WO2012056771A1 - 酸化防止剤及び金属材の製造方法 - Google Patents

酸化防止剤及び金属材の製造方法 Download PDF

Info

Publication number
WO2012056771A1
WO2012056771A1 PCT/JP2011/066013 JP2011066013W WO2012056771A1 WO 2012056771 A1 WO2012056771 A1 WO 2012056771A1 JP 2011066013 W JP2011066013 W JP 2011066013W WO 2012056771 A1 WO2012056771 A1 WO 2012056771A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
metal material
glass frit
weight
temperature glass
Prior art date
Application number
PCT/JP2011/066013
Other languages
English (en)
French (fr)
Inventor
一宗 下田
松本 圭司
日高 康善
富夫 山川
修一 秋山
加藤 貴久
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to US13/880,780 priority Critical patent/US8815347B2/en
Priority to CN201180062750.6A priority patent/CN103282548B/zh
Priority to MX2013003998A priority patent/MX339364B/es
Priority to EP11835912.4A priority patent/EP2634289B1/en
Priority to CA2815475A priority patent/CA2815475C/en
Priority to ES11835912.4T priority patent/ES2634219T3/es
Priority to BR112013008794A priority patent/BR112013008794B8/pt
Publication of WO2012056771A1 publication Critical patent/WO2012056771A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/22Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/02Anti-oxidant compositions; Compositions inhibiting chemical change containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Definitions

