WO2012049806A1 - 無線通信システム - Google Patents

無線通信システム Download PDF

Info

Publication number
WO2012049806A1
WO2012049806A1 PCT/JP2011/004994 JP2011004994W WO2012049806A1 WO 2012049806 A1 WO2012049806 A1 WO 2012049806A1 JP 2011004994 W JP2011004994 W JP 2011004994W WO 2012049806 A1 WO2012049806 A1 WO 2012049806A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
relay
wireless terminal
terminal
radio
Prior art date
Application number
PCT/JP2011/004994
Other languages
English (en)
French (fr)
Inventor
山本 雅弘
堀池 良雄
木場 康雄
崇士 渡邊
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180049589.9A priority Critical patent/CN103168435B/zh
Priority to JP2012538556A priority patent/JP5603949B2/ja
Priority to EP11832252.8A priority patent/EP2629437A1/en
Priority to US13/878,339 priority patent/US20130215821A1/en
Publication of WO2012049806A1 publication Critical patent/WO2012049806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to a radio communication system comprising at least a parent radio terminal, a relay radio terminal, and a child radio terminal, in particular, the parent radio terminal and the relay radio terminal are configured to be able to transmit a beacon signal,
  • the relay wireless terminal and the child wireless terminal can receive a beacon signal transmitted from the parent wireless terminal or another relay wireless terminal, and can synchronize the time with the transmission source wireless terminal.
  • the present invention relates to a wireless communication system.
  • the parent wireless terminal can perform wireless communication with a large number of child wireless terminals, but the child wireless terminal is installed. Depending on the location, direct wireless communication may not be possible with the parent wireless terminal. In such a case, a relay radio terminal that relays and transmits a radio signal is used. Only one relay wireless terminal may be interposed between the parent wireless terminal and an arbitrary child wireless terminal, or there may be two or more relay wireless terminals.
  • Such a battery-driven child radio terminal is generally configured to intermittently wait for reception of a radio signal from a parent radio terminal or a relay radio terminal in order to suppress power consumption of the child radio terminal. Has been.
  • a beacon signal is periodically transmitted from a parent wireless terminal or a relay wireless terminal (higher device), and the child wireless terminal (lower device) periodically receives the beacon signal.
  • the parent wireless terminal, the relay wireless terminal, and the child wireless terminal have a built-in clock, and the child wireless terminal (or the relay wireless terminal that is a lower-level device) receives the beacon signal and transmits its own clock to the source of the beacon signal.
  • the child wireless terminal (or the relay wireless terminal that is a lower-level device) receives the beacon signal and transmits its own clock to the source of the beacon signal.
  • the child wireless terminal intermittently waits for reception of polling data from the parent wireless terminal at a predetermined timing after the clock is set.
  • Such a wireless communication method (so-called synchronization method) is generally effective for power saving of a child wireless terminal.
  • An example of a wireless communication system that employs such a synchronization method is a fire alarm system disclosed in Patent Document 1.
  • a fire alarm device serving as a parent station (parent wireless terminal), a fire alarm device serving as a slave station (child wireless terminal), and a relay device that relays radio signals communicated by these fire alarm devices ( Relay radio terminal).
  • the fire alarm of the master station transmits a fire alarm message to the fire alarm of the slave station or receives a fire alarm message from one of the slave stations, and then the first synchronization signal (beacon) Signal).
  • the fire alarm message is included in the first synchronization signal and repeatedly transmitted. Is going.
  • the repeater receives the first synchronization signal from the fire alarm of the master station, the repeater transmits a second synchronization signal having the same cycle as the first sync signal, but sends a fire alarm message from the fire alarm of the master station. While receiving (that is, receiving the first synchronization signal including the fire alarm message), include the fire alarm message in the second synchronization signal and relay it to the fire alarm of the slave station. Yes.
  • the beacon signal (second synchronization signal) from the relay wireless terminal is transmitted from the beacon signal (second alarm signal) from the parent wireless terminal (master fire alarm device). Is transmitted immediately after this, and the clock of the lower-level wireless terminal is adjusted.
  • the polling data (fire alarm message) from the parent wireless terminal is sent to the beacon signal ( Is superimposed on a beacon signal (second synchronization signal) from a relay wireless terminal.
  • the child wireless terminal can receive the polling data from the parent wireless terminal by receiving the beacon signal (second synchronization signal) transmitted by the relay wireless terminal. According to such a configuration, it is possible to transmit polling data from a parent wireless terminal to a child wireless terminal without causing a large delay even when a relay wireless terminal is interposed.
  • the terminal information generated by the slave radio terminal is transmitted as the terminal call data (response message) via the relay radio terminal (repeater) to the master radio terminal (master station fire). Alarm).
  • the fire alarm of the master station stores the frame order at the head of the transmitted / received radio signal.
  • the fire alarm of the slave station estimates the timing of switching to the reception state of the master station based on the order of the frames stored in the received radio signal. The estimation of the switching timing is the same when the repeater behaves like a slave station.
  • the child wireless terminal when the child wireless terminal (slave station fire alarm) should send the terminal call data (response message) at the parent wireless terminal (parent station fire alarm) Managed (frame order), the child radio terminal transmits terminal call data at a timing instructed by the parent radio terminal (timing estimated based on the frame sequence). Similarly, the transmission timing of the relay wireless terminal (relay device) to the parent wireless terminal is also managed by the parent wireless terminal, and terminal call data is relayed and transmitted at the timing indicated by the parent wireless terminal.
  • the period during which the master station is switched to the reception state is divided into a plurality of time slots, and each slave station (or repeater) is assigned a specific A radio signal including a response message is stored in the time slot and is sent back to the master station.
  • this time slot is defined by the first synchronization signal, and one period of the first synchronization signal is divided into a plurality of time slots.
  • the parent wireless terminal divides the transmission interval of the beacon signal (first synchronization signal) transmitted by the own station into a plurality of time slots, and wireless terminals (child wireless terminals and relay wireless terminals) that are lower-level devices Is assigned one time slot.
  • Each subordinate device (child radio terminal or relay radio terminal) transmits a radio signal in the assigned predetermined time slot.
  • Patent Document 1 can avoid a large delay in the transmission of polling data from the parent wireless terminal to the child wireless terminal, there is a possibility that a large delay in the transmission of terminal call data may occur.
  • the number of times polling data is received by the child wireless terminal may increase and power consumption may increase.
  • the terminal call data generated by the child radio terminal is transmitted at a predetermined transmission timing (that is, a predetermined time slot) and received by the relay radio terminal. If the transmission timing (predetermined time slot) of the terminal has already passed, the terminal call data of the terminal call data from the reception of the next beacon signal (first synchronization signal) from the parent wireless terminal until the predetermined time slot is reached. It is necessary to wait for relay transmission. That is, since the terminal call data from the child radio terminal may be relayed to the parent radio terminal with a beacon signal transmission cycle delayed by one or more times, a large delay occurs in the transmission of the terminal call data. There is a fear.
  • the polling signal is superimposed on the beacon signal in order to avoid a significant delay in the transmission of polling data. Therefore, the child radio terminal receives the beacon signal in the same cycle as the beacon signal (first synchronization signal or second synchronization signal) periodically transmitted from the host device (parent radio terminal or relay radio terminal). . As a result, the child radio terminal may receive a beacon signal more frequently than necessary, and the power consumption of the child radio terminal may increase.
  • the present invention has been made to solve such a problem, and suppresses an increase in power consumption of a child wireless terminal with a simple configuration, and terminal call data from the child wireless terminal to the parent wireless terminal.
  • An object of the present invention is to provide a wireless communication system capable of effectively suppressing or avoiding the occurrence of a large delay during relay transmission.
  • a wireless communication system includes a plurality of wireless communication devices.
  • the wireless communication device a plurality of child wireless terminals at the lowest level, and these child wireless terminals
  • a wireless communication system comprising a highest parent wireless terminal that performs wireless communication between the wireless communication terminal and a relay wireless terminal that is interposed between the child wireless terminal and the parent wireless terminal and relays wireless communication between them.
  • the parent radio terminal and the relay radio terminal are configured to periodically transmit a beacon signal to a lower radio communication apparatus, and the relay radio terminal and the child radio terminal It is configured to periodically receive the beacon signal transmitted from the communication device and synchronize its own internal clock with the internal clock of the higher-level wireless communication device, the parent radio terminal or the relay radio
  • the time from the previous higher-order beacon transmission time point when the end transmits the beacon signal to the lower-order beacon transmission time point when the lower relay radio terminal transmits the first beacon signal after the previous higher-order beacon transmission time point Is the first beacon transmission interval
  • the higher order beacon transmission is the time when the higher order parent wireless terminal or relay wireless terminal transmits the first beacon signal after the lower order beacon transmission time after the lower order beacon transmission time.
  • the first beacon transmission interval is set to be longer than the second beacon transmission interval when the time until the time is the second beacon transmission interval.
  • the present invention suppresses an increase in power consumption of a child wireless terminal with a simple configuration, and causes a large delay in relay transmission of terminal call data from the child wireless terminal to the parent wireless terminal. It is possible to provide a wireless communication system that can be effectively suppressed or avoided.
  • FIG. 1 is a block diagram which shows an example of a principal part structure of the radio
  • FIG. 3 is a schematic diagram showing a relationship of slot positions among the wireless communication devices constituting the wireless communication system shown in FIG. 2.
  • FIG. 5 is a schematic diagram illustrating a main part of a slot position relationship between the wireless communication devices illustrated in FIG. 4.
  • FIG. 5 is a schematic diagram illustrating an example of relay transmission when data transmission from a parent wireless terminal to a child wireless terminal is performed in the wireless communication system having the slot position relationship illustrated in FIG. 4.
  • (A) is a schematic diagram which shows an example of a structure of the link connection request signal transmitted / received between each radio
  • (b) is shown to (a). It is a schematic diagram which shows an example of a structure of one repeating frame contained in a link connection request signal.
  • FIG. 5 is a schematic diagram illustrating an example of relay transmission when data transmission from a child wireless terminal to a parent wireless terminal is performed in the wireless communication system having the slot position relationship illustrated in FIG. 4.
  • 5 is a timing chart showing an example of radio signal communication when a child radio terminal newly enters the radio communication system in the slot position relationship shown in FIG. 4.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a data communication signal transmitted / received between wireless communication devices configuring the wireless communication system illustrated in FIG. 2.
  • (A) is a schematic diagram which shows an example of a structure of the route information contained in the signal for data communication shown in FIG. 11,
  • (b) is the 1st to 7th bytes of the route information shown in (a).
  • It is a schematic diagram which shows an example of a structure of the relay terminal information stored
  • (c) is a schematic diagram which shows an example of a structure of the slot position information stored in the 8th byte of the route information shown to (a). .
  • the wireless communication system includes a plurality of wireless communication devices, and as the wireless communication device, a plurality of child wireless terminals at the lowest level and a top-level wireless communication between these child wireless terminals
  • a wireless communication system comprising a parent wireless terminal and a relay wireless terminal that is interposed between the child wireless terminal and the parent wireless terminal and relays wireless communication between them, the parent wireless terminal and the
  • the relay radio terminal is configured to periodically transmit a beacon signal to a lower radio communication device, and the relay radio terminal and the child radio terminal are configured to transmit the beacon signal transmitted from the upper radio communication device. Is periodically received and the internal clock of the local station is synchronized with the internal clock of the higher-level wireless communication device, and the parent wireless terminal or the relay wireless terminal transmits the beacon signal.
  • the first beacon transmission interval is set to be longer than the second beacon transmission interval when two beacon transmission intervals are set.
  • the lower relay wireless terminal transmits a beacon signal to the lower wireless communication device. Immediately after the reception, the wireless communication with the lower wireless communication device is enabled, and immediately after receiving the beacon signal from the higher wireless communication device, the wireless communication with the higher wireless communication device is performed. It becomes possible.
  • the lower relay radio terminal can receive the terminal call data from the child radio terminal immediately after transmitting the beacon signal to the lower radio communication apparatus.
  • the relay radio terminal can relay and transmit the terminal call data in accordance with the timing at which the terminal call data is transmitted from the child radio terminal, so that the operation time of the child radio terminal can be shortened and the configuration is simple. An increase in power consumption of the child radio terminal can be suppressed.
  • the lower relay radio terminal receives the beacon signal transmitted from the upper radio communication device soon after receiving the terminal call data, and immediately thereafter, receives the terminal call data from the upper radio communication device. Can be sent. As a result, the occurrence of a large delay in relay transmission of terminal call data is suppressed, and rapid wireless communication becomes possible.
  • the wireless communication performed between the upper and lower wireless communication devices is periodically performed so as to repeat one period divided into a plurality of time slots, and each time slot Is divided into a lower slot for performing wireless communication with the lower wireless communication device and an upper slot for performing wireless communication with the upper wireless communication device following the lower slot.
  • a beacon transmission slot for transmitting the beacon signal and a link connection for link connection between the lower radio communication apparatus following the beacon transmission slot.
  • the lower slot of the reference station corresponds to the upper slot of the child wireless terminal
  • the upper slot of the reference station is the lower slot of the upper wireless communication device. It may be a configuration in which the periods correspond to each other.
  • the first beacon transmission interval and the second beacon transmission interval can be set in accordance with a specific time slot.
  • the relay radio terminal is configured to perform link connection in a lower slot that transmits the beacon signal, and when the upper radio communication apparatus of the reference station is a relay radio terminal In the wireless communication of each of the upper relay radio terminal, the reference station, and the child radio terminal, the lower slot that performs link connection in the reference station corresponds to the upper slot that performs link connection of the child radio terminal.
  • a configuration may be adopted in which the period is made to correspond to the lower slot that performs link connection in the upper relay radio terminal.
  • the upper slot or the lower slot for performing link connection is associated with the reference station, the upper radio communication apparatus, and the lower radio communication apparatus, the link connection between the radio communication apparatuses.
  • the interval can be made as short as possible.
  • the child radio terminal is configured to perform link connection in an upper slot once in a plurality of times, and the radio communication of each of the reference station and the child radio terminal is performed by subordinate to the reference station.
  • a configuration may be adopted in which the period is made to correspond to the slot so that the slot corresponds to the upper slot that performs the earliest link connection of the child radio terminal.
  • the relay wireless terminal and the child wireless terminal are configured to perform an intermittent reception standby operation periodically in order to receive a wireless signal from a higher-order parent wireless terminal or a relay wireless terminal,
  • the intermittent reception standby cycle of the child wireless terminal may be longer than the intermittent reception cycle of the relay wireless terminal.
  • the relay wireless terminal waits for polling data reception from the parent wireless terminal at a cycle shorter than the beacon signal transmitted by the parent wireless terminal, the relay transmission does not cause a large delay in the relay transmission of the polling data. It can be performed.
  • FIG. 1 (a) to 1 (c) are block diagrams showing an example of a main configuration of the wireless communication apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 (a) is a wireless communication functioning as a parent wireless terminal.
  • FIG. 1B illustrates a configuration example of a wireless communication device that functions as a relay wireless terminal, and
  • FIG. 1C illustrates a configuration example of a wireless communication device that functions as a child wireless terminal.
  • FIG. 2 is a schematic diagram showing an example of a wireless communication system according to Embodiment 1 of the present invention, which is configured using the wireless communication apparatus shown in FIG.
  • the parent wireless terminal 101 of the wireless communication apparatus according to the present embodiment includes an antenna 11, a transmission / reception unit 12, a control unit 13, a storage unit 14, a beacon transmission unit 21, and a link connection unit. 22, a route information analysis creation unit 23 and a timing information transmission unit 24 are provided.
  • the antenna 11 is not particularly limited as long as it can transmit and receive radio waves in a predetermined band, and a known antenna that can transmit and receive radio waves in bands defined by various public standards is used.
  • the transmission / reception unit 12 modulates data into a predetermined band radio signal or transmits a predetermined band radio signal in order to transmit a radio wave from the antenna 11 to the air or receive a radio wave transmitted through the air. It is configured as a wireless transmission / reception circuit that demodulates data.
  • the specific configuration is not particularly limited, and a high-frequency circuit (RF circuit) known in the field of wireless communication networks is used.
  • the control unit 13 is composed of, for example, a CPU of a microcomputer, and performs various controls relating to the operation of the parent wireless terminal 101 (wireless communication device), particularly the wireless communication operation. For example, the overall time management of the parent wireless terminal 101, control of the transmission / reception unit 12, the beacon transmission unit 21, the link connection unit 22, the route information analysis creation unit 23, the timing information transmission unit 24, and the like can be cited.
  • the storage unit 14 reads various information stored under the control of the control unit 13 and may be configured as, for example, an internal memory of a CPU or an independent memory device.
  • the beacon transmitting unit 21 transmits a beacon signal to other wireless communication devices (relay wireless terminal 201 and child wireless terminal 301 described later) under the control of the control unit 13.
  • the link connection unit 22 connects a wireless link by transmitting a link connection request signal to another wireless communication device under the control of the control unit 13 (link connection operation).
  • the route information analysis creation unit 23 analyzes and creates route information including information (relay terminal information) related to the relay wireless terminal 201 that has made a relay request.
  • the timing information transmission unit 24 creates and transmits information (intermittent reception timing information) that specifies the intermittent reception timing in the child radio terminal 301.
  • the intermittent reception timing information is slot position information to be described later in the present embodiment, and the route information includes slot position information in addition to relay terminal information.
  • Relay terminal information, slot position information, and route information will be described later.
  • the storage unit 14 can store route information including slot position information and relay terminal information and various accompanying information related thereto.
  • beacon transmission unit 21, the link connection unit 22, the route information analysis creation unit 23, and the timing information transmission unit 24 are not particularly limited, and may be a logic circuit using a known switching element, subtractor, comparator, or the like. It may be configured, or may be a functional configuration of the control unit 13 and realized by a CPU as the control unit 13 operating according to a program stored in the storage unit 14.
  • the relay wireless terminal 201 in the wireless communication apparatus includes an antenna 11, a transmission / reception unit 12, a control unit 13, a beacon transmission unit 21, and a beacon reception unit 25. , A link connection unit 22 and a timing information analysis unit 26 are provided.
  • Specific configurations of the antenna 11, the transmission / reception unit 12, the control unit 13, the beacon transmission unit 21, and the link connection unit 22 are the same as the configurations included in the parent wireless terminal 101, and description thereof is omitted.
  • the link connection unit 22 performs a link connection operation by receiving a link connection request signal.
  • the beacon receiving unit 25 receives the beacon signal transmitted from the parent wireless terminal 101 and outputs it to the control unit 13.
  • the timing information analysis unit 26 analyzes and creates route information including the slot position information.
  • the beacon receiving unit 25 and the timing information analyzing unit 26 may also be configured as a logic circuit or the like, or may be a functional configuration of the control unit 13.
  • wireless terminal 301 is the antenna 11, the transmission / reception part 12, the control part 13, the memory
  • a link connection unit 22 and a timing information transmission unit 24 are provided.
  • Specific configurations of the antenna 11, the transmission / reception unit 12, the control unit 13, the storage unit 14, the beacon transmission unit 21, the link connection unit 22, and the timing information transmission unit 24 are configured to be included in the parent wireless terminal 101 or the relay wireless terminal 201. This is the same, and a description thereof is omitted.
  • the radio communication system according to the present embodiment has a master radio terminal 101, relay radio terminals 211, 221, 231 and child radio terminals 311 to 313, 321 to 323, 331 to 331 as radio communication devices.
  • 333 is included. 2 correspond to the relay radio terminal 201 shown in FIG. 1B, and the child radio terminals 311 to 313, 321 to 323, and 331 to 333 are the same as those shown in FIG. 1 (c).
  • one parent wireless terminal 101 three relay wireless terminals 201 (relay wireless terminals 211 to 231), and nine child wireless terminals 301 (child wireless terminals 311 to 333) are shown.
  • the configuration of the wireless communication system is not limited to this, and these wireless communication devices may be included in excess of the number shown or less than the number shown. May be.
  • the master wireless terminal 101 and the relay wireless terminals 211, 221, and 231 are wireless communication devices on the side of transmitting a beacon signal, and the relay wireless terminals 211, 221, and 231 and the child wireless terminals 311 to 313 and 321 to 323. , 331 to 333 are wireless communication devices on the side receiving beacon signals. Therefore, the relay wireless terminals 211 to 231 are wireless communication devices that can transmit and receive beacon signals.
  • the master wireless terminal 101 can transmit beacon signals to each of the child wireless terminals 311 to 313 and the relay wireless terminal 211, and wireless data can be transmitted between the child wireless terminals 311 to 313 and the relay wireless terminal 211. Communication is possible. Therefore, in FIG. 2, these wireless communication apparatuses are connected by a bidirectional dotted arrow.
  • the parent wireless terminal 101, the child wireless terminals 311 to 313, and the relay wireless terminal 211 constitute a first layer network of the wireless communication system. Note that the parent wireless terminal 101 is a “higher-order device” when viewed from the child wireless terminals 311 to 313 and the relay wireless terminal 211. Further, the child wireless terminals 311 to 313 and the relay wireless terminal 211 that are directly connected to the parent wireless terminal 101 that is a higher-level device are “lower devices” when viewed from the parent wireless terminal 101.
  • the relay wireless terminal 211 can transmit a beacon signal to each of the child wireless terminals 321 to 323 and the relay wireless terminal 221, and performs data communication with each of the child wireless terminals 321 to 323 and the relay wireless terminal 221. Is possible. Therefore, the relay wireless terminal 211 is a “lower device” when viewed from the parent wireless terminal 101, but is a “higher device” when viewed from the child wireless terminals 321 to 323 and the relay wireless terminal 221. Therefore, similarly to the first layer network, the relay wireless terminal 211, the child wireless terminals 321 to 323, and the relay wireless terminal 221 constitute a second layer network of the wireless communication system.
  • the relay wireless terminal 221 can transmit a beacon signal to the child wireless terminals 331 to 333 and the relay wireless terminal 231 and performs data communication between the child wireless terminals 331 to 333 and the relay wireless terminal 231, respectively.
  • the relay wireless terminal 221 is a “lower device” when viewed from the relay wireless terminal 211, but is a “higher device” when viewed from the child wireless terminals 331 to 333 and the relay wireless terminal 231.
  • the child radio terminals 331 to 333 and the relay radio terminal 231 constitute a third layer network of the radio communication system.
  • the relay wireless terminal 231 can transmit a beacon signal to a plurality of child wireless terminals 301 or a plurality of child wireless terminals 301 and one or more relay wireless terminals 201 not shown in FIG. Data communication is possible with each communication device. Therefore, the relay radio terminal 231 and the child radio terminal 301 and the relay radio terminal 201 (not shown) form a fourth layer network of the radio communication system, and the relay radio terminal 201 (not shown) is used as the “higher-level device”. Subsequent networks in the fifth layer can be formed. If the relay wireless terminal 201 is not included in the fourth layer network, the wireless communication system shown in FIG. 2 is configured only by the first to fourth layer networks.
  • the parent wireless terminal 101 can directly communicate with the child wireless terminals 311 to 313, but cannot communicate directly with the child wireless terminals 321 to 323 and the child wireless terminals 331 to 333 due to poor radio wave conditions. . Therefore, it communicates with the child radio terminals 321 to 323, 331 to 333, etc. via the relay radio terminals 211, 221, 231 and the like.
  • the child wireless terminals 311 to 333 (and the relay wireless terminals 211 to 231) communicate directly with either the parent wireless terminal 101 or the relay wireless terminals 211 to 231, or the parent wireless terminals 211 to 231 via the relay wireless terminals 211 to 231.
  • the hierarchy is based on how many relay wireless terminals 201 go to the wireless terminal 101.
  • the child wireless terminals 311 to 333 that can directly communicate with the parent wireless terminal 101 constitute the first layer as described above, and the child wireless terminals 321 to 323 that communicate with the parent wireless terminal 101 via one relay wireless terminal 211.
  • Constitutes the second hierarchy, and the child radio terminals 331 to 333 communicating with the parent radio terminal 101 via the relay radio terminals 221 and 211 constitute the third hierarchy.
  • the parent wireless terminal 101 and the relay wireless terminals 211 to 231 are “upper devices” and are connected to the wireless communication devices of the “lower devices” (for example, the child wireless terminals 311 to 313 and the relay wireless terminal 211 in the first layer).
  • a beacon signal is intermittently transmitted.
  • the wireless communication device of the “lower device” captures (receives) the beacon signal, thereby reducing the time of the clock unit (internal clock) of the wireless communication device of the “higher device” (the clock unit of the wireless communication device of the “higher device” ( It is possible to synchronize (clock adjustment) with the time of the (internal clock).
  • timing information intermittent reception timing information
  • the wireless communication device of the “lower device” intermittently waits for reception
  • the wireless signal of the “lower device” It is transmitted to the communication device. Therefore, even if the relay wireless terminal 201 is inserted between the parent wireless terminal 101 and the child wireless terminal 301 as in the wireless communication system shown in FIG. Relay information can be transmitted at the timing.
  • the basic slot 40 further includes two time slots, a lower slot 41 and an upper slot 42.
