JP5332960B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP5332960B2
JP5332960B2 JP2009154490A JP2009154490A JP5332960B2 JP 5332960 B2 JP5332960 B2 JP 5332960B2 JP 2009154490 A JP2009154490 A JP 2009154490A JP 2009154490 A JP2009154490 A JP 2009154490A JP 5332960 B2 JP5332960 B2 JP 5332960B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
translucent member
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009154490A
Other languages
English (en)
Other versions
JP2011014555A (ja
Inventor
大輔 三賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009154490A priority Critical patent/JP5332960B2/ja
Publication of JP2011014555A publication Critical patent/JP2011014555A/ja
Application granted granted Critical
Publication of JP5332960B2 publication Critical patent/JP5332960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光素子と波長変換層とを備えた発光装置に関する。
青色LEDとYAG蛍光体の組み合わせによる白色LEDや、赤色LEDと青色LEDと緑色LEDの組み合わせによる白色LED、複数の発光波長の有機EL材料を組み合わせた白色有機EL素子など、異なる発光波長の混色により白色や任意の色調を得る発光素子が多数考案されてきた。特に白色光を得られる発光素子では従来の光源に変わる照明光源として実用化が進みつつあり、さらなる発展が期待されている。
例えば特許文献1では、蛍光体層の内側と外側に光透過性層を設けた半導体発光装置が提案されている。特許文献1の半導体発光装置は、内側の光透過性層及び蛍光体層を構成する蛍光体基材よりも屈折率が低い材料を外側の光透過性層に用いることで外側の光透過性層と空気との界面の屈折率差を小さくして全反射を減少させている。光透過性層や蛍光体層の断面形状については半円状、台形状、三角形状が提案されている。
また、白色LEDに代表されるような複数の発光波長を持つ光源を用いて混色で所望の発光色を得る方式の光源に関しては、各色の光源がそれぞれ持つ配向強度特性の違いにより観察方向によって各色の成分比が異なる場合がある。このことに起因して観察する角度により色調が変化してしまい、白色光源としてこれらの光源を用いる場合などに照射パターン内に色ムラを生じさせてしまうことがある。青色など可視光を発光するLEDと蛍光体の組み合わせによる白色光源に関して、この問題に鑑み既に種々の検討がなされている。
例えば特許文献2では蛍光体物質を含む部材の膜厚不均一から色ムラが生じると考察し、色ムラ改善のために波長変換層を光拡散層で覆った半導体発光装置が提案されている。また例えば特許文献3又は4では、蛍光体層の厚みを均一化した構造が提案されている。このような構造によれば、リードフレームに設けたカップ形状の中にLEDを配置し蛍光体入りの樹脂で充填するような構造と比べて、LED光が蛍光体層の中を通過する際の距離が均一化され、色ムラの改善がなされると言われている。また、LEDを封止する透光性の材料としては樹脂やガラスが知られている(例えば特許文献5又は6)。
特開2007−273562 特開2001−177157 特開2003−69086 特開2008−66365 WO2004/82036 特開2008−263199
しかし、本発明者がさらに検討を重ねた結果、LEDから蛍光体層への入射角度により蛍光体層中のLED光の通過距離が異なってしまうことが色ムラの一因であることが判明した。さらには蛍光体を透過した後のLED光は蛍光体層を透過する際の吸収及び散乱が少ない垂直方向が最も強くなる配光強度分布となるのに対し、蛍光体での励起光はもとより無指向な発光であるため配光強度分布も無指向となるという事実が確認された。結果これらの光の混合による白色光はLEDチップの上面方向や側面方向が青く、斜め方向が黄色くなるという本質的な配光色ムラが存在してしまう。
