WO2012055790A1 - Echangeur de chaleur avec alimentation en fluide latérale. - Google Patents

Echangeur de chaleur avec alimentation en fluide latérale. Download PDF

Info

Publication number
WO2012055790A1
WO2012055790A1 PCT/EP2011/068472 EP2011068472W WO2012055790A1 WO 2012055790 A1 WO2012055790 A1 WO 2012055790A1 EP 2011068472 W EP2011068472 W EP 2011068472W WO 2012055790 A1 WO2012055790 A1 WO 2012055790A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
channel
cavity
outlet
input
Prior art date
Application number
PCT/EP2011/068472
Other languages
English (en)
Inventor
Sylvain Moreau
François Busson
Mohamed Ibrahimi
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to MX2013004612A priority Critical patent/MX353963B/es
Priority to JP2013534340A priority patent/JP5887352B2/ja
Priority to EP11771201.8A priority patent/EP2633255B1/fr
Priority to US13/881,333 priority patent/US9829255B2/en
Publication of WO2012055790A1 publication Critical patent/WO2012055790A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels

Definitions

  • the invention relates to the field of heat exchangers, especially for motor vehicles.
  • a heat exchanger comprising an assembly of stacked tubes, for example a plate heat exchanger consisting of an assembly of plates stacked in pairs, in a longitudinal stacking direction, to form an exchanger body intended to to the circulation of a fluid.
  • a plate heat exchanger has an intake pipe and an evacuation pipe forming part of a fluid circulation circuit considered, at least one connecting part of which extends in the direction of longitudinal stacking. Such an arrangement has a large size.
  • the invention is particularly applicable to evaporators intended for air-conditioning installations, in which the fluid circulating within the exchanger body is a refrigerant which enters the liquid phase and exits in the gas phase after heat exchange with a flow of gas. air that sweeps the exchanger body, which allows to cool the air flow, prior to the diffusion of it, for example, in a passenger compartment of a motor vehicle.
  • the known heat exchangers are not optimized, especially in terms of dimensions.
  • the invention particularly aims to overcome the aforementioned drawbacks of known heat exchangers. It aims in particular to achieve a heat exchanger of the aforementioned type having a small footprint in the longitudinal stacking direction of the tubes.
  • the invention also aims to provide such a heat exchanger having an optimized pressure drop and which is particularly suitable as an evaporator for a motor vehicle air conditioning installation.
  • the invention proposes for this purpose a heat exchanger comprising an assembly of tubes, for example constituted by an assembly of plates, stacked in a longitudinal stacking direction to form a heat exchanger body for the circulation of a first fluid, comprising a connection device arranged at one end of the exchanger body in the longitudinal stacking direction.
  • the connecting device comprises an end plate and a cover adapted to be assembled together to jointly define an inlet channel and an outlet channel, respectively, for the admission of the fluid into the exchanger body and the evacuation of the fluid from the exchanger body.
  • the inlet channel and the outlet channel open in a transverse direction substantially perpendicular to the longitudinal stacking direction.
  • the input channel and the output channel are of generally bent shape.
  • the end plate has a stamped portion having a first input pattern and a first output pattern.
  • the cover has a second input cavity and a second output cavity.
  • the inlet channel and the outlet channel each have cross sections essentially defined by the second inlet cavity and the second outlet cavity of the lid.
  • the first input pattern and the first output pattern are of reduced depth less than a substantial depth of the second input pattern and the second pattern of output.
  • the reduced depth of the first input pattern and the first input pattern is less than 1 mm, preferably less than 0.5 mm, and the substantial depth of the second input pattern and the second pattern output is less than 10 mm, preferably less than 8 mm.
  • the outlet channel has a first end opening into the exchanger body and a second end opening outwardly of the exchanger body.
  • the outlet channel has a hydraulic diameter, in any intermediate region between the first end and the second end, between a first value of hydraulic diameter at the first end of the outlet channel and a second value of hydraulic diameter at the second end of the output channel.
  • the value of the hydraulic diameter of the outlet channel increases from the first value of hydraulic diameter at the first end of the outlet channel to the second hydraulic diameter value at the second end of the outlet channel.
  • the first value of the hydraulic diameter is between 10.5 mm and 11 mm, preferably 10.8 mm
  • the second value of the hydraulic diameter is between 15 mm and 16 mm, preferably 15.6 mm. mm.
  • the outlet channel has an internal width, considered in an assembly plane of the end plate and the cover, which is greater than an internal width of the inlet channel, considered in the same plane of 'assembly.
  • the internal width of the outlet channel is between 14.5 mm and 16.8 mm, preferably close to 16 mm.
  • a stamped reservoir is interposed between the end plate and an adjacent plate of the heat exchanger body, opposite the lid, to ensure fluid communication with the inlet channel and the flow channel. exit.
  • the size of the input and output channels, considered in the stacking direction, is thus reduced. Such a reduction in size is particularly desired in the case of air conditioning evaporators for motor vehicles whose plate width, which corresponds substantially to the thickness of the exchanger body, is less than or equal to 40 mm.
  • the end plate and the cover thus form two specific components that can be assembled on a heat exchanger body known elsewhere. This results in flexibility of use since the same heat exchanger body can be used to form a heat exchanger selectively having a lateral feed or an end feed.
  • FIG. 1 is a perspective view of a heat exchanger according to the present invention
  • FIG. 2 is a perspective view of an end plate of the heat exchanger according to the present invention.
  • FIG. 3 is an exploded perspective view of the end plate of FIG. 2;
  • FIG. 4 is a side view of the end plate of FIG. 2, and
  • FIG. 1 represents a heat exchanger 10, in a perspective view, which, in the example, constitutes an evaporator for a motor vehicle air-conditioning installation.
  • the heat exchanger 10 comprises, for example, an assembly of plates 12 stacked in pairs in a longitudinal stacking direction, or first direction x, to form an exchanger body 14 delimiting internal tubes for the circulation of a fluid, preferably a refrigerant or refrigerant.
  • a fluid preferably a refrigerant or refrigerant.
  • the plates 12 are respectively formed from a stamped metal sheet, for example made of aluminum alloy, having respective assembly edges intended to be joined together, in particular by brazing, to define first circulation channels of a first fluid.
  • the first circulation channels of the first fluid in particular the refrigerant or refrigerant, alternate with circulation passages for a second fluid, preferably air, which externally scans the exchanger body 14, as represented by the arrow A in Figure 1.
  • the plates 12 include a first end boss 16 and a second end boss 18.
  • Each first end boss 16 of a plate 12 is intended to be assembled with the first end boss 16 of an adjacent plate 12, in particular by brazing.
  • each second end boss 18 of a plate 12 is intended to be assembled with the second end boss 18 of an adjacent plate 12, in particular by brazing.
  • the first end bosses 16, located in the upper part in FIG. 1 according to the exemplary embodiment, are furthermore each provided with two openings (not visible in FIG. 1) making it possible to define internally two circulation ducts (not visible in Figure 1) extending parallel to the longitudinal stacking direction of the plates 12.
  • the second end bosses 18 are made in an analogous manner and also make it possible to define two other circulation ducts internally.
  • the circulation ducts made by the openings of the first end bosses 16 and the second bosses end 18 make it possible to ensure fluid communication between the plates 12 for circulation in one or more passes.
  • Such an evaporator structure is described in document FR 2 929 388 comprising information complementary to the definition of the present invention.
  • corrugated spacers forming heat exchange fins are disposed between two pairs of adjacent plates 12, in the space between the first end bosses 16 and the second end bosses 18 respectively of the pairs of plates. 12, in the circulation passages for the second fluid to increase the heat exchange surface, between the first fluid, preferably the refrigerant or refrigerant, and the second fluid, preferably air.
  • the exchanger body 14 is provided, at one of its ends, in the longitudinal stacking direction, with a connection device 19 comprising an end plate 20, or input / output plate 20.
  • the end plate 20 is a specific plate, whose structure is different from the plates 12 forming the plate assembly 12 stacked in pairs to form a heat exchanger body 14.
  • the end plate 20 is assembled against the plate 12 located at the end of the exchanger body 14, in the longitudinal stacking direction.
  • connection device 19 also comprises a lid 22, advantageously obtained by stamping, to delimit together with the end plate 20 an inlet channel 24 and an outlet channel 26.
  • the inlet channel 24 and the outlet channel 26 are of generally bent shape.
  • the inlet channel 24 and the outlet channel 26 open internally into the exchanger body 14 and externally from the same side of the exchanger body 14 for admission and evacuation of the first fluid, as shown respectively by the arrows Fl and F2.
  • the inlet channel 24 and the outlet channel 26 open in a transverse direction y substantially perpendicular to the longitudinal stacking direction x.
  • a regulator at the border of a compartment dedicated to the engine and a compartment of cockpit, and the arrangement of one evaporator in the passenger compartment, according to an orientation in which its exchange surface extends perpendicularly to the direction of flow of air, such an orientation of the channels 24 and 26 tends to arrange the latter substantially to the right of the expander.
  • the connecting means thus making it possible to link the heat exchanger to the expander is more direct, which also leads to a reduction in the pressure drop in each of the tubes of said connecting means.
  • the longitudinal stacking direction x forms with the transverse direction y and a vertical direction z a direct dihedron.
  • the inlet channel 24 and the outlet channel 26 communicate respectively with the two circulation ducts. delimited inside the exchanger body 14 through the openings of the first end bosses 16.
  • Figures 2 to 4 show, respectively, an assembled perspective view, exploded perspective and in plan of the end plate 20. Figures 2 to 4 thus show the structure of the end plate 20 and the cover 22.
  • the end plate 20 is made by stamping a metal strip, for example aluminum alloy.
  • the end plate 20 comprises a wall 28 of generally rectangular shape, advantageously having a ribbed structure, terminated at one end (in the lower part according to FIG. 2) by an outgrowth 29 coming to bear against the second end boss 18 of the adjacent plate 12 to close the circulation ducts defined by the respective openings of the second end bosses 18.
  • the end plate 20 has a stamped portion 30 able to define, together with the cover 22, the inlet channel 24 and the outlet channel 26.
  • the stamped portion 30 has a first input cavity 32 helping to define the input channel 24 and a first output cavity 34 helping to define the output channel 26.
  • the end plate 20 also has an inlet opening 36 and an outlet opening 38, as shown in FIG. 3, provided through the embossed portion 30 to provide fluid communication with the circulation ducts made by the openings of first end bosses 16 and second end bosses 18 defined inside the exchanger body 14.
  • the first input cavity 32 and the first output cavity 34 have each substantially the shape of an arc.
  • the first inlet cavity 32 externally surrounds the first outlet recess 34 on substantially a quarter circle, as shown in FIGS. 2 to 4.
  • connection device 19 also comprises a reservoir 40, advantageously stamped.