  • the slot lengths of the lower slot 41 and the upper slot 42 are set to half (1/2 ⁇ T1) of T1, which is the slot length of the basic slot 40.
  • the lower slot 41 is a time slot for communicating with the lower apparatus
  • the upper slot 42 is a time slot for communicating with the upper apparatus.
  • the lower slot 41 is further divided into three time slots, a beacon transmission slot 411 (BT in the figure), a link connection slot 412 (L in the figure), and a data communication slot 413 (D in the figure).
  • the upper slot 42 is also divided into three time slots: a beacon receiving slot 421 (BR in the figure), a link connection slot 422 (L in the figure), and a data communication slot 423 (D in the figure). .
  • a beacon signal is periodically transmitted to the lower device in the beacon transmission slot 411 by the beacon transmission unit 21 (see FIGS. 1A and 1B).
  • the beacon receiving unit 25 (see FIGS. 1B and 1C) periodically receives a beacon signal from the upper device in the beacon receiving slot 421.
  • the beacon signal reception interval can be set to an integral multiple of the beacon signal transmission interval. For example, if the transmission interval is 2 seconds and the reception interval is set to 256 times the transmission interval, the reception interval is 8 minutes and 32 seconds.
  • link connection operation is performed in the link connection slots 412 and 422 by the link connection unit 22 (see FIGS. 1A to 1C). Further, data communication is performed between the wireless communication devices, and this data communication is performed after the link connection operation. Therefore, data communication (data exchange) is performed in the data communication slots 413 and 423 following the link connection slots 412 and 422.
  • the link connection slots 412 and 422 are composed of two time slots, a lower call slot 402a and a higher response / upper call slot 402b.
  • the lower call slot 402a is a time slot for the lower device to transmit a link connection request signal when it is desired to connect a radio link from the lower device to the higher device.
  • the upper response / upper call slot 402b is a time slot for the upper device to return a response to the link connection request signal from the lower device, and it is desired to connect a wireless link from the upper device to the lower device. Sometimes it is a time slot for transmitting a link connection request signal from the host device.
  • the slot length of the link connection slots 412 and 422 is not particularly limited.
  • the slot length of the lower call slot 402a is set to T2
  • the slot length of the higher response / upper call slot 402b is set to T3.
  • the slot length T2 and the slot length T3 are not limited to this, and are appropriate according to the transmission or response of the link connection request signal.
  • the slot length may be set.
  • FIG. 4 exemplifies a case where two relay wireless terminals 211 and 221 are interposed between a parent wireless terminal 101 and a third-layer child wireless terminal 331 in the wireless communication system shown in FIG.
  • the positional relationship of the time slots within one cycle of each wireless communication device is described.
  • the lower slot 41 is described as “lower” in the figure
  • the upper slot 42 is described as “upper” in the figure.
  • the relay radio terminals 211, 221 and the child radio terminal 331 one cycle is divided into 256 basic slots 40, and each basic slot 40 is divided into 1 to 256. Slot numbers are assigned.
  • the basic slot 40 with the first slot number 1 is positioned next to the basic slot 40 with the last slot number 256.
  • the basic slot 40 with the slot number X is described as “No. X-basic slot 40”.
  • the former is referred to as “first relay wireless terminal 211” and the latter is referred to as “second relay wireless terminal 221” for the purpose of clearly distinguishing the upper relay wireless terminal 211 and the lower relay wireless terminal 221. ".
  • a first-layer beacon signal Bi is periodically transmitted between the parent wireless terminal 101 and the first relay wireless terminal 211, and the first relay wireless terminal 211 and the second relay wireless terminal 221 Between, the second-layer beacon signal Bii is transmitted, and between the second relay wireless terminal 221 and the child wireless terminal 331, the third-layer beacon signal Biii is transmitted.
  • the child radio terminal 331 is the lowest-order subordinate device, and there is no subordinate device connected to the child radio terminal 331. Therefore, no beacon signal is transmitted from the child radio terminal 331.
  • beacon signals Bi to Biii transmitted and received within one period are shown in parentheses.
  • 1 The first beacon signal Bii transmitted in the basic slot 40 is described as “Bii (1)”.
  • 3 The second beacon signal Bii transmitted in the basic slot 40 is described as “Bii (2)”.
  • 255 The m-th beacon signal Bii transmitted in the basic slot 40 is described as “Bii (m)”.
  • FIG. 5 is the same as FIG. 4 except that the lower slot 41 and the upper slot 42 constituting each basic slot 40 are divided into three time slots shown in FIG. The positional relationship is shown.
  • the first beacon signal Bi (1) is transmitted from the beacon transmission slot 411 included in the lower slot 41 of the basic slot 40.
  • the second beacon signal Bi (2) is No. 3—The third beacon signal Bi (3) transmitted from the basic slot 40 is No.3. 5—transmitted from the basic slot 40, the fourth beacon signal Bi (4) 7—transmitted from basic slot 40 (beacon signal Bi (4) not shown in FIG. 5). Thereafter, the beacon signal Bi is sequentially transmitted from the basic slot 40 having an odd slot number. 1—When the basic slot 40 is reached, the first beacon signal Bi is transmitted.
  • the lower-level device that directly belongs to the parent wireless terminal 101 is the first relay wireless terminal 211.
  • This first relay wireless terminal 211 periodically receives the beacon signal Bi transmitted from the parent wireless terminal 101.
  • the beacon signal Bi is received once per cycle.
  • the first beacon signal Bi (1) is received in the beacon receiving slot 421 included in the upper slot 42 of the basic slot 40.
  • the first relay wireless terminal 211 receives the No. 1—The slot position of the basic slot 40 is assigned to the No. 1 of the first relay wireless terminal 211. 255--Align with the slot position of the basic slot 40.
  • Beacon transmission slot 411 (BT in the figure) which is the head position of lower slot 41 of basic slot 40 is No. 255-Reconfigure the time slot of the own station so as to correspond to the beacon reception slot 421 (BR in the figure) which is the head position of the upper slot 42 of the basic slot 40. That is, the first relay wireless terminal 211 is No. 255.
  • the slot position of the beacon receiving slot 421 of the basic slot 40 is set to the No. of the parent wireless terminal 101. 1—Set the clock to match the slot position of the beacon transmission slot 411 of the basic slot 40.
  • the time slots for receiving the beacon signals Bi to Biii are blacked out. That is, in FIG. 255-The upper slot 42 of the basic slot 40 is shown in black. Further, in FIG. 5, the beacon receiving slot 421 that is aligned (clock aligned) by the lower device is shown by shading.
  • the first relay wireless terminal 211 forms the first layer together with the parent wireless terminal 101 and the like and the second layer together with the second relay wireless terminal 221 and the like (see FIG. 2).
  • the second relay wireless terminal 221 is a subordinate device belonging directly below.
  • a second-layer beacon signal Bii is transmitted from the basic slot 40 having an odd slot number to the lower device.
  • the second relay wireless terminal 221 receives the first beacon signal Bii (1) among the beacon signals Bii of the first relay wireless terminal 211 that is the host device, and receives the No. 1 of the first relay wireless terminal 211. 1—No. Of basic slot 40 and second relay radio terminal 221 255—Reconfigure the time slot of the local station so that the slot position matches the basic slot 40.
  • the second relay wireless terminal 221 constitutes the third layer together with the child wireless terminal 331 and the like (see FIG. 2), the period of T5 is also transmitted from the second relay wireless terminal 221 to the child wireless terminal 331.
  • the third-layer beacon signal Biii is transmitted from the basic slot 40 having an odd slot number.
  • the child wireless terminal 331 that is the lowest-order lower-level device receives the first beacon signal Biii (1) and receives the second relay wireless terminal 221.
  • No. 1 No. Of basic slot 40 and child radio terminal 331 255—Reconfigure the time slot of the local station so that the slot position matches the basic slot 40.
  • the first relay wireless terminal 211 determines the first beacon signal Bi (1) transmitted from the parent wireless terminal 101 as No. 1 of the first relay wireless terminal 211. 255—Receive in basic slot 40 Also, the first relay wireless terminal 211 has its own station number. 1—The first beacon signal Bii (1) is transmitted from the basic slot 40. At this time, the No. of the parent wireless terminal 101 is changed. 3—The second beacon signal Bi (2) transmitted from the basic slot 40 indicates the No. 1 of the first relay radio terminal 211. 1—It is transmitted at the timing of the upper slot 42 of the basic slot 40.
  • the first relay wireless terminal 211 receives the No. of its own station immediately before the parent wireless terminal 101 transmits the second beacon signal Bi (2).
  • a beacon signal Bii (1) is transmitted in the beacon transmission slot 411 of the lower slot 41 of the basic slot 40.
  • the second relay wireless terminal 221 is immediately before the first relay wireless terminal 211 transmits the second beacon signal Bii (2).
  • a beacon signal Biii (1) is transmitted in the beacon transmission slot 411 of the lower slot 41 of the basic slot 40.
  • the relay wireless terminal 201 (the first relay wireless terminal 211 and the second relay wireless terminal 221), which is a lower device, is connected to the upper device (the parent wireless terminal 101 and the second relay wireless device viewed from the first relay wireless terminal 211).
  • the first relay wireless terminal 211) viewed from the terminal 221 is configured to transmit the first beacon signal at the slot position immediately before transmitting the second beacon signal.
  • the lower device does not receive all the beacon signals and performs clock adjustment, but periodically receives the beacon signals transmitted by the upper device (in the example shown in FIG. 4, T4 seconds, that is, 256 signals). Received for each basic slot 40) and set the clock.
  • the relay wireless terminal In communication from the upper device to the lower device (downward communication), the relay wireless terminal performs intermittent reception waiting (reception carrier sense operation) in the link connection slots 422 of all the upper slots 42, and the upper device Wait for a radio signal.
  • the upper device can transmit a radio signal for link connection not only in the link connection slot 412 immediately after transmitting the beacon signal but also in the link connection slots 412 of all the lower slots 41.
  • the lower device In communication from the lower device to the upper device (upward communication), the lower device receives a beacon signal from the upper device that is transmitted most recently when receiving communication is necessary. The timing is received in the slot 421, the timing of the link connection slot 422 and the link connection slot 412 of the lower order slot 41 of the upper device are matched, and the link connection slot 422 transmits a radio signal for link connection. The host device waits for intermittent reception in the link connection slot 412 immediately after transmitting the beacon signal.
  • first higher-order beacon transmission time The time until the time of transmitting the first beacon signal after the upper beacon transmission time point (referred to as “lower beacon transmission time point” for convenience of explanation) is defined as the first beacon transmission interval, and the lower relay radio terminal 201
  • the time from when the lower beacon is transmitted until the upper device (the parent wireless terminal 101 or the upper relay wireless terminal 201) transmits the first beacon signal after the lower beacon transmission time (for convenience of explanation, “the upper upper beacon transmission”
  • the second beacon transmission interval is set as the second beacon transmission interval, the first beacon transmission interval is greater than the second beacon transmission interval. It is set for Kunar.
  • the first wireless radio terminal 101 when looking at the first relay wireless terminal 211, the first wireless radio terminal 101 from the time when the parent wireless terminal 101 as the higher-level device transmits the beacon signal Bi (1) (first higher-order beacon transmission time)
  • the time until the relay wireless terminal 211 transmits the beacon signal Bii (1) corresponds to the first beacon transmission interval Ta (211).
  • Tb (211) corresponds to the second beacon transmission interval.
  • the second relay wireless terminal 221 when looking at the second relay wireless terminal 221, from the time when the first relay wireless terminal 211, which is the host device, transmits the beacon signal Bii (1) (first host beacon transmission time), The time until the second relay wireless terminal 221 transmits the beacon signal Biii (1) (lower beacon transmission time) corresponds to the first beacon transmission interval Ta (221). Also, from the time when the second relay wireless terminal 221 transmits the beacon signal Biii (1) (lower beacon transmission time point), the time when the first relay wireless terminal 211 transmits the beacon signal Bii (2) (after upper beacon transmission time point). ) Corresponds to the second beacon transmission interval Tb (221). As is apparent from FIG. 5, Ta (221)> Tb (221).
  • the lower relay wireless terminal 201 (first relay wireless terminal 211, as viewed from the parent wireless terminal 101,
  • the second relay wireless terminal 221 is a lower-level device (second relay wireless terminal 221 when viewed from the first relay wireless terminal 211, and child wireless terminal 331 when viewed from the second relay wireless terminal 221.
  • wireless communication with the lower device is possible and a beacon signal is received from the higher device (parent wireless terminal 101 or first relay wireless terminal 211).
  • wireless communication with the host device is possible.
  • the terminal call data can be relayed and transmitted in accordance with the transmission timing of the terminal call data from the child wireless terminal 331, so that the operation time of the child wireless terminal 331 is shortened. Is possible.
  • the second relay wireless terminal 221 or the first relay wireless terminal 211 can receive the beacon signal transmitted from the host device soon after receiving the terminal call data, Thus, terminal call data can be transmitted promptly while avoiding the occurrence of delay.
  • FIGS. 4 and 5 communication operations when data is transmitted from the highest parent wireless terminal 101 to the lowest child wireless terminal 331 are shown in FIGS. This will be specifically described with reference to FIG.
  • center polling is performed from the highest order parent wireless terminal 101 to the lowest order wireless communication terminal 331.
  • the first relay radio terminal 211 and the second relay radio terminal 221 that are relay machines are the link connection slots of the upper slots 42 that constitute all the basic slots 40 in order to detect the presence / absence of a radio signal from the upper device.
  • the reception carrier sense operation is performed every time. The reception carrier sense operation is to detect whether the reception level from the host device is equal to or higher than a predetermined level. If the reception carrier sense operation is lower than the predetermined level, the reception carrier sense operation is stopped and the standby state is entered. If it is above, it is operation
  • the upper slot 42 of the basic slot 40 includes a link connection slot 422, and the link connection slot 422 includes a link connection slot 422.
  • the first relay radio terminal 211 and the second relay radio terminal 221 are connected in the upper response / upper call slot 402b.
  • Receive carrier sense operation is performed. Therefore, as shown in FIG. 6, the parent wireless terminal 101 receives a data transmission request (block arrow Ds in the figure) addressed to the child wireless terminal 331, for example, “No. 256-when it occurs in the basic slot 40, as shown by the block arrow L in FIG. 5 and the arrow L / D in FIG. 1—The link connection request signal is transmitted in the upper response / upper call slot 402b in the lower slot 41 of the basic slot 40.
  • the first relay wireless terminal 211 is No. 255-The reception carrier sense operation is performed in the upper response / upper call slot 402b in the upper slot 42 of the basic slot 40, and the link connection request signal from the parent radio terminal 101 is received after receiving the carrier sense. It becomes. As a result, the wireless link is connected between the parent wireless terminal 101 that is the higher-level device and the first relay wireless terminal 211 that is the lower-level device (link connection operation). Therefore, as shown in FIG. 1—The lower slot 41 of the basic slot 40 and the No. 1 of the first relay radio terminal 211 255-Data communication operation is performed with the upper slot 42 of the basic slot 40, and data is transmitted from the parent wireless terminal 101 to the first relay wireless terminal 211 (arrow L / D in the figure).
  • the first relay wireless terminal 211 performs a link connection operation and a data communication operation with the second relay wireless terminal 221 that is a lower device by the same operation as the parent wireless terminal 101, and the second relay wireless terminal 221.
  • Data is transmitted to That is, the first relay wireless terminal 211 is No. 255. Since data is received from the parent wireless terminal 101 in the upper slot 42 of the basic slot 40, no. In the lower slot 41 of the 256-basic slot 40, the reception carrier sense operation is performed in the same manner as the parent radio terminal 101.
  • the second relay wireless terminal 221 receives the link connection request signal from the first relay wireless terminal 211, the wireless link is connected, and the data communication operation is subsequently performed (arrow L in the figure). / D).
  • the second relay wireless terminal 221 also performs a link connection operation and a data communication operation with the child wireless terminal 331 that is a lower-level device by the same operation as the parent wireless terminal 101, and transmits data to the child wireless terminal 331. To transmit.
  • the child wireless terminal 331 that is a terminal wireless terminal that is not a repeater thins out the received carrier sense operation in order to reduce power consumption. Is going.
  • the reception carrier sense operation is performed every two slots, as indicated by the black time slots (link connection slot 422 in the figure) in FIG. If the basic slot 40 of the child radio terminal 331 is not performing the reception carrier sense operation, even if the second relay radio terminal 221 transmits a link connection request signal in accordance with the basic slot 40, the child radio terminal 331 is not connected to the link. Since the request signal is not received, the wireless link is not connected between the second relay wireless terminal 221 and the child wireless terminal 331.
  • the wireless signal transmitted from the parent wireless terminal 101 includes route information from the parent wireless terminal 101 to the child wireless terminal 331, and this route information includes the child wireless terminal 331. Includes information on the slot number for performing the received carrier sense operation. Therefore, the second relay wireless terminal 221 analyzes the route information by the timing information analysis unit 26, and the slot numbers in which the reception carrier sense operation is performed by the child wireless terminal 331 are, for example, 1, 5, 9,. Recognize that.
  • the second relay wireless terminal 221 is shown in FIG. 254-The latest carrier sense timing of the child radio terminal 331 when viewed from the basic slot 40 is No. 254-the basic slot 40 (block arrow Cs in the figure), it is possible to grasp the No. 2 of the second relay wireless terminal 221.
  • 256 A link connection request signal is transmitted in the lower slot 41 of the basic slot 40.
  • the child radio terminal 331 is No. 5—Because a reception carrier sense operation is awaited in the basic slot 40, the link connection request signal is received, a wireless link is connected, and data transmission is received from the second relay wireless terminal 221.
  • the message format of the link connection request signal is composed of n repeated frames 51 followed by a main body frame 52.
  • n repeated frames 51 are assigned frame numbers 1 to n, respectively.
  • the bit synchronization signal 511 constituting the repetitive frame 51 is a signal for determining a bit sampling position
  • the frame synchronization signal 512 is a signal for detecting the head of the data included in the repetitive frame 51.
  • the control signal 513 is a signal describing various control information
  • the simple ID 514 is a shortened identification code (ID) for identifying the destination device. If the bit size of the original ID that has not been shortened is 64 bits, the simple ID 514 is 16-bit information obtained by dividing the original ID into four.
  • the simple ID 514 may be a shortened identification code (ID) that identifies the source device.
  • the control information described in the control signal 513 includes information on the simple ID 514, the frame number of the repeated frame 51, and the like.
  • the information regarding the simple ID 514 is information indicating which information of the original ID divided into four is the simple ID 514.
  • the frame numbers assigned to the n repetitive frames 51 are also described in the control signal 513 as control information. As shown in FIG. 7A, since the repeated frame 51 is transmitted from the frame having the largest frame number (the maximum frame number is n), the frame number of the repeated frame 51 is 1 from the head of the link connection request signal 50. The frame number of the repetitive frame 51 immediately before the main body frame 52 becomes 1 each time.
  • the reception carrier sense operation is performed as described above.
  • the time of the internal clock (clock unit) provided in each of the upper device and the lower device is obtained.
  • a link connection request signal 50 is transmitted from the higher-level device, and in response to this, as shown in the lower part II of FIG. A reception carrier sensing operation for the signal 50 is performed.
  • the head position Ps of the upper response / upper call slot 402b of the lower device is abbreviated as “calling slot head position Ps”, and the timing Cs at which the lower device performs the reception carrier sense operation is “ This is abbreviated as “carrier sense timing Cs”.
  • carrier sense timing coincides with the intermittent reception timing described later.
  • the n repeated frames 51 are referred to as “repeated frame group 51n”, the head position Pn of the repeated frame group 51n is abbreviated as “frame group head position Pn”, and the end position P0 of the repeated frame group 51n is “frame group end”. It is abbreviated as “position P0”.
  • II-1 is a case where there is no time difference between the clock of the upper device and the clock of the lower device, and the calling slot start position Ps of the lower device is the upper device. Is coincident with the head position of the link connection request signal 50 from the frame, that is, the frame group head position Pn. Further, the carrier sense timing Cs of the lower device is set after the time T8 from the calling slot head position Ps, and this carrier sense timing Cs corresponds to one of the n repeating frames 51 constituting the repeating frame group 51n. If so, the lower-level device can receive the main body frame 52 by successfully performing the reception carrier sense operation.
  • the time T8 is referred to as “timing setting time” for convenience of explanation.
  • II-2 in the lower part II of FIG. 8 is a case where the clock of the lower device is advanced by + ⁇ T from the clock of the upper device.
  • the clock shift of the lower device has progressed to a degree slightly shorter than the timing setting time T8 ( ⁇ T ⁇ T8), the calling slot head position Ps of the lower device is more than the frame group head position Pn. Therefore, the carrier sense timing Cs set after the timing setting time T8 from the calling slot head position Ps is immediately after the frame group head position Pn.
  • II-3 in the lower part II of FIG. 8 is a case where the clock of the lower device is delayed by ⁇ T from the clock of the upper device.
  • the clock shift of the lower device is delayed to a degree slightly shorter than the timing setting time T8 ( ⁇ T ⁇ T8), the calling slot start position Ps of the lower device is more than the frame group start position Pn. Therefore, the carrier sense timing Cs set after the timing setting time T8 from the calling slot head position Ps is immediately before the frame group end position P0.
  • the carrier sense timing Cs (timing for performing the reception carrier sense operation) must be a timing corresponding to one of the n repetitive frames 51. Therefore, as shown in FIG. 8, the carrier sense timing Cs needs to be set between the frame group start position Pn and the frame group end position P0. Therefore, the timing setting time T8 set with reference to the calling slot head position Ps is set to half the frame length T7 of the repeated frame group 51n. Thus, if the clock deviation ⁇ T in the upper device and the lower device is within the range of ⁇ T8 ⁇ ⁇ T ⁇ + T8, the carrier sense timing Cs is between the frame group start position Pn and the frame group end position P0.
  • the reception carrier sense operation can be performed in any of the n repetitive frames 51, and the main body frame 52 can be received.
  • the maximum deviation ⁇ T is 51.2 milliseconds. Therefore, if the number n of the repeated frames 51 (the number of times of transmission of the repeated frames 51) is set so that T8 ⁇ 51.2 milliseconds, the failure to receive the link connection request signal can be avoided.
  • the upper device transmits the number of times the repetitive frame 51 is transmitted according to the time from reception of the beacon signal (clock adjustment) to carrier sense timing. Control for changing n is performed.
  • the data transmission request addressed to the child wireless terminal 331 is No. in the parent wireless terminal 101.
  • the parent wireless terminal 101 is set to No. 6—The link connection request signal 50 is transmitted in the upper response / upper call slot 402b in the lower slot 41 of the basic slot 40.
  • the first relay wireless terminal 211 is No. 4—The reception carrier sense operation is performed in the upper response / upper call slot 402b in the upper slot 42 of the basic slot 40, and then the link connection request signal 50 from the parent radio terminal 101 is received.
  • the parent wireless terminal 101 measures the time from the time when the first relay wireless terminal 211 transmits the beacon signal Bi (1) to the time when the first relay wireless terminal 211 performs the clock adjustment to the timing when the reception carrier sense operation is performed. Control is performed to change the number of transmissions n of the repetitive frame 51 in the link connection request signal 50 according to the length.
  • clock deviation evaluation time the time from the time of clock adjustment to the timing of the reception carrier sense operation is referred to as “clock deviation evaluation time”.
  • the clock deviation evaluation time corresponds to the elapsed time from the basic slot 40 that has received the beacon signal Bi (1) to the basic slot 40 that has performed the reception carrier sense operation, and its length has a correlation with the slot number. That is, if the clock deviation evaluation time is short, the clock deviation ⁇ T is small because the time has not passed since the clock is set, but the clock deviation ⁇ T increases as the clock deviation evaluation time increases. Therefore, the parent wireless terminal 101 may perform control so as to increase the number of transmissions n of the repeated frame 51 as the slot number increases.
  • the parent wireless terminal 101 since the basic slot 40 that transmitted the beacon signal Bi (1) has the slot number 1, the parent wireless terminal 101 transmits the link connection request signal 50 in the basic slot 40 (No. X-basic slot 40) with the slot number X. If transmitted, the numerical value obtained by dividing the slot number X by the total number of basic slots 40 can be used for variable control of the number of transmissions n of the repeated frame 51.
  • the control unit 13 of the parent wireless terminal 101 sets the number of transmissions n of the repetitive frame 51 so that T7 ⁇ (X / 256) ⁇ ( ⁇ 51.2 seconds).
  • the parent wireless terminal 101 is, for example, No. 4—When transmitting a link connection request signal in the basic slot 40, the number of transmissions n may be changed so that T7 ⁇ ⁇ 0.8 milliseconds. When the frame length T6 of one repetitive frame 51 is longer than 0.8 milliseconds, the number of transmissions n may be one or more.
  • the timing of the received carrier sense operation (carrier sense timing Cs) performed in one basic slot 40 is the start of the upper response / upper call slot 402b in the link connection slot 412 in the basic slot 40 ( It is set as the timing when the timing setting time T8 has elapsed from the calling slot head position Ps).
