WO2012056573A1 - 光増幅装置および光伝送システム - Google Patents

光増幅装置および光伝送システム Download PDF

Info

Publication number
WO2012056573A1
WO2012056573A1 PCT/JP2010/069352 JP2010069352W WO2012056573A1 WO 2012056573 A1 WO2012056573 A1 WO 2012056573A1 JP 2010069352 W JP2010069352 W JP 2010069352W WO 2012056573 A1 WO2012056573 A1 WO 2012056573A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
division multiplexed
optical signal
amplification
wavelength division
Prior art date
Application number
PCT/JP2010/069352
Other languages
English (en)
French (fr)
Inventor
鈴木 幹哉
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2012540628A priority Critical patent/JP5416286B2/ja
Priority to CN201080069892.0A priority patent/CN103201915B/zh
Priority to PCT/JP2010/069352 priority patent/WO2012056573A1/ja
Publication of WO2012056573A1 publication Critical patent/WO2012056573A1/ja
Priority to US13/872,405 priority patent/US9160135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0797Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core

Definitions

  • the present invention relates to an optical amplification device and an optical transmission system applied to the field of optical communication and the like.
  • an optical fiber communication network for users' homes called FTTx (Fiber To Thex) has penetrated into society.
  • an optical amplification device is used for the purpose of compensating transmission loss of a transmission line and compensating for distribution loss in a distributor for distributing an optical signal to a plurality of subscribers.
  • an optical amplification device for example, by inputting an optical signal such as a video signal into an optical fiber in which erbium is added to the core as an optical amplification substance, and by inputting excitation light from an excitation light source, BACKGROUND OF THE INVENTION
  • a fiber type optical amplifier (EDFA: Erbium Doped Fiber Amplifier) for amplifying an optical signal is known.
  • EDFA Erbium Doped Fiber Amplifier
  • the optical signal is propagated in a single mode in the core, and the pump light from the high output multimode laser light source is multimode propagated in the cladding surrounding the core. It is also practiced to use a double clad type optical fiber to make the
  • FIG. 14 is a diagram showing amplification characteristics after the output of such an optical amplification device is branched into 16 parts.
  • the horizontal axis of this figure shows the wavelength of the light signal, and the vertical axis shows the light output.
  • This example is an optical spectrum obtained by amplifying a 1550 nm signal.
  • the optical amplification apparatus using the erbium- and ytterbium-doped optical fiber described above has been generally applied to the FTTx system in which the signal in the wavelength band of 1550 to 1560 nm is widely used, the amplification bandwidth Is at most about 25 nm.
  • the bandwidth is narrow in order to collectively amplify the wavelength division multiplexed (WDM) C-Band entire area (1530-1560 nm) optical signals used in the communication field.
  • WDM wavelength division multiplexed
  • the problem to be solved by the present invention is to provide an optical amplification device capable of collectively amplifying a wavelength division multiplexed optical signal having a wider band than the prior art.
  • the present invention relates to an optical amplification apparatus for amplifying a wavelength division multiplexed optical signal, comprising: an input unit for inputting the wavelength division multiplexed optical signal; a laser light source for generating multimode laser light; The multimode laser light is input to the core portion to which the rare earth element is added, and the wavelength division multiplexed light signal is input, and a plurality of wavelengths included in the wavelength division multiplexed light signal by stimulated emission by the multimode laser light And a gain equalizer for flattening the gain characteristic of the wavelength division multiplexed optical signal after amplification by the double clad optical fiber; and And an output unit that outputs the wavelength division multiplexed optical signal. According to such a configuration, it is possible to amplify the wavelength division multiplexed optical signal collectively.
  • inventions are characterized by having an attenuation part which attenuates the residual excitation light outputted from the above-mentioned double clad type optical fiber. According to such a configuration, it is possible to prevent the heat generation or the damage of the optical component due to the residual excitation light.
  • Another invention is characterized in that, in addition to the above-mentioned invention, erbium and ytterbium are co-doped as the rare earth element in the core portion. According to such a configuration, it is possible to apply a watt-class high-power laser as an excitation light source.
  • the double clad type optical fiber has an absorption length product represented by a product of a length of the optical fiber and a peak value in a predetermined wavelength band of an absorption coefficient.
  • An absorption line product having a predetermined gain for all the wavelengths constituting the wavelength division multiplexed optical signal is set. According to this configuration, by appropriately setting the absorption line length product, the wavelength division multiplexed optical signal is configured by sacrificing the wavelength band having the highest conversion efficiency to some extent in the case of having a sufficient absorption line length product. It is possible to have gains for optical signals of all wavelengths.
  • Another invention is characterized in that, in addition to the above invention, the wavelength-multiplexed optical signal is in a wavelength band of 1528 to 1570 nm. According to such a configuration, it is possible to collectively amplify the C-Band wavelength division multiplexed optical signal.
  • the multimode laser light is in a wavelength range of 910 to 960 nm. According to such a configuration, various multimode laser light sources can be used.
  • the double clad type optical fiber is characterized in that an absorption length product of the erbium in the core portion is set to about 300 dB or less for a wavelength near 1535 nm. I assume. According to such a configuration, it is possible to give predetermined gains to optical signals of all wavelengths.
  • the double clad type optical fiber has an absorption line product of the erbium in the core portion set in a range of about 30 to 150 dB for a wavelength near 1535 nm. It is characterized by According to such a configuration, for example, it is possible to give predetermined gains to the optical signals of all the wavelengths constituting the C-Band wavelength division multiplexed optical signal, and to improve the amplification efficiency.
  • the double clad type optical fiber is characterized in that the absorption line length product of the ytterbium in the clad portion is set to about 20 dB or less for a wavelength near 915 nm. I assume. According to this configuration, it is possible to give predetermined gains to optical signals of all wavelengths.
  • the double clad type optical fiber has an absorption line length product in the clad part of the ytterbium in a range of about 0.9 to 9.5 dB for a wavelength near 915 nm. It is characterized in that it is set. According to this configuration, for example, it is possible to give a predetermined gain to optical signals of all the wavelengths constituting the C-Band wavelength division multiplexed optical signal, and to improve amplification efficiency.
  • An optical transmission system is an optical transmission apparatus for transmitting a wavelength division multiplexed optical signal, and an optical amplification apparatus for amplifying a wavelength division multiplexed optical signal transmitted from the optical transmission apparatus, the wavelength division multiplexing
  • the multi-mode laser light is input to the input portion for inputting an optical signal, the laser light source for generating multi-mode laser light, and the cladding portion, and the wavelength division multiplexed light signal is input to the core portion doped with a rare earth element.
  • a double clad optical fiber for amplifying and outputting optical signals of a plurality of wavelengths contained in the wavelength division multiplexed optical signal by stimulated emission by the multimode laser light, and after amplification by the double clad optical fiber It is particularly preferable to have a gain equalizer for flattening the gain characteristics of the wavelength division multiplexed optical signal, and an output unit for outputting the amplified wavelength division multiplexed optical signal. Characterized in that it has a an optical amplifying apparatus for, and a light receiver for receiving the wavelength division multiplexed optical signal amplified by the optical amplifier. According to such a configuration, it is possible to improve the communication quality of the transmission system, reduce the power consumption, and save the cost required to maintain the system.
  • optical amplification device and the optical transmission system of the present invention it is possible to amplify wavelength division multiplexed optical signals collectively.
  • FIG. 1 It is a block diagram showing an example of composition of an optical amplification device of a 1st embodiment of the present invention. It is a figure which shows the cross-section of the amplification optical fiber shown in FIG. 1, and the refractive index of each part. It is a figure which shows the relationship between the intensity
  • FIG. 1 It is a block diagram which shows the structural example of the optical amplification apparatus of 2nd Embodiment of this invention. It is a figure which shows the detailed structural example of the excitation light attenuation part shown in FIG. It is a block diagram which shows the structural example of the optical amplification apparatus of 3rd Embodiment of this invention. It is a block diagram which shows the structural example of the optical amplification apparatus of 4th Embodiment of this invention. It is a block diagram which shows the structural example of the optical amplification apparatus of 5th Embodiment of this invention. It is a figure which shows the structural example of the excitation light mixer shown in FIG. It is a figure which shows the structural example of the excitation light attenuation part shown in FIG. When the length of an amplification optical fiber is 12 m, it is a figure which shows the relationship of the wavelength of an optical signal and gain after 16 branching.
  • FIG. 1 is a view showing a configuration example of an optical amplification device according to a first embodiment of the present invention.
  • the optical amplification device 10 includes an input port 11, an amplification optical fiber 12, optical couplers 13 and 14, optical isolators 15 and 16, an excitation light mixer 17, photodiodes 18 and 19, a laser diode 20, A control circuit 21, a gain equalizer 22, and an output port 23 are provided.
  • the input port 11 is formed of, for example, an optical connector or the like, and inputs, for example, a C-Band wavelength division multiplexed optical signal having a wavelength band of 1530 to 1560 nm.
  • the amplification optical fiber (EYDF: Erbium Ytterbium Doped Fiber) 12 amplifies the wavelength division multiplexed optical signal by stimulated emission by excitation light generated by the laser diode 20.
  • FIG. 2 is a view showing the cross-sectional structure of the amplification optical fiber 12 and the refractive index of each part.
  • the amplification optical fiber 12 is a double clad optical fiber having a core portion 12a, a first clad portion 12b, and a second clad portion 12c.
  • the height of the refractive index of each part is in the order of the core portion 12a, the first cladding portion 12b, and the second cladding portion 12c, and the optical signal is the core portion 12a.
  • the excitation light from the laser diode 20 is propagated through the core 12a and the first cladding 12b in a multimode.
  • the core portion 12a is made of, for example, quartz glass, and erbium (Er) and ytterbium (Yb) are co-doped.
  • the first cladding portion 12 b is made of, for example, quartz glass.
  • the second cladding portion 12c is made of, for example, resin, quartz glass, or the like.
  • the length of the amplification optical fiber 12 and the absorption coefficient (the absorption coefficient in the present invention represents the absorptivity at the excitation wavelength, and more specifically, refers to the component involved in the excitation of the signal light wavelength)
  • the absorption linear product represented by the product with the peak value is set based on the conditions described later.
  • FIG. 2 exemplifies the case where the first cladding portion 12b has a circular cross-sectional shape, the present invention is not limited to the circular shape, and may be, for example, a rectangular, triangular, or star-like shape. .
  • the optical coupler 13 branches a part of the optical signal input from the input port 11 to input to the photodiode 18, and inputs the remaining to the optical isolator 15.
  • the photodiode (PD) 18 converts the optical signal branched by the optical coupler 13 into a corresponding electric signal, and supplies the electric signal to the control circuit 21.
  • the control circuit 21 converts the electric signal supplied from the photodiode 18 into an analog signal or a corresponding digital signal, and detects the light intensity of the input signal.
  • the optical isolator 15 has a function of transmitting the light from the optical coupler 13 and blocking the light of the signal wavelength band returned from the amplification optical fiber 12 and the pumping light mixer 17.
  • the laser diode (LD) 20 is formed of, for example, a multimode semiconductor laser element that generates laser light as excitation light having a wavelength of 900 nm.
  • the laser diode 20 is an uncooled semiconductor laser device having no Peltier device as a cooling device. It is also possible to use a cooled semiconductor laser device having a Peltier device.
  • the pumping light mixer 17 inputs the pumping light generated by the laser diode 20 into the amplification optical fiber 12, and propagates the inside of the core portion 12a and the inside of the first cladding portion 12b in multimode. In addition, the pumping light mixer 17 inputs the optical signal output from the optical isolator 15 into the amplification optical fiber 12, and propagates the core portion 12a in a single mode.
  • the optical isolator 16 has a function of transmitting the light from the amplification optical fiber 12 and blocking the light returned from the optical coupler 14 in the signal wavelength band.
  • the optical isolator 16 also has a function of absorbing the light of the excitation wavelength and preventing the light from propagating to the subsequent stage side.
  • the gain equalizer (EQ) 22 flattens the gain wavelength characteristic of the optical signal amplified by the amplification optical fiber 12.
  • the optical coupler 14 branches a part of the optical signal output from the gain equalizer 22 and inputs the branched optical signal to the photodiode 19 and guides the remainder to the output port 23.
  • the output port 23 is formed of, for example, an optical connector or the like, and outputs the amplified optical signal to the outside.
  • the control circuit 21 includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an analog to digital (A / D) conversion circuit, and a digital to analog (D / A) conversion circuit.