  • the present invention relates to an antioxidant and a method for producing a metal material, and more particularly to an antioxidant and a method for producing a metal material applied to the surface of a metal material to be heated.
  • Patent Document 1 discloses an antioxidant for hot extrusion
  • Patent Document 2 International Publication No. WO 2007/122972
  • the antioxidants disclosed in these documents include a plurality of glass frits having different softening points, and are applied to the surface of a material to be hot plastic processed.
  • the metal material coated with the antioxidant is heated at 800 ° C. to 1300 ° C. in a heating furnace or the like.
  • the antioxidants disclosed in Patent Documents 1 and 2 suppress the generation of oxide (hereinafter referred to as scale) on the surface of a heated metal material.
  • the above-mentioned antioxidant is in a liquid state and is applied to the surface of the metal material at room temperature. At this time, it is preferable that the antioxidant is less likely to drip from the surface of the metal material. That is, the antioxidant is required to have sag resistance.
  • the antioxidant applied to the surface of the metal material at room temperature is in a liquid state, but the water is removed by heating or drying to become a solid. It is preferable that the solidified antioxidant is less likely to be peeled off from the surface of the metal material. That is, the antioxidant is also required to have peeling resistance.
  • An object of the present invention is to provide an antioxidant excellent in sagging resistance and peeling resistance.
  • the antioxidant according to the embodiment of the present invention is applied to the surface of a metal material to be heated.
  • the antioxidant contains a plurality of glass frits having different softening points, glazed clay, and bentonite and / or sepiolite.
  • the antioxidant according to the present embodiment has excellent sagging resistance due to the clay.
  • the antioxidant according to the present embodiment further has excellent peeling resistance due to bentonite and / or sepiolite.
  • the plurality of glass frits include a high temperature glass frit and a medium temperature glass frit.
  • the high temperature glass frit has a viscosity at 1200 ° C. of 2 ⁇ 10 2 to 10 6 dPa ⁇ s.
  • the medium temperature glass frit has a viscosity at 700 ° C. of 2 ⁇ 10 2 to 10 6 dPa ⁇ s.
  • the antioxidant can suppress the oxidation of the surface of the metal material in a wide temperature range.
  • the antioxidant contains 6 parts by weight or more of clay and 100 parts by weight of high-temperature glass frit and 4 parts by weight or more of bentonite and / or sepiolite with respect to 100 parts by weight of high-temperature glass frit. .
  • the antioxidant contains less than 9 parts by weight of bentonite and / or sepiolite with respect to 100 parts by weight of the high-temperature glass frit.
  • the antioxidant is easily slurried.
  • the antioxidant further contains an inorganic compound having a melting point of 400 ° C. to 600 ° C.
  • the inorganic compound is boric acid and / or boron oxide.
  • the antioxidant can further suppress oxidation of the heated metal material.
  • FIG. 1 is a diagram showing the relationship between the viscosity and temperature of components contained in an antioxidant according to this embodiment.
  • FIG. 2 is a flowchart showing an example of a method for producing a metal material according to the present embodiment.
  • FIG. 3 is a diagram showing the relationship between the content of bentonite and cocoon clay in the antioxidant and sagging resistance in Examples.
  • FIG. 4 is a diagram showing the relationship between the content of bentonite and cocoon clay in the antioxidant and peeling resistance in Examples.
  • Sasame clay improves the sag resistance of antioxidants. More specifically, when the liquid antioxidant containing the clay is applied to the surface of the metal material at room temperature, the antioxidant is likely to adhere to the surface of the metal material and is difficult to sag.
  • Bentonite and / or sepiolite improve the peel resistance of the antioxidant. More specifically, when an antioxidant containing bentonite and / or sepiolite is applied to the surface of the metal material and dried and solidified, the solidified antioxidant peels from the surface of the metal material. Hard to do.
  • the antioxidant according to the present embodiment is based on the above knowledge. Details of the antioxidant will be described below.
  • the antioxidant according to the present embodiment contains a plurality of glass frits having different softening points and a suspending agent.
  • the suspending agent contains Sasame clay and bentonite and / or sepiolite.
  • the glass frit and the suspending agent will be described.
  • the plurality of glass frits are manufactured by the following method. A plurality of known inorganic components constituting the glass are mixed. A plurality of mixed inorganic components are melted to produce a molten glass. The molten glass is quenched and solidified in water or air. The solidified glass is crushed as necessary. A glass frit is manufactured by the above process.
  • the glass frit is flaky or powdery. As described above, the glass frit contains a plurality of known inorganic components. Therefore, the melting point of the glass frit is not clearly specified. When each inorganic component in the glass frit is heated alone, each inorganic component liquefies at the melting point. However, in the case of glass frit, as the temperature rises, each inorganic component in the glass frit starts to liquefy at different temperatures. Therefore, as the temperature rises, the glass frit softens gradually. Therefore, the glass frit manufactured by melting a plurality of inorganic components is more likely to adhere stably to the surface of the metal material to be heated than when each inorganic component is used alone as an antioxidant. The glass frit can be adjusted to a viscosity suitable for coating a metal material surface.
  • the antioxidant contains a plurality of glass frits having different softening points.
  • the plurality of glass frits include a high temperature glass frit and a medium temperature glass frit.
  • the softening point of the high temperature glass frit is higher than the softening point of the medium temperature glass frit.
  • High temperature glass frit has a high softening point.
  • the antioxidant has an appropriate viscosity in a high temperature range of 1000 ° C. or higher due to a plurality of high temperature glass frits.
  • the antioxidant can wet and spread on the surface of the metal material and cover the metal surface in a high temperature range of 1000 ° C. or higher. At this time, the antioxidant adheres to the surface of the metal material.
  • the antioxidant suppresses the surface of the metal material from coming into contact with the outside air at a high temperature range by the high temperature glass frit. Therefore, the antioxidant can suppress the generation of scale on the surface of the metal material in a high temperature range.
  • the antioxidant does not contain high-temperature glass frit, the viscosity of the antioxidant will be too low at high temperatures. Therefore, the antioxidant is difficult to stably adhere to the surface of the metal material and tends to flow off from the surface. If the antioxidant flows down, the surface of the metal material is partially exposed. The exposed surface portion is exposed to the outside air and generates a scale.
  • the preferred viscosity of the high temperature glass frit is 2 ⁇ 10 2 to 10 6 dPa ⁇ s at 1200 ° C.
  • the antioxidant hardly adheres to the surface of the metal material in the high-temperature region and tends to flow off from the surface of the metal material.
  • the viscosity of the high-temperature frit at 1200 ° C. is too low, the antioxidant is easily peeled off from the surface of the metal material in the high-temperature region.
  • the high-temperature glass frit is softened at a high temperature range of 1000 ° C. to 1400 ° C., and tends to adhere to the metal material surface. Therefore, in a high temperature range, the antioxidant easily covers the surface of the metal material and easily adheres stably to the surface of the metal material.
  • the upper limit of the preferable viscosity of the high-temperature glass frit at 1200 ° C. is 10 5 dPa ⁇ s, and the preferable lower limit is 10 3 dPa ⁇ s.
  • the viscosity in this specification means “static viscosity”.
  • the preferred particle size is 25 ⁇ m or less.
  • Particle size referred to herein is a volume average particle diameter D 50.
  • the volume average particle size D 50 is determined by the following method.
  • the volume particle size distribution of the high-temperature glass frit is obtained by a particle size distribution measuring device. Using the resulting volume particle size distribution, the cumulative volume from the smaller particle size side in a cumulative volume distribution of the particle diameter at 50% is defined as volume average particle diameter D 50.
  • the particle size is 25 ⁇ m or less, the high temperature glass frit is easily dispersed in the liquid at room temperature.
  • the high-temperature glass frit contains a plurality of well-known inorganic components.
  • the high-temperature glass frit contains, for example, 60 to 70% by mass of silicon dioxide (SiO 2 ), 5 to 20% by mass of aluminum oxide (Al 2 O 3 ), and 0 to 20% by mass of calcium oxide (CaO). To do. CaO is a selective compound and may not be contained.
  • Hot glass frit further, magnesium oxide (MgO), zinc oxide (ZnO), it may contain one or more of potassium oxide (K 2 O).
  • the inorganic component which comprises a high temperature glass frit is not limited to the above-mentioned example. In short, a high-temperature glass frit can be produced from known inorganic components that constitute glass.
  • Medium temperature glass frit has a lower softening point than high temperature glass frit.
  • the antioxidant has an appropriate viscosity in the middle temperature range of 600 ° C. to 1000 ° C. due to the medium temperature glass frit. For this reason, the antioxidant wets and spreads over the entire surface of the metal material not only in the high temperature range but also in the middle temperature range, and covers the surface. Furthermore, in the middle temperature range, the antioxidant adheres stably to the surface of the metal material. Therefore, in the middle temperature range, the surface of the metal material is suppressed from coming into contact with the outside air, and scale generation is suppressed.
  • the antioxidant does not contain an intermediate temperature glass frit, the antioxidant in the intermediate temperature range will hardly stick to the surface of the metal material. Therefore, the antioxidant flows down or peels off from the surface of the metal material in the middle temperature range, and the surface of the metal material is partially exposed. The exposed part comes into contact with the outside air and tends to generate scale.
  • the preferred viscosity of the medium temperature glass frit is 2 ⁇ 10 2 to 10 6 dPa ⁇ s at 700 ° C. If the viscosity of the medium temperature glass frit is too low, the antioxidant is less likely to adhere to the surface of the metal material in the medium temperature range, and it tends to sag from the surface of the metal material. On the other hand, if the viscosity of the medium temperature glass frit is too high, the antioxidant is not sufficiently softened in the medium temperature range. For this reason, the antioxidant is easily peeled off from the surface of the metal material. When the viscosity of the medium temperature glass frit at 700 ° C.
  • the medium temperature glass frit is softened in the medium temperature range of 600 ° C. to 1000 ° C., and tends to stick to the metal material surface. Therefore, the antioxidant easily covers the surface of the metal material in the middle temperature range.
  • the upper limit of the preferred viscosity of the medium temperature glass frit at 700 ° C. is 10 5 dPa ⁇ s, and the preferred lower limit is 10 3 dPa ⁇ s.
  • the preferred particle size of the medium temperature glass frit is 25 ⁇ m or less.
  • the definition of the particle size of the medium temperature glass frit is the same as the particle size of the high temperature glass frit described above. That is, the particle size of the medium temperature glass frit is a volume average particle diameter D 50.
