WO2024090878A1 - Composite heat dissipation hybrid tim sheet - Google Patents

Composite heat dissipation hybrid tim sheet Download PDF

Info

Publication number
WO2024090878A1
WO2024090878A1 PCT/KR2023/016048 KR2023016048W WO2024090878A1 WO 2024090878 A1 WO2024090878 A1 WO 2024090878A1 KR 2023016048 W KR2023016048 W KR 2023016048W WO 2024090878 A1 WO2024090878 A1 WO 2024090878A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sheet
tim
heat dissipation
layer
Prior art date
Application number
PCT/KR2023/016048
Other languages
French (fr)
Korean (ko)
Inventor
이홍섭
이지환
김연태
Original Assignee
이홍섭
주식회사 비스타글로벌
이지환
김연태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이홍섭, 주식회사 비스타글로벌, 이지환, 김연태 filed Critical 이홍섭
Publication of WO2024090878A1 publication Critical patent/WO2024090878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a composite heat dissipation hybrid TIM sheet.
  • a heatsink is currently the most commonly used heat dissipation device in the electronics industry and is a device that uses a large surface area to dissipate heat through the contact area with air or water.
  • plate fins and pin fins are most commonly used, and in addition, much research is being conducted to achieve higher heat dissipation performance by adjusting the shape or inclination of the fins.
  • Patent Document 1 has a problem in that although it is a material that provides both insulation and heat dissipation effects, it does not provide a high heat dissipation effect.
  • Patent Document 2 “Horizontal heat-conducting sheet and method of manufacturing the same” (Korean Patent Publication No. 10-0901526, Patent Document 2) includes a horizontal heat-conducting sheet layer including an acrylic adhesive layer, a horizontal heat-conducting sheet layer containing flake-type heat-conductive powder, and a tape layer. An example of improving heat conduction performance has been disclosed.
  • Patent Document 2 focuses on increasing the horizontal heat conduction performance of the material, but there are limitations in improving heat conduction characteristics based on physical properties.
  • Patent Document 1 KR 10-1859005 (2018.05.11)
  • Patent Document 2 KR 10-0901526 (2009.06.01)
  • the composite heat dissipation hybrid TIM sheet of the present invention is intended to solve the problems occurring in the above-described prior art, and has a TIM layer or heat source made of a thermal interface material that transfers heat from the heat source in the vertical direction between the heat sink and the heat source.
  • a heat dissipation coating layer that radiates and radiates heat to the outside is formed by stacking, but unlike the conventional heat dissipation film whose size is the same as the heat source size, it is made of a size larger than the heat source area and has a wing protruding from the end of the heat source.
  • a thermal conductive sheet that radiates heat horizontally and to the outside is provided to minimize the volume of the heat sink while increasing the heat dissipation effect.
  • the TIM layer with vertical heat conduction characteristics and the heat conduction sheet with horizontal heat conduction characteristics are stacked side by side, when a thick TIM layer is used, the horizontal heat conductivity is relatively lower than a thin TIM layer, so take advantage of this fact.
  • the goal is to maximize space utilization in the vertical direction by laminating a thin TIM layer on a heat-conducting sheet.
  • the composite heat dissipation hybrid TIM sheet of the present invention has one surface in contact with the heat source (1), the other surface in contact with the heat sink (2), and the heat of the heat source (1) is transferred to the heat sink (
  • a wing portion 11 is formed that has an area larger than that of the heat source 1 and protrudes outward from the end of the heat source 1 in a plan view, a heat conduction sheet (10) that transfers the received heat in a horizontal direction and radiates it to the outside; It is composed of either a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside, and the heat conduction sheet 10 ) and an auxiliary layer 20 laminated on the top or bottom of the layer.
  • the auxiliary layer 20 is characterized in that it is a TIM layer 21 laminated on both surfaces of the heat-conducting sheet 10.
  • the auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on the top or bottom of the heat conduction sheet 10, an upper portion of the heat conduction sheet 10 on which the heat dissipation coating layer 22 is laminated, and It is characterized by a TIM layer 21 laminated on the lower part.
  • the auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on one of the top or bottom of the heat-conducting sheet 10, and a heat dissipation coating layer 22 laminated on either the top or bottom of the heat-conducting sheet 10. It is characterized by a stacked TIM layer (21).
  • the auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on one of the top or bottom of the heat-conducting sheet 10, and a heat dissipation coating layer 22 laminated on either the top or bottom of the heat-conducting sheet 10. It is characterized by a stacked TIM layer (21).
  • the auxiliary layer 20 is characterized in that it is a heat dissipation coating layer 22 laminated on both surfaces of the heat-conducting sheet 10.
  • the TIM layer 21 is laminated on the surface of one of the two heat dissipation coating layers 22.
  • the heat-conducting sheet 10 and the auxiliary layer 20 are characterized in that they are laminated in a double-layer or multi-layer structure.
  • the heat-conducting sheet 10 is made of a material containing any one of aluminum, copper, magnesium, and graphite
  • the TIM layer 21 is made of a thermal adhesive, thermal pad, thermal grease, thermal adhesive, and thermal paste. It is made of any one of sheet tapes
  • the heat dissipation coating layer 22 is characterized by being made of any one of acrylic, urethane, silicone, foamed polyester, and epoxy heat dissipation paint.
  • the heat-conducting sheet 10 has a thickness of 20 ⁇ m ⁇ 1.5mm
  • the heat dissipation coating layer has a thickness of 20 ⁇ 30 ⁇ m
  • the TIM layer has a thickness of 10 ⁇ m ⁇ 2.0mm. It is characterized by being carried out.
  • heat dissipation coating layers 22 are laminated on both surfaces of the heat conductive sheet 10, and a TIM layer 21 is laminated on the outer surface of each heat dissipation coating layer 22, wherein the heat dissipation coating layer ( 22) has the same size as the heat-conducting sheet 10, and the TIM layer 21 has the same size as the heat source 1.
  • the wing portion 11 is characterized in that it is formed with a plurality of embossing, irregularities, or is formed with a plurality of bends.
  • a heat-insulating film is attached to the bottom of the wing portion 11 or a heat-insulating coating is applied to suppress heat radiation to the bottom of the wing portion 11.
  • a TIM layer made of a thermal interface material that transmits the heat of the heat source in the vertical direction and a heat dissipation coating layer that radiates and radiates the heat of the heat source to the outside are laminated.
  • the heat dissipation film of the same size as the heat source it is made of a size larger than the heat source area and is provided with a heat conduction sheet that radiates heat from the heat source horizontally and to the outside with wings protruding from the end of the heat source, thereby reducing the volume of the heat sink. It is possible to increase the heat dissipation effect while minimizing it.
  • the TIM layer with vertical heat conduction characteristics and the heat conduction sheet with horizontal heat conduction characteristics are stacked side by side, when a thick TIM layer is used, the horizontal heat conductivity is relatively lower than a thin TIM layer, so take advantage of this fact.
  • By stacking a thin TIM layer on a heat-conducting sheet it is possible to maximize space utilization in the vertical direction.
  • FIG. 1 is a diagram showing an example of a composite heat dissipation hybrid TIM sheet of the present invention.
  • Figure 2 is a photograph showing test pieces for experiments in the present invention.
  • Figure 3 is a graph showing the temperature over time by generating heat in the test pieces in the present invention.
  • Figure 4 is a diagram showing other embodiments of the present invention.
  • Figure 5 is a photograph showing the state in which the sheet of the present invention forms a multi-layer structure.
  • Figure 6 is a photograph showing an example of an object to which the sheet of the present invention is applied.
  • Figure 7 is a schematic diagram showing the heat dissipation action of a conventional heat sink.
  • Figure 8 is a schematic diagram showing the heat dissipation effect by the composite heat dissipation hybrid TIM sheet of the present invention.
  • Figure 9 is a view showing an example in which irregularities, wrinkles, embossing, and bending are formed on the wing portion of the heat-conducting sheet in the present invention.
  • Figure 10 is a schematic diagram showing the heat dissipation action showing an example in which a heat shield film is attached to the bottom of the wing in the present invention.
  • Thermal pads, thermal grease, thermal paste, thermal adhesive, thermal sheet tape, etc. used as existing TIM materials are manufactured to the same size as the heat source, and as shown in the schematic diagram of Figure 7, the heat coming from the heat source is directed only vertically. Since heat is only sent and released through the heat sink, even if the heat sink size is increased or the surface area is increased, the heat source temperature can actually only be slightly lowered.
  • the inventor of the present application goes beyond the existing common sense and provides a composite heat dissipation hybrid TIM sheet including a heat conductive sheet with wings protruding outside the heat source between the heat source and the heat sink, as shown in the schematic diagram of FIG. 8.
  • the horizontal thermal conductivity through the heat conduction sheet, the vertical thermal conductivity using the TIM layer, and the heat radiation effect through the heat dissipation coating layer are simultaneously demonstrated to realize an additional heat dissipation effect of 15 to 25°C at a low cost, making it easy to slim and lighten the product. And durability could be improved.
  • the composite heat dissipation hybrid TIM sheet of the present invention has one surface in contact with the heat source 1 and the other surface in contact with the heat sink 2, and heat from the heat source 1 is transferred to the heat sink ( It is designed to be delivered to 2).
  • the composite heat dissipation hybrid TIM sheet of the present invention consists of a heat-conducting sheet (10) and an auxiliary layer (20).
  • the heat conductive sheet 10 has a larger area than the heat source 1, and wings 11 are formed that protrude outward from the end of the heat source 1 in a plan view.
  • the heat-conducting sheet 10 is made of a metal or non-metallic material with high thermal conductivity, such as aluminum, copper, magnesium, graphite, etc., and the above-mentioned materials may be made alone, or may be mixed or synthesized with each other.
  • the heat-conducting sheet 10 occupies an area approximately 5 to 7 times the area of the heat source, the heat-conducting sheet 10 transfers the heat received from the heat source 1 in the horizontal direction, and the wing portion 11 Heat is naturally released to the outside.
  • the bottom of the wing portion 11 may be coated with a heat insulating film 30 made of a material such as PVC.
  • this heat-insulating film or heat-insulating coating may be attached or coated on the bottom of the heat-dissipating coating layer 22 corresponding to the position of the wing portion 11, The same can be applied even when the following wrinkles, embossing, and bending parts are formed.
  • the wing portion 11 forms wrinkles, emboss, etc. or multiple bends, as shown in FIG. 9, thereby increasing space utilization and protecting adjacent components. It can be ensured that it does not interfere with the installation space.
  • the horizontal thermal conductivity and vertical thermal conductivity according to the thickness of the heat-conducting sheet 10 are shown in Table 1 below.
  • Table 1 is based on #1050 aluminum sheet.
  • Thickness mm
  • Vertical thermal conductivity W/m.K
  • Horizontal thermal conductivity W/m.K 0.3 10.4 ⁇ 10.5 220 ⁇ 230 0.5 14.0 ⁇ 14.2 220 ⁇ 230 0.8 20.0 ⁇ 20.5 220 ⁇ 230 1.0 25,1 ⁇ 25.4 220 ⁇ 230
  • the auxiliary layer 20 is composed of a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside.
  • This auxiliary layer 20 is laminated on the top or bottom of the heat-conducting sheet 10.
  • the heat-conducting sheet 10 and the heat sink 2 are in direct contact, the heat-conducting sheet 10 may function as an integral part of the heat sink 2, and the vertical heat conduction characteristics may deteriorate, thereby reducing the heat dissipation effect.
  • the TIM layer 21 serves to send the heat generated from the heat source 1 as vertically as possible to the heat sink 2, and the heat dissipation coating layer 22 transfers the heat from the heat sink 2 to the atmosphere or heat sink 2. ) plays the role of dissipating heat as much as possible through thermal radiation and thermal radiation.
  • the TIM layer 21 may be composed of a thermal pad, thermal grease, thermal paste, thermal adhesive, thermal sheet tape, etc. made of acrylic, urethane, silicon, etc.
  • it can be molded by mixing thermal conductive ceramic powder and polymer.
  • raw materials such as alumina, modified acrylic, etc. are premixed and pre-dispersed, and after completion of the premixing, air bubbles are removed through a degassing process, and then the slurry on which the degassing process is completed is mixed to produce the agglomerated powder. After dispersion, the mixed slurry may be attached to the surface of the carrier film through casting equipment.
  • alumina/BN with a particle size of 5 ⁇ m ⁇ 100 ⁇ m as the filler as a raw material.
  • the mixing ratio of modified acrylic binder and ceramic is 20 ⁇ 25% by weight: 75 ⁇ 80% by weight. This is desirable.
  • urethane sheet, silicone sheet, or carbon fiber sheet may be used instead of modified acrylic.
  • three types of ceramics can be used to obtain high thermal conductivity by improving the thermal conductivity channel when mixing with resin.
  • the ratio by weight is 30% by weight of spherical alumina, 20% by weight of plate-shaped alumina, 20% by weight of amorphous alumina, and 10% by weight of amorphous BN/MgO.
  • the heat dissipation coating layer 22 serves to radiate heat transferred from the heat source 1 to the adjacent layer and is formed by coating a silan sol solution formed by dissolving silane in an alcoholic solvent to form a sol, or acrylic or urethane. , silicone, foamed polyester, epoxy ceramic paint, etc. can be coated and formed.
  • the prepared sol-state silane It can also be formed by coating a solution.
  • An example of a composite heat dissipation hybrid TIM sheet having the above structure is formed by stacking the TIM layer 21, the heat conduction sheet 10, and the TIM layer 21 in that order from top to bottom between the heat source 1 and the heat sink 2. , TIM layer 21, heat dissipation coating layer 22, heat conduction sheet 10, and TIM layer 21 are laminated in that order, or TIM layer 21, heat conduction sheet 10, heat dissipation coating layer 22, TIM It may be formed by stacking the layers 21 in that order, or the TIM layer 21, heat dissipation coating layer 22, heat conduction sheet 10, heat dissipation coating layer 22, and TIM layer 21 as shown in FIG. 1.
  • the heat dissipation coating layer 22, the heat conduction sheet 10, and the TIM layer 21 may be laminated in that order, or the TIM layer 21, the heat conduction sheet 10, and the heat dissipation coating layer 22 may be laminated in that order.
  • the heat dissipation coating layer 22, the heat conduction sheet 10, and the heat dissipation coating layer 22 are laminated in that order, or the heat dissipation coating layer 22, the heat conduction sheet 10, the heat dissipation coating layer 22, and the TIM layer 21 are laminated in that order.
  • the TIM layer 21, the heat dissipation coating layer 22, the heat conduction sheet 10, and the heat dissipation coating layer 22 may be laminated in that order.
  • Figure 5 shows several examples of such stacking.
  • the TIM layer 21 is formed to be the same size as the heat source 1 so that it does not protrude to the outside of the heat source 1, and the heat dissipation coating layer 22 may be formed to be the same size as the heat source 1. and may be formed in the same size as the heat-conducting sheet 10.
  • the heat dissipation coating layer 22 has the property of radiating and radiating heat to the outside, so when it is formed larger in size than the heat source 1, like the heat conductive sheet 10, the heat dissipation effect is improved.
  • the heat dissipation coating layer 22 is formed by coating as the word implies, it cannot maintain a constant hardness by itself, so it will be formed to a large extent only when it is formed as a continuous layer with the heat conductive sheet 10.
  • the laminated structure configured as above may be repeatedly laminated in multiple or multi-layers as shown in FIG. 5.
  • thermo couple As a heat source, a thermo couple was placed in a copper heating block measuring 3.7 cm wide, 6.0 cm long, and 1.0 cm thick, and a temperature sensor was installed inside.
  • the heat sink was prepared by cutting #1050 aluminum sheet into 5 cm wide, 10 cm long, and 0.5 cm thick.
  • thermocouple temperature recorder In addition, power was applied to the heat source, the heat source was operated for 1 hour, and the temperature was measured using a Yokogawa MV2000 model thermocouple temperature recorder.
  • Comparative Example 1 only the heat source was used, and in Comparative Example 2, a heat sink was attached to the heat source.
  • a 25 ⁇ m heat dissipation coating layer having the same size as the heat source area was formed on the upper and lower surfaces of a #1050 aluminum sheet with a thickness of 0.3 mm and a thickness of 25 ⁇ m on the outside of the heat dissipation coating layer on both sides.
  • a TIM layer with a thickness of 65 ⁇ m and a vertical thermal conductivity of 1W/m.K was formed.
  • Example 1 a 25 ⁇ m heat dissipation coating layer having the same size as the sheet area was formed on the upper and lower surfaces of a #1050 aluminum sheet with a width of 8.0 cm, a length of 12.0 cm, and a thickness of 0.3 mm, and a heat dissipation coating layer with a thickness of 65 ⁇ m was formed on the outside of the heat dissipation coating layer on both sides. ⁇ m, a TIM layer with a vertical thermal conductivity of 1W/m.K was formed.
  • the TIM layer was set to the same size as the heat source area.
  • the aluminum sheet and heat dissipation coating layer of Example 1 have an area approximately 4.5 times the area of the heat source and approximately twice the area of the heat sink.
  • Example 2 was manufactured in the same manner as Example 1, but the size of the aluminum sheet was 12 cm wide, 12 cm long, and 0.3 mm thick, so that it was about 6.5 times the area of the heat source and about 3 times the area of the heat sink.
  • Figure 2 is a photograph showing the specimens and experimental conditions of Comparative Examples 1 and 2 and Examples 1 and 2, and Figure 3 is a graph of the measured temperature.
  • Example 3 was manufactured by cutting the TIM layer 21 and the heat-conducting sheet 10 to the same size as Example 1, and then laminating the TIM layer 21 on the top and bottom of the heat-conducting sheet 10.
  • a 250 ⁇ m thick thermal sheet tape with a vertical thermal conductivity of 3 W/m.K was formed as the TIM layer (21), and a #1050 aluminum 0.3t plate with a vertical thermal conductivity of 10 W/m.K was formed as the thermal conductive sheet (10). Then, the TIM layer 21 and the heat-conducting sheet 10 were each cut to the same size as Example 1, and then the TIM layer 21 was laminated on the top and bottom of the heat-conducting sheet 10 to produce Example 4. did.
  • Example 3 was 5.7W/m.K
  • the vertical thermal conductivity of Example 4 was measured at 2.3W/m.K
  • the horizontal thermal conductivity of Example 3 was measured at 192W/m.K. In case 4, it was measured at 165W/m.K.
  • the composite heat dissipation hybrid TIM sheet according to the present invention can be composed of a heat conductive sheet (10) with a thickness of 20 ⁇ m ⁇ 1.5mm, a heat dissipation coating layer of 20 ⁇ 30 ⁇ m, and a TIM layer of 10 ⁇ m ⁇ 2.0mm. there is.
  • the required height is less than 5 mm, which can greatly help in slimming the product.
  • the composite heat dissipation hybrid TIM sheet of the present invention described above can be used in 5G repeaters equipped with heat sources, power semiconductors, displays, as well as various semiconductors, automobiles such as electric and hydrogen cars, energy storage devices, and LEDs. It can be applied to all fields that require heat dissipation due to heat sources, such as lighting, laptops, smartphones, PCs, and tablet PCs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Engineering (AREA)