  • the CPU comprises a circuit or the like and executes operation processing with the RAM as a work area according to a program stored in the ROM, and based on the signals supplied from the photodiodes 18 and 19, the drive current of the laser diode 20 ALC (Automatic Output Power Level Control) so that the intensity of the optical signal output from the optical amplification device 10 becomes constant, or AGC (Automatic Gain Control) so that the gain becomes constant.
  • the control circuit 21 may be configured by, for example, a DSP (Digital Signal Processor) or the like.
  • the double clad type amplification optical fiber 12 in which erbium and ytterbium are co-doped is used, but the amplification optical fiber 12 generally has one wave or a single wave near 1550 to 1560 nm. It is used for amplification of an optical signal of about 2 waves. Also, in order to enhance the conversion efficiency, the length (strip length) of the amplification optical fiber 12 is generally set to 10 m or more (400 dB or more as the absorption line product of erbium).
  • FIG. 3 is a diagram showing the relationship between the power of 915 nm pump light and the conversion efficiency (PCE: Power Conversion Efficiency) of output signal light power at a wavelength of 1550 nm when the length of the amplification optical fiber 12 is changed. is there.
  • PCE Power Conversion Efficiency
  • the conversion efficiency has substantially the same characteristics, but in the case of 8 m
  • the conversion efficiency is significantly lower than in the case of 10 m or more.
  • FIG. 14 mentioned above is an amplification characteristic after 16 branches in the case where the length of the amplification optical fiber 12 is 12 m.
  • the amplification characteristic has an amplification band of about 25 nm (narrow band) around 1550 to 1560 nm.
  • FIG. 4 is a diagram showing the results of measurement of the relationship between the wavelength and the gain when the length of the amplification optical fiber 12 is varied between 1.8 and 7.8 m by the probe method.
  • the probe method is a means for generally and easily grasping the amplification characteristic when a wavelength multiplexed signal is input using a small number of signals. As shown in this figure, as the length of the amplification optical fiber 12 becomes longer, the amplification band on the short wavelength side moves to the right (long wavelength side) in the figure, and the characteristic narrows.
  • the double clad type amplification optical fiber 12 in which erbium and ytterbium are co-doped is set to a length shorter than the length (10 m or more) usually used to amplify a signal in the 1550 nm band.
  • amplification characteristics are broadened to a wide band (for example, about 33 nm) instead of sacrificing the characteristics near 1550 to 1560 nm, which is the highest conversion efficiency band in a sufficient length (for example, 10 m or more) ).
  • the optical amplification device 10 of the first embodiment is applied to the communication field as a light amplification device such as WDM and DWDM (Dense Wavelength Division Multiplexing), instead of the conventional EDFA (Erbium Doped Fiber Amplifier). Becomes possible. Further, since an uncooled high-power multi-mode laser diode can be used as the laser diode 20, the power consumed by the Peltier element (approximately twice the power required to drive the laser diode 20) is obtained. It becomes unnecessary and the power consumption of the optical amplification device 10 can be reduced to 1/3 or less.
  • the output obtained by using three 400mW class of cooled single-mode LDs in EDFA is about + 28.5dBm and the maximum consumption current is 12.6A, while 4W with double clad amplifier (cladding pump amplifier)
  • the output obtained using one class of uncooled multimode LD is +30 dBm and the maximum current consumption is 4.2A.
  • the size of the entire apparatus can be reduced by omitting the radiator of the Peltier element.
  • the double clad type amplification optical fiber 12 in which erbium and ytterbium are co-doped can easily obtain high gain, even when gain flattening is performed by the gain equalizer 22. A wider band and higher gain amplification can be realized than when a wavelength multiplexed signal is amplified by a conventional EDFA.
  • the optical coupler 13 branches a part of the signal and inputs the branched optical signal to the photodiode 18. Specifically, when the optical coupler 13 is a 20 dB coupler (when the branching ratio is 1/100), 1/100 of the optical signal is input to the photodiode 18 and the remaining is input to the optical isolator 15. Ru.
  • the photodiode 18 converts the input light signal into an electric signal and supplies the electric signal to the control circuit 21.
  • the control circuit 21 converts the input electric signal into an analog signal or a corresponding digital signal, and then the intensity of the optical signal input from the input port 11 according to the obtained data and the branching ratio of the optical coupler 13 Calculate
  • the optical signal that has passed through the optical isolator 15 is guided to the excitation light mixer 17.
  • the pumping light mixer 17 inputs the optical signal having passed through the optical isolator 15 into the core portion 12a of the amplification optical fiber 12, and propagates the core portion 12a in a single mode.
  • the excitation light generated by the laser diode 20 is input to the core portion 12a and the first cladding portion 12b of the amplification optical fiber 12 by the excitation light mixer 17, and the interior of the core portion 12a and the first cladding portion 12b is Propagated in mode.
  • the excitation light is absorbed by the ytterbium ion (Yb 3+ ) of the core 12 a while propagating through the amplification optical fiber 12, and the ytterbium ion indirectly excites the erbium ion (Er 3+ ).
  • the light signal propagated through the core 12a is amplified by stimulated emission from the excited erbium ions.
  • the multimode pumping light power is about 7 W to 21 W.
  • the C-Band wavelength division multiplexed optical signal having a wavelength band of 1530 to 1560 nm is amplified based on the gain characteristics shown in FIG. Specifically, for a wavelength of 1530 nm, it is amplified with a gain of about 27 dB, and for a wavelength of 1560 nm, it is amplified with a gain of about 34 dB.
  • FIG. 5 is a diagram for explaining the outline of the operation of the gain equalizer 22. As shown in FIG. 5A shows the relationship between the wavelength of the amplification optical fiber 12 and the gain. This curve corresponds to the case where the length of the amplification optical fiber 12 in FIG. 4 is 1.8 m. FIG. 5B is a diagram showing the relationship between the wavelength of the gain equalizer 22 and the gain.
  • FIG. 5C is a diagram showing the total gain of the amplification optical fiber 12 and the gain equalizer 22.
  • the gain is made constant regardless of the wavelength.
  • the wavelength division multiplexed optical signal can be amplified with a constant gain regardless of the wavelength.
  • the gain in the range of 1530 to 1560 nm after passing through the gain equalizer 22 is flat based on the 27 dB. Is about 27 dB regardless of the wavelength.
  • the optical signal that has passed through the gain equalizer 22 is input to the optical coupler 14.
  • the optical coupler 14 branches a part of the input optical signal and inputs it to the photodiode 19. Specifically, when the optical coupler 14 is a 20 dB coupler (when the branching ratio is 1/100), 1/100 of the optical signal is input to the photodiode 19 and the rest is guided to the output end 23 .
  • the optical signal that has passed through the optical coupler 14 is output from the output end 23.
  • the photodiode 19 converts the input light signal into an electric signal and supplies the electric signal to the control circuit 21.
  • the control circuit 21 converts the input electric signal into an analog signal or a corresponding digital signal, and then calculates the strength of the amplified optical signal according to the obtained data and the branching ratio of the optical coupler 14. . Then, the control circuit 21 obtains the gain of the amplification optical fiber 12 based on the intensity of the input light and the intensity of the output light which are calculated by the above-described processing. Then, based on the output light intensity and the obtained gain, the output constant control (ALC) or the constant gain control (AGC), which is control to make the output or the gain constant, is executed.
  • the control may be performed based on, for example, constant excitation current control (ACC: Automatic Current Control) or constant excitation power control (APC: Automatic Pump Power Control).
  • the double clad type amplification optical fiber 12 codoped with erbium and ytterbium has a length shorter than 10 m which is a commonly used length.
  • C-Band with a wavelength band of 1530 to 1560 nm for example, by broadening the amplification characteristic, instead of sacrificing the characteristics near 1550 to 1560 nm, which is the band with the highest conversion efficiency. It becomes possible to batch amplify a wavelength division multiplexed optical signal.
  • the power consumed by the Peltier element is not required, so that the power consumption of the optical amplification device 10 can be reduced to about 1/3 and the Peltier element By omitting the radiator of the above, it is possible to reduce the size of the entire device.
  • the laser diode 20 it is also possible to use a cooled laser diode having a Peltier element.
  • the double clad type amplification optical fiber 12 in which erbium and ytterbium are co-doped is used.
  • the amplification optical fiber 12 can easily obtain high gain. Even when gain flattening is performed by the gain equalizer 22, amplification can be realized in a wider band and higher gain than when gain is obtained by the conventional EDFA.
  • FIG. 6 is a schematic configuration diagram for explaining an example of the case where the optical amplification device of the first embodiment is applied to the optical transmission system 50.
  • the optical transmission system 50 includes the wavelength division multiplexing optical transmission apparatus 60, the transmission side optical transmission line 70, the optical amplification apparatus 10 of the first embodiment, the reception side optical transmission line 80, and the wavelength division multiplexing optical signal reception.
  • a device 90 is included.
  • the wavelength-multiplexed optical signal transmitted from the wavelength-multiplexed optical transmission device 60 is propagated through the transmission-side optical transmission line 70 and reaches the optical amplification device 10.
  • the optical amplification apparatus 10 As described above, after the wavelength-multiplexed optical signals are collectively amplified, they are propagated through the receiving-side optical transmission line 80, reach the wavelength-multiplexed optical signal receiving apparatus 90, and are multiplexed there Are separated and their respective signals are decoded. Since the optical amplification device 10 according to the first embodiment can realize high gain and low power consumption, the optical transmission system 50 using such an optical amplification device 10 improves the communication quality of the entire system, and Power consumption can be reduced to save the cost of maintaining the system.
  • FIG. 7 is a diagram for describing a configuration example of a second embodiment.
  • the parts corresponding to those in FIG. 1 are given the same reference numerals, and the description thereof will be omitted.
  • the excitation light attenuation unit 100 is added between the amplification optical fiber 12 and the optical isolator 16.
  • the excitation light attenuating unit 100 remains unused in the amplification optical fiber 12, attenuates the residual excitation light propagating through the first cladding 12b, and prevents the heat generation and damage of the optical component due to the residual excitation light.
  • FIG. 8 is a diagram showing a detailed configuration example of the excitation light attenuation unit 100.
  • FIG. 8A shows a state before the excitation light attenuation unit 100 is configured.
  • the output side end of the amplification optical fiber 12 and the end of the optical fiber 101 connected to the input side of the optical isolator 16 are joined by a fusion splice 112. More specifically, in the amplification optical fiber 12, the second cladding portion 12c having a predetermined length is excluded from the end with the end face 12d being a cut surface, and the optical fiber 101 has an end 101d having a covering portion 101c having a predetermined length from the end. Is excluded as a cutting plane.
  • the amplification optical fiber 12 and the core portion 12a and the core 101a of the optical fiber 101, and the first cladding portion 12b and the cladding portion 101b are fusion-bonded so as to be optically coupled. Thereby, the optical signal is propagated from the core portion 12a to the core 101a, and the excitation light is propagated from the first cladding portion 12b to the cladding portion 101b.
  • FIG. 8B shows a state after the excitation light attenuation unit 100 is configured.
  • the end face 12d of the amplification optical fiber 12 and the end face 101d of the optical fiber 101 it is a member having a refractive index lower than that of the first cladding portion 12b and the cladding portion 101b.
  • the polymer 103 is filled.
  • the respective materials are selected such that the following relationship is satisfied among these refractive indexes n 1 to n 5 It is done.
  • the residual excitation light propagating through the first cladding 12b of the amplification optical fiber 12 is propagated from the first cladding 12b to the cladding 101b via the fusion bond 112. .
  • the equation (1) since the relationship of n 1 ⁇ n 2 is satisfied, the residual excitation light propagating through the first cladding portion 12 b in the amplification optical fiber 12 is from the first cladding portion 12 b There is no leak outside.
  • n 2 n n 4 and as shown in the equation (1), n 3 ⁇ n 2 , so n 3 ⁇ n 2 n n 4 holds.
  • the residual excitation light propagating through the first cladding 12 b and the cladding 101 b in the low refractive index polymer 103 does not leak to the outside.
  • the residual excitation light propagating through the cladding portion 101 b in the optical fiber 101 leaks from the cladding portion 101 b to the covering portion 101 c A part is converted to heat in the covering part 101c and a part is released to the outside of the covering part 101c. For this reason, the residual excitation light is attenuated as it propagates through the cladding portion 101 b in the optical fiber 101.
  • a member for transmitting the residual excitation light to a heat sink or the like is added to the outer peripheral portion of the covering portion 101c. According to such a configuration, it is possible to quickly release the heat generated in the covering portion 101 c to the outside.
  • the residual excitation light not used in the amplification optical fiber 12 is the excitation light attenuation part It is attenuated at 100.
  • the amplification characteristic is broadened by setting the amplification optical fiber 12 to a length shorter than a length usually used to amplify a signal in the 1550 nm band, and therefore it has higher intensity than usual. Residual excitation light is generated.
