WO2012050290A1 - Heat-dissipating device of liquid crystal display device using rear case - Google Patents

Heat-dissipating device of liquid crystal display device using rear case Download PDF

Info

Publication number
WO2012050290A1
WO2012050290A1 PCT/KR2011/004374 KR2011004374W WO2012050290A1 WO 2012050290 A1 WO2012050290 A1 WO 2012050290A1 KR 2011004374 W KR2011004374 W KR 2011004374W WO 2012050290 A1 WO2012050290 A1 WO 2012050290A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
rear case
liquid crystal
crystal display
display device
Prior art date
Application number
PCT/KR2011/004374
Other languages
French (fr)
Korean (ko)
Inventor
남동진
정인수
Original Assignee
주식회사 에이치앤에스솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치앤에스솔루션 filed Critical 주식회사 에이치앤에스솔루션
Publication of WO2012050290A1 publication Critical patent/WO2012050290A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133314Back frames
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the present invention relates to a heat dissipation device of a liquid crystal display device, and more particularly, it is possible to efficiently discharge heat generated from a heating element mounted on a printed circuit board of a liquid crystal display device to the outside by using a rear case of the liquid crystal display device. It relates to a heat dissipation device of a liquid crystal display device using a rear case.
  • a heat dissipating device such as a heat sink is mounted on the heat generating elements in order to prevent malfunction of the product due to heat generation.
  • heat sinks such as heat sinks, use metals with high thermal conductivity so that the heat generated by the product can be released quickly.
  • a heat having a structure in which a plurality of heat dissipation fins which are uniformly protruded on the front surface is arranged by heating and melting aluminum, copper, and their alloys at a high temperature, and then extruding them using a mold having a predetermined shape.
  • Sinks have been commonly used.
  • manufacturing a heat sink by a method of extrusion molding into a mold has a problem in that a manufacturing process is difficult and a processing cost increases because a separate mold corresponding to the heat sink has to be manufactured in order to manufacture a heat sink having various shapes.
  • a separate process such as anodizing has to be performed. In this process, a large amount of acid or basic waste is generated, resulting in additional treatment costs.
  • the heat pipe type cooling apparatus includes an evaporation unit in which a refrigerant absorbs heat from a heating element, a condensation unit in which evaporated refrigerant releases heat, and a transfer unit in which a microstructure is formed so that the refrigerant liquefied in the condensation unit moves back to the evaporation unit. Is common.
  • the conventional heat spreader for cooling electronics has to be formed in a plurality of layers having a thin plate shape of 1 mm or less in thickness, a lead frame structure that forms upper and lower flow paths in order to transfer the refrigerant using a capillary phenomenon in a long section, that is, There was a problem that the design and manufacture of the microstructure is difficult.
  • the conventional heat spreader for cooling electronic products made of metals such as aluminum, copper, iron, zinc, silver, and gold requires a complicated structure in order to reduce the heat generated per unit area to a desired level, and as a result, a large amount of metal is used.
  • the weight and volume of the whole product increases, and the price also increases.
  • a device was developed to increase the cooling efficiency by increasing the heat dissipation surface area by using a heat sink made of ceramic material rather than a metal material, and using the characteristic capillary pores of the ceramic material. This lengthened productivity was low, and inefficient in terms of processability, impact resistance, and size and weight of shapes having various and complex structures.
  • the heat radiators listed above must drill a considerable amount of vent holes in the product casing, which may cause the hot air inside the product to flow to the outside, which may cause system malfunction and failure. There is a problem that there is a high possibility that foreign dust and contaminants that may enter through the vent hole.
  • the present invention has been made to solve the above problems, and the problem to be solved by the present invention is that the heat generated from the heating element mounted on the printed circuit board of the liquid crystal display device can be efficiently discharged to the outside and has become more slim recently.
  • a heat dissipation device of a liquid crystal display device using a rear case, which can be miniaturized and lighter than a conventional heat dissipation device.
  • a heat dissipation device disposed between a backlight unit of a liquid crystal display device having a printed circuit board coupled to a rear surface and a rear case accommodating the backlight unit, wherein the heat dissipation device is disposed between the heating element mounted on the printed circuit board and the rear case. And a heat conductive pad positioned thereon, wherein the heat dissipation device is in close contact with a surface of the heat generating element and one surface of the rear case.
  • the thermally conductive pad is preferably an elastomer pad.
  • a non-adhesive layer may be formed on a surface of the thermal conductive pad in contact with the heating element.
  • the heat dissipation device may further include a thermally conductive sheet positioned between the thermally conductive pad and the rear case.
  • thermally conductive sheet is preferably a graphite sheet.
  • an adhesive layer may be formed on a surface of the thermal conductive sheet in contact with the rear case.
  • a protective film may be disposed between the graphite sheet and the thermally conductive pad.
  • the elastomer pad may be made by mixing hexamethylene diisocyanate, methylene diphenyl isocyanate, isophorone diisocyanate and dibutyl tin dilaurate to the synthesized polyol.
  • the heat dissipation device is provided in close contact with a heat generating element which is electrically operated inside a liquid crystal display device in which a liquid crystal display device, in particular, a light emitting diode (LED) is used as a light source, and controls the liquid crystal display device.
  • a heat generating element which is electrically operated inside a liquid crystal display device in which a liquid crystal display device, in particular, a light emitting diode (LED) is used as a light source, and controls the liquid crystal display device.
  • the heat dissipation efficiency can be improved by transferring the heat generated from the back case to the rear case, and the thickness can be reduced compared to the existing heat dissipation device, which can help slim down and lighten the liquid crystal display.
  • external dust or contaminants may be introduced, which may cause malfunction and failure of the device by minimizing or eliminating the quantity and area of the air vent holes formed in the radiator of the existing LCD. Can significantly reduce the likelihood of
  • FIG. 1 is a schematic structural diagram of a backlight unit of a liquid crystal display device in which a light emitting diode is used as a light source.
  • FIG. 2 is a schematic cross-sectional view of a heat dissipation device of a liquid crystal display using a rear case according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a heat dissipation device of a liquid crystal display using a rear case according to another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a heat dissipation device of a conventional liquid crystal display.
  • FIG. 1 is a view schematically illustrating a structure of a backlight unit 100 of a liquid crystal display device in which a light emitting diode (LED) is used as a light source.
  • LED light emitting diode
  • the general edge type backlight unit 100 includes a lower chassis 70, a light emitting diode (LED) 30, a reflective sheet 60, a light guide plate 50, an optical sheet 20, an LCD panel 10, a substrate for attaching an LED ( 40).
  • the substrate 40 to which the light emitting diodes 30 are coupled is coupled to both sides of the lower chassis 70.
  • the substrate 40 may be made of metal or FR4.
  • the reflective sheet 60 and the light guide plate 50 may be accommodated in the lower chassis 70.
  • the light guide plate 50 scatters the linear light emitted from the light emitting diodes 30 to emit the surface light. In this case, not all of the light emitted from the light emitting diode 30 is incident on the light guide plate 50, but is also reflected and lost to the lower portion of the light guide plate 50, and the reflective sheet 60 transmits the light to the light guide plate 50. Let it reflect totally.
  • the lower chassis 70 may be provided with a printed circuit board formed with a circuit portion including a drive driver.
  • the printed circuit board is equipped with various heating elements that are electrically operated inside the liquid crystal display device and control the liquid crystal display device. This heating element has a recent increase in heat generation in accordance with the trend of high integration. It is emerging.
  • FIG. 4 is a schematic cross-sectional view of a heat dissipation device of a conventional liquid crystal display device, and the heat dissipation device 120 is mounted on a printed circuit board 110 coupled to a rear surface of the backlight unit 100 of the liquid crystal display device.
  • the heat generating element 120 is configured by attaching a heat sink 150 made of aluminum or ceramic.
  • the heat sink 150 is installed to be spaced apart from the rear case 200 that accommodates the backlight unit 100 coupled to the rear surface of the printed circuit board 110.
  • a thermally conductive acrylic foam tape 155 is disposed between the heat generating element 120 and the heat sink 150 to strengthen the adhesive force while maintaining the thermal conductivity.
  • the heat dissipation device of the conventional liquid crystal display device uses a method of attaching a heat sink to a heat generating element, transferring heat generated by the heat generating element to the heat sink by conduction, and releasing heat by convection in the heat sink.
  • the heat dissipation device of the conventional liquid crystal display device is limited in heat dissipation area by the heat sink area, and furthermore, the gap between the rear case and the heat sink becomes narrower in view of the trend of the liquid crystal display device becoming more slim recently. As a result, smooth natural convection is hindered and the heat dissipation performance is reduced.
  • FIG. 100 is a heat dissipation device disposed between the rear case 200 to accommodate the backlight unit 100, the thermal conductivity is located between the heating element 120 mounted on the printed circuit board 110 and the rear case. It includes a pad 130, the heat dissipating device is in close contact with the surface of the heat generating element 120 and one surface of the rear case 200.
  • one surface of the rear case refers to a surface facing the backlight unit 100 of both surfaces of the rear case.
  • the heat dissipation device of the liquid crystal display since the heat dissipation device of the liquid crystal display according to the exemplary embodiment of the present invention utilizes the rear case 200 of the liquid crystal display as a heat sink, the heat dissipation performance of the heat sink can be maximized by maximizing the heat dissipation area of the heat sink.
  • the rear case 200 is generally preferably made of a metal having good thermal conductivity, and may be a galvanized steel sheet that is commonly used as a case material.
  • the thermal conductive pad is installed to be in contact with the surface of the heat generating element 120 to effectively transfer heat from the heat generating element 120 to the rear case 200 of the liquid crystal display device.
  • the heat conductive pad is thermally conductive to a polymer material such as silicone, urethane, and acryl.
  • a polymer material such as silicone, urethane, and acryl.
  • metal powders such as aluminum, zinc, nickel, copper, calcium, potassium, iron, silver, zinc, gold, oxides and hydrates or metal salts thereof, carbon nanotubes, carbon black, silicon carbide, graphite, and nitride It can be prepared by mixing boron, aluminum nitride and the like.
  • the thermal conductive pad 130 is an elastomer pad having good thermal conductivity and adhesion for smooth heat transfer from the heat generating element 120 to the rear case 200 functioning as a heat sink.
  • Elastomeric pads as thermally conductive pads can solve the disadvantages of thermally conductive silicone pads that have conventionally been used as heat transfer materials.
  • the silicon pad when the silicon pad is attached to the substrate or the heating element, oil may leak little by little in the silicon pad as time elapses, which may adversely affect the electrical conductivity of the substrate.
  • the silicon pad has a limit in the strength of the self-adhesiveness, so if more adhesive force is required, there is a need for a separate adhesive treatment.
  • the elastomer pad according to the present invention solves the drawbacks of the above-described thermally conductive silicone pads, and does not have oil leakage over time, and has an advantage of superior self-adhesiveness compared to the silicone pads, so that the elastomer pad is closely adhered to the rear case 200. Can be combined.
  • the elastomer pad may be prepared by mixing hexamethylene diisocyanate, methylene diphenyl isocyanate, isophorone diisocyanate and dibutyl tin dilaurate to the synthesized polyol, or further comprising alumina powder and aluminum hydroxide. Can be. Detailed description of the manufacturing method of the elastomer pad will be described later.
  • a non-adhesive layer 125 may be formed on one side of the elastomer pad, that is, the surface in contact with the heat generating element 120, which is made of no adhesive force or very weakly to be provided with the heat generating element 120. Tally can be easily done.
  • the non-adhesive layer 125 may be a polymer film such as PET, PE, PP, or the like, and may be formed by coating a silane compound, such as a polymer and an inorganic material, such as acrylic and urethane, which have no adhesive force, on an elastomer pad.
  • a silane compound such as a polymer and an inorganic material, such as acrylic and urethane, which have no adhesive force, on an elastomer pad.
  • the type of adhesive such as acrylic, silicone adhesive, and the like, the amount of additives thereof, the coating thickness, and the like may be appropriately adjusted to suitably adjust the non-tackiness of the non-adhesive layer.
  • thermally conductive sheet 140 having a good horizontal thermal conductivity may be further used.
  • Such materials may be graphite sheets, carbon sheets, metal plates such as aluminum, copper, silver, gold or magnesium, or thermally conductive sheets made of silicon, urethane, or acryl, but more preferably, workability, workability and economy. It is good to use this good graphite sheet.
  • One side of the thermal conductive sheet 140 having a good horizontal thermal conductivity forms an adhesive layer 145 made of acrylic, silicon, or the like, so that the thermal conductive sheet is easily adhered to the rear case.
  • the other side covers a polymer film such as PET, PE, PP, etc., which is not adhesive, or a silane compound, which is a polymer and inorganic material such as acrylic or urethane, which is made of adhesive. It is preferable to coat.
  • the reason for using the thermally conductive sheet 140 having a good horizontal thermal conductivity is to further lower the surface temperature of the rear case serving as a heat sink.
  • the surface temperature of the electronics case is prescribed to be below a certain temperature (45 °C), which is to increase the reliability of the product so that consumers do not feel the heat when contacted with the electronics.
  • Example 1 As shown in FIG. 3, in Example 1, 0.5 mm thick single-sided acrylic adhesive graphite sheet was cut to a size of 70 mm ⁇ 70 mm on one surface of a rear case made of a galvanized steel sheet, and the graphite sheet was cut thereon. To prevent breakage, a composition coated with a 20 ⁇ m thick single-sided acrylic adhesive PET film was added.
  • the temperature of the heating element and the temperature of the rear case according to Examples 1 and 2 and Comparative Examples 1 and 2 are as follows.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention relates to a heat-dissipating device placed between a backlight unit of a liquid crystal display device having a printed circuit board coupled to the rear surface thereto, and a rear case for accommodating the backlight unit, wherein the heat-dissipating device comprises a heat-conductive pad located between an exothermic element mounted on the printed circuit board, and the rear case, and the heat-dissipating device is characterized by being closely in contact with the surface of the exothermic element and one surface of the rear case, thereby efficiently discharging to the exterior, the heat generated from the exothermic element mounted on the printed circuit board of the liquid crystal display device using the rear case of the liquid crystal display device, enhancing the efficiency of heat-dissipation, and enabling the liquid crystal display device to be slimmer and lighter.

