口部32bとが重なるように配置する工程と、を含む。
 以下、各工程について、詳細に説明する。
 はじめに、第一の粘着層5の表面5aを覆うように、第一の部材の第一層21aを配置する。第一の部材の第一層21aには、間隔を空けて、第一の粘着層5の表面5aを露出する、開口部32aが設けられている。第一の部材の第一層21aの材料は特に限定されないが、具体的にはたとえば、スクリーン印刷によりソルダーレジスト用ペーストを基材1に塗布したものを用いることができる。
 また、第一層21aの開口部32aの直径F2aの範囲は、後述する第二層21bの開口部32bの直径をF2bとすると、下記数式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000011
 開口部32aの特に好ましい範囲は、下記数式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000012
 次いで、第一の部材の第一層21a上に、第一の部材の第二層21bを配置する。第一の部材の第二層21bには、第一層21aの開口部32aよりも直径の小さい開口部32bが設けられている。第一の部材の第二層21bを配置する際、開口部32aと開口部32bとが重なるように、配置する位置を調整する。
 第一の部材の第二層21bとしては、金属製の板状の部材を用いることができる。このような部材を第一の部材の第二層21bとして用いることにより、製造工程においてこれを繰り返し使用できるため、はんだボール70の製造効率を高めることができる。
 また、第一の部材の第一層21aと第二層21bの合計の厚みをHとすると、Hは核体11の粒径Dの1/2以上であり、開口部32bの直径F2bの範囲は、下記数式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000013
 また、開口部32bの直径F2bの特に好ましい範囲は、下記数式(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000014
 また、隣接する開口部32b同士の間隔Gは、第一の部材の第二層21bの厚みをHとすると、下記数式(9)で表すことができる。
Figure JPOXMLDOC01-appb-M000015
 開口部32b同士の間隔Gが数式(9)の範囲内であることにより、基材1上に高い密度ではんだボール70を形成できるとともに、隣接するはんだボール70同士の接合を防ぐことができる。
 次いで、図2Aに示すように核体11を第一の粘着層5の表面5aに付着させる。
次いで、図2Bに示すように、第一の部材の第一層21a上から、第一の部材の第二層21bを剥離する。開口部32bの直径F2bは開口部32aの直径F2aよりも小さいため、核体11は第二の開口下部32aの中心部に配置された状態となる。
(第二工程)
 次いで、図2Bに示すように、第一の部材の第一層21aが第一の粘着層5の表面5aを覆った状態で、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成する。このとき、第一の粘着層5の表面5aは、第一の部材の第一層21aでほぼ覆われているため、核体11の表面11a以外に第二の粘着層13が形成されることが防がれる。すなわち、核体11は粘着付与化合物によって粘着性が付与される材料から形成されているが、第一の部材の第一層21aや第一の粘着層は粘着付与化合物により粘着性が付与されない材料から形成されている。従って、第一層21a上には粘着層13が形成されない。
 この後、図2C~図2Eに示すように、第三工程と、第四工程と、第五工程とを行うが、第三工程以降の工程については、第一の実施形態と同様であるため、第三工程以降については詳細な説明を省略する。
 第二の実施形態におけるはんだボール70の製造方法によれば、第一の部材の第一層21a上に、開口部32aよりも直径の小さい開口部32bを有する第一の部材の第二層21bを、開口部32aの中心と開口部32bの中心とが重なるように配置することにより、開口部32bを開口部32aの中心部の上に位置するように配置できる。また、核体11を第一の粘着層5に付着させた後に、第一の部材の第一層21a上から、第一の部材の第二層21bを剥離するため、核体11と第一の部材の第一層との距離を十分保つことができる。すなわち、核体11を第一の粘着層5に付着させる際に、核体11を開口部32aの中心部に配置できる。
 第二の実施形態におけるはんだボール70の製造方法によれば、第一の実施形態の効果に加えて、隣接するはんだボール70同士の接合を、より効果的に防止することができる。
(第三の実施形態)
 次いで、本発明の第三の実施形態であるはんだボール70の製造方法について図面を参照にして説明する。図3Aから図3Fは、第三の実施形態のはんだボール70の製造方法を説明する工程図である。
 第三の実施形態におけるはんだボール70の製造方法は、基材1に付与された第一の粘着層5の表面5aに核体11を付着する第一工程と、核体11の表面11aに、第二の粘着層13を形成する第二工程と、第二の粘着層13表面に、はんだ粒子14を付着する第三工程と、はんだ粒子14を溶融してはんだ層15を形成する第四工程と、核体11から基材1を剥離する第五工程と、から概略構成されている。
 第三の実施形態では、第一工程と第二工程との間に、第一の部材21を剥離する工程を有し、さらに第一の粘着層5の表面5aを覆うように、第一の部材21の厚みHよりも小さい直径rを有する粒子を第一の粘着層上に付着させマスク41(第一のマスク)を形成する点が、第一の実施形態と異なる。このため、第一の実施形態と同様の工程については、その詳細な説明を省略する。
 まず、図3Aに示すように、第一工程において、核体11を、第一の部材21有する基材1の、第一の粘着層5の表面5aに付着させる。このとき、第一の部材の隣接する開口部33(第三の開口部)同士の間隔Gは、第三工程で使用されるはんだ粒子14の直径dの10~20倍程度であることが好ましい。また、第一の部材21の厚みHは、核体11の粒径Dの1/2倍以上であることが好ましい。また、第一の部材の開口部33の直径Fは、核体11の粒径Dより大きく、かつ、核体11の粒径Dの2倍未満であればよいが、粒径Dよりも10~20μm大きいことが特に好ましい。
 次いで、図3Bに示すように、第一の部材21を第一の粘着層5上から剥離する。
これにより、第一の粘着層5の表面5aが露出する。