Abstract

The present invention relates to a composite heat dissipation hybrid TIM sheet which is disposed between a heat sink and a heat source and composed of a heat-conductive sheet in which an auxiliary layer comprising a TIM layer or a heat-dissipating coating layer is laminated on one side, wherein the heat-conductive sheet is provided with a wing portion protruding outside the heat source and maximizes the heat dissipation effect.

Description

복합 방열 하이브리드 TIM 시트Composite heat dissipation hybrid TIM sheet
본 발명은 복합 방열 하이브리드 TIM 시트에 관한 것이다.The present invention relates to a composite heat dissipation hybrid TIM sheet.
히트싱크(heatsink)는 현재 전자산업에서 가장 보편적으로 사용되고 있는 방열기구로서 넓은 표면적을 이용하여 공기 혹은 물과의 접촉면적을 통해서 방열을 이루어 내는 기구이다. A heatsink is currently the most commonly used heat dissipation device in the electronics industry and is a device that uses a large surface area to dissipate heat through the contact area with air or water.
기본적으로는 평판 휜(plate fin)과 핀 휜(pin fin)이 가장 많이 사용되고 있으며, 이 외에도 휜(fin)의 모양 혹은 기울기의 조절을 통해서 더 높은 방열 성능을 내기 위한 연구가 많이 진행되고 있다.Basically, plate fins and pin fins are most commonly used, and in addition, much research is being conducted to achieve higher heat dissipation performance by adjusting the shape or inclination of the fins.
하지만 기존의 히트싱크는 기기 내에서 큰 부피와 무게를 차지하기 때문에 최근 소형화, 박막화, 경량화를 추구하고 있는 전자기기 산업에서는 히트싱크의 부피를 최소화할 수 있는 연구가 필요하다.However, because existing heat sinks occupy a large volume and weight within the device, research to minimize the volume of the heat sink is needed in the electronic device industry, which is currently pursuing miniaturization, thinness, and weight reduction.
이와 관련된 기술로, 본 발명의 출원인이 등록받은 "복합 방열 필름"(한국 등록특허공보 제10-1859005호, 특허문헌 1)에는 실란 졸 용액이 베이스필름에 코팅되고, 그 외측에 금속 입자가 증착된 코팅층이 형성됨으로써 절연 및 전자파 차단 효과를 갖는 방열 필름이 개시되어 있다.In a related technology, in the "composite heat dissipation film" registered by the applicant of the present invention (Korean Patent Publication No. 10-1859005, Patent Document 1), a silane sol solution is coated on a base film, and metal particles are deposited on the outside. A heat dissipation film having an insulating and electromagnetic wave blocking effect by forming a coating layer is disclosed.
특허문헌 1은 절연과 방열 효과를 동시에 제공하는 필픔이나 고도로 높은 방열 효과를 제공하지는 못한다는 문제점이 있다. Patent Document 1 has a problem in that although it is a material that provides both insulation and heat dissipation effects, it does not provide a high heat dissipation effect.
또, "수평 열전도 시트 및 그 제조 방법"(한국 등록특허공보 제10-0901526호, 특허문헌 2)에는 아크릴 점착제층, 플레이크 타입 열전도성 분말을 포함하는 수평 열전도 시트층, 테이프층을 포함하여 수평 열전도 성능을 높이도록 한 사례가 공개되어 있다.In addition, "Horizontal heat-conducting sheet and method of manufacturing the same" (Korean Patent Publication No. 10-0901526, Patent Document 2) includes a horizontal heat-conducting sheet layer including an acrylic adhesive layer, a horizontal heat-conducting sheet layer containing flake-type heat-conductive powder, and a tape layer. An example of improving heat conduction performance has been disclosed.
특허문헌 2는 소재의 수평 열전도 성능을 높이는 데 주력한 것인데, 물성에 기반한 열전도 특성을 향상시키는 한계가 있다. Patent Document 2 focuses on increasing the horizontal heat conduction performance of the material, but there are limitations in improving heat conduction characteristics based on physical properties.
최근 들어 대형 및 소형 가전, PC, 노트북의 다양한 전자제품에 대하여 액정 테두리의 면적은 물론 기판을 감싼 케이스의 두께를 최소화시키려는 노력이 계속되고 있는데, 히트싱크의 부피를 최소화하면서 방열 효과를 높히기 위해서는 열 계면 물질(thermal interface material, TIM)이나 방열 코팅을 활용해야 하지만 단순히 소재의 특성에 기반한 노력만으로는 디자인, 가격, 중량 등의 문제로 많은 애로 사항이 발생한다.Recently, efforts have been made to minimize the area of the liquid crystal border as well as the thickness of the case surrounding the substrate for various electronic products such as large and small home appliances, PCs, and laptops. In order to minimize the volume of the heat sink and increase the heat dissipation effect, heat It is necessary to use thermal interface material (TIM) or heat dissipation coating, but efforts based simply on the characteristics of the material cause many difficulties due to issues such as design, price, and weight.
이에 히트싱크의 부피 증가를 최소화하면서도 열 계면 물질, 방열 코팅의 한계를 넘어 보다 효과적으로 방열 성능을 개선할 수 있는 기술의 개발이 필요한 실정이다.Accordingly, there is a need to develop technology that can improve heat dissipation performance more effectively by going beyond the limitations of thermal interface materials and heat dissipation coatings while minimizing the increase in heat sink volume.
*선행기술문헌**Prior art literature*
(특허문헌 1) KR 10-1859005 (2018.05.11)(Patent Document 1) KR 10-1859005 (2018.05.11)
(특허문헌 2) KR 10-0901526 (2009.06.01)(Patent Document 2) KR 10-0901526 (2009.06.01)
본 발명의 복합 방열 하이브리드 TIM 시트는 상기한 종래 기술에서 발생하는 문제점을 해소하기 위한 것으로, 히트싱크와의 사이에는 열원 사이에 열원의 열을 수직 방향으로 전달하는 열계면물질로 이루어진 TIM층이나 열원의 열을 외부로 방사 및 복사시키는 방열코팅층이 적층 형성되어 있되, 종래의 방열필름 크기가 열원 크기와 동일한 사이즈로 이루어져 있던 것과 달리 열원 면적보다 큰 크기로 이루어져 열원 단부로 돌출된 날개부를 갖는 열원의 열을 수평 및 외부로 방출시키는 열전도시트가 구비되어 히트싱크의 부피를 최소화하면서도 방열 효과를 높일 수 있게 하려는 것이다.The composite heat dissipation hybrid TIM sheet of the present invention is intended to solve the problems occurring in the above-described prior art, and has a TIM layer or heat source made of a thermal interface material that transfers heat from the heat source in the vertical direction between the heat sink and the heat source. A heat dissipation coating layer that radiates and radiates heat to the outside is formed by stacking, but unlike the conventional heat dissipation film whose size is the same as the heat source size, it is made of a size larger than the heat source area and has a wing protruding from the end of the heat source. A thermal conductive sheet that radiates heat horizontally and to the outside is provided to minimize the volume of the heat sink while increasing the heat dissipation effect.
즉, 열원으로부터 히트싱크 측으로 열이 전달됨에 있어서 중간에 위치한 열전도시트의 날개부를 통해 상당양의 열을 수평 전도시켜 외부로 방출시킴으로써 히트싱크 측으로 전달되는 열을 차감함으로써 히트싱크의 부피를 최소화할 수 있게 하려는 것이다.In other words, when heat is transferred from the heat source to the heat sink, a significant amount of heat is horizontally conducted through the wings of the heat conduction sheet located in the middle and discharged to the outside, thereby reducing the heat transferred to the heat sink, thereby minimizing the volume of the heat sink. It is intended to be.
특히, 수직 열전도 특성을 갖는 TIM층과 수평 열전도 특성을 갖는 열전도시트가 나란히 적층됨에 있어서 두께가 두꺼운 TIM층을 사용할 경우 두께가 얇은 TIM층에 비해 상대적으로 수평열전도도가 오히려 떨어지게 되는데 이러한 점을 활용하여 얇은 TIM층을 열전도시트에 적층시킴으로써 수직 방향의 공간 활용도를 최대화할 수 있게 하려는 것이다.In particular, since the TIM layer with vertical heat conduction characteristics and the heat conduction sheet with horizontal heat conduction characteristics are stacked side by side, when a thick TIM layer is used, the horizontal heat conductivity is relatively lower than a thin TIM layer, so take advantage of this fact. The goal is to maximize space utilization in the vertical direction by laminating a thin TIM layer on a heat-conducting sheet.
본 발명의 복합 방열 하이브리드 TIM 시트는 상기한 과제를 해결하기 위하여, 일측 표면이 열원(1)과 접촉하고, 타측 표면은 히트싱크(2)와 접촉하며, 열원(1)의 열을 히트싱크(2)에 전달하는 복합 방열 시트에 있어서, 상기 열원(1)보다 면적이 크게 이루어져 있어 평면상에서 열원(1)의 단부보다 외측으로 돌출된 날개부(11)가 형성되어 있으며, 열원(1)으로부터 전달받은 열을 수평 방향으로 전달하고, 외부로 방출하는 열전도시트(10)와; 열원의 열을 수직 방향으로 전달하도록 열계면물질로 이루어진 TIM층(21) 또는 열원의 열을 외부로 방사 및 복사시키는 방열코팅층(22) 중 어느 하나를 포함하여 구성되어 있으며, 상기 열전도시트(10)의 상부 또는 하부에 적층되어 있는 보조층(20);을 포함하여 구성된다.In order to solve the above-mentioned problem, the composite heat dissipation hybrid TIM sheet of the present invention has one surface in contact with the heat source (1), the other surface in contact with the heat sink (2), and the heat of the heat source (1) is transferred to the heat sink ( In the composite heat dissipation sheet that transmits to 2), a wing portion 11 is formed that has an area larger than that of the heat source 1 and protrudes outward from the end of the heat source 1 in a plan view, a heat conduction sheet (10) that transfers the received heat in a horizontal direction and radiates it to the outside; It is composed of either a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside, and the heat conduction sheet 10 ) and an auxiliary layer 20 laminated on the top or bottom of the layer.
상기한 구성에 있어서, 상기 보조층(20)은 상기 열전도시트(10)의 양측 표면에 적층된 TIM층(21)인 것을 특징으로 한다.In the above configuration, the auxiliary layer 20 is characterized in that it is a TIM layer 21 laminated on both surfaces of the heat-conducting sheet 10.