Description

후면 케이스를 이용한 액정표시장치의 방열장치Heat dissipation device for LCD using rear case
본 발명은 액정표시장치의 방열장치에 관한 것으로서, 보다 상세하게는 액정표시장치의 인쇄회로기판에 실장된 발열소자에서 발생되는 열을 액정표시장치의 후면 케이스를 이용하여 외부로 효율적으로 방출시킬 수 있는 후면 케이스를 이용한 액정표시장치의 방열장치에 관한 것이다.The present invention relates to a heat dissipation device of a liquid crystal display device, and more particularly, it is possible to efficiently discharge heat generated from a heating element mounted on a printed circuit board of a liquid crystal display device to the outside by using a rear case of the liquid crystal display device. It relates to a heat dissipation device of a liquid crystal display device using a rear case.
일반적으로 전기, 전자 제품의 발열소자의 경우, 발열에 의해 제품의 오작동이 일어나는 것을 방지하기 위하여 발열소자에 히트 싱크와 같은 방열장치를 장착하게 된다. 통상적으로 히트 싱크와 같은 방열장치는 열전도율이 높은 금속을 사용하여 제품에서 발생되는 열이 빠르게 방출될 수 있도록 한다.In general, in the case of heat generating elements of electric and electronic products, a heat dissipating device such as a heat sink is mounted on the heat generating elements in order to prevent malfunction of the product due to heat generation. Typically, heat sinks, such as heat sinks, use metals with high thermal conductivity so that the heat generated by the product can be released quickly.
종래에는 알루미늄, 구리 및 이들의 합금을 고온의 상태로 가열, 용융시킨 후, 일정한 형상을 갖는 금형을 이용하여 압출 성형하는 방법을 통해 전면에 일정하게 돌출되는 다수의 방열핀이 배열되는 구조를 갖는 히트 싱크가 일반적으로 이용되어 왔다. 하지만, 히트 싱크를 금형에 압출 성형하는 방법으로 제조하는 것은 제조 공정이 까다롭고, 다양한 형태를 갖는 히트 싱크를 제조하기 위해서 그에 상응하는 별도의 금형을 구비해야 하기 때문에 가공비가 상승하는 문제점이 있었다. 또한 전기절연성 및 산화방지 등 요구되는 물성을 확보하기 위해 아노다이징과 같은 별도의 공정을 거쳐야 하는데, 이 과정에서 다량의 산 또는 염기성 폐기물이 발생되어 추가적인 처리 비용이 발생하는 문제점도 수반하고 있었다.Conventionally, a heat having a structure in which a plurality of heat dissipation fins which are uniformly protruded on the front surface is arranged by heating and melting aluminum, copper, and their alloys at a high temperature, and then extruding them using a mold having a predetermined shape. Sinks have been commonly used. However, manufacturing a heat sink by a method of extrusion molding into a mold has a problem in that a manufacturing process is difficult and a processing cost increases because a separate mold corresponding to the heat sink has to be manufactured in order to manufacture a heat sink having various shapes. In addition, in order to secure required properties such as electrical insulation and oxidation prevention, a separate process such as anodizing has to be performed. In this process, a large amount of acid or basic waste is generated, resulting in additional treatment costs.
한편 전자제품의 냉각장치에 관한 기술로는 핀(fin)과 팬(fan) 방식, 열전소자(peltier) 방식, 냉각수 순환방식, 히트파이프(heat pipe) 방식 등이 있는데, 이 중에서 소형 전자제품에는 소음 또는 진동을 발생시키지 않고, 큰 구동 에너지를 필요로 하지 않으며, 좁은 공간에 설치될 수 있는 히트파이프 방식이 주로 사용되고 있다. 히트파이프 방식의 냉각장치는 냉매가 발열체로부터 열을 흡수하는 증발부와 증발된 냉매가 열을 방출하는 응축부 및 상기 응축부에서 액화된 냉매가 상기 증발부로 다시 이동하도록 미세구조가 형성된 이송부로 이루어지는 것이 보통이다.Meanwhile, technologies related to cooling devices for electronic products include fin and fan methods, thermoelectric methods, cooling water circulation methods, and heat pipe methods. Heat pipe systems that do not generate noise or vibration, do not require large driving energy, and can be installed in a narrow space, are mainly used. The heat pipe type cooling apparatus includes an evaporation unit in which a refrigerant absorbs heat from a heating element, a condensation unit in which evaporated refrigerant releases heat, and a transfer unit in which a microstructure is formed so that the refrigerant liquefied in the condensation unit moves back to the evaporation unit. Is common.
상기 이송부에서 냉매의 이동은 주로 미세구조 내에서 냉매의 표면장력을 구동력으로 이용하는 CPL(Capillary Pumped Loop)에 의해 수행된다. 이때 중요한 것은 증발부에서 표면이 마르고 액체의 흐름이 끊어지는 드라이 아웃(dry-out) 없이 응축부에서 증발부까지 냉매를 지속적으로 유입시켜야 한다는 것이다.  따라서 증발부와 응축부가 분리되고, 이송부의 거리가 길어질수록 미세구조의 설계가 어려워진다. 그런데 종래의 전자제품 냉각용 열확산기는 두께 1mm 이하의 박판형의 상, 하 복수층으로 형성되어야 하므로 긴 구간에서 모세관 현상을 이용하여 냉매를 이송시키기 위해서 상, 하층 유로를 형성하는 리드 프레임의 구조, 즉 미세구조의 설계 및 제조가 어렵다는 문제가 있었다.The movement of the refrigerant in the transfer unit is mainly performed by a capillary pumped loop (CPL) using the surface tension of the refrigerant as a driving force in the microstructure. At this time, it is important that the refrigerant flows continuously from the condenser to the evaporator without dry-out of the surface of the evaporator and the flow of liquid. Therefore, the evaporator and the condenser are separated, and as the distance of the conveying part becomes longer, the design of the microstructure becomes more difficult. However, since the conventional heat spreader for cooling electronics has to be formed in a plurality of layers having a thin plate shape of 1 mm or less in thickness, a lead frame structure that forms upper and lower flow paths in order to transfer the refrigerant using a capillary phenomenon in a long section, that is, There was a problem that the design and manufacture of the microstructure is difficult.
또한 종래의 알루미늄, 구리, 철, 아연, 은, 금 등의 금속재질의 전자제품 냉각용 열확산기는 단위면적당 발생하는 열을 원하는 수준으로 낮추기 위해서 복잡한 구조가 필요하고 그에 따른 금속의 사용량이 많아 결과적으로 전체 제품에서 차지하는 무게 및 부피가 늘어나며 가격 또한 많이 상승하는 단점이 있었다.In addition, the conventional heat spreader for cooling electronic products made of metals such as aluminum, copper, iron, zinc, silver, and gold requires a complicated structure in order to reduce the heat generated per unit area to a desired level, and as a result, a large amount of metal is used. The weight and volume of the whole product increases, and the price also increases.
이외에, 금속재질이 아닌 세라믹 재질로 히트 싱크를 구성하여 세라믹 재질의 특징적인 모세기공을 이용하여 방열 표면적을 넓혀 냉각효율을 높이는 장치가 개발되었으나, 이는 세라믹재질의 특성상 고온처리를 해야 하고 그 처리시간이 길어 생산성이 떨어지며, 다양하고 복잡한 구조를 가진 모양의 가공성, 내충격성, 및 그 크기와 중량면에서 비효율적이었다.In addition, a device was developed to increase the cooling efficiency by increasing the heat dissipation surface area by using a heat sink made of ceramic material rather than a metal material, and using the characteristic capillary pores of the ceramic material. This lengthened productivity was low, and inefficient in terms of processability, impact resistance, and size and weight of shapes having various and complex structures.
또한 상기 나열한 방열장치들은 제품 내부의 열을 외부로 방출하기 위하여 제품 내부의 뜨거워진 공기를 외부로 유출시킬 수 있는 벤트홀을 반드시 제품 케이스에 상당량 천공하여야 하는데, 이로 인하여 시스템의 오작동 및 고장을 유발할 수 있는 외부 먼지 및 오염물질들이 상기 벤트홀을 통하여 유입될 가능성이 상당히 높다는 문제점이 있다.In addition, in order to dissipate the heat inside the product, the heat radiators listed above must drill a considerable amount of vent holes in the product casing, which may cause the hot air inside the product to flow to the outside, which may cause system malfunction and failure. There is a problem that there is a high possibility that foreign dust and contaminants that may enter through the vent hole.