  • the particle size is 25 ⁇ m or less, the medium temperature glass frit is stably dispersed in the liquid. For this reason, when the antioxidant is applied to the surface of the metal material, the medium temperature glass frit is likely to be dispersed substantially uniformly over the entire surface of the metal material.
  • the medium temperature glass frit is, for example, 40-60 mass% SiO 2 , 0-10 mass% Al 2 O 3 , 20-40 mass% B 2 O 3 , 0-10 mass% ZnO, 5 Containing ⁇ 15% by weight of Na 2 O.
  • the medium temperature glass frit may further contain at least one of MgO, CaO and K 2 O.
  • the inorganic component constituting the medium temperature glass frit is not limited to the above example. Medium temperature glass frit can be produced with known inorganic components that make up the glass.
  • a preferable content of the medium temperature glass frit is 4 to 20 parts by weight with respect to 100 parts by weight of the high temperature glass frit.
  • the antioxidant further contains water.
  • Water is mixed with the high temperature glass frit, the medium temperature glass frit and the low temperature inorganic compound to form a slurry. By mixing water, the antioxidant becomes a slurry. Therefore, it is easy to apply the antioxidant substantially uniformly on the surface of the metal material before heating.
  • the preferred water content is 100 to 150 parts by weight with respect to 100 parts by weight of the high-temperature glass frit. If the water content is too low or too high, the antioxidant is difficult to be applied. If the water content is adjusted, the viscosity of the antioxidant can be adjusted to the extent that it can be applied almost uniformly to the surface of the metal material at room temperature.
  • the suspending agent disperses high-temperature and medium-temperature glass frit and the like substantially uniformly in a solution (water).
  • the suspending agent contains Sasame clay and bentonite and / or sepiolite.
  • the antioxidant according to the present embodiment is less likely to sag when applied to the surface of the metal material by the clay and bentonite and / or sepiolite, and when dried and solidified, Hard to peel off from the surface.
  • Sasame clay, bentonite and / or sepiolite we will describe Sasame clay, bentonite and / or sepiolite.
  • Sasame clay contains carionous clay and a plurality of quartz particles. More specifically, Sasame clay contains kaolinite, halosite, and quartz.
  • the preferred content of the clay is 6 parts by weight or more with respect to 100 parts by weight of the high-temperature glass frit. In this case, the sag resistance of the antioxidant at room temperature is improved.
  • a more preferable content of the clay is 7 parts by weight or more, and more preferably 10 parts by weight or more. If the antioxidant contains excessive glazed clay, the glass frit in the antioxidant becomes difficult to be uniformly dispersed on the surface of the metal material, and the antioxidant function of the antioxidant is reduced. Therefore, the upper limit of the content of the preferred Sasame clay is 30 parts by weight.
  • the sag resistance at room temperature of the antioxidant can be obtained to some extent.
  • Bentonite is a clay mainly composed of montmorillonite. Bentonite may further contain silicate minerals such as quartz and opal, silicate minerals such as feldspar and zeolite, carbonate minerals such as dolomite, sulfate minerals, sulfide minerals such as pyrite, and the like.
  • Sepiolite is a hydrous magnesium silicate, for example, represented by the chemical formula Mg 8 Si 12 O 30 (OH ) 4 (OH 2) 4 ⁇ 8H 2 O.
  • Both bentonite and sepiolite improve the anti-peeling resistance of antioxidants.
  • the liquid antioxidant is applied to the surface of the metal material.
  • coated to the metal raw material surface evaporates by heating or drying, and antioxidant is solidified. Bentonite and sepiolite suppress the peeling of the solidified antioxidant from the surface of the metal material. Antioxidants containing bentonite and / or sepiolite are difficult to peel even when subjected to external force.
  • the antioxidant may contain at least one of bentonite and sepiolite.
  • the preferred bentonite and / or sepiolite content is 4 parts by weight or more with respect to 100 parts by weight of the high-temperature glass frit.
  • the total value of the bentonite content and sepiolite content is preferably 4 parts by weight or more.
  • the anti-peeling resistance of the antioxidant is further improved.
  • the preferred bentonite and / or sepiolite content is less than 9 parts by weight with respect to 100 parts by weight of the high-temperature glass frit.
  • the antioxidant contains bentonite and sepiolite
  • the total value of the content of bentonite and the content of sepiolite is preferably less than 9 parts by weight.
  • the glass frit is hardly dispersed in the liquid antioxidant. That is, it becomes difficult for the antioxidant to become a slurry.
  • the anti-peeling resistance of the antioxidant can be obtained to some extent.
  • the suspending agent may contain clays other than the above-mentioned clayey clay, bentonite and sepiolite.
  • the clay contains, for example, 50 to 60% by mass of SiO 2 and 10 to 40% by mass of Al 2 O 3 , and, as other minor components, Fe 2 O 3 , CaO, MgO, Na 2 O , One or more selected from the group consisting of K 2 O.
  • clays other than the mesh viscosity, bentonite, and sepiolite include SiO 2 of about 55% by mass, Al 2 O 3 of about 30% by mass, Fe 2 O 3 , CaO, MgO, Na 2 O, K 2. O and the like are contained.
  • Other examples of clays include about 60% by mass of SiO 2 and about 15% by mass of Al 2 O 3, and Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O and the like as other trace components To do.
  • the antioxidant according to the present embodiment may further contain the following components.
  • the antioxidant according to the present embodiment further contains an inorganic compound having a melting point of 600 ° C. or lower (hereinafter referred to as a low temperature inorganic compound).
  • the low temperature inorganic compound preferably has a melting point of 400 ° C to 600 ° C.
  • the antioxidant is wet and spreads over the entire surface of the metal material in a low temperature region of 600 ° C. or less due to the low temperature inorganic compound, and easily adheres to the surface of the metal material. That is, the low temperature inorganic compound suppresses the metal material surface from coming into contact with the outside air in the low temperature region, and suppresses the generation of scale in the low temperature region.
  • Preferred low temperature inorganic compounds are inorganic salts and / or oxides having a melting point of 400 ° C. to 600 ° C.
  • the oxide having a melting point of 600 ° C. or lower are boric acid (H 3 BO 3 ) and boron oxide (B 2 O 3 ). When boric acid is heated, it becomes boron oxide.
  • Boron oxide has a melting point of about 450 ° C.
  • the inorganic salt having a melting point of 600 ° C. or lower are phosphate, thallium bromide (TlBr), and silver metaphosphate (AgO 3 P).
  • the melting point of thallium bromide is about 480 ° C.
  • the melting point of silver metaphosphate is about 480 ° C.
  • the low temperature inorganic compound is boric acid and / or boron oxide.
  • FIG. 1 is a graph showing the relationship between the viscosity of high-temperature and medium-temperature glass frit and the viscosity of low-temperature inorganic compounds.
  • FIG. 1 was obtained by the following method. High temperature glass frits HT1 and HT2, medium temperature glass frits LT1 and LT2, and low temperature inorganic compound LL shown in Table 1 were prepared.
  • the low temperature inorganic compound LL was boron oxide. Each component (HT1, HT2, LT1, LT2 and LL) was heated and the viscosity at each temperature was measured. A well-known platinum ball pulling method was used for measuring the viscosity. Specifically, the platinum sphere sunk in the molten glass and the molten inorganic compound was pulled up. At this time, the viscosity was determined based on the load applied to the platinum ball and the pulling speed.
  • in the figure indicates the viscosity of the high-temperature glass frit HT1.
  • indicates the viscosity of the high-temperature glass frit HT2.
  • indicates the viscosity of the medium temperature glass frit LT1.
  • indicates the viscosity of the medium temperature glass frit LT2.
  • indicates the viscosity of the low-temperature inorganic compound LL.
  • the viscosity of the low temperature inorganic compound LL is 2 ⁇ 10 2 to 10 6 dPa ⁇ s in the temperature range of 400 ° C. to 800 ° C., and 10 3 dPa ⁇ s in the temperature range of 600 ° C. or less. That's it.
  • the viscosities of the medium temperature glass frits LT1 and LT2 were 2 ⁇ 10 2 to 10 6 dPa ⁇ s in the temperature range of 600 ° C. to 1200 ° C. That is, the viscosity of the medium temperature glass frits LT1 and LT2 was in the range of 2 ⁇ 10 2 to 10 6 dPa ⁇ s at 700 ° C.
  • the viscosities of the high-temperature glass frits HT1 and HT2 were 2 ⁇ 10 2 to 10 6 dPa ⁇ s in the temperature range of 1000 ° C. to 1550 ° C. That is, the viscosity of the hot glass frit HT1 and HT2, at 1200 ° C., it was in the range of 2 ⁇ 10 2 ⁇ 10 6 dPa ⁇ s.
  • the viscosity decreases and softens in the order of low temperature inorganic compound, medium temperature glass frit, and high temperature glass frit.
  • the high temperature glass frit, medium temperature glass frit, and low temperature inorganic compound enable the antioxidant to obtain a viscosity that can stably adhere to the surface of a metal material in a wide temperature range (400 ° C. to 1550 ° C.).
  • the heated metal material may be hot worked.
  • the metal material is rolled by a rolling roll into a metal plate or a metal strip. Moreover, it is pierced and rolled by a plug of a piercing machine or an inclined roll to form a metal pipe. Therefore, it is preferable that the metal material is easily bitten by a rolling roll or an inclined roll. If the friction coefficient of the metal material against the hot working roll such as a rolling roll or an inclined roll is large, the metal material is likely to be caught in the hot working roll.
  • the antioxidant may contain a lubricant for the purpose of increasing the friction coefficient.
  • the lubricant is, for example, an oxide having a high melting point.
  • the lubricant is, for example, alumina or silica.
  • the antioxidant may further contain a pressure-sensitive adhesive in order to improve the adhesion with the metal material surface.
  • the pressure-sensitive adhesive is, for example, an organic binder.
  • the organic binder is, for example, an acrylic resin.
  • the antioxidant may further contain an alkali metal salt or a Group 2 metal salt hardly soluble in water. These components suppress the change in the viscosity of the antioxidant over time.
  • the antioxidant containing water is a slurry (fluid) as described above at room temperature. If the antioxidant contains less than 50% by weight of water, the antioxidant may gel as time passes at room temperature. If gelled, the viscosity of the antioxidant will increase. Moreover, a gel lump may be produced
  • the alkali metal salt peptizes the gelled antioxidant. Therefore, the antioxidant is fluidized again, and the increase in viscosity is suppressed.
  • the alkali metal salt include potassium carbonate (KCO 3 ) and sodium hexametaphosphate.
  • the viscosity of the antioxidant may decrease with time at room temperature. It is preferable to suppress such a change in viscosity over time.
  • the sparingly soluble Group 2 metal salt suppresses a decrease in the viscosity of the antioxidant.
  • the Group 2 metal salt is a metal corresponding to a Group 2 element in the periodic table, and is beryllium, magnesium, calcium, strontium, barium, or radium.
  • the hardly soluble means that it is hardly soluble in water
  • “slightly soluble in water” means that the solubility in water at 25 ° C. is 1000 ppm or less.
  • the poorly soluble Group 2 metal salt is magnesium carbonate and / or calcium carbonate.
  • the poorly soluble Group 2 metal salt suppresses a decrease in the viscosity of the antioxidant after production. The following reason is estimated.
  • the hardly soluble Group 2 metal salt is gradually dissolved in the solution (water). When the Group 2 metal salt dissolves, a Group 2 metal ion is generated. Since the Group 2 metal ions improve the suspending power, the change in the viscosity of the antioxidant over time is suppressed.
  • the antioxidant may contain other components in addition to the components described above.
  • the antioxidant may contain an inorganic electrolyte typified by sodium nitrite.
  • the preferable content rate of each component contained in the antioxidant by this Embodiment is as follows.