  • the timing setting time T8 is changed to the frame length T7 so that the carrier sense timing Cs becomes an intermediate time (T7 / 2) of the frame length T7. Control may be performed so as to change in conjunction with.
  • the slot number for example, slot number W
  • the basic slot 40 that has performed the reception carrier sense operation.
  • the timing setting time T8 can be changed in conjunction with the frame length T7.
  • the timing setting time T8 is changed based on the slot number.
  • the present invention is not limited to this.
  • the timing setting time T8 is set as a fixed value in the lower device, and instead,
  • the position (time corresponding to the frame group head position Pn in FIG. 8) where transmission of the link connection request signal 50 is started in the host device can be changed.
  • the link connection request signal 50 from the host device is transmitted in the upper response / upper call slot 402b in the lower slot 41 of the basic slot 40.
  • the timing at which transmission of the link connection request signal 50 is started is determined by the basic slot. Control is performed according to 40 slot numbers. Since the frame length T7 increases as the slot number increases, the intermediate time of the frame length T7 can correspond to the position of the carrier sense timing Cs by advancing the transmission start timing of the link connection request signal 50 earlier.
  • the wireless communication performed between the higher-level device and the lower-level device is periodically performed so as to repeat one cycle divided into the plurality of basic slots 40.
  • 40 is divided into a lower slot 41 for performing wireless communication with the lower device and an upper slot 42 for performing wireless communication with the upper device following the lower slot 41.
  • the child wireless terminal 331 is configured to perform link connection using the higher-order slot 42 once every plural times.
  • the wireless communication of each of the own station (reference station) and the child wireless terminal 331 is such that the lower slot 41 of the own station is the earliest link connection of the child wireless terminal 331. It is only necessary that the periods correspond to the upper slots 42 that perform the above.
  • the relay radio terminal 201 in this embodiment, the second radio Other relay radio terminals 201 (for example, the first relay radio terminal 211) except for the relay radio terminal 221) are located between the lower slot 41 of the higher-level device (for example, the parent radio terminal 101) and the upper slot 42 of the own station. If the link connection is made, the link connection is made between the lower slot 41 of the own station immediately after and the upper slot 42 of the lower device.
  • the relay wireless terminal 201 in a plurality of stages can quickly relay and transmit wireless communication from the host device to the slave wireless terminal 301. Is possible. That is, since the radio signal is quickly relayed from the parent radio terminal 101 up to the upper relay radio terminal 201 (for example, the second relay radio terminal 221) of the child radio terminal 301, the upper relay radio terminal 201 It suffices to transmit a radio signal in accordance with the timing of the earliest received carrier sense operation in the child radio terminal 301. As a result, since the operation time of the child radio terminal 301 can be shortened, an increase in power consumption of the child radio terminal 301 can be suppressed with a simple configuration.
  • FIGS. 4 and 5 communication operations when data is transmitted from the lowest-order child wireless terminal 331 to the highest-order parent wireless terminal 101 are shown in FIGS. This will be specifically described with reference to FIG.
  • a terminal for which the lowest order child wireless terminal 331 is requested in response to center polling transmitted from the highest order parent wireless terminal 101 An example is “terminal call” for transmitting call data.
  • the lower device When a data transmission request is generated from the lower device to the upper device, as described above, the lower device receives the beacon signal transmitted by the upper device in the beacon reception slot 421 (see FIG. 3A) and receives the clock. Align. Further, in order to perform data transmission from the lower device to the upper device, a link connection operation is performed in the same manner as the data transmission from the parent wireless terminal 101 to the child wireless terminal 331 described above. 7 (a)) is transmitted in the lower call slot 402a in the link connection slot 422 immediately after the beacon reception slot 421 that has received the beacon signal.
  • the child radio terminal 331 receives the third-layer beacon signal Biii from the second relay radio terminal 221 and performs time adjustment. Since the beacon signal Biii is transmitted every two slots as described above, if the slot length T1 of the basic slot 40 is 2 seconds, the beacon signal Biii is transmitted every 4 seconds. Therefore, the child radio terminal 331 can receive the beacon signal Biii from the second relay radio terminal 221 within 4 seconds after the data transmission request is generated.
  • the child radio terminal 331 receives the No. 2 of the second relay radio terminal 221.
  • 1 Beacon signal Biii (1) transmitted in the basic slot 40
  • 255 Receive at the basic slot 40 and set the clock. Thereby, the No. of the child radio terminal 331 is set.
  • 255-The slot position of the link connection slot 422 (“L” in FIG. 5) in the upper slot 42 of the basic slot 40 is the No. 2 of the second relay radio terminal 221.
  • 1 Allignment with the link connection slot 412 (“L” in FIG. 5) of the lower slot 41 of the basic slot 40.
  • the link connection request signal transmitted from the child radio terminal 331 is aligned with the link connection slots 412 and 422 (clock alignment), and the second connection carrier sense operation (see FIGS. 6 and 8) is performed in the second manner.
  • the message format of the link connection request signal is the same as that shown in FIG. 7A, but since there is almost no clock deviation ⁇ T, the number of transmissions (repetition number) n of the repeated frame 51 may be small. .
  • the child wireless terminal 331 is notified of No. 255—In the data communication slot 423 in the upper slot 42 of the basic slot 40, a radio signal addressed to the parent radio terminal 101 is transmitted (arrow L / D in FIG. 9).
  • the second relay wireless terminal 221 is the No. of the child wireless terminal 331.
  • No. 255 corresponding to the basic slot 40 1 A radio signal addressed to the parent radio terminal 101 is received in the data communication slot 413 in the lower slot 41 of the basic slot 40 (arrow L / D in FIG. 9).
  • the second relay wireless terminal 221 receives the second-layer beacon signal Bii transmitted from the first relay wireless terminal 211 and performs time adjustment with the first relay wireless terminal 211.
  • the second relay wireless terminal 221 is connected to the child wireless terminal 331 with No. 1-Since data communication is performed in the lower slot 41 of the basic slot 40, the beacon signal Bii can be received by the upper slot 42 following the lower slot 41.
  • No. 1-Basic slot 40 of first relay wireless terminal 211 corresponding to basic slot 40 is No. 1 3—Because it is the basic slot 40, the second relay radio terminal 221 has the 3—A beacon signal Bii (2) transmitted from the basic slot 40 is received.
  • the second relay wireless terminal 221 No. 1 The slot position of the link connection slot 422 in the upper slot 42 of the basic slot 40 indicates the No. 1 of the first relay radio terminal 211.
  • 3 Because it is aligned with the link connection slot 412 of the lower slot 41 of the basic slot 40, the link connection request signal transmitted from the second relay wireless terminal 221 is the No. 1 of the first relay wireless terminal 211.
  • 3 Received in the lower slot 41 of the basic slot 40. Accordingly, a link connection operation is performed, and a data communication operation (transmission and reception of a radio signal addressed to the parent radio terminal 101) is performed between the second relay radio terminal 221 and the first relay radio terminal 211 (arrow in FIG. 9). L / D).
  • the first relay wireless terminal 211 receives the first-layer beacon signal Bi transmitted from the parent wireless terminal 101 and performs time adjustment with the parent wireless terminal 101.
  • the first relay wireless terminal 211 is connected to the second relay wireless terminal 221 with No. 3-Because data communication is performed in the lower slot 41 of the basic slot 40, the beacon signal Bi can be received in the upper slot 42 following the lower slot 41.
  • No. 3 The basic slot 40 of the parent wireless terminal 101 corresponding to the basic slot 40 is No. 3 5—Because it is the basic slot 40, the first relay wireless terminal 211 has the 5—A beacon signal Bi (3) transmitted from the basic slot 40 is received.
  • the first relay wireless terminal 211 No. 3 The slot position of the link connection slot 422 in the upper slot 42 of the basic slot 40 indicates the No. of the parent radio terminal 101.
  • 5 Because it is aligned with the link connection slot 412 of the lower slot 41 of the basic slot 40, the link connection request signal transmitted from the first relay wireless terminal 211 is the No. of the parent wireless terminal 101.
  • 5 Received in the lower slot 41 of the basic slot 40.
  • a link connection operation is performed, and a data communication operation (transmission / reception of a radio signal addressed to the parent wireless terminal 101) is performed between the first relay wireless terminal 211 and the parent wireless terminal 101 (arrow L / in FIG. 9).
  • D ).
  • a beacon signal is transmitted from the lower device in the lower device.
  • a beacon signal is transmitted from the host device in the basic slot 40 immediately after being transmitted. Therefore, since the link connection operation and the data communication operation can be performed in the basic slot 40 immediately after that, a plurality of relay wireless terminals 201 (the first relay wireless terminal 211 and the second relay wireless terminal 331) are transmitted from the lowest child wireless terminal 331.
  • a radio signal is relayed and transmitted to the parent radio terminal 101 via the terminal 221), occurrence of a large delay can be suppressed, and efficient radio communication can be performed.
  • the lower slot 41 of the own station corresponds to the upper slot 42 of the child wireless terminal 331
  • the upper slot 42 of the own station corresponds to the lower slot 41 of the first relay wireless terminal 211.
  • the period is made to correspond.
  • the link connection slot 412 of the lower slot 41 of the own station corresponds to the link connection slot 422 of the upper slot 42 of the child radio terminal 331
  • the upper slot 42 of the own station is the upper first slot 42.
  • the period is made to correspond to the lower slot 41 that performs the reception carrier sense operation (link connection) of the relay wireless terminal 211.
  • the terminal call data can be relayed and transmitted in accordance with the timing of transmitting the terminal call data from the child radio terminal 331 in the case of the second relay radio terminal 221. it can. Further, if the second relay wireless terminal 221 or the first relay wireless terminal 211 is received, the terminal call data is received soon after receiving the beacon signal transmitted from the host device, and the terminal is promptly connected to the host device. Calling data can be transmitted. Therefore, while suppressing an increase in power consumption of the child radio terminal 301 with a simple configuration, generation of a large delay is effectively suppressed during relay transmission of terminal call data from the child radio terminal 301 to the parent radio terminal 101. Alternatively, it can be avoided.
  • FIG. 10 the passage of time is shown from the upper side to the lower side in the figure, the transmission of the radio signal is shown by a diamond that is painted black, and the reception of the radio signal is shown by a white circle.
  • the wireless communication system includes a parent wireless terminal 101, a first relay wireless terminal 211, and a second relay wireless terminal 221 (see FIGS. 2 and 4).
  • a child wireless terminal 331 is newly entered into the communication system, for example.
  • the child wireless terminal 331 attempts to receive a beacon signal by performing a receiving operation for a predetermined time.
  • a plurality of beacon signals are received within the predetermined time, it is determined based on which beacon signal the time adjustment of the own station is performed according to a predetermined determination condition.
  • the determination conditions at this time can include the reception level of the received beacon signal and the relay stage number information of the relay wireless terminal 201 that is the transmission source of the received beacon signal.
  • the child wireless terminal 331 transmits an entry request signal Sd whose final destination is addressed to the parent wireless terminal 101 to the second relay wireless terminal 221 to which the wireless link is connected, and requests relay transmission.
  • This entry request signal Sd is transmitted in the data communication slot 423 (see FIG. 3A) following the higher response / higher call slot 402b (link connection slot 422) that has received the response signal.
  • the entry request signal Sd includes a frame signal (layer 3 frame described later) for relay transmission to the final destination and route information from the child radio terminal 331. This route information includes slot position information. dt0 is included.
  • the child wireless terminal 301 does not perform the reception carrier sense operation (reception standby operation) at the basic slot 40 every time, but intermittently at intervals of several slots. ing. Therefore, the child wireless terminal 331 also intermittently performs a reception carrier sense operation (intermittent reception standby operation), but it is necessary to receive an entry permission signal Sa from the parent wireless terminal 101 when newly entering.
  • the entry permission signal Sa is generated by the parent wireless terminal 101 based on the entry request signal Sd transmitted from the child wireless terminal 331, and is transmitted to the child wireless terminal 331 via the relay wireless terminal 201. Therefore, it is desirable that the relay wireless terminal 201 transmits the entry permission signal Sa in accordance with the intermittent reception carrier sense operation in the child wireless terminal 331.
  • the slot position information dt0 corresponds to the slot number of the timing (intermittent reception timing) at which reception of the entry permission signal Sa from the parent wireless terminal 101 is awaited intermittently, and is performed by the timing information transmission unit 24 of the child wireless terminal 331. Created and sent.
  • the slot position information dt0 is information for specifying the intermittent reception timing of the child radio terminal 331, and can be referred to as “intermittent reception timing information”. Further, the information on the slot position information dt0 is stored in the storage unit 14 as described above.
  • the timing information analysis unit 26 analyzes the route information included in the entry request signal Sd.
  • the timing information analysis unit 26 newly creates route information based on the analysis result.
  • the timing information analysis unit 26 includes the second relay radio terminal 221. Is included.
  • the second relay wireless terminal 221 incorporates the created route information into the entry request signal Sd and transmits it to the first relay wireless terminal 211.
  • the timing information analyzer 26 analyzes the route information in the same manner as the second relay wireless terminal 221.
  • the timing information analysis unit 26 newly creates route information based on the analysis result.
  • this timing information includes the first information.
  • Relay terminal information dr1 related to the relay wireless terminal 211 is included.
  • the first relay wireless terminal 211 incorporates the created route information into the entry request signal Sd and transmits it to the parent wireless terminal 101.
  • the source child radio terminal 331 is configured so that the timing information transmission unit 24 creates the slot position information dt0 and incorporates it into the route information.
  • the relay wireless terminal 201 interposed therebetween is configured to incorporate its own relay terminal information (dr1, dr2) into the route information when the route information is created by the timing information analysis unit 26. Therefore, the route information includes information related to the relay route of the entry request signal Sd, and information on the timing at which the child radio terminal 331 intermittently waits for reception of the entry permission signal Sa returned in response to the entry request signal Sd. (Intermittent reception timing information, slot position information dt0 in FIG. 10) is also included.
  • the root wireless terminal 101 analyzes the route information by the route information analysis creation unit 23 in the same manner as the second relay wireless terminal 221 and the first relay wireless terminal 211. . Since the route information includes the relay terminal information dr1 and dr2, the relay route from the parent wireless terminal 101 to the child wireless terminal 331 can be grasped by analyzing the relay terminal information dr1 and dr2.
  • the parent wireless terminal 101 creates an entry permission signal Sa based on the entry request signal Sd, and route information (including slot position information dt0 and relay terminal information dr1 and dr2) is also incorporated into this entry permission signal Sa.
  • This route information is created by the route information analysis creation unit 23 of the parent wireless terminal 101 and is incorporated into the entry permission signal Sa.
  • Information relating to route information (including slot position information dt0 and relay terminal information dr1 and dr2) is stored in the storage unit 14 of the parent wireless terminal 101.
  • the parent wireless terminal 101 transmits the created entry permission signal Sa to the first relay wireless terminal 211.
  • the first relay wireless terminal 211 analyzes the route information (slot position information dt0 and relay terminal information dr1, dr2, etc.) included in the received entry permission signal Sa, and generates new route information (slot position information).
  • dt0 and relay terminal information dr2 are created, incorporated into the entry permission signal Sa, and transmitted to the second relay wireless terminal 221.
  • the second relay wireless terminal 221 also analyzes the route information included in the received entry permission signal Sa, creates new route information, incorporates it into the entry permission signal Sa, and transmits it to the child wireless terminal 331. .
  • the second relay wireless terminal 221 performs intermittent reception timing (timing to wait for reception intermittently) in the child wireless terminal 331 based on the slot position information dt0.
  • the entry permission signal Sa is transmitted at the same time (in FIG. 10, the intermittent reception timing is illustrated as the carrier sense timing Cs). Therefore, the child radio terminal 331 can receive the entry permission signal Sa at an appropriate timing with less noise, for example.
  • the child radio terminal 331 determines the slot position (slot position information dt0) at the intermittent reception timing waiting for the entry permission signal Sa returned from the parent radio terminal 101 at the time of new entry.
  • the entry permission signal Sa is transmitted from the host device in synchronization with the intermittent reception timing of the child wireless terminal 331. Therefore, the child wireless terminal 331 receives the intermittent reception timing (carrier sense timing Cs and the carrier sensing timing Cs).
  • the basic slot 40) can be maintained in a standby state.
  • FIG. 10 illustrates that the link connection operation is performed only when the child wireless terminal 331 transmits the entry request signal Sd, actually, the second relay wireless terminal 221 and the first relay wireless terminal 211 are illustrated.
  • the link connection operation is also performed for the entry request signal Sd transmitted from the network, and similarly, the link connection operation is performed for the transmission of the entry permission signal Sa. That is, in FIG. 10, for convenience of explanation, only the case where the child radio terminal 331 transmits the entry request signal Sd is illustrated, and the other link connection operations are not illustrated.
  • the child wireless terminal 301 manages only the slot position information dt0 of the relay wireless terminal 201 (second relay wireless terminal 221 if the child wireless terminal 331) is the host device of the own station.
  • the relay wireless terminal 201 manages the relay wireless terminal 201 (subordinate device, for example, the second relay wireless terminal 221 as viewed from the first relay wireless terminal 211), which belongs directly below the own station, using a table.
  • the relay wireless terminal 201 has a table for managing the relay wireless terminal 201 (subordinate device) that is the management target of the local station, and this table includes the table number and the relay wireless terminal 201 to be managed.
  • the parent wireless terminal 101 manages the slot position information dt0 of the child wireless terminal 301 and the table number of the relay wireless terminal 201 existing in the relay route from the child wireless terminal 301 to the parent wireless terminal 101.
  • the entry request signal Sd transmitted from the child wireless terminal 331 (lower device) to the parent wireless terminal 101 (higher device), and from the parent wireless terminal 101 (higher device) to the child wireless terminal 331 (lower device).
  • the returned entry permission signal Sa has a common configuration. That is, both the entry request signal Sd and the entry permission signal Sa are the data communication signals 60 communicated in the data communication slot 423 (see FIG. 3A) of the basic slot 40. Other wireless signals basically have the same message format. Therefore, details of the data communication signal 60 will be specifically described with reference to FIG.
  • the data communication signal 60 (entry request signal Sd, entry permission signal Sa, and other signals) includes a bit synchronization signal 61, a frame synchronization signal 62, a control signal 63, a link partner ID 64, and a local station ID 65. , And a layer 3 frame 66.
  • the bit synchronization signal 61 is a signal for determining a bit sampling position
  • the frame synchronization signal 62 is a signal for detecting the head of data included in the data communication signal 60
  • the control signal 63 is It is a signal describing various control information.
  • the control signal 63 includes information on the signal length from the head of the link partner ID 64 to the end of the layer 3 frame 66. Therefore, the radio communication apparatus of the host device that has received the data communication signal 60 can grasp how far the data communication signal 60 should be received by analyzing the control signal 63.
  • the link partner ID 64 is the ID of the partner to which the data communication signal 60 is transmitted, that is, the partner to which the wireless link is connected. If the data communication signal 60 is transmitted from the child wireless terminal 331, the link partner ID 64 This is the ID of the second relay wireless terminal 221.
  • the local station ID 65 is the ID of the transmission source of the data communication signal 60. If the transmission source is the child wireless terminal 331, the own station ID 65 is the ID of the child wireless terminal 331.
  • the layer 3 frame 66 is a frame signal for relay transmission of the data communication signal 60 to the final destination.
  • other signals and IDs constituting the data communication signal 60 are created and transmitted according to the combination of the lower device and the higher device that transmit and receive the data communication signal 60.
  • the data is transmitted from the child wireless terminal 331 that is the transmission source (first transmission source) to the parent wireless terminal 101 that is the final destination via the first relay wireless terminal 211 and the second relay wireless terminal 221.
  • the layer 3 frame 66 includes an authentication code 661, route information 662, a layer 3 ID 663, and application data 664.
  • the authentication code 661 is a code for checking whether or not the layer 3 frame 66 is a regular frame.
  • the route information 662 is information on a relay route from the child wireless terminal 331 to the parent wireless terminal 101, and the first relay wireless terminal 211 and the second relay wireless terminal 221 interposed between the child wireless terminal 331 and the parent wireless terminal 101. And is incorporated into the layer 3 frame 66.
  • the layer 3 ID 663 is an ID of the child wireless terminal 331 that is the transmission source.
  • the application data 664 is data related to the application transmitted to the parent wireless terminal 101 that is the final destination.
  • the route information 662 included in the layer 3 frame 66 will be specifically described with reference to FIGS. As shown in FIG. 12A, the route information 662 is composed of 8 bytes, and relay terminal information 620 (corresponding to the relay terminal information dr1 and dr2 in FIG. 10) is stored from the first byte to the seventh byte. Slot position information 665 (corresponding to slot position information dt0 in FIG. 10) is stored in the eighth byte.
  • the relay terminal information 620 is information on the relay wireless terminal 201 existing on the relay route from the child wireless terminal 331 that is the first transmission source of the data communication signal 60 to the parent wireless terminal 101 that is the final destination, and its size. Is 8 bits.
  • the first relay wireless terminal 211 and the second relay wireless terminal 221 are two, but the route information 662 can store the relay terminal information 620 up to the seventh level.
  • the first-stage relay terminal information 621 is stored in the first byte of the route information 662, and in the example shown in FIG. Information of one relay wireless terminal 211 is stored.
  • second-stage relay terminal information 622 is stored in the second byte.
  • information on the second relay radio terminal 221 that is the second stage as viewed from the parent radio terminal 101 is stored.
  • the third-stage relay terminal information 623, the fourth-stage relay terminal information 624, the fifth-stage relay terminal information 625, the sixth-stage relay terminal information 626, and the seventh-stage relay terminal information 627 are stored respectively.
  • the bit configuration of the relay terminal information 620 will be specifically described. As shown in FIG. 12B, when the route information 662 is transmitted from the upper device to the lower device and when transmitted from the lower device to the upper device. And some bit configurations are different.
  • the entry request signal Sd transmitted from the child wireless terminal 331 to the parent wireless terminal 101 is a data communication signal 60 transmitted from the lower device to the upper device, but is transmitted from the parent wireless terminal 101 to the child wireless terminal 331. Since the entry permission signal Sa is the data communication signal 60 transmitted from the upper device to the lower device, the data communication signal 60 has a difference in the bit configuration of the route information 662 included therein.
  • the relay terminal information 620a shown in the upper part of FIG. 12B corresponds to a case (entry request signal Sd or the like) transmitted from the lower device to the upper device, and the data bit D7 is a table managed by the relay wireless terminal 201. Is an identifier for identifying whether or not the limit has been reached. In other words, as described above with respect to the management of the route information 662, the relay wireless terminal 201 manages the relay wireless terminal 201 (subordinate device) directly under its own station using the table, but the relay wireless terminal to be managed is managed. Whether or not the number of terminals 201 has reached the upper limit is identified by the identifier.
  • the relay terminal information 620b shown in the lower part of FIG. 12B corresponds to a case (entry permission signal or the like) transmitted from the upper device to the lower device, and the data bit D7 is held by the relay wireless terminal 201, respectively. Whether or not there is a request to delete the table number to be transmitted, and the parent wireless terminal 101 makes this deletion request.
  • the table held by the relay wireless terminal 201 is configured so that the correspondence between the table number and the managed relay wireless terminal 201 (subordinate device) can be obtained, but the table number is deleted by a request of the parent wireless terminal 101. Then, whether or not to remove the specific relay wireless terminal 201 (lower device) from the management target is identified by the identifier.
  • the data bit D6 of the relay terminal information 620a in the upper stage is the relay wireless terminal 201 that is not registered in the table in the relay wireless terminal 201 (lower device) that belongs immediately below, and is first registered in the table at that stage. It is an identifier for identifying whether or not.
  • the data bit D6 of the lower relay terminal information 620b is fixed to “0”.
  • the data bits D5 to D0 are all the relay wireless terminals 201 ( This is the table number of the subordinate device.
  • the table numbers that can be managed are up to “63”. In other words, except for the table number “0”, it is possible to manage 63 relay wireless terminals 201 having the table numbers “1” to “63”.
  • the wireless communication system is configured in three layers, and the relay wireless terminal 201 includes a first relay wireless terminal 211, a second relay wireless terminal 221, and a first relay wireless terminal 221. If three of the three relay wireless terminals 231 are included, the table number of the first relay wireless terminal 211 is stored in the first byte of the route information 662, and the table number of the second relay wireless terminal 221 is stored in the second byte. Is stored. In the third byte, “0” is stored as the table number. This is because the relay wireless terminal 201 as a lower device is not connected to the third relay wireless terminal 231. Note that “0” is also stored as the table number for the fourth and subsequent bytes.
  • the number of relay wireless terminals 201 (that is, the number of relay stages) included in the wireless communication system is also w.
  • the 1st to w-1th bytes store the table numbers of the relay wireless terminal 201 up to the 1st to w-1th stages.
  • the table number of the relay radio terminal 201 in the w-th stage is stored, but the relay radio terminal 201 in the w-th stage is “lowest as a repeater” and the table number is Since it is unnecessary, “0” is stored as the table number.
  • the relay terminal information 620 is stored in the 1st to 7th bytes of the route information 662, and the slot position information 665 is stored in the 8th byte as described above.