따라서, 상기와 같은 문제점을 해소하기 위해서, 최근에 그 두께의 슬림화가 요구되는 액정표시장치의 방열구조 개선 및 그 효율성을 증대시킬 수 있는 새로운 방열장치의 필요성이 대두되고 있다.Therefore, in order to solve the above problems, there is a recent need for a new heat dissipation device capable of improving the heat dissipation structure and increasing the efficiency of the liquid crystal display device, in which the thickness of the liquid crystal device is required to increase.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명이 해결하고자 하는 과제는 액정표시장치의 인쇄회로기판에 실장된 발열소자에서 발생되는 열을 외부로 효율적으로 방출시킬 수 있고 최근에 더욱 슬림화되어가는 액정표시장치에서 기존의 방열장치에 비해 소형화 및 경량화가 가능한, 후면 케이스를 이용한 액정표시장치의 방열장치를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the problem to be solved by the present invention is that the heat generated from the heating element mounted on the printed circuit board of the liquid crystal display device can be efficiently discharged to the outside and has become more slim recently. In a thin liquid crystal display device, it is possible to provide a heat dissipation device of a liquid crystal display device using a rear case, which can be miniaturized and lighter than a conventional heat dissipation device.
본 발명은 상기 과제를 달성하기 위하여,In order to achieve the above object,
인쇄회로기판이 후면에 결합되는 액정표시장치의 백라이트 유닛과 상기 백라이트 유닛을 수용하는 후면 케이스 사이에 배치되는 방열장치로서, 상기 방열장치는 상기 인쇄회로기판에 실장된 발열소자와 상기 후면 케이스 사이에 위치하는 열전도성 패드를 포함하고, 상기 방열장치는 상기 발열소자의 표면 및 상기 후면 케이스의 일면과 밀착되어 있는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치를 제공한다. A heat dissipation device disposed between a backlight unit of a liquid crystal display device having a printed circuit board coupled to a rear surface and a rear case accommodating the backlight unit, wherein the heat dissipation device is disposed between the heating element mounted on the printed circuit board and the rear case. And a heat conductive pad positioned thereon, wherein the heat dissipation device is in close contact with a surface of the heat generating element and one surface of the rear case.
여기서, 상기 열전도성 패드는 엘라스토머 패드인 것이 바람직하다.Here, the thermally conductive pad is preferably an elastomer pad.
또한, 상기 열전도성 패드의 상기 발열소자와 접촉하는 면에는 비점착층이 형성될 수 있다.In addition, a non-adhesive layer may be formed on a surface of the thermal conductive pad in contact with the heating element.
또한, 상기 방열장치는, 상기 열전도성 패드와 상기 후면 케이스 사이에 위치하는 열전도성 시트를 더 포함할 수 있다.The heat dissipation device may further include a thermally conductive sheet positioned between the thermally conductive pad and the rear case.
또한, 상기 열전도성 시트는 그라파이트 시트인 것이 바람직하다.In addition, the thermally conductive sheet is preferably a graphite sheet.
또한, 상기 열전도성 시트의 상기 후면 케이스와 접촉하는 면에는 점착층이 형성될 수 있다.In addition, an adhesive layer may be formed on a surface of the thermal conductive sheet in contact with the rear case.
또한, 상기 그라파이트 시트와 상기 열전도성 패드 사이에는 보호필름이 배치될 수 있다.In addition, a protective film may be disposed between the graphite sheet and the thermally conductive pad.
또한, 상기 엘라스토머 패드는 합성된 폴리올에, 헥사메틸렌디이소시아네이트, 메틸렌디페닐이소시아네이트, 이소포론디이소시아네이트 및 디부틸틴디라우레이트를 혼합하여 이루어질 수 있다.In addition, the elastomer pad may be made by mixing hexamethylene diisocyanate, methylene diphenyl isocyanate, isophorone diisocyanate and dibutyl tin dilaurate to the synthesized polyol.
또한, 상기 엘라스토머 패드는 알루미나파우더 및 알루미늄하이드록사이드를 더 포함할 수 있다. In addition, the elastomer pad may further include an alumina powder and aluminum hydroxide.
본 발명에 따를 방열장치는, 액정표시장치 특히 발광 다이오드(LED)가 광원으로 사용되는 액정표시장치의 내부에서 전기적으로 작동하며 액정표시장치의 제어를 수행하는 발열소자에 밀착되게 설치되어 이 발열소자로부터 발생되는 열을 후면 케이스로 전달하여 방열면적을 넓힘으로써 방열효율을 향상시킬 수 있고, 기존의 방열장치에 비해 두께를 줄일 수 있어 액정표시장치를 슬림화 및 경량화에 도움이 될 수 있다. 나아가, 후면 케이스를 통해 열이 발산되도록 함으로써 기존의 액정표시장치의 방열장치에 필수적으로 형성된 에어 벤트홀의 수량 및 면적을 최소화하거나 제거함으로써 장치의 오작동 및 고장을 유발할 수 있는 외부 먼지 또는 오염물질들이 유입될 가능성을 현저하게 줄일 수 있다.The heat dissipation device according to the present invention is provided in close contact with a heat generating element which is electrically operated inside a liquid crystal display device in which a liquid crystal display device, in particular, a light emitting diode (LED) is used as a light source, and controls the liquid crystal display device. The heat dissipation efficiency can be improved by transferring the heat generated from the back case to the rear case, and the thickness can be reduced compared to the existing heat dissipation device, which can help slim down and lighten the liquid crystal display. In addition, by dissipating heat through the rear case, external dust or contaminants may be introduced, which may cause malfunction and failure of the device by minimizing or eliminating the quantity and area of the air vent holes formed in the radiator of the existing LCD. Can significantly reduce the likelihood of
도 1은 발광 다이오드가 광원으로 사용되는 액정표시장치의 백라이트 유닛의 개략 구조도이다.1 is a schematic structural diagram of a backlight unit of a liquid crystal display device in which a light emitting diode is used as a light source.
도 2는 본 발명의 일 실시예에 따른 후면 케이스를 이용한 액정표시장치의 방열장치의 개략 단면도이다.2 is a schematic cross-sectional view of a heat dissipation device of a liquid crystal display using a rear case according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 후면 케이스를 이용한 액정표시장치의 방열장치의 개략 단면도이다.3 is a schematic cross-sectional view of a heat dissipation device of a liquid crystal display using a rear case according to another embodiment of the present invention.
도 4는 종래의 액정표시장치의 방열장치의 개략 단면도이다.4 is a schematic cross-sectional view of a heat dissipation device of a conventional liquid crystal display.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited thereby.
먼저, 도 1을 참조하여 에지(edge)형 백라이트 유닛(100)의 일반적인 구조에 대하여 살펴보도록 한다. 도 1은 발광 다이오드(LED)가 광원으로 사용되는 액정표시장치의 백라이트 유닛(100)의 구조를 개략적으로 나타낸 도면이다. First, a general structure of an edge type backlight unit 100 will be described with reference to FIG. 1. 1 is a view schematically illustrating a structure of a backlight unit 100 of a liquid crystal display device in which a light emitting diode (LED) is used as a light source.
일반적인 에지형 백라이트 유닛(100)은 하부 새시(70), 발광 다이오드(LED, 30), 반사 시트(60), 도광판(50), 광학 시트(20), LCD 패널(10), LED 부착용 기판(40)을 포함할 수 있다. 도 1에 도시된 바와 같이, 일반적인 에지형 백라이트 유닛(100)은 하부 새시(70)의 양쪽 측면에, 발광 다이오드(30)가 결합된 기판(40)이 결합된다. 이때, 기판(40)은 금속 또는 FR4 재질일 수 있다.The general edge type backlight unit 100 includes a lower chassis 70, a light emitting diode (LED) 30, a reflective sheet 60, a light guide plate 50, an optical sheet 20, an LCD panel 10, a substrate for attaching an LED ( 40). As shown in FIG. 1, in the general edge type backlight unit 100, the substrate 40 to which the light emitting diodes 30 are coupled is coupled to both sides of the lower chassis 70. In this case, the substrate 40 may be made of metal or FR4.
