WO2012049854A1 - 発光装置及びこれを用いた面光源装置 - Google Patents

発光装置及びこれを用いた面光源装置 Download PDF

Info

Publication number
WO2012049854A1
WO2012049854A1 PCT/JP2011/005740 JP2011005740W WO2012049854A1 WO 2012049854 A1 WO2012049854 A1 WO 2012049854A1 JP 2011005740 W JP2011005740 W JP 2011005740W WO 2012049854 A1 WO2012049854 A1 WO 2012049854A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting element
region
optical axis
Prior art date
Application number
PCT/JP2011/005740
Other languages
English (en)
French (fr)
Inventor
桑原田 隆志
徹 青柳
智之 草野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/820,661 priority Critical patent/US20130170208A1/en
Priority to JP2012538578A priority patent/JPWO2012049854A1/ja
Publication of WO2012049854A1 publication Critical patent/WO2012049854A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12035Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present disclosure relates to a light emitting device and a surface light source device, and more particularly, to a light emitting device and a surface light source device including a reflector that reflects light emitted to the side of a light emitting element.
  • a light emitting device in which a reflector that reflects the light emitted to the side of the light emitting element so as to be directed right above the light emitting element is disposed around the light emitting element.
  • a reflector that reflects the light emitted to the side of the light emitting element so as to be directed right above the light emitting element is disposed around the light emitting element.
  • the conventional light emitting device has the following problems.
  • a conventional light-emitting device aims to scatter light by repeatedly reflecting light between a plurality of reflectors. For this reason, the plurality of reflectors are provided above the light emitting element, and light is incident from below the reflectors.
  • a reflector is provided above the light emitting element, light emitted obliquely upward from the light emitting element is reflected by the reflector, but light emitted directly above the light emitting element passes between the reflectors. It will pass through and will not contribute to the improvement of luminous efficiency.
  • the reflector since the reflector is disposed above the light emitting element, there is a problem that light emitted from the light emitting element is blocked.
  • the present disclosure aims to solve the above-described problems and to realize a light emitting device with high light emission efficiency that efficiently guides light emitted from the light emitting element to above the light emitting element.
  • the present disclosure is configured such that the light emitting device includes a plurality of reflectors that concentrically surround the light emitting elements, and the upper end portion of the reflector is located higher at the outer reflector.
  • the light-emitting device of the present disclosure includes a substrate and a light-emitting element fixed on the substrate with a light emission region facing upward, and the substrate surrounds the light-emitting element and is spaced from each other.
  • the side surfaces on the light emitting element side of each of the plurality of convex portions are reflecting surfaces that reflect light emitted from the light emitting region to the side, and the reflecting surfaces surround the light emitting elements. Concentrically arranged, the position of the upper end of the reflecting surface is higher as the reflecting surface is farther from the light emitting element.
  • the light-emitting device of the present disclosure can realize a light-emitting device with high light emission efficiency that efficiently guides light emitted from the light-emitting element to above the light-emitting element.
  • FIG. 1 It is sectional drawing which shows the surface light source device which concerns on one Embodiment. It is a top view which shows the example of arrangement
  • (A) to (c) show a light emitting device according to an embodiment, (a) is a plan view, (b) is a sectional view taken along line IIIb-IIIb in (a), and (c) is ( It is sectional drawing in the IIIc-IIIc line
  • A) And (b) shows an example of a lead frame, (a) is a top view, (b) is a bottom view.
  • (A) to (c) show a light emitting device according to an embodiment without a light control lens, (a) is a plan view, and (b) is a sectional view taken along line Vb-Vb in (a). (C) is a sectional view taken along line Vc-Vc in (a). (A) And (b) shows an example of a lead frame composite, (a) is a top view, (b) is a bottom view. It is sectional drawing which shows an example of the process of forming a resin sealing part. It is sectional drawing which shows reflection of the light in the reflective surface surrounding a light emitting element. It is sectional drawing which shows arrangement
  • the illustrated light-emitting device includes a substrate and a light-emitting element fixed on the substrate with a light emission region facing upward, and the substrate surrounds the light-emitting element and has a plurality of protrusions formed at intervals.
  • the side surface on the light emitting element side of each of the plurality of convex portions is a reflecting surface that reflects light emitted from the light emitting region to the side, and the reflecting surface is disposed concentrically around the light emitting element.
  • the position of the upper end portion of the reflection surface is higher as the reflection surface is farther from the light emitting element.
  • the exemplified light emitting device can reflect light emitted from the side of the light emitting element in a diagonally upper range by the reflecting surface.
  • the upper end of the reflection surface is located higher as the convex portion is farther from the light emitting element, it is possible to reflect light that has traveled straight without being reflected by the inner reflection surface at the outer reflection surface. For this reason, light can be efficiently emitted upward.
  • the angle of inclination of the reflecting surface may be increased as the reflecting surface is farther from the light emitting element.
  • the light-emitting device of the present invention further includes a light control lens disposed on the substrate so that the light emission region and the optical axis are aligned, and the light control lens is provided around the optical axis and has a diameter at the upper end portion rather than the bottom portion. May have a large recess, and at least one of the reflecting surfaces may be located immediately below the recess.
  • At least a part of the wall surface of the recess includes a reflecting surface on which the light reflected by the reflecting surface located immediately below the recess is incident and reflects the incident light in a direction away from the optical axis. do it.
  • the exemplary surface light source device includes a plurality of light-emitting devices of the present disclosure, and the plurality of light-emitting devices are arranged in a grid pattern. With such a configuration, it is possible to realize a surface light source device that can uniformly illuminate a wide range.
  • the surface light source device 10 is a backlight device that illuminates from the back side of a liquid crystal panel D used in a wide-screen liquid crystal television or the like having a horizontal to vertical ratio of 16: 9. .
  • the surface light source device 10 includes a light control member 20 attached to the back surface of the liquid crystal panel D and a surface light source unit 30.
  • the surface light source unit 30 is disposed at a predetermined interval from the light control member 20.
  • the light control member 20 includes a diffusion plate 21, a diffusion sheet 22, a first light control sheet 23, and a second light control sheet 24.
  • the diffusion plate 21 may be a resin plate or the like whose surface is formed in a ground glass-like rough surface in order to diffuse the light of the surface light source unit 30.
  • the diffusion plate 21 may be formed of polycarbonate (PC) resin, polyester (PS) resin, cyclic polyolefin (COP) resin, or the like.
  • the diffusion sheet 22 is provided to further diffuse the light diffused by the diffusion plate 21, and may be a resin sheet such as polyester.
  • the first light control sheet 23 collects the light diffused by the diffusion plate 21 and the diffusion sheet 22 in the direction of the liquid crystal panel D.
  • the first light control sheet 23 may be a sheet having a Prism surface. Specifically, it may be a polyester resin or the like on which triangular strips (linear triangular convex portions) made of acrylic resin are formed. The prism surface formed by the triangular stripes may have a sawtooth shape in a sectional view.
  • the second light control sheet 24 collects light that could not be collected by the first light control sheet 23.
  • the second light control sheet 24 has a function of increasing the integrated light amount and increasing the luminance by reflecting the S wave toward the surface light source unit 30 and increasing the P wave transmitted through the liquid crystal panel D. ing. As described above, the uneven brightness is reduced by the first light control sheet 23 and the second light control sheet 24.
  • the surface light source unit 30 includes a mounting substrate 31 and a light emitting device 32.
  • the light emitting devices 32 are arranged in a matrix on the mounting substrate 31.
  • the light emitting devices 32 are arranged at intervals of W1 in the X direction (lateral direction), and are arranged at intervals of W2 in the Y direction (vertical direction).
  • the mounting substrate 31 may be a printed wiring board in which a wiring pattern for supplying power to the light emitting device 32 is formed on a large insulating substrate such as an epoxy resin.
  • the light emitting device 32 includes a light emitting element 110 and a light control lens 114 fixed (die-bonded) on a substrate 112.
  • the dimming lens 114 is disposed so that the optical axis of the light emitting region of the light emitting element 110 is aligned.
  • the light emitting element 110 is disposed so that the central portion of the light emitting region is located immediately below the optical axis (center axis) L of the light control lens 114.
  • the light emitting element 110 has a substantially rectangular parallelepiped shape, and the planar shape of the upper surface is a substantially rectangular shape.
  • the light emitting element 110 may be a blue light emitting diode or the like.
  • the light emitting element 110 usually has a semiconductor layer and an electrode formed on an element substrate.
  • the semiconductor layer includes an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer that are sequentially formed from the element substrate side.
  • the electrode has a p-side electrode formed in contact with the p-type semiconductor layer and an n-side electrode formed in contact with the n-type semiconductor layer.
  • the n-side electrode is formed on the p-type semiconductor layer, the light emitting layer, and the n-type semiconductor layer exposed by etching a part of the n-type semiconductor layer.
  • the p-side electrode and the n-side electrode are located on the opposite sides of the long sides with the light emission region interposed therebetween.
  • the light emitting element 110 functions as a point light source that emits light from the light emitting region by applying a voltage between the p-side electrode and the n-side electrode.
  • the light emission region is actually a surface having a predetermined size, but is a minute region and can be regarded as a point when viewed as the light emitting device 32.
  • the light control lens 114 is formed of a silicon-based resin, and distributes light emitted from the light emitting element 110 over a wide range.
  • the light control lens 114 includes a substantially hemispherical lens portion 141 and a flange 142 having an outer shape formed around the lens portion 141.
  • the lens part 141 has a concave part 141a provided around the optical axis L.
  • the recess 141a has a shape in which the diameter of the upper end portion is larger than the diameter of the bottom portion, and the inclination of the wall surface becomes gradually gentler from the bottom portion toward the upper end portion.
  • the flat portion 141f and the long side of the light emitting element 110 are opposed to each other.
  • the flat surface portion 141f is slightly inclined so as to gradually approach the optical axis L from the lower end portion toward the upper end portion. In the present embodiment, the inclination of the plane portion 141f is about 2 °.