例えば青色LEDとYAG蛍光体からなる白色LEDにおいて直方体のLEDチップ表面に均一な蛍光体層を設けた場合でも、前記の課題として提示したように、LEDチップの上面方向や側面方向には青色成分を多く含む光が、斜め方向には黄色成分を多く含む光が出てしまう。
上記課題を解決するために、発光装置は、第1波長の光を出射する多面体からなる発光素子と、前記第1波長の光を前記第1波長よりも波長の長い第2波長の光に変換する蛍光体を含有する波長変換層と、を含む光源と、前記光源の光取出し側に設けられた透光性部材と、前記発光素子が載置される実装基板と、を備える発光装置であって、前記波長変換層は、前記発光素子の上面及び側面を覆う膜状であり、前記透光性部材は、前記実装基板の側面方向にまで設けられ、前記第1波長の光に対する屈折率が前記第2波長の光に対する屈折率よりも大きい材料で構成されており、前記透光性部材の外壁面は、少なくとも前記発光素子の側面に対向した位置に、前記発光素子の側面よりも大きく、且つ、前記実装基板の側面方向にまで設けられた凹状の光屈折面を有する
上記の発光装置には以下の構成を組み合わせることができる。
前記透光性部材の外壁面は、前記光源を中心とする球状の面と前記光屈折面とから構成されている。
前記透光性部材の外壁面は、さらに、前記発光素子の上面に対向した位置に凹状の光屈折面を有する。
前記発光素子の内部に位置する点を通り、前記光屈折面と対向する前記発光素子の面と垂直に交わる線と、前記透光性部材の外接球の中心と前記光屈折面の外周部とを結ぶ線と、のなす角θが12°〜24°である。
前記透光性部材の内壁面は、前記光源を中心とする球状の面から構成されている。
前記透光性部材はアッベ数νがν<50の材料からなる。
前記透光性部材はフリントガラスからなる。
本発明の発光装置によれば、光源よりも外側の光取り出し側に光屈折面を設けた透光性部材配置しこの領域に入出射する際の屈折角度を波長毎に変化させることにより、発光色毎に異なっている配向強度分布を近づけ、配向色ムラを改善し、全体として均一な発光色を得ることができる。
図1は実施の形態1の発光装置を示す断面模式図である。 図2は発光素子と光屈折面の関係を示す模式図である。 図3は透光性部材よりも封止部材の屈折率が高い場合の発光装置を説明する模式図である。 図4は透光性部材よりも封止部材の屈折率が低い場合の発光装置を説明する模式図である。 図5は実施の形態2の発光装置を示す断面模式図である。 図6は実施の形態3の発光装置を示す断面模式図である。 図7は実施の形態3の発光装置の一例を示す平面模式図である。 図8は実施例1、比較例1、比較例2の出射角度に対する色度の変化を示すグラフである。
実施の形態1
図1に、本発明の実施形態1に係る発光装置1を示す。図1に示すように、発光装置1は、実装基板10上に発光素子11が実装されている。発光素子11の表面は蛍光体を含有する波長変換層12で覆われている。波長変換層12は発光素子11の発光をそれよりも波長の短い光に変換する蛍光体を含む層であり、発光素子11の各面に沿って設けられている。発光素子11と波長変換層12を含む光源13の外側には透光性部材14が設けられており、発光素子11の上面に対向する位置に凹状の光屈折面16が設けられている。
透光性部材14には、発光素子11の発光に対する屈折率が波長変換層12における変換光に対する屈折率よりも大きい材料を用いる。凹状の光屈折面16によって光源13からの光が屈折されるが、このとき透光性部材14によって波長毎に異なる配光強度分布を持つ複数の光成分に対してそれぞれ異なった屈折をさせることで、各光成分の配光強度分布を近づけることができ、全体として均一な発光色を得ることができる。このような透光性部材14の材料としてはアッベ数が小さい材料を用いることができる。アッベ数が小さいほど波長分散が大きく、短波長に対する屈折率が長波長に対する屈折率よりも大きい。アッベ数が大きい材料、つまり波長分散が小さい材料を用いると、発光素子11の発光と波長変換層12で変換された光との屈折の差が小さくなり、透光性部材14から出射する光は光源から出射する際の配光をほぼ維持してしまうため、色ムラ低減度合いは小さい。本実施形態では、波長分散が大きい材料を透光性部材14として用いることで、図1に示すように発光素子11の発光が波長変換層12の変換光よりも大きく拡散させ、色ムラを低減している。図1では、実線の矢印が発光素子11において発光した光を示し、破線の矢印が波長変換層12において変換された光を示す。本実施形態では図1に示すように光屈折面16を発光素子11の上面に対向する位置に設けているので、最も発光の強い発光素子11の上面からの光を波長変換層12による変換光よりも大きく屈折させて色ムラを改善することができる。