 次いで、図3Cに示すように、第一の粘着層5の表面5aを覆うように、粒状の材料から形成されるマスク41を付着させる。マスク41の材料としては、たとえばガラス、セラミック、及び高分子などを用いることができるが、水に融解せず、第二の粘着層13が表面に形成されない性質であれば、その材料は限定されない。
 また、マスク41の材料の直径rは、第一の部材21の厚みHよりも小さい。また、直径や高さrは小さいほど好ましく、作業効率の面から、サブμm~数μm程度であることが好ましい。具体例を挙げれば、直径が0.5μm~2μmの材料を好ましく使用でききる。マスク41の高さや直径rをこのような範囲内とすることにより、核体11と第一の粘着層5との接触面付近にまで、はんだ粒子14を付着できる。このため、核体11の表面11aの全体に、はんだ層15を形成することができる。
 一方、高さや直径rが第一の部材21の厚みH以上の大きさであると、核体11と第一の粘着層5との接触面付近にはんだ粒子14が十分付着せず好ましくない。また、第一の粘着層5の表面5aを覆うようにマスク41を付着させる際に、隣接するマスク41の材料同士の間に隙間が生じるため、第三工程において、第一の粘着層5表面にはんだ粒子14が付着するおそれがある。このため、第四工程において、第一の粘着層5表面に付着したはんだ粒子14が溶融し、はんだボール70に接合するおそれがある。このためはんだボール70の粒径が不均一となり、好ましくない。
 この後、図3C~図3Fに示すように、第二工程と、第三工程と、第四工程とを行うが、第二工程~第四工程の工程については、第一の実施形態と同様であるため、ここではその詳細な説明を省略する。なお、図3Fに示すように、第一の粘着層5から第一のマスク41を剥離する方法は任意で選択できるが、具体的にはたとえば、超音波洗浄機で基材1に振動を与える方法を採用することができる。
 以上により、はんだボール70が形成される。
 第三の実施形態におけるはんだボール70の製造方法によれば、第一の部材21を用いて粘着層5の表面5aに核体11を配置した後に第一の部材21を剥離することにより、核体11同士の間隔を適度に保つことができる。また、第一の粘着層5の表面5aに第一のマスク41を付着させた後に、核体11の表面11aにはんだ粒子14を付着させることにより、核体11と第一の粘着層5との接触面付近にまで、はんだ粒子14を付着させることができる。このため、核体11の表面11aの全体に、はんだ層15を形成することができる。また、第一のマスク41の材料として、水に融解せず、かつ、第二の粘着層13が形成されない物質を用いることにより、第二工程において、第一のマスク41表面に第二の粘着層13が形成されることを防止できる。このため、第一のマスク41表面へのはんだ粒子14の付着を防ぐことができる。
 以上により、第三の実施形態におけるはんだボール70の製造方法によれば、第一の実施形態の効果に加えて、はんだボール70のはんだ層15の厚さを均一に形成することができる。
(第四の実施形態)
 次いで、本発明の第四の実施形態であるはんだボール70の製造方法について図面を参照にして説明する。図4Aから図4Eは第四の実施形態のはんだボール70の製造方法を説明する工程図である。
 第四の実施形態におけるはんだボール70の製造方法は、基材1に付与された第一の粘着層5の表面5aに核体11を付着する第一工程と、核体11の表面11aに、第二の粘着層13を形成する第二工程と、第二の粘着層13表面に、はんだ粒子14を付着する第三工程と、はんだ粒子14を溶融してはんだ層15を形成する第四工程と、核体11から基材1を剥離する第五工程と、から概略構成されている。
 第四の実施形態では、第一工程の前に、マスクを介して粘着層を塗布することによりドット形状の複数の第一の粘着層5を、基材1の表面1aに相互に離間させて形成する点が、粘着層上に第一の部材を配置する第一の実施形とは異なる。第一の実施形態と同様の工程については、その詳細な説明を省略する。
 はじめに、基材1の表面1aを覆うように、第二の部材22を配置する。第二の部材22としては、板状の部材を用いることができる。第二の部材22には、基材1の表面1aの一部をドット状に露出させる開口部34(第四の開口部)が、相互に離間するように設けられている。なお第二の部材22は、基材1から離間していても基材1に接触していてもよい。
 また、開口部34の直径Fの範囲は、粘着材の厚みをHとすると下記数式(10)で表すことができる。
Figure JPOXMLDOC01-appb-M000016
 また、開口部34の直径Fの特に好ましい範囲は、下記数式(11)で表すことができる。
Figure JPOXMLDOC01-appb-M000017
 また、隣接する開口部34の同士の間隔Gは、粘着材の厚みをH、第四の開口部34の直径をFとすると、下記数式(12)で表すことができる。
Figure JPOXMLDOC01-appb-M000018
 また、特に好ましい開口部34の同士の間隔Gは、下記数式(13)で表すことができる。
Figure JPOXMLDOC01-appb-M000019
 次いで、図4Aに示すように第二の部材22をマスクにして、開口部34を充填するように、粘着性物質を塗布する。必要に応じて塗布以外の方法を用いても良い。これにより、厚さH、直径Fの、ドット形状の複数の第一の粘着層5が、基材1の表面1aに相互に離間するように形成される。
 次いで、第二の部材22を基材1の表面1aから剥離し、表面1aを露出させる。
 次いで、図4Bに示すように、核体11を第一の粘着層5に付着させる。
 この後、図4C~図4Eに示すように、第二工程と、第三工程と、第四工程と、第五工程と、を行うが、第二工程以降は第一の実施形態と同様であるため、ここではその詳細な説明を省略する。
 以上により、はんだボール70が形成される。
 第四の実施形態におけるはんだボール70の製造方法によれば、ドット形状の複数の第一の粘着層5を、基材1の表面1aに相互に離間するように形成したのちに、第二の部材22を基材1から剥離することにより、ドット形状の第一の粘着層5を形成できる。このため、核体11を第一の粘着層5に付着させやすくなる。また、はんだ粒子14を核体11の表面11aに付着させる際に、基材1の表面1aが露出しているため、はんだ粒子14が核体11と第一の粘着層5との接着面付近まで十分に付着させることができる。このため、核体11の表面11aの全体に、はんだ層15を形成することができる。
 以上により、第四の実施形態におけるはんだボール70の製造方法によれば、第一の実施形態の効果に加えて、はんだボール70のはんだ層15の厚さを均一に形成することができる。
(第五の実施形態)