상기한 구성에 있어서, 상기 보조층(20)은 상기 열전도시트(10)의 상부 또는 하부에 적층된 방열코팅층(22)과, 상기 방열코팅층(22)이 적층된 열전도시트(10)의 상부 및 하부에 적층된 TIM층(21)인 것을 특징으로 한다.In the above configuration, the auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on the top or bottom of the heat conduction sheet 10, an upper portion of the heat conduction sheet 10 on which the heat dissipation coating layer 22 is laminated, and It is characterized by a TIM layer 21 laminated on the lower part.
상기한 구성에 있어서, 상기 보조층(20)은 상기 열전도시트(10)의 상부 또는 하부 중 어느 한 곳에 적층된 방열코팅층(22)과, 상기 열전도시트(10)의 상부 또는 하부 중 다른 한 곳에 적층된 TIM층(21)인 것을 특징으로 한다.In the above configuration, the auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on one of the top or bottom of the heat-conducting sheet 10, and a heat dissipation coating layer 22 laminated on either the top or bottom of the heat-conducting sheet 10. It is characterized by a stacked TIM layer (21).
상기한 구성에 있어서, 상기 보조층(20)은 상기 열전도시트(10)의 상부 또는 하부 중 어느 한 곳에 적층된 방열코팅층(22)과, 상기 열전도시트(10)의 상부 또는 하부 중 다른 한 곳에 적층된 TIM층(21)인 것을 특징으로 한다.In the above configuration, the auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on one of the top or bottom of the heat-conducting sheet 10, and a heat dissipation coating layer 22 laminated on either the top or bottom of the heat-conducting sheet 10. It is characterized by a stacked TIM layer (21).
상기한 구성에 있어서, 상기 보조층(20)은 상기 열전도시트(10)의 양측 표면에 적층된 방열코팅층(22)인 것을 특징으로 한다.In the above configuration, the auxiliary layer 20 is characterized in that it is a heat dissipation coating layer 22 laminated on both surfaces of the heat-conducting sheet 10.
상기한 구성에 있어서, 상기 두 방열코팅층(22) 중 어느 하나의 표면에 TIM층(21)이 적층되어 있는 것을 특징으로 한다.In the above configuration, the TIM layer 21 is laminated on the surface of one of the two heat dissipation coating layers 22.
상기한 구성에 있어서, 상기 열전도시트(10)와 보조층(20)은 복층 또는 다층 구조로 적층되어 있는 것을 특징으로 한다.In the above configuration, the heat-conducting sheet 10 and the auxiliary layer 20 are characterized in that they are laminated in a double-layer or multi-layer structure.
상기한 구성에 있어서, 상기 열전도시트(10)는 알루미늄, 구리, 마그네슘, 그라파이트 중 어느 하나를 포함한 재질로 이루어져 있으며, 상기 TIM층(21)은 써멀점착제, 써멀패드, 써멀구리스, 써멀접착제, 써멀시트테이프 중 어느 하나로 이루어져 있고, 상기 방열코팅층(22)은 아크릴, 우레탄, 실리콘, 발포화 폴리에스테르, 에폭시 방열도료 중 어느 하나로 이루어져 있는 것을 특징으로 한다.In the above configuration, the heat-conducting sheet 10 is made of a material containing any one of aluminum, copper, magnesium, and graphite, and the TIM layer 21 is made of a thermal adhesive, thermal pad, thermal grease, thermal adhesive, and thermal paste. It is made of any one of sheet tapes, and the heat dissipation coating layer 22 is characterized by being made of any one of acrylic, urethane, silicone, foamed polyester, and epoxy heat dissipation paint.
상기한 구성에 있어서, 상기 열전도시트(10)는 20㎛ ~ 1.5mm의 두께로 이루어지고, 상기 방열코팅층은 20 ~ 30㎛의 두께로 이루어지며, 상기 TIM층은 10㎛ ~ 2.0mm의 두께로 이루어지는 것을 특징으로 한다.In the above configuration, the heat-conducting sheet 10 has a thickness of 20㎛ ~ 1.5mm, the heat dissipation coating layer has a thickness of 20 ~ 30㎛, and the TIM layer has a thickness of 10㎛ ~ 2.0mm. It is characterized by being carried out.
상기한 구성에 있어서, 상기 열전도시트(10)의 양측 표면에 방열코팅층(22)이 적층되어 있으며, 각 방열코팅층(22)의 외측 표면에 TIM층(21)이 적층되어 있되, 상기 방열코팅층(22)은 열전도시트(10)와 동일한 크기로 이루어져 있고, TIM층(21)은 열원(1)과 동일한 크기로 이루어져 있는 것을 특징으로 한다.In the above configuration, heat dissipation coating layers 22 are laminated on both surfaces of the heat conductive sheet 10, and a TIM layer 21 is laminated on the outer surface of each heat dissipation coating layer 22, wherein the heat dissipation coating layer ( 22) has the same size as the heat-conducting sheet 10, and the TIM layer 21 has the same size as the heat source 1.
상기한 구성에 있어서, 상기 날개부(11)는 다수의 엠보, 요철이 형성되거나 다수 절곡이 이루어져 있는 것을 특징으로 한다.In the above configuration, the wing portion 11 is characterized in that it is formed with a plurality of embossing, irregularities, or is formed with a plurality of bends.
상기한 구성에 있어서, 상기 날개부(11)의 저부에는 차열 필름이 부착되거나 차열 코팅 처리되어 날개부(11) 저부로의 방열을 억제하도록 이루어져 있는 것을 특징으로 한다.In the above configuration, a heat-insulating film is attached to the bottom of the wing portion 11 or a heat-insulating coating is applied to suppress heat radiation to the bottom of the wing portion 11.
본 발명에 의해, 히트싱크와의 사이에는 열원 사이에 열원의 열을 수직 방향으로 전달하는 열계면물질로 이루어진 TIM층이나 열원의 열을 외부로 방사 및 복사시키는 방열코팅층이 적층 형성되어 있되, 종래의 방열필름 크기가 열원 크기와 동일한 사이즈로 이루어져 있던 것과 달리 열원 면적보다 큰 크기로 이루어져 열원 단부로 돌출된 날개부를 갖는 열원의 열을 수평 및 외부로 방출시키는 열전도시트가 구비되어 히트싱크의 부피를 최소화하면서도 방열 효과를 높일 수 있게 된다.According to the present invention, between the heat sink and the heat source, a TIM layer made of a thermal interface material that transmits the heat of the heat source in the vertical direction and a heat dissipation coating layer that radiates and radiates the heat of the heat source to the outside are laminated. Unlike the size of the heat dissipation film of the same size as the heat source, it is made of a size larger than the heat source area and is provided with a heat conduction sheet that radiates heat from the heat source horizontally and to the outside with wings protruding from the end of the heat source, thereby reducing the volume of the heat sink. It is possible to increase the heat dissipation effect while minimizing it.
즉, 열원으로부터 히트싱크 측으로 열이 전달됨에 있어서 중간에 위치한 열전도시트의 날개부를 통해 상당양의 열을 수평 전도시켜 외부로 방출시킴으로써 히트싱크 측으로 전달되는 열을 차감함으로써 히트싱크의 부피를 최소화할 수 있게 된다.In other words, when heat is transferred from the heat source to the heat sink, a significant amount of heat is horizontally conducted through the wings of the heat conduction sheet located in the middle and discharged to the outside, thereby reducing the heat transferred to the heat sink, thereby minimizing the volume of the heat sink. There will be.
특히, 수직 열전도 특성을 갖는 TIM층과 수평 열전도 특성을 갖는 열전도시트가 나란히 적층됨에 있어서 두께가 두꺼운 TIM층을 사용할 경우 두께가 얇은 TIM층에 비해 상대적으로 수평열전도도가 오히려 떨어지게 되는데 이러한 점을 활용하여 얇은 TIM층을 열전도시트에 적층시킴으로써 수직 방향의 공간 활용도를 최대화할 수 있게 된다.In particular, since the TIM layer with vertical heat conduction characteristics and the heat conduction sheet with horizontal heat conduction characteristics are stacked side by side, when a thick TIM layer is used, the horizontal heat conductivity is relatively lower than a thin TIM layer, so take advantage of this fact. By stacking a thin TIM layer on a heat-conducting sheet, it is possible to maximize space utilization in the vertical direction.
도 1은 본 발명의 복합 방열 하이브리드 TIM 시트의 일 예를 나타낸 도면.1 is a diagram showing an example of a composite heat dissipation hybrid TIM sheet of the present invention.
도 2는 본 발명에서 실험을 위한 실험편들을 나타낸 사진.Figure 2 is a photograph showing test pieces for experiments in the present invention.
도 3은 본 발명에서 실험편들에 열을 발생시켜 시간별 온도를 나타낸 그래프.Figure 3 is a graph showing the temperature over time by generating heat in the test pieces in the present invention.
도 4는 본 발명의 다른 실시예들을 나타낸 도면.Figure 4 is a diagram showing other embodiments of the present invention.
도 5는 본 발명의 시트가 복층 구조를 이루는 상태를 나타낸 사진.Figure 5 is a photograph showing the state in which the sheet of the present invention forms a multi-layer structure.
도 6은 본 발명의 시트 적용 대상의 예를 나타낸 사진.Figure 6 is a photograph showing an example of an object to which the sheet of the present invention is applied.
도 7은 종래의 히트싱크 방열 작용을 나타낸 모식도.Figure 7 is a schematic diagram showing the heat dissipation action of a conventional heat sink.
도 8은 본 발명의 복합 방열 하이브리드 TIM 시트에 의한 방열 작용을 나타낸 모식도.Figure 8 is a schematic diagram showing the heat dissipation effect by the composite heat dissipation hybrid TIM sheet of the present invention.
도 9는 본 발명에서 열전도 시트의 날개부에 요철, 주름, 엠보, 절곡이 이루어진 예를 나타낸 도면.Figure 9 is a view showing an example in which irregularities, wrinkles, embossing, and bending are formed on the wing portion of the heat-conducting sheet in the present invention.
도 10은 본 발명에서 날개부의 저부에 차열필름이 부착된 예를 나타낸 방열 작용을 나타낸 모식도.Figure 10 is a schematic diagram showing the heat dissipation action showing an example in which a heat shield film is attached to the bottom of the wing in the present invention.
*도면의 주요부호에 대한 상세한 설명**Detailed explanation of main symbols in the drawing*
1 : 열원1: heat source
2 : 히트싱크2: heat sink
10 : 열전도시트10: Heat conduction sheet
11 : 날개부11: wing part
20 : 보조층20: Auxiliary layer