透光性部材14の外壁面に設けられた光屈折面16によって、透光性部材14から出射する光源13からの光が屈折し、拡散される。このような光屈折面16は、発光素子11の面に対向する位置に設けられる。発光素子11の面に対向するとは、光屈折面16が発光素子11の面と対面していることを指し、図1に示すように発光素子11の面を平行移動させた面が光屈折面16の外周よりも内側に存在することを指す。つまり、発光素子11の面と垂直な方向からみて発光素子11の面が光屈折面16内に存在することを指す。
透光性部材14の外壁面に達する発光素子11の面からの光は通常、発光素子11の面から出射したときよりも広がるため、光屈折面16は対向する発光素子11の面よりも大きいことが好ましい。また、図2に示すように、発光素子11の内部に位置する点を通り、光屈折面16と対向する発光素子11の主面と垂直である仮想軸と、前記外接球の中心と光屈折面16の外周部を結ぶ線、とのなす角θが12°〜24°である範囲とすることが好ましい。そうすることで発光素子11の主面の面積に関わらず、光源13から発光素子11の主面に垂直な方向に近い角度で出射される光、つまり特に発光素子11からの透過光が強い光成分に対してのみ、波長依存をもつ光拡散を起こすことが可能となる。この範囲を下回る角度範囲となるような形状である場合は効果を及ぼす範囲が発光素子11の正面方向近傍のみとなってしまい、一方、この範囲を超える角度範囲となるような形状となる場合には、本来発光素子11の発光が弱い光成分が出射される角度範囲にまで波長依存をもつ光拡散を起こすこととなってしまう。また角θが24°より大きいと、透光性部材14表面への入射角度が大きくなり全反射臨界角を超えてしまう部分が増加してしまう。このため、角θを12°〜24°の範囲とすることで、光取り出し効率を向上し、色調を均一化できる。なお、透光性部材14は、透光性部材14に外接する球の中心が発光素子11の内部に存在する形状とすることが好ましく、このとき角θを規定する前述の仮想軸は透光性部材14の外接球の中心を通ることが好ましい。
また光屈折面16の平面視形状は、矩形等の多角形や略円形を選択することができる。平面視において、光屈折面16は発光素子11を中心とする形状とすることが好ましく、例えば発光素子11の面が正方形である場合は略円形や略正方形とし、発光素子11の面が長方形である場合は略長方形や略楕円とすることができる。光源13からの光を均等に拡散するためには、平面視形状を多角形よりも略円形とし、光屈折面16を曲面で構成された面とすることが好ましい。発行装置全体の色度ムラを均一化するためには平面視形状を略円形とすることが好ましい。
図1に示すように光屈折面16の断面は凹状であり、発光素子11の面と対面する部分が最も深い凹状とすることが好ましい。具体的には透光性部材14の外に中心を有する円弧の一部とすることができる。光屈折面16が凸状であると透光性部材14の外で集光されて熱が集中する危険性があるため、凹状とすることで光源13からの光を広角に屈折させる。光屈折面16は、半球面もしくは円筒面の一部で構成されることが好ましく、発光素子11の主面に垂直な断面が円弧状となる凹面であることが好ましい。
光屈折面16を除く透光性部材14の外壁面は、光源13を中心とする球状の面であることが好ましく、特に発光素子11を中心とする球状の面であることが好ましい。このような面とすることで、光源13から直進する光を屈折させずに取り出すことができる。前述のように発光素子11の光は発光素子11の面と略垂直な方向へ出射する光が強く、角部付近などそれ以外の方向へ出射する光は弱いため、発光素子11の面と対向する位置に光屈折面16を設けて発光素子11の光を大きく屈折させ、それ以外では波長変換層12における変換光と共にほぼ屈折させずに取り出すことで、色ムラを改善できる。
以下、本実施形態において発光装置を構成する各部材について詳細に説明する。
(発光素子11)
発光素子11は、半導体から成る発光層を備えたものであれば良い。特に窒化物半導体から成る発光層、中でも窒化ガリウム系化合物半導体(特にInGaN)から成る発光層を備えた発光素子であれば、可視光域の短波長域や近紫外域で強い発光が可能であるため、蛍光体と好適に組み合わせることができる。発光素子11は、発光層から出力される出射光の発光ピーク波長が近紫外線から可視光の短波長領域である240nm〜500nm付近、好ましくは380nm〜420nm、さらに好ましくは450nm〜470nmにある発光スペクトルを有することが望ましい。この波長域で発光をする発光素子であれば、種々の蛍光体との組合せにより、所望の色、特に白色光の発光が可能となる。尚、発光素子11は、ZnSe系、InGaAs系、AlInGaP系などの半導体から成る発光層を有するものでも良い。
波長変換層12を発光素子11の各面に沿って形成するためには、発光素子11の基板側を上面としてフェースダウン実装することが好ましい。発光素子11の基板は除去してもよい。これにより、発光素子11の上面を平坦とでき、また発光素子の電極と実装基板側の配線とを接続するワイヤが不要となるので、膜厚が均一な波長変換層12を形成しやすい。