  • the optical isolator 16 is configured using, for example, a magnetic garnet, and the magnetic garnet has an absorption characteristic for a 900 nm band (refer to a band of about 900 to 965 nm) which is a wavelength of excitation light. For this reason, when the excitation light attenuation section 100 is not provided, residual excitation light having a higher intensity than usual is incident on the optical isolator 16 and absorbed thereby generating heat and possibly damaging the optical isolator 16 .
  • the excitation light attenuating unit 100 it is possible to attenuate the residual excitation light to, for example, 500 mW or less which is the resistance of the optical component, thereby preventing the optical isolator 16 from being heated or damaged. it can.
  • attenuation is performed to 500 mW or less, which is the resistance of the optical component.
  • attenuation may be performed to be equal to or less than the intensity of the optical signal propagating through the core.
  • the excitation light attenuation unit 100 is provided between the amplification optical fiber 12 and the optical isolator 16, and residual excitation light output from the amplification optical fiber 12 is Since the light is attenuated, it is possible to prevent the generation of heat or damage due to the residual excitation light of the optical component such as the optical isolator 16 disposed downstream of the amplification optical fiber 12.
  • FIG. 9 is a diagram for describing a configuration example of a third embodiment.
  • the parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the optical amplification device 10B shown in FIG. 9 excludes the forward pumping laser diode 20 and the pumping light mixer 17, and the backward pumping laser diode 120 and the pumping light mixer 117 are amplified optical fibers. 12 and an optical isolator 16 are added.
  • a pumping light attenuator 100A is added between the optical isolator 15 and the amplification optical fiber 12.
  • the laser diode 120 and the excitation light mixer 117 have the same configuration as the laser diode 20 and the excitation light mixer 17, and the excitation light attenuator 100A fuses the excitation light attenuator 100 shown in FIG. The right and left sides of the unit 112 are reversed.
  • the optical fiber 101 is an optical fiber connected to the output side of the optical isolator 15.
  • the basic operation of the third embodiment is the same as that of the second embodiment shown in FIG. 8, but the third embodiment is a backward excitation type while the second embodiment is a forward excitation type.
  • the points are different. That is, in the third embodiment, excitation light of about 9 W to 14 W is emitted from the laser diode 120, and the emitted excitation light is incident from the output side of the amplification optical fiber 12 by the excitation light mixer 117. Then, the excitation light not used in the amplification optical fiber 12 is output as residual excitation light from the input side (left side in FIG. 9) of the amplification optical fiber 12.
  • Such residual excitation light is attenuated in the excitation light attenuating unit 100A and attenuated below the high power light resistance of the optical component (for example, 500 mW or less) or equivalent to the optical signal incident on the optical isolator 15. Or it is attenuated to be less than that. Therefore, it is possible to prevent the heat generation or the damage of the optical component such as the optical isolator 15 due to the residual excitation light.
  • FIG. 10 is a diagram for describing a configuration example of a fourth embodiment.
  • each of the forward excitation type optical amplification device 10A and the backward excitation type optical amplification device 10B constituting the fourth embodiment is the same as that described above.
  • the backward excitation type optical amplification device 10B having excellent high output characteristics is provided at the rear stage. It is arranged and amplified to reach a predetermined power.
  • the residual excitation light is attenuated to 500 mW or less or equivalent to or less than the optical signal. Therefore, it is possible to prevent the heat generation and the damage of the optical component such as the optical isolator disposed at the subsequent stage.
  • the gain equalizer 22 is provided in each of the amplification devices.
  • the gain equalizer 22 is provided in any one of the forward excitation optical amplification device 10A and the backward excitation optical amplification device 10B.
  • it may be provided in the front stage of the amplification optical fiber 12 of the forward excitation type optical amplification device 10A.
  • the gain characteristics of optical signals of a plurality of wavelengths included in the wavelength division multiplexed optical signal output from the backward excitation type optical amplification device 10B may be flat (the optical signal of each wavelength Characteristics should be set so that the
  • FIG. 11 shows a configuration example of the fifth embodiment.
  • an excitation light mixer 117 is added as compared with FIG. Further, excitation light attenuation sections 102 to 107 are connected to output ends 117b to 117g of residual excitation light of the excitation light mixer 117, respectively.
  • the other configuration is the same as that of FIG.
  • the excitation light mixer 117 is used for introducing excitation light into the amplification optical fiber 12, and in the fifth embodiment, used for extracting and attenuating residual excitation light. Do.
  • FIG. 12 shows a detailed configuration example of the excitation light mixer 117.
  • the excitation light mixer 117 has an output end 117a from which an optical signal is output, and output ends 117b to 117g from which residual excitation light is output.
  • An optical signal propagating through the core portion 12 a of the amplification optical fiber 12 is output from the output end 117 a and input to the isolator 16.
  • the residual excitation light output from the first cladding portion 12b of the amplification optical fiber 12 is output from the output ends 117b to 117g.
  • the output end 117a is constituted by a single mode fiber, and the output ends 117b to 117g are constituted by a multimode fiber.
  • excitation light attenuating units 102 to 107 for attenuating the residual excitation light from the laser diode 20 are connected to the output ends 117f to 117g, respectively.
  • FIG. 13 is a side sectional schematic view showing a configuration example of the excitation light attenuating parts 102 to 107 shown in FIG. Since the excitation light attenuation units 102 to 107 have the same configuration, the excitation light attenuation unit 102 will be described as an example here.
  • the excitation light attenuation unit 102 includes a heat sink 102b having a groove 102c for accommodating the end E1 of the output end 117b and the optical fiber covering in the vicinity thereof, a high refractive index polymer 102f, And a lid 102a covering the groove 102c.
  • the end E1 of the output end 117b is a bare fiber portion exposed by removing the second cladding of the output end 117b.
  • the heat sink 102b absorbs the residual excitation light leaked from the end E1 accommodated inside the groove 102c and converts it into heat, and dissipates the heat resulting from the residual excitation light to the outside.
  • the metal member which forms the heat sink 102b is a heat conductive high thing, Comprising: For example, it is a metal member containing aluminum, copper, iron, and at least one of nickel. Stainless steel etc. are mentioned as the example.
  • the groove 102c formed in the heat sink 102b has an accommodation groove 102d for accommodating the end E1, and a support groove 102e for supporting an optical fiber covering portion located in the vicinity of the end E1.
  • the support groove 102e is formed at the edge of the heat sink 102b, and supports the optical fiber coating near the end E1 when the end E1 is accommodated in the accommodation groove 102d.
  • the accommodation groove 102d is formed in the inner area of the edge of the heat sink 102b, and accommodates at least the end E1.
  • Such a housing groove 102d is formed deeper and wider at the bottom than the support groove 102e.
  • the end E1 can be accommodated without contacting the inner wall of the accommodation groove 102d.
  • the inner wall of the accommodation groove 102d is desirably colored in a color (for example, black) that easily absorbs light.
  • the heat sink 102b can efficiently absorb the residual excitation light from the terminal end E1.
  • the high refractive index polymer 102f of the excitation light attenuation unit 102 covers the end E1 accommodated in the accommodation groove 102d and the optical fiber coating disposed in the support groove 102e, and the termination E1 is accommodated in the accommodation groove 102d. And fix the optical fiber coating in the support groove 102e. Further, the high refractive index polymer 102 f has a refractive index higher than that of the cladding of the output end 117 b at the end E 1. Therefore, the residual excitation light propagating through the end E1 propagates from the end E1 to the high refractive index polymer 102f. As a result, the residual excitation light is emitted from the end E1, and absorbed by the heat sink 102b and the lid 102a.
  • the lid 102a is formed of, for example, a metal member including at least one of aluminum, copper, iron, and nickel. Stainless steel etc. are mentioned as the example. It is desirable that the surface of the lid 102 a facing the accommodation groove 102 d be colored in a color (for example, black) that easily absorbs light. Thereby, the lid
  • the excitation light attenuation units 103 to 107 also have the same configuration as that of the excitation light attenuation unit 102.
  • the excitation light attenuating section 102 via the output ends 117b to 117g for the excitation light not used in the amplification optical fiber 12 and becoming residual excitation light. It is incident on ⁇ 107, converted to heat and attenuated. Therefore, it is possible to prevent the heat generation or the like of the optical component such as the optical isolator 16 due to the residual excitation light outputted from the amplification optical fiber 12.
  • the excitation light attenuating parts 102 to 107 connected to the output ends 117 f to 117 g convert the residual excitation light not used in the amplification optical fiber 12 into heat. As a result, it is possible to prevent the generation of heat or damage to the optical components such as the optical isolator 16 due to the residual excitation light.
  • the excitation light mixer 117 has the six output ends 117b to 117g of residual excitation light in the above description, it goes without saying that the number may be other than this.
  • the length of the amplification optical fiber 12 is about 8 m or less, more preferably about 1.
  • the absorption line length product is approximately 300 dB for the wavelength of signal light propagating around the core of 1535 nm for erbium as the main dopant, and is 1.8 to 3.8 m. The case is in the range of approximately 30 to 150 dB.
  • the core of ytterbium when the stripe length is 8 m with respect to excitation light near 915 nm The absorption line length product at time t is approximately 3100 dB, and the absorption line length product at the core of 1.8 to 3.8 m is in the range of approximately 180 to 1500 dB. Therefore, when the concentration of the dopant is different, by setting the length of the amplification optical fiber 12 so as to obtain the above-mentioned absorption line product, it is possible to obtain the same amplification characteristic as the above-mentioned case.
  • a desired gain can be obtained at a wavelength (for example, 1530 nm in the case of C-Band) assumed to have the lowest gain in the conventional configuration. It may be set to obtain (for example, 30 dB). In the conventional configuration, if the desired gain can be secured at the wavelength with the lowest gain, the desired gain can be secured for other wavelengths even after passing through the gain equalizer 22. Alternatively, it may be set to a length (or an absorption line product) that balances the gain on the short wavelength side and the gain on the long wavelength side so that the wavelength range in which the desired gain can be obtained is the widest.
  • the absorption line length product of ytterbium may be set by the value in the core (the value for the excitation light propagating through the core) as described above, or the value for the clad propagation light as follows: It may be set.
  • the value of the clad propagation light is about 20 dB when the stripe length is 8 m and about 0.9 to 9.5 dB when the streak length is 8 m for the excitation light near 915 nm as described above. Range.
  • the wavelength of the excitation light is 915 nm
  • the absorption wavelength characteristic of ytterbium is substantially flat in the range of about 910 to 960 nm, the excitation light within this wavelength range can be treated in the same manner. it can.
  • the core portion 12a has been described using the double clad type amplification optical fiber 12 co-doped with erbium and ytterbium as an example, but thulium (Tm: Thulium), neodymium A rare earth element such as (Nd: Neodymium) or praseodymium (Pr: Praseodymium) or another substance having the same amplification action as the rare earth element may be added.
  • Tm Thulium
  • neodymium A rare earth element such as (Nd: Neodymium) or praseodymium (Pr: Praseodymium) or another substance having the same amplification action as the rare earth element may be added.
  • the amplification band is different from the above embodiments, the same effect as that of the present invention can be obtained.
  • the gain equalizer 22 is used. However, when the gain of the amplification optical fiber 12 is substantially flat, the gain equalizer 22 may be omitted. Alternatively, the gain equalizer 22 may be an independent configuration not included in the optical amplification device 10. In each of the above-described embodiments, the gain equalizer 22 is provided between the optical isolator 16 and the optical coupler 14. However, for example, the gain equalizer 22 may be provided downstream of the optical coupler 14. In addition, a gain equalizer 22 may be installed on the input side of EYDF centering on EYDF, or a configuration may be considered in which EYDF is divided into two and gain equalizer 22 is installed in the middle stage to realize higher output. Be
  • the first embodiment shown in FIG. 1 has been described as an example of using it as an optical amplification device, but it is used as an optical amplification device shown in FIGS. It goes without saying that it is also good.
  • the optical amplification device 10 is configured only with a booster amplifier, but, for example, in order to improve NF (Noise Figure) as a noise figure, for example, a preamplifier provided in front of the booster amplifier After amplification according to V., amplification may be further performed by a booster amplifier.
  • NF Noise Figure
  • Input port (input part) 12 amplification optical fiber (double clad type optical fiber) DESCRIPTION OF SYMBOLS 12a core part 12b 1st clad part 12c 2nd clad part 13, 14 coupler 15, 16 optical isolator 17 excitation light mixer 18, 19 photodiode 20 laser diode (laser light source) 21 control circuit 22 gain equalizer 23 output port (output section) 50 optical transmission system 60 wavelength multiplexed optical signal transmitter (optical transmitter) 70 transmission side optical transmission line 80 reception side optical transmission line 90 wavelength multiplexed optical signal receiving apparatus (optical receiving apparatus) 100 excitation light attenuating part (attenuating part) 102 to 107 excitation light attenuating section (attenuating section)

