WO2012055308A1 - 光电化学保护金属的方法 - Google Patents

光电化学保护金属的方法 Download PDF

Info

Publication number
WO2012055308A1
WO2012055308A1 PCT/CN2011/079936 CN2011079936W WO2012055308A1 WO 2012055308 A1 WO2012055308 A1 WO 2012055308A1 CN 2011079936 W CN2011079936 W CN 2011079936W WO 2012055308 A1 WO2012055308 A1 WO 2012055308A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
nano
weight
coating
metal
Prior art date
Application number
PCT/CN2011/079936
Other languages
English (en)
French (fr)
Inventor
徐瑞芬
耿雷
于义龙
马卓尔
解双英
Original Assignee
江苏考普乐新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏考普乐新材料股份有限公司 filed Critical 江苏考普乐新材料股份有限公司
Priority to US13/881,660 priority Critical patent/US9371589B2/en
Priority to EP11835581.7A priority patent/EP2633923B1/en
Publication of WO2012055308A1 publication Critical patent/WO2012055308A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4476Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications comprising polymerisation in situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/185Refractory metal-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the present invention relates to a method of photoelectrochemically protecting a metal, and more particularly to a method of photoelectrically protecting a metal by applying a coating containing nano-titanium dioxide whose surface is modified with a nonionic surfactant to a metal surface.
  • cathodic protection and anode protection are the most effective methods.
  • typical cathodic protection and anode protection include, for example, cathodic protection of natural gas transmission pipelines, sacrificial anode protection of power system substation grounding grids, gas phase cathodic protection of tank inner walls, cathodic protection of bridge deck concrete, cathodic protection of petrochemical facilities, cathodes of ship equipment Protection, cathodic protection of long oil pipelines, cathodic protection of crude oil storage tanks, etc.
  • the grounding grid material used is mainly plain carbon steel in the form of flat steel or round steel. Since the grounding device is in the harsh underground operating environment for a long time, the soil will inevitably be chemically and electrochemically corroded, and it will also withstand the stray current corrosion of the ground network. The corrosion of the grounding grid is usually in the form of localized corrosion. After the corrosion occurs, the carbon steel material of the grounding grid becomes brittle, layered, n, and even fractured. As power system capacity and network complexity increase, the level of automation increases, and power accidents caused by reduced grounding grid performance increase, resulting in increased hazards and greater economic losses.
  • Cathodic protection technology has good effect, long protection period and convenient construction.
  • the electrochemical protection method of the sacrificial anode is not only suitable for the protection of the new grounding grid, but also can be used to renovate the old grounding grid and prolong its service life. Use, but in addition to constantly consuming sacrificial anode metal blocks or consuming electrical energy, it is also necessary to test instruments, devices and wires that protect current. At the same time, any failure of the monitoring device such as the potentiostat in the protection system may cause the protection to fail, which in turn causes severe corrosion of the grounding grid. Summary of the invention
  • the inventors of the present application have conducted extensive and intensive research in the field of metal corrosion protection in order to obtain a low cost and high efficiency method for protecting metals to significantly reduce their corrosion rate.
  • the metal can be effectively photoelectrochemically protected by applying a coating containing nano-titanium dioxide whose surface is modified with a nonionic surfactant to a metal surface.
  • the inventors have completed the present invention based on the above findings.
  • the present invention provides a method of photoelectrochemically protecting a metal, the method comprising applying a coating comprising the following components to a metal surface and curing it:
  • the surface-modified nano-titanium dioxide is composed of nano-titanium dioxide particles as a matrix and a nonionic surfactant coated on the surface of the nano-titanium dioxide substrate;
  • the nano-titanium dioxide substrate has a particle diameter of l-100 nm
  • the l-60 nm more preferably 1-40 nm
  • the nonionic surfactant has a hydrophilic-lipophilic balance of from 1 to 10, preferably from 2 to 8, more preferably from 2 to 5.8; and the content is based on the weight of the nano-titanium dioxide matrix -20% by weight, preferably 2-10% by weight, more preferably 3-8% by weight;
  • the content of the surface-modified nano-titanium dioxide is from 0.1 to 10% by weight, based on the total weight of the coating, preferably from 0.5 to 5% by weight, more preferably from 0.8 to 3% by weight.
  • the current required to protect the metal is provided directly by the coating comprising surface-modified nano-titanium dioxide under the action of light.
  • the method of the invention not only omits the external power supply and the sacrificial anode, but also eliminates the potentiostat and the reference. Complex work such as installation, inspection and maintenance of a series of equipment such as electrodes and connecting circuits.
  • the method of the invention can effectively photoelectrochemically protect the metal to significantly reduce the corrosion rate thereof, for example, the self-corrosion current of the metal electrode coated with the coating containing the surface modified nano titanium dioxide is
  • Figure 1 shows the self-corrosion potential and self-corrosion current of the corroded metal before and after photoelectrochemical protection.
  • Example 2 is a working electrode coated with a nano-titanium dioxide-free polyurethane coating, a polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide, and a polyurethane coating containing 2% by weight of surface-modified nano-titanium dioxide in Example 1.
  • the polarization curve was immersed in the electrolyte solution for 1 day.
  • Example 3 is a polarization curve of a working electrode coated with a nano-titanium dioxide-free polyurethane coating and a polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide in an electrolyte solution under dark room conditions for 1 hour in Example 2. .
  • Example 4 is a polarization of a working electrode coated with a nano-titanium dioxide-free polyurethane coating and a urethane coating containing 3% by weight of surface-modified nano-titanium dioxide in an electrolytic solution under natural light irradiation for 2 hours in Example 2. curve.
  • Example 5 is a immersion of a working electrode coated with a nano-titanium dioxide-free polyurethane coating in Example 3 for 1 day in an electrolyte solution; and a polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide is immersed in an electrolyte solution for 1 day respectively. , 2 and 3 day polarization curves.
  • Fig. 6 is a polarization curve of a working electrode coated with a fluorocarbon coating containing no nano-titanium dioxide and a fluorocarbon coating containing 0.8% by weight of surface-modified nano-titanium dioxide in Example 4, which was immersed in an electrolyte solution for 1 day.
  • photoelectrochemical protection as used in the context of the present application is understood to mean that nano-titanium dioxide in a coating applied on a metal surface produces electron and hole currents under the action of light.
  • the metal absorbs the generated electrons and/or holes, causing the metal to corrode the cell's E-negative shift and/or the E-egg to be positively shifted, resulting in a decrease in the potential difference ⁇ between the cathode and the anode, thereby causing The self-corrosion current is reduced such that the metal is correspondingly protected, wherein the light can be ultraviolet light, visible light or infrared light.
  • the inventors of the present application first prepared the non-ionic surfactant surface-modified nano-titanium dioxide by the following steps:
  • step b) mixing the nonionic surfactant with the nanotitanium dioxide matrix from step a) in a wetting agent;
  • the wetting agent used can be any wetting agent known to those skilled in the art.
  • the wetting agent used in the present invention is preferably an alcohol. Suitable alcohols include, but are not limited to, methanol, ethanol, n-propanol, isopropanol, 2-methyl-1-propanol, n-butanol, 2-butanol, and tert-butanol.
  • the weight ratio of the wetting agent to the nano titanium dioxide matrix used is from 2:1 to 20:1, preferably from 3:1 to 10:1.
  • the nano-sized dioxide base has a particle size of from 1 to 100 nm, preferably from 1 to 60 nm, more preferably from 1 to 40 nm.
  • the nonionic surfactant suitable for use in the present invention has a hydrophilic-lipophilic balance of from 1 to 10, preferably from 2 to 8, more preferably from 2 to 5.8.
  • the nonionic surfactant is used in an amount of 1 to 20% by weight, based on the weight of the nano-titanium dioxide substrate, preferably 2 to 10% by weight, more preferably 3 to 8% by weight.
  • the drying can be carried out at a normal temperature or an elevated temperature such as 60-80 and at a normal pressure or a reduced pressure for 10-48 hours, preferably 12-36 hours.
  • a suitable drying method is, for example, drying under reduced pressure at an elevated temperature such as 60-80 "C.
  • a polyurethane coating comprising surface modified nano titanium dioxide is preferably applied to the metal surface to photoelectrochemically protect the metal.
  • the nano-titanium dioxide, the polyol, the isocyanate, the optional pigment and the filler, and optionally the auxiliary agent, which are surface-modified with the nonionic surfactant described above, are mixed in a solvent to obtain a polyurethane coating comprising surface-modified nano-titanium dioxide,
  • the content of surface-modified nano titanium dioxide The total weight of the coating is from 0.1 to 10% by weight, preferably from 0.5 to 5% by weight, more preferably from 0.8 to 3% by weight; the weight ratio of polyol to isocyanate is from 10:1 to 2:1, preferably from 8:1 to 3:1. More preferably, it is 5:1 to 4:1.
  • the polyol used may be a polyester polyol, a polyether polyol, an epoxy resin, a hydroxy acrylic resin, or a hydroxy alkyd resin.
  • the isocyanate used is toluene diisocyanate, diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, p-phenylene diisocyanate, 4,4'-dicyclohexylmethane Isocyanate, m-xylene diisocyanate, isophorone diisocyanate, 1,5-naphthalene diisocyanate, isocyanate-terminated prepolymer.
  • the film-forming component is a polyurethane resin formed of a polyol and an isocyanate