21 : TIM층21: TIM layer
22 : 방열코팅층22: heat radiation coating layer
30 : 차열필름30: Heat insulation film
기존의 TIM 재료로 사용되는 써멀패드, 써멀구리스, 써멀페이스트, 써멀접착제, 써멀시트테이프 등은 열원과 같은 사이즈로 제작되는데, 도 7의 모식도에 도시되어 있는 바와 같이 열원에서 나오는 열을 오직 수직으로만 보내 히트싱크를 통해 열을 방출시키므로 히트싱크 사이즈를 크게 하거나 표면적을 증대시키더라도 실제로는 열원 온도를 조금밖에 떨어뜨리지 못한다.Thermal pads, thermal grease, thermal paste, thermal adhesive, thermal sheet tape, etc. used as existing TIM materials are manufactured to the same size as the heat source, and as shown in the schematic diagram of Figure 7, the heat coming from the heat source is directed only vertically. Since heat is only sent and released through the heat sink, even if the heat sink size is increased or the surface area is increased, the heat source temperature can actually only be slightly lowered.
본 출원의 발명자는 기존의 오래된 상식을 벗어나 열원과 히트싱크 사이에 열원 외측으로 돌출되는 날개부가 구비된 열전도시트가 포함된 복합 방열 하이브리드 TIM 시트를 제공하여, 도 8의 모식도에 도시되어 있는 바와 같이 열전도시트를 통한 수평열전도도, TIM층을 이용한 수직열전도도 및 방열코팅층을 통한 열방사 효과를 동시에 발휘하도록 하여 저렴한 비용으로 15 ~ 25℃의 추가 방열 효과를 구현하면서 제품의 슬림화, 경량화가 용이하게 하고, 내구성을 향상시킬 수 있게 하였다.The inventor of the present application goes beyond the existing common sense and provides a composite heat dissipation hybrid TIM sheet including a heat conductive sheet with wings protruding outside the heat source between the heat source and the heat sink, as shown in the schematic diagram of FIG. 8. The horizontal thermal conductivity through the heat conduction sheet, the vertical thermal conductivity using the TIM layer, and the heat radiation effect through the heat dissipation coating layer are simultaneously demonstrated to realize an additional heat dissipation effect of 15 to 25°C at a low cost, making it easy to slim and lighten the product. And durability could be improved.
이하, 첨부된 도면을 통해 본 발명의 복합 방열 하이브리드 TIM 시트에 대해 상세히 설명하기로 한다.Hereinafter, the composite heat dissipation hybrid TIM sheet of the present invention will be described in detail through the attached drawings.
본 발명의 복합 방열 하이브리드 TIM 시트는 도 1에 도시되어 있는 바와 같이 일측 표면이 열원(1)과 접촉하고, 타측 표면은 히트싱크(2)와 접촉하며, 열원(1)의 열을 히트싱크(2)에 전달하도록 이루어져 있다.As shown in FIG. 1, the composite heat dissipation hybrid TIM sheet of the present invention has one surface in contact with the heat source 1 and the other surface in contact with the heat sink 2, and heat from the heat source 1 is transferred to the heat sink ( It is designed to be delivered to 2).
본 발명의 복합 방열 하이브리드 TIM 시트는 열전도시트(10)와 보조층(20)으로 이루어져 있다.The composite heat dissipation hybrid TIM sheet of the present invention consists of a heat-conducting sheet (10) and an auxiliary layer (20).
열전도시트(10)는 도 1에 도시되어 있는 바와 같이 상기 열원(1)보다 면적이 크게 이루어져 있어 평면상에서 열원(1)의 단부보다 외측으로 돌출된 날개부(11)가 형성되어 있다.As shown in FIG. 1, the heat conductive sheet 10 has a larger area than the heat source 1, and wings 11 are formed that protrude outward from the end of the heat source 1 in a plan view.
더불어, 열전도시트(10)는 알루미늄, 구리, 마그네슘, 그라파이트 등과 같이 열전도도가 높은 금속 또는 비금속 소재로 이루어져 있으며, 상기한 소재들이 단독으로 이루어질 수도 있고, 서로 혼합되거나 합성되어 형성될 수도 있다.In addition, the heat-conducting sheet 10 is made of a metal or non-metallic material with high thermal conductivity, such as aluminum, copper, magnesium, graphite, etc., and the above-mentioned materials may be made alone, or may be mixed or synthesized with each other.
열전도시트(10)의 면적은 열원 면적보다 넓으면 넓을수록 좋다.The wider the area of the heat conduction sheet 10 is than the heat source area, the better.
하기의 표를 보면 열전도시트(10)가 열원면적의 대략 5 ~ 7배의 면적을 차지하는 경우 열전도시트(10)는 열원(1)으로부터 전달받은 열을 수평 방향으로 전달하고, 날개부(11)에서 자연스럽게 열이 외부로 방출된다.Looking at the table below, when the heat-conducting sheet 10 occupies an area approximately 5 to 7 times the area of the heat source, the heat-conducting sheet 10 transfers the heat received from the heat source 1 in the horizontal direction, and the wing portion 11 Heat is naturally released to the outside.
이때, 날개부(11)의 저부를 통해서도 열의 방출이 이루어지게 되는데, 자칫 열에 의한 손상이 우려되는 부품이 위치할 수도 있다.At this time, heat is also released through the bottom of the wing portion 11, and there may be parts that are at risk of being damaged by heat.
이에 따라 날개부(11)의 저부에는 도 10에 도시되어 있는 바와 같이 PVC와 같은 소재의 차열필름(30)이나, 차열 코팅이 이루어질 수도 있다.Accordingly, as shown in FIG. 10, the bottom of the wing portion 11 may be coated with a heat insulating film 30 made of a material such as PVC.
이러한 차열필름이나 차열코팅은 열전도시트(10)의 하부에 방열코팅층(22)이 적층되는 경우 날개부(11)의 위치에 대응되는 방열코팅층(22)의 저부에 부착되거나 코팅 처리될 수 있으며, 하기의 주름, 엠보, 절곡부가 형성되는 경우에도 동일하게 적용될 수 있다.When the heat-dissipating coating layer 22 is laminated on the lower part of the heat-conducting sheet 10, this heat-insulating film or heat-insulating coating may be attached or coated on the bottom of the heat-dissipating coating layer 22 corresponding to the position of the wing portion 11, The same can be applied even when the following wrinkles, embossing, and bending parts are formed.
또한, 인접한 부품과의 설치 공간 확보 문제를 극복하기 위한 방안으로 상기 날개부(11)는 도 9에 나타나 있는 바와 같이 주름, 엠보 등을 형성하거나 다수의 절곡부를 형성함으로써 공간 활용도를 높이면서 인접 부품의 설치 공간에 방해를 주지 않도록 할 수 있다.In addition, as a way to overcome the problem of securing installation space with adjacent components, the wing portion 11 forms wrinkles, emboss, etc. or multiple bends, as shown in FIG. 9, thereby increasing space utilization and protecting adjacent components. It can be ensured that it does not interfere with the installation space.
이러한 열전도시트(10)의 두께에 따른 수평열전도도 및 수직열전도도는 아래 표 1과 같다.The horizontal thermal conductivity and vertical thermal conductivity according to the thickness of the heat-conducting sheet 10 are shown in Table 1 below.
표 1은 #1050의 알루미늄 시트를 기준으로 나타낸 것이다.Table 1 is based on #1050 aluminum sheet.
두께(mm)Thickness (mm) 수직열전도도(W/m.K)Vertical thermal conductivity (W/m.K) 수평열전도도(W/m.K)Horizontal thermal conductivity (W/m.K)
0.30.3 10.4~10.510.4~10.5 220 ~ 230220~230
0.50.5 14.0~14.214.0~14.2 220 ~ 230220~230
0.80.8 20.0~20.520.0~20.5 220 ~ 230220~230
1.01.0 25,1~25.425,1~25.4 220 ~ 230220~230
상기 표 1을 살펴보면 두께가 두꺼울수록 수평열전도도는 변화가 없으며 단지 수직열전도도가 높아지며, 실제 온도로는 0.2mm 두께가 증가할 때마다 약 1℃의 추가 방열 효과를 갖는 것으로 나타났다.따라서, 열전도시트(10)의 두께가 얇아도 수평열전도도의 변화가 거의 없으므로 제품 슬림화에 용이하다.Looking at Table 1 above, as the thickness increases, the horizontal thermal conductivity does not change, but the vertical thermal conductivity only increases, and in actual temperature, it was found that each 0.2mm thickness increase has an additional heat dissipation effect of about 1°C. Therefore, heat conduction Even if the thickness of the sheet 10 is thin, there is little change in horizontal thermal conductivity, making it easy to slim the product.
보조층(20)은 열원의 열을 수직 방향으로 전달하도록 열계면물질로 이루어진 TIM층(21) 또는 열원의 열을 외부로 방사 및 복사시키는 방열코팅층(22)으로 이루어지며, 이러한 보조층(20)은 상기 열전도시트(10)의 상부 또는 하부에 적층되어 있다.The auxiliary layer 20 is composed of a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside. This auxiliary layer 20 ) is laminated on the top or bottom of the heat-conducting sheet 10.
기본적으로는 상기 열전도시트(10)의 상부에 위치하여 열전도시트(10)와 히트싱크(2)의 직접적인 접촉을 방지하도록 이루어짐이 바람직하다.Basically, it is preferable that it is located on the upper part of the heat-conducting sheet 10 to prevent direct contact between the heat-conducting sheet 10 and the heat sink 2.
만일 열전도시트(10)와 히트싱크(2)가 직접 접촉하게 될 경우 열전도시트(10)가 히트싱크(2)와 일체의 역할을 하게 되어 수직 열전도 특성이 떨어져 방열 효과가 저하될 수 있다.If the heat-conducting sheet 10 and the heat sink 2 are in direct contact, the heat-conducting sheet 10 may function as an integral part of the heat sink 2, and the vertical heat conduction characteristics may deteriorate, thereby reducing the heat dissipation effect.
여기서 TIM층(21)은 열원(1)에서 발생하는 열을 최대한 수직으로 히트싱크(2)로 보내는 역할을 하며, 방열코팅층(22)은 히트싱크(2)의 열을 대기 또는 히트싱크(2)로 열방사 및 열복사를 통해 최대한 열을 방출하는 역할을 한다.Here, the TIM layer 21 serves to send the heat generated from the heat source 1 as vertically as possible to the heat sink 2, and the heat dissipation coating layer 22 transfers the heat from the heat sink 2 to the atmosphere or heat sink 2. ) plays the role of dissipating heat as much as possible through thermal radiation and thermal radiation.
TIM층(21)은 아크릴, 우레탄, 실리콘 등을 원료로 한 써멀패드, 써멀구리스, 써멀페이스트, 써멀접착제, 써멀시트테이프 등으로 구성될 수 있다.The TIM layer 21 may be composed of a thermal pad, thermal grease, thermal paste, thermal adhesive, thermal sheet tape, etc. made of acrylic, urethane, silicon, etc.