  • the content of the high temperature glass frit is 100 parts by weight
  • the preferable content of the low temperature inorganic compound is 4 to 20 parts by weight.
  • a preferred content of the lubricant is 15 to 35 parts by weight.
  • a preferable content of the pressure-sensitive adhesive is 1.0 to 4.0 parts by weight.
  • a preferred content of the alkali metal salt and the hardly soluble Group 2 metal salt is 0.1 to 1.5 parts by weight.
  • the antioxidant according to the present embodiment can be obtained by mixing the above-described components. First, a plurality of components contained in the antioxidant are prepared. Next, a plurality of components are pulverized and mixed using a pulverizer to produce a mixed composition. Examples of the pulverizer include a ball mill, a rod mill, a vibration mill, a planetary mill, a tower mill, an attritor, and a sand mill. These crushing apparatuses are provided with a cylindrical crushing container. The prepared plurality of components are stored in a pulverization container. A ball and a rod are further accommodated in the pulverization container. When the pulverization container rotates or vibrates, the high temperature glass frit and the medium temperature glass frit are pulverized, for example, into particles having a particle size of 25 ⁇ m or less. Water is also contained during pulverization and mixing.
  • An antioxidant is manufactured by the above manufacturing method.
  • FIG. 2 is a flowchart showing an example of a method for producing a metal material using the above-described antioxidant.
  • the antioxidant by this Embodiment is prepared first (S11).
  • the antioxidant is produced by the method described above.
  • an antioxidant is applied to the surface of the metal material before heating (S12). That is, the antioxidant is applied to the surface of the metal material at room temperature.
  • the type of metal material is not particularly limited.
  • the metal material is made of, for example, steel, titanium, a titanium alloy, other alloys, or the like. Examples of the steel include carbon steel, ferritic stainless steel, martensitic stainless steel, austenitic stainless steel, and alloy steel.
  • the shape of the metal material is an ingot, a slab, a bloom, a billet, a plate material, a strip material represented by a bar material or a wire material, a pipe, or the like.
  • the method for applying the antioxidant is not particularly limited.
  • An operator may apply an antioxidant to the surface of the metal material using a brush. Moreover, you may apply
  • a bathtub in which an antioxidant is stored may be prepared, and a metal material may be immersed in the bathtub (so-called “dobu-zuke”).
  • the antioxidant is applied to the surface of the metal material.
  • Antioxidants contain Sasame clay. Therefore, the antioxidant applied to the surface of the metal material is unlikely to sag from the surface of the metal material at room temperature. After applying the antioxidant to the surface of the metal material, the antioxidant may be dried.
  • the metal material coated with the antioxidant is heated (S13). Since the moisture of the antioxidant evaporates at the time of drying or at the beginning of heating, the antioxidant is solidified. Since the antioxidant contains bentonite and / or sepiolite, it is difficult to peel off from the surface of the metal material when solidified.
  • the medium temperature glass frit, high temperature glass frit, low temperature inorganic compound, etc. in the antioxidant soften and cover the surface of the metal material.
  • the antioxidant adheres stably to the surface of the metal material in a wide temperature range (400 ° C. to 1400 ° C.). Therefore, it is difficult to generate scale on the surface of the metal material to be heated.
  • the heat treatment temperature may be 1000 ° C. or lower.
  • the quenching temperature of stainless steel is about 900 ° C. to 1000 ° C.
  • the tempering temperature is about 500 ° C. to 650 ° C.
  • the middle temperature glass frit of the antioxidant is mainly softened and covers the surface of the metal material.
  • the antioxidant contains a low temperature inorganic compound, the low temperature inorganic compound and the medium temperature glass frit are mainly softened to cover the surface of the metal material.
  • the temperature in the furnace reaches around 1000 ° C., the high-temperature glass frit starts to soften and starts to function effectively as an antioxidant.
  • the intermediate temperature glass frit mainly covers the surface of the metal material and suppresses the generation of scale.
  • the steel material is heated to 1100 to 1300 ° C. by a heating furnace or a soaking furnace.
  • the steel material is heated to 800 ° C. to 1000 ° C. by a heating furnace or a soaking furnace.
  • the steel material heated by a heating furnace or a soaking furnace may be further heated to 1200 ° C. in a short time by high-frequency heating.
  • a titanium material having a predetermined shape plate, strip or tube
  • the heating temperature of the titanium and titanium alloy material is higher than the heating temperature of the steel material. Get higher.
  • the heating temperature differs depending on the type of metal material and the manufacturing method.
  • the antioxidant according to the present embodiment contains a medium temperature glass frit and a high temperature glass frit, it can cope with various heating temperatures.
  • the medium temperature glass frit is mainly softened and covers the surface of the metal material.
  • the high-temperature glass frit is mainly softened and covers the metal material surface.
  • the antioxidant according to the present embodiment stably adheres to the surface of the metal material in a wide temperature range and covers the surface of the metal material. Therefore, it can suppress that a scale generate
  • the heat treatment process is being performed (YES in S14)
  • the heat treatment is finished through a predetermined heat treatment process.
  • the hot working process is being performed (NO in S14)
  • the metal material is hot worked (S15). By hot working, the metal material is produced into a desired metal material (tube material, plate material, strip material, etc.).
  • the antioxidant When the antioxidant contains a lubricant, the antioxidant suppresses the slip of the metal material against the roll of the rolling mill.
  • the antioxidant contains alumina particles as a lubricant, the alumina particles adhere to the surface of the heated metal material.
  • the metal material to which the alumina particles are adhered is conveyed to a roll mill.
  • the tip of the metal material comes into contact with the roll, the alumina particles on the surface of the metal material come into contact with the roll.
  • the friction coefficient of the metal material with respect to the roll is increased by the alumina particles, the metal material is easily caught in the roll.
  • a plurality of antioxidants having different contents of glazed eyes and bentonite were prepared. Suspension, sagging resistance, and durability after drying of the prepared antioxidants were evaluated.
  • all of the antioxidants of Test Nos. 1 to 17 contained a high-temperature glass frit, a medium-temperature glass frit, alumina, water, and a suspending agent (bentonite and Sasame clay). .
  • All of the high-temperature glass frits of Test Nos. 1 to 17 were the high-temperature glass frit HT1 in Table 1.
  • the intermediate temperature glass frit of Test Nos. 1 to 17 was all the intermediate temperature glass frit LT1 in Table 1.
  • the viscosity of the high-temperature glass frit HT1 at 1200 ° C. was in the range of 2 ⁇ 10 2 to 10 6 dPa ⁇ s.
  • the viscosity of the medium temperature glass frit LT1 at 700 ° C. was in the range of 2 ⁇ 10 2 to 10 6 dPa ⁇ s.
  • the content (parts by weight) of each component with respect to 100 parts by weight of the high-temperature glass frit of Test Nos. 1 to 17 is as shown in Table 1. Specifically, the high-temperature glass frit, the medium-temperature glass frit, the alumina as the lubricant, and the water content of Test Nos. 1 to 17 were the same. That is, in the test numbers 1 to 17, only the contents of the suspending agents (bentonite and cocoon clay) differed.
  • the suspending agents bentonite and cocoon clay
  • the weight of the antioxidant adhering to the surface of the stainless steel plate was measured. Further, the weight of the antioxidant accumulated in the collection dish was also measured.
  • the weight of the antioxidant adhering to the surface of the stainless steel plate was defined as “adhesion amount when stable”. Further, the total value of the weight of the antioxidant adhering to the surface of the stainless steel plate and the weight of the antioxidant accumulated in the collection dish was defined as “initial adhesion amount”.
  • Yield Amount of adhesion at the time of stabilization / Amount of initial adhesion (1)
  • the antioxidant attached to the surface of the stainless steel plate contained water.
  • the water component of the antioxidant evaporates by drying or heating, and only the solid component (component other than the water of the antioxidant) is deposited on the surface of the metal material. Remain. Therefore, among the initial adhesion amount and the stable adhesion amount, the solid component adhesion amount was calculated. Then, using the calculated yield, the yield of the antioxidant of each test number when the solid component deposition amount in the stable deposition amount is the same amount (0.10 g / mm 2 ) is converted. And asked.
  • the prepared test piece was immersed in an antioxidant having a slurry test number. And after raising the test piece, it dried in 80 degreeC atmosphere. The surface of each test piece was coated with a solidified antioxidant. At this time, it adjusted so that the adhesion amount of the solidified antioxidant might be set to 0.25 g / mm ⁇ 2 >.
  • the antioxidants of test numbers 1, 4, 6, 7, 10 and 11 were not slurried. That is, in this example, when the bentonite contained 9 parts by weight or more with respect to 100 parts by weight of the high-temperature glass frit, the antioxidant was not slurried. On the other hand, the suspendability (slurry) did not depend on the content of the mesh. However, if the content of water in the antioxidant is increased, it is estimated that even the antioxidants of test numbers 1, 4, 6, 7, 10 and 11 are slurried.
  • FIG. 3 is a diagram showing the evaluation results of sagging resistance.
  • shaft of a figure shows the weight part of Sasame clay with respect to 100 weight part of high temperature glass frit in each antioxidant.
  • the horizontal axis of the figure indicates the weight parts of bentonite with respect to 100 weight parts of high-temperature glass frit in each antioxidant.
  • the size of the circular figure in the figure indicates the size of the yield.
  • the numerical value in the circular figure and the numerical value next to the circular figure indicate the test number and the yield (%).
  • the antioxidants of Test Nos. 2, 3, 8, 9, 15, and 17 contained 6 parts by weight or more of Sakaime clay. Therefore, the yield exceeded 58.0% and was high.
  • the bentonite content did not significantly affect the sagging resistance. More specifically, bentonite did not affect sag resistance as much as Sasame clay.
  • FIG. 4 is a diagram showing the peel resistance evaluation results.
  • shaft of a figure shows the weight part of Sasame clay with respect to 100 weight part of high temperature glass frit in each antioxidant.
  • the horizontal axis of the figure indicates the weight parts of bentonite with respect to 100 weight parts of high-temperature glass frit in each antioxidant.
  • the size of the circular figure in the figure indicates the amount of adhesion.
  • the numerical value in a circle figure and the numerical value next to a circle figure show the adhesion number (microgram / mm ⁇ 2 >) obtained by the test number and Formula (3).
  • the larger the weight part of bentonite in the antioxidant the larger the adhesion amount.
  • the antioxidants of Test Nos. 2, 3, 5, 9, 11, and 13 to 17 contained 4 parts by weight or more of bentonite. Therefore, the adhesion amount exceeded 15 ⁇ g / mm 2 and had excellent peeling resistance.
  • the antioxidant according to the present invention can be widely applied to heated metal materials.
  • it can be used for a metal material to be heat-treated or a metal material to be hot-worked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Lubricants (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 耐垂れ性及び耐剥離性に優れた酸化防止剤を提供する。本実施の形態による酸化防止剤は、軟化点の異なる複数のガラスフリットと、蛙目粘土と、ベントナイト及び/又はセピオライトとを含有する。蛙目粘土により、金属素材表面に塗布された酸化防止剤は垂れにくい。さらに、ベントナイト及び/又はセピオライトにより、酸化防止剤は、金属素材表面から剥離しにくい。