  • the substrate 112 has a lead frame 121 and a resin frame 122.
  • the lead frame 121 may be a copper alloy plate patterned by laminating plating layers such as nickel or gold. As shown in FIGS. 4A and 4B, the lead frame 121 has a substantially square outline.
  • the lead frame 121 includes an anode frame 121A and a cathode frame 121B, and is integrally formed by a resin frame 122.
  • Each of the anode frame 121A and the cathode frame 121B is provided with two through holes 121a for preventing the occurrence of displacement when the resin frame 122 is integrally molded.
  • a die bond portion 123A to which the light emitting element 110 is fixed and a wire 116 connected to the p-side electrode of the light emitting element 110 are bonded to one surface (surface) of the anode frame 121A.
  • a wire bond portion 123B to be protected and a protection element die bond portion 123C to which the protection element 117 is fixed are provided.
  • 124B On the surface of the cathode frame 121B, a wire bond portion 124A to which a wire 116 connected to the n-side electrode of the light emitting element 110 is bonded, and a wire bond portion for a protective element to which a wire 118 connected to the protective element 117 is bonded.
  • an anode electrode 123D is formed on the back surface of the anode frame 121A.
  • a cathode electrode 124C is formed on the back surface of the cathode frame 121B.
  • the resin frame 122 is formed integrally with the lead frame 121.
  • the resin frame is preferably white in order to increase the light reflection efficiency.
  • the resin frame 122 may be formed by filling an epoxy resin or the like into a cavity between the upper mold and the lower mold sandwiching the lead frame 121 and curing the resin.
  • a planar circular first opening 122a that exposes the die bond portion 123A of the lead frame 121 is formed.
  • the first opening 122a is formed so that the diameter gradually increases from the lower end to the upper end, and the wall surface of the first opening 122a is inclined.
  • a planar first convex portion 125 is formed so as to surround the first opening 122a. Therefore, the wall surface of the first opening 122a and the side surface (inner surface) of the first protrusion 125 on the first opening 122a side are integrated, and the light emitted from the light emitting element 110 fixed to the die bond portion 123A.
  • the first reflecting surface 125A that reflects a part of the first reflecting surface upward.
  • the first opening 122a and the first protrusion 125 function as a first reflector.
  • the outer surface of the first convex portion 125 is a slope whose height gradually decreases.
  • the first reflector is located immediately below the recess 141 a provided in the light control lens 114.
  • a planar circular second convex portion 126 surrounding the light emitting element 110 is formed outside the first convex portion 125.
  • the inner side surface of the second convex portion 126 is a second reflecting surface 126A, and the second convex portion 126 functions as a second reflector.
  • the second reflection surface 126A has an inclination angle larger than that of the first reflection surface 125A.
  • the second reflector reflects light that is not reflected by the first reflector, light that is reflected by the dimming lens 114 toward the substrate 112, and the like.
  • the first reflecting surface 125 ⁇ / b> A and the second reflecting surface 126 ⁇ / b> A are formed concentrically around the light emitting element 110. Further, the upper end portion of the second reflecting surface 126A is higher than the upper end portion of the first reflecting surface 125A.
  • the outer surface of the second convex portion 126 is partially cut away to form a straight portion 126B.
  • the straight line portion 126B functions as a polarity display for enabling the position of the electrode of the light emitting device 32 to be visually determined.
  • the 2nd which exposes the wire bond part 123B, the die bond part 123C for protection elements, the wire bond part 124A, and the wire bond part 124B for protection elements, respectively.
  • An opening 122b, a third opening 122c, a fourth opening 122d, and a fifth opening 122e are formed.
  • the p-side electrode of the light emitting element 110 fixed to the die bond portion 123A exposed through the first opening 122a and the wire bond portion 123B exposed through the second opening 122b are connected via a wire 116.
  • the n-side electrode and the wire bond portion 124A exposed through the fourth opening 122d are connected via a wire 116.
  • the protective element electrode fixed to the protective element die bond portion 123C exposed through the third opening 122c and the protective element wire bond portion 124B exposed through the fifth opening 122e are connected via a wire 118.
  • the wires 116 and 118 may be gold (Au) fine wires or the like.
  • the resin sealing portion has a first sealing portion 127A made of a transparent silicon resin or the like, and a second sealing portion 127B made of a silicon resin containing a phosphor or the like.
  • the upper surface of the second sealing portion 127B is in contact with the wire 116 that connects the p-side electrode and the n-side electrode of the light emitting element 110 to the wire bond portion 123B and the wire bond portion 124A.
  • the second sealing portion 127 ⁇ / b> B gradually increases in thickness from the outer edge portion toward the central portion along the shape of the wire 116.
  • the second sealing portion 127B including a phosphor By providing the second sealing portion 127B including a phosphor, light emitted from the light emitting element 110 can be converted into light of another wavelength. For example, when the light emitting element 110 emits blue light, white light in which blue light and yellow light are mixed is obtained by using a phosphor that is excited by blue light and emits complementary yellow light. Obtainable. In this case, a silicate phosphor or an yttrium aluminum garnet (YAG) phosphor may be used as the phosphor.
  • YAG yttrium aluminum garnet
  • the light emitting device of the present embodiment is formed so that the first sealing portion 127A not including the phosphor covers the light emitting element 110 except for its upper surface. For this reason, even if the light emitted to the side of the light emitting element 110 is reflected by the first reflector and the second reflector and the traveling distance becomes longer than the light emitted upward, the light is excessively generated by the phosphor. It is difficult for wavelength conversion and attenuation to occur.
  • the protection element 117 forms a protection circuit that protects the light emitting element 110 from overvoltage.
  • the protection element 117 is a Zener diode, but may be a diode, a capacitor, a resistor, a varistor, or the like. Further, the protective element 117 may be omitted if the light-emitting element 110 has a sufficient withstand voltage.
  • a metal plate is punched to form a lead frame composite 161 in which a plurality of lead frames 121 are arranged vertically and horizontally.
  • the lead frame composite 161 is clamped by a mold, and the resin frame 122 is molded by a transfer molding method.
  • the light emitting element 110 is fixed (die bonded) to the die bonding portion 123A of the anode frame 121A. Further, the protective element 117 is fixed to the protective element die bond portion 123C, and the protective element 117 and the protective element wire bond portion 124B are wired by the wire 118.
  • the wire 116 is first bonded to the p-side electrode of the die-bonded light emitting element 110, and is raised in the vertical direction to a position exceeding the upper end of the first convex portion 125. Further, the wire 116 is bent in the direction of the first convex portion 125, and is second bonded to the wire bond portion 123 ⁇ / b> B beyond the first convex portion 125 so as to be in contact with the upper end of the first convex portion 125. . Similarly, the wire 116 is wired between the n-side electrode and the wire bond portion 124A.
  • the sealing resin can be raised without overflowing from the region surrounded by the first convex portions 125.
  • the wire 116 is in contact with the upper end of the first convex portion 125, but the wire 116 is in contact with the upper end of the first convex portion 125 as long as the sealing resin can adhere to the wire 116. It does not have to be.
  • the apparatus can be miniaturized and the length of the wire 116 can be shortened.
  • a first sealing resin made of a transparent liquid silicon resin or the like is potted in a region surrounded by the first convex portion 125 and then cured to form a first sealing portion 127A.
  • the potting amount of the first sealing resin is adjusted so that the upper surface of the light emitting element 110 is not covered with the first sealing resin.
  • a second sealing resin made of a liquid silicon resin containing a phosphor is potted so as to cover the upper surface of the light emitting element 110, and then cured to form a second sealing resin.
  • a stop 127B is formed.
  • the upper surface of the second silicon resin is supported by the wire 116 and has a shape that gradually rises from the outer edge portion of the region surrounded by the first convex portion 125 toward the center portion. Further, since there is no wire for supporting the second sealing resin above the light emitting region of the light emitting element 110, the shape becomes a depression. By curing the second sealing resin in this state, a second sealing portion 127B having a thickness gradually increasing from the outer edge portion toward the central portion and having a recess portion 127a at the central portion is formed.
  • the second sealing portion 127B containing the phosphor is preferably formed to be thick to some extent on the light emitting element 110 in order to efficiently convert the wavelength of light. However, if the height of the first convex portion 125 is too high, the light to the side is blocked. On the other hand, if the sealing resin is lifted by the wire 116, it is possible to secure the thickness of the second sealing portion 127B while suppressing the height of the first convex portion 125. In addition, the second sealing resin can be prevented from overflowing beyond the first convex portion 125.
  • the recess 127a is formed immediately above the light emission region. . Accordingly, the recess 127a is located directly below the recess 141a provided in the light control lens 114.
  • the light control lens 114 is molded on the substrate 112 by a transfer molding method using a mold in which a cavity is formed in the shape of the light control lens 114.
  • the light emitting device 32 is obtained by separating each of the lead frames 121 from the lead frame composite 161 by using a dicer and separating them.
  • a liquid transparent silicon resin or the like may be potted in a region surrounded by the second convex portion 126 to seal the wire 116 and the wire 118.
  • a liquid transparent silicon resin or the like may be potted in a region surrounded by the second convex portion 126 to seal the wire 116 and the wire 118.
  • the first convex portion 125 that is the first reflector and the second convex portion 126 that is the second reflector are formed concentrically around the light emitting element 110. Further, the height of the second convex portion 126 outside the first convex portion 125 is higher. For this reason, as shown in FIG. 8, the light F2 that has traveled straight without being reflected by the first reflecting surface 125A is reflected by the second reflecting surface 126A. Therefore, the light emitted from the light emitting element 110 can be reflected efficiently. Furthermore, the inclination angle of the second reflecting surface 126A is smaller than that of the first reflecting surface 125A.
  • the light F2 reflected by the second reflecting surface 126A travels in the inner direction than the light F1 reflected by the first reflecting surface 125A. Therefore, the light emitted from the light emitting element 110 can be collected on the optical axis L side by the first reflective surface 125A and the second reflective surface 126A, and thus the light emission efficiency can be improved.
  • ⁇ 1 is an incident angle of light from the light emitting region of the light emitting element 110 as shown in FIG. Specifically, it is an angle formed by an imaginary straight line Lv1 and an optical axis L indicating a direction when light emitted from the light emission region of the light emitting element 110 passes straight through the emission surface S as it is.