  • the nonionic surfactant used in the process of preparing the surface-modified nano-titanium dioxide is an ethylene glycol fatty acid ester or a polyoxyethylene sorbitol beeswax.
  • diethylene glycol fatty acid esters or glyceryl monostearate such as ethylene glycol fatty acid ester Emcol EL-50 (HLB value 3.6), polyoxyethylene sorbitol beeswax derivative Arias G-1727 (HLB The value is 4.0), the diethylene glycol fatty acid ester Emcol DO-50 (HLB value is 4.7) or the glyceryl monostearate Aldo 28 (HLB value is 5.5).
  • a fluorocarbon coating comprising surface-modified nano-titanium dioxide to a metal surface to photoelectrochemically protect the metal.
  • nano-titanium dioxide a nano-titanium dioxide, a fluorocarbon resin, a fluorocarbon coating of titanium dioxide surface-modified with a nonionic surfactant surface as described above, wherein the content of the surface-modified nano-titanium dioxide is 0.1 to 10% by weight, preferably 0.5-% based on the total weight of the coating material. 5% by weight, more preferably 0.8 to 3% by weight.
  • the fluorocarbon resin used may be selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoroethylene-propylene copolymer and tetrafluoroethylene.
  • Ethylene-vinylidene fluoride-acrylic acid copolymer preferably fluorocarbon resin is selected from the group consisting of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-propylene copolymer and tetrafluoroethylene-vinylidene fluoride-acrylic acid copolymer .
  • the nonionic surfactant used in the process of preparing the surface-modified nano-titanium dioxide is sorbitan tristearate, ethylene glycol fatty acid ester, poly An oxyethylene sorbitol beeswax derivative or a propylene glycol fatty acid ester, such as sorbitan III Stearate Span 65 (HLB value of 2.1), ethylene glycol fatty acid ester Emcol EO-50 (HLB value of 2.7), polyoxyethylene sorbitol beeswax derivative Atlas G-1704 (HLB value of 3.0) or propylene glycol Fatty acid ester Emcol PO-50 (HLB value of 3.4).
  • the solvent used in the coating material according to the present invention is a common solvent or a mixture thereof, including but not limited to aromatic hydrocarbons such as xylene, toluene, etc.; esters such as ethyl acetate, butyl acetate, isoamyl acetate, etc.; alcohols Such as butanol, isobutanol, benzyl alcohol, etc.; ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol diethyl ether, etc.; ketones such as methyl isobutyl ketone, acetophenone, isophor Ketones, etc.
  • aromatic hydrocarbons such as xylene, toluene, etc.
  • esters such as ethyl acetate, butyl acetate, isoamyl acetate, etc.
  • alcohols Such as butanol, isobutanol, benzyl
  • the filler used in the coating material according to the present invention is, for example, talc, calcium carbonate, barium sulfate, silica or the like.
  • auxiliaries used in the coating according to the invention are, for example, antifoaming agents, wetting agents, dispersing agents, emulsifiers, anti-settling agents, stabilizers, anti-skinning agents, leveling agents, drier, Anti-sagging agents, plasticizers, matting agents, flame retardants, anti-mold agents, fungicides, capture agents, etc.
  • the electrolyte solution saturates the defects of the coating and contacts the metal surface, forming an etching battery composed of a micro anode and a micro cathode on the metal surface.
  • the metal is then electrochemically etched.
  • a metal coated with a coating containing nano-titanium dioxide under the action of light, electrons of the donor level (excited to the conduction band, or valence band electrons (e_) excited to the acceptor level, correspondingly in the valence band
  • the holes (h+) are generated to generate photo-generated carriers, and at this time, the electrical conductivity of the coating changes, and the insulating type is converted into a conductive type having a certain electrical conductivity.
  • the metal coated with the coating containing nano-titanium dioxide can accept both electrons and accept holes, the electron e-is guided by the nano-titanium dioxide to the metal micro-cathode region, so that the electrode potential E of the metal micro-cathode is negatively shifted by the micro-cathode
  • the hole (h+) is valenced from the nano-titanium dioxide to the metal microanode region, so that the electrode potential E of the metal microanode is positively shifted. Due to the positive shift of the E microanode potential and the negative shift of the E-polar potential, as shown in Figure 1 of Figure 1, the metal corrodes the electricity between the micro-anode E and the E-micro-cathode. The difference ⁇ is reduced.
  • i c (E microcathode - ⁇ egg pole) / (P a + P k ), assuming that the electrochemical reaction polarizability P is constant, at this time, i e will completely depend on ⁇ ( ⁇ earning - The size of the E egg electrode, the smaller the ⁇ , the smaller the metal self-corrosion current i c .
  • the electron e_ is guided into the metal by the nano-titanium dioxide.
  • the microcathode of the metal accepts electrons, and its electrode potential E is negatively shifted by the microcathode.
  • the electrochemical reaction polarizability P remains unchanged, as shown by 2 in Fig. 1, the original mixed potential E c will be negatively shifted to E c2 , and the original corrosion current i c is correspondingly reduced to i c2 .
  • the hole h+ enters the metal from the nano-titanium dioxide valence band.
  • the microanode of the metal accepts holes, and its electrode potential E is extremely positively shifted.
  • the electrochemical reaction polarizability P remains unchanged, as shown by 3 in Fig. 1, the original mixed potential E c will be shifted to E c3 , and the original corrosion current i c is correspondingly reduced to i c3 .
  • the reduction in self-corrosion current indicates that the coating comprising nano-titanium dioxide can photoelectrochemically protect the metal and significantly reduce the corrosion rate of the metal.
  • An electrode sheet coated with a coating containing a nonionic surfactant surface-modified nano-titanium dioxide is cured and used as a working electrode, wherein the thickness of the coating obtained by curing is 15-50 ⁇ m, preferably 20-45 ⁇ m, more preferably 25-40 ⁇ m;
  • the electrode sheets may be made of, for example, copper, steel, stainless steel or an aluminum alloy.
  • the working electrode was placed in a three-electrode system together with a saturated calomel electrode as a reference electrode and a Pt electrode as an auxiliary electrode, and the three-electrode system was immersed in a 3.5 wt% NaCl electrolyte solution, and then CA-2A was used.
  • the potentiostat measures the electrochemical polarization curve.
  • Emcol EL-50 surface-modified nano-titanium dioxide 60 g of hydroxy acrylic resin (TB60018P type, Xiamen Condillon) and 12 g of toluene diisocyanate at 30.5 liters of butanone and xylene (volume ratio The mixture was mixed in a mixed solvent of 3:1) to obtain a polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide.
  • Emcol EL-50 surface-modified nano-titanium dioxide 60 g of hydroxy acrylic resin (TB60018P type, Xiamen Condillon) and 12 g of isocyanate at 29.3 liters of butanone and xylene (volume ratio The mixture was mixed in a mixed solvent of 3:1) to obtain a polyurethane coating containing 2% by weight of surface-modified nano-titanium dioxide.
  • hydroxy acrylic resin T60018P type, Xiamen Condillon
  • 12 g of toluene diisocyanate were mixed in a mixed solvent of 31.6 liters of methyl ethyl ketone and xylene (3:1 by volume) to obtain no nano titanium dioxide.
  • Polyurethane coating 60 g of hydroxy acrylic resin (TB60018P type, Xiamen Condillon) and 12 g of toluene diisocyanate was mixed in a mixed solvent of 31.6 liters of methyl ethyl ketone and xylene (3:1 by volume) to obtain no nano titanium dioxide. Polyurethane coating.
  • a 1 cm x 1 cm piece of copper electrode is welded to the copper wire.
  • the epoxy resin and the polyamide resin were mixed in a weight ratio of 3:2 and slowly stirred uniformly with a glass rod.
  • the uniformly mixed epoxy resin and polyamide resin were poured into a carton in which a copper electrode sheet was previously placed, and cured for 1 day.
  • the packaged copper electrode sheets were sequentially polished with 200#, 400#, 600# wet sandpaper, wiped with alcohol, and then naturally dried in the air.
  • the above-mentioned nano-titanium dioxide-free polyurethane coating was applied onto the treated copper electrode sheet to obtain a working electrode A1, and the coating thickness was 36 ⁇ m as measured by a film thickness gauge.
  • the above-mentioned polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide was coated on another of the treated copper electrode sheets, cured to obtain a working electrode ⁇ 2, and a coating thickness of 31 ⁇ m was measured by a film thickness gauge.
  • the above contains 2% by weight of surface-modified nano-diox
  • the titanium coating of the polyurethane coating was applied to another of the treated copper electrode sheets, and the working electrode A3 was cured to obtain a coating thickness of 25 ⁇ m as measured by a film thickness gauge.
  • the tangent is made from the Tafel area, and the tangent intersects with the straight line parallel to the horizontal axis where the corrosion potential is located to obtain the intersection point, and the abscissa corresponding to the intersection point is the self-corrosion current.
  • the self-corrosion current i c corresponding to the working electrode A1 coated with the nano-titanium dioxide-free polyurethane coating reaches 1 (r 7 A/cm 2 , and the coating contains 1% by weight surface modification).
  • the self-corrosion current i cl corresponding to the working electrode A2 of the nano titanium dioxide polyurethane coating is 1 (r 8 A/cm 2 , working electrode A3 coated with a polyurethane coating containing 2% by weight of surface-modified nano titanium dioxide)
  • the corresponding self-corrosion current i c2 is also l (r 8 A/cm 2 order of magnitude.
  • the decrease in self-corrosion current indicates that the polyurethane coating containing surface-modified nano-titanium dioxide has a strong protective effect on the copper electrode.
  • Embodiment 1 belongs to the case shown in FIG. 1 , that is, the electron and hole carriers generated by the photo-excitation of the nano-titanium dioxide in the metal copper receiving coating, so that the E-negative transfer of the metal corrosion cell and the E-micro-anode positive shift , causing the potential difference ⁇ between the cathode and the anode to decrease, thereby causing the self-corrosion current to decrease, thereby obtaining corresponding photoelectrochemical protection of the copper electrode.