  • the reservoir 40 has substantially the shape of the first end boss 16 of the plate 12.
  • the reservoir 40 is interposed between the end plate 20 and the plate 12 located at the end of the exchanger body 14 in the longitudinal stacking direction.
  • the reservoir 40 is arranged opposite the cover 22 with respect to the wall 28 of the end plate 20 of the connection device 19.
  • the reservoir 40 is intended to ensure fluid communication between the exchanger body 14 and the input channel 24 and the output channel 26.
  • the reservoir 40 is provided with an inlet opening 42 and an outlet opening 44.
  • the inlet opening 42 and the outlet opening 44 are respectively located in alignment with the inlet opening. 36 and the outlet opening 38 of the end plate 20, as shown in Figure 3.
  • the cover 22 has a second inlet cavity 46 and a second outlet cavity 48, preferably of substantial depth.
  • the second entrance footprint 46 and the second output fingerprint 48 are intended to come, respectively, opposite the first input fingerprint 32 and the first output fingerprint 34 to define the input channel 24 and the output channel 26 .
  • the second input cavity 46 and the second output cavity 48 also have a substantially circular arc shape.
  • the second input cavity 46 externally surrounds the second output cavity 48 on substantially a quarter circle.
  • the input channel 24 and the output channel 26 each have a substantially arcuate shape, as shown in FIGS. 2 to 4.
  • the inlet channel 24 externally surrounds the outlet channel 26 on substantially a quarter circle as seen in Figures 1 to 4.
  • Any input or output imprint that defines a path having an arcuate curvature advantageously makes it possible to reduce the pressure drop of the fluid flowing in the connection device 19.
  • such an arcuate design of the fingerprints of the connection arrangement advantageously provides a significant reduction of the pressure drop upstream and downstream of the body 14 of the exchanger 10, with respect to the direction of flow of the fluid.
  • connection device 19 is therefore composed, at least, of the end plate 20 and the cover 22.
  • connection device 19 may also be composed of the reservoir 40 for communication with the exchanger body 14.
  • the first input cavity 32 and the first output cavity 34, on the one hand, and the second input fingerprint 46 and the second output fingerprint 48, on the other hand help to define the input channel 24 and the outlet channel 26 after assembling the stamped portion 30 of the end plate 20 and the cover 22, and, alternatively, the tank 40.
  • the second inlet cavity 46 and the second outlet cavity 48 are of substantial depth with respect to the first inlet cavity 32 and the first outlet cavity 34, which have a reduced depth.
  • the first input fingerprint 32 and the first output fingerprint 34 have a stamping depth less than the stamping depth of the second input fingerprint 46 and the second print fingerprint 48.
  • the inlet channel 24 and the outlet channel 26 have internal cross-sections which are essentially defined by the second inlet indentation 46 and the second outlet recess 48 of the cover 22. therefore, the end plate 20 has a smaller footprint than the cover 22, in the longitudinal stacking direction.
  • reduced depth is also meant the fact that the depth of stamping can be practically zero, at least locally, the inlet channel 24 and the outlet channel 26 being then defined mainly by the second imprint 46 and the second outlet cavity 48 of the cover 22.
  • connection device 19 by the reduced depth of the first inlet cavity 32 and the first outlet cavity 34, does not impinge on the passage section, constituted by the circulation passages, for the second fluid passing through the exchanger body 14.
  • FIGS. 5 to 7 are sectional views respectively along the lines VV, VI-VI and VII-VII of FIG. 4.
  • the first inlet recess 32 and the first outlet recess 34 of the embossed portion 30 of the end plate 20 are delimited respectively by a first inlet bottom wall 50 and a first outlet bottom wall 52 having a substantially flat profile and connected to a first generally planar-shaped junction wall 54 which constitutes the wall 28 of the end plate 20.
  • the first input cavity 32 and the first cavity of FIG. output 34 have respective depths P 1 and P 2 , which can be equal or different.
  • the second inlet cavity 46 and the second outlet cavity 48 of the cover 22 are delimited respectively by a second inlet bottom wall 56 and a second outlet bottom wall 58.
  • the second inlet bottom wall 56 and the second outlet bottom wall 58 are substantially semicircular profile, connected to a second connecting wall 60 forming the cover 22.
  • the second inlet cavity 46 and the second outlet cavity 48 have respective depths P 3 and P 4 , which can be equal or different.
  • the first junction wall 54 and the second junction wall 60 are adapted to be assembled along a plane of junction for assembly, in particular by brazing.
  • the respective depths P 1 and P 2 of the first input cavity 32 and of the first output cavity 34 are typically less than 1 mm, preferably 0.5 mm, in particular for plates having a width L, in the transverse direction y, of the order of 35 to 40 mm.
  • the respective depths P 3 and P 4 of the second inlet cavity 46 and of the second outlet cavity 48 of the cover 22 are typically less than 10 mm, preferably less than 8 mm, for plates having the width L of the order of 35 to 40 mm.
  • the width L corresponds to the thickness of the exchanger body 14.
  • the section of FIG. 5 is made in the region where the inlet channel 24 and the outlet channel 26 open internally into the exchanger body 14. Note, by way of example, that the depths P 1 and P 2 of the first input fingerprint 32 and the first output fingerprint 34, in this region, are zero.
  • the cross section of the inlet channel 24 and the outlet channel 26 is essentially formed by the second inlet cavity 46 and the second outlet cavity 48 of the cover 22.
  • the first inlet cavity 32 and the first outlet cavity 34 of the end plate 20 terminate respectively with a first inlet half-collar 62 and a first outlet half-collar. 64.
  • the second inlet cavity 46 and the second outlet cavity 48 of the lid 22 are terminating respectively with a second input half-collar 66 and a second output half-collar 68.
  • first inlet half-collar 62 and the second inlet half-collar 66 together define a collar, preferably circular, for the inlet channel 24.
  • first outlet half-collar 64 and the second half -collet outlet 68 together define a collar, preferably circular, for the outlet channel 26.
  • the collars for the input channel 24 and the outlet channel 26 are respectively surrounded by an inlet nozzle 70 and an outlet nozzle 72.
  • the inlet nozzle 70 and the outlet nozzle 72 are in the form of stepped sleeves.
  • the inlet nozzle 70 and the outlet nozzle 72 make it possible to connect the heat exchanger 10 to a circulation circuit of the first fluid, not shown.
  • the inlet tips 70 and outlet 72 are substantially tubular rings.
  • the outer diameter of each ring comprises a first tubular section extended by a second tubular section.
  • the outer diameter of the second tubular section is larger than the diameter of the first tubular section, thereby forming a shoulder.
  • the free end of the second tubular section comprises a flange.
  • the flange and the second tubular section comprise means for fixing and locking in rotation of each endpiece on the associated channel 70 or 72.
  • Such means for fixing and locking in rotation is formed by two notches extending over the entire thickness of the flange and extending over a portion of the second tubular section.
  • Each notch is shaped in order to cooperate by complementarity of form with a set of walls of junction 54, 60 formed on the plate and the cover defining the channels 70, 72.
  • the notches extend in a median plane to the tips 70, 72.
  • each of the end pieces 70, 72 on the previously assembled plate and cover allows perfect positioning of each of the inlet and outlet channels that come from the plate and the cover. To do this, the tips thus fitted ensure a contact and a compression of the plate and the lid, which promotes the brazing of these two parts.
  • such a design makes it possible to increase the rigidity and the tightness of the constituent parts of the connection device 19. It also turns out that the use of such end pieces mounted on the plate 20 and the cover 22 generates, compared to known solutions, increased manufacturing quality according to which games and manufacturing and assembly tolerances are reduced.
  • the first fluid flowing in the heat exchanger 10 is a refrigerant or refrigerant with phase change, the inlet channel 24 being intended for the admission of the first fluid in the liquid phase and the outlet channel 26 at the evacuation of the first fluid in the vapor phase.
  • the present invention aims to optimize the pressure drop or the internal pressure drop, in particular in the outlet channel 26.
  • the connection device structure 19 described above allows such an optimization precisely by dimensioning the hydraulic diameter of the outlet channel 26 between the heat exchanger body 14 and the outlet nozzle 72.
  • A is the area of the passage section of the tube, and P is the "wet" perimeter of the passage section of the tube.
  • the outlet channel 26 has a first end 74 opening into the exchanger body 14 and a second end 76 opening outwardly of the exchanger body 14, at the outlet end 72.
  • the outlet channel 26 has a hydraulic diameter Dh which, in any intermediate region between the first end 74 and the second end 76, has a value between a first hydraulic diameter value Dh 1 at the first end 74 and a second value of hydraulic diameter Dh 2 at the second end 76.
  • the value of the hydraulic diameter Dh of the outlet channel 26 increases from the first value of hydraulic diameter Dh 1 to the second value of hydraulic diameter Dh 2 .
  • the outlet channel 26 has an internal width Ls, considered in an assembly plane of the end plate 20 and the cover 22. According to the present invention, the internal width Ls is greater than an interior width of the inlet channel 24, considered in the assembly plane of the end plate 20 and the cover 22.
  • the internal width Ls of the outlet channel 26 is between 14.5 mm and 16.8 mm, preferably close to 16 mm.
  • the value of the hydraulic diameter Dh of the outlet channel 26 increases progressively from the first first value Dh 1 of between 10 mm and 11 mm, in particular equal to 10.8 mm, at the first end 74 until at the second first value Dh 2 between 15 mm and 16 mm, in particular equal to 15.6 mm, at the second end 76.
  • the width L of the plates 12, corresponding to the thickness of the exchanger body 14 in the transverse direction y is 38 mm
  • the width Ls of the outlet channel 26 is 16 mm
  • the width The input channel 24 is 10 mm.
  • Such an arrangement corresponds respectively to 42% and 26% of the thickness of the heat exchanger 10.
  • the depths P 1 and P 2 are equal to 0.4 mm.
  • the invention thus makes it possible to optimize the size of the heat exchanger 10 in the direction of longitudinal stacking x, which is particularly important for evaporators of air conditioning installations of a motor vehicle with lateral feed. Indeed, the space devoted to such evaporators is restricted and it is necessary to limit this congestion. This is particularly the case for evaporators whose thickness is less than or equal to 40 mm.
  • the invention also makes it possible to optimize the hydraulic diameter of the outlet channel 26, as mentioned above.
  • Another additional advantage of the invention is that the end plate 20 and the cover 22 can be assembled on a standard exchanger body 14.
  • the exchanger body 14 can be used for both lateral feed exchangers according to the present invention as well as for end feed exchangers.
  • the same assembly process and the same tooling can be used.
  • the components of the heat exchanger 10 are then brazed together in a single operation.
  • the invention is not limited to the embodiments described above and provided solely by way of example. It encompasses various modifications, alternative forms and other variants that may be considered by those skilled in the art within the scope of the present invention and in particular any combination of the various embodiments described above.
  • the present invention also finds an application for heat exchangers whose exchanger body consists of tubes, regardless of whether they are made from a plate assembly, by folding or any other method.