보다 바람직하기로는 써멀 컨덕티브 세라믹 파우더와 폴리머를 혼합하여 성형할 수 있다.More preferably, it can be molded by mixing thermal conductive ceramic powder and polymer.
구체적으로, 알루미나, 변성아크릴 등과 같은 원료물질을 프리믹싱(premixing)하여 예비 분산하고, 상기 프리믹싱의 완료 후 탈포 공정을 통해 기포를 제거한 다음, 탈포 공정이 완료된 슬러리를 본 믹싱을 통해 뭉친 파우더를 분산한 후, 믹싱이 완료된 슬러리를 캐스팅 설비를 통하여 캐리어 필름 표면에 부착시키는 공정으로 이루어질 수 있다.Specifically, raw materials such as alumina, modified acrylic, etc. are premixed and pre-dispersed, and after completion of the premixing, air bubbles are removed through a degassing process, and then the slurry on which the degassing process is completed is mixed to produce the agglomerated powder. After dispersion, the mixed slurry may be attached to the surface of the carrier film through casting equipment.
이때, 원료물질인 필러는 입자사이즈가 5㎛~100㎛인 알루미나/BN을 사용하는 것이 바람직하며, 기본적으로 변성 아크릴바인더와 세라믹의 믹싱 비율은 20~25 중량% : 75~80 중량%의 비율이 바람직하다.At this time, it is preferable to use alumina/BN with a particle size of 5㎛~100㎛ as the filler as a raw material. Basically, the mixing ratio of modified acrylic binder and ceramic is 20~25% by weight: 75~80% by weight. This is desirable.
이때, 변성 아크릴 대신 우레탄 시트, 실리콘 시트, 카본 화이버 시트를 사용할 수도 있다.At this time, urethane sheet, silicone sheet, or carbon fiber sheet may be used instead of modified acrylic.
더불어, 수지와 믹싱시 열전도도 채널을 좋게하여 고열전도도를 얻기위해 3가지 모양의 세라믹을 사용할 수 있다.In addition, three types of ceramics can be used to obtain high thermal conductivity by improving the thermal conductivity channel when mixing with resin.
일예로, 10 watt/m.k 이하 제조시에는 구상 알루미나 50중량%, 판상 알루미나 20중량%, 비정형 알루미나 약 30 중량%의 비율로 함이 바람직하며, 10 watt/m.k 이상 제조시에는 구상 BN/MgO 20중량%, 구상 알루미나 30중량%, 판상 알루미나 20 중량%, 비정형 알루미나 20중량%, 비정형 BN/MgO 10중량%의 비율로 함이 바람직하다.For example, when manufacturing at 10 watt/m.k or less, it is desirable to use a ratio of 50% by weight of spherical alumina, 20% by weight of plate-shaped alumina, and about 30% by weight of amorphous alumina, and when manufacturing at 10 watt/m.k or more, it is desirable to use 20% by weight of spherical BN/MgO. It is preferable that the ratio by weight is 30% by weight of spherical alumina, 20% by weight of plate-shaped alumina, 20% by weight of amorphous alumina, and 10% by weight of amorphous BN/MgO.
여기서 열전도도가 높은 BN/MgO의 양을 늘리면 15watt/m.k 이상 구현도 가능하다.Here, by increasing the amount of BN/MgO, which has high thermal conductivity, it is possible to achieve more than 15 watt/m.k.
방열코팅층(22)은 인접한 층으로 열원(1)으로 전달받은 열을 복사시키는 역할을 하는 것으로 알콜성 용매에 실란이 용해되어 졸 상태를 이루도록 형성된 실란졸 용액이 코팅 처리되어 형성되거나, 아크릴, 우레탄, 실리콘, 발포화 폴리에스테르, 에폭시 세라믹 도료 등이 코팅 처리되어 형성될 수 있다.The heat dissipation coating layer 22 serves to radiate heat transferred from the heat source 1 to the adjacent layer and is formed by coating a silan sol solution formed by dissolving silane in an alcoholic solvent to form a sol, or acrylic or urethane. , silicone, foamed polyester, epoxy ceramic paint, etc. can be coated and formed.
또는 테트라메톡시실란(tetramethoxysilane) 6%중량, 2-프로판올(2-propanol) 22%중량, 2- 부톡시에탄올(2-butoxyethanol) 17%중량, 1-부톡시에탄올(1-butoxyethanol) 18%중 량, 자일렌(xylene) 8%중량, 2-부탄올(2-butanol) 4%중량, 그리고 레진(resin) 25%중 량을 첨가하여 졸상태의 실란 용액을 만든 후, 준비된 졸 상태의 실란 용액을 코팅 처리함으로써 형성될 수도 있다.or tetramethoxysilane 6% by weight, 2-propanol 22% by weight, 2-butoxyethanol 17% by weight, 1-butoxyethanol 18% by weight. After making a sol-state silane solution by adding 8% weight of xylene, 4% weight of 2-butanol, and 25% weight of resin, the prepared sol-state silane It can also be formed by coating a solution.
상기한 구조의 복합 방열 하이브리드 TIM 시트의 예로 열원(1)과 히트싱크(2) 사이에 상부에서 하부로 TIM층(21), 열전도시트(10), TIM층(21) 순으로 적층되어 형성되거나, TIM층(21), 방열코팅층(22), 열전도시트(10), TIM층(21) 순으로 적층되어 형성되거나, TIM층(21), 열전도시트(10), 방열코팅층(22), TIM층(21) 순으로 적층되어 형성되거나, 도 1과 같이 TIM층(21), 방열코팅층(22), 열전도시트(10), 방열코팅층(22), TIM층(21)으로 적층될 수도 있다.An example of a composite heat dissipation hybrid TIM sheet having the above structure is formed by stacking the TIM layer 21, the heat conduction sheet 10, and the TIM layer 21 in that order from top to bottom between the heat source 1 and the heat sink 2. , TIM layer 21, heat dissipation coating layer 22, heat conduction sheet 10, and TIM layer 21 are laminated in that order, or TIM layer 21, heat conduction sheet 10, heat dissipation coating layer 22, TIM It may be formed by stacking the layers 21 in that order, or the TIM layer 21, heat dissipation coating layer 22, heat conduction sheet 10, heat dissipation coating layer 22, and TIM layer 21 as shown in FIG. 1.
또는, 방열코팅층(22), 열전도시트(10), TIM층(21) 순으로 적층되거나, TIM층(21), 열전도시트(10), 방열코팅층(22) 순으로 적층될 수도 있다.Alternatively, the heat dissipation coating layer 22, the heat conduction sheet 10, and the TIM layer 21 may be laminated in that order, or the TIM layer 21, the heat conduction sheet 10, and the heat dissipation coating layer 22 may be laminated in that order.
또는, 방열코팅층(22), 열전도시트(10), 방열코팅층(22) 순으로 적층되거나, 방열코팅층(22), 열전도시트(10), 방열코팅층(22), TIM층(21) 순으로 적층되거나, TIM층(21), 방열코팅층(22), 열전도시트(10), 방열코팅층(22) 순으로 적층될 수도 있다.Alternatively, the heat dissipation coating layer 22, the heat conduction sheet 10, and the heat dissipation coating layer 22 are laminated in that order, or the heat dissipation coating layer 22, the heat conduction sheet 10, the heat dissipation coating layer 22, and the TIM layer 21 are laminated in that order. Alternatively, the TIM layer 21, the heat dissipation coating layer 22, the heat conduction sheet 10, and the heat dissipation coating layer 22 may be laminated in that order.
도 5에는 이러한 여러 적층 예가 도시되어 있다.Figure 5 shows several examples of such stacking.
더하여, TIM층(21)은 열원(1)의 크기와 동일하게 형성되어 열원(1)의 외측으로 돌출되지 않게 형성되며, 방열코팅층(22)은 열원(1)의 크기와 동일하게 형성될 수도 있고, 열전도시트(10)와 동일한 크기로 형성될 수도 있다.In addition, the TIM layer 21 is formed to be the same size as the heat source 1 so that it does not protrude to the outside of the heat source 1, and the heat dissipation coating layer 22 may be formed to be the same size as the heat source 1. and may be formed in the same size as the heat-conducting sheet 10.
이는 방열코팅층(22)은 외부로 열을 복사 및 방사하는 성질을 갖고 있기 때문에 열전도시트(10)처럼 열원(1)보다 크기가 크게 형성할 경우 방열 효과가 향상된다.This is because the heat dissipation coating layer 22 has the property of radiating and radiating heat to the outside, so when it is formed larger in size than the heat source 1, like the heat conductive sheet 10, the heat dissipation effect is improved.
다만, 방열코팅층(22)은 단어 그대로 코팅에 의해 형성되므로 그 자체로 일정한 경도를 유지할 수 없기 때문에 열전도시트(10)와 연이어 층을 이루는 경우에만 크게 형성된다 할 것이다.However, since the heat dissipation coating layer 22 is formed by coating as the word implies, it cannot maintain a constant hardness by itself, so it will be formed to a large extent only when it is formed as a continuous layer with the heat conductive sheet 10.
더하여, 상기와 같이 구성된 적층 구조는 도 5에 도시되어 있는 바와 같이 복수 혹은 다층으로 반복 적층될 수도 있다 할 것이다.In addition, the laminated structure configured as above may be repeatedly laminated in multiple or multi-layers as shown in FIG. 5.
이하에서는 실험을 통해 본 발명의 복합 방열 하이브리드 TIM 시트에 대해 설명하기로 한다.Hereinafter, the composite heat dissipation hybrid TIM sheet of the present invention will be described through experiments.
<실험예 1><Experimental Example 1>
열원으로 가로 3.7cm, 세로 6.0cm, 두께 1.0cm의 구리 히팅블럭 안에 Thermo couple을 넣고 안쪽에 온도 센서를 장착하여 준비하였다.As a heat source, a thermo couple was placed in a copper heating block measuring 3.7 cm wide, 6.0 cm long, and 1.0 cm thick, and a temperature sensor was installed inside.
히트싱크는 #1050 알루미늄 시트를 가로 5cm, 세로 10cm, 두께 0.5cm로 재단하여 준비하였다.The heat sink was prepared by cutting #1050 aluminum sheet into 5 cm wide, 10 cm long, and 0.5 cm thick.
더하여 열원에 전력을 가해 열원을 1시간 동안 작동시키고 Yokogawa MV2000 모델의 열전대 온도 레코더를 이용하여 온도를 측정하였다.In addition, power was applied to the heat source, the heat source was operated for 1 hour, and the temperature was measured using a Yokogawa MV2000 model thermocouple temperature recorder.
비교예 1은 열원만, 비교예 2는 열원에 히트싱크를 부착하였다.In Comparative Example 1, only the heat source was used, and in Comparative Example 2, a heat sink was attached to the heat source.
비교예 3은 상기 구리 히팅블록과 동일한 크기를 가지면 두께 0.3mm의 #1050 알루미늄 시트의 상부와 하부 표면에 열원 면적과 동일한 크기를 갖는 두께 25㎛ 방열코팅층을 형성하고, 양측 방열코팅층의 외부에 두께 65㎛, 수직열전도도 1W/m.K인 TIM층을 형성하였다.In Comparative Example 3, a 25㎛ heat dissipation coating layer having the same size as the heat source area was formed on the upper and lower surfaces of a #1050 aluminum sheet with a thickness of 0.3 mm and a thickness of 25㎛ on the outside of the heat dissipation coating layer on both sides. A TIM layer with a thickness of 65㎛ and a vertical thermal conductivity of 1W/m.K was formed.