Description

酸化防止剤及び金属材の製造方法
 本発明は、酸化防止剤、金属材の製造方法に関し、さらに詳しくは、加熱される金属素材の表面に塗布される、酸化防止剤及び金属材の製造方法に関する。
 特開2007-314780号公報(特許文献1)は、熱間押出加工用の酸化防止剤を開示し、国際公開WO2007/122972号公報(特許文献2)は、熱間塑性加工用の酸化防止剤を開示する。これらの文献に開示された酸化防止剤は、軟化点の異なる複数のガラスフリットを含み、熱間塑性加工される素材表面に塗布される。酸化防止剤が塗布された金属素材は、加熱炉等で800℃~1300℃で加熱される。特許文献1及び2に開示された酸化防止剤は、加熱された金属素材の表面に酸化物(以下、スケールという)が発生するのを抑制する。
 上述の酸化防止剤は液状であり、常温において金属素材の表面に塗布される。このとき、酸化防止剤が金属素材の表面から垂れ落ちにくい方が好ましい。つまり、酸化防止剤には、耐垂れ性が求められる。
 さらに、常温で金属素材の表面に塗布された酸化防止剤は液状であるが、加熱又は乾燥により水分が取り除かれて固形になる。固形化された酸化防止剤は金属素材表面から剥離しにくい方が好ましい。つまり、酸化防止剤には、耐剥離性も求められる。
 本発明の目的は、耐垂れ性及び耐剥離性に優れた酸化防止剤を提供することである。
 本発明の実施の形態による酸化防止剤は、加熱される金属素材の表面に塗布される。酸化防止剤は、軟化点の異なる複数のガラスフリットと、蛙目粘土と、ベントナイト及び/又はセピオライトとを含有する。
 本実施の形態による酸化防止剤は、蛙目粘土により、優れた耐垂れ性を有する。本実施の形態による酸化防止剤はさらに、ベントナイト及び/又はセピオライトにより、優れた耐剥離性を有する。
 好ましくは、複数のガラスフリットは、高温ガラスフリットと、中温ガラスフリットとを含有する。高温ガラスフリットは、1200℃における粘度が2×10~10dPa・sである。中温ガラスフリットは、700℃における粘度が2×10~10dPa・sである。
 この場合、酸化防止剤は、広い温度範囲で金属素材表面の酸化を抑制できる。
 好ましくは、酸化防止剤は、高温ガラスフリット100重量部に対して6重量部以上の蛙目粘土と、高温ガラスフリット100重量部に対して4重量部以上のベントナイト及び/又はセピオライトとを含有する。
 この場合、酸化防止剤の付着性及び耐剥離性はさらに向上する。
 好ましくは、酸化防止剤は、高温ガラスフリット100重量部に対して9重量部未満のベントナイト及び/又はセピオライトを含有する。
 この場合、酸化防止剤がスラリー化しやすい。
 好ましくは、酸化防止剤はさらに、400℃~600℃の融点を有する無機化合物を含有する。好ましくは、無機化合物は、硼酸及び/又は酸化硼素である。
 この場合、酸化防止剤は、加熱された金属素材が酸化するのをさらに抑制できる。
図1は、本実施の形態による酸化防止剤に含まれる成分の粘度と温度との関係を示す図である。 図2は、本実施の形態による金属材の製造方法の一例を示すフロー図である。 図3は、実施例における酸化防止剤中のベントナイト、蛙目粘土の含有率と耐垂れ性との関係を示す図である。 図4は、実施例における酸化防止剤中のベントナイト、蛙目粘土の含有率と耐剥離性との関係を示す図である。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。
 本発明者らは、酸化防止剤の耐垂れ性及び耐剥離性について検討し、以下の知見を得た。
 (1)蛙目粘土は、酸化防止剤の耐垂れ性を向上する。より具体的には、蛙目粘土を含有する液状の酸化防止剤が常温にて金属素材の表面に塗布されるとき、酸化防止剤は金属素材の表面に付着しやすく、垂れにくい。
 (2)ベントナイト及び/又はセピオライトは、酸化防止剤の耐剥離性を向上する。より具体的には、ベントナイト及び/又はセピオライトを含有する酸化防止剤が金属素材の表面に塗布され、かつ、乾燥されて固形化したとき、固形化された酸化防止剤は金属素材の表面から剥離しにくい。
 本実施の形態による酸化防止剤は、上述の知見に基づく。以下、酸化防止剤の詳細を説明する。
 [酸化防止剤の構成]
 本実施の形態による酸化防止剤は、軟化点の異なる複数のガラスフリットと、懸濁剤とを含有する。懸濁剤は、蛙目粘土と、ベントナイト及び/又はセピオライトとを含有する。以下、ガラスフリット及び懸濁剤について説明する。
 [ガラスフリット]
 複数のガラスフリットは、以下の方法で製造される。ガラスを構成する複数の周知の無機成分を混合する。混合された複数の無機成分を溶融し、溶融されたガラスを生成する。溶融されたガラスを水中又は空気中で急冷して固化する。固化されたガラスを、必要に応じて粉砕する。ガラスフリットは、以上の工程により製造される。
 ガラスフリットは、フレーク状又は粉末状である。上述のとおり、ガラスフリットは、複数の周知の無機成分を含有する。そのため、ガラスフリットの融点は明確に特定されない。ガラスフリット内の各無機成分が単独で加熱された場合、各無機成分は融点で液化する。しかしながら、ガラスフリットの場合、温度が上昇するにしたがい、ガラスフリット内の各無機成分が互いに異なる温度で液化し始める。そのため、温度の上昇にしたがい、ガラスフリットは徐々に軟化する。したがって、各無機成分を単体で酸化防止剤として使用する場合よりも、複数の無機成分を溶融して製造されたガラスフリットは、加熱される金属素材表面に安定的に粘着しやすい。ガラスフリットは金属素材表面をコーティングするのに適した粘度に調整できる。
 酸化防止剤は、軟化点の異なる複数のガラスフリットを含有する。好ましくは、複数のガラスフリットは、高温ガラスフリットと、中温ガラスフリットとを含有する。高温ガラスフリットの軟化点は、中温ガラスフリットの軟化点よりも高い。以下、高温ガラスフリット及び中温ガラスフリットの詳細を説明する。
 [高温ガラスフリット]
 高温ガラスフリットは、高い軟化点を有する。酸化防止剤は、複数の高温ガラスフリットにより、1000℃以上の高温域において、適正な粘度を有する。酸化防止剤は、1000℃以上の高温域において、金属素材の表面に濡れ拡がり、金属表面を覆うことができる。このとき、酸化防止剤は、金属素材の表面に粘着する。
 要するに、酸化防止剤は、高温ガラスフリットにより、高温域において、金属素材の表面が外気と接触するのを抑制する。そのため、酸化防止剤は、高温域において、金属素材表面にスケールが生成されるのを抑制できる。
 酸化防止剤が高温ガラスフリットを含有しなければ、高温域において、酸化防止剤の粘度が低くなり過ぎる。そのため、酸化防止剤は金属素材表面に安定して粘着しにくく、表面から流れ落ちやすくなる。酸化防止剤が流れ落ちれば、金属素材表面は部分的に露出する。露出された表面部分は外気に触れ、スケールを生成する。
 高温ガラスフリットの好ましい粘度は、1200℃において2×10~10dPa・sである。1200℃における高温フリットの粘度が低すぎると、酸化防止剤は、高温域において金属素材表面に粘着しにくく、金属素材表面から流れ落ちやすい。一方、1200℃における高温フリットの粘度が高すぎれば、酸化防止剤は、高温域において、金属素材表面から剥がれやすくなる。1200℃における高温ガラスフリットの粘度が2×10~10dPa・sであれば、1000℃~1400℃の高温域において、高温ガラスフリットが軟化し、金属素材表面に粘着しやすくなる。そのため、高温域において、酸化防止剤が金属素材表面を覆いやすく、金属素材表面に安定的に粘着しやすい。1200℃における高温ガラスフリットの好ましい粘度の上限は10dPa・sであり、好ましい下限は10dPa・sである。本明細書における粘度は、「静粘度」を意味する。
 高温ガラスフリットが球状及び粉末状である場合、好ましい粒径は25μm以下である。ここでいう粒径は、体積平均粒径D50である。体積平均粒径D50は以下の方法で求められる。粒度分布測定装置により、高温ガラスフリットの体積粒度分布を求める。得られた体積粒度分布を用いて、累積体積分布における小粒径側から累積体積が50%になる粒径を、体積平均粒径D50と定義する。粒径が25μm以下であれば、常温において、高温ガラスフリットが液体内に分散しやすい。
 上述のとおり、高温ガラスフリットは、周知の複数の無機成分を含有する。高温ガラスフリットはたとえば、60~70質量%の二酸化珪素(SiO)と、5~20質量%の酸化アルミニウム(Al)と、0~20質量%の酸化カルシウム(CaO)とを含有する。CaOは選択的な化合物であり、含有されなくてもよい。高温ガラスフリットはさらに、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、酸化カリウム(KO)のうち1種又は2種以上を含有してもよい。高温ガラスフリットを構成する無機成分は、上述の例に限定されない。要するに、ガラスを構成する周知の無機成分により、高温ガラスフリットは製造できる。
 [中温ガラスフリット]
 中温ガラスフリットは、高温ガラスフリットよりも低い軟化点を有する。酸化防止剤は、中温ガラスフリットにより、600℃~1000℃の中温域において適正な粘度を有する。そのため、酸化防止剤は、高温域だけでなく、中温域においても、金属素材表面全体に濡れ広がり、表面を覆う。さらに、中温域において、酸化防止剤は、金属素材表面に安定して粘着する。そのため、中温域において、金属素材の表面は外気と接触するのを抑制され、スケールの生成が抑制される。
 酸化防止剤が中温ガラスフリットを含有しなければ、中温域における酸化防止剤が金属素材表面に粘着しにくくなる。そのため、中温域において酸化防止剤が金属素材表面から流れ落ち、又は剥がれ落ち、金属素材表面が部分的に露出する。露出された部分は外気と接触し、スケールを生成しやすい。
 中温ガラスフリットの好ましい粘度は、700℃において2×10~10dPa・sである。中温ガラスフリットの粘度が低すぎれば、中温域において、酸化防止剤が金属素材表面に粘着しにくく、金属素材表面から垂れ落ちやすくなる。一方、中温ガラスフリットの粘度が高すぎれば、中温域において酸化防止剤が十分に軟化しない。そのため、酸化防止剤が金属素材表面から剥がれやすくなる。中温ガラスフリットの700℃における粘度が2×10~10dPa・sであれば、600℃~1000℃の中温域において、中温ガラスフリットが軟化し、金属素材表面に粘着しやすくなる。そのため、酸化防止剤が、中温域において、金属素材の表面を覆いやすくなる。700℃における中温ガラスフリットの好ましい粘度の上限は、10dPa・sであり、好ましい下限は10dPa・sである。
 中温ガラスフリットが球状及び粉末状である場合、中温ガラスフリットの好ましい粒径は25μm以下である。中温ガラスフリットの粒径の定義は、上述の高温ガラスフリットの粒径と同じである。つまり、中温ガラスフリットの粒径は、体積平均粒径D50である。粒径が25μm以下であれば、中温ガラスフリットが液体中で安定的に分散する。そのため、酸化防止剤が金属素材表面に塗布されたとき、中温ガラスフリットが金属素材表面全体に略均等に分散しやすい。
 中温ガラスフリットはたとえば、40~60質量%のSiOと、0~10質量%のAlと、20~40質量%のBと、0~10質量%のZnOと、5~15質量%のNaOとを含有する。中温ガラスフリットはさらに、MgO、CaO及びKOの少なくとも1種以上を含有してもよい。中温ガラスフリットを構成する無機成分は、上述の例に限定されない。ガラスを構成する周知の無機成分により、中温ガラスフリットは製造できる。
 酸化防止剤内において、高温ガラスフリット100重量部に対して、好ましい中温ガラスフリットの含有率は、4~20重量分である。
 [水]
 酸化防止剤はさらに、水を含有する。水は、高温ガラスフリット、中温ガラスフリット及び低温無機化合物と混合され、スラリーを生成する。水を混合することにより、酸化防止剤はスラリーになる。そのため、加熱前の金属素材表面に酸化防止剤を略均一に塗布しやすい。
 酸化防止剤内において、高温ガラスフリット100重量部に対して、水の好ましい含有率は100重量部~150重量部である。水の含有率が少なすぎたり、多すぎたりすれば、酸化防止剤は塗布されにくい。水の含有率を調整すれば、常温において、金属素材表面に略均一に塗布可能な程度に、酸化防止剤の粘度を調整できる。
 [懸濁剤]
 懸濁剤は、高温及び中温ガラスフリット等を溶液(水)中に略均一に分散する。懸濁剤は蛙目粘土と、ベントナイト及び/又はセピオライトとを含有する。本実施の形態による酸化防止剤は、蛙目粘土と、ベントナイト及び/又はセピオライトとにより、金属素材の表面に塗布されたときに垂れにくく、かつ、乾燥して固形化したときに、金属素材の表面から剥離しにくい。以下、蛙目粘土、ベントナイト及び/又はセピオライトについて説明する。