 次いで、本発明の第五の実施形態であるはんだボール70の製造方法について図面を参照にして説明する。図5Aから図5Eは、第五の実施形態のはんだボール70の製造方法を説明する工程図である。
 第五の実施形態におけるはんだボール70の製造方法は、基材1に付与された第一の粘着層5の表面5aに核体11を付着する第一工程と、核体11の表面11aに、第二の粘着層13を形成する第二工程と、第二の粘着層13表面に、はんだ粒子14を付着する第三工程と、はんだ粒子14を溶融してはんだ層15を形成する第四工程と、核体11から基材1を剥離する第五工程と、から概略構成されている。
 第五の実施形態では、第一工程の前に、転写用基材を用いて粘着性付与化合物を基体に転写することにより、ドット形状の複数の第一の粘着層を基材の表面に相互に離間させて形成する点が、第一工程の前に基材上の粘着層上に第一の部材を形成する第一の実施形とは異なる。
 以下、各工程について説明するが、第一の実施形態と同様の工程については、その詳細な説明を省略する。
(第一工程)
 第五の実施形態における第一工程は、転写用基材61の表面61aにドット形状の複数の金属膜51(第一の金属膜)を、相互に離間するように形成する工程と、金属膜51に粘着性付与化合物5b(第一の粘着性付与化合物)を付着させる工程と、転写用基材61から基材1の表面1aに前記粘着性付与化合物を転写することにより第一の粘着層5を形成する工程と、第一の粘着層5に核体11を付着する工程と、から構成されている。
 以下、各工程について、詳細に説明する。
 はじめに、転写用基材61の表面61aに、たとえば膜厚20μmのドット形状の複数の金属膜51を相互に離間するように形成する。形成方法は任意の方法を使用できる。金属膜51の材料としては、例えばスズ(Sn)を用いることが好ましく、銅(Cu)を用いることが特に好ましい。第一の金属膜51の材料は、これらに限られず、粘着性付与化合物によって粘着性が得られる物質であれば他のものを用いてもかまわない。このような物質としては、銅やスズの他に、例えば、Ni、Ni-Au、Au-Snの合金等を含む物質を例示できる。
 次いで、図5Aに示すように、第一の金属膜51に粘着性付与化合物5bを塗布などの任意の方法により付着させる。この工程については、第一の実施形態の第二工程とほぼ同様であるため、詳細な説明を省略する。これにより、金属膜51表面を覆う粘着性付与化合物5bが形成される。なお第一の実施形態の第二工程と異なり、本工程では金属膜51へ粘着性付与化合物5bを付着させる必要があるが、任意に方法を選択すればよい。
 次いで、図5Bに示すように、転写用基材61から基材1の表面1aに粘着性付与化合物5bを転写する。
 このとき、基材1の表面1aは、マスク42(第二のマスク)で覆われていることが好ましい。マスク42の材料としては、板状の部材を用いることができる。また、その材料としては、具体的には、ステンレスやニッケル、ガラス、セラミック、高分子などを用いることを用いることができるが、水に融解せず、第二の粘着層13が形成されない物質であれば、その材料は限定されない。
 また、マスク42には、直径がFの開口部35(第五の開口部)が設けられている。開口部35は、第四工程以降において、はんだボール70が外れないようにする機能を有している。このため、Fの値は、核体11の直径Dとはんだ粒子14の直径d、マスク42の厚さHに応じて、適宜設定すればよい。
 このとき、マスク42の隣接する開口部35同士の間隔Gは、マスク42の厚みをH、核体11の直径をD、はんだ粒子14の直径をdとすると、下記数式(14)で表すことができる。
Figure JPOXMLDOC01-appb-M000020
 また、マスク42の厚さHは、金属膜51の厚さと粘着性付与化合物5bの厚さの合計よりも小さい必要があるが、金属膜51の厚さと同程度であることが特に好ましい。マスク42の厚さHが、金属膜51の厚さと粘着性付与化合物5bの厚さの合計よりも大きいと、粘着性付与化合物5bを基材1の表面1aに転写することができず、好ましくない。
 これにより、基材1の表面1aに、ドット形状の複数の第一の粘着層5が、相互に離間するように形成される。
 次いで、図5Cに示すように、核体11を第一の粘着層5の表面5aに付着させる。この後、図5C~図5Eに示すように、第二工程と、第三工程と、第四工程と、第五工程と、を行うが、第二工程以降は、第一の部材21に代えてマスク42を用いること以外については、ほぼ第一の実施形態と同様であるため、ここではその詳細な説明を省略する。
 以上により、はんだボール70が形成される。
 第五の実施形態におけるはんだボール70の製造方法によれば、ドット形状の金属膜51上に粘着性付与化合物5bを塗布することにより、第一の粘着層5を形成するため、粘着性付与化合物5bの量を必要最小限に抑えることができる。また転写用基材を用いているので、第一の粘着層5を、マスクのみを用いて形成する場合よりも、微細なパターンに対応することができる。
 また、基材1の表面1aを、マスク42で覆った状態のまま粘着性付与化合物5bを基材1の表面1aに転写することにより、第一の粘着層5をより正確な位置に形成することができる。また、基材1の表面1aを、マスク42で覆った状態のまま核体11に第二の粘着層13を形成するため、基材1の表面1aに第二の粘着層13が付着することが防がれる。そのため、基材1の表面1aにはんだ粒子14が付着することが防がれる。
 以上により、第五の実施形態におけるはんだボール70の製造方法によれば、第四の実施形態の効果に加えて、はんだボール70の形成位置を、より微細なパターンに対応させることができる。
(第六の実施形態)
 次いで、本発明の第六の実施形態であるはんだボール70の製造方法について図面を参照にして説明する。図6Aから図6Eは、第六の実施形態のはんだボール70の製造方法を説明する工程図である。
 第六の実施形態におけるはんだボール70の製造方法は、基材1に付与された第一の粘着層5の表面5aに核体11を付着する第一工程と、核体11の表面11aに、第二の粘着層13を形成する第二工程と、第二の粘着層13表面に、はんだ粒子14を付着する第三工程と、はんだ粒子14を溶融してはんだ層15を形成する第四工程と、核体11から基材1を剥離する第五工程と、から概略構成されている。
 第六の実施形態は、第一工程の前に、基材表面にドット形状の第二の金属膜を相互に離間させて形成させ、第二の金属膜上に粘着性付与化合物を塗布することにより粘着層を形成する点が、第一工程の前に粘着層を設けた基材上に開穴を有する第一の部材を形成する第一の実施形とは異なる。
 以下、各工程について説明するが、第一の実施形態と同様の工程については、その詳細な説明を省略する。