실시예 1은 가로 8.0cm, 세로 12.0cm, 두께 0.3mm의 #1050 알루미늄 시트의 상부와 하부 표면에 시트 면적과 동일한 크기를 갖는 두께 25㎛ 방열코팅층을 형성하고, 양측 방열코팅층의 외부에 두께 65㎛, 수직열전도도 1W/m.K인 TIM층을 형성하였다.In Example 1, a 25㎛ heat dissipation coating layer having the same size as the sheet area was formed on the upper and lower surfaces of a #1050 aluminum sheet with a width of 8.0 cm, a length of 12.0 cm, and a thickness of 0.3 mm, and a heat dissipation coating layer with a thickness of 65 μm was formed on the outside of the heat dissipation coating layer on both sides. ㎛, a TIM layer with a vertical thermal conductivity of 1W/m.K was formed.
여기서 TIM층은 열원 면적과 동일한 크기로 하였다.Here, the TIM layer was set to the same size as the heat source area.
이러한 실시예 1의 알루미늄 시트와 방열코팅층은 열원 면적 대비 약 4.5배, 히트싱크 면적의 약 2배의 크기의 면적을 갖는다.The aluminum sheet and heat dissipation coating layer of Example 1 have an area approximately 4.5 times the area of the heat source and approximately twice the area of the heat sink.
실시예 2는 실시예 1과 동일하게 제조하되, 알루미늄 시트의 크기를 가로 12cm, 세로 12cm, 두께 0.3mm가 되도록 하여 열원 면적의 약 6.5배, 히트싱크 면적의 약 3배의 크기로 준비하였다.Example 2 was manufactured in the same manner as Example 1, but the size of the aluminum sheet was 12 cm wide, 12 cm long, and 0.3 mm thick, so that it was about 6.5 times the area of the heat source and about 3 times the area of the heat sink.
도2는 비교예 1,2, 실시예 1,2의 시편 및 실험 상태를 나타낸 사진이며, 도 3은 측정된 온도 그래프이다.Figure 2 is a photograph showing the specimens and experimental conditions of Comparative Examples 1 and 2 and Examples 1 and 2, and Figure 3 is a graph of the measured temperature.
더불어, 실험 결과는 아래 표 2에 나타내었다.In addition, the experimental results are shown in Table 2 below.
구분division 온도(℃)Temperature (℃) 방열효과(℃, 히트싱크 기준)Heat dissipation effect (℃, based on heat sink)
비교예1Comparative Example 1 105.9105.9 --
비교예2Comparative example 2 86.286.2 --
비교예3Comparative Example 3 81.281.2 5.05.0
실시예1Example 1 71.171.1 15.115.1
실시예2Example 2 60.860.8 25.425.4
상기 표 2에 나타난 바와 같이 실시예 1,2와 마찬가지로 TIM층과 방열코팅층을 형성한 비교예 3을 실시예 1,2와 비교할 때 실시예 1,2의 경우 히트싱크 기준 방열효과가 15 ~ 25℃ 정도의 우수한 방열 효과를 갖춘 반면, 비교예 3의 경우 5.0℃에 불과한 것으로 나타났다.As shown in Table 2, when comparing Comparative Example 3, in which the TIM layer and the heat dissipation coating layer were formed similarly to Examples 1 and 2, with Examples 1 and 2, the heat dissipation effect based on the heat sink in Examples 1 and 2 was 15 to 25. While it had an excellent heat dissipation effect of about ℃, in the case of Comparative Example 3, it was found to be only 5.0 ℃.
이로 인해 날개부를 구비한 경우 방열 효과가 현저히 우수해짐을 알 수 있었다.As a result, it was found that the heat dissipation effect was significantly improved when the wings were provided.
<실험예 2><Experimental Example 2>
수직 열전도도가 1 W/m.K인 두께 65㎛의 써멀시트테이프를 TIM층(21)으로 형성하고, 수직 열전도도가 10 W/m.K인 #1050의 알루미늄 0.3mm 판재를 열전도시트(10)로 채택한 다음 상기 실시예 1과 같은 크기로 TIM층(21)과 열전도시트(10)를 각각 재단한 다음 열전도시트(10)의 상부와 하부에 TIM층(21)을 적층하여 실시예 3을 제조하였다.A 65㎛ thick thermal sheet tape with a vertical thermal conductivity of 1 W/m.K was formed as the TIM layer (21), and a #1050 aluminum 0.3 mm plate with a vertical thermal conductivity of 10 W/m.K was selected as the thermal conductive sheet (10). Next, Example 3 was manufactured by cutting the TIM layer 21 and the heat-conducting sheet 10 to the same size as Example 1, and then laminating the TIM layer 21 on the top and bottom of the heat-conducting sheet 10.
더불어, 수직 열전도도가 3 W/m.K인 두께 250㎛의 써멀시트테이프를 TIM층(21)으로 형성하고, 수직 열전도도가 10 W/m.K인 #1050의 알루미늄 0.3t 판재를 열전도시트(10)로 채택한 다음 상기 실시예 1과 같은 크기로 TIM층(21)과 열전도시트(10)를 각각 재단한 다음 열전도시트(10)의 상부와 하부에 TIM층(21)을 적층하여 실시예 4을 제조하였다.In addition, a 250㎛ thick thermal sheet tape with a vertical thermal conductivity of 3 W/m.K was formed as the TIM layer (21), and a #1050 aluminum 0.3t plate with a vertical thermal conductivity of 10 W/m.K was formed as the thermal conductive sheet (10). Then, the TIM layer 21 and the heat-conducting sheet 10 were each cut to the same size as Example 1, and then the TIM layer 21 was laminated on the top and bottom of the heat-conducting sheet 10 to produce Example 4. did.
이어 제조된 실시예 3 및 4 각각의 수직열전도도와 수평열전도도를 측정하였다.Next, the vertical thermal conductivity and horizontal thermal conductivity of each of Examples 3 and 4 prepared were measured.
그 결과 실시예 3은 수직열전도도가 5.7W/m.K인 반면 실시예 4는 수직열전도도가 2.3W/m.K로 측정되었고, 수평열전도도는 실시예 3의 경우 192W/m.K로 측정된 반면 실시예 4의 경우 165W/m.K로 측정되었다.As a result, the vertical thermal conductivity of Example 3 was 5.7W/m.K, while the vertical thermal conductivity of Example 4 was measured at 2.3W/m.K, and the horizontal thermal conductivity of Example 3 was measured at 192W/m.K. In case 4, it was measured at 165W/m.K.
통상적으로 수직열전도도가 높은 TIM을 사용하면 일반적으로 방열 효과가 좋을 것이라 생각하지만 상기 실험 결과 수직열전도도가 낮은 얇은 TIM을 열전도시트(10)와 매칭시켜 구성하는 경우 수직 및 수평 열전도도가 열저항이 적기 때문에 방열 효과가 더 상승하는 것을 알 수 있다.It is generally thought that the heat dissipation effect will be good if a TIM with high vertical thermal conductivity is used, but as a result of the above experiment, when a thin TIM with low vertical thermal conductivity is matched with the thermal conductive sheet 10, the vertical and horizontal thermal conductivity decreases the thermal resistance. Since this is small, it can be seen that the heat dissipation effect increases further.
즉, 상기한 실험 결과 TIM층(21)은 수직 열전도도가 낮고 두께가 얇은 것을 채택할 수록 수평열전도도 및 수직열전도도를 높여 보다 신속한 방열이 이루어지도록 한 것을 알 수 있다.That is, as a result of the above experiment, it can be seen that the lower the vertical thermal conductivity and thinner the TIM layer 21 is, the higher the horizontal and vertical thermal conductivity are, allowing for more rapid heat dissipation.
이를 통해 날개부(11)를 구비한 열전도시트(10)를 사용하면서 수직 열전도도가 낮고 두께가 얇은 TIM층(21)을 부착시켰을 때 날개부(11)를 통한 방열 효과가 우수한 것을 알 수 있다.Through this, it can be seen that when the thermal conductive sheet 10 with the wings 11 is used and the TIM layer 21, which has low vertical thermal conductivity and is thin, is attached, the heat dissipation effect through the wings 11 is excellent. .
즉, 열전도시트(10)와 TIM층(21)이 결합된 형태의 방열 시트를 구성할 경우 다른 복합 방열 시트에 비해 히트싱크(2)의 두께는 물론이고 TIM층(21)의 두께마저 줄일 수 있어 보다 좁은 공간(특히 높이)에서 효율적 방열 효과를 갖출 수 있게 된다 할 것이다.That is, when forming a heat dissipation sheet in which the heat conduction sheet 10 and the TIM layer 21 are combined, not only the thickness of the heat sink 2 but also the thickness of the TIM layer 21 can be reduced compared to other composite heat dissipation sheets. This will enable efficient heat dissipation in narrower spaces (especially heights).
더하여, 전술한 바와 같이 열전도시트(10)는 두께에 따라 수평열전도도의 변화가 거의 없고, 열전도시트(10)에 부착되는 TIM층(21)은 두께 및 수직열전도도가 낮을수록 상대적으로 수평열전도도를 높이는 데 도움을 주는 바, 본 발명에 따른 복합 방열 하이브리드 TIM 시트는 열전도시트(10) 20㎛ ~ 1.5mm, 방열코팅층 20 ~ 30㎛, TIM층 10㎛ ~ 2.0mm의 두께로 구성될 수 있다.In addition, as described above, there is little change in horizontal thermal conductivity of the heat-conducting sheet 10 depending on the thickness, and the lower the thickness and vertical thermal conductivity of the TIM layer 21 attached to the heat-conducting sheet 10, the lower the horizontal thermal conductivity. As it helps to increase the temperature, the composite heat dissipation hybrid TIM sheet according to the present invention can be composed of a heat conductive sheet (10) with a thickness of 20㎛ ~ 1.5mm, a heat dissipation coating layer of 20 ~ 30㎛, and a TIM layer of 10㎛ ~ 2.0mm. there is.
이 경우 소요 높이가 5mm가 채 되지 않게 되는 바, 제품 슬림화에 큰 도움이 될 수 있게 된다.In this case, the required height is less than 5 mm, which can greatly help in slimming the product.
이상 설명된 본 발명의 복합 방열 하이브리드 TIM 시트는 도 6에 도시되어 있는 바와 같이 열원이 구비된 5G 중계기, 전력반도체, 디스플레이는 물론, 다양한 반도체, 전기 및 수소 자동차와 같은 자동차, 에너지저장장치, LED 조명, 노트북, 스마트폰, PC, 태블릿 PC 등 열원으로 인해 방열이 필요한 모든 분야에 적용 가능하다 할 것이다.As shown in FIG. 6, the composite heat dissipation hybrid TIM sheet of the present invention described above can be used in 5G repeaters equipped with heat sources, power semiconductors, displays, as well as various semiconductors, automobiles such as electric and hydrogen cars, energy storage devices, and LEDs. It can be applied to all fields that require heat dissipation due to heat sources, such as lighting, laptops, smartphones, PCs, and tablet PCs.