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

 波長分割多重光信号を一括して増幅可能な光増幅装置を提供すること。 波長分割多重光信号を入力する入力部(入力ポート11)と、マルチモードレーザ光を発生するレーザ光源(レーザダイオード20)と、クラッド部にマルチモードレーザ光が入力され、希土類元素が添加されたコア部に波長分割多重光信号が入力され、マルチモードレーザ光による誘導放出によって波長分割多重光信号に含まれる複数の波長の光信号を増幅して出力するダブルクラッド型の光ファイバ(増幅光ファイバ12)と、前記ダブルクラッド型の光ファイバによる増幅後の前記波長分割多重光信号の利得特性を平坦化する利得等化器(利得等化器22)と、増幅された波長分割多重光信号を出力する出力部(出力ポート23)と、を有する。

Description

光増幅装置および光伝送システム
 本発明は、光通信分野等に適用される光増幅装置および光伝送システムに関するものである。
 近年、FTTx(Fiber To The x)と呼ばれる、ユーザ宅向けの光ファイバ通信網が社会に浸透している。このような光ファイバ通信網では、伝送路の伝送損失を補償するとともに、複数の加入者に光信号を分配するための分配器における分配損失を補償する目的で、光増幅装置が使用される。
 このような光増幅装置としては、例えば、光増幅物質としてエルビウムがコア部に添加された光ファイバに、映像信号等の光信号を入力するとともに、励起光源からの励起光を入力することにより、光信号を増幅するファイバ型光増幅装置(EDFA:Erbium Doped Fiber Amplifier)が知られている。近年では、さらに、吸収帯域としてワット級出力の高出力レーザが励起光源として適用できるイッテルビウム(Ytterbium)をコア部に添加することが行われている。また、コア部において結合可能な励起光強度を高めるために、光信号をコア部内にシングルモード伝搬させ、出力の高いマルチモードレーザ光源からの励起光を、コア部を囲むクラッド部内にマルチモード伝搬させるダブルクラッド型の光ファイバを使用することも行われている(特許文献1参照)。
 エルビウムおよびイッテルビウムを添加した光ファイバを用いた光増幅装置は、当該光ファイバにおける変換効率が高い1550~1560nm帯域内の1波もしくは2波程度の光信号を増幅する目的で使用されることが多い。図14は、このような光増幅装置の出力を16分岐した後の増幅特性を示す図である。この図の横軸は光信号の波長を示し、縦軸は光出力を示している。この例は、1550nmの信号を増幅した光スペクトルである。
特開2008-53294号
 ところで、前述したエルビウムおよびイッテルビウムを添加した光ファイバを用いた光増幅装置は、一般的に1550~1560nm帯の波長域の信号が広く使われているFTTxシステムに適用されてきたが、増幅帯域幅は広くても25nm程度である。しかし、通信分野で使われる波長分割多重(WDM:Wavelength Division Multiplexing)したC-Band全域(1530~1560nm)の光信号を一括して増幅するためには、帯域幅が狭いという問題点がある。
 そこで、本発明が解決しようとする課題は、従来より広帯域な波長分割多重光信号を一括して増幅可能な光増幅装置を提供することにある。
 上記課題を解決するため、本発明は、波長分割多重光信号を増幅する光増幅装置において、前記波長分割多重光信号を入力する入力部と、マルチモードレーザ光を発生するレーザ光源と、クラッド部に前記マルチモードレーザ光が入力され、希土類元素が添加されたコア部に前記波長分割多重光信号が入力され、前記マルチモードレーザ光による誘導放出によって前記波長分割多重光信号に含まれる複数の波長の光信号を増幅して出力するダブルクラッド型の光ファイバと、前記ダブルクラッド型の光ファイバによる増幅後の前記波長分割多重光信号の利得特性を平坦化する利得等化器と、増幅された前記波長分割多重光信号を出力する出力部と、を有することを特徴とする。
 このような構成によれば、波長分割多重光信号を一括して増幅可能となる。
 また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバから出力される残留励起光を減衰させる減衰部を有することを特徴とする。
 このような構成によれば、残留励起光によって光学部品が発熱したり、損傷したりすることを防止できる。
 また、他の発明は、上記発明に加えて、前記コア部には、前記希土類元素として、エルビウムとイッテルビウムが共添加されていることを特徴とする。
 このような構成によれば、ワット級出力の高出力レーザを励起光源として適用することが可能となる。
 また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、当該光ファイバの条長と吸収係数の所定波長帯におけるピーク値との積で表される吸収条長積が、前記波長分割多重光信号を構成する全ての波長に対して所定の利得を有する吸収条長積に設定されていることを特徴とする。
 この構成によれば、吸収条長積を適切に設定することにより、十分な吸収条長積を有する場合に最も変換効率が高い波長帯域を多少犠牲にすることにより、波長分割多重光信号を構成する全ての波長の光信号に対してゲインを有することができる。
 また、他の発明は、上記発明に加えて、前記波長多重光信号は、1528~1570nmの波長帯域内にあることを特徴とする。
 このような構成によれば、C-Bandの波長分割多重光信号を一括増幅することが可能となる。
 また、他の発明は、上記発明に加えて、前記マルチモードレーザ光は、910~960nmの波長範囲内にあることを特徴とする。
 このような構成によれば、種々のマルチモードレーザ光源を用いることができる。
 また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、前記エルビウムの前記コア部における吸収条長積が1535nm近傍の波長について略300dB以下に設定されていることを特徴とする。
 このような構成によれば、全ての波長の光信号に対して所定のゲインを持たせることができる。
 また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、前記エルビウムの前記コア部における吸収条長積が1535nm近傍の波長について略30~150dBの範囲に設定されていることを特徴とする。
 このような構成によれば、例えば、C-Bandの波長分割多重光信号を構成する全ての波長の光信号に対して所定のゲインを持たせるとともに、増幅効率を高めることができる。
 また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、前記イッテルビウムの前記クラッド部における吸収条長積が915nm近傍の波長について略20dB以下に設定されていることを特徴とする。
 この構成によれば、全ての波長の光信号に対して所定のゲインを持たせることができる。
 また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、前記イッテルビウムの前記クラッド部における吸収条長積が915nm近傍の波長について略0.9~9.5dBの範囲に設定されていることを特徴とする。
 この構成によれば、例えば、C-Bandの波長分割多重光信号を構成する全ての波長の光信号に対して所定のゲインを持たせるとともに、増幅効率を高めることができる。
 また、本発明の光伝送システムは、波長分割多重光信号を送信する光送信装置と、前記光送信装置から送信された波長分割多重光信号を増幅する光増幅装置であって、前記波長分割多重光信号を入力する入力部と、マルチモードレーザ光を発生するレーザ光源と、クラッド部に前記マルチモードレーザ光が入力され、希土類元素が添加されたコア部に前記波長分割多重光信号が入力され、前記マルチモードレーザ光による誘導放出によって前記波長分割多重光信号に含まれる複数の波長の光信号を増幅して出力するダブルクラッド型の光ファイバと、前記ダブルクラッド型の光ファイバによる増幅後の前記波長分割多重光信号の利得特性を平坦化する利得等化器と、増幅された前記波長分割多重光信号を出力する出力部と、を有することを特徴とする光増幅装置と、前記光増幅装置によって増幅された前記波長分割多重光信号を受信する光受信装置と、を有することを特徴とする。
 このような構成によれば、伝送システムの通信品質を高めるとともに、消費電力を削減して、システムの維持に必要な経費を節約することができる。
 本発明の光増幅装置および光伝送システムによれば、波長分割多重光信号を一括して増幅可能となる。
本発明の第1実施形態の光増幅装置の構成例を示すブロック図である。 図1に示す増幅光ファイバの断面構造と各部位の屈折率を示す図である。 増幅光ファイバの長さを変化させた場合の励起光の強度と変換効率との関係を示す図である。 増幅光ファイバの長さを1.8~7.8mの間で変化させた場合の光信号の波長とゲインとの関係を示す図である。 利得等化器の動作を説明する図である。 本実施形態の光増幅装置を適用した光伝送システムの構成例を示す図である。 本発明の第2実施形態の光増幅装置の構成例を示すブロック図である。 図7に示す励起光減衰部の詳細な構成例を示す図である。 本発明の第3実施形態の光増幅装置の構成例を示すブロック図である。 本発明の第4実施形態の光増幅装置の構成例を示すブロック図である。 本発明の第5実施形態の光増幅装置の構成例を示すブロック図である。 図11に示す励起光混合器の構成例を示す図である。 図11に示す励起光減衰部の構成例を示す図である。 増幅光ファイバの長さが12mである場合において、16分岐後の光信号の波長とゲインとの関係を示す図である。
 次に、本発明の実施形態について説明する。
(A)第1実施形態の構成
 図1は本発明の第1実施形態の光増幅装置の構成例を示す図である。この図に示すように、光増幅装置10は、入力ポート11、増幅光ファイバ12、光カプラ13,14、光アイソレータ15,16、励起光混合器17、フォトダイオード18,19、レーザダイオード20、制御回路21、利得等化器22、および、出力ポート23を有している。
 入力ポート11は、例えば、光コネクタ等によって構成され、例えば、波長帯域が1530~1560nmであるC-Bandの波長分割多重光信号を入力する。増幅光ファイバ(EYDF:Erbium Ytterbium Doped Fiber)12は、波長分割多重光信号を、レーザダイオード20によって発生された励起光による誘導放出によって増幅する。
 図2は、増幅光ファイバ12の断面構造と、各部の屈折率を示す図である。図2に示すように、増幅光ファイバ12は、コア部12a、第1クラッド部12b、および、第2クラッド部12cを有するダブルクラッド型の光ファイバである。また、図2の下に示すように、各部の屈折率の高さは、コア部12a、第1クラッド部12b、および、第2クラッド部12cの順になっており、光信号は、コア部12aをシングルモードで伝搬され、レーザダイオード20からの励起光は、コア部12aと第1クラッド部12bをマルチモードで伝搬される。コア部12aは、例えば、石英ガラスによって構成され、エルビウム(Er)とイッテルビウム(Yb)とが共添加されている。第1クラッド部12bは、例えば、石英ガラスによって構成されている。第2クラッド部12cは、例えば、樹脂や石英ガラス等によって構成されている。増幅光ファイバ12の条長と、吸収係数(本発明における吸収係数は、励起波長での吸収率を表し、より詳しくは信号光波長の励起に加担する成分を指すものとする)の所定波長のピーク値との積で表される吸収条長積は、後述する条件に基づいて設定されている。なお、図2は、第1クラッド部12bが円形の断面形状を有する場合を例に挙げているが、円形に限らず、例えば、矩形、三角形、または、星形等の形状であってもよい。
 光カプラ13は、入力ポート11から入力された光信号の一部を分岐してフォトダイオード18に入力し、残りを光アイソレータ15に入力する。フォトダイオード(PD)18は、光カプラ13によって分岐された光信号を対応する電気信号に変換し、制御回路21に供給する。なお、制御回路21では、フォトダイオード18から供給された電気信号をアナログもしくは対応するデジタル信号に変換し、入力信号の光強度を検出する。
 光アイソレータ15は、光カプラ13からの光を透過させ、増幅光ファイバ12と励起光混合器17から戻ってくる信号波長帯域の光を遮断する機能を有する。レーザダイオード(LD)20は、例えば、波長が900nm帯域の励起光としてのレーザ光を発生するマルチモード半導体レーザ素子によって構成される。なお、レーザダイオード20は、冷却素子としてのペルチェ素子を有しないアンクールド(uncooled)型の半導体レーザ素子である。なお、ペルチェ素子を有するクールド型の半導体レーザ素子を用いることも可能である。
 励起光混合器17は、レーザダイオード20によって発生された励起光を、増幅光ファイバ12に入力し、コア部12a内と第1クラッド部12b内とをマルチモードで伝搬させる。また、励起光混合器17は、光アイソレータ15から出力された光信号を、増幅光ファイバ12に入力し、コア部12a内をシングルモードで伝搬させる。
 光アイソレータ16は、信号波長帯域については、増幅光ファイバ12からの光を透過させ、光カプラ14から戻ってくる光を遮断する機能を有する。また、光アイソレータ16は、励起波長の光も吸収し、後段側に伝搬するのを防ぐ機能も有する。利得等化器(EQ)22は、増幅光ファイバ12によって増幅された光信号の利得波長特性を平坦化する。光カプラ14は、利得等化器22から出力される光信号の一部を分岐してフォトダイオード19に入力し、残りを出力ポート23に導く。出力ポート23は、例えば、光コネクタ等によって構成され、増幅された光信号を外部に対して出力する。
 制御回路21は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、A/D(Analog to Digital)変換回路、および、D/A(Digital to Analog)変換回路等によって構成され、CPUがROMに格納されているプログラムに応じて、RAMをワークエリアとして演算処理を実行し、フォトダイオード18,19から供給される信号に基づいて、レーザダイオード20の駆動電流を制御することにより、光増幅装置10から出力される光信号の強度が一定になるようにALC(Automatic Output Power Level Control)、または、利得が一定となるようにAGC(Automatic Gain Control)を実行する。なお、制御回路21は、例えば、DSP(Digital Signal Processor)等によって構成するようにしてもよい。
(B)第1実施形態の動作