  • the slot position information 665 means a slot number (slot position) on which the child wireless terminal 331 that is the transmission source of the data communication signal 60 waits for reception of a wireless signal from the second relay wireless terminal 221 immediately above.
  • the child radio terminal 301 which is the terminal radio terminal thins out an operation of waiting for reception of a radio signal, that is, a reception carrier sense operation, in order to reduce power consumption. Therefore, slot position information 665 for performing the reception carrier sense operation is stored in the eighth byte.
  • the size of the slot position information 665 is also 8 bits.
  • the bit structure of the slot position information 665 will be specifically described. As shown in FIG. 12C, unlike the relay terminal information 620, even when the route information 662 is transmitted from the upper device to the lower device.
  • the bit configuration is basically the same even when it is transmitted from the lower device to the upper device.
  • the intermittent reception cycle M is a cycle in which a lower device performs a reception carrier sense operation on a higher device.
  • the subordinate device is the relay wireless terminal 201
  • the intermittent reception period M can be set to four patterns “1”, “2”, “4”, and “8”.
  • the intermittent reception cycle M of the data bits D5 and D4 is “intermittent reception cycle M of the lower device that is the final destination when viewed from the upper device”. Will show.
  • the intermittent reception cycle M of the data bits D5 and D4 indicates “intermittent reception cycle M of the lower device as the call source”. .
  • the reference slot number Y0 is defined by the following equation (1).
  • the reference slot number Y0 is slot number 1, M + 1, 2M + 1, 3M + 1, etc., and exists for each M slot. Therefore, the standby slot number Y, that is, the slot number of the basic slot 40 that is actually in the reception standby state can be expressed by the following equation (2).
  • the slot information Z is an integer from 1 to M as described above.
  • the parent wireless terminal 101 receives two pieces of information, that is, the intermittent reception period M and the slot information Z of the child wireless terminal 331, the parent wireless terminal 101 creates a route information table of the child wireless terminal 331.
  • the intermittent reception cycle M is desirably a value common to the respective wireless communication devices constituting the wireless communication system, but may be a value different for each child wireless terminal 301.
  • the slot information Z can be arbitrarily set in each child radio terminal 301.
  • the route information 662 created by the child radio terminal 331 is incorporated into the data communication signal 60 and transmitted to the second relay radio terminal 221.
  • the second relay wireless terminal 221 analyzes the route information 662 included therein. Specifically, a byte corresponding to the number of stages of the own station in the route information 662 is analyzed. Since the second relay wireless terminal 221 corresponds to the relay wireless terminal 201 in the second stage when viewed from the parent wireless terminal 101, the second byte of the route information 662 (see FIG. 12A) is analyzed.
  • the second relay wireless terminal 221 has received a relay request from any of the child wireless terminals 301 among the lower devices belonging to the third layer, that is, any of the child wireless terminals 331 to 333. (Data communication signal 60 has been transmitted).
  • the second relay wireless terminal 221 sets the table number “0” in the byte of the stage number to which the second station is a relay request from any of the child wireless terminals 331 to 333. Since the second relay wireless terminal 221 is in the second stage as described above and the transmission source is the child wireless terminal 331, the table number is set in the data bits D5 to D0 (see the upper part of FIG. 12B) of the second byte. Set “0”. Then, “0XFF” is inserted into the data bits D5 to D0 of the first byte corresponding to the number of relay stages one level higher (see the upper stage in FIG. 11B).
  • the relay wireless terminal 201 that is, the third-stage relay wireless terminal 231 (third relay wireless terminal 231) shown in FIG. ) Is interpreted as a relay request.
  • the table number corresponding to the relay wireless terminal 231 is set to the byte of the number of stages to which the own station belongs (data bits D5 to D0 of the second byte).
  • the relay wireless terminal 231 is registered in the table, and the registered table The number is set in the byte in the number of stages to which the own station belongs (data bits D5 to D0 in the second byte).
  • the route information 662 thus analyzed and created by the second relay wireless terminal 221 is incorporated into the data communication signal 60 and transmitted to the first relay wireless terminal 211.
  • the first relay wireless terminal 211 also analyzes and creates the route information 662 in the same manner as the second relay wireless terminal 221.
  • the first relay wireless terminal 211 analyzes the first byte because it is a higher-level device (that is, the first-stage repeater) in the second layer. At this time, since the first byte is “0XFF”, the relay wireless terminal 201, that is, the second-stage relay wireless terminal 221 (second relay wireless terminal 221) shown in FIG. Interpret that there was a request.
  • the second relay wireless terminal 221 Since the first relay wireless terminal 221 corresponds to the first-stage relay wireless terminal 201 when viewed from the parent wireless terminal 101, the second relay wireless terminal 221 is set to the first byte data bits D5 to D0 of the route information 662. Set the table number corresponding to.
  • the route information 662 analyzed and created by the first relay wireless terminal 211 is incorporated into the data communication signal 60 and transmitted to the parent wireless terminal 101.
  • the parent wireless terminal 101 can confirm the relay route to the child wireless terminal 331 by analyzing the route information 662. That is, a table number corresponding to the ID of the second relay wireless terminal 221 managed by the first relay wireless terminal 211 is stored in the first byte of the route information 662, and the second byte of the route information 662 is Since the table number “0” is stored, it becomes clear that the transmission source of the data communication signal 60 is any one of the child wireless terminals 301 that are the lower devices of the second relay wireless terminal 221.
  • slot position information 665 including the intermittent reception period M and slot information Z of the child wireless terminal 331 that is the transmission source is stored. Further, the ID of the child radio terminal 331 that is the transmission source can be known from the layer 3 ID 663.
  • the parent wireless terminal 101 can grasp the relay route to the child wireless terminal 331 from the data communication signal 60 transmitted from the child wireless terminal 331. Since the data communication signal 60 is transmitted to the parent wireless terminal 101 when the child wireless terminal 331 newly enters, relay transmission (relay communication) is repeated between the parent wireless terminal 101 and the child wireless terminal 331. The parent wireless terminal 101 can confirm the relay route by the first communication. Further, since the route information 662 included in the data communication signal 60 has the above-described configuration, the parent wireless terminal 101 can create a route information table by analyzing the route information 662, The relay route can be confirmed appropriately.
  • the parent wireless terminal 101 refers to the route information table of the own station, and the relay route to the child wireless terminal 331 and the intermittent reception cycle of the child wireless terminal 331.
  • Route information 662 including M and slot information Z is created.
  • the route information 662 is incorporated in a layer 3 frame 66 of a polling signal (see FIG. 11) that is a data communication signal.
  • the parent wireless terminal 101 sends a link connection request signal (see FIG. 7A) to the first relay wireless terminal 211 in the higher response / upper call slot 402b in the link connection slot 412 of the lower slot 41.
  • Send Since the first relay radio terminal 211 performs the reception carrier sense operation in all the upper slots 42 (specifically, the upper response / upper call slot 402b), the first relay radio terminal 211 is addressed to the own station transmitted from the parent radio terminal 101.
  • the link connection request signal can be promptly received.
  • the first relay wireless terminal 211 receives the polling signal transmitted from the parent wireless terminal 101 in the data communication slot 423 of the upper slot 42 and confirms the layer 3 ID 663 included in the layer 3 frame 66 of the polling signal. It is determined whether the polling signal is addressed to the own station. If it is not addressed to the local station, it is determined that the request is a relay request, and the first byte (see FIG. 12A) of the route information 662 is analyzed.
  • the received polling signal is addressed to the child radio terminal 301 directly under the own station.
  • the table number stored in the data bits D5 to D0 of the first byte is a table corresponding to the ID of the second relay wireless terminal 221. It is a number. Therefore, the first relay wireless terminal 211 refers to the table held by itself from the table number stored in the first byte of data bits D5 to D0, and the ID of the second relay wireless terminal 221 that is the next relay destination. To figure out.
  • the first relay wireless terminal 211 performs a link connection operation with the second relay wireless terminal 221 in the same procedure as the parent wireless terminal 101, and relays and transmits a polling signal to the second relay wireless terminal 221.
  • the second relay wireless terminal 221 analyzes the received polling signal route information 662 in the same manner as the first relay wireless terminal 211 described above, and stores it in the data bytes D5 to D0 of the second byte of the route information 662. Check the table number. Since the table number stored in the data bits D5 to D0 of the second byte is “0”, the second relay wireless terminal 221 determines that the received polling signal is a child wireless terminal 331 to 333 that belongs directly under its own station. Recognize that it is addressed to one of the following. Further, by confirming the layer 3 ID 663 (see FIG. 11) in the polling signal, it is possible to confirm the ID of the child wireless terminal 331 that is the final destination.
  • the second relay wireless terminal 221 analyzes the slot position information 665 of the eighth byte of the route information 662, and confirms the intermittent reception cycle M and the slot information Z of the child wireless terminal 331. As described above, since the slot number of the basic slot 40 that performs the reception carrier sense operation can be calculated from the intermittent reception period M and the slot information Z, the second relay wireless terminal 221 determines the child number according to the calculated slot number. A link connection operation is performed with the wireless terminal 331, and a polling signal is relayed and transmitted.
  • the layer 3 frame 66 (see FIG. 11) of the polling signal is created by the parent wireless terminal 101, and is not changed at all by the first relay wireless terminal 211 and the second relay wireless terminal 221 that are relay devices. Relay transmission is performed as it is to the child wireless terminal 331 as the destination. Therefore, the child radio terminal 331 can reliably receive the application data 664 from the parent radio terminal 101.
  • the present embodiment includes the parent wireless terminal 101, the plurality of relay wireless terminals 201, and the plurality of child wireless terminals 301, and the plurality of relay wireless terminals 201 are configured to perform multi-stage relay transmission.
  • the relay wireless terminal 201 that performs relay transmission performs wireless communication from the lower device to the higher device (performs upward communication).
  • the link connection is established with the lower-level device (see FIG. 5), and the upper slot 42 immediately after the lower-order slot 41 that has performed the link connection.
  • the link connection is made with the host device (see FIG. 5).
  • relay wireless terminal 201 link connection is performed immediately after transmission / reception of the beacon signal in the upward communication so that communication with the upper device and the lower device is possible, so that a large delay in relay transmission can be suppressed. Rapid relay transmission is possible.
  • the higher-order relay wireless terminal 201 for example, the second relay wireless terminal 221 becomes receivable in accordance with the timing at which it transmits terminal call data.
  • the higher-order relay wireless terminal 201 for example, the first relay wireless terminal 211) is ready to receive.
  • the relay wireless terminal 201 can perform relay transmission in accordance with the transmission timing of the terminal call data of the child wireless terminal 301, the operation time of the child wireless terminal 301 can be shortened, and the simple configuration Thus, an increase in power consumption of the child radio terminal 301 can be suppressed.
  • the relay wireless terminal 201 when wireless communication is performed from the upper device to the lower device (downward communication is performed), the relay wireless terminal 201 always performs a reception carrier sense operation in the upper slot 42 (first relay wireless terminal in FIG. 5). 211 and the second relay wireless terminal 221 (see the link connection slot 422 filled in black), and in the lower slot 41, the reception carrier sense operation is performed only immediately after the beacon signal is transmitted (first relay wireless terminal 211 in FIG. 5). In the second relay wireless terminal 221, see the link connection slot 412 that is blacked out).
  • the child radio terminal 301 does not perform the reception carrier sense operation in all the basic slots 40 (only the upper slot 42 because there is no lower device), and performs the reception carrier sense operation only in the thinned upper slot 42, and the child radio
  • the relay radio terminal 201 (for example, the second relay radio terminal 221) at the upper level of the terminal 301 performs link connection in accordance with the reception carrier sense operation of the child radio terminal 301.
  • the operation time of the child radio terminal 301 can be shortened, and an increase in power consumption of the child radio terminal 301 can be suppressed with a simple configuration.
  • the relay wireless terminal 201 can promptly transmit a wireless signal to the lower device after receiving the wireless signal from the upper device, except for the downward communication to the child wireless terminal 301. Therefore, delay in relay transmission is avoided not only in upward communication but also in downward communication, and a wireless signal returned from the parent wireless terminal 101 that has received the terminal call data can be relayed quickly. Become.
  • the slot number of the basic slot 40 corresponding to the intermittent reception timing in the child radio terminal 301 is incorporated into a radio signal and transmitted during communication with the parent radio terminal 101. Therefore, the relay wireless terminal 201 only needs to have a table for managing only the relay wireless terminal 201 (subordinate device) that belongs directly to the own station, and has no information on the child wireless terminal 301 that belongs directly to the own station. There is no need to do. Therefore, relay radio terminal 201 according to the present embodiment does not need to limit the number of child radio terminals 301 that belong directly to the own station, and can relay more child radio terminals 301 than in the past. In other words, relay radio terminal 201 according to the present embodiment can reduce the size of the table held by itself even when relaying the same number of child radio terminals 301 as before.
  • the parent wireless terminal 101 since the parent wireless terminal 101 according to the present embodiment only needs to directly manage the relay wireless terminal 201 belonging directly below, the table storing the route information 662 to the child wireless terminal 301 can be reduced.
  • the parent wireless terminal 101 needs to manage the ID of the first relay wireless terminal 211 that belongs directly below, but instead of directly managing the ID of the second relay wireless terminal 221 that is not directly below, the first relay wireless terminal 101
  • the table number of the second relay wireless terminal 221 managed by 211 may be managed. If the maximum number of relay wireless terminals 201 managed by each relay wireless terminal 201 is 63, the required number of tables is 63, so 6-bit information is sufficient for the table number. Therefore, in the past, it was necessary to manage 64-bit information for one relay wireless terminal 201, but in this embodiment, 6-bit management is sufficient.
  • the route information 662 incorporated in the data communication signal includes a table number corresponding to the ID instead of the ID of the relay wireless terminal 201 interposed in the relay route. Therefore, the number of bytes of the route information 662 can be reduced. For example, if the maximum number of relay wireless terminals 201 managed by each relay wireless terminal 201 is 63, a relay route per stage can be set with 6-bit information.
  • an ID for designating a wireless communication device for example, a 64-bit ID is known, and the number of bits tends to increase as described above. Therefore, if all the IDs of the relay wireless terminal 201 intervening in the relay route are transmitted as the route information 662, the number of bits of the route information 662 becomes very large and communication is wasted. On the other hand, in this embodiment, the table number is transmitted as the route information 662, so that the number of bits of the route information 662 can be reduced and efficient communication can be performed.
  • the parent wireless terminal 101 manages the slot position information 665 of the child wireless terminal 331 by storing it in the storage unit 14, but the second relay immediately above the child wireless terminal 331 is viewed. It can also be managed by the wireless terminal 221. In this case, although the table of the second relay wireless terminal 221 becomes large, there is an advantage that the slot position information 665 of the eighth byte of the route information 662 is not necessary.
  • the above-described embodiment can be applied to a general wireless communication apparatus or a wireless communication system. Therefore, the specific configuration of the wireless communication apparatus or the wireless communication system is shown in FIG.
  • the present invention is not limited to the configuration shown in (c) or FIG. 2, and can be applied to various known wireless communication apparatuses or wireless communication systems.
  • the wireless communication system is composed of two types of a parent wireless terminal and a child wireless terminal. May be.
  • the communication operation by the parent wireless terminal, the relay wireless terminal, and the child wireless terminal can be realized by a program for operating a computer, and hardware resources such as an electric device, an information device, and / or a computer are cooperated. Can be realized. Also, by recording such a program on a recording medium or distributing the program using a communication line, it is possible to easily distribute and update the program, install the program, and the like.
  • the intermittent reception timing information included in the route information “slot position information” that is a slot number for intermittently waiting for reception is used, but the present invention is not limited to this, If the intermittent reception timing (intermittent reception timing of reception) can be specified, the information is not limited to the slot number, and other known information can be used.
  • the wireless communication device, the wireless communication system, the wireless communication method, or the program according to the present invention has a configuration that can be applied to the general field of wireless communication. It can be particularly suitably used in fields where power saving is required. As a representative example of such a field, there can be mentioned a wireless meter reading system for a gas meter.
  • gas meters are configured to operate on battery power without replacement for a very long time (usually about 10 years), and there are almost no configurations with AC power. Therefore, the wireless communication device (slave wireless terminal) attached to the gas meter needs to operate without battery replacement for 10 years by battery driving. Therefore, the wireless communication device waits for reception at a predetermined cycle and performs an intermittent standby operation that immediately stops reception (reception trial) and enters a standby state if the radio wave addressed to itself cannot be detected. Yes. Further, the meter reading of the gas meter does not need to be frequently measured, and is at most once a day, and therefore the frequency of wireless communication is not great.
  • wireless communication devices that perform wireless communication with each other asynchronously do not synchronize their respective clocks and perform intermittent standby operations. Is used.
  • transmission information information to be transmitted
  • a header signal longer than the intermittent reception cycle of the communication partner is attached and the transmission information is transmitted.
  • a signal can be detected, and when the header signal is detected, reception can be continued and the transmission information transmitted following the header signal can be received.
  • a relay wireless terminal is provided in order to collect meter reading values of a large number of gas meters with a single parent wireless terminal, and the relay wireless terminal is connected to a large number of child wireless terminals in a one-to-multiple manner.
  • a configuration for performing wireless communication is adopted. In this configuration, since a relay wireless terminal is interposed, it is necessary to perform relay transmission of the relay wireless terminal without delay in order to quickly perform data communication from the child wireless terminal to the parent wireless terminal.
  • the relay radio terminal (upper) directly above the slave radio terminal must perform relay transmission in accordance with the intermittent reception timing of the slave radio terminal. Furthermore, if a plurality of relay wireless terminals are provided to perform relay transmission in multiple stages, it becomes necessary to efficiently perform relay transmission between relay wireless terminals. Such intermittent standby of reception of the child radio terminal or installation of a relay radio terminal in multiple stages becomes a factor that delays transmission of terminal call data from the child radio terminal to the parent radio terminal.
  • the relay wireless terminal in the relay wireless terminal, a link connection is performed immediately after the transmission / reception of the beacon signal so that communication with the higher-level device and the lower-level device is possible.
  • the upper relay radio terminal and the upper relay radio terminal can communicate with each other in accordance with the timing at which the terminal radio data is transmitted. Therefore, since the relay wireless terminal can perform relay transmission in accordance with the transmission timing of the terminal call data of the child wireless terminal, the operation time of the child wireless terminal can be shortened, and the child wireless terminal can be configured with a simple configuration. An increase in power consumption of the terminal can be suppressed.
  • the gas flow data (gas meter reading data) is automatically collected from the gas meter.
  • the present invention is not limited to this and is a system for metering the flow rate of water, electricity, or the like. Needless to say, it may be.
  • the radio communication system relates to a radio communication system including a master radio terminal, a slave radio terminal, and a plurality of relay radio terminals between the master radio terminal and the slave radio terminal.
  • the relay radio terminals those closer to the parent radio terminal are referred to as “upper side relay radio terminals”, and those closer to the child radio terminals that perform radio communication with the upper side relay radio terminal are referred to as “lower side radio terminals”.
  • the upper relay radio terminal and the lower relay radio terminal can transmit a radio signal at a timing defined as a unit slot composed of a lower slot and an upper slot.
  • the lower slot is a slot that enables a beacon signal to be transmitted to the lower relay wireless terminal when viewed from the own station (beacon transmission). Slot) and is configured to transmit the beacon signal at a predetermined period using the beacon transmission slot, and the upper slot receives a beacon signal transmitted from the upper relay radio terminal when viewed from the own station.
  • the time from when the upper relay radio terminal transmits the beacon signal to when the lower relay radio terminal transmits the beacon signal is lower than the lower relay radio terminal. May be configured to be longer than the time from when the beacon signal is transmitted until the higher-level relay wireless terminal transmits the beacon signal.
  • the relay wireless terminal receives the terminal call data transmitted by the child wireless terminal immediately after the beacon signal, receives the beacon signal transmitted from the parent wireless terminal immediately after the reception, and immediately after that Since terminal call data is relayed and transmitted to the parent wireless terminal, it is possible to avoid a possibility that a large delay occurs in relay transmission of the terminal call data.
  • the relay radio terminal and the slave radio terminal are configured to perform an intermittent reception standby operation in order to receive a radio signal from a higher-level device, and the intermittent reception standby period of the slave radio terminal is the intermittent reception of the relay radio terminal.
  • the structure which becomes longer than a period may be sufficient.
  • the relay wireless terminal performs intermittent reception standby (intermittent reception standby operation) of polling data from the parent wireless terminal at a cycle shorter than the second beacon signal transmitted by the parent wireless terminal. Therefore, relay transmission can be performed without causing a large delay in relay transmission of polling data.
  • the present invention is a wireless communication system such as a short-range wireless communication network, mobile communication, a private wireless communication network, a radio for transportation, a disaster prevention administrative wireless network, a wireless LAN, a meter reading system for gas, water, and power.