하부 새시(70)의 내부에는 반사 시트(60) 및 도광판(50)이 수용될 수 있다. 도광판(50)은 발광 다이오드(30)에서 출사된 선광을 산란시켜 면광으로 출사시킨다. 이때, 발광 다이오드(30)에서 출사된 빛이 모두 도광판(50)으로 입사되는 것이 아니라, 도광판(50)의 하부로 반사되어 손실되기도 하는데, 반사 시트(60)는 이러한 빛들을 도광판(50)으로 전반사 시킨다.The reflective sheet 60 and the light guide plate 50 may be accommodated in the lower chassis 70. The light guide plate 50 scatters the linear light emitted from the light emitting diodes 30 to emit the surface light. In this case, not all of the light emitted from the light emitting diode 30 is incident on the light guide plate 50, but is also reflected and lost to the lower portion of the light guide plate 50, and the reflective sheet 60 transmits the light to the light guide plate 50. Let it reflect totally.
한편, 하부 새시(70) 후면에는 구동 드라이버 등을 포함하는 회로부가 형성된 인쇄회로기판이 설치될 수 있다. 이 인쇄회로기판에는 액정표시장치의 내부에서 전기적으로 작동하며 액정표시장치의 제어를 수행하는 다양한 발열소자가 실장되어 있으며, 이 발열소자는 최근 고집적화 경향에 따라 발열량이 증대되어 효율적인 방열장치의 필요성이 대두되고 있는 실정이다. On the other hand, the lower chassis 70 may be provided with a printed circuit board formed with a circuit portion including a drive driver. The printed circuit board is equipped with various heating elements that are electrically operated inside the liquid crystal display device and control the liquid crystal display device. This heating element has a recent increase in heat generation in accordance with the trend of high integration. It is emerging.
도 4는 종래의 액정표시장치의 방열장치의 개략 단면도로서, 이 종래의 방열장치는 액정표시장치의 백라이트 유닛(100)의 후면에 결합되는 인쇄회로기판(110)에 실장된 발열소자(120)의 방열을 위해, 발열소자(120)에 알루미늄 또는 세라믹으로 제조된 히트 싱크(150)를 부착하여 구성된다. 그리고, 이 히트 싱크(150)는 인쇄회로기판(110)이 후면에 결합되는 백라이트 유닛(100)을 수용하는 후면 케이스(200)와 이격되도록 설치되어 있다. 그리고, 발열소자(120)와 히트 싱크(150) 사이에 열전도성을 유지하면서 접착력을 강화시키기 위해 열전도성 아크릴폼테이프(155)가 배치되어 있다. 4 is a schematic cross-sectional view of a heat dissipation device of a conventional liquid crystal display device, and the heat dissipation device 120 is mounted on a printed circuit board 110 coupled to a rear surface of the backlight unit 100 of the liquid crystal display device. For heat dissipation, the heat generating element 120 is configured by attaching a heat sink 150 made of aluminum or ceramic. The heat sink 150 is installed to be spaced apart from the rear case 200 that accommodates the backlight unit 100 coupled to the rear surface of the printed circuit board 110. In addition, a thermally conductive acrylic foam tape 155 is disposed between the heat generating element 120 and the heat sink 150 to strengthen the adhesive force while maintaining the thermal conductivity.
즉, 종래의 액정표시장치의 방열장치는 발열소자에 히트 싱크를 부착하고, 이 히트 싱크로 발열소자에서 발생한 열을 전도에 의해 전달시켜 히트 싱크에서 대류에 의해 열을 방출하는 방법을 사용한 것이다. 하지만, 이와 같은 종래의 액정표시장치의 방열장치는 히트 싱크의 면적에 의해 방열면적이 제한된다는 점, 나아가 최근 더욱 슬림화 되어가는 액정표시장치의 추세을 고려할 때 후면 케이스와 히트 싱크 간의 간격이 점점 좁아짐에 따라 원활한 자연대류가 방해되어 방열 성능이 저하된다는 단점이 있다.That is, the heat dissipation device of the conventional liquid crystal display device uses a method of attaching a heat sink to a heat generating element, transferring heat generated by the heat generating element to the heat sink by conduction, and releasing heat by convection in the heat sink. However, the heat dissipation device of the conventional liquid crystal display device is limited in heat dissipation area by the heat sink area, and furthermore, the gap between the rear case and the heat sink becomes narrower in view of the trend of the liquid crystal display device becoming more slim recently. As a result, smooth natural convection is hindered and the heat dissipation performance is reduced.
이와 같은 문제점을 해결하기 위해, 본 발명의 일 실시예에 따른 액정표시장치의 방열장치는, 도 2에 도시된 바와 같이, 인쇄회로기판(110)이 후면에 결합되는 액정표시장치의 백라이트 유닛(100)과 상기 백라이트 유닛(100)을 수용하는 후면 케이스(200) 사이에 배치되는 방열장치로서, 상기 인쇄회로기판(110)에 실장된 발열소자(120)와 상기 후면 케이스 사이에 위치하는 열전도성 패드(130)를 포함하고, 상기 방열장치는 상기 발열소자(120)의 표면 및 상기 후면 케이스(200)의 일면과 밀착되어 있다. 여기서, 후면 케이스의 일면이라 함은, 후면 케이스의 양 표면 중 백라이트 유닛(100)을 향하는 면을 의미한다. In order to solve this problem, as shown in FIG. 100 is a heat dissipation device disposed between the rear case 200 to accommodate the backlight unit 100, the thermal conductivity is located between the heating element 120 mounted on the printed circuit board 110 and the rear case. It includes a pad 130, the heat dissipating device is in close contact with the surface of the heat generating element 120 and one surface of the rear case 200. Here, one surface of the rear case refers to a surface facing the backlight unit 100 of both surfaces of the rear case.
이와 같이, 본 발명의 일 실시예에 따른 액정표시장치의 방열장치는 히트 싱크로서 액정표시장치의 후면 케이스(200)를 활용하므로, 히트 싱크의 방열면적을 최대화하여 방열성능을 높일 수 있다.As described above, since the heat dissipation device of the liquid crystal display according to the exemplary embodiment of the present invention utilizes the rear case 200 of the liquid crystal display as a heat sink, the heat dissipation performance of the heat sink can be maximized by maximizing the heat dissipation area of the heat sink.
후면 케이스(200)는 일반적으로 열전도성이 좋은 금속으로 제조되는 것이 좋으며, 통상 케이스 재질로 많이 사용되는 아연도강판일 수 있다.The rear case 200 is generally preferably made of a metal having good thermal conductivity, and may be a galvanized steel sheet that is commonly used as a case material.
발열소자(120)의 표면에 접촉하도록 설치되어 발열소자(120)로부터 열을 액정표시장치의 후면 케이스(200)에 효과적으로 전달하기 위한 열전도성 패드는 실리콘, 우레탄, 아크릴 등의 고분자 물질에 열전도성 물질, 예를 들면 알루미늄, 아연, 니켈, 구리, 칼슘, 칼륨, 철, 은, 아연, 금 등의 금속분말 및 그 산화물과 수화물 또는 금속염류, 카본나노튜브, 카본블랙, 실리콘카바이드, 그라파이트, 질화보론, 질화알루미늄 등을 혼합하여 제조될 수 있다.The thermal conductive pad is installed to be in contact with the surface of the heat generating element 120 to effectively transfer heat from the heat generating element 120 to the rear case 200 of the liquid crystal display device. The heat conductive pad is thermally conductive to a polymer material such as silicone, urethane, and acryl. Substances, for example, metal powders such as aluminum, zinc, nickel, copper, calcium, potassium, iron, silver, zinc, gold, oxides and hydrates or metal salts thereof, carbon nanotubes, carbon black, silicon carbide, graphite, and nitride It can be prepared by mixing boron, aluminum nitride and the like.
바람직하게는, 열전도성 패드(130)는 발열소자(120)로부터 히트 싱크로 기능하는 후면 케이스(200)로의 원활한 열전달을 위해 열전도성 및 밀착성이 좋은 엘라스토머 패드인 것이 좋다.Preferably, the thermal conductive pad 130 is an elastomer pad having good thermal conductivity and adhesion for smooth heat transfer from the heat generating element 120 to the rear case 200 functioning as a heat sink.
열전도성 패드로서의 엘라스토머 패드는, 종래 열전달 물질로 사용되던 열전도성 실리콘 패드의 단점을 해결할 수 있다. 즉, 실리콘 패드는 기판 또는 발열소자에 부착되었을 때 시간이 경과함에 따라 실리콘 패드 내부에서 오일이 조금씩 새어나와 기판의 전기전도성에 악영향을 미칠 수 있는 가능성이 있다. 또한, 실리콘 패드는 자기점착성의 강도에도 한계가 있어 더 많은 점착력을 요구하는 경우에는 따로 점착처리를 해야하는 번거로움이 있다.Elastomeric pads as thermally conductive pads can solve the disadvantages of thermally conductive silicone pads that have conventionally been used as heat transfer materials. In other words, when the silicon pad is attached to the substrate or the heating element, oil may leak little by little in the silicon pad as time elapses, which may adversely affect the electrical conductivity of the substrate. In addition, the silicon pad has a limit in the strength of the self-adhesiveness, so if more adhesive force is required, there is a need for a separate adhesive treatment.