Abstract

L'invention a pour objet un échangeur de chaleur (10) comprenant un assemblage de plaques (12) empilées par paires selon une direction d'empilement longitudinale (x) pour former un corps d'échangeur (14) destiné à la circulation d'un fluide, comprenant un dispositif de connexion (19) agencé à une extrémité du corps d'échangeur (14) selon la direction d'empilement longitudinale (x). Le dispositif de connexion (19) comporte une plaque d'extrémité (20) et un couvercle (22) aptes à être assemblés entre eux pour délimiter conjointement un canal d'entrée (24) et un canal de sortie (26), respectivement, pour l'admission du fluide dans le corps d'échangeur (14) et l'évacuation du fluide hors du corps d'échangeur (14).

Description

Échangeur de chaleur avec alimentation en fluide latérale .
L'invention se rapporte au domaine des échangeurs de chaleur, notamment pour véhicules automobiles.
Elle concerne plus particulièrement un échangeur de chaleur comprenant un assemblage de tubes empilés, par exemple un échangeur de chaleur à plaques constitué d'un assemblage de plaques empilées par paire, suivant une direction d'empilement longitudinale, pour former un corps d'échangeur destiné à la circulation d'un fluide.
Un échangeur de chaleur à plaques possède une canalisation d'admission et une canalisation d'évacuation faisant partie d'un circuit de circulation du fluide considéré dont au moins une partie de connexion s'étend selon la direction d'empilement longitudinale. Un tel agencement présente un encombrement important. L'invention s'applique tout particulièrement aux évaporateurs destinés à des installations de climatisation, dans lesquels le fluide circulant au sein du corps d'échangeur est un fluide frigorigène qui entre en phase liquide et sort en phase gazeuse après échange thermique avec un flux d'air qui balaye le corps d'échangeur, ce qui permet de refroidir le flux d'air, préalablement à la diffusion de celui-ci, par exemple, dans un habitacle de véhicule automobile. De plus, les échangeurs de chaleur connus ne sont pas optimisés, notamment en terme de dimensions.
L'invention a notamment pour but de surmonter les inconvénients précités des échangeurs de chaleur connus. Elle vise notamment à réaliser un échangeur de chaleur du type précité présentant un encombrement réduit dans la direction d'empilement longitudinale des tubes. L'invention vise encore à réaliser un tel échangeur de chaleur présentant une perte de charge optimisée et qui convienne tout particulièrement comme évaporateur pour une installation de climatisation de véhicule automobile. L'invention propose à cet effet un échangeur de chaleur comprenant un assemblage de tubes, par exemple constitués d'un assemblage de plaques, empilés selon une direction d'empilement longitudinale pour former un corps d'échangeur destiné à la circulation d'un premier fluide, comprenant un dispositif de connexion agencé à une extrémité du corps d'échangeur selon la direction d'empilement longitudinale. Le dispositif de connexion comporte une plaque d'extrémité et un couvercle aptes à être assemblés entre eux pour délimiter conjointement un canal d'entrée et un canal de sortie, respectivement, pour l'admission du fluide dans le corps d'échangeur et l'évacuation du fluide hors du corps d 'échangeur .
Notamment, le canal d'entrée et le canal de sortie débouchent selon une direction transversale sensiblement perpendiculaire à la direction d'empilement longitudinale.
Avantageusement, le canal d'entrée et le canal de sortie sont de forme généralement coudée.
Selon la présente invention, la plaque d'extrémité comporte une partie emboutie comportant une première empreinte d'entrée et une première empreinte de sortie. De façon complémentaire, le couvercle comporte une seconde empreinte d'entrée et une seconde empreinte de sortie. Ainsi agencé, après assemblage de la partie emboutie de la plaque d'extrémité et du couvercle, la première empreinte d'entrée coopère avec la seconde empreinte d'entrée pour définir le canal d'entrée et la première empreinte de sortie coopère avec la seconde empreinte de sortie pour définir le canal de sortie.
Avantageusement, le canal d'entrée et le canal de sortie ont chacun des sections transversales essentiellement définies par la seconde empreinte d'entrée et la seconde empreinte de sortie du couvercle.
Spécifiquement, la première empreinte d'entrée et la première empreinte de sortie sont d'une profondeur réduite inférieure à une profondeur substantielle de la seconde empreinte d'entrée et la seconde empreinte de sortie.
En particulier, la profondeur réduite de la première empreinte d'entrée et la première empreinte d'entrée est inférieure à 1 mm, de préférence inférieure à 0,5 mm, et la profondeur substantielle de la seconde empreinte d'entrée et la seconde empreinte de sortie est inférieure à 10 mm, de préférence inférieure à 8 mm. De plus, selon une variante de réalisation, le canal de sortie comporte une première extrémité débouchant dans le corps d'échangeur et une seconde extrémité débouchant à l'extérieur du corps d'échangeur. De même, le canal de sortie présente un diamètre hydraulique, en toute région intermédiaire entre la première extrémité et la seconde extrémité, compris entre une première valeur de diamètre hydraulique à la première extrémité du canal de sortie et une seconde valeur de diamètre hydraulique à la seconde extrémité du canal de sortie.
Particulièrement, la valeur du diamètre hydraulique du canal de sortie augmente depuis la première valeur de diamètre hydraulique à la première extrémité du canal de sortie jusqu'à la seconde valeur de diamètre hydraulique à la seconde extrémité du canal de sortie. Préfèrentiellement , la première valeur du diamètre hydraulique est comprise entre 10,5 mm et 11 mm, de préférence 10,8 mm, et/ou la seconde valeur du diamètre hydraulique est comprise entre 15 mm et 16 mm, de préférence de 15,6 mm.
Selon la présente invention, le canal de sortie présente une largeur intérieure, considérée dans un plan d'assemblage de la plaque d'extrémité et du couvercle, qui est supérieure à une largeur intérieure du canal d'entrée, considérée dans le même plan d'assemblage.
En particulier, la largeur intérieure du canal de sortie est comprise entre 14,5 mm et 16,8 mm, de préférence voisine de 16 mm.
Enfin, de façon complémentaire, un réservoir embouti est interposé entre la plaque d'extrémité et une plaque adjacente du corps d'échangeur, à l'opposé du couvercle, pour assurer une communication de fluide avec le canal d'entrée et le canal de sortie.
L'encombrement des canaux d'entrée et de sortie, considéré dans la direction d'empilement, se trouve ainsi réduit. Une telle réduction d'encombrement est particulièrement recherchée dans le cas des évaporateurs de climatisation pour véhicules automobiles dont la largeur des plaques, qui correspond sensiblement à l'épaisseur du corps d'échangeur, est inférieure ou égale à 40 mm. La plaque d'extrémité et le couvercle forment ainsi deux composants spécifiques qui peuvent être assemblés sur un corps d'échangeur de chaleur connu par ailleurs. Il en résulte une souplesse d'utilisation puisqu'un même corps d'échangeur peut servir à former un échangeur ayant sélectivement une alimentation latérale ou une alimentation en extrémité.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, qui pourront servir à compléter la compréhension de la présente invention et l'exposé de sa réalisation mais aussi, le cas échéant, contribuer à sa définition sur lesquels:
- la figure 1 est une vue en perspective d'un échangeur de chaleur selon la présente invention,
- la figure 2 est une vue en perspective d'une plaque d'extrémité de 1 'échangeur de chaleur selon la présente invention,