  • Example 2 is, the electron and hole carriers generated by the photo-excitation of the nano-titanium dioxide in the metal copper receiving coating, so that the E-negative transfer of the metal corrosion cell and the E-micro-anode positive shift , causing the potential difference ⁇ between the cathode and the anode to decrease, thereby causing the self-corrosion current to decrease, thereby obtaining corresponding photoelectrochemical protection of the copper electrode.
  • Example 2
  • toluene diisocyanate were mixed in a mixed solvent of 30.8 liters of methyl ethyl ketone and xylene (3:1 by volume) to obtain a polyurethane containing 3% by weight of surface-modified nano-titanium dioxide.
  • 62 g of hydroxy alkyd resin (number average molecular weight 250,000, Dalian Boxiang Industry and Trade Co., Ltd.) and 7.7 g of toluene diisocyanate were mixed in a mixed solvent of 34.2 liters of butanone and xylene (3:1 by volume). Polyurethane without nano-iron oxide**.
  • the treated electrode sheets were prepared as described in Example 1, except that A3 steel (Beijing Antec Anticorrosion Technology Co., Ltd.) was used instead of copper.
  • A3 steel Beijing Antec Anticorrosion Technology Co., Ltd.
  • the above-mentioned nano-titanium dioxide-free polyurethane coating was coated on the treated A3 steel electrode sheet, and cured to obtain a working electrode Bl, which was measured to have a coating thickness of 38 ⁇ m by a film thickness gauge.
  • the above-mentioned polyurethane coating containing 1% by weight of the surface-modified nano-titanium dioxide was coated on another of the treated A3 steel electrode sheets, and cured to obtain a working electrode ⁇ 2, which was measured to have a coating thickness of 34 ⁇ m by a film thickness gauge.
  • the above-mentioned polyurethane coating containing 3% by weight of surface-modified nano-titanium dioxide was coated on still another of the treated A3 steel electrode sheets, and cured to obtain a working electrode ⁇ 3, which was measured to have a coating thickness of 30 ⁇ m by a film thickness gauge.
  • the three-electrode system containing the working electrodes B1 and ⁇ 2, respectively, was immersed in the electrolyte solution for 1 hour under dark room conditions, and then the working electrodes B1 and ⁇ 2 were measured according to the method described above, and the obtained polarization curve is shown in Fig. 3, wherein The curve shown by the line is the polarization curve of the working electrode B1, and the curve shown by the broken line is the polarization curve of the working electrode ⁇ 2.
  • the three-electrode system containing the working electrodes B1 and ⁇ 3, respectively, was immersed in the electrolytic shield solution under natural light for 2 hours, and then the working electrodes B1 and ⁇ 3 were measured according to the method described above, and the obtained polarization curve is shown in Fig.
  • the curve shown by the solid line is the polarization curve of the working electrode B1
  • the curve shown by the broken line is the polarization curve of the working electrode ⁇ 3.
  • the self-corrosion current i c corresponding to the working electrode B1 coated with the nano-titanium dioxide-free polyurethane coating reaches the order of 1 (T 6 A/cm 2 , and is coated with
  • the self-corrosion current corresponding to the working electrode B2 of the 1% by weight surface-modified nano-titanium dioxide polyurethane coating is l (r 8 A/cm 2 on the order of two orders of magnitude.
  • the decrease in self-corrosion current indicates the inclusion of the surface.
  • the modified nano-titanium dioxide polyurethane coating has a strong protective effect on the A3 steel electrode under dark room conditions.
  • the working electrode B1 coated with the polyurethane coating containing no nano titanium dioxide is used.
  • the corresponding self-corrosion current i c reaches the order of l (r 6 A/cm 2
  • the self-corrosion current i c2 corresponding to the working electrode B3 coated with the polyurethane coating containing 3% by weight of the surface-modified nano titanium dioxide is l (r 9 A/cm 2 in the order of magnitude, two There are three orders of magnitude difference between the two.
  • the decrease in self-corrosion current indicates that the polyurethane coating containing the surface-modified nano-titanium dioxide has a strong protective effect on the A3 steel electrode under natural light irradiation conditions.
  • Embodiment 2 belongs to the case shown in 2 of FIG. 1, that is, the electrons generated by the nano-titanium dioxide in the steel receiving coating, causing the metal-etching battery to negatively shift the ⁇ micro-cathode, resulting in a decrease in the potential difference ⁇ between the cathode and the anode. In turn, the self-corrosion current is reduced, so that the steel electrode is subjected to corresponding photoelectrochemical protection.
  • polyester polyol 100 type, Liaoyang Dongchen Polyurethane Co., Ltd.
  • diphenylmethane diisocyanate in a mixed solvent of 32.7 liters of butanone and xylene (3:1 by volume).
  • a polyurethane coating containing no nano titanium dioxide is obtained.
  • the treated electrode sheets were prepared as described in Example 1, except that stainless steel 316 (Beijing Antek Anticorrosion Co., Ltd.) was used instead of copper.
  • the above-mentioned nano-titanium dioxide-free polyurethane coating was applied onto the treated stainless steel 316 electrode sheet, and cured to obtain a working electrode Cl, which was measured to have a coating thickness of 32 ⁇ m by a film thickness gauge.
  • the above polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide was coated on the other three of the treated stainless steel 316 electrode sheets, and cured to obtain working electrodes C2, C3 and C4, and the coating was measured by a film thickness gauge.
  • the thicknesses were 28 ⁇ m, 29 ⁇ m, and 30 ⁇ m, respectively.
  • the three-electrode system containing the working electrodes C1 and C2, respectively, is immersed in the electrolyte solution for one day, and the three-electrode system containing the working electrode C3 is immersed in the electrolyte solution for two days, and the three-electrode system containing the working electrode C4 is placed in the electrolyte solution.
  • the working electrodes C1, C2, C3 and C4 were measured according to the method described above, and the obtained polarization curve is shown in Fig. 5.
  • Fig. 5 In In Fig.
  • curve 4 is the polarization curve of the working electrode CI
  • curve 1 is the polarization curve of the working electrode C2
  • curve 2 is the polarization curve of the working electrode C3
  • curve 3 is the polarization curve of the working electrode C4.
  • the self-corrosion current i c corresponding to the working electrode C1 coated with the polyurethane coating containing no nano-titanium dioxide is 1 (r 7 A/cm 2 on the order of
  • the self-corrosion current ⁇ of the working electrode C2 having a polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide is 1 (r 9 A/cm 2 of the order of magnitude, which differs by two orders of magnitude; after soaking for 2 days)
  • the working electrode C3 coated with the polyurethane coating containing 1% by weight of the surface-modified nano-titanium dioxide has a self-corrosion current i c2 of 1 (r 8 A/cm 2 ; under the condition of immersion for 3 days,
  • the working electrode C4 coated with a polyurethane coating containing 1% by weight of surface-modified nano-titanium dioxide has a self-corrosion current i c3 of the order of 1 (T 9
  • Embodiment 3 belongs to the case shown in FIG. 1 and 3, that is, the holes generated by the photo-excitation of the nano-titanium dioxide in the stainless steel receiving coating, so that the E-egg of the metal corrosion battery is extremely positively shifted, resulting in a potential difference ⁇ between the cathode and the anode. Small, which in turn leads to a reduction in the self-corrosion current, so that the stainless steel electrode is protected by photoelectrochemistry.
  • Example 4
  • the polyvinylidene fluoride was uniformly dispersed in a mixed solvent to obtain a fluorocarbon resin.
  • 0.8 g of the above-mentioned Span 65 surface-modified nano-titanium dioxide was added to a fluorocarbon resin dispersion to obtain a fluorocarbon coating containing 1% by weight of surface-modified nano-titanium dioxide.
  • the polyvinylidene fluoride-free fluorocarbon is obtained by uniformly mixing polyvinylidene fluoride in a mixed solvent under stirring Paint.
  • the 2100x2cm 1100 aluminum alloy (Henan Xintai Aluminum Co., Ltd.) electrode sheets were polished with 200#, 400#, 600# wet sandpaper, wiped with alcohol, and then naturally dried in the air. Use a pencil to draw a 1cmxlcm marking line and a 3mm diameter hole outside the marking line.
  • the above fluorocarbon coating containing no nano titanium dioxide was coated on the surface of the 1 cm x 1 cm region within the marking line, cured in a muffle furnace at 240 ° C for 10 minutes, cooled to room temperature in air, and measured by a film thickness gauge. The coating thickness was 35 ⁇ m.
  • An aluminum wire was connected to the electrode sheet through a hole and bonded with 703 silica gel (Beijing Chemical Co., Ltd.) to ensure conduction.
  • the portion of the electrode sheet not coated with the fluorocarbon coating was encapsulated with 703 silica gel and naturally cured to obtain a working electrode D1.
  • the working electrode D2 was obtained as described above except that the above-mentioned fluorocarbon coating containing nano-titanium dioxide containing 1% by weight of surface-modified nano-titanium dioxide was replaced.
  • the curve shown by the solid line is the polarization curve of the working electrode D1
  • the curve shown by the broken line is the polarization curve of the working electrode D2.
  • the working electrode D1 coated with the fluorocarbon coating containing no nano-titanium dioxide has a self-corrosion current i e of 1 (on the order of T 7 A/cm 2 and coated with a surface modification of 0.8% by weight).
  • the self-corrosion current i cl corresponding to the working electrode D2 of the fluorocarbon coating of nano titanium dioxide is 1 (T 8 A/cm 2 order.
  • the decrease of self-corrosion current indicates that the surface modified nano titanium dioxide has a fluorocarbon coating for the 1100 type
  • the aluminum alloy electrode has a strong protective effect.
  • Embodiment 4 belongs to the case shown in 2 of FIG. 1, that is, the nanometer titanium dioxide in the aluminum alloy receiving coating receives electrons generated by the light, and the E microcathode of the metal corrosion battery is negatively shifted, resulting in a potential difference ⁇ between the cathode and the anode.
  • the reduction which in turn leads to a decrease in the self-corrosion current, results in a corresponding photoelectrochemical protection of the aluminum alloy electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