  • the present invention can be suitably used in the field of communication systems and wireless communication devices used in these systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

 本発明に係る無線通信システムにおいては、第二中継無線端末(221)は、その下位の子無線端末(301)に対してビーコン信号を送信した直後に、当該子無線端末(301)からの端末発呼データを受信することができ、また、端末発呼データを受信してまもなく、第一中継無線端末(211)から送信されるビーコン信号を受信し、その直後に当該第一中継無線端末(211)に端末発呼データを送信することができる。その結果、端末発呼データの中継伝送に大きな遅延が生じることが抑えられ、迅速な無線通信が可能となる。

Description

無線通信システム
 本発明は、親無線端末、中継無線端末、および子無線端末から少なくとも構成される無線通信システムに関し、特に、前記親無線端末および中継無線端末がビーコン信号を送信可能とする構成となっており、前記中継無線端末および子無線端末が、前記親無線端末または他の中継無線端末から送信されたビーコン信号を受信して、送信元の無線端末との時間を同期させることが可能な構成となっている無線通信システムに関する。
 親無線端末、中継無線端末、および子無線端末から少なくとも構成される無線通信システムでは、親無線端末は、多数の子無線端末に対して無線通信が可能になっているが、子無線端末が設置される場所によっては、親無線端末との間で直接無線通信ができないことがある。このような場合に、無線信号を中継伝送する中継無線端末が用いられる。中継無線端末は、親無線端末と任意の子無線端末との間で1台のみを介する場合もあれば、2台以上を介する場合もある。
 また、子無線端末としてはさまざまな構成が知られているが、電源に注目すれば、内蔵の電池を電源とする(電池駆動される)ものが存在する。このような電池駆動方式の子無線端末は、一般的には、当該子無線端末の電力消費を抑えるために、親無線端末または中継無線端末からの無線信号の受信を間欠的に待ち受けるように構成されている。
 このような子無線端末を含む無線通信システムでは、親無線端末または中継無線端末(上位機器)から定期的にビーコン信号が送信され、当該ビーコン信号を子無線端末(下位機器)が定期的に受信する。親無線端末、中継無線端末および子無線端末には時計が内蔵されており、子無線端末(あるいは下位機器となる中継無線端末)は、ビーコン信号の受信により自局の時計をビーコン信号の送信元の無線端末(親無線端末または中継無線端末)の時計に合わせる(時計合わせ)。そして子無線端末は、時計合わせした後の所定のタイミングで、親無線端末からのポーリングデータの受信を間欠的に待ち受ける。このような無線通信の方式(いわゆる同期方式)は、一般に子無線端末の省電力化に有効である。
 このような同期方式を採用する無線通信システムの一例として、特許文献1に開示される火災警報システムが挙げられる。この火災警報システムでは、親局(親無線端末)となる火災警報器と、子局(子無線端末)となる火災警報器と、これら火災警報器で通信される無線信号を中継する中継器(中継無線端末)とを備えている。そして、親局の火災警報器は、子局の火災警報器に対して、火災警報メッセージを送信した後、もしくはいずれかの子局から火災警報メッセージを受信した後に、一定周期で第一同期信号(ビーコン信号)を送信する。
 ここで、特許文献1に開示の技術では、親局の火災警報器は、一定周期で第一同期信号を送信する際に、当該第一同期信号に火災警報メッセージを含めた上で繰返し送信を行っている。また、中継器は、親局の火災報知器から第一同期信号を受信すると、当該第一同期信号と同一周期の第二同期信号を送信するが、親局の火災警報器から火災警報メッセージを受信している間(すなわち、火災警報メッセージを含む第一同期信号を受信している間)、第二同期信号に火災警報メッセージを含めた上で、子局の火災警報器に中継伝送している。
 言い換えると、特許文献1に開示の火災警報システムでは、中継無線端末(中継器)からのビーコン信号(第二同期信号)は、親無線端末(親局の火災警報器)からのビーコン信号(第一同期信号)の直後に送信され、これにより、下位機器となる無線端末の時計合わせが行われるが、親無線端末からのポーリングデータ(火災警報メッセージ)は、当該親無線端末からのビーコン信号(第一同期信号)に重畳されているとともに、中継無線端末からのビーコン信号(第二同期信号)に重畳されている。
 それゆえ、子無線端末は、中継無線端末が送信するビーコン信号(第二同期信号)を受信することにより、親無線端末からのポーリングデータを受信することが可能となる。このような構成によれば、中継無線端末が介在しても、親無線端末から子無線端末に対して、大きな遅延が生ずることなくポーリングデータを伝送することが可能となる。
 また、特許文献1に開示の技術では、子局の火災警報器は、火災警報メッセージを受信すると、その受信を確認する応答メッセージを返信する。子局と親局との間に中継器が介在している場合には、子局からの応答メッセージは中継器を介して親局に伝送される。
 言い換えると、子無線端末(子局の火災警報器)で生成された端末情報は、端末発呼データ(応答メッセージ)として中継無線端末(中継器)を経由して親無線端末(親局の火災警報器)に伝送される。
 さらに、特許文献1に開示の技術では、親局の火災報知器では、送受信される無線信号の先頭にフレームの順番を格納している。これに対して、子局の火災報知器では、受信した無線信号に格納されているフレームの順番に基づいて、親局の受信状態への切り換えタイミングを推定している。この切り換えタイミングの推定は、中継器が子局のように振る舞う場合も同様である。
 言い換えると、どのようなタイミングで子無線端末(子局の火災警報器)が端末発呼データ(応答メッセージ)を送信すべきか、という点については、親無線端末(親局の火災警報器)で管理され(フレームの順番)、子無線端末は、親無線端末が指示したタイミング(フレームの順場に基づいて推定されるタイミング)で端末発呼データを送信している。同様に、中継無線端末(中継器)の親無線端末への送信タイミングも親無線端末により管理され、親無線端末が指示したタイミングで端末発呼データを中継送信している。
 また、特許文献1に開示の技術では、子局においては、親局が受信状態に切り換わっている期間を複数のタイムスロットに分割し、それぞれの子局(または中継器)に決められた特定のタイムスロットに応答メッセージを含む無線信号を格納して親局に返信している。なお、このタイムスロットは、第一同期信号により規定されており、当該第一同期信号の1周期が複数のタイムスロットに分割されていることになる。
 言い換えると、親無線端末は、自局が送信するビーコン信号(第一同期信号)の送信間隔を複数のタイムスロットに分割しており、下位機器となる無線端末(子無線端末および中継無線端末)には1つのタイムスロットが割り当てられている。そして、各下位機器(子無線端末または中継無線端末)は、割り当てられた所定のタイムスロットで無線信号を送信している。
特開2009-288897号公報
 しかしながら、特許文献1に開示の技術では、親無線端末から子無線端末へポーリングデータの伝送に大きな遅延が発生することを回避できるものの、端末発呼データの伝送に大きな遅延が発生するおそれがあり、また、子無線端末でポーリングデータを受信する回数が増加して消費電力が増大するおそれがある。
 具体的には、子無線端末で生成された端末発呼データは、所定の送信タイミング(すなわち所定のタイムスロット)で送信されて中継無線端末で受信されるが、当該中継無線端末において、自局の送信タイミング(所定のタイムスロット)が既に過ぎ去っている場合には、親無線端末から次のビーコン信号(第一同期信号)を受信してから所定のタイムスロットに至るまで、端末発呼データの中継伝送を待機する必要がある。つまり、子無線端末からの端末発呼データは、ビーコン信号の送信周期を1回以上遅れて親無線端末に中継伝送される可能性があるので、端末発呼データの伝送に大きな遅延が発生するおそれがある。
 また、特許文献1に開示の技術では、ポーリングデータの伝送の大幅な遅延を回避するべくビーコン信号にポーリング信号を重畳させている。そのため、子無線端末は、上位機器(親無線端末または中継無線端末)から定期的に送信されるビーコン信号(第一同期信号または第二同期信号)と同じ周期でビーコン信号を受信することになる。その結果、子無線端末では必要以上の頻度でビーコン信号を受信する可能性があり、当該子無線端末の消費電力が増大するおそれがある。
 本発明はこのような課題を解決するためになされたものであって、簡素な構成で子無線端末の消費電力の増大を抑制しつつ、当該子無線端末から親無線端末への端末発呼データの中継伝送に際して、大きな遅延の発生を有効に抑制または回避することが可能な、無線通信システムを提供することを目的とする。
 本発明に係る無線通信システムは、前記の課題を解決するために、複数の無線通信装置から構成され、当該無線通信装置として、最下位となる複数の子無線端末と、これら子無線端末との間で無線通信を行う最上位の親無線端末と、前記子無線端末および親無線端末の間に介在し、これらの間で無線通信の中継を行う中継無線端末とを備えている無線通信システムであって、前記親無線端末および前記中継無線端末は、下位の無線通信装置に対して定期的にビーコン信号を送信するよう構成されるとともに、前記中継無線端末および前記子無線端末は、上位の無線通信装置から送信された前記ビーコン信号を定期的に受信して、自局の内部時計を上位の無線通信装置の内部時計に同期するよう構成され、前記親無線端末または前記中継無線端末が前記ビーコン信号を送信した時点である先上位ビーコン送信時点から、当該先上位ビーコン送信時点後にその下位の中継無線端末が最初の前記ビーコン信号を送信する時点である下位ビーコン送信時点までの時間を、第一ビーコン送信間隔とし、前記下位ビーコン送信時点から、当該下位ビーコン送信時点後にその上位の前記親無線端末または前記中継無線端末が最初の前記ビーコン信号を送信する時点である後上位ビーコン送信時点までの時間を、第二ビーコン送信間隔としたときに、前記第一ビーコン送信間隔は、前記第二ビーコン送信間隔よりも長くなるように設定されている構成である。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 以上のように、本発明では、簡素な構成で子無線端末の消費電力の増大を抑制しつつ、当該子無線端末から親無線端末への端末発呼データの中継伝送に際して、大きな遅延の発生を有効に抑制または回避することが可能な、無線通信システムを提供することができる、という効果を奏する。
(a)~(c)は、本発明の実施の形態に係る無線通信装置の要部構成の一例を示すブロック図である。 図1に示す無線通信装置を用いて構成される無線通信システムの構成の一例を示す模式図である。 (a)は、図1(a)~(c)に示す各無線通信装置において管理されるタイムスロットの基本構成を示す模式図であり、(b)は、(a)に示すタイムスロットのうちリンク接続用スロットの構成を示す模式図である。 図2に示す無線通信システムを構成する各無線通信装置の間でのスロット位置の関係を示す模式図である。 図4に示す各無線通信装置の間でのスロット位置関係の要部を示す模式図である。 図4に示すスロット位置の関係にある無線通信システムにおいて、親無線端末から子無線端末宛のデータ送信が行われたときの中継伝送の一例を示す模式図である。 (a)は、図2に示す無線通信システムを構成する各無線通信装置の間で送受信されるリンク接続要求信号の構成の一例を示す模式図であり、(b)は、(a)に示すリンク接続要求信号に含まれる1つの繰返しフレームの構成の一例を示す模式図である。 図7(a)に示すリンク接続要求信号を受信して受信キャリアセンス動作を行うタイミングの一例を示すタイミングチャートである。 図4に示すスロット位置の関係にある無線通信システムにおいて、子無線端末から親無線端末宛のデータ送信が行われたときの中継伝送の一例を示す模式図である。 図4に示すスロット位置の関係にある無線通信システムにおいて、新規に子無線端末が参入するときの無線信号の通信の一例を示すタイミングチャートである。 図2に示す無線通信システムを構成する各無線通信装置の間で送受信されるデータ通信用信号の構成の一例を示す模式図である。 (a)は、図11に示すデータ通信用信号に含まれるルート情報の構成の一例を示す模式図であり、(b)は、(a)に示すルート情報の1バイト目から7バイト目に格納される中継端末情報の構成の一例を示す模式図であり、(c)は、(a)に示すルート情報の8バイト目に格納されるスロット位置情報の構成の一例を示す模式図である。
 本発明に係る無線通信システムは、複数の無線通信装置から構成され、当該無線通信装置として、最下位となる複数の子無線端末と、これら子無線端末との間で無線通信を行う最上位の親無線端末と、前記子無線端末および親無線端末の間に介在し、これらの間で無線通信の中継を行う中継無線端末とを備えている無線通信システムであって、前記親無線端末および前記中継無線端末は、下位の無線通信装置に対して定期的にビーコン信号を送信するよう構成されるとともに、前記中継無線端末および前記子無線端末は、上位の無線通信装置から送信された前記ビーコン信号を定期的に受信して、自局の内部時計を上位の無線通信装置の内部時計に同期するよう構成され、前記親無線端末または前記中継無線端末が前記ビーコン信号を送信した時点である先上位ビーコン送信時点から、当該先上位ビーコン送信時点後にその下位の中継無線端末が最初の前記ビーコン信号を送信する時点である下位ビーコン送信時点までの時間を、第一ビーコン送信間隔とし、前記下位ビーコン送信時点から、当該下位ビーコン送信時点後にその上位の前記親無線端末または前記中継無線端末が最初の前記ビーコン信号を送信する時点である後上位ビーコン送信時点までの時間を、第二ビーコン送信間隔としたときに、前記第一ビーコン送信間隔は、前記第二ビーコン送信間隔よりも長くなるように設定されている構成である。
 前記構成によれば、第一ビーコン送信間隔は第二ビーコン送信間隔よりも長くなるように設定されているので、前記下位の中継無線端末は、その下位の無線通信装置に対してビーコン信号を送信した直後に、当該下位の無線通信装置との間で無線通信可能な状態となるとともに、その上位の無線通信装置からビーコン信号を受信した直後に、当該上位の無線通信装置との間で無線通信可能な状態となる。
 それゆえ、前記下位の中継無線端末は、その下位の無線通信装置に対してビーコン信号を送信した直後に、子無線端末からの端末発呼データを受信することができる。これにより、子無線端末から端末発呼データを送信するタイミングに合わせて中継無線端末が端末発呼データを中継伝送できるため、子無線端末の稼働時間を短くすることが可能となり、簡素な構成で子無線端末の消費電力の増大を抑制することができる。
 また、下位の中継無線端末は、端末発呼データを受信してまもなく、上位の無線通信装置から送信されるビーコン信号を受信し、その直後に当該上位の無線通信装置に対して端末発呼データを送信することができる。これにより、端末発呼データの中継伝送に大きな遅延が生じることが抑えられ、迅速な無線通信が可能となる。
 前記構成の無線通信システムにおいては、前記上位および下位の無線通信装置の間で行われる前記無線通信は、複数のタイムスロットに分割した1周期を繰り返すように周期的に行われ、前記各タイムスロットは、前記下位の無線通信装置との間で無線通信を行うための下位スロットと、当該下位スロットの後に続く、前記上位の無線通信装置との間で無線通信を行うための上位スロットとに区分され、前記下位スロットには、前記ビーコン信号を送信するためのビーコン送信用スロットと、当該ビーコン送信用スロットの後に続く、前記下位の無線通信装置との間でリンク接続を行うためのリンク接続用スロットとが含まれ、前記上位スロットには、前記ビーコン信号を受信するためのビーコン受信用スロットと、当該ビーコン受信用スロットの後に続く、前記上位の無線通信装置との間でリンク接続を行うためのリンク接続用スロットとが含まれ、前記子無線端末の上位の中継無線端末を基準局としたときに、前記上位の無線通信装置、基準局、および当該子無線端末のそれぞれの前記無線通信は、基準局の下位スロットが前記子無線端末の上位スロットに対応し、基準局の上位スロットが前記上位の無線通信装置の下位スロットに対応するように、その周期を対応させている構成であってもよい。
 前記構成によれば、特定のタイムスロットに合わせて前記第一ビーコン送信間隔および第二ビーコン送信間隔を設定することができる。
 前記構成の無線通信システムにおいては、さらに、前記中継無線端末は、前記ビーコン信号を送信した下位スロットでリンク接続を行うよう構成され、前記基準局の上位の無線通信装置が中継無線端末であるときに、前記上位の中継無線端末、基準局、および当該子無線端末のそれぞれの前記無線通信は、基準局におけるリンク接続を行う下位スロットが前記子無線端末のリンク接続を行う上位スロットに対応し、基準局の上位スロットが前記上位の中継無線端末におけるリンク接続を行う下位スロットに対応するように、その周期を対応させている構成であってもよい。
 前記構成によれば、基準局と上位の無線通信装置と下位の無線通信装置との間で、リンク接続を行う上位スロットまたは下位スロットを対応させているので、各無線通信装置の間でのリンク接続間隔をできる限り短くすることができる。
 前記構成の無線通信システムにおいては、前記子無線端末は、複数回に1回の上位スロットでリンク接続を行うよう構成され、前記基準局および当該子無線端末のそれぞれの前記無線通信は、基準局の下位スロットが、前記子無線端末の最先のリンク接続を行う上位スロットに対応するように、その周期を対応させている構成であってもよい。
 前記構成によれば、子無線端末が間引いてリンク接続を行っても、最上位の親無線端末から、子無線端末の上位の中継無線端末まで、速やかに無線通信を行うことができる。
 前記構成の無線通信システムにおいては、前記子無線端末の上位となる中継無線端末を除く、他の中継無線端末は、その上位の無線通信装置の下位スロットと自局の上位スロットとの間でリンク接続が行われれば、直後の自局の下位スロットとその下位の無線通信装置の上位スロットとの間でリンク接続を行うよう構成されてもよい。
 前記構成によれば、上位の無線通信装置とリンク接続が行われた後まもなく、下位の無線通信装置とリンク接続を行うことができるので、最上位の親無線端末から、子無線端末の上位の中継無線端末まで、速やかに無線通信を行うことができる。
 前記構成の無線通信システムにおいては、中継無線端末および子無線端末は、上位の親無線端末または中継無線端末からの無線信号を受信するために定期的に間欠受信待ち受け動作を行うよう構成され、前記子無線端末の間欠受信待ち受け周期は前記中継無線端末の間欠受信周期よりも長い構成であってもよい。
 中継無線端末は、親無線端末が送信するビーコン信号よりも短い周期で親無線端末からのポーリングデータの受信待ち受けを行っているため、ポーリングデータの中継伝送において大きな遅延が生じることなしに、中継伝送を行うことができる。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 [無線通信装置の概略構成]
 図1(a)~(c)は、本発明の実施の形態1に係る無線通信装置の要部構成の一例を示すブロック図であり、図1(a)が親無線端末として機能する無線通信装置の構成例を示し、図1(b)が中継無線端末として機能する無線通信装置の構成例を示し、図1(c)が子無線端末として機能する無線通信装置の構成例を示す。また、図2は、図1に示す無線通信装置を用いて構成される、本発明の実施の形態1に係る無線通信システムの一例を示す模式図である。
 まず、本実施の形態に係る無線通信装置の概略構成について説明する。図1(a)に示すように、本実施の形態に係る無線通信装置のうち親無線端末101は、アンテナ11、送受信部12、制御部13、記憶部14、ビーコン送信部21、リンク接続部22、ルート情報解析作成部23、タイミング情報送信部24を備えている。
 アンテナ11は、所定の帯域の電波を送受信できるものであれば特に限定されず、各種公的な規格で定められている帯域の電波を送受信可能な公知のアンテナが用いられる。送受信部12は、アンテナ11から空中へ電波を送信したり、空中を伝わってきた電波を受信したりするために、データを所定の帯域の無線信号に変調したり、所定の帯域の無線信号をデータに復調したりする無線送受信回路として構成されている。その具体的な構成は特に限定されず、無線通信ネットワークの分野で公知の高周波回路(RF回路)が用いられる。
 制御部13は、例えば、マイクロコンピュータのCPUで構成され、親無線端末101(無線通信装置)の動作、特に無線通信動作に関する種々の制御を行う。例えば、親無線端末101の全体の時間管理、送受信部12、ビーコン送信部21、リンク接続部22、ルート情報解析作成部23、タイミング情報送信部24等の制御等が挙げられる。記憶部14は、制御部13の制御により記憶されている各種情報が読み出されるものであり、例えば、CPUの内部メモリ、あるいは独立したメモリ装置等として構成されればよい。
 ビーコン送信部21は、制御部13の制御により他の無線通信装置(後述する中継無線端末201、子無線端末301)に対してビーコン信号を送信する。リンク接続部22は、制御部13の制御により、他の無線通信装置に対してリンク接続要求信号を送信することにより無線リンクを接続する(リンク接続動作)。ルート情報解析作成部23は、中継要求のあった中継無線端末201に関する情報(中継端末情報)を含むルート情報の解析および作成を行う。タイミング情報送信部24は、子無線端末301における間欠受信タイミングを特定する情報(間欠受信タイミング情報)の作成および送信を行う。
 間欠受信タイミング情報は、本実施の形態では後述するスロット位置情報であり、前記ルート情報には、中継端末情報に加えてスロット位置情報も含まれる。なお、中継端末情報、スロット位置情報およびルート情報については後述する。また、記憶部14は、スロット位置情報および中継端末情報を含むルート情報とこれに関する種々の付随情報を記憶可能となっている。
 ビーコン送信部21、リンク接続部22、ルート情報解析作成部23、およびタイミング情報送信部24の具体的な構成は特に限定されず、公知のスイッチング素子、減算器、比較器等による論理回路等として構成されてもよいし、制御部13の機能構成であって、制御部13としてのCPUが、記憶部14に格納されるプログラムに従って動作することにより実現される構成であってもよい。
 次に、図1(b)に示すように、本実施の形態に係る無線通信装置のうち中継無線端末201は、アンテナ11、送受信部12、制御部13、ビーコン送信部21、ビーコン受信部25、リンク接続部22、タイミング情報解析部26を備えている。
 アンテナ11、送受信部12、制御部13、ビーコン送信部21、およびリンク接続部22の具体的な構成は親無線端末101が備える構成と同様であり、その説明は省略する。なお、中継無線端末201が親無線端末101から送信される無線信号を受信する際には、リンク接続部22は、リンク接続要求信号を受信することによりリンク接続動作を行う。ビーコン受信部25は、親無線端末101から送信されたビーコン信号を受信し、制御部13に出力する。タイミング情報解析部26は前記スロット位置情報を含むルート情報の解析および作成を行う。ビーコン受信部25およびタイミング情報解析部26も論理回路等として構成されてもよいし制御部13の機能構成であってもよい。
 次に、図1(c)に示すように、本実施の形態に係る無線通信装置のうち子無線端末301は、アンテナ11、送受信部12、制御部13、記憶部14、ビーコン受信部25、リンク接続部22、タイミング情報送信部24を備えている。アンテナ11、送受信部12、制御部13、記憶部14、ビーコン送信部21、リンク接続部22、およびタイミング情報送信部24の具体的な構成は親無線端末101または中継無線端末201が備える構成と同様であり、その説明は省略する。
 [無線通信システムの概略構成]
 次に、本実施の形態に係る無線通信システムの概略構成について説明する。図2に示すように、本実施の形態に係る無線通信システムは、無線通信装置として、親無線端末101、中継無線端末211,221,231および子無線端末311~313,321~323,331~333を含んでいる。なお、図2における中継無線端末211,221,231は、図1(b)に示す中継無線端末201に対応し、子無線端末311~313,321~323,331~333は、図1(c)に示す子無線端末301に対応する。
 また、図2においては、説明の便宜上、親無線端末101を1台、中継無線端末201を3台(中継無線端末211~231)、子無線端末301を9台(子無線端末311~333)図示しているが、無線通信システムの構成はこれに限定されるものではなく、これら無線通信装置は、図示されている台数を超えて含まれてもよいし、図示されている台数未満であってもよい。
 親無線端末101および中継無線端末211,221,231は、ビーコン信号を送信する側の無線通信装置であり、また、中継無線端末211,221,231と、子無線端末311~313,321~323,331~333は、ビーコン信号を受信する側の無線通信装置である。したがって、中継無線端末211~231は、ビーコン信号を送受信できる無線通信装置である。
 親無線端末101は、子無線端末311~313および中継無線端末211それぞれに対してビーコン信号を送信可能であるとともに、子無線端末311~313および中継無線端末211との間で、それぞれ無線によるデータ通信が可能となっている。したがって、図2においては、これら無線通信装置の間を、双方向の点線の矢印で結んでいる。親無線端末101、子無線端末311~313および中継無線端末211は、無線通信システムの第一階層のネットワークを構成している。なお、親無線端末101は子無線端末311~313および中継無線端末211から見て「上位機器」となる。また、上位機器である親無線端末101に直接つながる子無線端末311~313および中継無線端末211は、親無線端末101から見て「下位機器」となる。
 また中継無線端末211は、子無線端末321~323および中継無線端末221それぞれに対して、ビーコン信号を送信可能であるとともに、子無線端末321~323および中継無線端末221との間でそれぞれデータ通信が可能となっている。それゆえ、中継無線端末211は、親無線端末101から見れば「下位機器」となるが、子無線端末321~323および中継無線端末221から見れば「上位機器」となる。そこで、前記第一階層のネットワークと同様に、中継無線端末211、子無線端末321~323および中継無線端末221は、無線通信システムの第二階層のネットワークを構成している。
 同様に、中継無線端末221は、子無線端末331~333および中継無線端末231に対してビーコン信号を送信可能であるとともに、子無線端末331~333および中継無線端末231との間でそれぞれデータ通信が可能となっている。それゆえ、中継無線端末221は、中継無線端末211から見れば「下位機器」となるが、子無線端末331~333および中継無線端末231から見れば「上位機器」となるので、中継無線端末221、子無線端末331~333および中継無線端末231は、無線通信システムの第三階層のネットワークを構成している。
 さらに中継無線端末231は、図2には図示されない複数の子無線端末301、あるいは複数の子無線端末301と1台以上の中継無線端末201に対してビーコン信号を送信可能であるとともに、これら無線通信装置との間でそれぞれデータ通信が可能となっている。それゆえ、中継無線端末231と図示されない子無線端末301および中継無線端末201とは、無線通信システムの第四階層のネットワークを構成しているとともに、図示されない中継無線端末201を「上位機器」として第五階層の以降のネットワークが形成可能である。なお、第四階層のネットワークに中継無線端末201が含まれていなければ、図2に示す無線通信システムは、第一~第四階層のネットワークのみで構成されていることになる。