- la figure 3 est une vue perspective éclatée de la plaque d'extrémité de la figure 2,
- la figure 4 est une vue de coté de la plaque d'extrémité de la figure 2, et
- les figures 5, 6 et 7 sont respectivement des vues en coupe suivant les lignes V-V, VI-VI et VI I -VI I de la figure 4.
Il est fait d'abord référence à la figure 1 qui représente un échangeur de chaleur 10, selon une vue en perspective, qui, dans l'exemple, constitue un évaporateur pour une installation de climatisation de véhicule automobile.
L ' échangeur de chaleur 10 comprend, par exemple, un assemblage de plaques 12 empilées par paires suivant une direction d'empilement longitudinale, ou première direction x, pour former un corps d'échangeur 14 délimitant des tubes internes pour la circulation d'un fluide, avantageusement un fluide frigorigène ou réfrigérant. On rappellera brièvement que les plaques 12 sont formées respectivement à partir d'un feuillard métallique embouti, par exemple en alliage d'aluminium, présentant des bords d'assemblage respectifs destinés à être réunis entre eux, en particulier par brasage, pour délimiter de premiers canaux de circulation d'un premier fluide. Les premiers canaux de circulation du premier fluide, en particulier le fluide frigorigène ou réfrigérant, alternent avec des passages de circulation pour un deuxième fluide, préfèrentiellement de l'air, qui balaye extérieurement le corps d'échangeur 14, comme représenté par la flèche A sur la figure 1. Les plaques 12 comportent un premier bossage d'extrémité 16 et un second bossage d'extrémité 18. Chaque premier bossage d'extrémité 16 d'une plaque 12 est destiné à être assemblé avec le premier bossage d'extrémité 16 d'une plaque 12 adjacente, notamment par brasage. De même, chaque second bossage d'extrémité 18 d'une plaque 12 est destiné à être assemblé avec le second bossage d'extrémité 18 d'une plaque 12 adjacente, notamment par brasage.
Les premiers bossages d'extrémité 16, situés en partie supérieure sur la figure 1 selon l'exemple de réalisation, sont par ailleurs munis chacun de deux ouvertures (non visibles sur la figure 1) permettant de définir intérieurement deux conduits de circulation (non visibles sur la figure 1) s 'étendant parallèlement à la direction d'empilement longitudinale des plaques 12.
Les seconds bossages d'extrémité 18 sont réalisés de façon analogue et permettent aussi de définir intérieurement deux autres conduits de circulation.
Les conduits de circulation réalisés par les ouvertures des premiers bossages d'extrémité 16 et des seconds bossages d'extrémité 18 permettent d'assurer une communication de fluide entre les plaques 12 pour la circulation en une ou plusieurs passes. Une telle structure d ' évaporateur est décrite dans le document FR 2 929 388 comprenant des informations complémentaires à la définition de la présente invention.
Par ailleurs, des intercalaires ondulés formant des ailettes d'échange de chaleur sont disposés entre deux paires de plaques 12 adjacentes, dans l'espace compris entre les premiers bossages d'extrémité 16 et les seconds bossages d'extrémité 18 respectifs des paires de plaques 12, dans les passages de circulation pour le deuxième fluide pour augmenter la surface d'échange de chaleur, entre le premier fluide, préfèrentiellement le fluide frigorigène ou réfrigérant, et le deuxième fluide, préfèrentiellement de l'air. Le corps d'échangeur 14 est muni, à l'une de ses extrémités, dans la direction d'empilement longitudinale, d'un dispositif de connexion 19 comprenant une plaque d'extrémité 20, ou plaque d'entrée/sortie 20. La plaque d'extrémité 20 est une plaque spécifique, dont la structure est différente des plaques 12 formant l'assemblage de plaques 12 empilées par paires pour former un corps d'échangeur 14. La plaque d'extrémité 20 est assemblée contre la plaque 12 située en extrémité du corps d'échangeur 14, selon la direction d'empilement longitudinale.
Le dispositif de connexion 19 comprend également un couvercle 22, avantageusement obtenu par emboutissage, pour délimiter conjointement avec la plaque d'extrémité 20 un canal d'entrée 24 et un canal de sortie 26. Selon la présente invention, le canal d'entrée 24 et le canal de sortie 26 sont de forme généralement coudée. Le canal d'entrée 24 et le canal de sortie 26 débouchent intérieurement dans le corps d'échangeur 14 et extérieurement d'un même côté du corps d'échangeur 14 pour l'admission et l'évacuation du premier fluide, comme montré respectivement par les flèches Fl et F2. En conséquence, le canal d'entrée 24 et le canal de sortie 26 débouchent selon une direction transversale y sensiblement perpendiculaire à la direction d'empilement longitudinale x.
Les canaux d'entrée 24 et de sortie 26, en débouchant dans une direction parallèle au sens de l'air, permettent de simplifier le parcours des tubulures de liaison s 'étendant entre l'échangeur de chaleur 10 et un détendeur non représenté. Compte tenu en outre de la disposition d'un tel détendeur à la frontière d'un compartiment dédié au moteur et d'un compartiment d'habitacle, et de la disposition de 1 ' évaporateur dans le compartiment habitacle, selon une orientation dans laquelle sa surface d'échange s'étend perpendiculairement à la direction d'écoulement de l'air, une telle orientation des canaux 24 et 26 tend à disposer ces derniers sensiblement au droit du détendeur. Le moyen de liaison permettant ainsi de lier l'échangeur de chaleur au détendeur, est plus direct ce qui engendre là aussi une réduction de la perte de charge dans chacune des tubulures dudit moyen de liaison.
La direction d'empilement longitudinale x forme avec la direction transversale y et une direction verticale z une dièdre direct . Le canal d'entrée 24 et le canal de sortie 26 communiquent respectivement avec les deux conduits de circulation délimités à l'intérieur du corps d'échangeur 14 par les ouvertures des premiers bossages d'extrémité 16.
Les figures 2 à 4 présentent, respectivement, une vue en perspective assemblée, en perspective éclatée et en plan de la plaque d'extrémité 20. Les figures 2 à 4 présentent donc la structure de la plaque d'extrémité 20 et du couvercle 22. Avantageusement, la plaque d'extrémité 20 est réalisée par emboutissage d'un feuillard métallique, par exemple en alliage d'aluminium.
La plaque d'extrémité 20 comporte une paroi 28 de forme générale rectangulaire, ayant avantageusement une structure nervurée, terminée à une extrémité (en partie inférieure selon la figure 2) par une excroissance 29 venant s'appliquer contre le second bossage d'extrémité 18 de la plaque 12 adjacente pour fermer les conduits de circulation définis par les ouvertures respectives des seconds bossages d'extrémité 18.
A l'extrémité opposée (en partie supérieure selon la figure 2), la plaque d'extrémité 20 comporte une partie emboutie 30 apte à définir, conjointement avec le couvercle 22, le canal d'entrée 24 et le canal de sortie 26.
La partie emboutie 30 comporte une première empreinte d'entrée 32 contribuant à définir le canal d'entrée 24 et une première empreinte de sortie 34 contribuant à définir le canal de sortie 26.
La plaque d'extrémité 20 comporte également une ouverture d'entrée 36 et une ouverture de sortie 38, comme présenté sur la figure 3, aménagées au travers de la partie emboutie 30 pour assurer une communication de fluide avec les conduits de circulation réalisés par les ouvertures des premiers bossages d'extrémité 16 et des seconds bossages d'extrémité 18 définis à l'intérieur du corps d'échangeur 14. Selon l'exemple non limitatif présenté, la première empreinte d'entrée 32 et la première empreinte de sortie 34 ont chacune sensiblement la forme d'un arc de cercle. Notamment, la première empreinte d'entrée 32 entoure extérieurement la première empreinte de sortie 34 sur sensiblement un quart de cercle, telles que présentées sur les figures 2 à 4.