  • ⁇ 2 is an emission angle of light from the light emission region of the light emitting element 110. Specifically, it is an angle formed by the imaginary straight line Lv2 and the optical axis L indicating the direction in which the refracted light refracted on the exit surface S travels from the light exit region of the light emitting element 110.
  • FIG. 10 shows a characteristic along a line from the point where the light exit surface S intersects the optical axis L to the bottom portion 141e through the flat portion 141f.
  • the refractive index of the light control lens 114 is 1.41.
  • the region C1 is a region where ⁇ 1 is about 0 ° to 3 °, and corresponds to the vicinity of the bottom of the recess 141a.
  • the region C ⁇ b> 1 is a reflection surface on which light incident from the direction of the light emitting region of the light emitting element 110 is totally reflected in the direction away from the optical axis L.
  • the reflection angle gradually increases as the distance from the optical axis L increases and ⁇ 1 increases. Therefore, the light emitted from the light emitting element 110 in the upward direction is not directly emitted from the emission surface S of the light control lens 114. Therefore, it is possible to prevent the emission intensity from significantly increasing near the optical axis L.
  • the degree of wavelength conversion by the phosphor is reduced.
  • the recess 127a is located immediately below the recess 141a, the light that has passed through the recess 127a and entered the region C1 is reflected and sufficiently mixed with ambient light. Therefore, it is possible to obtain an effect that it is difficult to visually recognize the difference in chromaticity caused by the depression 127a from directly above.
  • the region C2 is a region where ⁇ 1 is about 3 ° to 7 °, and corresponds to the range from the vicinity of the bottom of the concave portion 141a to the vicinity of the lower end of the inclined surface of the concave portion 141a.
  • the region C2 is a refracting surface that has a large ⁇ 2 / ⁇ 1 and is refracted in a direction in which light incident from the direction of the light emitting region moves away from the optical axis L. Also, as ⁇ 1 increases, ⁇ 2 / ⁇ 1 increases and the refraction angle increases. Therefore, in the region C2, which is a peripheral surface continuous to the outer periphery of the region C1, it is possible to avoid the concentration of light near the optical axis L and to compensate for a decrease in emission intensity due to total reflection of light in the region C1.
  • Region C3 has a range of ⁇ 1 of about 7 ° to 24 °, and corresponds to a range from the vicinity of the lower end portion of the inclined surface of the concave portion 141a to the vicinity of the upper end portion of the concave portion 141a.
  • the region C2 is a reflecting surface that totally reflects light incident from the direction of the light emitting region in a direction away from the optical axis L. Further, similarly to the region C1, the reflection angle increases as ⁇ 1 increases. Accordingly, in the region C3, the light around the optical axis L is dispersed from the directly above direction to the outside direction.
  • the region C4 has a range of ⁇ 1 of about 24 ° to 37 °, and corresponds to a range from the vicinity of the upper end of the concave portion 141a to the vicinity of the middle portion of the horizontal surface 141b.
  • the region C4 is a refracting surface in which ⁇ 2 / ⁇ 1 is larger than 1, and light incident from the direction of the light emitting region is refracted in a direction away from the optical axis L.
  • the refraction angle is smaller than ⁇ 2 ( ⁇ 2 / ⁇ 1 is about 2.5 to 1.5), and the refraction angle becomes smaller as ⁇ 1 becomes larger as opposed to the region C2. Therefore, in the region C4, concentration of light near the optical axis L can be avoided, and a decrease in light emission intensity due to total reflection of light in the region C3 can be compensated.
  • Region C5 has a range of ⁇ 1 in the range of about 37 ° to 43 ° and corresponds to the vicinity of the middle portion of the horizontal surface 141b.
  • the region C5 is a reflecting surface on which light incident from the direction of the light emitting region is refracted in a direction away from the optical axis L, and the refraction angle slightly increases as ⁇ 1 increases.
  • Region C6 has a range of ⁇ 1 of about 43 ° to 70 °, and corresponds to a range from the vicinity of the middle portion of the horizontal surface 141b to the peripheral side surface 141d including the circular arc surface 141c.
  • the region C6 is a refracting surface whose refraction angle decreases as ⁇ 1 increases, and ⁇ 2 / ⁇ 1 is 1 in the vicinity of the boundary between the region C6 and the region C7.
  • Region C7 has a range of ⁇ 1 of about 70 ° to 82 °, and corresponds to the flat portion 141f.
  • the flat surface portion 141f is slightly inclined so as to gradually approach the optical axis L from the lower end portion toward the upper end portion. For this reason, in the region C7, ⁇ 2 / ⁇ 1 is less than 1, and light incident from the direction of the light emitting region is refracted toward the optical axis L side. Since the flat portion 141f is provided at a position facing the long side of the light emitting element 110, the light traveling from the long side to the side of the light emitting element 110 is refracted to the optical axis L side, and a direction directly above the light emitting element 110 is obtained. The light emission intensity at is improved.
  • Region C8 has a range of ⁇ 1 in the range of about 82 ° to 90 °, and corresponds to the bottom portion 141e.
  • ⁇ 2 / ⁇ 1 is significantly less than 1, and light incident from the direction of the light emitting region is refracted to the optical axis L side. Further, the angle of refraction increases as ⁇ 1 increases.
  • the light Lv3 and Lv4 incident from the direction of the light emitting area are totally reflected.
  • the light Lv5 incident from the direction of the light exit region is refracted outward from Lv5 'when passing through the exit surface S and traveling straight as it is.
  • the light Lv5 incident from the direction of the light exit region is refracted outward from Lv6 'when passing straight through the exit surface S.
  • the light Lv7 incident from the direction of the light emission region is refracted upward (to the optical axis L side) than Lv7 'when passing straight through the emission surface S. Accordingly, the region C8 can refract the light traveling to the side of the light emitting element 110 toward the optical axis L, and illuminate the direction directly above the light emitting element 110.
  • the light emitting device 32 of this embodiment includes not only the first convex portion 125 but also the second convex portion 126, the light emitted from the light emitting element 110 does not directly reach the skirt portion 141e. . However, since part of the light reflected on the exit surface S of the light control lens 114 reaches the skirt 141e, the light directly above the light emitting element 110 can be illuminated, which contributes to uniform emission intensity. Can be expected.
  • the light control lens 114 has a region C1 and a region C3 that totally reflects light traveling from the light emitting element 110 toward the optical axis L in a direction away from the optical axis L.
  • the first reflecting surface 125A is located below the region C1 and the region C3, and the light collected to the optical axis L side by the first reflecting surface 125A is transmitted to the optical axis L by the region C1 and the region C3. Reflected in the direction away from. Therefore, it is possible to illuminate a wide range.
  • the reflection angle of the region C3 gradually increases as the distance from the optical axis L increases. For this reason, the light reflected by the first reflecting surface 125A and entering the region C3 has a larger reflection angle as it enters a position away from the optical axis L, and is reflected in a direction away from the optical axis L side. Therefore, the region C3 can disperse light to the surroundings while suppressing light traveling directly above the light emitting element 110, and can be more uniformly oriented. Furthermore, since the light emitted from the light emitting element 110 and entering the region C3 is reflected in the direction away from the optical axis L, it can be oriented in a wide range.
  • the light emitting device 32 of the present embodiment has a light control lens 114 formed in a curved surface, a first reflector made of a first convex portion 125, and a second reflector made of a second convex portion. ing. For this reason, as shown in FIG. 13, it is possible to realize a light distribution characteristic in which more light is oriented around the optical axis L. By suppressing the concentration of light and dispersing it around the light emitting element 110, which usually has the highest luminance, even when the light emission intensity of the light emitting element 110 is high, the luminance unevenness is suppressed while improving the light emission efficiency. Uniform light distribution is possible.
  • the luminance characteristics of the light emitting device 32 will be described. Since the light emitting element 110 has a substantially rectangular parallelepiped shape, the luminance is higher on the long side than on the short side. However, the light control lens 114 has a flat surface portion 141 f at a position facing the long side of the light emitting element 110. Since the flat portion 141f is not a convex curved surface, the lens effect is weakened. For this reason, even when the light emitting element 110 having a substantially rectangular parallelepiped shape is used, the light emission intensity on the long side and the light emission intensity on the short side can be aligned, and illumination in all directions can be performed almost uniformly.
  • the light emitting device 32 can distribute light substantially uniformly around the light control lens 114. Therefore, in the surface light source unit 30 as shown in FIG. 2, the light emitting devices 32 can be arranged at equal intervals in the X direction and the Y direction. Further, the ratio of W1 and W2 can be adjusted by adjusting the effect of the plane portion 141f and adjusting the spread of light in the X direction and the Y direction. In this way, it becomes easy to handle a horizontally long display device or the like.
  • the position of the upper end portion of the reflection surface may be made higher as the reflection surface is farther from the light emitting element.
  • the innermost reflective surface is located immediately below the concave portion 141a provided in the light control lens 114
  • at least one of the plurality of reflective surfaces is located directly below the concave portion 141a. If you do.
  • the inner surface of the first protrusion 125 and the wall surface of the first opening 122a have the same inclination angle, and the outer surface of the first protrusion 125, the second opening 122b, and the first opening 122a.
  • the inclination angle is different from that of the wall surface of the fourth opening 122d.
  • the inner surface of the first protrusion 125 and the wall surface of the first opening 122a have different inclination angles, and the outer surface of the first protrusion 125 and the second opening 122b.
  • the wall surface of the fourth opening 122d may have the same inclination angle. In the case of the configuration as shown in FIG.
  • the wire 116 makes point contact with the upper end portion of the first convex portion 125.
  • the second sealing resin can be lifted by the wire 116 at the time of potting, and the second sealing portion 127B can be made thicker at the center portion than the outer edge portion.
  • the inclination of the inner surface of the first convex portion 125 is gentler than the wall surface of the first opening 122a, light can be spread over a wider range than in the configuration shown in FIG.
  • the outer surface of the first convex portion 125 and the wall surfaces of the second opening 122b and the fourth opening 122d may have different inclination angles.
  • the light emitting device can efficiently guide the light emitted from the light emitting element to the upper side of the light emitting element and improve the light emission efficiency, and particularly the reflection that reflects the light emitted to the side of the light emitting element. It is useful as a light emitting device and a surface light source device provided with a body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