本发明涉及光电化学保护金属的方法,其包括将包含以下组分的涂料应用于金属表面上并将其固化:A)成膜组分;和B)表面改性的纳米二氧化钛,其中表面改性的纳米二氧化钛由作为基体的纳米二氧化钛颗粒以及包覆在纳米二氧化钛基体表面上的非离子表面活性剂组成;纳米二氧化钛基体的粒径为1-100nm;非离子表面活性剂的亲水亲油平衡值为1-10;其含量基于纳米二氧化钛基体的重量为1-20重量%;其中表面改性的纳米二氧化钛的含量基于涂料总重量为0.1-10重量%。本发明方法能低成本且高效地光电化学保护金属并显著降低其腐蚀速度。

Description

光电化学保护金属的方法 技术领域
本发明涉及光电化学保护金属的方法, 更具体地, 涉及通过将包含非 离子表面活性剂表面改性的纳米二氧化钛的涂料应用于金属表面而光电化 学保护金属的方法。 背景技术
金属腐蚀能在 亍各业中造成巨大损失, 约占国民经济产值的 3-4%。 采取现代防腐蚀技术可将腐蚀损失减少 15%左右, 具有十分可观的资源价 值和经济价值。
在许多控制金属腐蚀的方法中, 电化学阴极保护和阳极保护是最为有 效的方法。 典型阴极保护和阳极保护的实例包括例如天然气输送管道的阴 极保护、 电力系统变电站接地网牺牲阳极保护、 储罐内壁气相阴极保护、 桥面混凝土阴极保护、 石油化工设施的阴极保护、 船舶装备的阴极保护、 长输油管道的阴极保护、 原油储罐的阴极保护等。
在例如电力系统变电站接地网中, 所用接地网材质主要为扁钢或圆钢 形式的普通碳钢。 由于接地装置长期处于地下恶劣的运行环境中, 土壤不 可避免地会对其进行化学和电化学腐蚀, 同时其还要承受地网散流域杂散 电流的腐蚀。 接地网腐蚀通常呈局部腐蚀形态, 发生腐蚀后接地网碳钢材 料变脆、 起层、 n, 甚至发生断裂。 随着电力系统容量和网络复杂性增 加, 自动化水平提高, 接地网性能降低引起的电力事故逐渐增多, 造成的 危害随之增大, 经济损失也越大。
随着人们对电力系统接地网防腐蚀问题的日益关注, 目前广泛采取各 种防腐措施以提高或保证接地网的安全水平。 加大接地体截面和提高腐蚀 裕量虽然能降低腐蚀对接地效果的负面影响, 但无法从根本上解决问题, 特别是在腐蚀严重的地区, 而且造成不必要的大量金属材料的消耗。 可将 铜或其它耐腐蚀的有色金属用作接地材料, 但成本太高, 而且施工比较困 难, 易造成电偶腐蚀, 进而影响其它钢结构的安全。 通常也可将复合材料 如镀辞钢用作接地材料, 但其效果不长久。 阴极保护技术效果好、 保护周 期长、施工方便。牺牲阳极的电化学保护方法不仅适合新建接地网的防护, 而且还可用于改造老接地网, 延长其使用寿命。 用, 但是二者除了不断消耗牺牲阳极金属块或消耗电能外, 还需要测试保 护电流的仪器、 装置和导线等。 同时, 保护系统中恒电位仪等监测装置的 任何故障都可能导致保护失效, 进而产生接地网的严重腐蚀。 发明内容
鉴于上述现有技术状况, 本申请的发明人在金属腐蚀防护领域进行了 广泛深入的研究, 以期得到一种低成本且高效的对金属进行防护以显著降 低其腐蚀速度的方法。 结果发现通过将包含非离子表面活性剂表面改性的 纳米二氧化钛的涂料应用于金属表面上可有效地光电化学保护所述金属。 发明人正是基于上述发现完成了本发明。
本发明的目的是提供一种光电化学保护金属的方法。
本发明提供了一种光电化学保护金属的方法, 所述方法包括将包含以 下组分的涂料应用于金属表面上并将其固化:
A)成膜组分; 和
B)表面改性的纳米二氧化钛,其中表面改性的纳米二氧化钛由作为基体的 纳米二氧化钛颗粒以及包覆在纳米二氧化钛基体表面上的非离子表面 活性剂组成; 纳米二氧化钛基体的粒径为 l-100nm, 优选 l-60nm, 更 优选 l-40nm; 非离子表面活性剂的亲水亲油平衡值为 1-10, 优选 2-8, 更优选 2-5.8; 其含量基于纳米二氧化钛基体的重量为 1-20重量%, 优 选 2-10重量%, 更优选 3-8重量%;
其中表面改性的纳米二氧化钛的含量基于涂料总重量为 0.1-10重量%,优选 0.5-5重量%, 更优选 0.8-3重量%。
在本发明方法中, 保护金属所需的电流直接由含有表面改性的纳米二 氧化钛的涂层在光的作用下而提供。 与传统电化学保护方法相比, 本发明 方法不仅省略了外加的电源和牺牲的阳极, 而且还省去了恒电位仪、 参比 电极、 连接电路等一系列设备的安装、 检测和维护等繁杂工作。 同时, 本 发明方法还能有效地光电化学保护金属以显著降低其腐蚀速度, 例如涂覆 有包含表面改性的纳米二氧化钛的涂料的金属电极的自腐蚀电流为
10—9-10-8A/Cm2数量级, 其通常比涂覆有不含纳米二氧化钛的涂料的金属电 极的自腐蚀电流小 1-2个数量级, 甚至小 3个数量级。 附图说明
图 1为光电化学保护前后被腐蚀金属的自腐蚀电位和自腐蚀电流的示 意图。
图 2为实施例 1中涂覆有不含纳米二氧化钛的聚氨酯涂料、 包含 1重 量%的表面改性的纳米二氧化钛的聚氨酯涂料以及包含 2重量%的表面改 性的纳米二氧化钛的聚氨酯涂料的工作电极在电解质溶液中浸泡 1天的极 化曲线。
图 3为实施例 2中涂覆有不含纳米二氧化钛的聚氨酯涂料以及包含 1 重量%的表面改性的纳米二氧化钛的聚氨酯涂料的工作电极在电解质溶液 中于暗室条件下浸泡 1小时的极化曲线。
图 4为实施例 2中涂覆有不含纳米二氧化钛的聚氨酯涂料以及包含 3 重量%的表面改性的纳米二氧化钛的聚氨酯涂料的工作电极在电解质溶液 中于自然光照射条件下浸泡 2小时的极化曲线。
图 5为实施例 3中涂覆有不含纳米二氧化钛的聚氨酯涂料的工作电极 在电解质溶液中浸泡 1天以及包含 1重量%的表面改性的纳米二氧化钛的 聚氨酯涂料在电解质溶液中分别浸泡 1天、 2天和 3天的极化曲线。
图 6为实施例 4中涂覆有不含纳米二氧化钛的氟碳涂料以及包含 0.8 重量%的表面改性的纳米二氧化钛的氟碳涂料的工作电极在电解质溶液中 浸泡 1天的极化曲线。 具体实施方式
在本申请上下文中所使用的术语 "光电化学保护" 应理解为指涂覆在 金属表面上的涂层中的纳米二氧化钛在光的作用下产生电子和空穴载流 子, 所述金属吸收所产生的电子和 /或空穴, 使金属腐蚀电池的 E 微陳负移 和 /或 E 卵极正移, 导致阴极和阳极之间的电位差 ΔΕ减小, 进而导致自腐 蚀电流减小, 从而使所述金属得到相应保护, 其中所述光可为紫外光、 可 见光或红外光。
为了使纳米二氧化钛颗粒均匀^:在涂料中且在固化后也均匀^:在 涂层中, 本申请的发明人首先通过以下步骤制备了非离子表面活性剂表面 改性的纳米二氧化钛:
a) 利用润湿剂将作为基体的纳米二氧化钛颗粒润湿;
b) 将非离子表面活性剂与来自步骤 a)的纳米二氧化钛基体在润湿剂中的 体混匀; 和
c) 干燥。
所用润湿剂可为本领域技术人员已知的任何润湿剂。 本发明所用润湿 剂优选为醇。 合适的醇包括但不限于甲醇、 乙醇、 正丙醇、 异丙醇、 2-甲 基 -1-丙醇、 正丁醇、 2-丁醇和叔丁醇。 所用润湿剂与纳米二氧化钛基体的 重量比为 2:1-20:1, 优选 3:1-10:1。
纳米二氧化饮基体的粒径为 l-100nm,优选 l-60nm, 更优选 l-40nm。 适用于本发明的非离子表面活性剂的亲水亲油平衡值为 1-10, 优选 2-8, 更优选 2-5.8。 非离子表面活性剂的用量基于纳米二氧化钛基体的重 量为 1-20重量%, 优选 2-10重量%, 更优选 3-8重量%。
干燥可在常温或升高的温度如 60-80 下和在常压或降低的压力下进 行 10-48小时, 优选 12-36小时。 合适的干燥方法例如为在升高的温度如 60-80 "C下减压干燥。
具体可参见申请人同日提交的题为 "纳米二氧化钛及其制备方法" 的 中国发明专利申请, 在此通过引用将其整体结合到本文中。
在本发明方法中, 优选将包含表面改性的纳米二氧化钛的聚氨酯涂料 应用于金属表面以光电化学保护所述金属。
将上文所述非离子表面活性剂表面改性的纳米二氧化钛、 多元醇、 异 氰酸酯、 任选的颜料和填料以及任选的助剂在溶剂中混合获得包含表面改 性的纳米二氧化钛的聚氨酯涂料, 其中表面改性的纳米二氧化钛的含量基 于涂料总重量为 0.1-10重量%, 优选 0.5-5重量%, 更优选 0.8-3重量%; 多元醇与异氰酸酯的重量比为 10:1-2:1, 优选 8:1-3:1, 更优选 5:1-4:1。
所用多元醇可为聚酯多元醇、 聚醚多元醇、 环氧树脂、 羟基丙烯酸树 脂、 羟基醇酸树脂。
所用异氰酸酯为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、 1,6-六亚甲 基二异氰酸酯、 三甲基六亚甲基二异氰酸酯、 对苯二异氰酸酯、 4,4'-二环 己基甲烷二异氰酸酯、 间二甲苯二异氰酸酯、 异佛尔酮二异氰酸酯、 1,5- 萘二异氰酸酯、 异氰酸才艮封端的预聚体。
在成膜组分为由多元醇和异氰酸酯形成的聚氨酯树脂的情况下, 优选 在制备表面改性的纳米二氧化钛的过程中所用非离子表面活性剂为乙二醇 脂肪酸酯、 聚氧乙烯山梨醇蜂蜡衍生物、 二乙二醇脂肪酸酯或单硬脂酸甘 油酯, 例如乙二醇脂肪酸酯 Emcol EL-50(HLB值为 3.6)、聚氧乙烯山梨醇 蜂蜡衍生物 Arias G-1727(HLB 值为 4.0)、 二乙二醇脂肪酸酯 Emcol DO-50(HLB值为 4.7)或单硬脂酸甘油酯 Aldo 28(HLB值为 5.5)。
具体可参见申请人同日提交的题为 "聚氨酯涂料及其制备方法" 的中 国发明专利申请, 在此通过引用将其整体结合到本文中。