(第一工程)
 第六の実施形態における第一工程は、基材1上の第一の粘着層5に核体11を付着する工程と、その前工程として、(i)基材1の表面1aに、ドット形状の複数の第二の金属膜52を形成する工程と、(ii)露出する第二の金属膜52表面に粘着性付与化合物(第一の粘着性付与化合物)を塗布することにより第一の粘着層5を形成する工程とを含む。
 以下、各工程について、詳細に説明する。
 はじめに、基材1の表面1aに、任意の方法によりドット形状の金属膜52(第二の金属膜)を、相互に離間するように形成する。金属膜52の材料としては、はんだに対してぬれ性を示す金属であることが好ましく必要に応じて選択できるが、タングステンを用いることが特に好ましい。
 次いで、基材1の表面1aを覆うように、開口部36(第六の開口部)を有するマスク43(第三のマスク)を配置する。なお、マスク43は、第一の粘着層5形成後に配置してもかまわない。
 マスク43には、直径がFの開口部36が設けられている。開口部36は、第四工程以降において、はんだボール70が外れないようにする機能を有している。このため、Fの値は、核体11の直径Dとはんだ粒子14の直径d、マスク43の厚さHに応じて適宜設定すればよい。マスク43の材料は、第二の粘着層13が表面に形成されない性質であることが好ましい。
 このとき、隣接する開口部36同士の間隔Gは、マスク43の厚みをH、核体11の直径をD、はんだ粒子14の直径をdとすると、下記数式(15)で表すことができる。
Figure JPOXMLDOC01-appb-M000021
 また、マスク43の厚さHは、金属膜52の厚さと第一の粘着層5の厚さの合計よりも小さい必要があるが、第二の金属膜52の厚さよりも20μm程度厚いことが特に好ましい。マスク43の厚さHが、金属膜52の厚さと第一の粘着層5の厚さの合計よりも大きいと、核体11を第一の粘着層5の表面5aに付着させることが難しく、好ましくない。
 次いで、図6Aに示すように、金属膜52表面を覆うように、第一の粘着層5を形成する。第一の粘着層5を形成する方法については、第五の実施形態と同様に、金属膜52に粘着性付与化合物を塗布等を行うことにより形成することができる。開口を有するマスクなどを用いても良い。
 以上により、基材1の表面1aに、ドット形状の複数の第一の粘着層5が、相互に離間するように形成される。
 次いで、図6Bに示すように、核体11を第一の粘着層5の表面5aに付着させる。この後、図6C~図6Eに示すように、第二工程と、第三工程と、第四工程と、第五工程と、を行うが、第二工程以降は、第一の部材21に代えて第三のマスク43を用いること以外については、第一の実施形態とほぼ同様であるため、ここではその詳細な説明を省略する。
 以上により、はんだボール70が形成される。
 第六の実施形態におけるはんだボール70の製造方法によれば、金属膜52上に粘着性付与化合物5bを塗布することにより第一の粘着層5を形成するため、第一の粘着層5の材料を必要最小限に抑えることができる。また、マスクのみを用いて第一の粘着層5を形成する場合よりも、微細なパターンに対応することができる。
 また、第一の粘着層5を、基材1上の金属膜52表面に直接形成するため、第一の粘着層5の位置のずれを防ぐことができる。
 また、金属膜52の材料としてタングステンを用いることにより、第四工程においてはんだ層15を形成する際に、はんだ層15が第二の金属膜に付着しても、簡単に剥離することができる。そのため、第二の金属膜52上にはんだボール70を形成しても、はんだボール70を簡単に取り外すことができる。
 以上により、第五の実施形態におけるはんだボール70の製造方法によれば、第五の実施形態の効果に加えて、はんだボール70の形成位置を、より微細なパターンに対応させることができる。
 以下、実施例により本発明を説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 はじめに、第一の粘着層5が付与された基材1として、ポリイミドテープを準備した。次いで図1Aに示すように、第一の粘着層5の表面5aを覆うように、金属からなる第一の部材21を配置した。第一の部材21には、直径F=80μmの開口部31(第一の開口部)が設けられたものを用いた。また、隣接する開口部31同士の間隔は200μmとした。なお第一の部材21の厚みは約25μmである。
 次いで、図1Aに示すように、空気雰囲気中で、基材1の表面1aに、直径D=50μmの銅からなる核体11を、付着させた。図7Aに、核体11を基材1の表面1aに付着させた状態を示す。
 次に、図1Bに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成した。このとき、粘着性付与化合物を含む粘着性溶液として、上記一般式(3)のR12のアルキル基がC1123であり、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を用意した。次いで、前記粘着性溶液を酢酸によりpHを約4に調整した後、40℃に加温した。次いで、基材1を粘着性溶液に3分間浸漬し、核体11の表面11aに、第二の粘着層13を形成した。
 次いで、図1Cに示すように、第二の粘着層13上に、金属組成がSn/3.5Agである、直径d=約10μmのはんだ粒子14を付着させた。次いで、エアーナイフにより、余分なはんだ粒子14を除去した。
 次いで、図1Dに示すようにリフロー工程を行い、はんだ層15を形成した。まず、基材1を180℃のオーブンで20分間加熱して、核体11とはんだ粒子14を定着させた。次いで、フラックス(昭和電工製、SJ-FL2000)を基材1の表面に噴霧した。次いで、基材1を240℃のリフロー炉で、窒素雰囲気中で3分加熱し、核体11の表面11aを覆うように、膜厚5μmのはんだ層15を形成した。以上により、図1Eに示すように、直径約60μmのはんだボール70を製造した。図7Bに、はんだボール70を示す。
(実施例2)
 次いで、実施例2について説明する。はじめに、図2Aに示すように、ガラス片からなる基材1に、シリコン系粘着剤からなる第一の粘着層5を塗布した。次いでスクリーン印刷により、ソルダーレジスト用ペーストからなる第一の部材の第一層21aを、第一の粘着層5の表面5aを覆うように形成した。
 このとき、第一の部材の第一層21aとしては、直径F2a=80μmの開口部32a(第二の開口下部)が設けられたものを用いた。