 発光装置は、基板112と、基板の上に光出射領域を上にして固定された発光素子110とを備えている。基板は、それぞれが発光素子110を囲み、互いに間隔をおいて形成された複数の凸部125、126を有し、複数の凸部のそれぞれにおける発光素子側の側面は、光出射領域から側方へ出射された光を反射する反射面125A、126Aである。反射面は発光素子を囲む同心円状に配置され、反射面の上端部の位置は発光素子から遠い位置に配置された反射面ほど高い位置にある。

Description

発光装置及びこれを用いた面光源装置
 本開示は、発光装置及び面光源装置に関し、特に発光素子の側方へ出射された光を反射する反射体を備えた発光装置及び面光源装置に関する。
 発光素子から出射された光を効率良く利用するために、発光素子の側方へ出射された光を発光素子の直上方向に向かうように反射させる反射体を発光素子の周囲に配置した発光装置が知られている。また、さらに光の利用効率を向上させるために、逆錘形状の反射体を発光素子を中心とする同心円状に複数配置することが検討されている(例えば、特許文献1を参照)。
 複数の反射体を設けることにより、光の反射回数を増大させ、発光素子の上方における発光強度を向上させることが可能となると期待される。
特開昭61-214484号公報
 しかしながら、前記従来の発光装置には以下のような問題がある。従来の発光装置は、複数の反射体の間において光が繰り返し反射されることにより、光が散乱されるようにすることを目的としている。このため、複数の反射体は発光素子の上方に設けられ、反射体の下方から光を入射させている。発光素子の上方に反射体が設けられている場合、発光素子から斜め上方に出射された光は反射体により反射されるが、発光素子の直上方向へ出射された光は反射体同士の間を通過してしまい、発光効率の向上には寄与しない。また、発光素子の上方に反射体を配置したことにより、発光素子から出射された光を逆に遮ってしまうという問題も生じる。
 本開示は、前記の問題を解決し、発光素子から出射された光を効率良く発光素子の上方へと導く、発光効率が高い発光装置を実現できるようにすることを目的とする。
 前記の目的を達成するため、本開示は発光装置を、発光素子を同心円状に囲む複数の反射体を備え、反射体の上端部が外側の反射体ほど高い位置にある構成とする。
 具体的に、本開示の発光装置は、基板と、基板の上に光出射領域を上にして固定された発光素子とを備え、基板は、それぞれが発光素子を囲み、互いに間隔をおいて形成された複数の凸部を有し、複数の凸部のそれぞれにおける発光素子側の側面は、光出射領域から側方へ出射された光を反射する反射面であり、反射面は発光素子を囲む同心円状に配置され、反射面の上端部の位置は、発光素子から遠い位置の反射面ほど高い位置にある。
 本開示の発光装置は、発光素子から出射された光を効率良く発光素子の上方へと導く、発光効率が高い発光装置を実現できる。
一実施形態に係る面光源装置を示す断面図である。 発光装置の配置例を示す平面図である。 (a)~(c)は一実施形態に係る発光装置を示し、(a)は平面図であり、(b)は(a)のIIIb-IIIb線における断面図であり、(c)は(a)のIIIc-IIIc線における断面図である。 (a)及び(b)はリードフレームの一例を示し、(a)は平面図であり、(b)は底面図である。 (a)~(c)は一実施形態に係る発光装置を調光レンズを除いて示し、(a)は平面図であり、(b)は(a)のVb-Vb線における断面図であり、(c)は(a)のVc-Vc線における断面図である。 (a)及び(b)はリードフレーム複合体の一例を示し、(a)は平面図であり(b)は底面図である。 樹脂封止部を形成する工程の一例を示す断面図である。 発光素子を囲む反射面における光の反射を示す断面図である。 調光レンズの光出射面における領域の配置を示す断面図である。 調光レンズの光出射面における光出射特性を示すグラフである。 入射角と出射角とを説明する図である。 調光レンズの光出射面における光出射特性を示す断面図である。 一実施形態に係る発光装置の配光特性を示す図である。 一実施形態に係る発光装置の変形例を示す断面図である。
 例示の発光装置は、基板と、基板の上に光出射領域を上にして固定された発光素子とを備え、基板は、それぞれが発光素子を囲み、互いに間隔をおいて形成された複数の凸部を有し、複数の凸部のそれぞれにおける発光素子側の側面は、光出射領域から側方へ出射された光を反射する反射面であり、反射面は発光素子を囲む同心円状に配置され、反射面の上端部の位置は、発光素子から遠い位置の反射面ほど高い位置にある。
 例示の発光装置は、発光素子の側方から斜め上方の範囲に出射された光を反射面により反射させることができる。また、反射面の上端部が発光素子から遠い位置の凸部ほど高い位置にあるため、内側の反射面において反射されずに直進した光を外側の反射面において反射させることができる。このため、効率良く光を上方に出射させることができる。
 本発明の発光装置において、反射面の傾斜角度は、発光素子から遠い位置の反射面ほど大きくすればよい。このような構成とすれば、外側の反射面ほど反射角が小さくなるため、発光素子から出射された光を、発光素子の直上方向に効率良く集めることができる。
 本発明の発光装置は、基板の上に光出射領域と光軸を合わせて配置された調光レンズをさらに備え、調光レンズは、光軸の周囲に設けられ、底部よりも上端部の径が大きい凹部を有し、反射面のうちの少なくとも1つは、凹部の直下に位置していてもよい。このような構成とすることにより、発光素子の直上方向に集められた光を調光レンズにより分散させて広い範囲を照光することが可能となる。
 本発明の発光装置において、凹部の壁面の少なくとも一部は、凹部の直下に位置している反射面において反射された光が入射し、入射した光を光軸から遠ざかる方向に反射する反射面とすればよい。このような構成とすれば、発光強度が高い発光素子の直上方向において、周囲よりも輝度が高くなる輝度むらの発生を抑えることができる。
 例示の面光源装置は、本開示の発光装置を複数備え、複数の発光装置が格子状に配置されている。このような構成とすることにより、広い範囲をむらなく照光することができる面光源装置を実現できる。
 (一実施形態)
 図1に示すように、面光源装置10は、表示面の横と縦の比率が16:9であるワイド画面の液晶テレビ等に用いられる液晶パネルDの背面側から照光するバックライト装置である。面光源装置10は、液晶パネルDの背面に貼り付けられた調光部材20と、面光源部30とを備えている。面光源部30は、調光部材20と所定の間隔をおいて配置されている。
 調光部材20は、拡散板21と、拡散シート22と、第1調光シート23と、第2調光シート24とを備えている。
 拡散板21は、面光源部30の光を拡散させるために表面がすりガラス状の粗面に形成された樹脂製の板材等とすればよい。拡散板21は、ポリカーボネート(PC)樹脂、ポリエステル(PS)樹脂又は環状ポリオレフィン(COP)樹脂等により形成すればよい。
 拡散シート22は、拡散板21により拡散された光をさらに拡散するために設けられており、例えばポリエステル等の樹脂製のシートとすればよい。
 第1調光シート23は、拡散板21及び拡散シート22により拡散された光を、液晶パネルD方向へ集光する。第1調光シート23は、プルズム面を有するシートとすればよい。具体的には、アクリル樹脂からなる三角条(線状三角凸部)が形成されたポリエステル樹脂等とすればよい。三角条により形成されたプリズム面は、断面視において鋸歯形状とすればよい。第2調光シート24は、第1調光シート23により集光しきれなかった光を集光する。また、第2調光シート24は、S波を面光源部30側に反射させて、液晶パネルDを透過するP波を増加させることにより、積算光量を増大させて輝度を上昇させる機能を備えている。このように、第1調光シート23及び第2調光シート24により明るさのむらを低減している。
 図2に示すように、面光源部30は、搭載基板31と、発光装置32とを備えている。発光装置32は、搭載基板31の上にマトリクス状に配置されている。本実施形態においては、発光装置32がX方向(横方向)にW1の間隔で配置され、Y方向(縦方向)にW2の間隔で配置されている。搭載基板31は、エポキシ系樹脂等の大判の絶縁性基板に発光装置32へ電源を供給するための配線パターンが形成されたプリント配線基板とすればよい。
 次に、本実施形態の発光装置32の構成について詳細に説明する。図3(a)~(c)に示すように発光装置32は、基板112の上に固定(ダイボンド)された発光素子110及び調光レンズ114を有している。調光レンズ114は発光素子110の光出射領域と光軸を合わせるように配置されている。具体的には、調光レンズ114の光軸(中心軸)Lの直下に発光素子110の光出射領域の中央部が位置するように配置されている。