(波長変換層12)
波長変換層12は、発光素子11の発光の一部を吸収して異なる波長の光を発光可能なものであり、発光素子11の各面に沿って形成される。例えば電気泳動沈着法、スクリーン印刷、板状の蛍光体の接着などにより均一な厚みの蛍光体層を形成することができる。波長変換層12は、蛍光体をガラスや樹脂などに含有させた部材でも良いし、蛍光体の結晶やアモルファス体自身から成る部材であっても良い。
蛍光体としては、特に、近紫外光や可視光で励起されるものが好ましい。特に、発光素子11が青色発光素子であり、白色の発光装置を構成したい場合には、波長変換物質として青色で励起されて黄色のブロードな発光を示す蛍光体を用いることが好ましい。このような蛍光体として、例えば、セリウムで付活されたガーネット構造を持つ蛍光体(特に、セリウムで付活され、アルミニウムを含みガーネット構造を持つ蛍光体)が挙げられる。セリウムで付活された蛍光体は、黄色にブロードは発光を示すため、青色発光との組合せによって演色性の良い白色を実現できる。また、ガーネット構造、特にアルミニウムを含むガーネット構造の蛍光体は、熱、光、水分に強く、高輝度な黄色発光を長時間維持することができる。例えば、波長変換物質として、(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Lu、Tbからなる群より選択される少なくとも一種の元素である。)で表されるYAG系蛍光体(一般にYAGと略記される)を用いることが好ましい。また、黄色蛍光体の他に、LuAl12:Ce、BaMgAl1017:Eu、BaMgAl1017:Eu,Mn、(Zn,Cd)Zn:Cu、(Sr,Ca)10(POCl:Eu,Mn、(Sr,Ca)Si:Eu、CaAlSiB3+x:Eu及びCaAlSiN3:Euなどの蛍光体を用いて演色性を調整することもできる。
蛍光体を含有させる部材としては、発光素子11の光に対して透光性を持つ有機材料や無機材料を用いることができる。有機材料としては、透光性を持つ樹脂が好ましい。例えば、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた樹脂も利用できる。また、無機材料としては、ガラス等のアモルファス材料、無機結晶、セラミックなどを用いることができる。尚、前述の通り、波長変換物質である蛍光体の結晶やアモルファス体自身を波長変換層とした場合には、透光性部材は不要となる。
(透光性部材14)
透光性部材14には、光源13からの光を透過させる透光性の材料であって、発光素子11の発光に対する屈折率が波長変換層12における変換光に対する屈折率よりも大きいものを用いる。色ムラ改善の効果を得るためにはアッベ数νがν<50の材料を用いることが好ましく、ポリカーボネート、フリントガラスを用いることができる。透光性部材14の形成方法としては、例えばプラスチック材料を用いる場合は射出成型により作製でき、ガラス材料を用いる場合はプレス成型、機械加工などで作製できる。
図1に示すように透光性部材14と発光素子11との間に封止部材15を設けてもよい。特に透光性部材14としてフリントガラスを用いる場合は、光源13との間に空隙なく設けることが困難であるため、透光性部材14と光源13との接着剤として熱硬化性樹脂からなる封止部材15を設けることが好ましい。このとき透光性部材14の内壁面の形状は、光源13を中心とする球状の面であることが好ましい。また接着剤やビス止めなどによって透光性部材14を実装基板10に直接固定して、樹脂等を介在させずに形成することもできる。このような気密封止であれば、光源13からの光起因の樹脂着色による光取り出し効率の低下を防止できる。
封止部材15が透光性部材14よりも低屈折率の場合、図3(b)に示すように内壁面の断面が矩形状であれば透光性部材14と封止部材15との界面で全反射が起こりやすく、透光性部材14を通過する光が減少してしまう。内壁面を球状の面とすることで、図3(a)に示すように光取り出し効率を向上させることができる。一方、封止部材15が透光性部材14よりも高屈折率の場合には、図4(b)に示すように内壁面の断面が矩形状であると封止部材15から透光性部材14に入射した際にも屈折が起こってしまうため、光源13からの光が透光性部材14から出射するまでに複数回の屈折を経ることとなり、発光素子11の発光と波長変換層12による変換光との屈折の差が小さくなってしまう。透光性部材14の内壁面を球状の面とすることで、図4(a)に示すように特に光源13から直進した光を屈折させずに透光性部材14の外壁面に到達させることができ、色ムラ改善効果が弱められることを防止することができる。なお、図4において、発光素子11の発光を実線の矢印で示し、波長変換層12による変換光を破線の矢印で示す。更に好ましくは、透光性部材14の内壁面を、光屈折面16を除く外壁面と同じ中心を有する球状の面とする。