 次いで、第一の部材の第一層21a上に、金属からなる第一の部材第二層21bを配置した。第一の部材の第二層21bには、直径F2b=60μmの開口部32b(第二の開口上部)が設けられたものを用いた。また、第一の部材の第二層21bを配置する際、第一層21aの開口部32aの中心部と、第二層21bの開口部32bの中心部とが重なるように、第一の部材の第二層21bを配置する位置を調整した。また、隣接す開口部32b同士の間隔Gは200μmとした。
 次いで、図2Aに示すように、空気雰囲気中で、基材1の表面1aに、直径D=50μmの銅からなる核体11を付着させた。次いで、図2Bに示すように、第一の部材の第一層21a上から、第一の部材の第二層21bを剥離した。
 次に、図2Bに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成した。このとき、粘着性付与化合物を含む粘着性溶液として、上記一般式(3)のR12のアルキル基がC1123であり、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を用意した。次いで、前記粘着性溶液を酢酸によりpHを約4に調整した後、40℃に加温した。次いで、基材1を粘着性溶液に3分間浸漬し、核体11の表面11aに、第二の粘着層13を形成した。
 次いで、図2Cに示すように、第二の粘着層13上に、金属組成がSn/3.5Agである、直径d=約10μmのはんだ粒子14を付着させた。次いで、エアーナイフにより、余分なはんだ粒子14を除去した。
 次いで、図2Dに示すようにリフロー工程を行い、はんだ層15を形成した。まず、基材1を180℃のオーブンで20分間加熱して、核体11とはんだ粒子14を定着させた。次いで、フラックスを基材1の表面に噴霧した。次いで、基材1を240℃のリフロー炉で、窒素雰囲気中で3分加熱し、核体11の表面11aを覆うように、膜厚5μmのはんだ層15を形成した。以上により、直径約60μmのはんだボール70を製造した。
(実施例3)
 次いで、実施例3について説明する。はじめに、基材1として、第一の粘着層5が付与された基材1としてポリイミドテープを準備した。次いで、図3Aに示すように、第一の粘着層5の表面5aを覆うように、金属からなる第一の部材21を配置した。第一の部材21は、直径F=70μmの第一の開口部31が設けられたものを用いた。また、隣接する第一の開口部31同士の間隔は200μmとした。
 次いで、図3Aに示すように、空気雰囲気中で、基材1の表面1aに、直径D=50μmの銅からなる核体11を付着させた。次いで、図3Bに示すように、第一の部材21を剥離した。
 次いで、次いで、図3Cに示すように、第一の粘着層5の表面5aを覆うように、直径約1μmの硝子粒子からなる第一のマスク41を付着させた。
 次に、図3Dに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成した。このとき、粘着性付与化合物を含む粘着性溶液として、上記一般式(3)のR12のアルキル基がC1123であり、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を用意した。次いで、前記粘着性溶液を酢酸によりpHを約4に調整した後、40℃に加温した。次いで、基材1を粘着性溶液に3分間浸漬し、核体11の表面11aに、第二の粘着層13を形成した。
 次いで、図3Eに示すように、第二の粘着層13上に、金属組成がSn/3.5Agである、直径d=約10μmのはんだ粒子14を付着させた。次いで、エアーナイフにより、余分なはんだ粒子14を除去した。
 次いで、図3Fに示すようにリフロー工程を行い、はんだ層15を形成した。まず、基材1を180℃のオーブンで20分間加熱して、核体11とはんだ粒子14を定着させた。次いで、フラックスを基材1の表面に噴霧した。次いで、基材1を240℃のリフロー炉で、窒素雰囲気中で3分加熱し、核体11の表面11aを覆うように、膜厚5μmのはんだ層15を形成した。以上により、直径約60μmのはんだボール70を製造した。
(実施例4)
 次いで、実施例4について説明する。はじめに、ガラス片からなる基材1を準備した。
次いで、図4Aに示すように、基材1の表面1aを覆うように、5μmの金属からなる部材22(第二の部材)を配置した。このとき、部材22としては、直径F=25μmの開口部34(第四の開口部)が設けられたものを用いた。また、隣接する開口部34同士の間隔は200μmとした。
 次いで、図4Aに示すように部材22をマスクにして、開口部34を充填するようにシリコン系粘着剤を塗布した。これにより、厚さH=5μm、直径F=25μmの第一の粘着層5が、基材1の表面1aに形成された。
 次いで、図4Bに示すように、空気雰囲気中で、基材1の表面1aに、直径D=50μmの銅からなる核体11を付着させた。
 次いで、図4Cに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成した。このとき、粘着性付与化合物を含む粘着性溶液として、上記一般式(3)のR12のアルキル基がC1123であり、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を用意した。次いで、前記粘着性溶液を酢酸によりpHを約4に調整した後、40℃に加温した。次いで、基材1を粘着性溶液に3分間浸漬し、核体11の表面11aに、第二の粘着層13を形成した。
 次いで、図4Dに示すように、第二の粘着層13上に、金属組成がSn/3.5Agである、直径d=約10μmのはんだ粒子14を付着させた。次いで、エアーナイフにより、余分なはんだ粒子14を除去した。
 次いで、図4Eに示すようにリフロー工程を行い、はんだ層15を形成した。まず、基材1を180℃のオーブンで20分間加熱して、核体11とはんだ粒子14を定着させた。次いで、フラックスを基材1の表面に噴霧した。次いで、基材1を240℃のリフロー炉で、窒素雰囲気中で3分加熱し、核体11の表面11aを覆うように、膜厚5μmのはんだ層15を形成した。以上により、直径約60μmのはんだボール70を製造した。
(実施例5)
 次いで、実施例5について説明する。はじめに、転写用基材61の表面61aに、膜厚18μmの銅からなる金属膜51(第一の金属膜)を形成した。このとき、金属膜51のパターンは、直径25μmとし、隣接する金属膜51のパターン同士の間隔は200μmとした。
 また、基材1は、予め表面1aを、厚さH=18μmのマスク42(第二のマスク42)で覆ったものを用いた。マスク42は、直径F=70μmの開口部35(第五の開口部)が設けられたものを用いた。また、隣接する開口部35同士の間隔は200μmとした。