본 발명에 따른 엘라스토머 패드는 상술한 열전도성 실리콘 패드가 가지고 있는 단점들을 해결한 것으로 시간 경과에 따른 오일 누유현상이 없으며, 실리콘 패드에 비해 자기점착성이 월등한 장점이 있어 후면 케이스(200)에 밀착되게 결합될 수 있다. The elastomer pad according to the present invention solves the drawbacks of the above-described thermally conductive silicone pads, and does not have oil leakage over time, and has an advantage of superior self-adhesiveness compared to the silicone pads, so that the elastomer pad is closely adhered to the rear case 200. Can be combined.
엘라스토머 패드는, 합성된 폴리올에, 헥사메틸렌디이소시아네이트, 메틸렌디페닐이소시아네이트, 이소포론디이소시아네이트 및 디부틸틴디라우레이트를 혼합하여 이루어지거나, 여기에 알루미나파우더 및 알루미늄하이드록사이드를 더 포함하여 제조될 수 있다. 엘라스토머 패드의 제조방법에 대한 자세한 설명은 후술하기로 한다.The elastomer pad may be prepared by mixing hexamethylene diisocyanate, methylene diphenyl isocyanate, isophorone diisocyanate and dibutyl tin dilaurate to the synthesized polyol, or further comprising alumina powder and aluminum hydroxide. Can be. Detailed description of the manufacturing method of the elastomer pad will be described later.
한편, 엘라스토머 패드의 한쪽면, 즉 발열소자(120)와 접촉하는 면에는 비점착층(125)이 형성될 수 있는데, 이 비점착층은 점착력을 없게 만들거나 아주 약하게 주어 발열소자(120)와의 탈리를 쉽게 할 수 있다.On the other hand, a non-adhesive layer 125 may be formed on one side of the elastomer pad, that is, the surface in contact with the heat generating element 120, which is made of no adhesive force or very weakly to be provided with the heat generating element 120. Tally can be easily done.
비점착층(125)은, PET, PE, PP 등과 같은 고분자 필름일 수 있으며, 점착력을 없게 만든 아크릴, 우레탄 등의 고분자 및 무기물인 실란화합물 등을 엘라스토머 패드 상에 코팅하여 형성될 수 있다. 이 경우, 아크릴, 실리콘 점착 등과 같은 점착제의 종류 및 그 첨가제의 양, 코팅 두께 등을 적절히 조절하여 비점착층의 비점착성을 적절히 조절할 수도 있다.The non-adhesive layer 125 may be a polymer film such as PET, PE, PP, or the like, and may be formed by coating a silane compound, such as a polymer and an inorganic material, such as acrylic and urethane, which have no adhesive force, on an elastomer pad. In this case, the type of adhesive such as acrylic, silicone adhesive, and the like, the amount of additives thereof, the coating thickness, and the like may be appropriately adjusted to suitably adjust the non-tackiness of the non-adhesive layer.
한편, 본 발명에 따른 방열장치의 다른 실시예로서 도 3에 도시된 바와 같이, 발열소자(120)에서 발생되는 열을 후면 케이스(200)의 일정 부위가 아닌 좀더 넓은 면적에 효율적으로 전달시키기 위해, 수평 열전도도가 좋은 열전도성 시트(140)를 더 사용할 수 있다. 이러한 물질로는 그라파이트 시트, 카본 시트, 알루미늄, 구리, 은, 금 마그네슘 등의 금속판, 또는 실리콘, 우레탄, 아크릴로 제조된 열전도성 시트 등이 사용될 수 있으나, 보다 바람직하게는 가공성, 작업성 및 경제성이 좋은 그라파이트 시트를 사용하는 것이 좋다.On the other hand, as shown in Figure 3 as another embodiment of the heat dissipation device according to the present invention, in order to efficiently transfer the heat generated from the heating element 120 to a larger area rather than a predetermined portion of the rear case 200 The thermally conductive sheet 140 having a good horizontal thermal conductivity may be further used. Such materials may be graphite sheets, carbon sheets, metal plates such as aluminum, copper, silver, gold or magnesium, or thermally conductive sheets made of silicon, urethane, or acryl, but more preferably, workability, workability and economy. It is good to use this good graphite sheet.
열전도성 시트(140)로서 그라파이트 시트를 사용할 경우, 열전도성 패드(130)와 그라파이트 시트 사이에 보호필름(135)을 배치하여 그라파이트 시트의 부서짐을 방지할 수 있다. 이 보호필름(135)으로는 PET 필름인 것이 바람직하며, 그라파이트 시트 및 열전도성 패드와의 점착성을 제공하기 위해 일면 또는 양면에 아크릴, 실리콘 등을 원료로 하는 점착층을 형성할 수 있다.When the graphite sheet is used as the thermal conductive sheet 140, the protective film 135 may be disposed between the thermal conductive pad 130 and the graphite sheet to prevent the graphite sheet from being broken. The protective film 135 is preferably a PET film, and in order to provide adhesion with the graphite sheet and the thermally conductive pad, an adhesive layer made of acryl, silicon, or the like may be formed on one or both surfaces.
수평 열전도도가 좋은 열전도성 시트(140)의 한쪽면(후면 케이스를 향하는 면)은 아크릴, 실리콘 등을 원료로 하는 점착층(145)을 형성하여 열전도성 시트가 후면 케이스에 용이하게 접착되도록 하는 것이 바람직하며, 다른 한쪽면(열전도성 패드를 향하는 면)은 점착력이 없는 PET, PE, PP 등과 같은 고분자 필름을 위에 덮어주거나, 점착력을 없게 만든 아크릴, 우레탄 등의 고분자 및 무기물인 실란화합물 등을 코팅하는 것이 바람직하다.One side of the thermal conductive sheet 140 having a good horizontal thermal conductivity (the surface facing the rear case) forms an adhesive layer 145 made of acrylic, silicon, or the like, so that the thermal conductive sheet is easily adhered to the rear case. Preferably, the other side (the side facing the thermal conductive pad) covers a polymer film such as PET, PE, PP, etc., which is not adhesive, or a silane compound, which is a polymer and inorganic material such as acrylic or urethane, which is made of adhesive. It is preferable to coat.
상술한 바와 같이, 수평 열전도도가 좋은 열전도성 시트(140)를 사용하는 이유는, 히트 싱크로 기능하는 후면 케이스의 표면 온도를 더욱 낮추기 위한 것이다. 통상적으로 전자제품 케이스의 표면온도는 일정온도(45℃) 이하가 되도록 규정하고 있는데, 이는 소비자가 전자제품에 접촉하였을 때 열기를 느끼지 않도록 하여 제품의 신뢰도를 높이기 위함이다. As described above, the reason for using the thermally conductive sheet 140 having a good horizontal thermal conductivity is to further lower the surface temperature of the rear case serving as a heat sink. In general, the surface temperature of the electronics case is prescribed to be below a certain temperature (45 ℃), which is to increase the reliability of the product so that consumers do not feel the heat when contacted with the electronics.
따라서, 본 발명의 다른 실시예에 따른 방열장치는 수평 열전도도가 좋은 열전도성 시트를, 발열소자로부터 발생되는 열을 효과적으로 전달하기 위하여 사용되는 열전도성 패드의 면적보다 넓게 후면 케이스에 부착하여 형성된다. 이에 따라후면 케이스에 전달된 열은 수평방향으로 넓게 분산되어 후면 케이스 어느 한 부위에서만 열이 높게 방사되는 것이 억제되고 동시에 방열면적이 확장되어 결과적으로 방열효과가 더욱 증대될 수 있다. Accordingly, the heat dissipation device according to another embodiment of the present invention is formed by attaching a thermally conductive sheet having a good horizontal thermal conductivity to a rear case wider than an area of a thermally conductive pad used for effectively transferring heat generated from the heat generating element. . Accordingly, the heat transferred to the rear case is widely distributed in the horizontal direction, thereby suppressing high radiation of heat only in one portion of the rear case, and at the same time, the heat dissipation area is expanded, and as a result, the heat dissipation effect can be further increased.
실험예Experimental Example
본 발명에 따른 방열장치를 액정표시장치에 장착하여 발열소자 및 후면 케이스의 표면온도를 측정함으로써 종래의 방열장치와의 방열 성능을 비교하였다. 실험에 사용된 인쇄회로기판에 실장된 발열소자의 크기는 25㎜X25㎜ 이며, 액정표시장치를 통해 동영상을 12시간 구동시킨 후 발열소자의 온도 및 발열소자와 가장 가까운 위치에서의 후면 케이스의 온도를 측정하였다.The heat dissipation device according to the present invention was mounted on the liquid crystal display, and the surface temperature of the heat generating element and the rear case were measured to compare the heat dissipation performance with the conventional heat dissipation device. The size of the heating element mounted on the printed circuit board used in the experiment was 25mmX25mm, and after driving the video for 12 hours through the liquid crystal display, the temperature of the heating element and the temperature of the rear case at the position closest to the heating element. Was measured.