 以下では、第1実施形態の動作の概要を説明した後、詳細な動作を説明する。第1実施形態では、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を使用しているが、当該増幅光ファイバ12は、一般的には、1550~1560nm付近の1波または2波程度の光信号の増幅に使用される。また、変換効率を高めるために、増幅光ファイバ12の長さ(条長)は、10m以上(エルビウムの吸収条長積にして400dB以上)に設定されることが一般的である。図3は、増幅光ファイバ12の長さを変化させた場合における、915nmの励起光のパワーと、波長1550nmの出力信号光パワーの変換効率(PCE:Power Conversion Efficiency)との関係を示す図である。この図に示すように、増幅光ファイバ12の長さが、10m以上である場合(10m,12m,14mの場合)には、変換効率は略同じ特性を有しているが、8mの場合には10m以上の場合に比較すると変換効率が顕著に低くなっている。
 前述した図14は、増幅光ファイバ12の長さが12mである場合における16分岐後の増幅特性である。このように、増幅光ファイバ12の長さが10m以上である場合には、増幅特性は1550~1560nm付近に25nm程度の増幅帯域を有する(狭帯域)な特性となる。
 図4は、増幅光ファイバ12の長さを1.8~7.8mの間で変化させた場合の波長とゲインの関係をプローブ法によって実測した結果を示す図である。プローブ法は、一般的に波長多重信号を入力した場合の増幅特性を少数の信号を用いて容易かつ正確に把握する手段である。この図に示すように、増幅光ファイバ12の長さが長くなるにつれて、短波長側の増幅帯域が図の右側(長波長側)に移動し、特性が狭帯域化する。
 そこで、本願では、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を、1550nm帯の信号を増幅するために通常使用される長さ(10m以上)よりも短い長さに設定することにより、十分な長さ(例えば、10m以上)において最も変換効率が高い帯域である1550~1560nm付近の特性は多少犠牲にする代わりに、増幅特性を広帯域化(例えば、33nm程度に広帯域化)する。これにより、例えば、波長帯域が1530~1560nmであるC-Bandの波長分割多重光信号を一括増幅することが可能となる。なお、この場合、1528~1570nmの波長帯域において、実用的な利得を得ることができる。その結果、第1実施形態の光増幅装置10を、WDMおよびDWDM(Dense Wavelength Division Multiplexing)等の光増幅装置として、従来のEDFA(Erbium Doped Fiber Amplifier)に代替して、通信分野に適用することが可能になる。また、レーザダイオード20としてアンクールド型の高出力マルチモードレーザダイオードを使用することができることから、ペルチェ素子によって消費される電力(レーザダイオード20を駆動するために必要な電力の約2倍の電力)が不要になり、光増幅装置10の消費電力を1/3以下に減少させることができる。消費電力の一例として、1波のアンプの例を示す。EDFAで冷却型シングルモードLDの400mW級を3個使用して得られる出力は、約+28.5dBmで最大消費電流は12.6Aであるのに対し、ダブルクラッド型アンプ(クラッドポンプアンプ)で4W級の非冷却マルチモードLD1個を使用して得られる出力は+30dBmで最大消費電流は4.2Aである。また、ペルチェ素子の放熱器を省略することにより、装置全体のサイズを縮小することができる。さらに、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12は、高利得を簡単に得ることができることから、利得等化器22によって利得の平坦化を行った場合であっても、従来のEDFAで波長多重信号を増幅した場合よりも広帯域かつ高利得の増幅を実現できる。
 つぎに、第1実施形態の詳細な動作について説明する。
 第1実施形態では、一例として、波長帯域が1530~1560nmであるC-Bandの波長分割多重光信号を増幅する場合を例に挙げて説明する。波長分割多重光信号が入力ポート11から入力されると、光カプラ13は、その一部を分岐してフォトダイオード18に入力する。具体的には、光カプラ13が20dBカプラである場合(分岐比が1/100である場合)には、光信号の1/100がフォトダイオード18に入力され、残りが光アイソレータ15に入力される。
 フォトダイオード18は、入力された光信号を電気信号に変換し、制御回路21に供給する。制御回路21は、入力された電気信号をアナログ信号または対応するデジタル信号に変換した後、得られたデータと、光カプラ13の分岐比とに応じて入力ポート11から入力された光信号の強度を算出する。
 光アイソレータ15を通過した光信号は、励起光混合器17に導かれる。励起光混合器17は、光アイソレータ15を通過した光信号を増幅光ファイバ12のコア部12aに入力し、コア部12a内をシングルモードで伝搬させる。一方、レーザダイオード20が発生した励起光は、励起光混合器17により、増幅光ファイバ12のコア部12aと第1クラッド部12bに入力され、コア部12aと第1クラッド部12bの内部をマルチモードで伝搬される。励起光は、増幅光ファイバ12を伝搬しながら、コア部12aのイッテルビウムイオン(Yb3+)に吸収され、イッテルビウムイオンが間接的にエルビウムイオン(Er3+)を励起する。コア部12aを伝搬される光信号は、励起されたエルビウムイオンからの誘導放出によって増幅される。なお、本実施形態および後述する第2の実施形態では、マルチモードの励起光パワーは、7W~21W程度となっている。
 このとき、増幅光ファイバ12の長さが1.8mに設定されている場合であって、光信号の強度が-3dBmであるときには、図4の実線で示すような増幅特性を有することから、波長帯域が1530~1560nmであるC-Bandの波長分割多重光信号は、図4に示すゲイン特性に基づいて増幅される。具体的には、1530nmの波長に対しては約27dBのゲインで増幅され、1560nmの波長に対しては約34dBのゲインで増幅される。
 増幅光ファイバ12によって増幅された光信号は、光アイソレータ16を介して利得等化器22に導かれる。利得等化器22では、対象となる帯域内における各波長の利得の平坦化が実行される。図5は、利得等化器22の動作の概略を説明する図である。図5(A)は、増幅光ファイバ12の波長とゲインとの関係を示す図である。なお、この曲線は、図4の増幅光ファイバ12の長さが1.8mの場合に対応している。図5(B)は、利得等化器22の波長とゲインの関係を示す図である。この図に示すように、利得等化器22の波長とゲインの関係を示す曲線は、図5(A)に示す増幅光ファイバ12の特性を示す曲線と逆のゲイン特性を有している。図5(C)は、増幅光ファイバ12と利得等化器22のトータルのゲインを示す図である。この図に示すように、増幅光ファイバ12と利得等化器22の双方を通過することにより、ゲインは波長によらず一定とされる。このように、利得等化器22を用いることにより、波長分割多重光信号をその波長によらず一定のゲインで増幅することができる。なお、図4の例では、1530~1560nmの範囲では、1530nmに対するゲインが約27dBで最も低いことから、利得等化器22通過後の1530~1560nmの範囲のゲインは、当該27dBを基準として平坦化され、波長によらず約27dB程度となる。
 利得等化器22を通過した光信号は、光カプラ14に入力される。光カプラ14は、入力された光信号の一部を分岐してフォトダイオード19に入力する。具体的には、光カプラ14が20dBカプラである場合(分岐比が1/100である場合)には、光信号の1/100がフォトダイオード19に入力され、残りが出力端23に導かれる。光カプラ14を通過した光信号は、出力端23から出力される。
 フォトダイオード19は、入力された光信号を電気信号に変換し、制御回路21に供給する。制御回路21は、入力された電気信号をアナログ信号または対応するデジタル信号に変換した後、得られたデータと、光カプラ14の分岐比とに応じて、増幅後の光信号の強度を算出する。そして、制御回路21は、前述した処理によって算出した入力光の強度と、出力光の強度に基づいて、増幅光ファイバ12のゲインを求める。そして、出力光強度や求めたゲインに基づいて、出力または利得が一定になるようにする制御である出力一定制御(ALC)や利得一定制御(AGC)を実行する。なお、これ以外にも、励起電流一定制御(ACC:Automatic Current Control)または励起パワー一定制御(APC:Automatic Pump Power Control)等に基づいて制御するようにしてもよい。
 以上に説明したように、本発明の第1実施形態によれば、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を、通常使用される長さである10mよりも短い長さに設定し、最も変換効率が高い帯域である1550~1560nm付近の特性を多少犠牲にする代わりに、増幅特性を広帯域化することにより、例えば、波長帯域が1530~1560nmであるC-Bandの波長分割多重光信号を一括増幅することが可能となる。
 また、レーザダイオード20としてアンクールド型を使用する場合は、ペルチェ素子によって消費される電力が不要になることから、光増幅装置10の消費電力を1/3程度に減少させることができるとともに、ペルチェ素子の放熱器を省略することにより、装置全体のサイズを縮小することができる。もちろん、レーザダイオード20として、ペルチェ素子を有するクールド型のレーザダイオードを使用することも可能である。
 また、第1実施形態では、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を使用しているが、当該増幅光ファイバ12は、高利得を簡単に得ることができることから、利得等化器22によって利得の平坦化を行った場合であっても、従来のEDFAで利得を得る場合よりも広帯域かつ高利得の増幅を実現できる。
 図6は、第1実施形態の光増幅装置を光伝送システム50に適用した場合の一例を説明する概略構成図である。この図の例では、光伝送システム50は、波長多重光送信装置60、送信側光伝送路70、第1実施形態の光増幅装置10、受信側光伝送路80、および、波長多重光信号受信装置90を有している。この例では、波長多重光送信装置60から送信された波長多重光信号は、送信側光伝送路70を伝搬されて光増幅装置10に到達する。光増幅装置10では、前述したように、波長多重光信号が一括増幅された後、受信側光伝送路80を伝搬されて波長多重光信号受信装置90に到達し、そこで多重化されている信号が分離され、それぞれの信号が復号される。第1実施形態の光増幅装置10は、高利得および低消費電力を実現することができることから、このような光増幅装置10を用いた光伝送システム50では、システム全体の通信品質を高めるとともに、消費電力を削減して、システムの維持に必要な経費を節約することができる。
(C)第2実施形態
 図7は、第2実施形態の構成例について説明するための図である。なお、この図7において、図1と対応する部分には同一の符号を付してあるのでその説明は省略する。図7に示す光増幅装置10Aでは、図1と比較すると、増幅光ファイバ12と光アイソレータ16との間に励起光減衰部100が追加されている。
 励起光減衰部100は、増幅光ファイバ12において使用されずに残留し、第1クラッド部12bを伝搬する残留励起光を減衰させ、残留励起光による光部品の発熱や損傷を防止する。
 図8は、励起光減衰部100の詳細な構成例を示す図である。図8(a)は励起光減衰部100を構成する前の状態を示している。この例では、増幅光ファイバ12の出力側端部と、光アイソレータ16の入力側に接続される光ファイバ101の端部とが融着部112により接合されている。より詳細には、増幅光ファイバ12は、端部から所定長の第2クラッド部12cが端面12dを切断面として除外され、また、光ファイバ101は端部から所定長の被覆部101cが端面101dを切断面として除外されている。そして、増幅光ファイバ12および光ファイバ101のコア部12aとコア101a、および、第1クラッド部12bとクラッド部101bが光学的に結合するように融着接続されている。これにより、光信号はコア部12aからコア101aへと伝搬され、また、励起光は第1クラッド部12bからクラッド部101bへと伝搬される。
 図8(b)は励起光減衰部100が構成された後の状態を示している。この図に示すように、増幅光ファイバ12の端面12dと光ファイバ101の端面101dの間には、第1クラッド部12bおよびクラッド部101bよりも屈折率が低い部材である、例えば、低屈折率ポリマー103が充填されている。なお、増幅光ファイバ12の第2クラッド部12cの屈折率をnとし、第1クラッド部12bの屈折率をnとし、低屈折率ポリマー103の屈折率をnとし、光ファイバ101のクラッド部101bの屈折率をnとし、被覆部101cの屈折率をnとした場合、これらの屈折率n~nの間には、以下の関係が成立するように各素材が選定されている。
 n≒n<n  ・・・(1)
 n≒n    ・・・(2)
 n<n    ・・・(3)
 図8(b)に破線で示すように、増幅光ファイバ12の第1クラッド部12bを伝搬する残留励起光は、融着部112を介して第1クラッド部12bからクラッド部101bに伝搬される。ここで、式(1)に示すように、n<nの関係が成立することから、増幅光ファイバ12内の第1クラッド部12bを伝搬する残留励起光は、第1クラッド部12bから外部に漏れることはない。また、式(2)に示すようにn≒nであり、式(1)に示すようにn<nであるので、n<n≒nが成立する。このため、低屈折率ポリマー103内の第1クラッド部12bおよびクラッド部101bを伝搬する残留励起光は外部に漏れることはない。一方、式(3)に示すように、n<nが成立することから、光ファイバ101内のクラッド部101bを伝搬する残留励起光は、クラッド部101bから被覆部101cに漏れ出し、その一部は被覆部101cにおいて熱に変換され、一部は被覆部101c外に放出される。このため、残留励起光は光ファイバ101内のクラッド部101bを伝搬するにつれて減衰される。なお、被覆部101cの外周部分に対して、残留励起光をヒートシンク等に伝達するための部材を付加するようにするのが好ましい。そのような構成によれば、被覆部101cで発生した熱を迅速に外部に逃がすことができる。