De plus, le dispositif de connexion 19 comprend également un réservoir 40, avantageusement embouti. Selon une variante de réalisation, le réservoir 40 a sensiblement la forme du premier bossage d'extrémité 16 de la plaque 12.
Le réservoir 40 est interposé entre la plaque d'extrémité 20 et la plaque 12 située en extrémité du corps d'échangeur 14 selon la direction d'empilement longitudinale. Le réservoir 40 est agencé à l'opposé du couvercle 22 par rapport à la paroi 28 de la plaque d'extrémité 20 du dispositif de connexion 19. Le réservoir 40 est destiné à assurer une communication de fluide entre le corps d'échangeur 14 et le canal d'entrée 24 et le canal de sortie 26.
Le réservoir 40 est muni d'une ouverture d'entrée 42 et d'une ouverture de sortie 44. L'ouverture d'entrée 42 et l'ouverture de sortie 44 sont situées respectivement dans l'alignement de l'ouverture d'entrée 36 et de l'ouverture de sortie 38 de la plaque d'extrémité 20, tel que présenté sur la figure 3. Le couvercle 22 comporte une seconde empreinte d'entrée 46 et une seconde empreinte de sortie 48, avantageusement de profondeur substantielle. La seconde empreinte d'entrée 46 et la seconde empreinte de sortie 48 sont destinées à venir, respectivement, en vis-à-vis de la première empreinte d'entrée 32 et de la première empreinte de sortie 34 pour définir le canal d'entrée 24 et le canal de sortie 26.
Selon l'exemple non limitatif présenté, la seconde empreinte d'entrée 46 et la seconde empreinte de sortie 48 ont également une forme sensiblement en arc de cercle. Notamment, la seconde empreinte d'entrée 46 entoure extérieurement la seconde empreinte de sortie 48 sur sensiblement un quart de cercle. Il en résulte que le canal d'entrée 24 et le canal de sortie 26 ont chacun une forme sensiblement en arc de cercle, telles que présentées sur les figures 2 à 4.
Ainsi agencé, selon l'exemple de réalisation présenté, le canal d'entrée 24 entoure extérieurement le canal de sortie 26 sur sensiblement un quart de cercle comme on le voit sur les figures 1 à 4.
Toute empreinte d'entrée ou de sortie qui définit un chemin présentant une courbure en arc de cercle permet avantageusement de réduire la perte de charge du fluide circulant dans le dispositif de connexion 19.
En complément de l'orientation des canaux d'entrée 24 et de sortie 26 parallèle au sens d'écoulement du flux d'air traversant l'échangeur, une telle conception en arc de cercle des empreintes du disposition de connexion assure avantageusement une réduction significative de la perte de charge en amont et en aval du corps 14 de l'échangeur 10, par rapport au sens d'écoulement du fluide.
Le dispositif de connexion 19 est donc composé, au moins, de la plaque d'extrémité 20 et du couvercle 22. En complément, le dispositif de connexion 19 peut également être composé du réservoir 40 pour la communication avec le corps d'échangeur 14. Ainsi, la première empreinte d'entrée 32 et la première empreinte de sortie 34, d'une part, et la seconde empreinte d'entrée 46 et la seconde empreinte de sortie 48, d'autre part, contribuent à définir le canal d'entrée 24 et le canal de sortie 26 après assemblage de la partie emboutie 30 de la plaque d'extrémité 20 et du couvercle 22, et, alternativement, du réservoir 40.
Avantageusement, la seconde empreinte d'entrée 46 et de la seconde empreinte de sortie 48 sont de profondeur substantielle par rapport à la première empreinte d'entrée 32 et à la première empreinte de sortie 34, qui ont une profondeur réduite. Ainsi, la première empreinte d'entrée 32 et la première empreinte de sortie 34 sont de profondeur d'embouti inférieure à la profondeur d'embouti de la seconde empreinte d'entrée 46 et de la seconde empreinte de sortie 48.
Cela signifie que le canal d'entrée 24 et le canal de sortie 26 ont des sections transversales intérieures qui sont définies, pour l'essentiel, par la seconde empreinte d'entrée 46 et par la seconde empreinte de sortie 48 du couvercle 22. De ce fait, la plaque d'extrémité 20 présente un encombrement plus faible que celui du couvercle 22, dans la direction d'empilement longitudinale.
Par l'expression "profondeur réduite", on entend désigner également le fait que la profondeur d'embouti peut être quasiment nulle, au moins localement, le canal d'entrée 24 et le canal de sortie 26 étant alors définis principalement par la seconde empreinte d'entrée 46 et de la seconde empreinte de sortie 48 du couvercle 22. En conséquence, il ressort que le dispositif de connexion 19, par la profondeur réduite de la première empreinte d'entrée 32 et de la première empreinte de sortie 34, n'empiète pas sur la section de passage, constituée par les passages de circulation, pour le deuxième fluide traversant le corps d'échangeur 14.
Le canal d'entrée 24 et le canal de sortie 26 présentent une section transversale interne évolutive, telle que présentée par les figures 5 à 7 qui sont des vues en coupe suivant respectivement les lignes V-V, VI-VI et VII-VII de la figure 4.
Comme on le voit sur la figure 6, la première empreinte d'entrée 32 et la première empreinte de sortie 34 de la partie emboutie 30 de la plaque d'extrémité 20 sont respectivement délimitées par une première paroi de fond d'entrée 50 et une première paroi de fond de sortie 52 présentant un profil sensiblement plat et raccordées à une première paroi de jonction 54 de forme généralement plane qui constitue la paroi 28 de la plaque d'extrémité 20. La première empreinte d'entrée 32 et la première empreinte de sortie 34 ont des profondeurs respectives P1 et P2, pouvant être égales ou différentes. La seconde empreinte d'entrée 46 et la seconde empreinte de sortie 48 du couvercle 22 sont respectivement délimitées par une seconde paroi de fond d'entrée 56 et une seconde paroi de fond de sortie 58. Avantageusement, la seconde paroi de fond d'entrée 56 et la seconde paroi de fond de sortie 58 sont de profil sensiblement semi-circulaire, raccordées à une deuxième paroi de jonction 60 formant le couvercle 22. La seconde empreinte d'entrée 46 et de la seconde empreinte de sortie 48 ont des profondeurs respectives P3 et P4, pouvant être égales ou différentes.
La première paroi de jonction 54 et la deuxième paroi de jonction 60 sont propres à s'assembler le long d'un plan de jonction en vue d'un assemblage, en particulier par brasage .
Dans l'exemple représenté, les profondeurs respectives P1 et P2 de la première empreinte d'entrée 32 et de la première empreinte de sortie 34 sont typiquement inférieures à 1 mm, de préférence à 0,5 mm, en particulier pour des plaques présentant une largeur L, selon la direction transversale y, de l'ordre de 35 à 40 mm.
Dans l'exemple représenté, les profondeurs respectives P3 et P4 de la seconde empreinte d'entrée 46 et de la seconde empreinte de sortie 48 du couvercle 22 sont typiquement inférieures à 10 mm, de préférence inférieure à 8 mm, pour des plaques ayant la largeur L de l'ordre de 35 à 40 mm.
La largeur L correspond à l'épaisseur du corps d'échangeur 14. La coupe de la figure 5 est faite dans la région où le canal d'entrée 24 et le canal de sortie 26 débouchent intérieurement dans le corps d'échangeur 14. On remarque, à titre d'exemple, que les profondeurs P1 et P2 de la première empreinte d'entrée 32 et de la première empreinte de sortie 34, dans cette région, sont nulles. Ainsi, au niveau de cette coupe, la section transversale du canal d'entrée 24 et du canal de sortie 26 est formée essentiellement par la seconde empreinte d'entrée 46 et la seconde empreinte de sortie 48 du couvercle 22.