 [蛙目粘土]
 蛙目粘土は、カリオン質の粘土と、複数の石英粒子とを含有する。より具体的には、蛙目粘土は、カオリナイト、ハロサイト、石英を含有する。
 蛙目粘土は、液状の酸化防止剤の耐垂れ性を向上する。蛙目粘土を含有した酸化防止剤は、常温において金属素材の表面に塗布された後、垂れ落ちにくい。そのため、酸化防止剤は、常温において、金属素材の表面全体を覆いやすい。
 酸化防止剤内において、高温ガラスフリット100重量部に対して、好ましい蛙目粘土の含有率は、6重量部以上である。この場合、常温における酸化防止剤の耐垂れ性が向上する。さらに好ましい蛙目粘土の含有率は、7重量部以上であり、さらに好ましくは、10重量部以上である。酸化防止剤が蛙目粘土を過剰に含有すれば、酸化防止剤内のガラスフリットが金属素材の表面に均一に分散されにくくなり、酸化防止剤の酸化防止機能が低下する。したがって、好ましい蛙目粘土の含有率の上限は、30重量部である。
 ただし、蛙目粘土の含有率が6重量部未満であっても、酸化防止剤の常温における耐垂れ性はある程度得られる。
 [ベントナイト及び/又はセピオライト]
 ベントナイトは、モンモリロナイトを主成分とする粘土である。ベントナイトはさらに、石英及びオパール等の珪酸鉱物や、長石及びゼオライト等の珪酸塩鉱物、ドロマイト等の炭酸塩鉱物や硫酸塩鉱物、パイライト等の硫化鉱物等を含有してもよい。
 セピオライトは、含水マグネシウム珪酸塩であり、たとえば、MgSi1230(OH)(OH・8HOの化学式で示される。
 ベントナイト及びセピオライトは、いずれも、酸化防止剤の耐剥離性を向上する。具体的には、液状の酸化防止剤は、金属素材の表面に塗布される。そして、加熱又は乾燥により、金属素材表面に塗布された酸化防止剤の水分が蒸発し、酸化防止剤が固形化する。ベントナイト及びセピオライトは、固形化した酸化防止剤が、金属素材の表面から剥離するのを抑制する。ベントナイト及び/又はセピオライトを含有する酸化防止剤は、外力を受けた場合であっても剥離しにくい。酸化防止剤は、ベントナイト及びセピオライトのいずれか1種以上を含有すればよい。
 酸化防止剤内において、高温ガラスフリット100重量部に対して、好ましいベントナイト及び/又はセピオライトの含有率は、4重量部以上である。酸化防止剤が、ベントナイト及びセピオライトを含有する場合、ベントナイト含有率及びセピオライトの含有率の合計値は、好ましくは4重量部以上である。ベントナイト及び/又はセピオライトの含有率が4重量部以上であれば、酸化防止剤の耐剥離性がさらに向上する。
 また、高温ガラスフリット100重量部に対して、好ましいベントナイト及び/又はセピオライトの含有率は、9重量部未満である。酸化防止剤がベントナイト及びセピオライトを含有する場合、ベントナイトの含有率とセピオライトの含有率との合計値は、好ましくは9重量部未満である。ベントナイト及び/又はセピオライトの含有率が9重量部を超えると、液状の酸化防止剤内で、ガラスフリットが分散されにくくなる。つまり、酸化防止剤がスラリー化しにくくなる。
 ただし、ベントナイト及び/又はセピオライトの含有率が上述の範囲を超えた場合であっても、酸化防止剤の耐剥離性はある程度得られる。
 [懸濁剤の他の成分]
 懸濁剤は、上述の蛙目粘土、ベントナイト及びセピオライト以外の他の粘土類を含んでもよい。粘土類はたとえば、50~60質量%のSiOと、10~40質量%のAlとを含有し、さらに、他の微量成分として、Fe、CaO、MgO、NaO、KOからなる群から選択される1種又は2種以上を含有する。
 蛙目粘度、ベントナイト及びセピオライト以外の他の粘土類の一例は、SiOを55質量%程度、Alを30質量%程度、Fe、CaO、MgO、NaO、KO等を含有する。粘土類の他の例は、SiOを60質量%程度、Alを15質量%程度、他の微量成分としてFe、CaO、MgO、NaO、KO等を含有する。
 [酸化防止剤の他の成分]
 本実施の形態による酸化防止剤はさらに、以下に示す成分を含有してもよい。
 [低温無機化合物]
 本実施の形態による酸化防止剤はさらに、600℃以下の融点を有する無機化合物(以下、低温無機化合物という)を含有する。低温無機化合物は好ましくは、400℃~600℃の融点を有する。酸化防止剤は、低温無機化合物により、600℃以下の低温域において、金属素材表面全体に濡れ拡がり、金属素材表面に粘着しやすい。つまり、低温無機化合物は、低温域において、金属素材表面が外気に接触するのを抑制し、低温域においてスケールが生成するのを抑制する。
 好ましい低温無機化合物は、400℃~600℃の融点を有する無機塩及び/又は酸化物である。600℃以下の融点を有する酸化物はたとえば、硼酸(HBO)や酸化硼素(B)である。硼酸を加熱すると、酸化硼素になる。酸化硼素の融点は約450℃である。600℃以下の融点を有する無機塩はたとえば、リン酸塩や、臭化タリウム(TlBr)やメタりん酸銀(AgOP)である。臭化タリウムの融点は約480℃であり、メタりん酸銀の融点は約480℃である。より好ましくは、低温無機化合物は、硼酸及び/又は酸化硼素である。
 [高温及び中温ガラスフリットの粘度と低温無機化合物の粘度との関係]
 図1は、高温及び中温ガラスフリットの粘度と、低温無機化合物の粘度との関係を示す図である。図1は以下の方法により得られた。表1に示す高温ガラスフリットHT1及びHT2、中温ガラスフリットLT1及びLT2、低温無機化合物LLを準備した。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、低温無機化合物LLは、酸化硼素であった。各成分(HT1、HT2、LT1、LT2及びLL)を加熱して、各温度における粘度を測定した。粘度の測定には、周知の白金球引き上げ法を用いた。具体的には、溶融ガラス及び溶融無機化合物中に沈めた白金球を引き上げた。このときに白金球にかかる荷重及び引き上げ速度に基づいて、粘度を求めた。
 図1を参照して、図中の「●」は、高温ガラスフリットHT1の粘度を示す。「○」は、高温ガラスフリットHT2の粘度を示す。「■」は、中温ガラスフリットLT1の粘度を示す。「□」は、中温ガラスフリットLT2の粘度を示す。「△」は、低温無機化合物LLの粘度を示す。
 図1を参照して、低温無機化合物LLの粘度は、400℃~800℃の温度範囲において、2×10~10dPa・sとなり、600℃以下の温度範囲において、10dPa・s以上となった。中温ガラスフリットLT1及びLT2の粘度は、600℃~1200℃の温度範囲において、2×10~10dPa・sとなった。つまり、中温ガラスフリットLT1及びLT2の粘度は、700℃において2×10~10dPa・sの範囲内であった。高温ガラスフリットHT1及びHT2の粘度は、1000℃~1550℃の温度範囲において、2×10~10dPa・sとなった。つまり、高温ガラスフリットHT1及びHT2の粘度は、1200℃において、2×10~10dPa・sの範囲内であった。
 以上のとおり、温度の上昇に伴い、低温無機化合物、中温ガラスフリット、高温ガラスフリットの順に、粘度が低下し、軟化する。高温ガラスフリット、中温ガラスフリット、低温無機化合物により、酸化防止剤は、広い温度域(400℃~1550℃)において、金属素材表面に安定して粘着できる程度の粘度を得ることができる
 [増摩剤]
 加熱された金属素材は、熱間加工される場合がある。この場合、金属素材は、圧延ロールにより圧延されて金属板や金属条になる。また、穿孔機のプラグや傾斜ロールにより穿孔圧延されて金属管になる。したがって、金属素材は圧延ロールや傾斜ロールに噛み込まれやすい方が好ましい。圧延ロールや傾斜ロール等の熱間加工用ロールに対する、金属素材の摩擦係数が大きければ、金属素材は熱間加工用ロールに噛み込まれやすい。
 したがって、酸化防止剤は、摩擦係数の増大を目的として、増摩剤を含有してもよい。増摩剤はたとえば、高融点を有する酸化物である。増摩剤はたとえば、アルミナやシリカである。酸化防止剤が塗布された金属素材がロールと接触するとき、アルミナやシリカ等の増摩剤がロールと接触する。このとき、ロールに対する金属素材の摩擦係数が高くなるため、金属素材がロールに噛み込まれやすくなる。
 [粘着剤]
 酸化防止剤はさらに、金属素材表面との粘着力を向上するために、粘着剤を含有してもよい。粘着剤はたとえば、有機バインダである。有機バインダはたとえば、アクリル系樹脂である。
 酸化防止剤はさらに、アルカリ金属塩又は水に難溶な第2族金属塩を含有してもよい。これらの成分は、酸化防止剤の粘度の経時変化を抑制する。
 [アルカリ金属塩]
 水を含む酸化防止剤は、常温では、上述のとおりスラリー(流動体)である。酸化防止剤が重量%で50%未満の水を含有する場合、常温において、酸化防止剤は、時間の経過とともにゲル化する場合がある。ゲル化すれば酸化防止剤の粘度が上昇する。また、ゲル塊が生成される場合がある。
 酸化防止剤の粘度の経時変化は抑制される方が好ましい。アルカリ金属塩は、ゲル化した酸化防止剤を解膠する。そのため、酸化防止剤は再び流動化し、粘度の上昇が抑制される。アルカリ金属塩はたとえば、炭酸カリウム(KCO)や、ヘキサメタリン酸ナトリウム等である。
 [難溶性の第2族金属塩]
 酸化防止剤が重量%で55%以上の水を含有する場合、常温において、酸化防止剤の粘度が、時間の経過とともに低下する場合がある。このような粘度の経時変化も抑制した方が好ましい。
 難溶性の第2族金属塩は、酸化防止剤の粘度の低下を抑制する。ここで、第2族金属塩は、周期律表中の第2族元素に相当する金属であり、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムである。また、難溶性とは水に難溶であることを意味し、「水に難溶」とは、25℃の水に対する溶解度が1000ppm以下であることを意味する。好ましくは、難溶性の第2族金属塩は、炭酸マグネシウム及び/又は炭酸カルシウムである。
 難溶性の第2族金属塩は、製造後の酸化防止剤の粘度の低下を抑制する。以下の理由が推定される。難溶性の第2族金属塩は、溶液(水)に徐々に溶解する。第2族金属塩が溶解すると、第2族金属イオンが生成される。第2族金属イオンは懸濁力を向上するため、酸化防止剤の粘度の経時変化が抑制される。
 [その他の成分]
 酸化防止剤は、上述の成分に加えて、他の成分を含有してもよい。たとえば、酸化防止剤は、亜硝酸ソーダに代表される無機電解質を含有してもよい。
 [酸化防止剤中の各成分の好ましい含有量]
 本実施の形態による酸化防止剤に含有される各成分の好ましい含有率は以下のとおりである。高温ガラスフリットの含有率を100重量部とした場合、低温無機化合物の好ましい含有率は、4~20重量部である。増摩剤の好ましい含有率は、15~35重量部である。粘着剤の好ましい含有率は、1.0~4.0重量部である。アルカリ金属塩及び難溶性の第2族金属塩の好ましい含有率は、0.1~1.5重量部である。
 酸化防止剤中の各成分が上述の好ましい含有率を満たせば、酸化防止剤の上述の効果は特に有効に発揮される。しかしながら、各成分が上述の好ましい含有率の範囲を超えても、酸化防止剤の効果はある程度得られる。
 [酸化防止剤の製造方法]
 本実施の形態による酸化防止剤は、上述の各成分を混合することにより得られる。初めに、酸化防止剤に含有される複数の成分を準備する。次に、粉砕装置を用いて、複数の成分を粉砕混合し、混合組成物を生成する。粉砕装置はたとえば、ボールミルやロッドミル、振動ミル、遊星ミル、タワーミル、アトライター、サンドミル等である。これらの粉砕装置は、円筒形の粉砕容器を備える。準備された複数の成分は、粉砕容器内に収納される。粉砕容器内にはさらに、ボールやロッドが収納される。粉砕容器が回転又は振動することにより、高温ガラスフリットや中温ガラスフリットが粉砕され、たとえば、25μm以下の粒径を有する粒子になる。粉砕混合時には、水も含有される。
 以上の製造方法により、酸化防止剤が製造される。
 [金属材の製造方法]
 図2は、上述の酸化防止剤を利用した金属材の製造方法の一例を示すフロー図である。図2を参照して、初めに、本実施の形態による酸化防止剤を準備する(S11)。酸化防止剤は、上述の方法により製造される。