 前記構成の無線通信システムの通信動作について、その概要を説明する。親無線端末101は、子無線端末311~313とは直接通信することができるが、子無線端末321~323および子無線端末331~333とは電波状況が悪く直接通信を行うことができないとする。そこで、中継無線端末211,221,231等を介して子無線端末321~323,331~333等と通信する。
 したがって、子無線端末311~333(および中継無線端末211~231)は、親無線端末101または中継無線端末211~231のいずれと直接通信するか、中継無線端末211~231を介する場合には親無線端末101まで何台の中継無線端末201を経由するか、に基づいて階層化されている。例えば、親無線端末101と直接通信できる子無線端末311~333は前記の通り第一階層を構成し、1台の中継無線端末211を介して親無線端末101と通信する子無線端末321~323は第二階層を構成し、中継無線端末221および211を介して親無線端末101と通信する子無線端末331~333は第三階層を構成する。
 また、親無線端末101および中継無線端末211~231は「上位機器」であり、「下位機器」の無線通信装置(例えば第一階層であれば子無線端末311~313と中継無線端末211)に対してビーコン信号を間欠的に送信する。「下位機器」の無線通信装置はビーコン信号を捕捉(受信)することにより、「上位機器」の無線通信装置のクロック部(内部時計)の時間を「上位機器」の無線通信装置のクロック部(内部時計)の時間に同期させる(時計合わせする)ことができる。
 また、後述するように、「下位機器」の無線通信装置が受信を間欠的に待ち受けるときのタイミング情報(間欠受信タイミング情報)は、ポーリング情報とともに無線信号に含められて当該「下位機器」の無線通信装置に送信される。そのため、図2に示す無線通信システムのように、親無線端末101と子無線端末301との間に中継無線端末201が挿入されていても、中継無線端末201は、子無線端末301の間欠受信タイミングで中継情報を送信することができる。
 [無線通信装置のスロット構成およびスロット位置関係]
 本実施の形態に係る無線通信システムでは、「上位機器」の無線通信装置と「下位機器」の無線通信装置との間で時分割多重方式によりデータ通信を行っている。そのため、無線通信の1周期は複数のタイムスロットに分割され、各タイムスロットには所定の通信データ(無線信号)が割り当てられて通信されることになる。そこで、図1(a)~(c)に示す各無線通信装置において管理されるタイムスロットの基本構成について、図3(a)、(b)を参照して説明する。
 (I.タイムスロットの基本構成)
 時分割多重方式においては、無線通信を予め設定される所定時間毎に区切り、この所定時間(1周期)をさらに複数のタイムスロットに区分する。図3(a)に示すように、基本となるタイムスロット(基本スロット40)は、その長さ(スロット長)がT1秒(例えばT1=2秒)に設定され、通信時には、この基本スロット40が1周期の時間軸上で繰り返されることになる。
 基本スロット40は、さらに下位スロット41および上位スロット42の2つのタイムスロットで構成されている。下位スロット41および上位スロット42のそれぞれのスロット長は、基本スロット40のスロット長であるT1の半分(1/2×T1)に設定されている。下位スロット41は下位機器と通信するためのタイムスロットであり、上位スロット42は上位機器と通信するためのタイムスロットである。
 下位スロット41は、さらにビーコン送信用スロット411(図中BT)、リンク接続用スロット412(図中L)、およびデータ通信用スロット413(図中D)の3つのタイムスロットに分割されている。同様に上位スロット42も、ビーコン受信用スロット421(図中BR)、リンク接続用スロット422(図中L)、およびデータ通信用スロット423(図中D)の3つのタイムスロットに分割されている。
 次に各タイムスロットについて説明する。無線通信装置が上位機器であれば、ビーコン送信部21(図1(a),(b)参照)により、ビーコン送信用スロット411において下位機器に対して定期的にビーコン信号が送信される。ビーコン信号は、ビーコン送信用スロット411において必ず送信されてもよいし、複数回に1回毎のビーコン送信用スロット411において送信されてもよい。例えば、ビーコン信号が、2回に1回毎のビーコン送信用スロット411で送信される(2スロット毎で送信される)ように設定されれば、T1=2秒であればビーコン信号の送信間隔は4秒となる。
 また、無線通信装置が下位機器であれば、ビーコン受信部25(図1(b),(c)参照)により、ビーコン受信用スロット421において定期的に上位機器からのビーコン信号が受信される。ビーコン信号の受信間隔は、当該ビーコン信号の送信間隔の整数倍に設定することができる。例えば、送信間隔が2秒であって受信間隔を送信間隔の256倍に設定すれば、当該受信間隔=8分32秒となる。
 無線通信装置が上位機器であっても下位機器であっても、リンク接続部22(図1(a)~(c)参照)により、リンク接続用スロット412,422においてリンク接続動作が行われる。また、無線通信装置の間ではデータ通信が行われるが、このデータ通信はリンク接続動作の後に行われる。それゆえ、リンク接続用スロット412,422に続くデータ通信用スロット413,423においてデータ通信(データのやり取り)が行われる。
 ここで、リンク接続用スロット412,422は、図3(b)に示すように、下位発呼用スロット402aおよび上位応答/上位発呼用スロット402bの2つのタイムスロットから構成されている。下位発呼用スロット402aは、下位機器から上位機器に無線リンクを接続したいときに当該下位機器がリンク接続要求信号を送信するためのタイムスロットである。また、上位応答/上位発呼用スロット402bは、下位機器からのリンク接続要求信号に対して上位機器が応答を返すためのタイムスロットであり、また、上位機器から下位機器に無線リンクを接続したいときに当該上位機器からリンク接続要求信号を送信するためのタイムスロットである。
 なお、リンク接続用スロット412,422のスロット長は特に限定されない。図3(b)に示す例では、下位発呼用スロット402aのスロット長がT2に設定され、上位応答/上位発呼用スロット402bのスロット長がT3に設定されている。そして、図面上では、スロット長T2とスロット長T3とがほぼ同じ長さ(T2=T3)となっているが、もちろんこれに限定されず、リンク接続要求信号の送信または応答に応じて適切なスロット長が設定されればよい。
 (II.タイムスロットの位置関係)
 次に、本実施の形態に係る無線通信システムにおいて、上位機器および下位機器の間でのタイムスロットの位置関係を、図4を参照して具体的に説明する。図4では、図2に示す無線通信システムにおいて、親無線端末101と第三階層の子無線端末331との間に、2台の中継無線端末211,221が介在している場合を例に挙げて、各無線通信装置の1周期内でのタイムスロットの位置関係を説明している。また、図4に示す基本スロット40において、下位スロット41は図中「下」と記載しており、上位スロット42は図中「上」と記載している。
 図4に示す例では、親無線端末101、中継無線端末211,221、および子無線端末331においては、1周期が256個の基本スロット40に分割され、各基本スロット40は、1から256までのスロット番号が付与されている。そして、最後のスロット番号256の基本スロット40の次には、最初のスロット番号1の基本スロット40が位置することになる。なお、以下の説明では、便宜上、スロット番号Xの基本スロット40を「No.X-基本スロット40」と記載する。また、図4に関する説明では、上位の中継無線端末211および下位の中継無線端末221を明確に区別する便宜上、前者を「第一中継無線端末211」と称し、後者を「第二中継無線端末221」と称する。
 また、図4においては、親無線端末101および第一中継無線端末211の間では、定期的に第一階層のビーコン信号Biが送信され、第一中継無線端末211および第二中継無線端末221の間では、第二階層のビーコン信号Biiが送信され、第二中継無線端末221および子無線端末331の間では、第三階層のビーコン信号Biiiが送信されている。なお、子無線端末331は最下位の下位機器であり、当該子無線端末331につながる下位機器は存在しないので、子無線端末331からビーコン信号は送信されない。
 上位機器から送信されたビーコン信号Bi~Biiiは、後述するように、下位機器においては1周期毎で1回受信される。1周期の長さ(周期長)をT4とすれば、図4に示す例では、T4=256×T1となる。例えば、T1=2秒であれば、T4=512秒(8分32秒)となる。また、ビーコン信号Bi~Biiiは、2回に1回毎(1回置き)のビーコン送信用スロット411の周期で上位機器から送信される。したがって、2つの基本スロット40で1回の周期でビーコン信号Bi~Biiiが送信されることになり、ビーコン信号Bi~Biiiの送信間隔T5=2×T1となる。例えば、T1=2秒であれば、T5=4秒となる。
 なお、図4においては、1周期内で送受信されるビーコン信号Bi~Biiiの序数を括弧書きで示している。例えば、第一中継無線端末211から第二中継無線端末221に送信される第二階層のビーコン信号Biiについて見れば、No.1-基本スロット40で送信される1番目のビーコン信号Biiは「Bii(1)」と記載し、No.3-基本スロット40で送信される2番目のビーコン信号Biiは「Bii(2)」と記載し、No.255-基本スロット40で送信されるm番目のビーコン信号Biiは「Bii(m)」と記載している。
 次に、図4に示す例において、上位機器から下位機器に対するビーコン信号Bi~Biiiの送信動作と、下位機器におけるビーコン信号Bi~Biiiの受信動作とについて、図4に加えて図5も参照してより具体的に説明する。なお、図5においては、各基本スロット40を構成する下位スロット41および上位スロット42を、それぞれ図3(a)に示す3つのタイムスロットに区分して記載している以外は、図4と同様の位置関係を示している。
 図4および図5に示す例では、最上位の上位機器は親無線端末101であり、親無線端末101からはT5=2×T1の周期で定期的に第一階層のビーコン信号Biが下位機器に対して送信される。図4および図5では、No.1-基本スロット40の下位スロット41に含まれるビーコン送信用スロット411から1番目のビーコン信号Bi(1)が送信される。2番目のビーコン信号Bi(2)は、No.3-基本スロット40から送信され、3番目のビーコン信号Bi(3)は、No.5-基本スロット40から送信され、4番目のビーコン信号Bi(4)は、No.7-基本スロット40から送信される(ビーコン信号Bi(4)は図5には図示せず)。その後、奇数のスロット番号の基本スロット40から順次ビーコン信号Biが送信され、再びNo.1-基本スロット40に達すると、1番目のビーコン信号Biが送信される。
 一方、親無線端末101の直下に属する下位機器は第一中継無線端末211であるが、この第一中継無線端末211は、親無線端末101から送信されるビーコン信号Biを定期的に受信する。ビーコン信号Biの受信は1周期に1回であり、図4に示す例では、1番目のビーコン信号Bi(1)を基本スロット40の上位スロット42に含まれるビーコン受信用スロット421で受信する。第一中継無線端末211は、ビーコン信号Bi(1)を受信すると、親無線端末101のNo.1-基本スロット40のスロット位置を、当該第一中継無線端末211のNo.255-基本スロット40のスロット位置に位置合わせする。
 具体的には、図5に示すように、第一中継無線端末211は、No.1-基本スロット40の下位スロット41の先頭位置であるビーコン送信用スロット411(図中BT)が、No.255-基本スロット40の上位スロット42の先頭位置であるビーコン受信用スロット421(図中BR)に対応するように、自局のタイムスロットを構成し直す。つまり、第一中継無線端末211は、No.255-基本スロット40のビーコン受信用スロット421のスロット位置を、親無線端末101のNo.1-基本スロット40のビーコン送信用スロット411のスロット位置に合わせるように時計合わせする。
 なお、図4では、ビーコン信号Bi~Biiiを受信するタイムスロットを黒く塗りつぶしている。すなわち、図4では、下位機器のNo.255-基本スロット40の上位スロット42を黒く塗りつぶして示している。また、図5では、下位機器が位置合わせ(時計合わせ)したビーコン受信用スロット421を網掛けで示している。
 ここで、第一中継無線端末211は、親無線端末101等とともに第一階層を構成するとともに、第二中継無線端末221等とともに第二階層を構成している(図2参照)ので、第一中継無線端末211から見て第二中継無線端末221は直下に属する下位機器となる。そして、第一中継無線端末211からは、奇数のスロット番号の基本スロット40から第二階層のビーコン信号Biiが下位機器に対して送信される。第二中継無線端末221は、上位機器である第一中継無線端末211のビーコン信号Biiのうち、1番目のビーコン信号Bii(1)を受信して、第一中継無線端末211のNo.1-基本スロット40と第二中継無線端末221のNo.255-基本スロット40とのスロット位置を合わせるよう、自局のタイムスロットを再構成する。
 また、第二中継無線端末221は、子無線端末331等とともに第三階層を構成している(図2参照)ので、第二中継無線端末221から子無線端末331に対しても、T5の周期となるように、奇数のスロット番号の基本スロット40から第三階層のビーコン信号Biiiが送信される。最下位の下位機器である子無線端末331も、第一中継無線端末211および第二中継無線端末221と同様に、1番目のビーコン信号Biii(1)を受信して、第二中継無線端末221のNo.1-基本スロット40と子無線端末331のNo.255-基本スロット40とのスロット位置を合わせるよう、自局のタイムスロットを再構成する。
 図4および図5に示す例を1番目のビーコン信号の送信タイミングを基準として説明すると、第一中継無線端末211は親無線端末101から送信される1番目のビーコン信号Bi(1)を、当該第一中継無線端末211のNo.255-基本スロット40で受信する。また、第一中継無線端末211は、自局のNo.1-基本スロット40から1番目のビーコン信号Bii(1)を送信する。このとき、親無線端末101のNo.3-基本スロット40から送信される2番目のビーコン信号Bi(2)は、第一中継無線端末211のNo.1-基本スロット40の上位スロット42のタイミングで送信されていることになる。
 言い換えれば、第一中継無線端末211は、親無線端末101が2番目のビーコン信号Bi(2)を送信する直前である、自局のNo.1-基本スロット40の下位スロット41のビーコン送信用スロット411でビーコン信号Bii(1)を送信する。同様に第二中継無線端末221は、第一中継無線端末211が2番目のビーコン信号Bii(2)を送信する直前である、自局のNo.1-基本スロット40の下位スロット41のビーコン送信用スロット411でビーコン信号Biii(1)を送信する。
 このように、下位機器となる中継無線端末201(第一中継無線端末211および第二中継無線端末221)は、上位機器(第一中継無線端末211から見た親無線端末101、第二中継無線端末221から見た第一中継無線端末211)が2番目のビーコン信号を送信する直前のスロット位置で、1番目のビーコン信号を送信するよう構成されている。
 この場合、下位機器は、全てのビーコン信号を受信して時計合わせを行うわけではなく、上位機器が送信するビーコン信号を定期的に受信し(図4に示す例ではT4秒、すなわち256個の基本スロット40毎に受信し)、時計合わせを行う。
 また、上位機器から下位機器に向かう通信(下方向通信)では、中継無線端末は、全ての上位スロット42のリンク接続用スロット422で間欠的な受信待ち受け(受信キャリアセンス動作)を行い、上位機器から無線信号を待ち受ける。上位機器は、ビーコン信号を送信した直後のリンク接続用スロット412だけでなく、全ての下位スロット41のリンク接続用スロット412でリンク接続のための無線信号を送信することができる。
 また、下位機器から上位機器に向かう通信(上方向通信)では、下位機器は、通信の必要性が生じたときに、直近で送信される上位機器からのビーコン信号を上位スロット42のビーコン受信用スロット421で受信し、次に続くリンク接続用スロット422と上位機器の下位スロット41のリンク接続用スロット412のタイミングを合わせ、前記リンク接続用スロット422でリンク接続のための無線信号を送信する。上位機器はビーコン信号を送信した直後のリンク接続用スロット412で間欠的な受信待ち受けを行う。
 さらに、上位機器(親無線端末101または中継無線端末201)がビーコン信号を送信した時点(説明の便宜上、「先上位ビーコン送信時点」と称する。)から、その下位の中継無線端末201が、先上位ビーコン送信時点後の最初のビーコン信号を送信する時点(説明の便宜上、「下位ビーコン送信時点」と称する。)までの時間を、第一ビーコン送信間隔とし、当該下位の中継無線端末201が前記下位ビーコン送信時点から、その上位機器(親無線端末101または上位の中継無線端末201)が、下位ビーコン送信時点後の最初のビーコン信号を送信するまでの時間(説明の便宜上、「後上位ビーコン送信時点」と称する。)を、第二ビーコン送信間隔としたときに、第一ビーコン送信間隔は、前記第二ビーコン送信間隔よりも長くなるように設定されている。
 例えば、図5に示すように、第一中継無線端末211について見れば、上位機器である親無線端末101がビーコン信号Bi(1)を送信した時間(先上位ビーコン送信時点)から、当該第一中継無線端末211がビーコン信号Bii(1)を送信した時間(下位ビーコン送信時点)までが第一ビーコン送信間隔Ta(211)に対応する。また、第一中継無線端末211がビーコン信号Bii(1)を送信した時間(下位ビーコン送信時点)から、親無線端末101がビーコン信号Bi(2)を送信した時間(後上位ビーコン送信時点)までが第二ビーコン送信間隔Tb(211)に対応する。そして、図5から明らかなように、Ta(211)>Tb(211)となっている。
 同様に、図5に示すように、第二中継無線端末221について見れば、上位機器である第一中継無線端末211がビーコン信号Bii(1)を送信した時間(先上位ビーコン送信時点)から、当該第二中継無線端末221がビーコン信号Biii(1)を送信した時間(下位ビーコン送信時点)までが第一ビーコン送信間隔Ta(221)に対応する。また、第二中継無線端末221がビーコン信号Biii(1)を送信した時間(下位ビーコン送信時点)から、第一中継無線端末211がビーコン信号Bii(2)を送信した時間(後上位ビーコン送信時点)までが第二ビーコン送信間隔Tb(221)に対応する。そして、図5から明らかなように、Ta(221)>Tb(221)となっている。
 このように、第一ビーコン送信間隔Taは第二ビーコン送信間隔Tbよりも長くなるように設定されていれば、下位の中継無線端末201(親無線端末101から見れば第一中継無線端末211、第一中継無線端末211から見れば第二中継無線端末221)は、下位機器(第一中継無線端末211から見れば第二中継無線端末221、第二中継無線端末221から見れば子無線端末331)に対してビーコン信号を送信した直後に、当該下位機器との間で無線通信可能な状態となるとともに、その上位機器(親無線端末101または第一中継無線端末211)からビーコン信号を受信した直後に、当該上位機器との間で無線通信可能な状態となる。
 それゆえ、第二中継無線端末221であれば、子無線端末331から端末発呼データを送信するタイミングに合わせて端末発呼データを中継伝送できるため、子無線端末331の稼働時間を短くすることが可能となる。また、第二中継無線端末221あるいは第一中継無線端末211であれば、端末発呼データを受信してまもなく、上位機器から送信されるビーコン信号を受信することができるので、当該上位機器に対して、遅延の発生を回避して速やかに端末発呼データを送信することが可能となる。
 [親無線端末から子無線端末へのデータ通信]
 次に、図4および図5に示す例において、最上位の親無線端末101から最下位の子無線端末331に対してデータを送信する場合の通信動作について、図3(a),(b)と図6とを参照して具体的に説明する。このような最上位から最下位の無線通信装置へデータ送信を行う例としては、最上位の親無線端末101から最下位の子無線端末331に対してセンターポーリングを行う場合が挙げられる。
 (I.データ通信動作)
 まず、中継機である第一中継無線端末211および第二中継無線端末221は、上位機器からの無線信号の有無を検出するために全ての基本スロット40を構成する上位スロット42のリンク接続用スロット422で毎回受信キャリアセンス動作を行っている。受信キャリアセンス動作とは、上位機器からの受信レベルが所定のレベル以上であるかどうかを検出し、前記所定のレベル未満であれば受信キャリアセンス動作を中止し待機状態に移行し、前記所定レベル以上であれば上位機器からのリンク接続要求信号を受信する、という動作である。
 より具体的には、図3(a)および図5に示すように、基本スロット40の上位スロット42にはリンク接続用スロット422が含まれており、このリンク接続用スロット422には、図3(b)に示すように、上位応答/上位発呼用スロット402bが含まれているので、第一中継無線端末211および第二中継無線端末221は、この上位応答/上位発呼用スロット402bにおいて受信キャリアセンス動作を行う。それゆえ、図6に示すように、親無線端末101は、子無線端末331宛のデータ送信要求(図中ブロック矢印Ds)が例えばNo.256-基本スロット40で発生した場合、図5のブロック矢印Lおよび図6の矢印L/Dに示すように、No.1-基本スロット40の下位スロット41中の上位応答/上位発呼用スロット402bでリンク接続要求信号を送信する。
 第一中継無線端末211は、No.255-基本スロット40の上位スロット42中の上位応答/上位発呼用スロット402bで受信キャリアセンス動作を行っており、親無線端末101からの前記リンク接続要求信号をキャリアセンスした後、受信することとなる。これにより、上位機器である親無線端末101と下位機器である第一中継無線端末211との間で無線リンクが接続されたことになる(リンク接続動作)。そこで、図6に示すように、親無線端末101のNo.1-基本スロット40の下位スロット41と第一中継無線端末211のNo.255-基本スロット40の上位スロット42との間でデータ通信動作が行われ、親無線端末101から第一中継無線端末211にデータが伝送される(図中矢印L/D)。
 次に、第一中継無線端末211は、親無線端末101と同様の動作により下位機器である第二中継無線端末221との間でリンク接続動作およびデータ通信動作を行い、第二中継無線端末221に対してデータを伝送する。すなわち、第一中継無線端末211は、No.255-基本スロット40の上位スロット42で親無線端末101からデータを受信しているので、No.256-基本スロット40の下位スロット41において親無線端末101と同様に、受信キャリアセンス動作を行う。
 具体的には、図6に示すように、第一中継無線端末211のNo.256-基本スロット40の下位スロット41には、第二中継無線端末221のNo.254-基本スロット40の上位スロット42が対応するので、これらタイムスロットの間で、受信キャリアセンス動作が行われる。そして、第一中継無線端末211からのリンク接続要求信号を第二中継無線端末221が受信すれば、無線リンクが接続されたことになるので、続いてデータ通信動作が行われる(図中矢印L/D)。
 さらに、第二中継無線端末221も、親無線端末101と同様の動作により下位機器である子無線端末331との間でリンク接続動作およびデータ通信動作を行い、子無線端末331に対してデータを伝送する。
 ここで、中継機ではない末端の無線端末である子無線端末331は、第一中継無線端末211および第二中継無線端末221とは異なり、消費電力を削減するために受信キャリアセンス動作を間引いて行っている。例えば、本実施の形態では、図5における黒く塗りつぶしたタイムスロット(図中「L」のリンク接続用スロット422)で示すように、2スロット毎に受信キャリアセンス動作を行っている。子無線端末331の基本スロット40が受信キャリアセンス動作を行っていなければ、当該基本スロット40に合わせて第二中継無線端末221がリンク接続要求信号を送信しても、子無線端末331はリンク接続要求信号を受信しないので、第二中継無線端末221と子無線端末331と間には無線リンクは接続されない。
 後述するように、親無線端末101から送信される無線信号には、当該親無線端末101から子無線端末331に至るまでのルート情報が含まれており、このルート情報には、子無線端末331が受信キャリアセンス動作を行うスロット番号の情報も含まれている。それゆえ、第二中継無線端末221は、タイミング情報解析部26でルート情報を解析し、子無線端末331で受信キャリアセンス動作が行われているスロット番号が、例えば1、5、9・・・であることを認識する。
 そして第二中継無線端末221は、図5および図6に示すように、No.254-基本スロット40から見て子無線端末331の直近のキャリアセンスタイミングが、No.254-基本スロット40である(図中ブロック矢印Cs)ことを把握できるので、当該第二中継無線端末221のNo.256-基本スロット40の下位スロット41でリンク接続要求信号を送信する。子無線端末331はNo.5-基本スロット40で受信キャリアセンス動作を待ち受けているので、前記リンク接続要求信号を受信して無線リンクを接続し、第二中継無線端末221からデータの伝送を受ける。
 (II.リンク接続動作)
 ここで、前述した親無線端末101から子無線端末331までのデータ伝送に際して、上位機器および下位機器の間で行われるリンク接続動作について、図7(a),(b)および図8を参照して具体的に説明する。
 まず、リンク接続要求信号の電文フォーマットは、図7(a)に示すように、n個の繰返しフレーム51とこれに続く本体フレーム52とから構成されている。このうちn個の繰返しフレーム51は、それぞれフレーム番号が1~nまで付与されている。そして、1つの繰返しフレーム51は、図7(b)に示すように、ビット同期信号511、フレーム同期信号512、制御信号513および簡易ID514から構成されている。なお、繰返しフレーム51のフレーム長はT6であるので、n個の繰返しフレーム51のフレーム長(繰返し時間)T7=n×T6となる。
 繰返しフレーム51を構成するビット同期信号511は、ビットのサンプリング位置を決定するための信号であり、フレーム同期信号512は、繰返しフレーム51に含まれるデータの先頭を検出するための信号である。また、制御信号513は、各種制御情報を記載する信号であり、簡易ID514は送信先の機器を識別する識別符号(ID)を短縮したものである。短縮していない元のIDのビットサイズが64ビットであれば、簡易ID514は元のIDを4分割して得られる16ビットの情報となる。なお、簡易ID514は発信元の機器を識別する識別符号(ID)を短縮したものとすることもできる。
 制御信号513に記載されている制御情報には、簡易ID514に関する情報、繰返しフレーム51のフレーム番号等が含まれる。例えば、簡易ID514に関する情報とは、元のIDを4分割したうちの何れの情報が簡易ID514となっているか、という情報である。また、n個の繰返しフレーム51にそれぞれ付与されている前記フレーム番号も、制御情報として制御信号513に記載されている。図7(a)に示すように、繰返しフレーム51は、フレーム番号の大きいもの(最大のフレーム番号がn)から送信されるので、リンク接続要求信号50の先頭から繰返しフレーム51のフレーム番号は1つずつ減少し、本体フレーム52の直前の繰返しフレーム51のフレーム番号は1となる。