 次いで、金属膜51の表面に、粘着性付与化合物5bを付着させた。このとき、粘着性付与化合物を含む粘着性溶液として、上記一般式(3)のR12のアルキル基がC1123であり、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を用意した。次いで、前記粘着性溶液を酢酸によりpHを約4に調整した後、40℃に加温した。次いで、基材1を粘着性溶液に10分間浸漬し、金属膜51の表面に、粘着性付与化合物5bを付着させた。
 次いで、図5Bに示すように、転写用基材61から基材1の表面1aに粘着性付与化合物5bを転写し、第一の粘着層5を形成した。
 次いで、図5Cに示すように、空気雰囲気中で、基材1の表面1aに、直径D=50μmの銅からなる核体11を付着させた。
 次いで、図5Cに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成した。
 次いで、図5Dに示すように、第二の粘着層13上に、金属組成がSn/3.5Agである、直径d=約10μmのはんだ粒子14を付着させた。次いで、エアーナイフにより、余分なはんだ粒子14を除去した。
 次いで、図5Eに示すようにリフロー工程を行い、はんだ層15を形成した。まず、基材1を180℃のオーブンで20分間加熱して、核体11とはんだ粒子14を定着させた。次いで、フラックスを基材1の表面に噴霧した。次いで、基材1を240℃のリフロー炉で、窒素雰囲気中で3分加熱し、核体11の表面11aを覆うように、膜厚5μmのはんだ層15を形成した。以上により、直径約60μmのはんだボール70を製造した。
(実施例6)
 次いで、実施例6について説明する。はじめに、図6Aに示すように、アルミナからなる基材1の表面1aに、スクリーン印刷により、タングステンペーストをドット形状に塗布した。次いで、前記タングステンペーストを焼成し、ドット形状のタングステンからなる金属膜52(第二の金属膜)を形成した。このとき、金属膜52のパターンは、直径25μmのドットとし、隣接する金属膜52のパターン同士の間隔は200μmとした。
 次いで、マスク43(第三のマスク)を、基材1の表面1aを覆うように配置した。
 このとき、マスク43は、直径F=70μmの開口部36(第六の開口部)が設けられたものを用いた。また、隣接する開口部36同士の間隔は200μmとした。また、開口部36の中心に金属膜52からなるドットが位置するように、マスク43を配置する位置を調整した。
 次いで、金属膜52の表面に、粘着性付与化合物(第一の粘着性付与化合物)を付着させた。このとき、粘着性付与化合物を含む粘着性溶液として、上記一般式(3)のR12のアルキル基がC1123であり、R11が水素原子であるイミダゾール系化合物の2質量%水溶液を用意した。次いで、前記粘着性溶液を酢酸によりpHを約4に調整した後、40℃に加温した。次いで、基材1を粘着性溶液に10分間浸漬し、図6Aに示すように、金属膜52の表面に第一の粘着層5を形成した。
 次いで、図6Bに示すように、空気雰囲気中で、第一の粘着層5の表面に、直径D=50μmの銅からなる核体11を付着させた。
 次いで、図6Cに示すように、核体11の表面11aに、粘着性付与化合物を塗布して第二の粘着層13を形成した。
 次いで、図6Dに示すように、第二の粘着層13上に、金属組成がSn/3.5Agである、直径d=約10μmのはんだ粒子14を付着させた。次いで、エアーナイフにより、余分なはんだ粒子14を除去した。
 次いで、図6Eに示すようにリフロー工程を行い、はんだ層15を形成した。まず、基材1を180℃のオーブンで20分間加熱して、核体11とはんだ粒子14を定着させた。次いで、フラックスを基材1の表面に噴霧した。次いで、基材1を240℃のリフロー炉で、窒素雰囲気中で3分加熱し、核体11の表面11aを覆うように、膜厚5μmのはんだ層15を形成した。以上により、直径約60μmのはんだボール70を製造した。
 実施例1~実施例6の結果、いずれも核体11の脱落は見られなかった。また、はんだ層15が未形成の核体11は見られなかった。
 以上の方法によれば、好適なはんだボール70を、鉛を多く含む高融点はんだを使用することなく形成できる。このため、はんだボール70の鉛フリー化を実現できる。このため、はんだバンプ中に含まれるPbからα線が放射されることがない。このため、α線による電子部品の誤動作を防ぐことができる。
 また、核体11を核にもつはんだボール70を安価に製造できるため、はんだバンプの高さが不均一となる問題や、チップを搭載する際のリフロー時にチップが沈み込む問題を、低コストで解決することができる。本方法は、微細な基材1に適した方法であり、集積度が高く、かつ、信頼性の高い電子機器を提供出来る様になる。
 本発明は、精細なパターン形状に対応可能であり、かつ、安価に形成可能なはんだボールの製造方法を提供することを目的とする。
1 基材
1a 基材の表面
5 第一の粘着層
5a 第一の粘着層の表面
5b 第一の粘着性付与化合物
11 核体
11a 核体の表面
13 第二の粘着層
14 はんだ粒子
15 はんだ層
21 第一の部材
21a 第一の部材第一層
21b 第一の部材第二層
22 第二の部材
31 第一の開口部
32a 第二の開口下部
32b 第二の開口上部
33 第三の開口部
34 第四の開口部
35 第五の開口部
36 第六の開口部
41 第一のマスク
42 第二のマスク
43 第三のマスク
51 第一の金属膜
52 第二の金属膜
61 転写用基材
61a 転写用基材の表面
70 はんだボール
1 第一の開口部の直径
2a 第二の開口下部の直径
2b 第二の開口上部32bの直径
3 第三の開口部の直径
4 第四の開口部の直径
5 第五の開口部の直径
6 第六の開口部の直径
D 核体の粒径
d はんだ粒子の粒径
r 第一のマスクの直径

Claims (13)

  1.  基材の表面に付与された第一の粘着層に核体を付着する第一工程と、
     前記核体の表面に、粘着性付与化合物を塗布して第二の粘着層を形成する第二工程と、
     前記核体表面の第二の粘着層上に、はんだ粒子を付着する第三工程と、
     前記はんだ粒子を溶融して前記核体の表面にはんだ層を形成する第四工程と、
     前記核体から前記基材を剥離してはんだボールを得る第五工程と、を具備してなることを特徴とするはんだボールの製造方法。
  2.  前記核体がCuからなることを特徴とする請求項1に記載のはんだボールの製造方法。
  3.  前記第一工程の前に、前記第一の粘着層表面の一部を露出させる開口部を有する第一の部材を、前記第一の粘着層上に配置する前工程を含み、