Telles que présentées sur la figure 3, la première empreinte d'entrée 32 et la première empreinte de sortie 34 de la plaque d'extrémité 20 se terminent respectivement par un premier demi-collet d'entrée 62 et un premier demi- collet de sortie 64. De même, la seconde empreinte d'entrée 46 et la seconde empreinte de sortie 48 du couvercle 22 se terminent respectivement par un second demi-collet d'entrée 66 et un second demi-collet de sortie 68.
Le premier demi-collet d'entrée 62 et le second demi-collet d'entrée 66 définissent conjointement un collet, préfèrentiellement circulaire, pour le canal d'entrée 24. De même, le premier demi-collet de sortie 64 et le second demi-collet de sortie 68 définissent conjointement un collet, préfèrentiellement circulaire, pour le canal de sortie 26.
Selon une variante de réalisation, présentée sur les figures 1 à 3, Les collets pour le canal d'entrée 24 et le canal de sortie 26 sont entourés respectivement d'un embout d'entrée 70 et d'un embout de sortie 72. Particulièrement, l'embout d'entrée 70 et l'embout de sortie 72 sont réalisés sous la forme de manchons étagés. L'embout d'entrée 70 et l'embout de sortie 72 permettent de raccorder l'échangeur de chaleur 10 à un circuit de circulation du premier fluide, non représenté.
Les embouts d'entrée 70 et de sortie 72 sont des bagues de forme sensiblement tubulaire. Le diamètre extérieur de chaque bague comprend une première section tubulaire prolongée par une seconde section tubulaire. Le diamètre extérieur de la seconde section tubulaire est supérieur au diamètre de la première section tubulaire, formant de la sorte un épaulement . L'extrémité libre de la seconde section tubulaire comprend une collerette. La collerette et la seconde section tubulaire comprennent un moyen de fixation et de blocage en rotation de chaque embout sur le canal 70 ou 72 associé. Un tel moyen de fixation et de blocage en rotation est réalisé par deux échancrures s 'étendant sur la totalité de l'épaisseur de la collerette et se prolongeant sur une partie de la seconde section tubulaire. Chaque échancrure est conformée afin de coopérer par complémentarité de forme avec un ensemble de parois de jonction 54, 60 formées sur la plaque et le couvercle définissant les canaux 70, 72. Les échancrures s'étendent dans un plan médian aux embouts 70, 72.
L'emmanchement de chacun des embouts 70, 72 sur la plaque et le couvercle préalablement assemblés, permet une mise en position parfaite de chacun des canaux d'entrée et de sortie qui sont issus de la plaque et du couvercle. Pour ce faire, les embouts ainsi emmanchés assurent une mise en contact ainsi qu'une mise en compression de la plaque et du couvercle, ce qui favorise le brasage de ces deux pièces. En outre, une telle conception permet d'augmenter la rigidité et l'étanchéité des pièces constitutives du dispositif de connexion 19. Il s'avère également que le recours à de tels embouts montés sur la plaque 20 et le couvercle 22 engendre, par rapport aux solutions connues, une qualité de fabrication accrue selon laquelle les jeux et tolérances de fabrication et d'assemblage sont réduits.
Dans le cas particulier d'un évaporateur, le premier fluide circulant dans l'échangeur de chaleur 10 est un fluide frigorigène ou réfrigérant à changement de phase, le canal d'entrée 24 étant destiné à l'admission du premier fluide en phase liquide et le canal de sortie 26 à l'évacuation du premier fluide en phase vapeur.
La présente invention vise à optimiser la perte de charge ou la chute de pression interne, notamment dans le canal de sortie 26. La structure de dispositif de connexion 19 décrite précédemment permet précisément une telle optimisation en dimensionnant le diamètre hydraulique du canal de sortie 26 entre le corps d'échangeur 14 et l'embout de sortie 72.
On rappellera que le diamètre hydraulique Dh d'un tube est égal à 4A/P, où
A est l'aire de la section de passage du tube, et P est le périmètre dit « mouillé » de la section de passage du tube.
Le canal de sortie 26 comporte une première extrémité 74 débouchant dans le corps d'échangeur 14 et une seconde extrémité 76 débouchant à l'extérieur du corps d'échangeur 14, au niveau de l'embout de sortie 72.
Le canal de sortie 26 présente un diamètre hydraulique Dh qui, en toute région intermédiaire, entre la première extrémité 74 et la seconde extrémité 76, présente une valeur comprise entre une première valeur de diamètre hydraulique Dh1 à la première extrémité 74 et une seconde valeur de diamètre hydraulique Dh2 à la seconde extrémité 76. Préférentiellement , la valeur du diamètre hydraulique Dh du canal de sortie 26 augmente depuis la première valeur de diamètre hydraulique Dh1 à la seconde valeur de diamètre hydraulique Dh2. Comme on peut le voir sur la figure 4, le canal de sortie 26 présente une largeur intérieure Ls, considérée dans un plan d'assemblage de la plaque d'extrémité 20 et du couvercle 22. Selon la présente invention, la largeur intérieure Ls est supérieure à une largeur intérieure Le du canal d'entrée 24, considérée dans le plan d'assemblage de la plaque d'extrémité 20 et du couvercle 22.
A titre d'exemple, la largeur intérieure Ls du canal de sortie 26 est comprise entre 14,5 mm et 16,8 mm, de préférence voisine de 16 mm. De même, avantageusement, la valeur du diamètre hydraulique Dh du canal de sortie 26 augmente de manière évolutive depuis la première valeur première Dh1 comprise entre 10 mm et 11 mm, en particulier égale à 10,8 mm, à la première extrémité 74 jusqu'à la seconde valeur première Dh2 comprise entre 15 mm et 16 mm, en particulier égale à 15,6 mm, à la seconde extrémité 76. Dans un exemple de réalisation, la largeur L des plaques 12, correspondant à l'épaisseur du corps d'échangeur 14 selon la direction transversale y, est de 38 mm, la largeur Ls du canal de sortie 26 est de 16 mm et la largeur Le du canal d'entrée 24 est de 10 mm. Un tel agencement correspond respectivement à 42 % et 26 % de l'épaisseur de l'échangeur de chaleur 10. Dans ce même exemple, les profondeur P1 et P2 sont égales à 0,4 mm. L'invention permet ainsi d'optimiser l'encombrement de l'échangeur de chaleur 10 dans la direction d'empilement longitudinale x, ce qui est particulièrement important pour des évaporateurs d'installations de climatisation de véhicule automobile à alimentation latérale. En effet, la place dévolue à de tels évaporateurs est restreinte et il convient de limiter cet encombrement. Ceci est particulièrement le cas des évaporateurs dont l'épaisseur est inférieure ou égale à 40 mm. L'invention permet également d'optimiser le diamètre hydraulique du canal de sortie 26, comme mentionné précédemment .
Un autre avantage supplémentaire de l'invention est que la plaque d'extrémité 20 et le couvercle 22 peuvent être assemblés sur un corps d'échangeur 14 standard.
Ainsi, le corps d'échangeur 14 peut être utilisé aussi bien pour des échangeurs à alimentation latérale, selon la présente invention, que pour des échangeurs à alimentation en extrémité.
Dans tous les cas, le même procédé d'assemblage et le même outillage peuvent être utilisés. Les composants de l'échangeur de chaleur 10 sont alors brasés ensemble en une seule opération. Bien évidemment, l'invention n'est pas limitée aux modes de réalisation décrits précédemment et fournis uniquement à titre d'exemple. Elle englobe diverses modifications, formes alternatives et autres variantes que pourra envisager l'homme du métier dans le cadre de la présente invention et notamment toutes combinaisons des différents modes de réalisation décrits précédemment.
En effet, la présente invention trouve également une application pour les échangeurs de chaleur dont le corps d'échangeur est constitué de tubes, indépendamment du fait qu'ils soient réalisés à partir d'un assemblage de plaques, par pliage ou tout autre procédé.