 このようなリンク接続要求信号50を受信するために、前述したように受信キャリアセンス動作が行われるが、この受信キャリアセンス動作では、上位機器および下位機器がそれぞれ備える内部時計(クロック部)の時間がずれていることを考慮する必要がある。具体的には、図8の上段Iに示すように、上位機器からリンク接続要求信号50が送信され、これに対応して、図8の下段IIに示すように、下位機器では、リンク接続要求信号50の受信キャリアセンス動作が行われる。
 なお、図8に関する説明では、下位機器の上位応答/上位発呼用スロット402bの先頭位置Psを「発呼用スロット先頭位置Ps」と略し、下位機器で受信キャリアセンス動作を行うタイミングCsを「キャリアセンスタイミングCs」と略す。このキャリアセンスタイミングは、後述する間欠受信タイミングに一致する。また、n個の繰返しフレーム51を「繰返しフレーム群51n」と称し、繰返しフレーム群51nの先頭位置Pnは「フレーム群先頭位置Pn」と略し、繰返しフレーム群51nの末尾位置P0は「フレーム群末尾位置P0」と略す。
 図8の下段IIのうちII-1は、上位機器の時計と下位機器の時計との間で時間にずれが生じていない場合であり、下位機器の発呼用スロット先頭位置Psは、上位機器からのリンク接続要求信号50の先頭位置すなわちフレーム群先頭位置Pnに合致している。また、下位機器のキャリアセンスタイミングCsは、発呼用スロット先頭位置Psから時間T8後に設定され、このキャリアセンスタイミングCsが繰返しフレーム群51nを構成するn個の繰返しフレーム51のいずれかに対応していれば、下位機器は受信キャリアセンス動作に成功して本体フレーム52を受信することができる。なお、この時間T8を、説明の便宜上、「タイミング設定時間」と称する。
 一方、図8の下段IIのうちII-2は、下位機器の時計が上位機器の時計よりも+ΔTだけ進んでいる場合である。この例では、下位機器の時計のずれがタイミング設定時間T8よりも少し短い程度(ΔT≒T8)に進んでいるために、下位機器の発呼用スロット先頭位置Psは、フレーム群先頭位置Pnよりも+ΔTだけ進んだ位置となり、それゆえ発呼用スロット先頭位置Psからタイミング設定時間T8後に設定されるキャリアセンスタイミングCsは、フレーム群先頭位置Pnの直後となっている。
 また、図8の下段IIのうちII-3は、下位機器の時計が上位機器の時計よりも-ΔTだけ遅れている場合である。この例では、下位機器の時計のずれがタイミング設定時間T8よりも少し短い程度(ΔT≒T8)に遅れているために、下位機器の発呼用スロット先頭位置Psは、フレーム群先頭位置Pnよりも-ΔTだけ後れた位置となり、それゆえ発呼用スロット先頭位置Psからタイミング設定時間T8後に設定されるキャリアセンスタイミングCsは、フレーム群末尾位置P0の直前となっている。
 キャリアセンスタイミングCs(受信キャリアセンス動作を行うタイミング)は、n個の繰返しフレーム51のいずれかに対応するタイミングでなければならない。したがって、図8に示すように、キャリアセンスタイミングCsは、フレーム群先頭位置Pnからフレーム群末尾位置P0の間に設定される必要がある。そこで、発呼用スロット先頭位置Psを基準として設定されるタイミング設定時間T8は、繰返しフレーム群51nのフレーム長T7の半分に設定される。これにより、上位機器および下位機器における時計ずれΔTが、-T8≦ΔT≦+T8の範囲内であれば、キャリアセンスタイミングCsは、フレーム群先頭位置Pnからフレーム群末尾位置P0の間に入るので、n個の繰返しフレーム51のいずれかで受信キャリアセンス動作を行うことができ、本体フレーム52を受信することができる。
 より具体的には、上位機器の時計と下位機器の時計との最大相対誤差を±100ppmとし、下位機器の時計合わせ(ビーコン信号の受信)がT4=512秒の周期で行われれば、生じる時計ずれΔTは、最大で51.2ミリ秒となる。したがって、T8≧51.2ミリ秒となるように繰返しフレーム51の個数n(繰返しフレーム51の送信回数)を設定すれば、リンク接続要求信号の受信に失敗することは回避される。
 さらに、本実施の形態においては、消費電力の増大を抑制または回避するために、上位機器では、ビーコン信号の受信(時計合わせ)からキャリアセンスタイミングまでの時間に応じて、繰返しフレーム51の送信回数nを変化させる制御が行われる。
 具体的には、図4に示す例において、親無線端末101で子無線端末331宛のデータ送信要求がNo.5-基本スロット40で発生したとする。このとき、親無線端末101は、No.6-基本スロット40の下位スロット41における上位応答/上位発呼用スロット402bでリンク接続要求信号50を送信する。これに対して、第一中継無線端末211は、No.4-基本スロット40の上位スロット42における上位応答/上位発呼用スロット402bで受信キャリアセンス動作を行い、その後に親無線端末101からのリンク接続要求信号50を受信することになる。
 ただし、下位機器である第一中継無線端末211は、親無線端末101から送信された第一階層のビーコン信号Bi(1)の受信タイミングで時計合わせを行っている。そのため、第一中継無線端末211のNo.4-基本スロット40では、親無線端末101との間で時計ずれはほとんど生じていない(ΔT≒0)。したがって、リンク接続要求信号50の繰返しフレーム51の送信回数nを最大時計ずれΔTmax(前述した例では、ΔTmax=51.2ミリ秒)に合わせて変更することは、通信制御の上で無駄が多く、消費電力を増大させてしまうおそれがある。
 そこで、親無線端末101は、ビーコン信号Bi(1)を送信して第一中継無線端末211が時計合わせを行った時点から受信キャリアセンス動作を行うタイミングまでの時間を計測し、この計測時間の長さに応じて、リンク接続要求信号50中の繰返しフレーム51の送信回数nを変化する制御を行う。なお、時計合わせの時点から受信キャリアセンス動作のタイミングまでの時間を、説明の便宜上、「時計ずれ評価時間」と称する。
 前記時計ずれ評価時間は、ビーコン信号Bi(1)を受信した基本スロット40から受信キャリアセンス動作を行った基本スロット40までの経過時間に対応するので、その長さはスロット番号と相関を有する。つまり、時計ずれ評価時間が短ければ、時計合わせしてから時間がそれほど経過していないため時計ずれΔTは小さいが、時計ずれ評価時間が長くなるほど時計ずれΔTは大きくなる。そこで、親無線端末101は、スロット番号が大きくなれば繰返しフレーム51の送信回数nを大きくするように変化させる制御を行えばよい。
 例えば、ビーコン信号Bi(1)を送信した基本スロット40はスロット番号1であるので、親無線端末101がスロット番号Xの基本スロット40(No.X-基本スロット40)でリンク接続要求信号50を送信すれば、スロット番号Xを基本スロット40の総数で除算した数値を、繰返しフレーム51の送信回数nの可変制御に利用することができる。
 具体的には、1周期における基本スロット40の総数は256個であるので、スロット番号Xを基本スロット40の総数で除算した数値はX/256となる。さらに、1つの繰返しフレーム51のフレーム長は、予めT6に設定されているので、送信回数nは、繰返しフレーム群51nのフレーム長T7を規定することになる。そして、最大時計ずれΔTmaxは、前述した例では51.2ミリ秒である。そこで、親無線端末101の制御部13は、T7≧(X/256)×(±51.2秒)となるように、繰返しフレーム51の送信回数nを設定する。
 親無線端末101が、例えばNo.4-基本スロット40でリンク接続要求信号を送信する場合には、T7≧±0.8ミリ秒となるように送信回数nを変化させればよい。なお、1つの繰返しフレーム51のフレーム長T6が0.8ミリ秒よりも長い場合には、送信回数nは1回以上であればよい。
 ここで、1つの基本スロット40内で行われる受信キャリアセンス動作のタイミング(キャリアセンスタイミングCs)は、基本スロット40中のリンク接続用スロット412内の上位応答/上位発呼用スロット402bの開始(発呼用スロット先頭位置Ps)からタイミング設定時間T8が経過したタイミングとして設定されている。そして、このタイミング設定時間T8はフレーム長T7の半分に設定されている(T8=T7/2)。それゆえ、繰返しフレーム51の送信回数n、すなわち、繰返しフレーム群51nのフレーム長T7が変化しても、タイミング設定時間T8が固定されていれば、親無線端末101と第一中継無線端末211との間の時計ずれΔTを実質的に相殺できても(ΔT=0)、フレーム長T7の半分の時間にキャリアセンスタイミングCsが位置しないことになる(図8参照)。これは、時計ずれΔTが正の場合と負の場合とで許容範囲に差が生じることを意味する。
 そこで、第一中継無線端末211では、時計ずれΔT=0の場合に、キャリアセンスタイミングCsがフレーム長T7の中間時間(T7/2)となるように、タイミング設定時間T8をフレーム長T7の変化に連動して変化するよう制御を行えばよい。前述したように、フレーム長T7は、親無線端末101のスロット番号に相関を有するので、第一中継無線端末211では、受信キャリアセンス動作を行った基本スロット40のスロット番号(例えばスロット番号W)が、親無線端末101のいずれのスロット番号(例えばスロット番号X)に対応するかを換算し(W=X)、この換算したスロット番号からフレーム長T7の変化を算出すれば(例えば、T7≧(X/256)×(±52.2ミリ秒))、タイミング設定時間T8をフレーム長T7に連動させて変化させることができる。
 なお、前述した説明では、タイミング設定時間T8をスロット番号に基づいて変化させているが、本発明はこれに限定されず、例えば、下位機器においてタイミング設定時間T8を固定値として設定し、代わりに、上位機器においてリンク接続要求信号50の送信を開始する位置(図8におけるフレーム群先頭位置Pnに対応する時間)を変化させることもできる。
 上位機器からのリンク接続要求信号50は、基本スロット40の下位スロット41中の上位応答/上位発呼用スロット402bで送信されるが、リンク接続要求信号50の送信を開始するタイミングを、基本スロット40のスロット番号に応じて変化させる制御を行う。スロット番号が大きくなるとフレーム長T7が大きくなるので、リンク接続要求信号50の送信開始のタイミングを早く進めることで、フレーム長T7の中間時間がキャリアセンスタイミングCsの位置に対応させることができる。
 このように、本実施の形態では、上位機器と下位機器との間で行われる無線通信は、複数の基本スロット40に分割した1周期を繰り返すように周期的に行われており、各基本スロット40は、下位機器との間で無線通信を行うための下位スロット41と、当該下位スロット41の後に続く、上位機器との間で無線通信を行うための上位スロット42とに区分されている。そして、下方向通信(上位機器から下位機器に向かっての無線通信)では、子無線端末331は、複数回に1回の上位スロット42でリンク接続を行うよう構成されている。
 さらに、例えば第二中継無線端末221について見れば、自局(基準局)および当該子無線端末331のそれぞれの前記無線通信は、自局の下位スロット41が、子無線端末331の最先のリンク接続を行う上位スロット42に対応するように、その周期を対応させていればよい。また、複数の中継無線端末201が2段階以上の複数段階で中継伝送を行うように互いに接続されていれば、子無線端末331の上位となる中継無線端末201(本実施の形態では、第二中継無線端末221)を除く、他の中継無線端末201(例えば、第一中継無線端末211)は、その上位機器(例えば親無線端末101)の下位スロット41と自局の上位スロット42との間でリンク接続が行われれば、直後の自局の下位スロット41と下位機器の上位スロット42との間でリンク接続を行うよう構成されている。
 これにより、子無線端末301が間欠的に受信キャリアセンス動作を行う構成であっても、複数段の中継無線端末201は、上位機器からの無線通信を速やかに子無線端末301に中継伝送することが可能となる。つまり、子無線端末301の上位の中継無線端末201(例えば第二中継無線端末221)までは、親無線端末101から迅速に無線信号が中継伝送されるので、当該上位の中継無線端末201は、子無線端末301における最先の受信キャリアセンス動作のタイミングに合わせて無線信号を送信すればよいことになる。その結果、子無線端末301の稼働時間を短くできるので、簡素な構成で子無線端末301の消費電力の増大を抑制することができる。
 [子無線端末から親無線端末へのデータ通信]
 次に、図4および図5に示す例において、最下位の子無線端末331から最上位の親無線端末101に対してデータを送信する場合の通信動作について、図3(a),(b)と図9とを参照して具体的に説明する。このような最下位から最上位の無線通信装置へデータ送信を行う例としては、最上位の親無線端末101から送信されたセンターポーリングに対して、最下位の子無線端末331が要求された端末発呼データを送信する「端末発呼」が挙げられる。
 下位機器から上位機器に対してデータ送信要求が発生した場合、前述したように、下位機器は上位機器が送信するビーコン信号をビーコン受信用スロット421(図3(a)参照)で受信して時計合わせを行う。さらに、下位機器から上位機器へデータ送信を行うには、前述した親無線端末101から子無線端末331へのデータ送信と同様にリンク接続動作が行われるが、このときのリンク接続要求信号(図7(a)参照)の送信は、ビーコン信号を受信したビーコン受信用スロット421の直後となるリンク接続用スロット422中の下位発呼用スロット402aで行われる。
 図4および図5に示す例では、前述したように、子無線端末331は、第二中継無線端末221からの第三階層のビーコン信号Biiiを受信して時計合わせを行う。このビーコン信号Biiiは、前述したように2スロット毎に送信されるので、基本スロット40のスロット長T1=2秒であれば、ビーコン信号Biiiは4秒毎に送信されることになる。それゆえ、子無線端末331は、データ送信要求が発生してから4秒以内に第二中継無線端末221からのビーコン信号Biiiを受信することができる。
 例えば、図5および図9に示すように、子無線端末331のNo.254-基本スロット40でデータ送信要求(図中ブロック矢印Ds)が発生した場合、当該子無線端末331は、第二中継無線端末221のNo.1-基本スロット40で送信されるビーコン信号Biii(1)をNo.255-基本スロット40で受信して時計合わせを行う。これにより、子無線端末331のNo.255-基本スロット40の上位スロット42中のリンク接続用スロット422(図5の「L」)のスロット位置は、第二中継無線端末221のNo.1-基本スロット40の下位スロット41のリンク接続用スロット412(図5の「L」)に位置合わせされる。
 このリンク接続用スロット412,422の位置合わせ(時計合わせ)により、子無線端末331から送信されたリンク接続要求信号は、前述した受信キャリアセンス動作(図6および図8参照)と同様に第二中継無線端末221のNo.1-基本スロット40の下位スロット41で受信され、リンク接続動作が行われる。なお、リンク接続要求信号の電文フォーマットは、図7(a)に示す構成と同様であるが、時計ずれΔTがほとんど生じていないため、繰返しフレーム51の送信回数(繰返し回数)nは少なくてよい。
 このようにリンク接続動作が行われれば、子無線端末331は、No.255-基本スロット40の上位スロット42中のデータ通信用スロット423において、親無線端末101宛の無線信号を送信する(図9の矢印L/D)。第二中継無線端末221は、子無線端末331のNo.255-基本スロット40に対応するNo.1-基本スロット40の下位スロット41中のデータ通信用スロット413で親無線端末101宛の無線信号を受信する(図9の矢印L/D)。
 次に、第二中継無線端末221は、第一中継無線端末211が送信する第二階層のビーコン信号Biiを受信して第一中継無線端末211との間で時計合わせを行う。第二中継無線端末221は、子無線端末331との間でNo.1-基本スロット40の下位スロット41でデータ通信を行っているので、この下位スロット41に続く上位スロット42でビーコン信号Biiを受信することができる。No.1-基本スロット40に対応する第一中継無線端末211の基本スロット40は、No.3-基本スロット40であるため、第二中継無線端末221は、このNo.3-基本スロット40から送信されるビーコン信号Bii(2)を受信することになる。
 ビーコン信号Bii(2)の受信によって、第二中継無線端末221のNo.1-基本スロット40の上位スロット42中のリンク接続用スロット422のスロット位置は、第一中継無線端末211のNo.3-基本スロット40の下位スロット41のリンク接続用スロット412に位置合わせされるので、第二中継無線端末221から送信されたリンク接続要求信号は、第一中継無線端末211のNo.3-基本スロット40の下位スロット41で受信される。これにより、リンク接続動作が行われ、第二中継無線端末221と第一中継無線端末211との間でデータ通信動作(親無線端末101宛の無線信号の送受信)が行われる(図9の矢印L/D)。
 同様に、第一中継無線端末211は、親無線端末101が送信する第一階層のビーコン信号Biを受信して親無線端末101との間で時計合わせを行う。第一中継無線端末211は、第二中継無線端末221との間でNo.3-基本スロット40の下位スロット41でデータ通信を行っているので、この下位スロット41に続く上位スロット42でビーコン信号Biを受信することができる。No.3-基本スロット40に対応する親無線端末101の基本スロット40は、No.5-基本スロット40であるため、第一中継無線端末211は、このNo.5-基本スロット40から送信されるビーコン信号Bi(3)を受信することになる。
 ビーコン信号Bi(3)の受信によって、第一中継無線端末211のNo.3-基本スロット40の上位スロット42中のリンク接続用スロット422のスロット位置は、親無線端末101のNo.5-基本スロット40の下位スロット41のリンク接続用スロット412に位置合わせされるので、第一中継無線端末211から送信されたリンク接続要求信号は、親無線端末101のNo.5-基本スロット40の下位スロット41で受信される。これにより、リンク接続動作が行われ、第一中継無線端末211と親無線端末101との間でデータ通信動作(親無線端末101宛の無線信号の送受信)が行われる(図9の矢印L/D)。
 このように、下位機器から上位機器宛のデータ送信が行われる(上方向通信が行われる)場合、図4、図5および図9に示す例では、下位機器において、当該下位機器からビーコン信号が送信された直後の基本スロット40で、上位機器からビーコン信号が送信される。それゆえ、当該直後の基本スロット40においてリンク接続動作およびデータ通信動作を行うことができるので、最下位の子無線端末331から複数の中継無線端末201(第一中継無線端末211および第二中継無線端末221)を介して親無線端末101宛に無線信号を中継伝送する場合に、大きな遅延の発生を抑えることができ、効率的な無線通信が可能となる。
 また、本実施の形態では、上方向通信(下位機器から上位機器に向かっての無線通信)では、例えば第二中継無線端末221について見れば、第一中継無線端末211、自局(基準局)および子無線端末331のそれぞれの無線通信は、自局の下位スロット41が子無線端末331の上位スロット42に対応し、自局の上位スロット42が第一中継無線端末211の下位スロット41に対応するように、その周期を対応させている。より具体的には、自局の下位スロット41のリンク接続用スロット412が、子無線端末331の上位スロット42のリンク接続用スロット422に対応し、自局の上位スロット42が、上位の第一中継無線端末211の受信キャリアセンス動作を行う(リンク接続を行う)下位スロット41に対応するように、その周期を対応させている。
 このように各タイムスロットの位置関係を合わせることで、第二中継無線端末221であれば、子無線端末331から端末発呼データを送信するタイミングに合わせて端末発呼データを中継伝送することができる。また、第二中継無線端末221あるいは第一中継無線端末211であれば、端末発呼データを受信してまもなく、上位機器から送信されるビーコン信号を受信し、当該上位機器に対して速やかに端末発呼データを送信することができる。それゆえ、簡素な構成で子無線端末301の消費電力の増大を抑制しつつ、当該子無線端末301から親無線端末101への端末発呼データの中継伝送に際して、大きな遅延の発生を有効に抑制または回避することが可能となる。
 [子無線端末の無線通信システムへの参入]
 次に、前記構成の無線通信システムに対して、新規の子無線端末301が参入する際の動作について、図10を参照して具体的に説明する。なお、図10では、図中上方から下方に向かって時間の経過を示し、また、無線信号の送信を黒く塗りつぶした菱形で示すとともに無線信号の受信を白抜きの丸で示している。
 (I.子無線端末の新規参入)
 例えば図10に示すように、無線通信システムが、親無線端末101、第一中継無線端末211、および第二中継無線端末221を含む構成(図2および図4参照)であり、この構成の無線通信システムに対して、例えば子無線端末331を新規に参入させるとする。子無線端末331の電源をONすれば、当該子無線端末331は、受信動作を所定時間行うことにより、ビーコン信号の受信を試みる。前記所定時間内に複数のビーコン信号を受信した場合には、所定の判断条件に従って、いずれのビーコン信号に基づいて自局の時計合わせを行うか決定する。このときの判断条件としては、受信したビーコン信号の受信レベル、受信したビーコン信号の送信元の中継無線端末201の中継段数情報を挙げることができる。
 図10に示す例では、子無線端末331は、第二中継無線端末221からの第三階層のビーコン信号Biiiを受信して時計合わせを行い、リンク接続要求信号を第二中継無線端末221に送信する。例えば、ビーコン信号BiiiがNo.X-基本スロット40の上位スロット42のビーコン受信用スロット421で受信されれば、これに続くリンク接続用スロット422(図3(a)参照)中の下位発呼用スロット402aでリンク接続要求信号50(図7(a)参照)が送信される。このとき、リンク接続要求信号50の繰返しフレーム51の数(送信回数)n=5である。そして、下位発呼用スロット402aに続く上位応答/上位発呼用スロット402b(図3(b)参照)で、第二中継無線端末221からのリンク接続を許可する応答信号を受信する。これにより、第二中継無線端末221と子無線端末331との間で無線リンクの接続が確立される(図10では、無線リンクの接続を「L」で示す)。
 次に、子無線端末331は、最終宛先が親無線端末101宛である参入要求信号Sdを無線リンクが接続された第二中継無線端末221に送信し、中継伝送を依頼する。この参入要求信号Sdは、前記応答信号を受信した上位応答/上位発呼用スロット402b(リンク接続用スロット422)に続くデータ通信用スロット423(図3(a)参照)で送信される。そして、この参入要求信号Sdには、最終宛先まで中継伝送するためのフレーム信号(後述するレイヤ3フレーム)と、子無線端末331からのルート情報とが含まれ、このルート情報にはスロット位置情報dt0が含まれる。
 前述したように、子無線端末301は、中継無線端末201とは異なり、受信キャリアセンス動作(受信の待ち受け動作)を毎回の基本スロット40で行わずに、数スロット毎の周期で間欠的に行っている。それゆえ、子無線端末331も間欠的に受信キャリアセンス動作(受信の間欠待ち受け動作)を行うが、新規参入時には、親無線端末101から参入許可信号Saを受信する必要がある。この参入許可信号Saは子無線端末331から送信された参入要求信号Sdに基づいて親無線端末101が作成し、中継無線端末201を介して子無線端末331に送信される。それゆえ、中継無線端末201は、子無線端末331における間欠的な受信キャリアセンス動作に合わせた参入許可信号Saを送信することが望ましい。
 そこで、前記ルート情報には、子無線端末331が受信キャリアセンス動作を行うタイミング(キャリアセンスタイミングCs、図6および図8参照)の基本スロット40のスロット番号を示す情報、すなわちスロット位置情報dt0が含まれる。言い換えれば、スロット位置情報dt0は、親無線端末101からの参入許可信号Saの受信を間欠的に待ち受けるタイミング(間欠受信タイミング)のスロット番号に相当し、子無線端末331のタイミング情報送信部24で作成されて送信される。なお、スロット位置情報dt0は、子無線端末331の間欠受信タイミングを特定するための情報であるので、「間欠受信タイミング情報」ということができる。また、スロット位置情報dt0に関する情報は前述したように記憶部14に記憶される。
 第二中継無線端末221は、子無線端末331から参入要求信号Sdを受信すれば、当該参入要求信号Sdに含まれるルート情報をタイミング情報解析部26により解析する。タイミング情報解析部26は、解析結果に基づいて新たにルート情報を作成するが、このルート情報には、子無線端末331で作成された前記スロット位置情報dt0に加え、当該第二中継無線端末221に関する中継端末情報dr2が含まれている。第二中継無線端末221は、作成したルート情報を参入要求信号Sdに組み込み、第一中継無線端末211に送信する。
 第一中継無線端末211は、第二中継無線端末221から参入要求信号Sdを受信すれば、第二中継無線端末221と同様にタイミング情報解析部26によりルート情報を解析する。タイミング情報解析部26は、解析結果に基づいて新たにルート情報を作成するが、このルート情報には、前記スロット位置情報dt0、第二中継無線端末221に関する中継端末情報dr2に加えて、第一中継無線端末211に関する中継端末情報dr1が含まれている。第一中継無線端末211は、作成したルート情報を参入要求信号Sdに組み込み、親無線端末101に送信する。
 このように、発信元の子無線端末331は、タイミング情報送信部24でスロット位置情報dt0を作成してルート情報に組み込むよう構成されており、発信元の下位機器と最終宛先の上位機器との間に介在する中継無線端末201は、タイミング情報解析部26でルート情報を作成する際に、自局の中継端末情報(dr1,dr2)をルート情報に組み込むよう構成されている。それゆえ、ルート情報は、参入要求信号Sdの中継ルートに関する情報が含まれるとともに、参入要求信号Sdを受けて返送される参入許可信号Saを子無線端末331が受信を間欠的に待ち受けるタイミングの情報(間欠受信タイミング情報、図10ではスロット位置情報dt0)も含まれていることになる。
 親無線端末101は、第一中継無線端末211から参入要求信号Sdを受信すれば、第二中継無線端末221および第一中継無線端末211と同様にルート情報解析作成部23によりルート情報を解析する。ルート情報には中継端末情報dr1,dr2が含まれているため、これら中継端末情報dr1,dr2を解析することで、親無線端末101から子無線端末331までの中継ルートを把握することができる。親無線端末101は、参入要求信号Sdに基づいて参入許可信号Saを作成するが、この参入許可信号Saにもルート情報(スロット位置情報dt0および中継端末情報dr1,dr2を含む)が組み込まれる。このルート情報は、親無線端末101のルート情報解析作成部23で作成されて参入許可信号Saに組み込まれる。なお、ルート情報に関わる情報(スロット位置情報dt0および中継端末情報dr1,dr2を含む)は親無線端末101の記憶部14に記憶される。
 図10に示すように、親無線端末101は、作成した参入許可信号Saを第一中継無線端末211に送信する。第一中継無線端末211は、前述したように、受信した参入許可信号Saに含まれるルート情報(スロット位置情報dt0および中継端末情報dr1,dr2等)を解析して新たなルート情報(スロット位置情報dt0および中継端末情報dr2)を作成して参入許可信号Saに組み込み、第二中継無線端末221に送信する。