 つぎに、第2実施形態の動作について説明する。第2実施形態の基本的な動作は、図1に示す第1実施形態と同様であるが、第2実施形態では増幅光ファイバ12において使用されずに残留した残留励起光が、励起光減衰部100において減衰される。本願では、増幅光ファイバ12を、1550nm帯の信号を増幅するために通常使用される長さよりも短い長さに設定することで、増幅特性を広帯域化しているため、通常よりも高い強度を有する残留励起光が発生する。ここで、光アイソレータ16は、例えば、磁性ガーネットを用いて構成され、この磁性ガーネットは励起光の波長である900nm帯域(900~965nm程度の帯域を指す)に対する吸収特性を有している。このため、励起光減衰部100を設けない場合、通常よりも高い強度を有する残留励起光が光アイソレータ16に入射されて吸収されることから発熱し、場合によっては光アイソレータ16を損傷してしまう。しかし、励起光減衰部100を設けることで、残留励起光を、例えば、光部品の耐力である500mW以下に減衰させることができるため、光アイソレータ16が発熱したり、損傷したりすることを防止できる。なお、以上では、光部品の耐力である500mW以下に減衰させるようにしたが、例えば、コアを伝搬する光信号の強度と同等かそれ以下に減衰させるようにしてもよい。
 以上に説明したように、本発明の第2実施形態によれば、増幅光ファイバ12と光アイソレータ16との間に励起光減衰部100を設け、増幅光ファイバ12から出力される残留励起光を減衰させるようにしたので、増幅光ファイバ12の後段に配置されている光アイソレータ16等の光学部品が残留励起光によって発熱したり、損傷したりすることを防止できる。
(D)第3実施形態
 図9は、第3実施形態の構成例について説明するための図である。なお、この図9において、図1と対応する部分には同一の符号を付してあるのでその説明は省略する。図9に示す光増幅装置10Bは、図1と比較すると、前方励起用のレーザダイオード20および励起光混合器17が除外され、後方励起用のレーザダイオード120および励起光混合器117が増幅光ファイバ12と光アイソレータ16の間に付加されている。また、光アイソレータ15と増幅光ファイバ12との間に励起光減衰部100Aが付加されている。なお、レーザダイオード120および励起光混合器117は、レーザダイオード20および励起光混合器17と同様の構成とされ、また、励起光減衰部100Aは、図8に示す励起光減衰部100を融着部112を中心として左右を反転させた構成とされている。また、光ファイバ101は光アイソレータ15の出力側に接続される光ファイバである。
 つぎに、第3実施形態の動作について説明する。第3実施形態の基本的な動作は、図8に示す第2実施形態と同様であるが、第2実施形態が前方励起型であるのに対して、第3実施形態は後方励起型である点が異なっている。すなわち、第3実施形態では、レーザダイオード120から9W~14W程度の励起光が射出され、射出された励起光は、励起光混合器117によって増幅光ファイバ12の出力側から入射される。そして、増幅光ファイバ12において使用されなかった励起光は、残留励起光として増幅光ファイバ12の入力側(図9の左側)から出力される。このような残留励起光は、励起光減衰部100Aにおいて減衰され、光部品のハイパワー光耐力以下(例えば、500mW以下)に減衰されるか、または、光アイソレータ15に入射される光信号と同等またはそれ以下になるように減衰される。このため、残留励起光によって、光アイソレータ15等の光部品が発熱したり、損傷したりすることを防止できる。
(E)第4実施形態
 図10は、第4実施形態の構成例について説明するための図である。第4実施形態では、図7に示す前方励起型光増幅装置10Aから出力ポート23を除外したものと、図9に示す後方励起型光増幅装置10Bから入力ポート11を除外したものとをカスケード(直列)に接続して構成されている。
 つぎに、第4実施形態の動作について説明する。第4実施形態を構成する前方励起型光増幅装置10Aと後方励起型光増幅装置10Bのそれぞれの動作は前述した場合と同様である。第4実施形態では、雑音特性に優れた前方励起型光増幅装置10Aが前段に配置されて光信号を所定の利得で増幅した後、高出力特性に優れる後方励起型光増幅装置10Bが後段に配置されて所定のパワーに達するように増幅がなされる。なお、それぞれの光増幅装置では、前述したように、励起光減衰部100(または、励起光減衰部100A)において、例えば、500mW以下または光信号と同等もしくはそれ以下に残留励起光が減衰されるため、その後段に配置される光アイソレータ等の光学部品が発熱したり、損傷したりすることを防止できる。
 なお、以上の第4実施形態では、利得等化器22をそれぞれの増幅装置に設けるようにしたが、例えば、前方励起型光増幅装置10Aおよび後方励起型光増幅装置10Bのいずれか一方に設けるようにしたり、前方励起型光増幅装置10Aの増幅光ファイバ12の前段に設けるようにしたりしてもよい。なお、一方だけ設ける場合には、後方励起型光増幅装置10Bから出力される波長分割多重光信号に含まれる複数の波長の光信号の利得特性が平坦になるように(それぞれの波長の光信号の強度が等しくなるように)特性を設定すればよい。
(F)第5実施形態
 図11は第5実施形態の構成例を示している。なお、図11において図1と対応する部分には同一の符号を付してあるのでその説明は省略する。図11に示す光増幅装置10Cでは、図1と比較すると、励起光混合器117が追加されている。また、励起光混合器117の残留励起光の出力端117b~117gには励起光減衰部102~107がそれぞれ接続されている。これ以外の構成は図1の場合と同様である。なお、励起光混合器117は、図9と同様に、励起光を増幅光ファイバ12に導入する目的で使用するものを、第5実施形態では、残留励起光を導出して減衰する目的で使用する。
 図12は、励起光混合器117の詳細な構成例を示している。この例では、励起光混合器117は光信号が出力される出力端117aと、残留励起光が出力される出力端117b~117gを有している。増幅光ファイバ12のコア部12aを伝搬する光信号は、出力端117aから出力され、アイソレータ16に入力される。増幅光ファイバ12の第1クラッド部12bから出力された残留励起光は、出力端117b~117gから出力される。また、図中に拡大してその断面を示すように、出力端117aはシングルモードファイバによって構成され、出力端117b~117gはマルチモードファイバによって構成されている。図11の例では、出力端117f~117gには、レーザダイオード20からの残留励起光を減衰させるための励起光減衰部102~107がそれぞれ接続されている。
 図13は、図11に示す励起光減衰部102~107の構成例を示す側断面模式図である。なお、励起光減衰部102~107は同様の構成とされているので、ここでは、励起光減衰部102を例に挙げて説明する。図13に示すように、励起光減衰部102は、出力端117bの終端部E1およびその近傍の光ファイバ被覆部を収容する溝102cが形成された放熱板102bと、高屈折率ポリマー102fと、溝102cを覆う蓋102aとを有する。なお、出力端117bの終端部E1は、出力端117bの第2クラッドが除外されて露出されたベアファイバ部分である。
 放熱板102bは、溝102cの内部に収容された終端部E1から漏出する残留励起光を吸収するとともに熱に変換し、残留励起光に起因する熱を外部に放散する。なお、放熱板102bを形成する金属部材は、熱伝導性の高いものであって、例えば、アルミニウム、銅、鉄、および、ニッケルの少なくとも一つを含む金属部材である。その一例として、ステンレス鋼などがあげられる。
 放熱板102bに形成された溝102cは、終端部E1を収容する収容溝102dと、終端部E1の近傍に位置する光ファイバ被覆部を支持する支持溝102eとを有する。具体的には、支持溝102eは、放熱板102bの縁部に形成され、終端部E1を収容溝102d内に収容した場合に、この終端部E1近傍の光ファイバ被覆部を支持する。一方、収容溝102dは、放熱板102bの縁の内側領域に形成され、少なくとも終端部E1を収容する。このような収容溝102dは、支持溝102eに比して底深、かつ、幅広に形成される。この場合、終端部E1は、収容溝102dの内壁に対して接触せずに収容できる。なお、収容溝102dの内壁は、光を吸収し易い色(例えば黒色)に着色されることが望ましい。これによって、放熱板102bは、終端部E1からの残留励起光を効率的に吸収できる。
 また、励起光減衰部102の高屈折率ポリマー102fは、収容溝102dに収容された終端部E1と支持溝102eに配置された光ファイバ被覆部とを覆うとともに、終端部E1を収容溝102d内に固定し、かつ、光ファイバ被覆部を支持溝102e内に固定する。また、高屈折率ポリマー102fは、終端部E1における出力端117bのクラッドに比して屈折率が高い。したがって、終端部E1を伝搬する残留励起光は、終端部E1から高屈折率ポリマー102fに伝搬する。この結果、残留励起光は、終端部E1から放射され、放熱板102bおよび蓋102aに吸収される。
 蓋102aは、例えばアルミニウム、銅、鉄、およびニッケルの少なくとも一つを含む金属部材によって形成される。その一例として、ステンレス鋼などがあげられる。収容溝102dに対面する側の蓋102aの表面は、光を吸収し易い色(例えば黒色)に着色されることが望ましい。これにより、蓋102aは、終端部E1から除外した残留励起光を効率的に吸収できる。
 なお、励起光減衰部103~107も、励起光減衰部102と同様の構成とされている。
 つぎに、第5実施形態の動作について説明する。第5実施形態では、レーザダイオード20から出力された励起光のうち、増幅光ファイバ12で使用されずに残留励起光となったものについては、出力端117b~117gを介して励起光減衰部102~107に入射され、熱に変換されて減衰される。このため、増幅光ファイバ12から出力される残留励起光によって光アイソレータ16等の光部品が発熱等することを防止できる。このように、第5実施形態では、増幅光ファイバ12で使用されずに残留励起光となったものについては、出力端117f~117gに接続された励起光減衰部102~107によって熱に変換することから、残留励起光によって、光アイソレータ16等の光部品が発熱したり、損傷したりすることを防止できる。
 なお、以上では、励起光混合器117は、6つの残留励起光の出力端117b~117gを有するようにしたが、これ以外の数であってもよいことは言うまでもない。
(G)変形実施形態
 なお、以上の各実施形態では、波長帯域が1530~1560nmであるC-Bandの波長分割多重光信号に対しては、増幅光ファイバ12の長さを略8m以下、より望ましくは、略1.8~3.8mの範囲に設定することにより、光信号を構成する各波長に対して所定のゲインを有することができる。この場合、吸収条長積は、主要なドーパントとしてのエルビウムについては、1535nm近傍のコアを伝搬する信号光の波長に関して、条長が8mの場合が略300dBとなり、1.8~3.8mの場合が略30~150dBの範囲となる。なお、エルビウムに対してエネルギー伝達現象を利用してエルビウムの準位間で反転分布を形成させるために添加されるイッテルビウムについては、915nm近傍の励起光に関して、条長が8mのときのイッテルビウムのコアにおける吸収条長積は、略3100dBとなり、また、1.8~3.8mのときのコアにおける吸収条長積は略180~1500dBの範囲となる。従って、ドーパントの濃度が異なる場合には、前述した吸収条長積となるように増幅光ファイバ12の長さを設定することで、前述の場合と同様の増幅特性を得ることができる。なお、増幅光ファイバ12の吸収条長積または長さを設定する際には、従来の構成で、最もゲインが低くなると想定される波長(例えば、C-Bandの場合では1530nm)において所望のゲイン(例えば、30dB)が得られるように設定すればよい。従来の構成で、最もゲインが低い波長において、所望のゲインを確保できれば、利得等化器22を通過後にも、他の波長に対しては所望のゲインを確保できるからである。あるいは、所望利得が得られる波長域が最も広くなるように短波長側の利得と長波長側の利得のバランスが取れる長さ(または吸収条長積)に設定してもよい。また、ここで、イッテルビウムの吸収条長積は、前述のようにコアにおける値(コアを伝搬する励起光についての値)で設定しても良いし、次のようにクラッド伝搬光についての値で設定してもよい。クラッド伝搬光についての値は、前述と同様、915nm近傍の励起光に関して、条長が8mのときが略20dBとなり、また、1.8m~3.8mのときは略0.9~9.5dBの範囲となる。なお、本実施形態では、励起光の波長を915nmとしたが、イッテルビウムの吸収波長特性は910~960nm程度の範囲においてほぼ平坦であるため、この波長範囲内の励起光についても同様に扱うことができる。
 また、以上の各実施形態では、コア部12aにエルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を用いる場合を例に挙げて説明したが、ツリウム(Tm:Thulium)、ネオジム(Nd:Neodymium)、プラセオジウム(Pr:Praseodymium)等の希土類元素、あるいは、希土類元素と同様の増幅作用を有する他の物質を添加したりしてもよい。この場合、以上の各実施形態とは、増幅帯域は異なるが、本発明と同様の効果を得ることができる。
 また、以上の各実施形態では、利得等化器22を用いるようにしたが、増幅光ファイバ12によるゲインが略平坦である場合には、利得等化器22を省略する構成としてもよい。あるいは、利得等化器22を光増幅装置10には含まれない独立した構成としてもよい。また、以上の各実施形態では、利得等化器22を光アイソレータ16と光カプラ14の間に設けるようにしたが、例えば、光カプラ14の後段に設けるようにしてもよい。また、EYDFを中心としてEYDFより入力側に利得等化器22を設置することや、EYDFを2分してその中段に利得等化器22を設置してさらなる高出力化を実現する構成も考えられる。
 また、図6に示す実施形態では、図1に示す第1実施形態を光増幅装置として用いる場合を例に挙げて説明したが、図7,9,10,11に示す光増幅装置として用いてもよいことは言うまでもない。
 また、以上の各実施形態では、主に、C-Bandの波長分割多重光信号を増幅する場合を例に挙げて説明したが、吸収条長積を調整することにより、これ以外の波長分割多重光信号(例えば、S-Bandその他)にも対応可能であることはいうまでもない。
 また、以上の各実施形態では、光増幅装置10をブースタアンプのみの構成としたが、例えば、雑音指数としてのNF(Noise Figure)を改善するために、例えば、ブースタアンプの前段に設けたプリアンプによって増幅した後に、ブースタアンプによってさらに増幅するようにしてもよい。
 10,10A,10B,10C 光増幅装置
 11 入力ポート(入力部)
 12 増幅光ファイバ(ダブルクラッド型の光ファイバ)
 12a コア部
 12b 第1クラッド部
 12c 第2クラッド部
 13,14 カプラ
 15,16 光アイソレータ
 17 励起光混合器
 18,19 フォトダイオード
 20 レーザダイオード(レーザ光源)
 21 制御回路
 22 利得等化器
 23 出力ポート(出力部)
 50 光伝送システム
 60 波長多重光信号送信装置(光送信装置)
 70 送信側光伝送路
 80 受信側光伝送路
 90 波長多重光信号受信装置(光受信装置)
 100 励起光減衰部(減衰部)
 102~107 励起光減衰部(減衰部)