- 폴리올의 합성-Synthesis of polyols
냉각응축기가 부착된 1000ml 4구 플라스크에 아디핀산 320g, 1,4-부탄디올 250g, 에틸렌 글리콜 15g을 투입하고 교반봉과 교반기를 연결하여 맨틀히터를 가열하여 교반하면서 천천히 승온을 시작하였다. 150~160℃에서 8시간 동안 축중합하여 에스테르화 반응을 진행하고, 이때 발생되는 축합수는 응축기를 통하여 플라스크에서 분리되도록 하였다. 축합수의 생성속도가 느려지기 시작하면, 소량 시료를 덜어내어서 산가를 측정하고, 산가가 80 이하가 되었을 때, 210℃까지 승온하여 매시간마다 산가를 측정하면서 5시간 동안 반응을 더 진행하였다. 합성한 폴리올의 색상은 가드너 비색칼라 견본 2와 동일하였고, 산가는 43이었다.Into a 1000 ml four-necked flask equipped with a cooling condenser, 320 g of adipic acid, 250 g of 1,4-butanediol, and 15 g of ethylene glycol were added thereto, and a temperature was slowly increased while stirring the mantle heater by stirring the stirring rod and the stirrer. Condensation polymerization was carried out at 150-160 ° C. for 8 hours to proceed with esterification, and the condensed water generated at this time was separated from the flask through a condenser. When the production rate of the condensed water started to slow down, a small amount of the sample was removed to measure the acid value, and when the acid value was 80 or less, the temperature was raised to 210 ° C and the reaction was further performed for 5 hours while measuring the acid value every hour. The color of the synthesized polyol was the same as Gardner colori swatch 2, and the acid value was 43.
- 엘라스토머 패드의 제조Preparation of Elastomeric Pads
위에서 합성한 폴리올 300g에 헥사메틸렌디이소시아네이트 35g, 메틸렌디페닐이소시아네이트 15g, 이소포론 디이소시아네이트 5g, 디부틸틴디라우레이트 2g을 투입하고 혼합하였다. 여기에 열전달을 도와줄 필러로서, 평균입경 10㎛ 알루미나파우더 200g, 평균입경 5㎛ 알루미나 파우더 150g, 평균입경 2㎛ 알루미나 파우더 100g, 알루미늄하이드록사이드 600g 을 투입하여 1시간 동안 교반하였다. 교반하여 얻어진 엘라스토머 슬러리를 PET 필름상에 5mm 두께로 코팅후 120℃에서 15분간 경화하여 엘라스토머 패드를 제작하였다.To 300 g of the polyol synthesized above, 35 g of hexamethylene diisocyanate, 15 g of methylene diphenyl isocyanate, 5 g of isophorone diisocyanate and 2 g of dibutyl tin dilaurate were added and mixed. Here, as a filler to help heat transfer, an average particle diameter of 10 μm alumina powder 200 g, an average particle diameter of 5 μm alumina powder 150 g, an average particle diameter of 2 μm alumina powder 100 g, and aluminum hydroxide 600 g were added and stirred for 1 hour. The elastomer slurry obtained by stirring was coated on a PET film with a thickness of 5 mm and then cured at 120 ° C. for 15 minutes to prepare an elastomer pad.
실시예 1Example 1
도 2에 도시된 바와 같이, 발광 다이오드를 광원으로 사용하는 액정표시장치의 아연도강판으로 만들어진 후면 케이스의 일면에 상술한 과정에 의해 제조된 엘라스토머 패드를 35㎜X35㎜X4.5㎜ 크기로 제단하여 부착하고, 부착된 엘라스토머 패드의 표면에 20㎛ 두께의 PET 필름을 입혀 점착력을 없게 만든 면을 인쇄회로기판에 실장된 발열소자에 밀착하도록 장착하였다.As shown in FIG. 2, the elastomer pad manufactured by the above-described process is embossed on a surface of a rear case made of a galvanized steel sheet of a liquid crystal display device using a light emitting diode as a light source, having a size of 35 mm × 35 mm × 4.5 mm. The surface of the attached elastomer pad was coated with a 20 μm-thick PET film so as to be in close contact with a heating element mounted on a printed circuit board.
실시예 2Example 2
도 3에 도시된 바와 같이, 상기 실시예 1에, 아연도강판으로 만들어진 후면 케이스의 일면에 0.5㎜ 두께의 단면 아크릴 점착 그라파이트 시트를 70㎜X70㎜ 크기로 제단하여 부착하고, 그 위에 그라파이트 시트의 부서짐 방지를 위하여 20㎛ 두께의 단면 아크릴 점착 PET 필름을 입힌 구성물을 추가하였다.As shown in FIG. 3, in Example 1, 0.5 mm thick single-sided acrylic adhesive graphite sheet was cut to a size of 70 mm × 70 mm on one surface of a rear case made of a galvanized steel sheet, and the graphite sheet was cut thereon. To prevent breakage, a composition coated with a 20 μm thick single-sided acrylic adhesive PET film was added.
비교예 1Comparative Example 1
도 4에 도시된 바와 같이, 인쇄회로기판에 실장된 발열소자 상에 0.25㎜두께의 열전도성 아크릴폼테이프가 부착되어있는 35㎜X35㎜X1㎜ 크기의 알루미늄 재질의 히트 싱크를 장착하였다.As shown in FIG. 4, a heat sink made of aluminum 35 mm × 35 mm × 1 mm, having a 0.25 mm thick thermally conductive acrylic foam tape attached thereto, was mounted on a heating element mounted on a printed circuit board.
비교예 2Comparative Example 2
비교예 1 중 알루미늄 재질의 히트 싱크 대신 35㎜X35㎜X2㎜ 크기의 세라믹 히트 싱크를 장착하였다.Instead of an aluminum heat sink in Comparative Example 1, a ceramic heat sink having a size of 35 mm × 35 mm × 2 mm was mounted.
비교예 3Comparative Example 3
비교예 1에서 35㎜X35㎜X1㎜ 크기의 알루미늄 재질의 히트 싱크를 장착하지 않았다.In Comparative Example 1, a heat sink made of aluminum having a size of 35 mm × 35 mm × 1 mm was not mounted.
온도측정결과Temperature measurement result
실시예 1, 2 및 비교예 1, 2에 따른 발열소자의 온도 및 후면 케이스의 온도는 다음 표와 같다.The temperature of the heating element and the temperature of the rear case according to Examples 1 and 2 and Comparative Examples 1 and 2 are as follows.
표 1
발열소자 온도(℃) 후면 케이스 온도(℃)
실시예 1 61.2 43.3
실시예 2 58.4 40.7
비교예 1 76.9 44.5
비교예 2 78.8 44.8
비교예 3 89.7 55.0
Table 1
Heating element temperature (℃) Rear case temperature (℃)
Example 1 61.2 43.3
Example 2 58.4 40.7
Comparative Example 1 76.9 44.5
Comparative Example 2 78.8 44.8
Comparative Example 3 89.7 55.0
상기 실시예들과 비교예들의 온도측정결과를 토대로 볼 때, 실시예 1, 2에 따른 방열장치는 비교예 1, 2, 3에 따른 방열장치에 비해 더 나은 방열성능을 가짐을 알 수 있다. Based on the temperature measurement results of the embodiments and comparative examples, it can be seen that the heat dissipation device according to Examples 1 and 2 has better heat dissipation performance than the heat dissipation device according to Comparative Examples 1, 2 and 3.
비록 종래 사용되고 있는 비교예 1, 2의 경우 후면 케이스 온도는 기준치(45℃)를 벗어나지는 않으나 발열소자의 온도에 있어서는 실시예 1, 2와 비교하여 상대적으로 높은 것으로 계측되었다. 따라서, 점차 고집적화되어 많은 처리용량을 지닌 칩이 개발됨에 따라 발열소자의 발열온도 역시 지속적으로 상승되는 것이 불가피하므로, 비교예 1, 2와 같은 종래의 방열장치를 향후 액정표시장치에 계속 사용하는 것은 부적합할 것이다. 즉, 본 발명에 따른 방열장치는 후면 케이스를 히트 싱크로 활용하고 있으므로, 지속적으로 초집적화, 초경량화 및 초슬림화 되어가는 액정표시장치의 방열문제 대응에 매우 효과적이라 할 수 있다. Although Comparative Examples 1 and 2, which are conventionally used, the rear case temperature does not deviate from the reference value (45 ° C.), but was measured to be relatively high in comparison with Examples 1 and 2 in the temperature of the heating element. Therefore, as the chips having high processing capacity are gradually integrated and developed, it is inevitable that the heat generation temperature of the heat generating element is continuously increased. Therefore, the continuous use of the conventional heat dissipating devices such as Comparative Examples 1 and 2 for the liquid crystal display device in the future Will be inappropriate. That is, since the heat dissipation device according to the present invention utilizes the rear case as a heat sink, it can be said that it is very effective in coping with the heat dissipation problem of the liquid crystal display device which is continuously integrated, ultra-light and ultra slim.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (9)