(実装基板10)
実装基板10は、表面に発光素子11と電気的に接続される配線を形成したものであれば良い。本実施の形態では、平板状の絶縁部材に配線を形成して実装基板10としている。絶縁部材として、窒化アルミニウムやアルミナ等のセラミック、ガラスを用いることができる。また、Si等の半金属あるいは金属の表面に窒化アルミニウム等の絶縁性の薄膜層を形成して用いても良い。これらの実装基板10は放熱性が高いため、好ましい。また、配線は、イオンミリング法或いはエッチング法等によって金属層のパターニングを施すことによって形成できる。例えば、窒化アルミニウムの表面に白金薄膜等からなる配線パターンを形成できる。更に、配線パターンを保護する目的で、SiO2等の薄膜からなる保護膜を形成してもよい。
実施の形態2
図5は、実施の形態2に係る発光装置を示す模式断面図である。本実施の形態では、透光性部材14よりも小さい実装基板10上に発光素子11を設けており、光屈折面16を発光素子11の側面に対向して設けている。その他の点は、実施の形態1と同様である。
発光素子11の側面に対向する位置に光屈折面16を設けることにより、発光素子11の側面において発光素子11の発光を大きく拡散させることができ、色ムラを改善できる。また側面の波長変換層12を薄くして光源13の幅を小さくする場合、単に上面よりも側面の波長変換層12を薄くすると側面から出射する発光素子11の光が相対的に強くなってしまう。図5に示すように側面と対抗する光屈折面を設けることで、発光素子11の光が強い側面において発光素子11の光を大きく屈折させて色ムラを改善させることができる。
本実施の形態のように光屈折面16を発光素子11の側面に対応した位置に設ける場合は、実装基板10を透光性部材14よりも小さいものとすることが好ましい。光源13の側面から出射される光を遮る実装基板10を小さくすることで効率よく取り出すことができる。また図5に示すように実装基板10の側面まで透光性部材14が設けられているので、発光素子11の側面を中心とする光屈折面16を設けることができる。
図5に示すように、光屈折面16は発光素子11の側面に対向する位置に設けられており、光屈折面16の内部に対向する発光素子11の側面が位置するように設けられている。実施の形態1と同様に、光屈折面16は対向する発光素子11の面よりも大きいことが好ましく、発光素子11の内部に位置する点を通り、光屈折面16に対向する前記発光素子11の側面と垂直である仮想軸と、前記外接球の中心と光屈折面16の外周部を結ぶ接線、とのなす角θが12°〜24°となる範囲とすることが好ましい。なお図5に示す発光装置のように遮光性の実装基板10上に発光素子11が配置された場合は、発光素子11からの発光の一部が実装基板10によって遮られるため、実装基板10が存在する下面側においては角θが12°より小さくてもよい。透光性部材14は、透光性部材14に外接する球の中心が発光素子11の内部に存在する形状とすることが好ましく、このとき角θを規定する前述の仮想軸は透光性部材14の外接球の中心を通ることが好ましい。また、一般に発光素子11の側面は長方形であるため、光屈折面16は発光素子11の側面の長辺に沿って長い形状とすることが好ましい。これにより、透光性部材14の外壁面のうち側面から出射した強い光が到達する部分を光屈折面16とし、それ以外の部分を屈折が起こりにくい球面として、強度の大きい発光素子11の発光のみを大きく屈折させることができる。その他の構成については、実施の形態1と同様の構成を採用することができる。
実施の形態3
図6は、実施の形態3に係る発光装置を示す模式断面図である。本実施の形態では、光屈折面として、発光素子11の上面に対向する第1光屈折面16aと、発光素子11の側面に対向する第2光屈折面16bとを設けている。その他の点は、実施の形態2と同様である。
発光素子11の上面及び側面のそれぞれに対向する位置に光屈折面を設けることで、発光素子11の発光の強い各面からの光を光屈折面において波長変換層12による変換光よりも大きく屈折させて拡散させることで、色ムラが低減された発光装置とすることができる。発光素子11の各面から出射する光が透光性部材14の外壁面においてどの程度の範囲に到達するかは通常各面の面積に依存するため、光屈折面の大きさは対向する発光素子11の面に応じて調整することが好ましい。例えば図6に示すように断面において発光素子11の上面が側面よりも大きい場合は、発光素子11の上面に対向する第1光屈折面16aを側面に対向する第2光屈折面16bよりも大きくすることが好ましい。また一般に発光素子11の上面からの発光は側面からの発光よりも強い傾向にあるため、発光素子11の上面に対向した第1光屈折面16aを第2光屈折面16bよりも深い凹状の面として上面において大きく屈折させて拡散させることで、発光素子11の上面と側面における発光強度の差を緩和でき、さらに色ムラを改善できる。第1光屈折面16a及び第2光屈折面16bの詳細な構造については、実施の形態1又は2と同様のものを採用できる。その他の構成についても同様である。