Claims (8)

  1. 일측 표면이 열원(1)과 접촉하고, 타측 표면은 히트싱크(2)와 접촉하며, 열원(1)의 열을 히트싱크(2)에 전달하는 복합 방열 시트에 있어서,In the composite heat dissipation sheet, where one surface is in contact with the heat source (1), the other surface is in contact with the heat sink (2), and transfers heat from the heat source (1) to the heat sink (2),
    상기 열원(1)보다 면적이 크게 이루어져 있어 평면상에서 열원(1)의 단부보다 외측으로 돌출된 날개부(11)가 형성되어 있으며, 열원(1)으로부터 전달받은 열을 수평 방향으로 전달하고, 외부로 방출하는 열전도시트(10)와;It has a larger area than the heat source 1 and is formed with a wing portion 11 that protrudes outward from the end of the heat source 1 in a plan view, and transfers heat received from the heat source 1 in the horizontal direction and externally. A heat conductive sheet (10) that radiates to;
    열원의 열을 수직 방향으로 전달하도록 열계면물질로 이루어진 TIM층(21) 또는 열원의 열을 외부로 방사 및 복사시키는 방열코팅층(22) 중 어느 하나를 포함하여 구성되어 있으며, 상기 열전도시트(10)의 상부 또는 하부에 적층되어 있는 보조층(20);을 포함하여 구성되되,It is composed of either a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside, and the heat conduction sheet 10 ) and an auxiliary layer 20 laminated on the top or bottom of the
    상기 보조층(20)은 상기 열전도시트(10)의 상부 또는 하부에 적층된 방열코팅층(22)과, 상기 방열코팅층(22)이 적층된 열전도시트(10)의 상부 및 하부에 적층된 TIM층(21)인 것을 특징으로 하는,The auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on the top or bottom of the heat conduction sheet 10, and a TIM layer laminated on the top and bottom of the heat conduction sheet 10 on which the heat dissipation coating layer 22 is laminated. (21), characterized in that,
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  2. 일측 표면이 열원(1)과 접촉하고, 타측 표면은 히트싱크(2)와 접촉하며, 열원(1)의 열을 히트싱크(2)에 전달하는 복합 방열 시트에 있어서,In the composite heat dissipation sheet, where one surface is in contact with the heat source (1), the other surface is in contact with the heat sink (2), and transfers heat from the heat source (1) to the heat sink (2),
    상기 열원(1)보다 면적이 크게 이루어져 있어 평면상에서 열원(1)의 단부보다 외측으로 돌출된 날개부(11)가 형성되어 있으며, 열원(1)으로부터 전달받은 열을 수평 방향으로 전달하고, 외부로 방출하는 열전도시트(10)와;It has a larger area than the heat source 1 and is formed with a wing portion 11 that protrudes outward from the end of the heat source 1 in a plan view, and transfers heat received from the heat source 1 in the horizontal direction and externally. A heat conductive sheet (10) that radiates to;
    열원의 열을 수직 방향으로 전달하도록 열계면물질로 이루어진 TIM층(21) 또는 열원의 열을 외부로 방사 및 복사시키는 방열코팅층(22) 중 어느 하나를 포함하여 구성되어 있으며, 상기 열전도시트(10)의 상부 또는 하부에 적층되어 있는 보조층(20);을 포함하여 구성되되,It is composed of either a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside, and the heat conduction sheet 10 ) and an auxiliary layer 20 laminated on the top or bottom of the
    상기 보조층(20)은 상기 열전도시트(10)의 상부 또는 하부 중 어느 한 곳에 적층된 방열코팅층(22)과, 상기 열전도시트(10)의 상부 또는 하부 중 다른 한 곳에 적층된 TIM층(21)인 것을 특징으로 하는,The auxiliary layer 20 includes a heat dissipation coating layer 22 laminated on one of the top or bottom of the heat-conducting sheet 10, and a TIM layer 21 laminated on the other of the top or bottom of the heat-conducting sheet 10. ), characterized in that,
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  3. 제 1항 내지 제 2항 중 어느 한 항에 있어서,According to any one of claims 1 and 2,
    상기 열전도시트(10)와 보조층(20)은 복층 또는 다층 구조로 적층되어 있는 것을 특징으로 하는,The heat-conducting sheet 10 and the auxiliary layer 20 are characterized in that they are laminated in a double-layer or multi-layer structure,
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  4. 제 1항 내지 제 2항 중 어느 한 항에 있어서,According to any one of claims 1 to 2,
    상기 열전도시트(10)는 알루미늄, 구리, 마그네슘, 그라파이트 중 어느 하나를 포함한 재질로 이루어져 있으며,The heat-conducting sheet 10 is made of a material containing any one of aluminum, copper, magnesium, and graphite,
    상기 TIM층(21)은 써멀점착제, 써멀패드, 써멀구리스, 써멀접착제, 써멀시트테이프 중 어느 하나로 이루어져 있고,The TIM layer 21 is made of any one of thermal adhesive, thermal pad, thermal grease, thermal adhesive, and thermal sheet tape,
    상기 방열코팅층(22)은 아크릴, 우레탄, 실리콘, 발포화 폴리에스테르, 에폭시 방열도료 중 어느 하나로 이루어져 있는 것을 특징으로 하는,The heat dissipation coating layer 22 is characterized in that it is made of any one of acrylic, urethane, silicone, foamed polyester, and epoxy heat dissipation paint.
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  5. 제 1항 내지 제 2항 중 어느 한 항에 있어서,According to any one of claims 1 to 2,
    상기 열전도시트(10)는 20㎛ ~ 1.5mm의 두께로 이루어지고,The heat-conducting sheet 10 has a thickness of 20㎛ ~ 1.5mm,
    상기 방열코팅층은 20 ~ 30㎛의 두께로 이루어지며,The heat dissipating coating layer has a thickness of 20 to 30㎛,
    상기 TIM층은 10㎛ ~ 2.0mm의 두께로 이루어지는 것을 특징으로 하는,The TIM layer is characterized in that it has a thickness of 10㎛ ~ 2.0mm,
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  6. 일측 표면이 열원(1)과 접촉하고, 타측 표면은 히트싱크(2)와 접촉하며, 열원(1)의 열을 히트싱크(2)에 전달하는 복합 방열 시트에 있어서,In the composite heat dissipation sheet, where one surface is in contact with the heat source (1), the other surface is in contact with the heat sink (2), and transfers heat from the heat source (1) to the heat sink (2),
    상기 열원(1)보다 면적이 크게 이루어져 있어 평면상에서 열원(1)의 단부보다 외측으로 돌출된 날개부(11)가 형성되어 있으며, 열원(1)으로부터 전달받은 열을 수평 방향으로 전달하고, 외부로 방출하는 열전도시트(10)와;It has a larger area than the heat source 1 and is formed with a wing portion 11 that protrudes outward from the end of the heat source 1 in a plan view, and transfers heat received from the heat source 1 in the horizontal direction and externally. A heat conductive sheet (10) that emits heat;
    열원의 열을 수직 방향으로 전달하도록 열계면물질로 이루어진 TIM층(21) 또는 열원의 열을 외부로 방사 및 복사시키는 방열코팅층(22) 중 어느 하나를 포함하여 구성되어 있으며, 상기 열전도시트(10)의 상부 또는 하부에 적층되어 있는 보조층(20);을 포함하여 구성되되,It is composed of either a TIM layer 21 made of a thermal interface material to transmit heat from the heat source in the vertical direction or a heat dissipation coating layer 22 that radiates and radiates heat from the heat source to the outside, and the heat conduction sheet 10 ) and an auxiliary layer 20 laminated on the top or bottom of the
    상기 열전도시트(10)의 양측 표면에 방열코팅층(22)이 적층되어 있으며,Heat dissipation coating layers 22 are laminated on both surfaces of the heat conduction sheet 10,
    각 방열코팅층(22)의 외측 표면에 TIM층(21)이 적층되어 있되,A TIM layer 21 is laminated on the outer surface of each heat dissipation coating layer 22,
    상기 방열코팅층(22)은 열전도시트(10)와 동일한 크기로 이루어져 있고,The heat dissipation coating layer 22 is made of the same size as the heat-conducting sheet 10,
    TIM층(21)은 열원(1)과 동일한 크기로 이루어져 있는 것을 특징으로 하는,The TIM layer 21 is characterized in that it has the same size as the heat source 1.
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  7. 제 1항 내지 제 2항 중 어느 한 항에 있어서,According to any one of claims 1 to 2,
    상기 날개부(11)는 다수의 엠보, 요철이 형성되거나 다수 절곡이 이루어져 있는 것을 특징으로 하는,The wing portion 11 is characterized in that it is formed with a plurality of emboss, irregularities, or is formed with a plurality of bends.
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
  8. 제 1항 내지 제 2항 중 어느 한 항에 있어서,According to any one of claims 1 to 2,
    상기 날개부(11)의 저부에는 차열필름(30)이 부착되거나 차열 코팅 처리되어 날개부(11) 저부로의 방열을 억제하도록 이루어져 있는 것을 특징으로 하는,Characterized in that a heat insulating film 30 is attached to the bottom of the wing portion 11 or is treated with a heat insulating coating to suppress heat radiation to the bottom of the wing portion 11.
    복합 방열 하이브리드 TIM 시트.Composite heat dissipation hybrid TIM sheet.
PCT/KR2023/016048 2022-10-28 2023-10-17 Composite heat dissipation hybrid tim sheet WO2024090878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220140906A KR102577478B1 (en) 2022-10-28 2022-10-28 coposite heat-radiation hybrid TIM sheet
KR10-2022-0140906 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090878A1 true WO2024090878A1 (en) 2024-05-02