在本发明方法中, 同样优选将包含表面改性的纳米二氧化钛的氟碳涂 料应用于金属表面以光电化学保护所述金属。
将上文所述非离子表面活性剂表面改性的纳米二氧化钛、 氟碳树脂、 二氧化钛的氟碳涂料, 其中表面改性的纳米二氧化钛的含量基于涂料总重 量为 0.1-10重量%, 优选 0.5-5重量%, 更优选 0.8-3重量%。
所用氟碳树脂可选自聚氟乙烯、 聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚 物、 四氟乙烯-六氟丙烯 -偏氟乙烯共聚物、 四氟乙烯-丙烯共聚物和四氟乙 烯-偏氟乙烯-丙烯酸共聚物, 优选氟碳树脂选自聚偏氟乙烯、 偏氟乙烯-六 氟丙烯共聚物、四氟乙烯 -丙烯共聚物和四氟乙烯-偏氟乙烯-丙烯酸共聚物。
在成膜组分为氟碳树脂的情况下, 优选在制备表面改性的纳米二氧化 钛的过程中所用非离子表面活性剂为失水山梨醇三硬脂酸酯、 乙二醇脂肪 酸酯、 聚氧乙烯山梨醇蜂蜡衍生物或丙二醇脂肪酸酯, 例如失水山梨醇三 硬脂酸酯 Span 65(HLB值为 2.1)、 乙二醇脂肪酸酯 Emcol EO-50(HLB值 为 2.7)、 聚氧乙烯山梨醇蜂蜡衍生物 Atlas G-1704(HLB值为 3.0)或丙二醇 脂肪酸酯 Emcol PO-50(HLB值为 3.4)。
具体可参见申请人同日提交的题为 "氟碳涂料及其制备方法" 的中国 发明专利申清, 在此通过引用将其整体结合到本文中。
在根据本发明的涂料中所使用的溶剂为常用溶剂或其混合物, 包括但 不限于芳烃类如二甲苯、 甲苯等; 酯类如乙酸乙酯、 乙酸丁酯、 乙酸异戊 酯等; 醇类如丁醇、 异丁醇、 苯甲醇等; 醚类如乙二醇单乙醚、 乙二醇单 丁醚、 丙二醇二乙醚等; 酮类如甲基异丁基酮、 苯乙酮、 异佛尔酮等。 本 领域技术人员可根据涂料所需性能如涂覆性能等确定所用溶剂的量。
在根据本发明的涂料中所使用的填料为例如滑石粉、碳酸钙、硫酸翎、 二氧化硅等。
在才艮据本发明的涂料中所使用的助剂为例如消泡剂、润湿剂、分散剂、 乳化剂、 防沉剂、 稳定剂, 防结皮剂、 流平剂、 催干剂、 防流挂剂、 增塑 剂、 消光剂、 阻燃剂、 防霉剂、 杀菌剂、 捕获剂等。
本领域技术人员可根据涂料所需性能如杀菌性能等确定所用填料和 / 或助剂的具体种类及其用量。
一般而言, 当表面涂覆有涂层的金属浸泡在电解质溶液中时, 电解质 溶液会浸透涂层的缺陷并与金属表面接触, 在金属表面上形成由微阳极和 微阴极构成的腐蚀电池, 进而对金属进行电化学腐蚀。
表面涂有含有纳米二氧化钛的涂层的金属在光的作用下, 施主能级的 电子 ( 被激发到导带, 或者价带电子 (e_)被激发到受主能级, 在价带中相 应地产生空穴 (h+), 从而产生光生载流子, 此时, 涂层的电导率发生变化, 并由绝缘型转变为具有一定电导率的导电型。
如果表面涂有含有纳米二氧化钛的涂料的金属既能接受电子又能接受 空穴, 则电子 e—由纳米二氧化钛导带^金属的微阴极区, 从而使金属微 阴极的电极电位 E微阴极负移, 空穴 (h+)由纳米二氧化钛价带^金属的微阳 极区, 从而使金属微阳极的电极电位 E微阳极正移。 由于 E微阳极电位正移和 E 御极电位负移, 如图 1中①所示, 金属腐蚀微电池 E 微阳极和 E 微阴极之间的电 位差 ΔΕ减小。根据关系式 ic=(E微阴极 -Ε卵极) /(Pa+Pk),假设电化学反应极化 率 P不变, 此时, ie将完全取决于 ΔΕ(Ε 微赚 -E 卵极)的大小, ΔΕ越小, 金 属自腐蚀电流 ic也相应越小。
如果表面涂有含有纳米二氧化钛的涂料的金属属于接受电子型, 则电 子 e_由纳米二氧化钛导带进入金属。 金属的微阴极接受电子, 其电极电位 E微阴极负移。假设电化学反应极化率 P保持不变, 如图 1中②所示,原来的 混合电位 Ec将负移至 Ec2, 原来的腐蚀电流 ic也相应地降低为 ic2
如果表面涂有含有纳米二氧化钛的涂料的金属属于接受空穴型, 则空 穴 h+由纳米二氧化钛价带进入金属。 金属的微阳极接受空穴, 其电极电位 E卵极正移。假设电化学反应极化率 P保持不变, 如图 1中③所示,原来的 混合电位 Ec将正移至 Ec3, 原来的腐蚀电流 ic也相应地降低为 ic3
自腐蚀电流的降低表明包含纳米二氧化钛的涂料能光电化学保护金属 并显著降低所述金属的腐蚀速度。
将表面涂有含有非离子表面活性剂表面改性的纳米二氧化钛的涂料的 电极片固化并用作工作电极, 其中固化所得涂层的厚度为 15-50μιη, 优选 20-45μιη, 更优选 25-40μιη; 电极片可由例如铜、 钢、 不锈钢或铝合金制 成。 将上述工作电极与作为参比电极的饱和甘汞电极和作为辅助电极的 Pt 电极一起搭置成三电极体系, 将所述三电极体系浸泡在 3.5 重量% NaCl 电解质溶液中, 然后采用 CA-2A恒电位仪测量电化学极化曲线。
本发明方法的如下优势在结合说明书附图整体考虑本发明后, 将易于 为普通技术人员所明白:
(1) 均匀 在涂层中的纳米二氧化钛通过其纳米尺寸效应加强了涂层对 金属的物理保护作用;
(2)含有表面改性的纳米二氧化钛的涂层在光的作用下直接产生保护电 流, 省略了外加电源和牺牲阳极;
(3)省去了恒电位仪、 参比电极、 连接电路等一系列设备的安装、 检测和 维护等繁杂工作; 和
(4) 自腐蚀电流降低表明本发明方法能有效地光电化学保护金属进而显著 降低其腐蚀速度。 实施例
下文通过参考实施例和附图对本发明进行具体描述, 但所述实施例并 不对本发明范围构成任何限制 实施例 1
准确称取 2.4克粒径为 16-20nm的纳米二氧化钛颗粒, 搅拌下将其加 入 12.1亳升甲醇中, 继续搅拌约 20分钟, 然后加入 0.07克亲水亲油平衡 值为 3.6的乙二醇脂肪酸酯 Emcol EL-50,超声处理 20分钟,在 60°C的温 度下减压干燥 24小时获得表面改性的纳米二氧化钛 2.47克。 将 1克所述 Emcol EL-50表面改性的纳米二氧化钛、 60克羟基丙烯酸树脂 (TB60018P 型,厦门康迪隆公司)和 12克甲苯二异氰酸酯在 30.5亳升丁酮和二甲苯 (体 积比为 3:1)的混合溶剂中混匀获得包含 1重量%表面改性的纳米二氧化钛 的聚氨酯涂料。将 2克所述 Emcol EL-50表面改性的纳米二氧化钛、 60克 羟基丙烯酸树脂 (TB60018P型, 厦门康迪隆公司)和 12克甲^异氰酸酯 在 29.3亳升丁酮和二甲苯 (体积比为 3:1)的混合溶剂中混匀获得包含 2重量 %表面改性的纳米二氧化钛的聚氨酯涂料。 将 60 克羟基丙烯酸树脂 (TB60018P型, 厦门康迪隆公司)和 12克甲苯二异氰酸酯在 31.6亳升丁酮 和二甲苯 (体积比为 3:1)的混合溶剂中混匀获得不含纳米二氧化钛的聚氨 酯涂料。
将 lcmxlcm 的铜电极片与铜导线焊接在一起。 将环氧树脂与聚酰胺 树脂以 3:2的重量比混合并用玻璃棒緩慢搅拌均匀。 把混合均匀的环氧树 脂与聚酰胺树脂倒入预先放有铜电极片的纸盒中, 并将其固化 1天。 将封 装好的铜电极片依次用 200#、 400#、 600#湿砂纸进行打磨, 用酒精擦拭, 然后在空气中自然干燥。 将上述不含纳米二氧化钛的聚氨酯涂料涂覆在所 述处理过的铜电极片上, 固化获得工作电极 Al,采用薄膜测厚仪测得涂层 厚度为 36μιη。 将上述包含 1重量%表面改性的纳米二氧化钛的聚氨酯涂 料涂覆在另一所述处理过的铜电极片上, 固化获得工作电极 Α2,采用薄膜 测厚仪测得涂层厚度为 31μιη。 将上述包含 2重量%表面改性的纳米二氧 化钛的聚氨酯涂料涂覆在又一所述处理过的铜电极片上, 固化获得工作电 极 A3, 采用薄膜测厚仪测得涂层厚度为 25μιη。
将分别含有工作电极 Al、 Α2和 A3的三电极体系在电解质溶液中浸 泡 1天, 然后依据上文所述方法对工作电极 Al、 Α2和 A3进行测量, 所 得极化曲线见图 2,其中实线所示曲线为工作电极 A1的极化曲线,疏虚线 所示曲线为工作电极 Α2的极化曲线,密虚线所示曲线为工作电极 A3的极 化曲线。 从 Tafel 区做切线, 切线与自腐蚀电位所在的平行于横轴的直线 相交获得交点, 交点所对应的横坐标即为自腐蚀电流。 如图 2所示, 涂覆 有不含纳米二氧化钛的聚氨酯涂料的工作电极 A1所对应的自腐蚀电流 ic 达到了 l(r7A/cm2数量级,而涂覆有包含 1重量%表面改性的纳米二氧化钛 的聚氨酯涂料的工作电极 A2所对应的自腐蚀电流 icl为 l(r8A/cm2数量级, 涂覆有包含 2重量%表面改性的纳米二氧化钛的聚氨酯涂料的工作电极 A3 所对应的自腐蚀电流 ic2也是 l(r8A/cm2数量级。 自腐蚀电流降低表明包含 表面改性的纳米二氧化钛的聚氨酯涂料对铜电极具有较强的保护作用。
实施例 1属于图 1中①所示情况, 即金属铜接收涂层中纳米二氧化钛 受光激发所产生的电子和空穴载流子,使金属腐蚀电池的 E微陳负移和 E微 阳极正移, 导致阴极和阳极之间的电位差 ΔΕ减小, 进而导致自腐蚀电流减 小, 从而使铜电极得到了相应的光电化学保护。 实施例 2