平面視における第1光屈折面16a及び第2光屈折面16bの一例を図7に示す。図7において発光素子11の位置は破線で示す。図7は複数の第2光屈折面16bを発光素子11の側面に対向した位置にそれぞれ設ける例である。発光素子11の側面間における発光素子11の光は側面と対向する位置よりも相対的に弱い光となるため、図7に示すように発光素子11の側面に対向した位置にそれぞれ第2光屈折面16bを設けることで、発光素子11の光が相対的に弱い第2光屈折面16b間において光源からの光を屈折させずに取り出すことができ、色ムラをさらに改善できると考えられる。また、第2光屈折面16bを一繋がりとすることもできる。第2光屈折面16bを一繋がりに設ける透光性部材14であれば容易に製造することができる。加えて、透光性部材を配置する際に、発光素子11の側面との位置合わせを考慮する必要がないため、生産性に優れる。
以上の実施形態は単なる例示であり、本件発明はこれらに限定されない。例えば、実施の形態3で説明した第2光屈折面16bを、実施の形態2の発光装置に形成しても良い。また、本件発明の各要素は、上記実施の形態で説明した部材で構成する場合に限られず、発明の複数の要素を単一の部材で構成したり、一つの要素を複数の部材で構成することもできる。
実施例1として、図1に示す構造の発光装置を以下の方法で作製する。
まず、配線電極および反射膜が形成されたLEDパッケージ基板10の配線電極上に発光素子11として発光波長約450nmのInGaN系青色LEDチップをフェースダウン実装する。LEDチップと配線電極の接続はペースト状のAu、Snを用いた共晶接合によって行う。
次に基板シート上に並んだLEDチップの側面および上面に熱硬化性のシリコーン樹脂を少量塗布し、波長変換層12として所定のサイズに切り出したYAGを含有するセラミックス板を貼り付けた後、150℃で600sec硬化させる。その後、YAG含有セラミックス板の表面を熱硬化性のシリコーン樹脂でコーティングしさらに150℃で4時間硬化させ、封止材15とする。
得られるチップ状のLED基板に対し透光性部材14として光学ガラスからなるレンズを光源にかぶせるように接着する。レンズはSCHOTT製SF57HHTを用いて形成し、内側に半球状の凹みを設けてある。SCHOTT製SF57HHTのアッベ数は約23.6であり、589nmにおける屈折率は約1.846、486nmにおける屈折率は約1.872、波長460nmでの25mm厚透過時の透過率は約98%である。このとき光源とレンズの間の空隙はゲル状のシリコーン樹脂を用いた封止材15によって封止および接着を同時に行う。
(比較例1)
比較例1として、レンズとしてアッベ数50程度のシリコーン樹脂を用いる点が実施例1と異なる発光装置を作製する。レンズ形状も実施例1のものと同様である。
(比較例2)
比較例2として、レンズの形状を指向性に影響を与えない半球状のものとする点が比較例1と異なる発光装置を作製する。
実施例1、比較例1、比較例2の発光装置について、発光時の出射角度に対する色度の変化を図8に示す。色度の変化はXYZ表色系におけるy値で示す。このとき比較例2は屈折作用を持つレンズ面を持たないことから、封止材で覆われた光源から出射された光の配向色度をそのまま反映した結果となる。この配向をもつ光線をレンズ形状のシリコーン樹脂で拡散させた結果が比較例1である。指向特性としては拡散されているため、配向色度データは角度方向に対して広がっているが、青色成分と黄色成分は同様の屈折にて拡散するため、白色としての色調には変化が見られない。一方、実施例1の発光装置は白色光がレンズ面にて拡散される際に、青色成分は高い屈折率によって黄色成分よりも大きな角度で屈折し拡散されるため、正面方向では黄色成分の割合が増加する。これにより、正面方向では比較例1及び比較例2よりもy値が増加し、また拡散方向では青色成分の割合が増加することでy値が低下する。その結果全体としてのy値の変化が小さくなり、比較例1及び比較例2の発光装置よりも色ムラが改善された発光装置となる。
実施例2として、レンズの材料としてポリカーボネートを用いる点が実施例1と異なる発光装置を作製する。レンズには、アッベ数が30付近であり、589nmにおける屈折率が約1.578、486nmにおける屈折率が約1.598であるポリカーボネートを用いる。発光時の出射角度に対する色度を測定すると、正面方向では比較例1及び比較例2よりもy値が増加する一方、拡散方向ではy値が低下しており、全体としてのy値の変化が小さくなる。これにより、比較例1及び比較例2の発光装置よりも色ムラが改善された発光装置が得られる。
1 発光装置
10 実装基板
11 発光素子
12 波長変換部材
13 光源