 本実施形態において発光素子110は、略直方体状であり、上面の平面形状は略長方形状である。発光素子110は、青色発光ダイオード等とすればよい。発光素子110は通常、素子基板の上に形成された半導体層と電極とを有している。半導体層は、素子基板側から順次形成されたn型半導体層、発光層及びp型半導体層を含む。電極は、p型半導体層と接して形成されたp側電極と、n型半導体層と接して形成されたn側電極とを有している。本実施形態においてn側電極は、p型半導体層及び発光層とn型半導体層の一部とをエッチングすることにより露出させたn型半導体層上に形成されている。本実施形態においてp側電極及びn側電極は光出射領域を挟んで長辺の互いに反対側に位置する。発光素子110は、p側電極とn側電極との間に電圧を印加することにより光出射領域から光を出射する点光源として機能する。光出射領域は、実際には所定の大きさを有する面であるが、微小な領域であり発光装置32として見た場合には点とみなすことができる。
 調光レンズ114は、シリコン系樹脂により形成され、発光素子110から出射された光を広い範囲に配光する。調光レンズ114は、略半球状のレンズ部141と、レンズ部141の周囲に形成された外形が正方形状の鍔部142とを有している。
 レンズ部141は、光軸Lの周囲に設けられた凹部141aを有している。凹部141aは、上端部の径が底部の径よりも大きく、底部から上端部に向かって壁面の傾斜が次第に緩やかになる形状を有している。
 凹部141aの周囲には、ほぼ水平な(光軸Lとほぼ直交する)面である水平面141bが設けられており、水平面141bの周囲には、緩やかな凸状曲面である円弧面141cが設けられており、円弧面141cの周囲には、ほぼ垂直な面である周側面141dが設けられている。周側面141dと鍔部142との間には、緩やかな凹状曲面である裾部141eが設けられている。周側面141dの一部は、垂直に切り取られており、平面部141fが形成されている。平面部141fは光軸Lを挟んで互いに対向する位置に設けられている。また、平面部141fと発光素子110の長辺とは互いに対向している。平面部141fは平面部141fは、下端部から上端部に向かって光軸Lに次第に近づくようにわずかに傾斜している。本実施形態においては、平面部141fの傾斜は約2°である。
 基板112は、リードフレーム121と樹脂枠122とを有している。リードフレーム121は、ニッケル又は金等のめっき層を積層してパターニングした銅合金板とすればよい。図4(a)及び(b)に示すように、リードフレーム121は略正方形状の輪郭を有している。リードフレーム121はアノードフレーム121Aとカソードフレーム121Bとを含み、樹脂枠122により一体に形成されている。アノードフレーム121A及びカソードフレーム121Bにはそれぞれ、樹脂枠122を一体に成型する際にずれが発生しないようにするための貫通孔121aが2ヵ所ずつ設けられている。
 図4(a)に示すように、アノードフレーム121Aの一方の面(表面)には、発光素子110が固定されるダイボンド部123Aと、発光素子110のp側電極と接続されたワイヤ116がボンディングされるワイヤボンド部123Bと、保護素子117が固定される保護素子用ダイボンド部123Cとが設けられている。カソードフレーム121Bの表面には、発光素子110のn側電極と接続されたワイヤ116がボンディングされるワイヤボンド部124Aと、保護素子117と接続されたワイヤ118がボンディングされる保護素子用ワイヤボンド部124Bとが設けられている。
 図4(b)に示すように、アノードフレーム121Aの裏面には、アノード電極123D形成されている。カソードフレーム121Bの裏面には、カソード電極124Cが形成されている。
 図5に示すように、樹脂枠122はリードフレーム121と一体に形成されている。樹脂枠は光の反射効率を高めるために白色とすることが好ましい。樹脂枠122は、リードフレーム121を挟み込んだ上型と下型との間のキャビティにエポキシ系樹脂等を充填して硬化させることにより形成すればよい。
 樹脂枠122の中央部には、リードフレーム121のダイボンド部123Aを露出させる平面円形状の第1の開口部122aが形成されている。第1の開口部122aは、下端部から上端部に向かって次第に径が大きくなるように形成されており、第1の開口部122aの壁面は傾斜している。第1の開口部122aを囲むように平面方形状の第1の凸部125が形成されている。従って、第1の開口部122aの壁面及び第1の凸部125の第1の開口部122a側の側面(内側面)は一体となり、ダイボンド部123Aに固定された発光素子110から出射された光の一部を上方に反射させる第1の反射面125Aとなる。従って、第1の開口部122a及び第1の凸部125は第1の反射体として機能する。第1の凸部125の外側面は次第に高さが低くなる斜面となっている。第1の反射体は、調光レンズ114に設けられた凹部141aの直下に位置している。
 第1の凸部125の外側には、発光素子110を囲む平面円形状の第2の凸部126が形成されている。第2の凸部126の内側面は、第2の反射面126Aとなっており、第2の凸部126は第2の反射体として機能する。第2の反射面126Aは第1の反射面125Aよりも傾斜角度が大きくなっている。第2の反射体は、第1の反射体において反射されなかった光及び調光レンズ114において基板112側に反射された光等を反射する。
 第1の反射面125Aと第2の反射面126Aとは、発光素子110を囲む同心円状に形成されている。また、第2の反射面126Aの上端部は、第1の反射面125Aの上端部よりも高い位置にある。
 第2の凸部126の外側面は、一部が切除され、直線部分126Bが形成されてている。直線部分126Bは、発光装置32の電極の位置を目視により判別可能とするための極性表示として機能する。
 第1の凸部125と第2の凸部126との間には、ワイヤボンド部123B、保護素子用ダイボンド部123C、ワイヤボンド部124A及び保護素子用ワイヤボンド部124Bをそれぞれ露出する第2の開口部122b、第3の開口部122c、第4の開口部122d及び第5の開口部122eが形成されている。
 第1の開口部122aにより露出したダイボンド部123Aに固定された発光素子110のp側電極と、第2の開口部122bにより露出したワイヤボンド部123Bとはワイヤ116を介して接続されている。n側電極と第4の開口部122dにより露出したワイヤボンド部124Aとはワイヤ116を介して接続されている。第3の開口部122cにより露出した保護素子用ダイボンド部123Cに固定された保護素子の電極と、第5の開口部122eにより露出した保護素子用ワイヤボンド部124Bとはワイヤ118を介して接続されている。ワイヤ116及びワイヤ118は金(Au)細線等とすればよい。
 第1の凸部125に囲まれた領域には封止樹脂が埋め込まれており、ダイボンド部123Aに固定された発光素子110を封止する樹脂封止部127が形成されている。樹脂封止部は、透明なシリコン樹脂等からなる第1の封止部127Aと、蛍光体を含むシリコン樹脂等からなる第2の封止部127Bとを有している。第2の封止部127Bの上面は、発光素子110のp側電極及びn側電極とワイヤボンド部123B及びワイヤボンド部124Aとを接続するワイヤ116と接している。このため、第2の封止部127Bは、ワイヤ116の形状に沿って外縁部から中央部に向かって次第に厚さが厚くなる。
 蛍光体を含む第2の封止部127Bを設けることにより、発光素子110から出射される光を他の波長の光に変換することができる。例えば、発光素子110が青色光を出射する場合には、青色光により励起されて、補色である黄色光を放出する蛍光体を用いることにより、青色光と黄色光とが混色された白色光を得ることができる。この場合蛍光体には、珪酸塩蛍光体又はイットリウムアルミニウムガーネット(YAG)系蛍光体等を用いればよい。
 本実施形態の発光装置は、蛍光体を含まない第1の封止部127Aが、発光素子110をその上面を除いて覆うように形成されている。このため、発光素子110の側方へ出射された光が第1の反射体及び第2の反射体により反射され、上方へ出射された光よりも進行距離が長くなっても、蛍光体による過度の波長変換及び減衰が生じにくい。
 保護素子117は、発光素子110を過電圧より保護する保護回路を形成する。本実施形態においては保護素子117をツェナーダイオードとしているが、ダイオード、コンデンサ、抵抗又はバリスタ等としてもよい。また、発光素子110の耐圧が十分であれば保護素子117は省略してもよい。