Claims (11)

  1.  波長分割多重光信号を増幅する光増幅装置において、
     前記波長分割多重光信号を入力する入力部と、
     マルチモードレーザ光を発生するレーザ光源と、
     クラッド部に前記マルチモードレーザ光が入力され、希土類元素が添加されたコア部に前記波長分割多重光信号が入力され、前記マルチモードレーザ光による誘導放出によって前記波長分割多重光信号に含まれる複数の波長の光信号を増幅して出力するダブルクラッド型の光ファイバと、
     前記ダブルクラッド型の光ファイバによる増幅後の前記波長分割多重光信号の利得特性を平坦化する利得等化器と、
     増幅された前記波長分割多重光信号を出力する出力部と、
     を有することを特徴とする光増幅装置。
  2.  前記ダブルクラッド型の光ファイバから出力される残留励起光を減衰させる減衰部を有することを特徴とする請求項1記載の光増幅装置。
  3.  前記コア部には、前記希土類元素として、エルビウムとイッテルビウムが共添加されていることを特徴とする請求項2記載の光増幅装置。
  4.  前記ダブルクラッド型の光ファイバは、当該光ファイバの条長と吸収係数の所定波長帯におけるピーク値との積で表される吸収条長積が、前記波長分割多重光信号を構成する全ての波長に対して所定の利得を有する吸収条長積に設定されていることを特徴とする請求項3記載の光増幅装置。
  5.  前記波長多重光信号は、1528~1570nmの波長帯域内にあることを特徴とする請求項4記載の光増幅装置。
  6.  前記マルチモードレーザ光は、910~960nmの波長範囲内にあることを特徴とする請求項4記載の光増幅装置。
  7.  前記ダブルクラッド型の光ファイバは、前記エルビウムの前記コア部における吸収条長積が1535nm近傍の波長について略300dB以下に設定されていることを特徴とする請求項4記載の光増幅装置。
  8.  前記ダブルクラッド型の光ファイバは、前記エルビウムの前記コア部における吸収条長積が1535nm近傍の波長について略30~150dBの範囲に設定されていることを特徴とする請求項7記載の光増幅装置。
  9.  前記ダブルクラッド型の光ファイバは、前記イッテルビウムの前記クラッド部における吸収条長積が915nm近傍の波長について略20dB以下に設定されていることを特徴とする請求項4記載の光増幅装置。
  10.  前記ダブルクラッド型の光ファイバは、前記イッテルビウムの前記クラッド部における吸収条長積が915nm近傍の波長について略0.9~9.5dBの範囲に設定されていることを特徴とする請求項9記載の光増幅装置。
  11.  波長分割多重光信号を送信する光送信装置と、
     前記光送信装置から送信された波長分割多重光信号を増幅する光増幅装置であって、前記波長分割多重光信号を入力する入力部と、マルチモードレーザ光を発生するレーザ光源と、クラッド部に前記マルチモードレーザ光が入力され、希土類元素が添加されたコア部に前記波長分割多重光信号が入力され、前記マルチモードレーザ光による誘導放出によって前記波長分割多重光信号に含まれる複数の波長の光信号を増幅して出力するダブルクラッド型の光ファイバと、前記ダブルクラッド型の光ファイバによる増幅後の前記波長分割多重光信号の利得特性を平坦化する利得等化器と、増幅された前記波長分割多重光信号を出力する出力部と、を有することを特徴とする光増幅装置と、
     前記光増幅装置によって増幅された前記波長分割多重光信号を受信する光受信装置と、
     を有することを特徴とする光伝送システム。
PCT/JP2010/069352 2010-10-29 2010-10-29 光増幅装置および光伝送システム WO2012056573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012540628A JP5416286B2 (ja) 2010-10-29 2010-10-29 光増幅装置および光伝送システム
CN201080069892.0A CN103201915B (zh) 2010-10-29 2010-10-29 光放大装置以及光传送系统
PCT/JP2010/069352 WO2012056573A1 (ja) 2010-10-29 2010-10-29 光増幅装置および光伝送システム
US13/872,405 US9160135B2 (en) 2010-10-29 2013-04-29 Optical amplifying apparatus and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069352 WO2012056573A1 (ja) 2010-10-29 2010-10-29 光増幅装置および光伝送システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/872,405 Continuation US9160135B2 (en) 2010-10-29 2013-04-29 Optical amplifying apparatus and optical transmission system