准确称取 3.1克粒径为 45-50nm的纳米二氧化钛颗粒, 搅拌下将其加 入 11.8亳升乙醇中, 继续搅拌约 20分钟, 然后加入 0.12克亲水亲油平衡 值为 4.0的聚氧乙烯山梨醇蜂蜡衍生物 Arias G-1727, 超声处理 20分钟, 在 60 C的温度下减压干燥 24小时获得表面改性的纳米二氧化钛 3.22克。 将 1克所述 Arias G-1727表面改性的纳米二氧化钛、 62克羟基醇酸树脂 (数 均分子量 250000,大连勃翔工贸有限公司)和 7.7克甲苯二异氰酸酯在 33.1 亳升丁酮和二甲苯 (体积比为 3:1)的混合溶剂混匀获得包含 1重量%表面改 性的纳米二氧化钛的聚氨酯涂料。 将 3克所述 Arias G-1727表面改性的纳 米二氧化钛、 62克羟基醇酸树脂 (数均分子量 250000, 大连勃翔工贸有限 公司)和 7.7克甲苯二异氰酸酯在 30.8亳升丁酮和二甲苯 (体积比为 3:1)的混 合溶剂混匀获得包含 3重量%表面改性的纳米二氧化钛的聚氨酯 。 将 62克羟基醇酸树脂 (数均分子量 250000, 大连勃翔工贸有限公司)和 7.7克 甲苯二异氰酸酯在 34.2亳升丁酮和二甲苯 (体积比为 3:1)的混合溶剂混匀 获得不含纳米二氧化铁的聚氨酯 **。
如实施例 1所述制备处理过的电极片, 不同之处在于用 A3钢 (北京安 特克防腐科技^ ^有限公司 )代替铜。将上述不含纳米二氧化钛的聚氨酯涂 料涂覆在所述处理过的 A3钢电极片上, 固化获得工作电极 Bl, 采用薄膜 测厚仪测得涂层厚度为 38μιη。 将上述包含 1重量%表面改性的纳米二氧 化钛的聚氨酯涂料涂覆在另一所述处理过的 A3钢电极片上, 固化获得工 作电极 Β2, 采用薄膜测厚仪测得涂层厚度为 34μιη。 将上述包含 3重量% 表面改性的纳米二氧化钛的聚氨酯涂料涂覆在又一所述处理过的 A3钢电 极片上, 固化获得工作电极 Β3, 采用薄膜测厚仪测得涂层厚度为 30μιη。
将分别含有工作电极 B1和 Β2的三电极体系在电解质溶液中于暗室条 件下浸泡 1小时, 然后依据上文所述方法对工作电极 B1和 Β2进行测量, 所得极化曲线见图 3, 其中实线所示曲线为工作电极 B1的极化曲线,虚线 所示曲线为工作电极 Β2的极化曲线。 将分别含有工作电极 B1和 Β3的三 电极体系在电解盾溶液中于自然光照射下浸泡 2小时, 然后依据上文所述 方法对工作电极 B1和 Β3进行测量, 所得极化曲线见图 4, 其中实线所示 曲线为工作电极 B1的极化曲线,虚线所示曲线为工作电极 Β3的极化曲线。 如图 3所示, 在暗室条件下, 涂覆有不含纳米二氧化钛的聚氨酯涂料的工 作电极 B1所对应的自腐蚀电流 ic达到了 l(T6A/cm2数量级, 而涂覆有包含 1重量%表面改性的纳米二氧化钛的聚氨酯涂料的工作电极 B2所对应的自 腐蚀电流 ^为 l(r8A/cm2数量级, 二者之间相差两个数量级。 自腐蚀电流 降低表明包含表面改性的纳米二氧化钛的聚氨酯涂料在暗室条件下对 A3 钢电极具有很强的保护作用。 如图 4所示, 在自然光照射条件下, 涂覆有 不含纳米二氧化钛的聚氨酯涂料的工作电极 B1所对应的自腐蚀电流 ic达 到了 l(r6A/cm2数量级,而涂覆有包含 3重量%表面改性的纳米二氧化钛的 聚氨酯涂料的工作电极 B3所对应的自腐蚀电流 ic2为 l(r9A/cm2数量级,二 者之间相差三个数量级。 自腐蚀电流降低表明包含表面改性的纳米二氧化 钛的聚氨酯涂料在自然光照射条件下对 A3钢电极具有很强的保护作用。
实施例 2属于图 1中②所示情况, 即钢接收涂层中纳米二氧化钛受光 所产生的电子, 使金属腐蚀电池的 Ε 微阴极负移, 导致阴极和阳极之间 的电位差 ΔΕ减小, 进而导致自腐蚀电流减小, 从而使钢电极得到了相应 的光电化学保护。 实施例 3
准确称取 3.48克粒径为 70-80nm的纳米二氧化钛颗粒,搅拌下将其加 入 26.6亳升异丙醇中, 继续搅拌约 20分钟, 然后加入 0.21克亲水亲油平 衡值为 4.7的二乙二醇脂肪酸酯 Emcol DO-50,超声处理 20分钟,在 60。C 的温度下减压干燥 24小时获得表面改性的纳米二氧化钛 3.69克。将 lg所 述 Emcol DO-50表面改性的纳米二氧化钛、 58克聚酯多元醇 (100型, 辽 阳东辰聚氨酯有限公司)和 13克二苯基甲烷二异氰酸酯在 31.6亳升丁酮和 二甲苯 (体积比为 3:1)的混合溶剂中混匀获得包含 1重量%表面改性的纳米 二氧化钛的聚氨酯涂料。将 58克聚酯多元醇 (100型,辽阳东辰聚氨酯有限 公司)和 13克二苯基甲烷二异氰酸酯在 32.7亳升丁酮和二甲苯 (体积比为 3:1)的混合溶剂中混匀获得不含纳米二氧化钛的聚氨酯涂料。
如实施例 1所述制备处理过的电极片, 不同之处在于用不锈钢 316(北 京安特克防腐科^ 有限公司 )代替铜。将上述不含纳米二氧化钛的聚氨 酯涂料涂覆在所述处理过的不锈钢 316电极片上, 固化获得工作电极 Cl, 采用薄膜测厚仪测得涂层厚度为 32μιη。 将上述包含 1重量%表面改性的 纳米二氧化钛的聚氨酯涂料涂覆在另外三片所述处理过的不锈钢 316电极 片上, 固化获得工作电极 C2、 C3和 C4, 采用薄膜测厚仪测得涂层厚度分 别为 28μιη、 29μιη和 30μιη。
将分别含有工作电极 C1和 C2的三电极体系在电解质溶液中浸泡 1 天, 将含有工作电极 C3的三电极体系在电解质溶液中浸泡 2天, 将含有 工作电极 C4的三电极体系在电解质溶液中浸泡 3天, 然后依据上文所述 方法对工作电极 Cl、 C2、 C3和 C4进行测量, 所得极化曲线见图 5。 在 图 5中, 曲线 4为工作电极 CI的极化曲线, 曲线 1为工作电极 C2的极化 曲线, 曲线 2为工作电极 C3的极化曲线, 曲线 3为工作电极 C4的极化曲 线。 如图 5所示, 在浸泡 1天的条件下, 涂覆有不含纳米二氧化钛的聚氨 酯涂料的工作电极 C1所对应的自腐蚀电流 ic为 l(r7A/cm2数量级, 而涂覆 有包含 1重量%表面改性的纳米二氧化钛的聚氨酯涂料的工作电极 C2所 对应的自腐蚀电流 ^为 l(r9A/cm2数量级, 二者之间相差两个数量级; 在 浸泡 2天的条件下, 涂覆有包含 1重量%表面改性的纳米二氧化钛的聚氨 酯涂料的工作电极 C3所对应的自腐蚀电流 ic2为 l(r8A/cm2数量级; 在浸 泡 3天的条件下, 涂覆有包含 1重量%表面改性的纳米二氧化钛的聚氨酯 涂料的工作电极 C4所对应的自腐蚀电流 ic3为 l(T9A/cm2数量级, 与自腐 蚀电流 ic相差两个数量级。 自腐蚀电流降低表明包含表面改性的纳米二氧 化钛的聚氨酯涂料对不锈钢 316电极具有很强的保护作用。
实施例 3属于图 1中③所示情况, 即不锈钢接收涂层中纳米二氧化钛 受光激发所产生的空穴, 使金属腐蚀电池的 E 卵极正移, 导致阴极和阳极 之间的电位差 ΔΕ减小, 进而导致自腐蚀电流减小, 从而使不锈钢电极得 到了相应的光电化学保护。 实施例 4
准确称取 2.4克粒径为 16-20nm的纳米二氧化钛颗粒, 搅拌下将其加 入 12.1亳升甲醇中, 继续搅拌约 20分钟, 然后加入 0.07克亲水亲油平衡 值为 2.1的失水山梨醇三硬脂酸酯 Span 65, 超声处理 20分钟, 在 60°C的 温度下减压干燥 24小时获得表面改性的纳米二氧化钛 2.47克。称取 60克 聚偏氟乙烯 (T-1型, 上海东氟化工技术有限公司), 并将其加入 44.2亳升 丁酮和二甲苯 (体积比为 3:1)的混合溶剂中,搅拌下使聚偏氟乙烯均匀分散 在混合溶剂中获得氟碳树脂^:体系。 将 0.8克上述 Span 65表面改性的 纳米二氧化钛加入氟碳树脂分散体系中获得包含 1重量%表面改性的纳米 二氧化钛的氟碳涂料。称取 60克聚偏氟乙烯 (T-1型,上海东氟化工技术有 P艮公司),并将其加入 45.1亳升丁酮和二甲苯 (体积比为 3:1)的混合溶剂中, 搅拌下使聚偏氟乙烯均匀 在混合溶剂中获得不含纳米二氧化钛的氟碳 涂料。
将 2cmx2cm的 1100型铝合金 (河南鑫泰铝业有限公司)电极片依次用 200#、 400#、 600#湿砂纸进行打磨, 用酒精擦拭, 然后在空气中自然干燥。 用铅笔在其上划出 lcmxlcm 的标记线, 在标记线以外的部分钻一个直径 为 3mm 的孔。 将上述不含纳米二氧化钛的氟碳涂料涂覆在标记线以内 lcmxlcm区域的表面上, 在马弗炉中于 240°C下固化 10分钟, 在空气中 冷却至室温, 采用薄膜测厚仪测得涂层厚度为 35μιη。 将铝导线通过孔与 所述电极片连接在一起, 并用 703硅胶 (北京化学试剂公司)粘结以确保导 通。 将所述电极片上未涂覆氟碳涂料的部分用 703硅胶封装, 并自然固化 获得工作电极 Dl。 如上所述获得工作电极 D2, 不同之处在于用上述包含 1 重量%表面改性的纳米二氧化钛的氟碳涂料代替不含纳米二氧化钛的氟 碳涂料。
将分别含有工作电极 D1和 D2的三电极体系在电解质溶液中浸泡 1 天, 然后依据上文所述方法对工作电极 D1和 D2进行测量, 所得极化曲线 见图 6。 在图 6中, 实线所示曲线为工作电极 D1的极化曲线, 虚线所示曲 线为工作电极 D2的极化曲线。 如图 6所示, 涂覆有不含纳米二氧化钛的 氟碳涂料的工作电极 D1所对应的自腐蚀电流 ie为 l(T7A/cm2数量级, 而涂 覆有包含 0.8重量%表面改性的纳米二氧化钛的氟碳涂料的工作电极 D2所 对应的自腐蚀电流 icl为 l(T8A/cm2数量级。 自腐蚀电流降低表明包含表面 改性的纳米二氧化钛的氟碳涂料对 1100型铝合金电极具有较强的保护作 用。
实施例 4属于图 1中②所示情况, 即铝合金接收涂层中纳米二氧化钛 受光^ L所产生的电子, 使金属腐蚀电池的 E 微阴极负移, 导致阴极和阳极 之间的电位差 ΔΕ减小, 进而导致自腐蚀电流减小, 从而使铝合金电极得 到了相应的光电化学保护。