 以下に、発光装置32の製造方法の例を説明する。まず、図6(a)及び(b)に示すように、金属板を打ち抜いて、複数のリードフレーム121が縦横に並んだリードフレーム複合体161を形成する。
 次にリードフレーム複合体161を金型により型締めして、トランスファー成型法にて樹脂枠122をモールド成型する。
 次に、アノードフレーム121Aのダイボンド部123Aに発光素子110を固定(ダイボンド)する。また、保護素子用ダイボンド部123Cに保護素子117を固定し、保護素子117と保護素子用ワイヤボンド部124Bとをワイヤ118により配線する。
 次に、図7に示すように、ダイボンドした発光素子110のp側電極にワイヤ116をファーストボンドし、第1の凸部125の上端を超える位置まで垂直方向に立ち上げる。さらに、ワイヤ116を第1の凸部125の方向へ屈曲させ、第1の凸部125の上端に接するようにして第1の凸部125を超えてワイヤボンド部123Bにセカンドボンドして配線する。同様にしてn側電極とワイヤボンド部124Aとの間をワイヤ116により配線する。
 ワイヤ116をこのように配線することにより、封止樹脂をポッティングする際に、封止樹脂を第1の凸部125に囲まれた領域から溢れ出させることなく盛り上がった状態とすることができる。図7においては、ワイヤ116が第1の凸部125の上端と接しているが、封止樹脂がワイヤ116に付着するようにできれば、ワイヤ116は第1の凸部125の上端部と接していなくてもよい。
 また、このような配線とすることにより、ワイヤ116を第1の凸部125と近接した位置にボンディングすることが可能となる。従って、装置を小型化でき、ワイヤ116の長さも短くすることができる。
 次に、透明な液状のシリコン樹脂等からなる第1の封止樹脂を第1の凸部125に囲まれた領域にポッティングした後硬化させ、第1の封止部127Aを形成する。ポッティングする際に、発光素子110の上面が第1の封止樹脂に覆われないように、第1の封止樹脂のポッティング量を調整する。
 第1の封止部127Aを形成した後、蛍光体を含有する液状のシリコン樹脂等からなる第2の封止樹脂を発光素子110の上面を覆うようにポッティングした後硬化させ、第2の封止部127Bを形成する。第2の封止樹脂を第1の凸部125の上端付近まで充填すると、第2の封止樹脂は第1の凸部125の上端と接するワイヤ116に付着して引き上げられるため、第1の凸部125の上端まで第2の封止樹脂が行きわたる。第2の封止樹脂をさらに充填すると、第2の封止樹脂が発光素子110の上面から垂直方向に引き出されたワイヤ116により上方へ吊り上げられる。このため、第2のシリコン樹脂の上面は、ワイヤ116に支持されて、第1の凸部125に囲まれた領域の外縁部から中央部に向かって次第に盛り上がった形状となる。また、発光素子110の光出射領域の上方においては第2の封止樹脂を支持するワイヤが存在しないため、窪んだ形状となる。この状態で第2の封止樹脂を硬化させることにより、外縁部から中央部に向かって次第に厚さが厚く且つ中央部に窪み部127aを有する第2の封止部127Bが形成される。
 蛍光体を含有した第2の封止部127Bは、効率良く光の波長を変換するために、発光素子110の上にある程度厚く形成することが好ましい。しかし、第1の凸部125の高さを高くしすぎると、側方への光が遮られてしまう。一方、ワイヤ116により封止樹脂を吊り上げるようにすれば、第1の凸部125の高さを抑えつつ、第2の封止部127Bの厚さを確保することが可能となる。また、第2の封止樹脂が第1の凸部125を超えて溢れ出すことも抑えることができる。
 ワイヤ116は、発光素子110の中央部(光出射領域)を挟んで両側に形成されたp側電極及びn側電極と接続されているため、窪み部127aは光出射領域の直上に形成される。従って、窪み部127aは調光レンズ114に設けられた凹部141aの直下に位置する。
 ワイヤ116は、第2の封止樹脂をポッティングした際に、第2の封止樹脂が、表面張力とワイヤ116の引き上げとにより第1の凸部125の上端よりも盛り上がり、且つ第1の凸部125を超えて溢れ出さないようにできればよい。従って、図7においてはワイヤ116が第1の凸部125の上端と接している例を示したが、ワイヤ116が第1の凸部125の上端と近接していれば接していなくてもよい。
 次に、調光レンズ114の形状にキャビティが形成された金型を用いてトランスファー成型法にて調光レンズ114を基板112の上に成型する。
 次に、ダイサーを用いて、リードフレーム複合体161からリードフレーム121をそれぞれ切り離して個片化することにより発光装置32が得られる。
 調光レンズ114を成型する前に、第2の凸部126に囲まれた領域に液状の透明なシリコン樹脂等をポッティングし、ワイヤ116及びワイヤ118を封止してもよい。ワイヤ116及びワイヤ118を封止することにより、調光レンズ114を形成する際にワイヤ116及びワイヤ118の断線を生じにくくすることができる。
 次に、第1の反射面125A及び第2の反射面126Aによる光の反射について説明する。第1の反射体である第1の凸部125及び第2の反射体である第2の凸部126は、発光素子110を中心とする同心円状に形成されている。また、第1の凸部125よりも外側の第2の凸部126の方が高さが高い。このため、図8に示すように第1の反射面125Aにおいて反射せずに直進した光F2は、第2の反射面126Aにおいて反射される。従って、発光素子110から出射された光を効率良く反射させることができる。さらに、第2の反射面126Aの傾斜角度は、第1の反射面125Aよりも小さい。このため、第2の反射面126Aにおいて反射した光F2は、第1の反射面125Aにおいて反射した光F1よりも内側方向へ向かうように進行する。従って、第1の反射面125A及び第2の反射面126Aにより、発光素子110から出射された光を光軸L側に集めることができるため、発光効率を向上させることが可能となる。
 次に、調光レンズ114の形状について説明する。図9に示すように調光レンズ114のレンズ部141の出射面Sには、C1~C8の8個の領域が存在している。領域C1~C8の曲面形状は、横軸をθ1、縦軸をθ2/θ1とすると図10に示すように表すことができる。なお、θ1は、図11に示すように、発光素子110の光出射領域からの光の入射角である。具体的には発光素子110の光出射領域から出射された光が出射面Sを通過してそのまま直進する場合の方向を示す仮想直線Lv1と光軸Lとのなす角である。θ2は発光素子110の光出射領域からの光の出射角である。具体的には発光素子110の光出射領域から出射された光が出射面Sにおいて屈折された屈折光が進行する方向を示す仮想直線Lv2と光軸Lとのなす角である。なお、図10は光出射面Sが光軸Lと交差する点から平面部141fを通って裾部141eに至るラインに沿った特性を示している。また、調光レンズ114の屈折率は1.41である。
 領域C1は、θ1が0°~3°程度の領域であり、凹部141aの底部付近に相当する。領域C1は、発光素子110の光出射領域の方向から入射した光が光軸Lから遠ざかる方向へ全反射される反射面となっている。また、光軸Lから遠ざかり、θ1が大きくなるに従い反射角が次第に大きくなる。従って、発光素子110から直上方向に出射された光は、調光レンズ114の出射面Sから直接出射されない。従って、光軸L付近において発光強度が大きく上昇することを防ぐことができる。
 蛍光体を含有した第2の封止部127Bの窪み部127aにおいては、蛍光体による波長変換の度合いが低下している。しかし、窪み部127aは凹部141aの直下に位置しているため、窪み部127aを通過して領域C1に入射した光は反射され、周囲の光と十分に混色される。従って、窪み部127aにより生じた色度の違いを直上から視認しにくくすることができるという効果も得られる。
 領域C2はθ1が3°~7°程度の領域であり、凹部141aの底部付近から凹部141aの傾斜面の下端部付近までの範囲に相当する。領域C2は、θ2/θ1が大きく、光出射領域の方向から入射した光が光軸Lから遠ざかる方向に屈折される屈折面である。また、θ1が大きくなるに従いθ2/θ1が大きくなり、屈折角が大きくなる。従って、領域C1の外周に連続する周面である領域C2では、光軸L付近への光の集中を避けると共に、領域C1において光を全反射させることによる発光強度の低下を補うことができる。
 領域C3はθ1が7°~24°程度の範囲であり、凹部141aの傾斜面の下端部付近から凹部141aの上端部付近までの範囲に相当する。領域C2は、光出射領域の方向から入射した光が光軸Lから遠ざかる方向へ全反射する反射面となっている。また、領域C1と同様に、θ1が大きくなるに従い反射角が大きくなる。従って、領域C3においては、光軸Lの周囲の光を直上方向から外側方向へ分散させる。