Publications (1)

Publication Number Publication Date
WO2012056573A1 true WO2012056573A1 (ja) 2012-05-03

Family

ID=45993326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069352 WO2012056573A1 (ja) 2010-10-29 2010-10-29 光増幅装置および光伝送システム

Country Status (4)

Country Link
US (1) US9160135B2 (ja)
JP (1) JP5416286B2 (ja)
CN (1) CN103201915B (ja)
WO (1) WO2012056573A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607793B1 (ja) * 2013-07-05 2014-10-15 株式会社フジクラ 光デバイスおよびファイバレーザ装置
JP2015014800A (ja) * 2014-08-28 2015-01-22 株式会社フジクラ 光デバイスおよびファイバレーザ装置
JP2015167158A (ja) * 2014-03-03 2015-09-24 日本電信電話株式会社 マルチコアファイバ増幅器
JP2016161883A (ja) * 2015-03-04 2016-09-05 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器および光通信システム
JP2016186536A (ja) * 2015-03-27 2016-10-27 株式会社フジクラ ファイバレーザ装置
JPWO2021059441A1 (ja) * 2019-09-26 2021-04-01
JPWO2021059440A1 (ja) * 2019-09-26 2021-04-01

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171208A (ja) * 2015-03-12 2016-09-23 株式会社フジクラ 光ファイバ、ファイバアンプ、及びファイバレーザ
EP3446375B1 (en) * 2016-04-21 2021-07-21 Nec Corporation Optical amplifier, optical network including the same, and method for amplifying optical signal
US11070027B2 (en) * 2016-05-16 2021-07-20 Mitsubishi Electric Corporation Variable wavelength light source and method for controlling wavelength switching of variable wavelength light source
CN110892650B (zh) * 2017-07-14 2022-12-09 日本电气株式会社 可插拔光学模块、光学通信系统以及可插拔光学模块的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331118A (ja) * 1996-03-07 1997-12-22 Lucent Technol Inc ヘテロ構造レーザ
JP2005512332A (ja) * 2001-12-07 2005-04-28 ハイウエイブ・オプティカル・テクノロジーズ 光ファイバ増幅器のモデル化方法
JP2008305840A (ja) * 2007-06-05 2008-12-18 Fujikura Ltd 光ファイバ増幅器
JP2010262988A (ja) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The 光増幅装置および光伝送システム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563259A (ja) 1991-09-03 1993-03-12 Sumitomo Electric Ind Ltd 光フアイバ増幅器
US6400497B1 (en) * 1994-11-16 2002-06-04 Oki Electric Industry Co., Ltd. Optical fiber amplifier
US6477295B1 (en) * 1997-01-16 2002-11-05 Jds Uniphase Corporation Pump coupling of double clad fibers
US5920424A (en) * 1997-02-18 1999-07-06 Lucent Technologies Inc. Article comprising a broadband optical fiber amplifier
SE522586C2 (sv) * 1998-04-01 2004-02-24 Ericsson Telefon Ab L M Optisk fiberförstärkare med förstärkningsutjämnande filter
JPH11307853A (ja) * 1998-04-27 1999-11-05 Oki Electric Ind Co Ltd 光ファイバ増幅器
US6556346B1 (en) * 1998-09-22 2003-04-29 Corning O.T.I.Spa Optical amplifying unit and optical transmission system
NZ337233A (en) 1998-09-22 2000-01-28 Pirelli Cavi E Sistemi Spa Optical amplifier, amplification fibre co-doped with erbium and ytterbium
JP2000299518A (ja) * 1999-02-10 2000-10-24 Oki Electric Ind Co Ltd 光ファイバ増幅器及びその制御方法
JP2000252559A (ja) * 1999-03-01 2000-09-14 Nec Corp ダブルクラッドファイバおよび光ファイバアンプ
US6324326B1 (en) * 1999-08-20 2001-11-27 Corning Incorporated Tapered fiber laser
WO2001024326A1 (en) * 1999-09-29 2001-04-05 Optical Technologies Italia S.P.A. Method for producing a fiber laser
US6603598B1 (en) * 1999-09-29 2003-08-05 Corning O.T.I. Inc. Optical amplifying unit and optical transmission system
FR2805899B1 (fr) 2000-03-03 2003-01-31 Cit Alcatel Amplification optique a fibre a gaine multimode en bande c
US6751241B2 (en) * 2001-09-27 2004-06-15 Corning Incorporated Multimode fiber laser gratings
JP5226164B2 (ja) 2001-06-14 2013-07-03 富士通株式会社 光増幅器
US6882776B2 (en) * 2001-11-06 2005-04-19 Intel Corporation Method and apparatus of a semiconductor-based gain equalization device for optical amplifiers
US6961502B1 (en) * 2002-03-04 2005-11-01 Inplane Photonics, Inc. Optical module including an optically lossy component and an erbium-doped waveguide for insertion between stages of an optical amplifier
JP2004047819A (ja) 2002-07-12 2004-02-12 Mitsubishi Cable Ind Ltd 光増幅装置
US20040090664A1 (en) * 2002-10-30 2004-05-13 Jian Liu Integration of gain equalization filter in a gain medium
JP3883522B2 (ja) 2003-05-09 2007-02-21 任天堂株式会社 ゲーム装置およびゲームプログラム
US7295365B2 (en) 2005-10-06 2007-11-13 Bookham Technology Plc. Optical gain flattening components, optical chips and optical amplifiers and methods employing same
US7519253B2 (en) * 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
JP4776420B2 (ja) * 2006-03-30 2011-09-21 古河電気工業株式会社 光ファイバ保護体
JP4948085B2 (ja) 2006-08-22 2012-06-06 古河電気工業株式会社 光増幅器
KR100900793B1 (ko) * 2006-12-05 2009-06-02 한국전자통신연구원 이중 클래드 구조의 이득 고정형 광 증폭기
US7437046B2 (en) * 2007-02-12 2008-10-14 Furukawa Electric North America, Inc. Optical fiber configuration for dissipating stray light
JP2009021520A (ja) 2007-07-13 2009-01-29 Furukawa Electric Co Ltd:The 光増幅装置および光伝送システム
JP2009164565A (ja) * 2007-12-13 2009-07-23 Nec Corp 利得等化器、光増幅器および光増幅方法
JP5266798B2 (ja) 2008-03-04 2013-08-21 株式会社リコー 光走査装置および画像形成装置
WO2009133734A1 (ja) * 2008-05-02 2009-11-05 オリンパス株式会社 光学的検査装置、電磁波検出方法、電磁波検出装置、生態観察方法、顕微鏡、および、内視鏡並びに光断層画像生成装置
JP5294114B2 (ja) * 2009-01-26 2013-09-18 株式会社メガオプト 光学モジュール
JP5530153B2 (ja) * 2009-03-04 2014-06-25 オリンパス株式会社 走査型光検出装置
US8027555B1 (en) * 2010-06-30 2011-09-27 Jds Uniphase Corporation Scalable cladding mode stripper device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331118A (ja) * 1996-03-07 1997-12-22 Lucent Technol Inc ヘテロ構造レーザ
JP2005512332A (ja) * 2001-12-07 2005-04-28 ハイウエイブ・オプティカル・テクノロジーズ 光ファイバ増幅器のモデル化方法
JP2008305840A (ja) * 2007-06-05 2008-12-18 Fujikura Ltd 光ファイバ増幅器
JP2010262988A (ja) * 2009-04-30 2010-11-18 Furukawa Electric Co Ltd:The 光増幅装置および光伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAJA AHMAD ET AL.: "Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber", OPTICS EXPRESS, vol. 18, no. 19, 13 September 2010 (2010-09-13), pages 19983 - 19993 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607793B1 (ja) * 2013-07-05 2014-10-15 株式会社フジクラ 光デバイスおよびファイバレーザ装置
JP2015014737A (ja) * 2013-07-05 2015-01-22 株式会社フジクラ 光デバイスおよびファイバレーザ装置
US9257810B2 (en) 2013-07-05 2016-02-09 Fujikura Ltd. Optical device and fiber laser device
JP2015167158A (ja) * 2014-03-03 2015-09-24 日本電信電話株式会社 マルチコアファイバ増幅器
JP2015014800A (ja) * 2014-08-28 2015-01-22 株式会社フジクラ 光デバイスおよびファイバレーザ装置
JP2016161883A (ja) * 2015-03-04 2016-09-05 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器および光通信システム
JP2016186536A (ja) * 2015-03-27 2016-10-27 株式会社フジクラ ファイバレーザ装置
JPWO2021059441A1 (ja) * 2019-09-26 2021-04-01
JPWO2021059440A1 (ja) * 2019-09-26 2021-04-01
WO2021059441A1 (ja) * 2019-09-26 2021-04-01 日本電信電話株式会社 光増幅器
JP7276476B2 (ja) 2019-09-26 2023-05-18 日本電信電話株式会社 光増幅器
JP7294433B2 (ja) 2019-09-26 2023-06-20 日本電信電話株式会社 光増幅器

Also Published As

Publication number Publication date
CN103201915A (zh) 2013-07-10
JPWO2012056573A1 (ja) 2014-03-20
US9160135B2 (en) 2015-10-13
CN103201915B (zh) 2016-04-06
US20130302035A1 (en) 2013-11-14
JP5416286B2 (ja) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2012056573A1 (ja) 光増幅装置および光伝送システム
Naji et al. Review of Erbium-doped fiber amplifier
JP6348535B2 (ja) ハイパワー・ダブルクラッド(dc)・ポンプ・エルビウム・ドープ・ファイバ増幅器(edfa)
CN102763291A (zh) 激光设备
Choi et al. New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA)
US7116472B2 (en) Rare-earth-doped optical fiber having core co-doped with fluorine
Mirza et al. Design of L+ U‐band Erbium‐doped fiber amplifier based on a single S‐band forward pump source
Even et al. High-power double-clad fiber lasers: a review
JP2010263026A (ja) 光増幅装置および光伝送システム
Wada et al. Full C-band and power efficient coupled-multi-core fiber amplifier
CN106067654B (zh) 一种基于1950nm激光器的远端泵浦掺铒光纤放大器
Jain et al. High spatial density 6-Mode 7-Core fibre amplifier for C-band operation
CN116053901A (zh) 一种放大器和系统
US7436583B2 (en) Optical amplification fiber, optical amplifier module, optical communication system and optical amplifying method
CN209929673U (zh) 具有抑制sbs作用的双向泵浦双包层光纤激光放大器
WO2003076979A2 (en) Split-band depressed-profile amplifier and system
JP2010262988A (ja) 光増幅装置および光伝送システム
EP1220381A2 (en) Amplification optical fiber and fiber optic amplifier including the same
CN106532419A (zh) 一种光纤拉曼激光器的远端泵浦的掺铒光纤放大器
CN105529604A (zh) 泵浦共享的光纤放大器
Ji et al. High power Er 3+/Yb 3+ co-doped fiber amplifier of fiber length optimization
Chang et al. Transmission performance comparison of hybrid fiber amplifier
US20090067037A1 (en) Optical amplification apparatus and optical communication apparatus
Liaw et al. Low noise-figure miniature erbium-doped fibre amplifier using uncooled pump laser
JP2001189510A (ja) 光ファイバアンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080069892.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858960

Country of ref document: EP

Kind code of ref document: A1