14 透光性部材
15 封止部材
16 光屈折面、16a 第1光屈折面、16b 第2光屈折面

Claims (9)

  1. 第1波長の光を出射する多面体からなる発光素子と、前記第1波長の光を前記第1波長よりも波長の長い第2波長の光に変換する蛍光体を含有する波長変換層と、を含む光源と、前記光源の光取出し側に設けられた透光性部材と、前記発光素子が載置される実装基板と、を備える発光装置であって、
    前記波長変換層は、前記発光素子の上面及び側面を覆う膜状であり、
    前記透光性部材は、前記実装基板の側面方向にまで設けられ、前記第1波長の光に対する屈折率が前記第2波長の光に対する屈折率よりも大きい材料で構成されており、
    前記透光性部材の外壁面は、少なくとも前記発光素子の側面に対向した位置に、前記発光素子の側面よりも大きく、且つ、前記実装基板の側面方向にまで設けられた凹状の光屈折面を有する発光装置。
  2. 前記透光性部材の外壁面は、前記光源を中心とする球状の面と前記光屈折面とから構成されている請求項1に記載の発光装置。
  3. 前記透光性部材の外壁面は、さらに、前記発光素子の上面に対向した位置に凹状の光屈折面を有する請求項1又は2に記載の発光装置。
  4. 前記発光素子の内部に位置する点を通り、前記光屈折面と対向する前記発光素子の面と垂直に交わる線と、前記透光性部材の外接球の中心と前記光屈折面の外周部とを結ぶ線と、のなす角θが12°〜24°である請求項1〜のいずれか1項に記載の発光装置。
  5. 前記透光性部材の内壁面は、前記光源を中心とする球状の面から構成されている請求項1〜のいずれか1項に記載の発光装置。
  6. 前記透光性部材はアッベ数νがν<50の材料からなる請求項1〜のいずれか1項に記載の発光装置。
  7. 前記透光性部材はフリントガラスからなる請求項に記載の発光装置。
  8. 前記波長変換層は、前記発光素子の上面においてよりも前記発光素子の側面において薄い請求項1〜7のいずれか1項に記載の発光装置。
  9. 前記発光素子の側面は長方形であり、前記光屈折面は前記発光素子の側面の長辺に沿って長い形状である請求項1〜8のいずれか1項に記載の発光装置。
JP2009154490A 2009-06-30 2009-06-30 発光装置 Active JP5332960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154490A JP5332960B2 (ja) 2009-06-30 2009-06-30 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154490A JP5332960B2 (ja) 2009-06-30 2009-06-30 発光装置

Publications (2)

Publication Number Publication Date
JP2011014555A JP2011014555A (ja) 2011-01-20
JP5332960B2 true JP5332960B2 (ja) 2013-11-06

Family

ID=43593206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154490A Active JP5332960B2 (ja) 2009-06-30 2009-06-30 発光装置

Country Status (1)

Country Link
JP (1) JP5332960B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899508B2 (ja) 2011-04-28 2016-04-06 パナソニックIpマネジメント株式会社 発光装置及びそれを用いた照明装置
KR101943958B1 (ko) * 2011-11-15 2019-01-30 엘지디스플레이 주식회사 발광 다이오드 패키지 및 이를 구비한 백라이트 유닛
KR102059032B1 (ko) * 2013-01-07 2020-02-11 엘지이노텍 주식회사 발광 소자 패키지
US9758434B2 (en) 2015-06-01 2017-09-12 Saint-Gobain Ceramics & Plastics, Inc. Refractory articles and methods for forming same
JP6365592B2 (ja) 2016-05-31 2018-08-01 日亜化学工業株式会社 発光装置
US10578278B2 (en) * 2017-06-05 2020-03-03 Lumileds Holding B.V. Optical lens for extremely thin direct-lit backlight