    こののちに、
    前記第一工程において、前記開口部から露出する前記第一の粘着層表面に、核体を付着させることを特徴とする請求項1または請求項2のいずれかに記載のはんだボールの製造方法。
  4.  前記第一の部材が、第一層と第二層とからなり、
     前記第一の部材を前記第一の粘着層上に配置する前工程が、
     開口部を有する第一の部材の第一層を、前記第一の粘着層上に配置する工程と、
     前記第一の部材の第一層上に、前記開口部よりも直径の小さい開口部を有する第一の部材の第二層を、第一層の前記開口部の中心部と第二層の前記開口部の中心部が重なるように配置する工程と、からなり、
     前記第一工程と前記第二工程との間に、前記第一の部材の第二層を前記第一の部材の第一層上から剥離する工程をさらに有することを特徴とする請求項3に記載のはんだボールの製造方法。
  5.  前記第一工程と前記第二工程との間に、
     前記第一の部材を前記第一の粘着層上から剥離する工程と、
     前記第一の粘着層表面を覆うように、前記第一の部材の厚みよりも小さい直径を有する粒子からなるマスクを付着させる工程と、を有することを特徴とする請求項3に記載のはんだボールの製造方法。
  6.  前記第一工程の前に、ドット形状の複数の前記第一の粘着層を前記基材の表面に相互に離間させて形成する前工程を有することを特徴とする請求項1または請求項2のいずれかに記載のはんだボールの製造方法。
  7.  前記第一の粘着層を形成する前工程が、
     前記基材表面の一部を露出させるドット形状の開口部を有する第二の部材を前記基材上に配置する工程と、
     前記第二の部材をマスクにして前記第一の粘着層を形成する粘着性物質を塗布して、ドット形状の複数の前記第一の粘着層を得る工程と、を有することを特徴とする請求項6に記載のはんだボールの製造方法。
  8.  前記ドット形状の第一の粘着層を形成する前工程が、
     転写用基材表面にドット形状の金属膜を相互に離間させて形成する工程と、
     前記金属膜に粘着性付与化合物を塗布する工程と、
     前記転写用基材から前記基材表面に前記粘着性付与化合物を転写することにより第一の粘着層を形成する工程と、を有することを特徴とする請求項6に記載のはんだボールの製造方法。
  9.  前記ドット形状の第一の粘着層を形成する前工程が、
     開口部を有するマスクにより前記基材表面を覆ったのちに、前記マスクの開口部から露出する前記基材表面に、転写用基材から前記粘着性付与化合物を転写する工程を含み、
     第二工程では、前記基材表面をマスクで覆ったまま、核体上に前記第二の粘着層を形成することを特徴とする請求項8に記載のはんだボールの製造方法。
  10.  前記第一の粘着層を形成する前工程が、
     前記基材表面にドット形状の金属膜を相互に離間させて形成する工程と、
     前記金属膜に前記粘着性付与化合物を塗布することにより前記第一の粘着層を形成する工程と、を有することを特徴とする請求項6に記載のはんだボールの製造方法。
  11.  前記第一の粘着層を形成する前工程が、
     前記基材表面にドット形状の金属膜を相互に離間させて形成する工程と、
     前記基材表面を開口部を有するマスクで覆ったのちに、前記開口部から露出する前記金属膜表面に前記粘着性付与化合物を塗布する工程を有することを特徴とする請求項10に記載のはんだボールの製造方法。
  12.  前記金属膜がタングステンからなることを特徴とする請求項10または請求項11のいずれかに記載のはんだボールの製造方法。
  13.  前記はんだ粒子の平均粒径が、前記核体の平均粒径の1/2倍以下であることを特徴とする請求項1乃至12のいずれか一項に記載のはんだボールの製造方法。
PCT/JP2011/074099 2010-10-27 2011-10-20 はんだボールの製造方法 WO2012056977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG2013029020A SG189919A1 (en) 2010-10-27 2011-10-20 Method of producing solder balls
CN201180051311.5A CN103189159B (zh) 2010-10-27 2011-10-20 焊料球的制造方法
KR1020137009198A KR101422425B1 (ko) 2010-10-27 2011-10-20 땜납 볼의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010241029A JP5690554B2 (ja) 2010-10-27 2010-10-27 はんだボールの製造方法
JP2010-241029 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012056977A1 true WO2012056977A1 (ja) 2012-05-03

Family

ID=45993690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074099 WO2012056977A1 (ja) 2010-10-27 2011-10-20 はんだボールの製造方法

Country Status (6)

Country Link
JP (1) JP5690554B2 (ja)
KR (1) KR101422425B1 (ja)
CN (1) CN103189159B (ja)
SG (1) SG189919A1 (ja)
TW (1) TWI505382B (ja)
WO (1) WO2012056977A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10588214B2 (en) 2017-05-09 2020-03-10 Unimicron Technology Corp. Stacked structure and method for manufacturing the same
WO2020004511A1 (ja) * 2018-06-26 2020-01-02 日立化成株式会社 はんだ粒子及びはんだ粒子の製造方法
JP7400465B2 (ja) 2019-12-27 2023-12-19 株式会社レゾナック コアシェル型はんだ粒子、コアシェル型はんだ粒子の製造方法、異方性導電フィルム、及び異方性導電フィルムの製造方法