 続いて、酸化防止剤を、加熱前の金属素材の表面に塗布する(S12)。つまり、酸化防止剤を常温の金属素材表面に塗布する。金属素材の種類は特に限定されない。金属素材はたとえば、鋼やチタン、チタン合金、その他の合金等からなる。鋼はたとえば、炭素鋼や、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、合金鋼等である。金属素材の形状は、インゴットやスラブ、ブルーム、ビレット、板材、棒材や線材に代表される条材、管等である。
 酸化防止剤の塗布方法は特に限定されない。作業者がはけを用いて金属素材表面に酸化防止剤を塗布してもよい。また、スプレー等により酸化防止剤を金属素材表面に塗布してもよい。酸化防止剤が貯められた浴槽を準備し、その浴槽に金属素材を浸漬してもよい(いわゆる「どぶ漬け」)。これらの塗布方法により、酸化防止剤が金属素材表面に塗布される。酸化防止剤は蛙目粘土を含有する。そのため、金属素材表面に塗布された酸化防止剤は、常温において、金属素材表面から垂れ落ちにくい。酸化防止剤を金属素材表面に塗布した後、酸化防止剤を乾燥してもよい。
 続いて、酸化防止剤が塗布された金属素材を加熱する(S13)。乾燥時または加熱初期に、酸化防止剤の水分は蒸発するため、酸化防止剤は固形化する。酸化防止剤はベントナイト及び/又はセピオライトを含有するため、固形化したときに金属素材表面から剥離しにくい。
 加熱温度が上昇すると、酸化防止剤中の中温ガラスフリットや高温ガラスフリット、低温無機化合物等が軟化して、金属素材表面を覆う。上述のとおり、広い温度範囲(400℃~1400℃)において、酸化防止剤は金属素材表面に安定的に粘着する。そのため、加熱される金属素材表面にスケールが生成しにくい。
 [金属素材を熱処理する場合]
 金属素材を熱処理する場合、熱処理温度は1000℃以下の場合がある。たとえば、ステンレス鋼の焼き入れ温度は900℃~1000℃程度である。また、焼き戻し温度は500℃~650℃程度である。金属素材を熱処理する場合、金属素材を熱処理炉に収納し、金属素材を熱処理温度に加熱する。このとき、炉内の温度は時間の経過に伴って段階的に上昇する。炉内温度は制御装置により制御され、所定のヒートパターンに応じて段階的に上昇する。
 熱処理温度が1000℃未満である場合、酸化防止剤の中温ガラスフリットが主として軟化し、金属素材表面を覆う。酸化防止剤が低温無機化合物を含有する場合、低温無機化合物及び中温ガラスフリットが主として軟化し、金属素材表面を覆う。なお、炉内温度が1000℃近傍になると、高温ガラスフリットも軟化しはじめ、酸化防止剤として有効に機能しはじめる。
 以上のとおり、金属素材を1000℃以下の温度で熱処理する場合、主として中温ガラスフリットが金属素材表面を覆い、スケールの生成を抑制する。
 [金属素材を熱間加工する場合]
 金属素材を熱間加工して、鋼材や条鋼、鋼管等の金属材を製造する場合、金属素材は種々の温度域に加熱される。
 たとえば、マンネスマン製管法により、鋼素材(丸ビレット)を穿孔圧延して鋼管を製造する場合、鋼素材は、加熱炉又は均熱炉により、1100~1300℃に加熱される。一方、鋼素材を押出加工して鋼管を製造するユジーン製管法では、鋼素材は加熱炉又は均熱炉により、800℃~1000℃に加熱される。加熱炉又は均熱炉により加熱された鋼素材はさらに、高周波加熱により短時間で1200℃まで加熱される場合もある。さらに、チタンやチタン合金からなる素材を熱間加工して所定の形状(板、条または管)のチタン材を製造する場合、チタン及びチタン合金の素材の加熱温度は鋼素材の加熱温度よりも高くなる。
 このように、金属素材の種類及び製造方法に応じて、加熱温度は異なる。しかしながら、本実施の形態による酸化防止材は、中温ガラスフリット及び高温ガラスフリットを含有するため、種々の加熱温度に対応できる。
 加熱炉及び均熱炉内の金属素材が600℃~1000℃で加熱されると、主として中温ガラスフリットが軟化し、金属素材表面を覆う。そして、金属素材が1000℃以上で加熱されると、主として高温ガラスフリットが軟化し、金属素材表面を覆う。
 要するに、本実施の形態による酸化防止剤は、広い温度範囲で金属素材表面に安定的に粘着し、金属素材表面を覆う。そのため、異なる加熱温度を有する種々の製造工程において、加熱により金属素材表面にスケールが発生するのを抑制できる。
 図2に戻って、熱処理工程を実施中である場合(S14でYES)、加熱後、所定の熱処理工程を経て、熱処理を終了する。一方、熱間加工工程を実施中である場合(S14でNO)、金属素材を熱間加工する(S15)。熱間加工により、金属素材は所望の金属材(管材、板材、条材等)に製造される。
 酸化防止剤が増摩剤を含有する場合、酸化防止剤は、圧延機のロールに対する金属素材のスリップを抑制する。たとえば、酸化防止剤が、増摩材としてアルミナ粒子を含有する場合、加熱された金属素材の表面には、アルミナ粒子が粘着している。アルミナ粒子が粘着された金属素材はロール圧延機に搬送される。金属素材の先端がロールと接触したとき、金属素材表面のアルミナ粒子がロールと接触する。このとき、アルミナ粒子により、ロールに対する金属素材の摩擦係数が増加するため、金属素材がロールに噛み込まれ易くなる。
 蛙目及びベントナイトの含有量が異なる複数の酸化防止剤を準備した。準備された複数の酸化防止剤の懸濁性、耐垂れ性、乾燥後の耐久性を評価した。
 [試験方法]
 表2に示す酸化防止剤を準備した。
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、試験番号1~17の酸化防止剤はいずれも、高温ガラスフリットと、中温ガラスフリットと、アルミナと、水と、懸濁剤(ベントナイト及び蛙目粘土)とを含有した。試験番号1~17の高温ガラスフリットは、いずれも表1中の高温ガラスフリットHT1であった。また、試験番号1~17の中温ガラスフリットは、いずれも表1中の中温ガラスフリットLT1であった。高温ガラスフリットHT1の1200℃における粘度は、2×10~10dPa・sの範囲内であった。中温ガラスフリットLT1の700℃における粘度は、2×10~10dPa・sの範囲内であった。
 試験番号1~17の高温ガラスフリット100重量部に対する各成分の含有率(重量部)は、表1に示すとおりであった。具体的には、試験番号1~17の高温ガラスフリット、中温ガラスフリット、増摩剤としてのアルミナ、及び、水の含有率はいずれも同じであった。つまり、試験番号1~17では、懸濁剤(ベントナイト及び蛙目粘土)の含有率のみが異なっていた。
 [懸濁性評価]
 試験番号1~17の酸化防止剤を上述の方法により製造した。製造してから1時間経過後、各試験番号の酸化防止剤がスラリー化しているか否かを観察した。具体的には、酸化防止剤中の沈殿物の有無を観察した。
 [耐垂れ性評価]
 試験番号1~17の酸化防止剤のうち、スラリー化した酸化防止剤について、耐垂れ性評価を実施した。具体的には、スラリー化した試験番号の各酸化防止剤が収納された槽を準備した。75mm×200mmの表面を有する矩形状のステンレス板を立てた状態で槽に浸漬した。浸漬後、ステンレス板を立てた状態のまま引き上げた。引き上げると同時にステンレス板の下方に回収皿を配置し、ステンレス板から垂れる酸化防止剤を回収皿に回収した。
 酸化防止剤が垂れなくなった後、ステンレス板の表面に付着している酸化防止剤の重量を測定した。また、回収皿に溜まった酸化防止剤の重量も測定した。
 ステンレス板の表面に付着している酸化防止剤の重量を、「安定時付着量」と定義した。また、ステンレス板の表面に付着している酸化防止剤の重量と、回収皿に溜まった酸化防止剤の重量との合計値を、「初期付着量」と定義した。
 試験番号ごとに、以下の式(1)に基づいて、収率を算出した。
 収率=安定時付着量/初期付着量 (1)
 上記試験では、ステンレス板の表面に付着した酸化防止剤は水を含有した。上述のとおり、酸化防止剤が実際に金属素材に使用されるとき、乾燥又は加熱により酸化防止剤の水成分は蒸発し、固形成分(酸化防止剤の水以外の成分)のみが金属素材表面に残る。そこで、初期付着量及び安定時付着量のうち、固形成分の付着量を算出した。そして、上記算出された収率を利用して、安定時付着量における固形成分の付着量を同量(0.10g/mm)とした場合の各試験番号の酸化防止剤の収率を換算して求めた。
 [耐剥離性評価]
 スラリー化した酸化防止剤について、耐剥離性試験を実施した。具体的には、ステンレス鋼(化学組成はSUS304相当)からなる柱状の試験片を10個準備した。各試験片の直径は11mmであり、長さは10mmであった。
 準備した試験片をスラリー化した試験番号の酸化防止剤に浸漬した。そして、試験片を引き上げた後、80℃雰囲気で乾燥した。各試験片の表面は、固形化された酸化防止剤に被覆された。このとき、固形化された酸化防止剤の付着量が、0.25g/mmとなるように調整した。付着量(g/mm)は、以下の式(2)で定義した。
 付着量=(酸化防止剤が塗布及び乾燥された後の試験片10個の重量の総計-酸化防止剤が塗布されていない試験片10個の重量の総計)/試験片10個の表面積の総計 (2)
 次に、酸化防止剤を被覆された試験片(10個)を使用して、金属圧粉末冶金工業会規格JPMA P11-1992で規定されるラトラ試験機を用いて、ラトラ試験を実施した。試験では、ラトラ試験機の金網かご内に10個の試験片を収納し、84rpmで300回転した。300回転した後、10個の試験片の重量を測定した。以下、この重量を「試験後重量」という。試験後重量を測定した後、式(3)で定義された付着量(μg/mm)を算出した。
 付着量=(試験片10個の試験終了後の重量の総計-酸化防止剤が塗布されていない試験片10個の重量の総計)/試験片10個の表面積の総計 (3)
 式(3)により算出された付着量が大きいほど、耐剥離性が高いと評価した。
 [試験結果]
 [懸濁性]
 懸濁性評価の結果を表2に示す。表2中の「懸濁性」欄の「有り」は、対応する試験番号の酸化防止剤がスラリー化したことを示す。「無し」は、対応する試験番号の酸化防止剤がスラリー化しなかったことを示す。
 表2を参照して、試験番号1、4、6、7、10及び11の酸化防止剤は、スラリー化しなかった。つまり、本実施例では、ベントナイトが高温ガラスフリット100重量部に対して9重量部以上含有すると、酸化防止剤がスラリー化しなかった。一方、懸濁性(スラリー化)は蛙目の含有率には依存しなかった。ただし、酸化防止剤中の水の含有率を上げれば、試験番号1,4,6、7、10及び11の酸化防止剤でもスラリー化すると推定される。
 [耐垂れ性]
 図3は、耐垂れ性評価結果を示す図である。図の縦軸は、各酸化防止剤中の高温ガラスフリット100重量部に対する蛙目粘土の重量部を示す。図の横軸は、各酸化防止剤中の高温ガラスフリット100重量部に対するベントナイトの重量部を示す。図中の丸図形の大きさは、収率の大きさを示す。丸図形内の数値及び丸図形の横の数値は、試験番号及び収率(%)を示す。
 図3を参照して、酸化防止剤内の蛙目粘土の重量部が大きいほど、収率が高く、耐垂れ性が高かった。具体的には、試験番号2、3、8、9、15及び17の酸化防止剤は、蛙目粘土を6重量部以上含有した。そのため、収率は58.0%を超え、高かった。
 一方、試験番号5、12~14及び16の酸化防止剤では、蛙目粘土が6重量部未満であった。そのため、収率が58.0%未満であった。
 また、図3を参照して、ベントナイトの含有率は、耐垂れ性に対してあまり影響を与えなかった。より具体的には、ベントナイトは、蛙目粘土ほど、耐垂れ性に対して影響を与えなかった。
 [耐剥離性]
 図4は、耐剥離性評価結果を示す図である。図の縦軸は、各酸化防止剤中の高温ガラスフリット100重量部に対する蛙目粘土の重量部を示す。図の横軸は、各酸化防止剤中の高温ガラスフリット100重量部に対するベントナイトの重量部を示す。図中の丸図形の大きさは、付着量の大きさを示す。丸図形内の数値及び丸図形の横の数値は、試験番号及び式(3)により得られた付着量(μg/mm)を示す。
 図4を参照して、酸化防止剤内のベントナイトの重量部が大きいほど、付着量は大きかった。具体的には、試験番号2、3、5、9、11、13~17の酸化防止剤は、ベントナイトを4重量部以上含有した。そのため、付着量が15μg/mmを超え、優れた耐剥離性を有した。
 一方、試験番号8の酸化防止剤では、ベントナイトが4重量部未満であった。そのため、付着量が15μg/mm未満であった。しかしながら、試験番号8の酸化防止剤であってもある程度の耐剥離性が得られた。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明による酸化防止剤は、加熱される金属素材に広く適用できる。特に、熱処理される金属素材や、熱間加工される金属素材に対して利用可能である。