US11242977B2 (en) 2017-07-26 2022-02-08 Lumileds Llc Illumination device with element having annular coating
CN115290000B (zh) * 2022-09-26 2022-12-16 武汉誉城九方建筑有限公司 一种钢筋直线度检测装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896383B2 (ja) * 2003-09-25 2012-03-14 パナソニック株式会社 Led光源およびその製造方法
JP3875247B2 (ja) * 2004-09-27 2007-01-31 株式会社エンプラス 発光装置、面光源装置、表示装置及び光束制御部材
JP4923408B2 (ja) * 2005-01-26 2012-04-25 パナソニック株式会社 発光装置の製造方法
US20070075306A1 (en) * 2005-09-22 2007-04-05 Toyoda Gosei Co., Ltd. Light emitting device
JP2008153466A (ja) * 2006-12-18 2008-07-03 Matsushita Electric Works Ltd 発光装置
JP4500328B2 (ja) * 2007-06-11 2010-07-14 株式会社 日立ディスプレイズ 液晶表示装置
JP4551948B2 (ja) * 2007-06-13 2010-09-29 シャープ株式会社 線状光源装置、面発光装置、面状光源装置、および、液晶表示装置
JP4436396B2 (ja) * 2007-09-28 2010-03-24 株式会社プラテック 照明モジュール、光源ユニット及び照明器具

Also Published As

Publication number Publication date
JP2011014555A (ja) 2011-01-20

Similar Documents

Publication Publication Date Title
US9634203B2 (en) Light emitting device, surface light source, liquid crystal display device, and method for manufacturing light emitting device
JP5332960B2 (ja) 発光装置
JP6519311B2 (ja) 発光装置
US8482016B2 (en) Semiconductor light-emitting device and manufacturing method
JP5515992B2 (ja) 発光装置
TWI766032B (zh) 發光裝置及發光裝置之製造方法
KR20130099210A (ko) 광전자 반도체 컴포넌트
JP2011129661A (ja) 発光装置
US20110248623A1 (en) Light emitting device
US11168865B2 (en) Light-emitting device and backlight
KR102607320B1 (ko) 발광 장치
US20190198719A1 (en) Light emitting device, light source device, and display device
US20240047631A1 (en) Light emitting module and liquid crystal display device
US10014453B2 (en) Semiconductor light-emitting device emitting light mixtures with substantially white tone
JP7248935B2 (ja) 発光装置
JP2023001231A (ja) 発光装置
JP2020107837A (ja) 発光装置とその製造方法
JP5678462B2 (ja) 発光装置
JP6024685B2 (ja) 発光装置
JP2019083343A (ja) 発光装置
JP7417067B2 (ja) 発光装置
US11796154B2 (en) Lighting module, lighting device and lamp
US11855242B2 (en) Light emitting device and method of manufacturing the same
JP2018166197A (ja) Led装置、led発光色変換用蛍光体含有シート及びled装置の製造方法
JP2023064944A (ja) 発光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250