  1. 인쇄회로기판이 후면에 결합되는 액정표시장치의 백라이트 유닛과 상기 백라이트 유닛을 수용하는 후면 케이스 사이에 배치되는 방열장치로서,A heat dissipation device disposed between a backlight unit of a liquid crystal display device having a printed circuit board coupled to a rear surface and a rear case accommodating the backlight unit,
    상기 방열장치는 상기 인쇄회로기판에 실장된 발열소자와 상기 후면 케이스 사이에 위치하는 열전도성 패드를 포함하고,The heat dissipation device includes a thermally conductive pad positioned between the heating element mounted on the printed circuit board and the rear case.
    상기 방열장치는 상기 발열소자의 표면 및 상기 후면 케이스의 일면과 밀착되어 있는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.And the heat dissipating device is in close contact with the surface of the heat generating element and one surface of the rear case.
  2. 제1항에 있어서,The method of claim 1,
    상기 열전도성 패드는 엘라스토머 패드인 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.The heat conductive pad is a heat radiation device of the liquid crystal display device using a rear case, characterized in that the elastomer pad.
  3. 제1항에 있어서,The method of claim 1,
    상기 열전도성 패드의 상기 발열소자와 접촉하는 면에는 비점착층이 형성되어 있는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.And a non-adhesive layer is formed on a surface of the thermally conductive pad in contact with the heat generating element.
  4. 제1항에 있어서,The method of claim 1,
    상기 방열장치는, 상기 열전도성 패드와 상기 후면 케이스 사이에 위치하는 열전도성 시트를 더 포함하는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.The heat dissipating device may further include a heat conductive sheet positioned between the heat conductive pad and the rear case.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 열전도성 시트는 그라파이트 시트인 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.The heat conductive sheet is a heat dissipation device of a liquid crystal display device using a rear case, characterized in that the graphite sheet.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 열전도성 시트의 상기 후면 케이스와 접촉하는 면에는 점착층이 형성되어 있는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.And a pressure-sensitive adhesive layer is formed on a surface of the thermally conductive sheet in contact with the rear case.
  7. 제5항에 있어서,The method of claim 5,
    상기 그라파이트 시트와 상기 열전도성 패드 사이에는 보호필름이 배치되어 있는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.A heat dissipation device of a liquid crystal display device using a rear case, characterized in that a protective film is disposed between the graphite sheet and the thermal conductive pad.
  8. 제2항에 있어서,The method of claim 2,
    상기 엘라스토머 패드는 합성된 폴리올에, 헥사메틸렌디이소시아네이트, 메틸렌디페닐이소시아네이트, 이소포론디이소시아네이트 및 디부틸틴디라우레이트를 혼합하여 이루어지는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.The elastomer pad is a heat dissipation device of a liquid crystal display device using a rear case, characterized in that the polyol synthesized, hexamethylene diisocyanate, methylene diphenyl isocyanate, isophorone diisocyanate and dibutyl tin dilaurate.
  9. 제8항에 있어서,The method of claim 8,
    상기 엘라스토머 패드는 알루미나파우더 및 알루미늄하이드록사이드를 더 포함하는 것을 특징으로 하는 후면 케이스를 이용한 액정표시장치의 방열장치.The elastomer pad is a heat dissipation device of a liquid crystal display device using a rear case, characterized in that it further comprises an alumina powder and aluminum hydroxide.
PCT/KR2011/004374 2010-10-12 2011-06-15 Heat-dissipating device of liquid crystal display device using rear case WO2012050290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100099119 2010-10-12
KR10-2010-0099119 2010-10-12