Claims

Revendications
1. Échangeur de chaleur (10) comprenant un assemblage de tubes internes empilés selon une direction d'empilement longitudinale (x) pour former un corps d'échangeur (14) destiné à la circulation d'un premier fluide, comprenant un dispositif de connexion (19) agencé à une extrémité du corps d'échangeur (14) selon la direction d'empilement longitudinale (x) ,
caractérisé en ce que le dispositif de connexion (19) comporte une plaque d'extrémité (20) et un couvercle (22) aptes à être assemblés entre eux pour délimiter conjointement un canal d'entrée (24) et un canal de sortie (26), respectivement, pour l'admission du fluide dans le corps d'échangeur (14) et l'évacuation du fluide hors du corps d'échangeur (14) .
2. Échangeur de chaleur (10) selon la revendication 1, dans lequel le canal d'entrée (24) et le canal de sortie (26) débouchent selon une direction transversale (y) sensiblement perpendiculaire à la direction d'empilement longitudinale (x) .
3. Échangeur de chaleur (10) selon la revendication 1 ou
2, dans lequel le canal d'entrée (24) et le canal de sortie (26) sont de forme généralement coudée.
4. Échangeur de chaleur (10) selon l'une des revendications précédentes, dans lequel la plaque d'extrémité (20) comporte une partie emboutie (30) comportant une première empreinte d'entrée (32) et une première empreinte de sortie (34) .
5. Échangeur de chaleur (10) selon l'une des revendications précédentes, dans lequel le couvercle (22) comporte une seconde empreinte d'entrée (46) et une seconde empreinte de sortie (48) .
6. Échangeur de chaleur (10) selon les revendications 4 et 5, dans lequel la première empreinte d'entrée (32) coopère avec la seconde empreinte d'entrée (46) pour définir le canal d'entrée (24) et la première empreinte de sortie (34) coopère avec la seconde empreinte de sortie (48) pour définir le canal de sortie (26) .
7. Échangeur de chaleur (10) selon la revendication 6, dans lequel le canal d'entrée (24) et le canal de sortie (26) ont chacun des sections transversales essentiellement définies par la seconde empreinte d'entrée (46) et la seconde empreinte de sortie (48) du couvercle (22) .
8. Échangeur de chaleur (10) selon l'une des revendications 4 à 7, dans lequel la première empreinte d'entrée (32) et la première empreinte de sortie (34) sont d'une profondeur réduite (Plf P2) inférieure à une profondeur substantielle (P3, PJ de la seconde empreinte d'entrée (46) et la seconde empreinte de sortie (48) .
9. Échangeur de chaleur (10) selon la revendications 8, dans lequel la profondeur réduite (Plf P2) de la première empreinte d'entrée (32) et la première empreinte d'entrée (34) est inférieure à 1 mm, de préférence inférieure à 0,5 mm.
10. Échangeur de chaleur (10) selon la revendications 8 ou 9, dans lequel la profondeur substantielle (P3, PJ de la seconde empreinte d'entrée (46) et la seconde empreinte de sortie (48) est inférieure à 10 mm, de préférence inférieure à 8 mm.
11. Échangeur de chaleur (10) selon l'une des revendications précédentes, dans lequel le canal de sortie (26) comporte une première extrémité (74) débouchant le corps d'échangeur (14) et une seconde extrémité (76) débouchant à l'extérieur du corps d'échangeur (14), et en ce que le canal de sortie (26) présente un diamètre hydraulique (Dh), en toute région intermédiaire entre la première extrémité (74) et la seconde extrémité (76), compris entre une première valeur de diamètre hydraulique (DhJ à la première extrémité (74) du canal de sortie (26) et une seconde valeur de diamètre hydraulique (Dh2) à la seconde extrémité (76) du canal de sortie (26) .
12. Échangeur de chaleur (10) selon la revendication 11, dans lequel la valeur du diamètre hydraulique (Dh) du canal de sortie (26) augmente depuis la première valeur de diamètre hydraulique (DhJ à la première extrémité (74) du canal de sortie (26) jusqu'à la seconde valeur de diamètre hydraulique (Dh2) à la seconde extrémité (76) du canal de sortie (26) .
13. Échangeur de chaleur (10) selon la revendication 12, dans laquelle la première valeur du diamètre hydraulique (DhJ est comprise entre 10,5 mm et 11 mm, de préférence 10,8 mm.
14. Échangeur de chaleur (10) selon la revendication 12 ou 13, dans laquelle la seconde valeur du diamètre hydraulique (Dh2) est comprise entre 15 mm et 16 mm, de préférence de 15,6 mm.
15. Échangeur de chaleur (10) selon l'une des revendications précédentes, dans lequel le canal de sortie (26) présente une largeur intérieure (Ls), considérée dans un plan d'assemblage de la plaque d'extrémité (20) et du couvercle (22), supérieure à une largeur intérieure (Le) du canal d'entrée (24), considérée dans le même plan d'assemblage.
16. Échangeur de chaleur (10) selon la revendication 15, dans lequel la largeur intérieure (Ls) du canal de sortie (26) est comprise entre 14,5 mm et 16,8 mm, de préférence voisine de 16 mm.
17. Échangeur de chaleur (10) selon l'une des revendications précédentes, dans lequel les tubes internes sont constitués d'un assemblage de plaques (12) .
18. Échangeur de chaleur (10) selon la revendication 17, dans lequel un réservoir embouti (40) est interposé entre la plaque d'extrémité (20) et une plaque (12) adjacente du corps d'échangeur (14), à l'opposé du couvercle (22), pour assurer une communication de fluide avec le canal d'entrée (24) et le canal de sortie (26) .
PCT/EP2011/068472 2010-10-25 2011-10-21 Echangeur de chaleur avec alimentation en fluide latérale. WO2012055790A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2013004612A MX353963B (es) 2010-10-25 2011-10-21 Intercambiador de calor con alimentación de fluido lateral.
JP2013534340A JP5887352B2 (ja) 2010-10-25 2011-10-21 側方流体供給を伴う熱交換器
EP11771201.8A EP2633255B1 (fr) 2010-10-25 2011-10-21 Echangeur de chaleur avec alimentation en fluide latérale.
US13/881,333 US9829255B2 (en) 2010-10-25 2011-10-21 Heat exchanger with lateral fluid supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1004183 2010-10-25
FR1004183A FR2966581B1 (fr) 2010-10-25 2010-10-25 Echangeur de chaleur avec alimentation en fluide laterale