 領域C4はθ1が24°~37°程度の範囲であり、凹部141aの上端部付近から水平面141bの中間部付近までの範囲に相当する。領域C4は、θ2/θ1が1よりも大きく、光出射領域の方向から入射した光が光軸Lから遠ざかる方向に屈折する屈折面である。しかし、屈折角はθ2よりも小さく(θ2/θ1が2.5~1.5程度)、領域C2とは反対にθ1が大きくなるに従い屈折角が小さくなる。従って、領域C4においては、光軸L付近への光の集中を避けると共に、領域C3において光を全反射させることによる発光強度の低下を補うことができる。
 領域C5はθ1が37°~43°程度の範囲であり、水平面141bの中間部付近に相当する。領域C5は、光出射領域の方向から入射した光が光軸Lから遠ざかる方向へ屈折する反射面であり、θ1が大きくなるに従い屈折角が若干大きくなる。
 領域C6はθ1が43°~70°程度の範囲であり、水平面141bの中間部付近から円弧面141cを含み周側面141dに至る範囲に相当する。領域C6は、θ1が大きくなるに従い屈折角が小さくなる屈折面であり、領域C6のと領域C7との境界付近においてθ2/θ1は1となる。
 領域C7はθ1が70°~82°程度の範囲であり、平面部141fに相当する。平面部141fは、その下端部から上端部に向かって光軸Lに次第に近づくようにわずかに傾斜している。このため、領域C7においてはθ2/θ1が1未満となり、光出射領域の方向から入射した光が光軸L側へ屈折する。平面部141fは発光素子110の長辺と対向する位置に設けられているため、発光素子110の長辺側から側方へ進行する光を光軸L側に屈折させ、発光素子110の直上方向における発光強度を向上させる。
 領域C8はθ1が82°~90°程度の範囲であり、裾部141eに相当する。領域C8においては、θ2/θ1が1を大きく下回り、光出射領域の方向から入射した光が光軸L側に屈折する。また、θ1が大きくなるに従い屈折角が大きくなる。
 図12に示すように、領域C1及びC3においては、光出射領域の方向から入射した光Lv3及びLv4は全反射される。また、領域C2においては、光出射領域の方向から入射した光Lv5は、出射面Sを通過してそのまま直進した場合Lv5’よりも外側に向かって屈折する。同様にC4~C6においても、光出射領域の方向から入射した光Lv5は、出射面Sを通過してそのまま直進した場合Lv6’よりも外側に向かって屈折する。一方、領域C8においては、光出射領域の方向から入射した光Lv7は、出射面Sを通過してそのまま直進した場合Lv7’よりも上向きに(光軸L側に)屈折する。従って、領域C8により、発光素子110の側方へ進行する光を光軸L側へ屈折させて、発光素子110の直上方向を照光することができる。
 本実施形態の発光装置32は、第1の凸部125だけでなく、第2の凸部126を備えているため、発光素子110から出射された光が裾部141eへ直接到達することはない。しかし、調光レンズ114の出射面Sにおいて反射された光の一部等は裾部141eへ到達するため、発光素子110の直上方向を照光することができ、発光強度の均一化に寄与することが期待できる。
 調光レンズ114は、発光素子110から光軸L側へ向かう光を光軸Lから遠ざかる方向へ全反射する領域C1及び領域C3を有している。領域C1及び領域C3の下方には、第1の反射面125Aが位置しており、第1の反射面125Aにより光軸L側へ集められた光は、領域C1及び領域C3により、光軸Lから遠ざかる方向に反射される。従って、広い範囲を照光することが可能となる。
 また、領域C3は光軸Lから遠ざかるに従い反射角が次第に大きくなる。このため、第1の反射面125Aにおいて反射され領域C3に入射した光は、光軸Lから離れた位置に入射した場合ほど反射角が大きくなり、光軸L側から遠ざかる方向に反射される。従って、領域C3により、発光素子110の直上方向へ向かう光を抑えつつ、周囲へ光を分散させることができ、より均一に配向することが可能となる。さらに、発光素子110から出射され領域C3に入射した光は、光軸Lから遠ざかる方向へ反射されるため、広い範囲に配向することが可能となる。
 本実施形態の発光装置32は、曲面形状に形成された調光レンズ114と、第1の凸部125からなる第1の反射体及び第2の凸部からなる第2の反射体を有している。このため、図13に示すような、光軸Lよりもその周囲に多くの光が配向される配光特性を実現することができる。通常は最も輝度が高くなる発光素子110の直上において、光の集中を抑制し周囲に分散させることにより、発光素子110の発光強度が大きい場合にも、発光効率を向上させつつ輝度むらを抑制した均一な配光を可能としている。
 次に、発光装置32の輝度特性を説明する。発光素子110は略直方体状であるため、短辺側よりも長辺側において輝度が高い。しかし、調光レンズ114は、発光素子110の長辺と対向する位置に平面部141fを有している。平面部141fは凸曲面ではないためレンズ効果が弱くなる。このため、略直方体状の発光素子110を用いた場合にも、長辺側の発光強度と短辺側の発光強度とをそろえ、全方向をほぼ均一に照光することが可能となる。
 以上のように本実施形態に係る発光装置32は、調光レンズ114の周囲にほぼ均一に配光することができる。このため、図2に示すような面光源部30において、発光装置32をX方向及びY方向に等間隔に配置することが可能となる。また、平面部141fによる効果を調整して、X方向とY方向との光の広がりを調整すれば、W1とW2との比率を調整することができる。このようにすれば横長のディスプレイ装置等への対応が容易となる。
 本実施形態において、発光素子110を同心円状に囲む反射面を2つ設ける例を示したが、反射面を3つ以上設けてもよい。この場合、反射面の上端部の位置は、発光素子から遠い位置の反射面ほど高くなるようにすればよい。また、調光レンズ114に設けられた凹部141aの直下に一番内側の反射面が位置している例を示したが、複数の反射面のうちの少なくともいずれか1つが凹部141aの直下に位置していればよい。
 また、本実施形態において、第1の凸部125の内側面と第1の開口部122aの壁面とは傾斜角度が等しく、第1の凸部125の外側面と第2の開口部122b及び第4の開口部122dの壁面とは傾斜角度が異なる構成とした。しかし、図14に示すように、第1の凸部125の内側面と第1の開口部122aの壁面とは傾斜角度が異なり、第1の凸部125の外側面と第2の開口部122b及び第4の開口部122dの壁面とは傾斜角度が等しい構成としてもよい。図14に示すような構成とした場合には、ワイヤ116が第1の凸部125の上端部と点接触することになる。しかし、この場合にもポッティングの際に第2の封止樹脂をワイヤ116により吊り上げることができ、第2の封止部127Bを外縁部よりも中央部において厚さが厚い形状とすることができる。また、第1の開口部122aの壁面よりも第1の凸部125の内側面の傾斜が緩やかであるため、図7に示す構成の場合よりも広い範囲に光を広げることができる。なお、第1の凸部125の外側面と第2の開口部122b及び第4の開口部122dの壁面とは傾斜角度が異なっていてもよい。
 本開示に係る発光装置は、発光素子から出射された光を効率良く発光素子の上方へと導き、発光効率を向上させることができ、特に発光素子の側方へ出射された光を反射する反射体を備えた発光装置及び面光源装置等として有用である。
10    面光源装置
20    調光部材
21    拡散板
22    拡散シート
23    第1調光シート
24    第2調光シート
30    面光源部
31    搭載基板
32    発光装置
110   発光素子
112   基板
114   調光レンズ
116   ワイヤ
117   保護素子
118   ワイヤ
121   リードフレーム
121A  アノードフレーム
121B  カソードフレーム
121a  貫通孔
122   樹脂枠
122a  第1の開口部
122b  第2の開口部
122c  第3の開口部
122d  第4の開口部
122e  第5の開口部
123A  ダイボンド部
123B  ワイヤボンド部
123C  保護素子用ダイボンド部
123D  アノード電極
124A  ワイヤボンド部
124B  保護素子用ワイヤボンド部
124C  カソード電極
125   第1の凸部
125A  第1の反射面
126   第2の凸部
126A  第2の反射面
126B  直線部分
127   樹脂封止部
127A  第1の封止部
127B  第2の封止部
127a  窪み部
141   レンズ部
141a  凹部
141b  水平面
141c  円弧面
141d  周側面
141e  裾部
141f  平面部
142   鍔部
161   リードフレーム複合体