Claims (8)

  1.  金属素材の表面に塗布される酸化防止剤であって、
     軟化点の異なる複数のガラスフリットと、
     蛙目粘土と、
     ベントナイト及び/又はセピオライトとを含有する、酸化防止剤。
  2.  請求項1に記載の酸化防止剤であって、
     前記複数のガラスフリットは、
     1200℃における粘度が2×10~10dPa・sである高温ガラスフリットと、
     700℃における粘度が2×10~10dPa・sである中温ガラスフリットとを含有する、酸化防止剤。
  3.  請求項2に記載の酸化防止剤であって、
     前記高温ガラスフリット100重量部に対して6重量部以上の前記蛙目粘土と、
     前記高温ガラスフリット100重量部に対して4重量部以上の前記ベントナイト及び/又はセピオライトとを含有する、酸化防止剤。
  4.  請求項3に記載の酸化防止剤であって、
     前記高温ガラスフリット100重量部に対して9重量部未満の前記ベントナイト及び/又はセピオライトを含有する。酸化防止剤。
  5.  請求項2~請求項4のいずれか1項に記載の酸化防止剤であって、
     前記高温ガラスフリット100重量部に対して4~20重量部の前記中温ガラスフリットを含有する、酸化防止剤。
  6.  請求項1~請求項5のいずれか1項に記載の酸化防止剤であってさらに、
     400℃~600℃の融点を有する無機化合物を含有する、酸化防止剤。
  7.  請求項6に記載の酸化防止剤であって、
     前記無機化合物は、硼酸及び/又は酸化硼素である、酸化防止剤。
  8.  請求項1~請求項7のいずれか1項に記載の酸化防止剤を金属素材の表面に塗布する工程と、
     前記酸化防止剤が塗布された前記金属素材を加熱する工程とを備える、金属材の製造方法。
PCT/JP2011/066013 2010-10-26 2011-07-13 酸化防止剤及び金属材の製造方法 WO2012056771A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/880,780 US8815347B2 (en) 2010-10-26 2011-07-13 Antioxidant agent and process for producing metallic material
CN201180062750.6A CN103282548B (zh) 2010-10-26 2011-07-13 抗氧化剂和金属材料的制造方法
MX2013003998A MX339364B (es) 2010-10-26 2011-07-13 Agente antioxidante y proceso para producir material metalico.
EP11835912.4A EP2634289B1 (en) 2010-10-26 2011-07-13 Antioxidant and method for producing metal material
CA2815475A CA2815475C (en) 2010-10-26 2011-07-13 Antioxidant agent and process for producing metallic material
ES11835912.4T ES2634219T3 (es) 2010-10-26 2011-07-13 Agente antioxidante y procedimiento para la producción de material metálico
BR112013008794A BR112013008794B8 (pt) 2010-10-26 2011-07-13 agente antioxidante e processo para a produção de material metálico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010239950A JP5408104B2 (ja) 2010-10-26 2010-10-26 酸化防止剤及び金属材の製造方法
JP2010-239950 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012056771A1 true WO2012056771A1 (ja) 2012-05-03

Family

ID=45993504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066013 WO2012056771A1 (ja) 2010-10-26 2011-07-13 酸化防止剤及び金属材の製造方法

Country Status (9)

Country Link
US (1) US8815347B2 (ja)
EP (1) EP2634289B1 (ja)
JP (1) JP5408104B2 (ja)
CN (1) CN103282548B (ja)
BR (1) BR112013008794B8 (ja)
CA (1) CA2815475C (ja)
ES (1) ES2634219T3 (ja)
MX (1) MX339364B (ja)
WO (1) WO2012056771A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199642A (ja) * 2018-05-17 2019-11-21 トヨタ自動車株式会社 ホットスタンプ鋼材の製造方法
CN115023509A (zh) * 2020-01-31 2022-09-06 日本制铁株式会社 合金材料加热用抗氧化剂和使用了其的合金材料的加热方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988470B (zh) * 2017-11-24 2019-04-16 中昊北方涂料工业研究设计院有限公司 一种低合金超高强度钢用热处理保护涂料的制备
KR101935269B1 (ko) 2017-12-06 2019-01-04 (주)동양인더스트리 유리 라이닝을 위한 하도 유약 조성물
KR102172418B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172460B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172459B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR20200102758A (ko) 2019-02-22 2020-09-01 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기
KR102172417B1 (ko) * 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물 및 이의 제조방법
KR102172416B1 (ko) 2019-02-22 2020-10-30 엘지전자 주식회사 법랑 조성물, 그 제조방법 및 조리기기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224239A (ja) * 1988-03-01 1989-09-07 Ikebukuro Horo Kogyo Kk ステンレス鋼グラスライニング用フリット組成物
JPH06504302A (ja) * 1990-10-19 1994-05-19 ユナイテッド テクノロジーズ コーポレイション 溶銑加工用レオロジー制御ガラス潤滑剤
JP2003221688A (ja) * 2002-01-30 2003-08-08 Jfe Steel Kk ほうろう鋼板の製造方法
WO2007122972A1 (ja) 2006-04-24 2007-11-01 Sumitomo Metal Industries, Ltd. 熱間塑性加工用潤滑剤組成物、及びそれを使用した熱間塑性加工方法
JP2007314875A (ja) * 2006-04-24 2007-12-06 Sumitomo Metal Ind Ltd 鋼管の熱処理用酸化防止剤組成物
JP2007314780A (ja) 2006-04-24 2007-12-06 Sumitomo Metal Ind Ltd 熱間押出加工用潤滑剤組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR207684A1 (es) * 1975-04-07 1976-10-22 Ferro Corp Composicion de frita volatilizable
US4620993A (en) * 1984-03-30 1986-11-04 Ppg Industries, Inc. Color plus clear coating system utilizing organo-modified clay in combination with organic polymer microparticles
US5242506A (en) * 1990-10-19 1993-09-07 United Technologies Corporation Rheologically controlled glass lubricant for hot metal working
JPH0817460A (ja) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
CN1176162A (zh) * 1996-09-11 1998-03-18 上海龙星结构工程公司 一种气体铜焊剂
US6001494A (en) * 1997-02-18 1999-12-14 Technology Partners Inc. Metal-ceramic composite coatings, materials, methods and products
US20020031656A1 (en) * 1998-03-04 2002-03-14 Inax Corporation Formed building material and room
CN1091142C (zh) * 1999-12-29 2002-09-18 宝山钢铁股份有限公司 金属热加工用润滑剂
EP1167310A1 (en) * 2000-06-28 2002-01-02 Ferro France S.A.R.L. Enamel composition
CN1348982A (zh) * 2000-10-16 2002-05-15 北京玻璃研究院 不锈钢叶片无余量精锻工艺用玻璃防护润滑剂
US6511931B1 (en) * 2001-07-16 2003-01-28 Ferro Corporation Easy-to-clean matte acid resistant ground coat
EP1879836A4 (en) * 2005-05-12 2009-06-10 Ferro Corp PORCELAIN LACQUER WITH METALLIC LOOK
US7969077B2 (en) * 2006-06-16 2011-06-28 Federal-Mogul World Wide, Inc. Spark plug with an improved seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224239A (ja) * 1988-03-01 1989-09-07 Ikebukuro Horo Kogyo Kk ステンレス鋼グラスライニング用フリット組成物
JPH06504302A (ja) * 1990-10-19 1994-05-19 ユナイテッド テクノロジーズ コーポレイション 溶銑加工用レオロジー制御ガラス潤滑剤
JP2003221688A (ja) * 2002-01-30 2003-08-08 Jfe Steel Kk ほうろう鋼板の製造方法
WO2007122972A1 (ja) 2006-04-24 2007-11-01 Sumitomo Metal Industries, Ltd. 熱間塑性加工用潤滑剤組成物、及びそれを使用した熱間塑性加工方法
JP2007314875A (ja) * 2006-04-24 2007-12-06 Sumitomo Metal Ind Ltd 鋼管の熱処理用酸化防止剤組成物
JP2007314780A (ja) 2006-04-24 2007-12-06 Sumitomo Metal Ind Ltd 熱間押出加工用潤滑剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634289A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199642A (ja) * 2018-05-17 2019-11-21 トヨタ自動車株式会社 ホットスタンプ鋼材の製造方法
JP7063717B2 (ja) 2018-05-17 2022-05-09 トヨタ自動車株式会社 ホットスタンプ鋼材の製造方法
CN115023509A (zh) * 2020-01-31 2022-09-06 日本制铁株式会社 合金材料加热用抗氧化剂和使用了其的合金材料的加热方法

Also Published As

Publication number Publication date
EP2634289B1 (en) 2017-06-07
MX2013003998A (es) 2013-05-20
JP5408104B2 (ja) 2014-02-05
BR112013008794B1 (pt) 2020-11-03
BR112013008794A8 (pt) 2016-08-02
ES2634219T3 (es) 2017-09-27
BR112013008794A2 (pt) 2016-06-28
MX339364B (es) 2016-05-23
EP2634289A4 (en) 2016-05-18
JP2012092207A (ja) 2012-05-17
CA2815475A1 (en) 2012-05-03
BR112013008794B8 (pt) 2020-11-24
US8815347B2 (en) 2014-08-26
EP2634289A1 (en) 2013-09-04
CA2815475C (en) 2015-11-24
US20130202803A1 (en) 2013-08-08
CN103282548B (zh) 2015-06-24
CN103282548A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5408104B2 (ja) 酸化防止剤及び金属材の製造方法
JP5482533B2 (ja) 酸化防止剤、酸化防止剤の製造方法及び金属材の製造方法
Nawaz et al. Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications
Sharifianjazi et al. Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses
Chen et al. A new sol–gel process for producing Na2O-containing bioactive glass ceramics
Abulyazied et al. Synthesis, structural and biomedical characterization of hydroxyapatite/borosilicate bioactive glass nanocomposites
Prabhu et al. In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder
Denry et al. Effect of crystallization heat treatment on the microstructure of niobium‐doped fluorapatite glass‐ceramics
Kaur et al. Growth of bone like hydroxyapatite and cell viability studies on CeO2 doped CaO–P2O5–MgO–SiO2 bioceramics
Mancuso et al. Sensitivity of novel silicate and borate-based glass structures on in vitro bioactivity and degradation behaviour
Magyari et al. Bioactivity evolution of calcium-free borophosphate glass with addition of titanium dioxide
Prabhu et al. Preparation and characterization of silver-doped nanobioactive glass particles and their in vitro behaviour for biomedical applications
Ma et al. In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by sol-gel method
CN105776454A (zh) 一种应用于循环水系统的无磷缓释型抑菌剂
Hurrell-Gillingham et al. In vitro biocompatibility of a novel Fe2O3 based glass ionomer cement
AT509594B1 (de) Verfahren zum beschichten
Wren et al. Investigating the solubility and cytocompatibility of CaO–Na2O–SiO2/TiO2 bioactive glasses
CN106396395A (zh) 一种抗菌低温仿古釉及其制备方法
JP2007314875A (ja) 鋼管の熱処理用酸化防止剤組成物
JP4794128B2 (ja) 抗微生物性アルカリケイ酸塩ガラスセラミック粉末およびその用法
CN116964015A (zh) 生物活性玻璃组合物
Saravanakumar et al. Electrochemical Deposition of 58SiO2‐33CaO‐9P2O5 Nanobioactive Glass Particles on Ti‐6Al‐4V Alloy for Biomedical Applications
Fayad et al. Modifying of physical, biodegradation, drug delivery characteristics of bioactive borophosphate glass by addition of molybdenum
Nechita et al. Cerium and silver co-substituted bioglass coatings deposited by laser ablation for improving the behaviour of bioinert implants
JP2010227997A (ja) 金属材料の熱間押出製管用ガラス潤滑剤およびそれを用いた熱間押出製管方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003998

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2815475

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13880780

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011835912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011835912

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013008794

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013008794

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130411