Publications (1)

Publication Number Publication Date
WO2012055790A1 true WO2012055790A1 (fr) 2012-05-03

Family

ID=43430873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/068472 WO2012055790A1 (fr) 2010-10-25 2011-10-21 Echangeur de chaleur avec alimentation en fluide latérale.

Country Status (6)

Country Link
US (1) US9829255B2 (fr)
EP (1) EP2633255B1 (fr)
JP (1) JP5887352B2 (fr)
FR (1) FR2966581B1 (fr)
MX (1) MX353963B (fr)
WO (1) WO2012055790A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018601B1 (fr) * 2014-03-12 2018-04-27 Valeo Systemes Thermiques Dispositif de connexion pour echangeur de chaleur et echangeur de chaleur equipe dudit dispositif de connexion
JP6358848B2 (ja) * 2014-05-15 2018-07-18 株式会社ケーヒン・サーマル・テクノロジー エバポレータ
US10906380B2 (en) * 2016-03-11 2021-02-02 Marelli Cabin Comfort Japan Corporation Evaporator with cold storage function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331297A (ja) * 1993-05-20 1994-11-29 Zexel Corp 熱交換器
US20040144523A1 (en) * 2001-02-28 2004-07-29 Naohisa Higashiyama Heat exchanger
US20070144715A1 (en) * 2003-12-09 2007-06-28 Showa Denko K.K. Evaporator
FR2929388A1 (fr) 2008-03-25 2009-10-02 Valeo Systemes Thermiques Echangeur de chaleur a puissance frigorifique elevee

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624675Y2 (ja) * 1989-12-21 1994-06-29 株式会社ゼクセル 積層型熱交換器
JPH0933187A (ja) * 1995-07-19 1997-02-07 Showa Alum Corp 積層型熱交換器
JPH10288475A (ja) * 1997-04-15 1998-10-27 Zexel Corp 積層型熱交換器
JP2001021286A (ja) * 1999-07-08 2001-01-26 Zexel Valeo Climate Control Corp 熱交換器
JP4328425B2 (ja) * 1999-10-22 2009-09-09 昭和電工株式会社 積層型熱交換器
JP2001289589A (ja) * 2000-04-06 2001-10-19 Sanden Corp 熱交換器の配管接続構造
JP4082073B2 (ja) * 2002-04-16 2008-04-30 株式会社デンソー 熱交換器における配管接合構造
JP4533726B2 (ja) * 2003-11-14 2010-09-01 昭和電工株式会社 エバポレータおよびその製造方法
JP4452099B2 (ja) * 2004-03-05 2010-04-21 株式会社日本クライメイトシステムズ 熱交換器
KR20070108025A (ko) * 2006-05-04 2007-11-08 한라공조주식회사 증발기
WO2009127063A1 (fr) * 2008-04-17 2009-10-22 Dana Canada Corporation Echangeur de chaleur à écoulement en u
JP5222445B2 (ja) * 2008-05-13 2013-06-26 サンデン株式会社 熱交換器の配管接続構造
JP2010019504A (ja) * 2008-07-11 2010-01-28 Sanden Corp 熱交換器
JP5142109B2 (ja) * 2008-09-29 2013-02-13 株式会社ケーヒン・サーマル・テクノロジー エバポレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331297A (ja) * 1993-05-20 1994-11-29 Zexel Corp 熱交換器
US20040144523A1 (en) * 2001-02-28 2004-07-29 Naohisa Higashiyama Heat exchanger
US20070144715A1 (en) * 2003-12-09 2007-06-28 Showa Denko K.K. Evaporator
FR2929388A1 (fr) 2008-03-25 2009-10-02 Valeo Systemes Thermiques Echangeur de chaleur a puissance frigorifique elevee

Also Published As

Publication number Publication date
EP2633255A1 (fr) 2013-09-04
US9829255B2 (en) 2017-11-28
EP2633255B1 (fr) 2018-09-12
JP2013540252A (ja) 2013-10-31
US20130312942A1 (en) 2013-11-28
JP5887352B2 (ja) 2016-03-16
MX353963B (es) 2018-02-06
MX2013004612A (es) 2013-07-03
FR2966581B1 (fr) 2014-12-26
FR2966581A1 (fr) 2012-04-27

Similar Documents

Publication Publication Date Title
EP2064506B1 (fr) Echangeur de chaleur, en particulier refroidisseur d'air de suralimentation
EP2648862B1 (fr) Ensemble de deux pièces serties l'une sur l'autre
EP2689205B1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
EP2105694A1 (fr) Plaque d'échangeur de chaleur
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2003056268A1 (fr) Elément de circuit pour échangeur de chaleur, notamment de véhicule automobile et échangeur de chaleur ainsi obtenu
FR2789164A1 (fr) Echangeur de chaleur ayant un reservoir formant collecteur
EP2633255B1 (fr) Echangeur de chaleur avec alimentation en fluide latérale.
FR2852383A1 (fr) Boite collectrice pour echangeur de chaleur a haute pression et echangeur de chaleur comportant cette boite collectrice
FR2892803A1 (fr) Boite collectrice pour echangeur de chaleur, notamment pour evaporateur de climatisation, echangeur comportant une telle boite
FR2968750A1 (fr) Echangeur de chaleur, notamment pour vehicule automobile
EP1676088B1 (fr) Élément de circuit hydraulique pour échangeur de chaleur , et échangeur de chaleur ainsi obtenu
WO2008053090A1 (fr) Échangeur thermique comportant un corps extrudé
WO2016097134A1 (fr) Boite collectrice pour echangeur de chaleur et echangeur de chaleur equipe de ladite boite collectrice
WO2008135321A1 (fr) Echangeur de chaleur extrude
EP1015838A1 (fr) Echangeur de chaleur pour vehicule automobile, et son procede de fabrication
FR2755222A1 (fr) Echangeur de chaleur comportant une boite collectrice a deux compartiments adjacents
FR2875897A1 (fr) Echangeur de chaleur comportant au moins une bride pour un collecteur de cet echangeur
FR3060724A1 (fr) Echangeur thermique, notamment evaporateur, muni d'un dispositif de raccordement pour l'introduction et l'extraction d'un fluide caloporteur.
EP3491316A1 (fr) Plaque collectrice, boite collectrice et echangeur thermique correspondants
EP2072936B1 (fr) Echangeur de chaleur unitaire pour un circuit de climatisation
WO2019115885A1 (fr) Échangeur thermique, notamment évaporateur, muni d'un dispositif de raccordement pour l'introduction et l'extraction d'un fluide caloporteur
FR2800451A1 (fr) Echangeur de chaleur a encombrement reduit et equipement d'un vehicule automobile comportant un tel echangeur de chaleur
EP4121708A1 (fr) Echangeur thermique pour véhicule automobile
FR3086042A1 (fr) Echangeur thermique et installation de chauffage et/ou ventilation et/ou climatisation correspondante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011771201

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013534340

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004612

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13881333

Country of ref document: US