Claims

权利要求书
1. 一种光电化学保护金属的方法, 所述方法包括将包含以下组分的涂 料应用于金属表面上并将其固化:
A)成膜组分; 和
B)表面改性的纳米二氧化钛,其中表面改性的纳米二氧化钛由作为基体的 纳米二氧化钛颗粒以及包覆在纳米二氧化钛基体表面上的非离子表面 活性剂组成; 纳米二氧化钛基体的粒径为 l-100nm, 优选 l-60nm, 更 优选 l-40nm; 非离子表面活性剂的亲水亲油平衡值为 1-10, 优选 2-8, 更优选 2-5.8; 其含量基于纳米二氧化钛基体的重量为 1-20重量%, 优 选 2-10重量%, 更优选 3-8重量%;
其中表面改性的纳米二氧化钛的含量基于涂料总重量为 0.1-10重量%, 优 选 0.5-5重量%, 更优选 0.8-3重量%。
2.权利要求 1的方法, 其中固化所得涂层中的纳米二氧化钛在光的作 用下产生电子和空穴。
3.权利要求 1 的方法, 其中固化所得涂层的厚度为 15-50μιη, 优选 20-45μιη, 更优选 25-40μιη。
4.权利要求 1-3中任一项的方法, 其中成膜组分是氟碳树脂, 优选选 自聚氟乙烯、 聚偏氟乙烯、 偏氟乙烯 -六氟丙烯共聚物、 四氟乙烯-六氟丙 烯-偏氟乙烯共聚物、四氟乙烯 -丙烯共聚物和四氟乙烯-偏氟乙烯-丙烯酸共 聚物, 更优选选自聚偏氟乙烯、 偏氟乙烯 -六氟丙烯共聚物、 四氟乙烯-丙 烯共聚物和四氟乙烯-偏氟乙烯-丙烯酸共聚物。
5.权利要求 4的方法, 其中非离子表面活性剂选自失水山梨醇三硬脂 酸酯、 乙二醇脂肪酸酯、 聚氧乙烯山梨醇蜂蜡衍生物或丙二醇脂肪酸酯。
6.权利要求 1-3中任一项的方法, 其中成膜组分为由多元醇和异氰酸 酯形成的聚氨酯树脂, 其中多元醇与异氰酸酯的重量比为 10:1-2:1, 优选 8:1-3:1, 更优选 5:1-4:1。
7.权利要求 6的方法, 其中多元醇选自聚酯多元醇、 聚醚多元醇、 环 氧树脂、 羟基丙烯酸树脂和羟基醇酸树脂。
8.权利要求 6的方法, 其中异氰酸酯选自甲苯二异氰酸酯、 二苯基甲 烷二异氰酸酯、 1,6-六亚甲基二异氰酸酯、三甲基六亚甲基二异氰酸酯、对 苯二异氰酸酯、 4,4'-二环己基甲烷二异氰酸酯、 间二甲苯二异氰酸酯、 异 佛尔酮二异氰酸酯、 1,5-萘二异氰酸酯和异氰酸根封端的预聚体。
9.权利要求 6的方法, 其中非离子表面活性剂选自乙二醇脂肪酸酯、 聚氧乙烯山梨醇蜂蜡衍生物、 二乙二醇脂肪酸酯或单硬脂酸甘油酯。
10.权利要求 1-9中任一项的方法, 其中金属为铜、钢、不锈钢或铝合 金。
PCT/CN2011/079936 2010-10-25 2011-09-21 光电化学保护金属的方法 WO2012055308A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/881,660 US9371589B2 (en) 2010-10-25 2011-09-21 Surface modified nano-scaled titanium dioxide, preparation process thereof, coating containing the same, and photoelectrochemical method for metal preservation using the coating
EP11835581.7A EP2633923B1 (en) 2010-10-25 2011-09-21 Photoelectrochemicalmethod on metal preservation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105177086A CN102009037B (zh) 2010-10-25 2010-10-25 光电化学保护金属的方法
CN201010517708.6 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012055308A1 true WO2012055308A1 (zh) 2012-05-03