JP6767665B1 (ja) * 2020-06-10 2020-10-14 千住金属工業株式会社 バンプ電極基板の形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212094A (ja) * 1987-02-26 1988-09-05 Tanaka Kikinzoku Kogyo Kk 金属球を核とした微小はんだ球の製造方法
JPH10277774A (ja) * 1997-04-03 1998-10-20 Fujitsu Ten Ltd ハンダ粒子、ハンダペースト、ハンダ粒子の作製方法、及び回路基板へのデバイスの実装方法
JP2000195889A (ja) * 1998-12-28 2000-07-14 Tokyo Tungsten Co Ltd 複合マイクロボ―ルとその製造方法
JP2004128262A (ja) * 2002-10-03 2004-04-22 Sumitomo Special Metals Co Ltd はんだ被覆ボールの製造方法、およびはんだ被覆ボール
JP2007036082A (ja) * 2005-07-29 2007-02-08 Nippon Steel Materials Co Ltd はんだボール及びはんだバンプの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141785A (ja) * 1994-11-24 1996-06-04 Matsushita Electric Works Ltd Cuコア半田ボールの製造方法
DE60325620D1 (de) * 2002-09-27 2009-02-12 Neomax Materials Co Ltd Lotbeschichtete kugel und verfahren zu ihrer herstellung und verfahren zur bildung einer halbleiterverbindungsstruktur
CN100483699C (zh) * 2003-10-24 2009-04-29 国际整流器公司 使用自傲互连材料的半导体器件封装
US7504331B2 (en) * 2005-07-27 2009-03-17 Palo Alto Research Center Incorporated Method of fabricating self-assembled electrical interconnections
KR100863772B1 (ko) 2007-09-14 2008-10-15 한국과학기술원 솔더볼 및 공동이 형성된 몰드를 이용한 솔더볼의 제조방법
CN101246828B (zh) * 2008-03-14 2010-06-02 中国科学院上海微系统与信息技术研究所 一种基板可重复使用的制备微小焊球的方法
CN101745763B (zh) * 2009-12-22 2012-04-25 北京有色金属研究总院 一种精密焊球的高效制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212094A (ja) * 1987-02-26 1988-09-05 Tanaka Kikinzoku Kogyo Kk 金属球を核とした微小はんだ球の製造方法
JPH10277774A (ja) * 1997-04-03 1998-10-20 Fujitsu Ten Ltd ハンダ粒子、ハンダペースト、ハンダ粒子の作製方法、及び回路基板へのデバイスの実装方法
JP2000195889A (ja) * 1998-12-28 2000-07-14 Tokyo Tungsten Co Ltd 複合マイクロボ―ルとその製造方法
JP2004128262A (ja) * 2002-10-03 2004-04-22 Sumitomo Special Metals Co Ltd はんだ被覆ボールの製造方法、およびはんだ被覆ボール
JP2007036082A (ja) * 2005-07-29 2007-02-08 Nippon Steel Materials Co Ltd はんだボール及びはんだバンプの製造方法

Also Published As

Publication number Publication date
KR101422425B1 (ko) 2014-07-22
CN103189159A (zh) 2013-07-03
CN103189159B (zh) 2015-07-08
SG189919A1 (en) 2013-06-28
TW201227852A (en) 2012-07-01
JP5690554B2 (ja) 2015-03-25
JP2012091208A (ja) 2012-05-17
TWI505382B (zh) 2015-10-21
KR20130052026A (ko) 2013-05-21

Similar Documents

Publication Publication Date Title
JP5456545B2 (ja) 回路基板の製造方法
US8123111B2 (en) Production method of solder circuit board
JP4576286B2 (ja) 電子回路基板の製造方法および電子部品の実装方法
CN105122957B (zh) 焊料电路基板的制造方法、焊料电路基板和电子部件的安装方法
KR101193264B1 (ko) 회로 기판의 제조 방법
EP2082630B1 (en) Slurry discharge device
WO2012056977A1 (ja) はんだボールの製造方法
TWI352563B (en) Production method of solder circuit board
JP4819611B2 (ja) ハンダ回路基板の製造方法
JP2008041867A (ja) ハンダ回路基板の製造方法
WO2017199720A1 (ja) 電子部品の実装方法
JP2005057117A (ja) はんだ付け方法および接合構造体ならびに電気/電子部品
JP2007019389A (ja) 電子回路基板へのハンダ粉末の付着方法およびハンダ付電子配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137009198

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836113

Country of ref document: EP

Kind code of ref document: A1