Claims (5)

  1.  基板と、
     前記基板の上に光出射領域を上にして固定された発光素子とを備え、
     前記基板は、それぞれが前記発光素子を囲み、互いに間隔をおいて形成された複数の凸部を有し、
     複数の前記凸部のそれぞれにおける前記発光素子側の側面は、前記光出射領域から側方へ出射された光を反射する反射面であり、
     前記反射面は、前記発光素子を囲む同心円状に配置され、
     前記反射面の上端部の位置は、前記発光素子から遠い位置の反射面ほど高い位置にある発光装置。
  2.  前記反射面の傾斜角度は、前記発光素子から遠い位置の反射面ほど大きい請求項1に記載の発光装置。
  3.  前記基板の上に前記光出射領域と光軸を合わせて配置された調光レンズをさらに備え、
     前記調光レンズは、前記光軸の周囲に設けられ、底部よりも上端部の径が大きい凹部を有し、
     前記反射面のうちの少なくとも1つは、前記凹部の直下に位置している請求項1又は2に記載の発光装置。
  4.  前記凹部の壁面の少なくとも一部は、前記凹部の直下に位置している反射面において反射された光が入射し、入射した光を前記光軸から遠ざかる方向に反射する反射面である請求項3に記載の発光装置。
  5.  請求項1~4のいずれか1項に記載の発光装置を複数備え、
     複数の前記発光装置が格子状に配置されている面光源装置。
PCT/JP2011/005740 2010-10-14 2011-10-13 発光装置及びこれを用いた面光源装置 WO2012049854A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/820,661 US20130170208A1 (en) 2010-10-14 2011-10-13 Light-emitting device and surface light source device using same
JP2012538578A JPWO2012049854A1 (ja) 2010-10-14 2011-10-13 発光装置及びこれを用いた面光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-231243 2010-10-14
JP2010231243 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012049854A1 true WO2012049854A1 (ja) 2012-04-19

Family

ID=45938095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005740 WO2012049854A1 (ja) 2010-10-14 2011-10-13 発光装置及びこれを用いた面光源装置

Country Status (3)

Country Link
US (1) US20130170208A1 (ja)
JP (1) JPWO2012049854A1 (ja)
WO (1) WO2012049854A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232590A (ja) * 2012-05-01 2013-11-14 Dainippon Printing Co Ltd Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
JP2014120289A (ja) * 2012-12-14 2014-06-30 Panasonic Corp 照明器具
KR20140128631A (ko) * 2013-04-29 2014-11-06 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 시스템
JP2015149133A (ja) * 2014-02-05 2015-08-20 パナソニックIpマネジメント株式会社 照明装置
JP2016187053A (ja) * 2016-07-15 2016-10-27 大日本印刷株式会社 Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
JP2018113460A (ja) * 2013-04-12 2018-07-19 日亜化学工業株式会社 発光装置
US10175465B2 (en) 2015-05-29 2019-01-08 Osram Opto Semiconductors Gmbh Optoelectronic component having a radiation source
US10193028B2 (en) 2016-12-16 2019-01-29 Nichia Corporation Light emitting device and method of producing the same
JP2019080028A (ja) * 2017-10-20 2019-05-23 日亜化学工業株式会社 発光装置
US10411169B2 (en) 2017-02-03 2019-09-10 Nichia Corporation Light emitting device having leads in resin package
KR20190135254A (ko) * 2018-05-28 2019-12-06 엘지이노텍 주식회사 반도체 소자 패키지 및 이를 포함하는 광조사장치
JP7376775B2 (ja) 2019-09-24 2023-11-09 日亜化学工業株式会社 発光装置及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10043960B2 (en) * 2011-11-15 2018-08-07 Cree, Inc. Light emitting diode (LED) packages and related methods
WO2013073897A2 (ko) * 2011-11-17 2013-05-23 주식회사 루멘스 발광소자 패키지 및 이를 구비하는 백라이트 유닛
US10503010B2 (en) 2012-08-22 2019-12-10 Seoul Semiconductor Co., Ltd. Thin direct-view LED backlights
DE112013004131T5 (de) 2012-08-22 2015-05-28 Inteled Corp. Beleuchtungslinse für LED-Hintergrundbeleuchtungen
JP6476567B2 (ja) 2013-03-29 2019-03-06 日亜化学工業株式会社 発光装置
DE102013206186A1 (de) * 2013-04-09 2014-10-09 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
TWI506828B (zh) * 2013-11-20 2015-11-01 Lextar Electronics Corp 發光裝置
DE102015105470A1 (de) * 2015-04-10 2016-10-13 Osram Opto Semiconductors Gmbh Lichtemittierendes Bauelement und Verfahren zur Herstellung eines lichtemittierenden Bauelements
KR102486033B1 (ko) * 2015-11-18 2023-01-06 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지 및 이의 제조 방법
DE102018101813A1 (de) * 2018-01-26 2019-08-01 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauteil und verfahren zur herstellung von optoelektronischen halbleiterbauteilen
US20220173285A1 (en) * 2020-11-30 2022-06-02 Nichia Corporation Method for manufacturing light emitting device, light emitting device, and light emitting module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157686A (ja) * 2005-11-11 2007-06-21 Hitachi Displays Ltd 照明装置及びそれを用いた液晶表示装置
JP2007220765A (ja) * 2006-02-15 2007-08-30 Hitachi Displays Ltd 液晶表示装置
WO2009157166A1 (ja) * 2008-06-23 2009-12-30 パナソニック株式会社 発光装置、面発光装置及び表示装置
JP2010171116A (ja) * 2009-01-21 2010-08-05 Sony Corp 発光装置及び表示装置
WO2011086652A1 (ja) * 2010-01-13 2011-07-21 パナソニック株式会社 発光装置およびこれを用いた面光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157686A (ja) * 2005-11-11 2007-06-21 Hitachi Displays Ltd 照明装置及びそれを用いた液晶表示装置
JP2007220765A (ja) * 2006-02-15 2007-08-30 Hitachi Displays Ltd 液晶表示装置
WO2009157166A1 (ja) * 2008-06-23 2009-12-30 パナソニック株式会社 発光装置、面発光装置及び表示装置
JP2010171116A (ja) * 2009-01-21 2010-08-05 Sony Corp 発光装置及び表示装置
WO2011086652A1 (ja) * 2010-01-13 2011-07-21 パナソニック株式会社 発光装置およびこれを用いた面光源装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232590A (ja) * 2012-05-01 2013-11-14 Dainippon Printing Co Ltd Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
JP2014120289A (ja) * 2012-12-14 2014-06-30 Panasonic Corp 照明器具
JP2018113460A (ja) * 2013-04-12 2018-07-19 日亜化学工業株式会社 発光装置
JP2020010053A (ja) * 2013-04-12 2020-01-16 日亜化学工業株式会社 発光装置
KR102053287B1 (ko) * 2013-04-29 2019-12-06 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 시스템
KR20140128631A (ko) * 2013-04-29 2014-11-06 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 시스템
JP2015149133A (ja) * 2014-02-05 2015-08-20 パナソニックIpマネジメント株式会社 照明装置
US10175465B2 (en) 2015-05-29 2019-01-08 Osram Opto Semiconductors Gmbh Optoelectronic component having a radiation source
JP2016187053A (ja) * 2016-07-15 2016-10-27 大日本印刷株式会社 Led素子搭載用リードフレーム、樹脂付リードフレーム、多面付ledパッケージ、ledパッケージの製造方法および半導体素子搭載用リードフレーム
US10418526B2 (en) 2016-12-16 2019-09-17 Nichia Corporation Lead frame including connecting portions and coupling portions
US10193028B2 (en) 2016-12-16 2019-01-29 Nichia Corporation Light emitting device and method of producing the same
US10411169B2 (en) 2017-02-03 2019-09-10 Nichia Corporation Light emitting device having leads in resin package
JP2019080028A (ja) * 2017-10-20 2019-05-23 日亜化学工業株式会社 発光装置
KR20190135254A (ko) * 2018-05-28 2019-12-06 엘지이노텍 주식회사 반도체 소자 패키지 및 이를 포함하는 광조사장치
KR102546556B1 (ko) 2018-05-28 2023-06-22 엘지이노텍 주식회사 반도체 소자 패키지 및 이를 포함하는 광조사장치
JP7376775B2 (ja) 2019-09-24 2023-11-09 日亜化学工業株式会社 発光装置及びその製造方法

Also Published As

Publication number Publication date
US20130170208A1 (en) 2013-07-04
JPWO2012049854A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012049854A1 (ja) 発光装置及びこれを用いた面光源装置
WO2012049853A1 (ja) 発光装置及びこれを用いた面光源装置
US8545083B2 (en) Light-emitting device, light source and method of manufacturing the same
KR100818518B1 (ko) Led 패키지
CN102201525B (zh) 发光器件封装及具有该发光器件封装的照明系统
WO2011086652A1 (ja) 発光装置およびこれを用いた面光源装置
KR101064036B1 (ko) 발광 소자 패키지 및 조명 시스템
KR100691179B1 (ko) 측면 발광형 엘이디 패키지 및 그 제조 방법
KR102538472B1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2009041767A2 (en) Led package and back light unit using the same
JP2012059736A (ja) 発光装置、バックライトユニット、液晶表示装置及び照明装置
US11830967B2 (en) Light emitting module and liquid crystal display device
US11168865B2 (en) Light-emitting device and backlight
US9812495B2 (en) Light emitting device and lighting apparatus
JP7460936B2 (ja) 光源装置
JP5332960B2 (ja) 発光装置
TW202121705A (zh) 發光裝置及led封裝體
US20220037565A1 (en) Light emitting device and method of manufacturing the same
WO2021084920A1 (ja) 光源装置
KR100809225B1 (ko) Led 모듈
KR20120053412A (ko) Led 패키지 및 이를 포함하는 백라이트 유닛
KR101888603B1 (ko) 발광 소자 패키지 및 표시장치
KR20130014755A (ko) 발광 소자 패키지 및 조명 시스템
KR101655464B1 (ko) 발광소자 패키지, 그 제조방법 및 조명시스템
JP7375170B2 (ja) 線状発光部材及び面状発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012538578

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13820661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832298

Country of ref document: EP

Kind code of ref document: A1