Publications (1)

Publication Number Publication Date
WO2012050290A1 true WO2012050290A1 (en) 2012-04-19

Family

ID=45938476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004374 WO2012050290A1 (en) 2010-10-12 2011-06-15 Heat-dissipating device of liquid crystal display device using rear case

Country Status (1)

Country Link
WO (1) WO2012050290A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830135A (en) * 2013-12-25 2016-08-03 京瓷株式会社 Electronic device
CN113782504A (en) * 2021-09-08 2021-12-10 中国矿业大学 Simplified packaging structure of power module of integrated radiator and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030132A (en) * 2004-10-05 2006-04-10 엘지이노텍 주식회사 Tuner
KR20060125286A (en) * 2005-06-02 2006-12-06 삼성전기주식회사 A heat sink assembly for electronic device
KR20060131382A (en) * 2005-06-16 2006-12-20 삼성전자주식회사 Backlight assembly and liquid crystal display using the same
KR20070057356A (en) * 2005-12-02 2007-06-07 에스케이케미칼주식회사 Heat dissipation pad for electronic part with improved thermoconductive and electric insulating properties
KR20100004752A (en) * 2008-07-04 2010-01-13 엘지디스플레이 주식회사 Heat dissipation apparatus and method in liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030132A (en) * 2004-10-05 2006-04-10 엘지이노텍 주식회사 Tuner
KR20060125286A (en) * 2005-06-02 2006-12-06 삼성전기주식회사 A heat sink assembly for electronic device
KR20060131382A (en) * 2005-06-16 2006-12-20 삼성전자주식회사 Backlight assembly and liquid crystal display using the same
KR20070057356A (en) * 2005-12-02 2007-06-07 에스케이케미칼주식회사 Heat dissipation pad for electronic part with improved thermoconductive and electric insulating properties
KR20100004752A (en) * 2008-07-04 2010-01-13 엘지디스플레이 주식회사 Heat dissipation apparatus and method in liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830135A (en) * 2013-12-25 2016-08-03 京瓷株式会社 Electronic device
EP3089142A4 (en) * 2013-12-25 2017-05-31 Kyocera Corporation Electronic device
US10241549B2 (en) 2013-12-25 2019-03-26 Kyocera Corporation Electronic apparatus
CN113782504A (en) * 2021-09-08 2021-12-10 中国矿业大学 Simplified packaging structure of power module of integrated radiator and manufacturing method
CN113782504B (en) * 2021-09-08 2024-06-25 中国矿业大学 Simplified packaging structure of power module of integrated radiator and manufacturing method

Similar Documents

Publication Publication Date Title
KR20160070243A (en) Heat-discharging sheet
US20160324031A1 (en) Heat sink
WO2011119007A2 (en) Heat-dissipating tape and method for manufacturing same
KR101189990B1 (en) Heat radiation tape and manufacturing method thereof
KR20090104808A (en) Led light source unit
US11937364B2 (en) Highly heat-dissipating flexible printed circuit board (GFPCB), manufacturing method therefor, and LED lamp for vehicle
WO2012050291A1 (en) Heat-dissipating device for tv set-top box
WO2017095181A1 (en) Led lighting device
KR101043346B1 (en) Organo-inorganic hybrid composition with excellent thermal radiation and thermal radiation sheet of thin layer type which uses this
US20180195816A1 (en) Heatsink
WO2012050290A1 (en) Heat-dissipating device of liquid crystal display device using rear case
US20100014256A1 (en) Plasma display panel
WO2013103220A1 (en) Light source device for backlight unit in display apparatus
KR20070057356A (en) Heat dissipation pad for electronic part with improved thermoconductive and electric insulating properties
WO2024090878A1 (en) Composite heat dissipation hybrid tim sheet
KR101379437B1 (en) Thermal radiation sheet with the multi layers
CN107205310B (en) Circuit board and display device
CN106959538B (en) Heat radiation structure and display device
KR101851761B1 (en) Heat conductivity structure of LED for display apparatus
KR101433925B1 (en) Heatsink for led lighting
KR102419199B1 (en) Ultra-light graphite heat dissipation structure
WO2009043849A1 (en) Backlight module for liquid crystal display
KR101500482B1 (en) Multilayer heat sheet
JP2013205539A (en) Display device and heat dissipation structure of the same
KR100868240B1 (en) Flexible printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832677

Country of ref document: EP

Kind code of ref document: A1