Family

ID=88020545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016048 WO2024090878A1 (en) 2022-10-28 2023-10-17 Composite heat dissipation hybrid tim sheet

Country Status (2)

Country Link
KR (1) KR102577478B1 (en)
WO (1) WO2024090878A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577478B1 (en) * 2022-10-28 2023-09-13 이홍섭 coposite heat-radiation hybrid TIM sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200380257Y1 (en) * 2005-01-07 2005-03-29 (주)니즈 Apparatus of heat sink using porous carbon material
KR20090001232A (en) * 2007-06-29 2009-01-08 최훈석 Heat sink of high radiation manufacturing method therefor and metal pcb therewith
KR20100073364A (en) * 2008-12-23 2010-07-01 최훈석 Heat sink having high radiation ceramic coating layer, method of manufacturing the same and metal pcb
KR20150002191A (en) * 2013-06-28 2015-01-07 엘지전자 주식회사 Heat discharging sheet and method for manufacturing the same
KR20160070243A (en) * 2014-12-09 2016-06-20 (주)엘지하우시스 Heat-discharging sheet
KR102577478B1 (en) * 2022-10-28 2023-09-13 이홍섭 coposite heat-radiation hybrid TIM sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100901526B1 (en) 2007-12-20 2009-06-08 두성산업 주식회사 In-plane thermal conductive sheet and a method for production of the same
KR101859005B1 (en) 2017-10-26 2018-05-18 주식회사 아코티스 Multi-layered heat radiation film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200380257Y1 (en) * 2005-01-07 2005-03-29 (주)니즈 Apparatus of heat sink using porous carbon material
KR20090001232A (en) * 2007-06-29 2009-01-08 최훈석 Heat sink of high radiation manufacturing method therefor and metal pcb therewith
KR20100073364A (en) * 2008-12-23 2010-07-01 최훈석 Heat sink having high radiation ceramic coating layer, method of manufacturing the same and metal pcb
KR20150002191A (en) * 2013-06-28 2015-01-07 엘지전자 주식회사 Heat discharging sheet and method for manufacturing the same
KR20160070243A (en) * 2014-12-09 2016-06-20 (주)엘지하우시스 Heat-discharging sheet
KR102577478B1 (en) * 2022-10-28 2023-09-13 이홍섭 coposite heat-radiation hybrid TIM sheet

Also Published As

Publication number Publication date
KR102577478B1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
WO2024090878A1 (en) Composite heat dissipation hybrid tim sheet
WO2016093617A1 (en) Heat radiation sheet
US7066244B2 (en) Temperature-homogenizing device
WO2010143816A2 (en) Photovoltaic module with ceramic coating heat radiating sheet
JP6349543B2 (en) COOLING STRUCTURE AND METHOD FOR MANUFACTURING COOLING STRUCTURE
US20130265721A1 (en) Thermal Interface Materials with Thin Film or Metallization
WO2011102572A1 (en) Heat sink sheet including an adhesive having good heat conductivity
WO2018070801A2 (en) Multilayered carrier film, element transfer method using same, and electronic product manufacturing method for manufacturing electronic product by using same element transfer method
KR101043346B1 (en) Organo-inorganic hybrid composition with excellent thermal radiation and thermal radiation sheet of thin layer type which uses this
WO2018199517A1 (en) Led module and led lighting device comprising same
WO2020145644A1 (en) Highly heat-dissipating flexible printed circuit board (gfpcb), manufacturing method therefor, and led lamp for vehicle
US20110001418A1 (en) High heat dissipation electric circuit board and manufacturing method thereof
WO2012050291A1 (en) Heat-dissipating device for tv set-top box
KR101534232B1 (en) Heat sink having high radiation ceramic coating layer, method of manufacturing the same and metal PCB
KR20070057356A (en) Heat dissipation pad for electronic part with improved thermoconductive and electric insulating properties
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
KR101531630B1 (en) Thin-heat film and heat-radiation sheet comparing the same
KR101619806B1 (en) Method for manufacturing heatsink and the heatsink thereby
TWI285083B (en) Multi-chips heat radiator
WO2021162368A1 (en) Multifunctional composite film having heat dissipation and electromagnetic wave shielding/ absorption capabilities, and production method therefor
WO2014129776A1 (en) Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
WO2018124317A1 (en) Heat-radiating graphene sheet and manufacturing method therefor
US6704197B2 (en) Electronic unit having desired heat radiation properties
US20040217466A1 (en) Function module and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882985

Country of ref document: EP

Kind code of ref document: A1