Family

ID=43839473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079936 WO2012055308A1 (zh) 2010-10-25 2011-09-21 光电化学保护金属的方法

Country Status (4)

Country Link
US (1) US9371589B2 (zh)
EP (1) EP2633923B1 (zh)
CN (1) CN102009037B (zh)
WO (1) WO2012055308A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231993A (zh) * 2021-12-20 2022-03-25 商河县寰宇智能科技中心 一种金属防腐材料

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009037B (zh) 2010-10-25 2013-06-19 江苏考普乐新材料股份有限公司 光电化学保护金属的方法
US9849512B2 (en) 2011-07-01 2017-12-26 Attostat, Inc. Method and apparatus for production of uniformly sized nanoparticles
CN102653652B (zh) * 2012-05-02 2014-07-09 常州大学 一种纳米复合氟碳涂料及其制备方法
CN103436112A (zh) * 2013-09-13 2013-12-11 句容联众科技开发有限公司 一种耐候性涂料
CN104402347B (zh) * 2014-10-20 2016-04-13 苏州市建筑科学研究院集团股份有限公司 一种用于净化甲醛的硅藻泥装饰材料及其制备方法
WO2016161348A1 (en) 2015-04-01 2016-10-06 Attostat, Inc. Nanoparticle compositions and methods for treating or preventing tissue infections and diseases
EP3283580A4 (en) * 2015-04-13 2019-03-20 Attostat, Inc. ANTI-CORROSION NANOPARTICLE COMPOSITIONS
US11473202B2 (en) 2015-04-13 2022-10-18 Attostat, Inc. Anti-corrosion nanoparticle compositions
US10201571B2 (en) 2016-01-25 2019-02-12 Attostat, Inc. Nanoparticle compositions and methods for treating onychomychosis
CA3032636A1 (en) * 2016-07-14 2018-01-18 Arcanum Alloys, Inc. Methods for forming stainless steel parts
CN107856156B (zh) * 2017-11-21 2019-05-03 浙江省林业科学研究院 一种纳米二氧化钛基木材防腐剂的制备方法
US11018376B2 (en) 2017-11-28 2021-05-25 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
US11646453B2 (en) 2017-11-28 2023-05-09 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
CN110280461A (zh) * 2019-06-11 2019-09-27 西安华捷奥海新材料有限公司 一种长效波纹板隧道防岩爆装置耐腐蚀复合膜及实施方法
CN113930130A (zh) * 2021-11-04 2022-01-14 淮安凯佳粉末涂料有限公司 一种热固性粉末涂料
CN115521559B (zh) * 2022-10-26 2023-05-09 金塑企业集团(上海)有限公司 一种高硬度的pvc-u电工套管及其加工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427052A (zh) * 2001-12-21 2003-07-02 中国科学院金属研究所 一种纳米光催化聚氨酯涂料及其制备方法
CN1451706A (zh) * 2002-04-17 2003-10-29 中国科学院金属研究所 一种纳米光催化氟碳树脂涂料及其制备方法
CN101338156A (zh) * 2007-07-06 2009-01-07 北京化工大学 一种防雾自洁型抗菌防霉喷涂剂的制备方法
CN101440243A (zh) * 2008-12-25 2009-05-27 上海交通大学 纳米二氧化钛氟碳涂料及其制备方法
WO2009073112A1 (en) * 2007-12-04 2009-06-11 W. R. Grace & Co.-Conn. Anticorrosion material
CN101985536A (zh) * 2010-10-25 2011-03-16 江苏考普乐新材料股份有限公司 氟碳涂料及其制备方法
CN101985541A (zh) * 2010-10-25 2011-03-16 江苏考普乐新材料股份有限公司 聚氨酯涂料及其制备方法
CN102009037A (zh) * 2010-10-25 2011-04-13 江苏考普乐新材料股份有限公司 光电化学保护金属的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853809A (en) * 1996-09-30 1998-12-29 Basf Corporation Scratch resistant clearcoats containing suface reactive microparticles and method therefore
CN1287138A (zh) * 1999-09-03 2001-03-14 中国科学院固体物理研究所泰兴纳米材料厂 纳米二氧化钛表面处理
US20020045010A1 (en) * 2000-06-14 2002-04-18 The Procter & Gamble Company Coating compositions for modifying hard surfaces
CN1927966A (zh) * 2005-09-09 2007-03-14 鸿富锦精密工业(深圳)有限公司 纳米涂料及其制备方法
CN1970662A (zh) * 2006-11-09 2007-05-30 上海大学 高耐腐蚀性纳米复合环氧树脂涂料的制备方法
CN101323719A (zh) * 2007-06-15 2008-12-17 上海金力泰化工股份有限公司 建筑幕墙烤瓷涂料
CN101440143B (zh) * 2007-11-20 2011-04-06 山东东岳神舟新材料有限公司 一种增加聚全氟乙丙烯树脂端基稳定性的聚合工艺
CN102010000B (zh) * 2010-10-25 2014-07-16 江苏考普乐新材料有限公司 纳米二氧化钛及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427052A (zh) * 2001-12-21 2003-07-02 中国科学院金属研究所 一种纳米光催化聚氨酯涂料及其制备方法
CN1451706A (zh) * 2002-04-17 2003-10-29 中国科学院金属研究所 一种纳米光催化氟碳树脂涂料及其制备方法
CN101338156A (zh) * 2007-07-06 2009-01-07 北京化工大学 一种防雾自洁型抗菌防霉喷涂剂的制备方法
WO2009073112A1 (en) * 2007-12-04 2009-06-11 W. R. Grace & Co.-Conn. Anticorrosion material
CN101440243A (zh) * 2008-12-25 2009-05-27 上海交通大学 纳米二氧化钛氟碳涂料及其制备方法
CN101985536A (zh) * 2010-10-25 2011-03-16 江苏考普乐新材料股份有限公司 氟碳涂料及其制备方法
CN101985541A (zh) * 2010-10-25 2011-03-16 江苏考普乐新材料股份有限公司 聚氨酯涂料及其制备方法
CN102009037A (zh) * 2010-10-25 2011-04-13 江苏考普乐新材料股份有限公司 光电化学保护金属的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2633923A4 *
YAN, CHENG ET AL.: "Progress In the Surface Modification Research of Nano-TiO2 Particles", JOURNAL OF CERAMICS 2090-8628, vol. 23, no. 1, March 2002 (2002-03-01), pages 62 - 66, XP008170989 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231993A (zh) * 2021-12-20 2022-03-25 商河县寰宇智能科技中心 一种金属防腐材料

Also Published As

Publication number Publication date
EP2633923A1 (en) 2013-09-04
EP2633923B1 (en) 2017-04-19
CN102009037B (zh) 2013-06-19
EP2633923A4 (en) 2015-07-15
US20130224477A1 (en) 2013-08-29
US9371589B2 (en) 2016-06-21
CN102009037A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2012055308A1 (zh) 光电化学保护金属的方法
Dong et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment
WO2022141935A1 (zh) 一种海工混凝土用钢筋耐腐蚀涂层及其制备方法
TW201742895A (zh) 抗腐蝕複合層
Naik et al. Effect of carbon nanofillers on anticorrosive and physico-mechanical properties of hyperbranched urethane alkyd coatings
Yang et al. Atmospheric corrosion protection method for corroded steel members using sacrificial anode of Al-based alloy
Goyal et al. Performance assessment of specialist conductive paint for cathodic protection of steel in reinforced concrete structures
CN113150642A (zh) 一种海洋风电机组塔筒外壁的防腐涂层体系及涂装方法
Yang et al. Urushiol titanium polymer‐based composites coatings for anti‐corrosion and antifouling in marine spray splash zones
Banerjee et al. Designing green self-healing anticorrosion conductive smart coating for metal protection
CN106086996A (zh) 一种修复已生锈不锈钢钝化状态的复合表面处理方法
JP2018009218A (ja) 塗装鋼材およびその製造方法
CN115572976B (zh) 一种用于海洋建筑金属钢结构的复合缓蚀剂及其制备方法
CN114045100B (zh) 一种输电线路接地防腐材料
CN112592652A (zh) 一种聚苯胺/硝酸铈/环氧聚合涂层的制备方法
CN101591493B (zh) 一种表面涂层组合物及其制备方法
CN114836069A (zh) 一种用于接地极的超疏水耐蚀涂料及其涂层制备方法
Ren et al. The protection of 500kV substation grounding grids with combined conductive coating and cathodic protection
Benzbiria et al. Cathodic behavior of pure Al in sulfate media
Yoo et al. Influence of cathodic protection on the lifetime extension of painted steel structures
LV15479B (lv) Paņēmiens galvaniskās erozijas samazināšanai jūras transportlīdzekļu pārvadāšanas un uzglabāšanas tvertnēs
Fancy et al. Corrosion Performance of Nano-Particle Enriched Epoxy Primer for Marine Highway Bridge Application
Korjenic et al. Electrochemical Evaluation of Mg and a Mg-Al 5% Zn Metal Rich Primers for Protection of Al-Zn-Mg-Cu Alloy in NaCl
JP3069799B2 (ja) 鉄筋コンクリート構造物の電気防食工法
CN106757052A (zh) 一种采用强电解质溶液抑制水工钢结构件的腐蚀的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835581

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13881660

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011835581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011835581

Country of ref document: EP