 第二中継無線端末221も、前述したように、受信した参入許可信号Saに含まれるルート情報を解析して新たなルート情報を作成して参入許可信号Saに組み込み、子無線端末331に送信する。このときルート情報にはスロット位置情報dt0が含まれているので、第二中継無線端末221は、スロット位置情報dt0に基づいて、子無線端末331における間欠受信タイミング(受信を間欠的に待ち受けるタイミング)に合わせて参入許可信号Saを送信する(図10では、間欠受信タイミングをキャリアセンスタイミングCsとして図示している)。それゆえ、子無線端末331は、例えば、雑音等の少ない適切なタイミングに合わせて参入許可信号Saを受信することが可能となる。
 このように、子無線端末331は、新規参入時に、親無線端末101から返送されてくる参入許可信号Saを待ち受ける間欠受信タイミングのスロット位置(スロット位置情報dt0)を自局で決定している。これにより、子無線端末331の間欠受信タイミングに合わせて上位機器から参入許可信号Saが送信されることになるので、子無線端末331は、自局で決定した間欠受信タイミング(キャリアセンスタイミングCsとなる基本スロット40)まで待機状態で維持することができる。
 その結果、参入許可信号Saを受信するために受信キャリアセンス動作の回数を増やしたり周期を変更したりする必要がなくなり、消費電力の増加をより一層有効に抑えることができるとともに、適切なタイミングに合わせて参入許可信号Saを受信することができるので、受信性能をより一層向上することができる。
 なお、図10では、子無線端末331が参入要求信号Sdを送信する場合のみリンク接続動作を行うように図示しているが、実際には、第二中継無線端末221および第一中継無線端末211から送信される参入要求信号Sdについてもリンク接続動作を行っており、同様に、参入許可信号Saの送信についてもリンク接続動作を行っている。つまり、図10では、説明の便宜上、子無線端末331が参入要求信号Sdを送信する場合のみを図示し、他のリンク接続動作についてはその図示を省略している。
 また、無線通信システムを構成する各無線通信装置におけるルート情報の管理の概要について説明する。まず、子無線端末301は、自局の上位機器となる中継無線端末201(子無線端末331であれば第二中継無線端末221)のスロット位置情報dt0だけを管理する。次に、中継無線端末201は、自局の直下に属する中継無線端末201(下位機器、例えば第一中継無線端末211から見て第二中継無線端末221)をテーブルにより管理している。具体的には、中継無線端末201は、自局の管理対象となる中継無線端末201(下位機器)を管理するテーブルを保有しており、このテーブルは、テーブル番号と管理対象の中継無線端末201(下位機器)との対応が取れるように構成されている。親無線端末101は、子無線端末301のスロット位置情報dt0および子無線端末301から親無線端末101までの中継ルートに存在する中継無線端末201のテーブル番号を管理している。
 (II.データ通信用信号の構成)
 ここで、子無線端末331(下位機器)から親無線端末101(上位機器)宛に送信される参入要求信号Sdと、親無線端末101(上位機器)から子無線端末331(下位機器)宛に返送される参入許可信号Saとは、いずれも共通の構成を有している。つまり、参入要求信号Sdも参入許可信号Saも、基本スロット40のデータ通信用スロット423(図3(a)参照)で通信されるデータ通信用信号60であり、それゆえ、これら無線信号もこれら以外の無線信号も基本的に同一の電文フォーマットを有している。そこでデータ通信用信号60の詳細について、図11を参照して具体的に説明する。
 図11に示すように、データ通信用信号60(参入要求信号Sd、参入許可信号Sa、その他の信号)は、ビット同期信号61、フレーム同期信号62、制御信号63、リンク相手ID64、自局ID65、およびレイヤ3フレーム66から構成されている。
 ビット同期信号61は、ビットのサンプリング位置を決定するための信号であり、フレーム同期信号62は、データ通信用信号60に含まれるデータの先頭を検出するための信号であり、制御信号63は、各種制御情報を記載する信号である。なお、制御信号63には、リンク相手ID64の先頭からレイヤ3フレーム66の末尾までの信号長の情報も含まれている。それゆえ、データ通信用信号60を受信した上位機器の無線通信装置では、制御信号63を解析することにより、当該データ通信用信号60をどこまで受信したらよいか把握することができる。
 リンク相手ID64は、データ通信用信号60が送信される相手先、すなわち無線リンクが接続された相手先のIDであり、データ通信用信号60が子無線端末331から送信されるのであれば、第二中継無線端末221のIDである。また、自局ID65は、データ通信用信号60の送信元のIDであり、送信元が子無線端末331であれば、当該子無線端末331のIDである。
 レイヤ3フレーム66は、データ通信用信号60を最終宛先まで中継伝送するためのフレーム信号である。つまり、データ通信用信号60を構成する他の信号およびIDは、当該データ通信用信号60を送受信する下位機器および上位機器の組合せに応じて作成されて送信されるが、レイヤ3フレーム66は、発信元(最初の送信元)である子無線端末331から、第一中継無線端末211および第二中継無線端末221を経由して最終宛先である親無線端末101まで送信される。
 レイヤ3フレーム66は、図11に示すように、認証コード661、ルート情報662、レイヤ3ID663、およびアプリケーションデータ664から構成されている。認証コード661はレイヤ3フレーム66が正規のフレームであるか否かをチェックするためのコードである。ルート情報662は、子無線端末331から親無線端末101までの中継ルートの情報であり、子無線端末331および親無線端末101の間に介在する第一中継無線端末211および第二中継無線端末221で作成され、レイヤ3フレーム66に組み込まれる。レイヤ3ID663は、発信元である子無線端末331のIDである。アプリケーションデータ664は、最終宛先である親無線端末101に伝送するアプリケーションに関係したデータである。
 (III.ルート情報の構成)
 レイヤ3フレーム66に含まれるルート情報662について、図12(a)~(c)を参照して具体的に説明する。図12(a)に示すように、ルート情報662は8バイトで構成され、1バイト目から7バイト目までは中継端末情報620(図10における中継端末情報dr1,dr2に対応)が格納され、8バイト目にはスロット位置情報665(図10におけるスロット位置情報dt0に対応)が格納される。
 中継端末情報620は、データ通信用信号60の最初の発信元である子無線端末331から最終宛先である親無線端末101までの中継ルート上に存在する中継無線端末201に関する情報であり、そのサイズは8ビットである。図2に示す例では、第一中継無線端末211および第二中継無線端末221の2台であるが、ルート情報662には、最大7段目までの中継端末情報620を格納することができる。
 図12(a)に示すように、ルート情報662の1バイト目には1段目中継端末情報621が格納され、図2に示す例では、親無線端末101から見て1段目である第一中継無線端末211の情報が格納される。また、2バイト目には2段目中継端末情報622が格納され、図2に示す例では、親無線端末101から見て2段目である第二中継無線端末221の情報が格納される。3バイト目から7バイト目までも同様に、3段目中継端末情報623、4段目中継端末情報624、5段目中継端末情報625、6段目中継端末情報626、7段目中継端末情報627がそれぞれ格納される。
 中継端末情報620のビット構成について具体的に説明すると、図12(b)に示すように、ルート情報662が上位機器から下位機器に送信される場合と、下位機器から上位機器に送信される場合とで一部のビット構成が異なっている。子無線端末331から親無線端末101に送信される参入要求信号Sdは、下位機器から上位機器に送信されるデータ通信用信号60であるが、親無線端末101から子無線端末331に送信される参入許可信号Saは、上位機器から下位機器に送信されるデータ通信用信号60であるので、これらデータ通信用信号60においては、それぞれ含まれるルート情報662のビット構成に違いが生ずる。
 図12(b)の上段に示す中継端末情報620aは、下位機器から上位機器に送信される場合(参入要求信号Sd等)に対応し、そのデータビットD7は、中継無線端末201が管理するテーブルが限界に達しているか否かを識別する識別子となっている。つまり、前述したルート情報662の管理に関して説明したように、中継無線端末201は、自局の直下に属する中継無線端末201(下位機器)をテーブルにより管理しているが、管理対象となる中継無線端末201の数が上限に達しているか否かを、前記識別子で識別する。
 一方、図12(b)の下段に示す中継端末情報620bは、上位機器から下位機器に送信される場合(参入許可信号等)に対応し、そのデータビットD7は、中継無線端末201がそれぞれ保有するテーブル番号の削除要求があるか否かとなっており、この削除要求は親無線端末101が行う。つまり、中継無線端末201が保有するテーブルは、テーブル番号と管理対象の中継無線端末201(下位機器)との対応が取れるように構成されているが、親無線端末101の要求によりテーブル番号を削除して、特定の中継無線端末201(下位機器)を管理対象から外すか否かを、前記識別子で識別する。
 また、上段の中継端末情報620aのデータビットD6は、直下に属する中継無線端末201(下位機器)がテーブルに登録されておらず、その段階で最初にテーブルに登録された中継無線端末201であるか否かを識別する識別子となっている。一方、下段の中継端末情報620bのデータビットD6は「0」に固定されている。
 次に、上段の中継端末情報620aおよび下段の中継端末情報620bのいずれにおいても、そのデータビットD5~D0は、いずれも中継ルートに介在する中継無線端末201がそれぞれ管理対象の中継無線端末201(下位機器)のテーブル番号となっている。本実施の形態では、管理できるテーブル番号は「63」までとなっている。すなわち、テーブル番号「0」を除いて、テーブル番号「1」~「63」までの63個の中継無線端末201を管理することができる。
 より具体的な例を挙げると、図2に示すように、無線通信システムが3階層で構成されており、中継無線端末201が、第一中継無線端末211、第二中継無線端末221、および第三中継無線端末231の3台含まれていれば、ルート情報662の1バイト目には第一中継無線端末211のテーブル番号が格納され、2バイト目には第二中継無線端末221のテーブル番号が格納される。そして、3バイト目にはテーブル番号として「0」が格納される。これは、第三中継無線端末231には、下位機器となる中継無線端末201が接続されていないためである。なお、4バイト目以降についてもテーブル番号として「0」が格納される。
 言い換えれば、無線通信システムがw階層(w:自然数)で構成されていれば、当該無線通信システムに含まれる複数の中継無線端末201の台数(すなわち中継段数)もwとなるので、ルート情報662の1~7バイト目のうち1~w-1バイト目までは、1~w-1段目までの中継無線端末201のテーブル番号が格納される。そして、wバイト目には、w段目の中継無線端末201のテーブル番号が格納されることになるが、当該w段目の中継無線端末201は「中継器として最下位」でありテーブル番号が不要なので、テーブル番号として「0」が格納される。
 このように、ルート情報662の1~7バイト目は中継端末情報620が格納されるが、8バイト目は、前述したようにスロット位置情報665が格納されている。このスロット位置情報665とは、データ通信用信号60の発信元である子無線端末331が、直上の第二中継無線端末221からの無線信号の受信を待ち受けるスロット番号(スロット位置)を意味する。前述したように末端の無線端末である子無線端末301は、消費電力を削減するために、無線信号の受信を待ち受ける動作、すなわち受信キャリアセンス動作を間引いて行っている。そこで、8バイト目には、受信キャリアセンス動作を行うスロット位置情報665が格納される。このスロット位置情報665のサイズも8ビットである。
 スロット位置情報665のビット構成について具体的に説明すると、図12(c)に示すように、中継端末情報620とは異なり、ルート情報662が上位機器から下位機器に送信される場合であっても、下位機器から上位機器に送信される場合であっても、ビット構成は基本的に同じである。
 具体的には、図12(c)に示すように、スロット位置情報665においては、そのデータビットD7およびD6は「0」固定となっている。また、データビットD5およびD4は、下位機器における間欠受信周期Mを示している。この間欠受信周期Mとは、下位機器が上位機器に対する受信キャリアセンス動作を行う周期である。例えば、下位機器が中継無線端末201であれば、通常、中継無線端末201は毎回の基本スロット40で受信キャリアセンス動作を行っているので、間欠受信周期M=1となる。一方、前述した子無線端末331のように、4スロット毎に受信キャリアセンス動作を行っている場合には、間欠受信周期M=4となり、2スロット毎に受信キャリアセンス動作を行っている場合には、間欠受信周期M=2となる。
 なお、データビットD5およびD4に格納される値は、間欠受信周期Mそのものではなく、次に示すように対応付けしたMa値の二進数が格納される。
  M=1…Ma=0、M=2…Ma=1、M=4…Ma=2、M=8…Ma=4
すなわち間欠受信周期Mは、「1」、「2」、「4」および「8」の4パターンに設定することができる。
 また、ルート情報662が上位機器から下位機器に送信される場合には、データビットD5およびD4の間欠受信周期Mは、「上位機器から見て最終宛先となる下位機器の間欠受信周期M」を示すことになる。一方、ルート情報662が下位機器から上位機器に送信される場合には、データビットD5およびD4の間欠受信周期Mは、「発呼元である下位機器の間欠受信周期M」を示すことになる。
 次に、スロット位置情報665のデータビットD3~D0は、センターポーリングを行っているスロット番号Yを導き出すためのスロット情報Zを示している。センターポーリングは、上位機器から下位機器に対する無線通信要求であるので、センターポーリングを行っているスロット番号Yとは、上位機器となる中継無線端末201からの無線信号の受信を間欠的に待ち受けている(受信キャリアセンス動作を行っている)スロット番号Yを意味する。このスロット番号Yを説明の便宜上「待ち受けスロット番号Y」と称すれば、スロット情報Zとは、基準スロット番号Y0から数えて(Z-1)番目の基本スロット40のスロット番号を示している。なお、Zの範囲は、Z=1~Mまでである。
 ここで、基準スロット番号Y0は、次の式(1)で定義される。なお、式(1)におけるAは、0からスロット数255(すなわちn-1)を間欠受信周期Mで除した数までの整数(すなわち、A=0~(n-1)/Mのいずれかの整数)である。
  Y0=(A×M)+1 ・・・(1)
 より具体的には、基準スロット番号Y0は、スロット番号1、M+1、2M+1、3M+1・・・となり、Mスロット毎に存在することになる。それゆえ、待ち受けスロット番号Y、すなわち、実際に受信待ち受け状態にある基本スロット40のスロット番号は、次に示す式(2)で表すことができる。ただし、スロット情報Zは前記の通り1~Mのいずれかの整数である。
  Y=Y0+(Z-1) ・・・(2)
 なお、親無線端末101は、子無線端末331の間欠受信周期Mとスロット情報Zとの2つの情報を受信すれば、子無線端末331のルート情報テーブルを作成する。ここで、間欠受信周期Mは、無線通信システムを構成する各無線通信装置に共通の値を用いることが望ましいが、それぞれの子無線端末301で異なる値であってもかまわない。また、スロット情報Zはそれぞれの子無線端末301で任意に設定することができる。
 (IV.ルート情報の作成および管理の一例)
 図2に示す無線通信システムにおいて、前記構成のルート情報662の作成および管理について、一例を挙げて具体的に説明する。まず、子無線端末331で作成されたルート情報662は、1台も中継無線端末201を経由していないので、8バイト目のスロット位置情報665のみであり、1バイト目から7バイト目までの中継端末情報620(1段目中継端末情報621~7段目中継端末情報627)には「0X00」が挿入される。なお、ルート情報662(これを含むデータ通信用信号60)の発信元が中継無線端末201であれば、すなわち新規に中継無線端末201が参入する場合には、1バイト目から7バイト目までの中継端末情報620には「0XFF」が挿入される。
 子無線端末331で作成されたルート情報662は、データ通信用信号60に組み込まれて第二中継無線端末221に送信される。第二中継無線端末221は、子無線端末331からデータ通信用信号60を受信すると、これに含まれるルート情報662を解析する。具体的には、ルート情報662における自局の段数に相当するバイトを解析する。第二中継無線端末221は親無線端末101から見て2段目の中継無線端末201に対応するので、ルート情報662の2バイト目(図12(a)参照)を解析する。解析結果が「0X00」であれば、第二中継無線端末221は、第三階層に属する下位機器のうち子無線端末301のいずれか、すなわち子無線端末331~333のいずれかから中継要求があった(データ通信用信号60が送信された)と解釈する。
 したがって、第二中継無線端末221は、子無線端末331~333のいずれかからの中継要求であれば、自局の属する段数目のバイトにテーブル番号「0」を設定する。第二中継無線端末221は、前記の通り2段目であり、送信元が子無線端末331であるので、2バイト目のデータビットD5~D0(図12(b)の上段参照)にテーブル番号「0」を設定する。そして、一段上位の中継段数に対応する、1バイト目のデータビットD5~D0(図11(b)の上段参照)に「0XFF」を挿入する。
 なお、ルート情報662の解析結果が「0XFF」であれば、第三階層に属する下位機器のうち中継無線端末201、すなわち図2に示す3段目の中継無線端末231(第三中継無線端末231)から中継要求があったと解釈する。この場合、中継無線端末231に対応するテーブル番号を、自局の属する段数目のバイト(2バイト目のデータビットD5~D0)に設定する。ここで、中継要求が中継無線端末231からであるにも関わらず、自局が管理するテーブルに中継端末情報620が存在しない場合には、当該テーブルに中継無線端末231を登録し、登録したテーブル番号を自局の属する段数目のバイト(2バイト目のデータビットD5~D0)に設定する。
 このように第二中継無線端末221で解析されて作成されたルート情報662は、データ通信用信号60に組み込まれて第一中継無線端末211に送信される。そして、第一中継無線端末211においても第二中継無線端末221と同様にしてルート情報662の解析と作成とが行われる。第一中継無線端末211は、第二階層の上位機器(すなわち1段目の中継器)であるので1バイト目を解析する。このとき1バイト目は「0XFF」であるので、第二階層に属する下位機器のうち中継無線端末201、すなわち図2に示す2段目の中継無線端末221(第二中継無線端末221)から中継要求があったと解釈する。そして、第一中継無線端末221は、親無線端末101から見て1段目の中継無線端末201に対応するので、ルート情報662の1バイト目のデータビットD5~D0に第二中継無線端末221に対応するテーブル番号を設定する。
 そして、第一中継無線端末211で解析されて作成されたルート情報662は、データ通信用信号60に組み込まれて親無線端末101に送信される。親無線端末101ではルート情報662を解析することにより、子無線端末331までの中継ルートを確認することができる。すなわち、ルート情報662の1バイト目には、第一中継無線端末211が管理する第二中継無線端末221のIDに対応したテーブル番号が格納されており、ルート情報662の2バイト目には、テーブル番号「0」が格納されているので、データ通信用信号60の発信元が、第二中継無線端末221の下位機器となる子無線端末301のいずれかであることが明らかとなる。
 そして、ルート情報662の8バイト目には、発信元である子無線端末331の間欠受信周期Mとスロット情報Zとを含むスロット位置情報665が格納されている。また、発信元である子無線端末331のIDは、レイヤ3ID663から知ることができる。
 このように、親無線端末101は、当該子無線端末331から発信されるデータ通信用信号60により、子無線端末331までの中継ルートを把握することができる。データ通信用信号60は、子無線端末331が新規に参入した時点で親無線端末101に送信されるので、親無線端末101と子無線端末331との間で何度も中継伝送(中継通信)をする必要がなく、親無線端末101は、初回の通信で中継ルートを確認することができる。また、データ通信用信号60に含まれるルート情報662は、前述した構成を有しているので、親無線端末101は、ルート情報662を解析することにより、ルート情報テーブルを作成することができ、中継ルートを適切に確認することができる。
 [ポーリングデータの送信]
 次に親無線端末101から子無線端末301にポーリングデータを送信する場合について、図2を参照して具体的に説明する。
 親無線端末101は、例えば子無線端末331に対するポーリングデータの送信要求が発生すれば、自局の有するルート情報テーブルを参照し、子無線端末331までの中継ルートおよび子無線端末331の間欠受信周期Mおよびスロット情報Zを含むルート情報662を作成する。このルート情報662は、データ通信用信号であるポーリング信号(図11参照)のレイヤ3フレーム66に組み込まれる。
 そして、親無線端末101は、下位スロット41のリンク接続用スロット412中の上位応答/上位発呼用スロット402bで第一中継無線端末211宛にリンク接続要求信号(図7(a)参照)を送信する。第一中継無線端末211は全ての上位スロット42(具体的には、上位応答/上位発呼用スロット402b)で受信キャリアセンス動作を行っているので、親無線端末101から送信された自局宛のリンク接続要求信号を速やかに受信することができる。
 その後、第一中継無線端末211は、上位スロット42のデータ通信用スロット423で親無線端末101から送信されるポーリング信号を受信し、当該ポーリング信号のレイヤ3フレーム66に含まれるレイヤ3ID663を確認し、自局宛のポーリング信号であるか否かを判定する。自局宛でなければ中継要求であると判定し、ルート情報662の1バイト目(図12(a)参照)を解析する。
 ルート情報662の解析の結果、1バイト目のデータビットD5~D0に格納されているテーブル番号が「0」であれば、受信したポーリング信号は、自局の直下に属する子無線端末301宛であると判定されるが、このポーリング信号は子無線端末331宛であるため、1バイト目のデータビットD5~D0に格納されているテーブル番号は、第二中継無線端末221のIDに対応するテーブル番号となっている。したがって第一中継無線端末211は、1バイト目のデータビットD5~D0格納されているテーブル番号から、自局の保有するテーブルを参照し、次の中継先である第二中継無線端末221のIDを把握する。
 その後、第一中継無線端末211は、親無線端末101と同様な手順で第二中継無線端末221との間にリンク接続動作を行い、第二中継無線端末221に対してポーリング信号を中継送信する。第二中継無線端末221は、前述した第一中継無線端末211と同様に受信したポーリング信号のルート情報662を解析し、当該ルート情報662の2バイト目のデータビットD5~D0に格納されているテーブル番号を確認する。2バイト目のデータビットD5~D0に格納されているテーブル番号は「0」であるので、第二中継無線端末221は、受信したポーリング信号が、自局の直下に属する子無線端末331~333のいずれか宛であると認識する。さらに、ポーリング信号中のレイヤ3ID663(図11参照)を確認することで、最終的な宛先である子無線端末331のIDを確認することができる。
 さらに、第二中継無線端末221は、ルート情報662の8バイト目のスロット位置情報665を解析し、子無線端末331の間欠受信周期Mおよびスロット情報Zを確認する。前述したように、受信キャリアセンス動作を行う基本スロット40のスロット番号は、間欠受信周期Mおよびスロット情報Zから計算できるので、第二中継無線端末221は、計算されたスロット番号に応じて、子無線端末331との間でリンク接続動作を行い、ポーリング信号を中継送信する。
 ここで、ポーリング信号のレイヤ3フレーム66(図11参照)は、親無線端末101で作成され、中継機である第一中継無線端末211および第二中継無線端末221では何ら変更されずに、最終宛先である子無線端末331までそのままの状態で中継伝送される。それゆえ、子無線端末331は、親無線端末101からのアプリケーションデータ664を確実に受信することができる。
 以上のように、本実施の形態では、親無線端末101、複数の中継無線端末201、複数の子無線端末301を備え、複数の中継無線端末201が多段階の中継伝送を行うよう構成されている無線通信システムにおいて、中継伝送を行う中継無線端末201は、下位機器から上位機器に向かって無線通信を行う(上方向通信を行う)場合には、基本スロット40のうち下位スロット41では、自局から下位機器にビーコン信号を送信して時計合わせを行った直後に、当該下位機器とリンク接続を行い(図5参照)、また、リンク接続を行った下位スロット41の直後となる上位スロット42では、上位機器からビーコン信号を受信した直後に、当該上位機器とリンク接続を行う(図5参照)。
 これにより、中継無線端末201では、上方向通信においてビーコン信号の送受信の直後にリンク接続を行って上位機器および下位機器と通信可能な状態になるため、中継伝送に大きな遅延が生じることが抑えられ、迅速な中継伝送が可能となる。また、子無線端末301にとっては、自身が端末発呼データを送信するタイミングに合わせて、上位の中継無線端末201(例えば第二中継無線端末221)が受信可能な状態となり、当該中継無線端末201が端末発呼データを受信すれば、さらに上位の中継無線端末201(例えば第一中継無線端末211)が受信可能な状態となる。それゆえ、子無線端末301の端末発呼データの送信タイミングに合わせて中継無線端末201が中継伝送可能な状態となるので、子無線端末301の稼働時間を短くすることが可能となり、簡素な構成で子無線端末301の消費電力の増大を抑制することができる。
 また、上位機器から下位機器に向かって無線通信を行う(下方向通信を行う)場合に、中継無線端末201は、上位スロット42では必ず受信キャリアセンス動作を行い(図5の第一中継無線端末211および第二中継無線端末221において、黒く塗りつぶしたリンク接続用スロット422を参照)、下位スロット41では、ビーコン信号を送信した直後のみ受信キャリアセンス動作を行う(図5の第一中継無線端末211および第二中継無線端末221において、黒く塗りつぶしたリンク接続用スロット412を参照)。また、子無線端末301は、全ての基本スロット40(下位機器が存在しないので上位スロット42のみ)で受信キャリアセンス動作を行わず、間引いた上位スロット42のみで受信キャリアセンス動作を行い、子無線端末301の上位の中継無線端末201(例えば第二中継無線端末221)は、子無線端末301の受信キャリアセンス動作に合わせてリンク接続を行う。
 これにより、子無線端末301の稼働時間を短くすることが可能となり、簡素な構成で子無線端末301の消費電力の増大を抑制することができる。また、中継無線端末201は、子無線端末301に対する下方向通信を除けば、上位機器から無線信号を受信した後、速やかに下位機器に無線信号を送信することができる。それゆえ、上方向通信だけでなく下方向通信においても中継伝送の遅延が回避され、端末発呼データを受信した親無線端末101から返信される無線信号も迅速に中継伝送を行うことが可能となる。
 また、本実施の形態では、子無線端末301における間欠受信タイミングに対応する基本スロット40のスロット番号は、親無線端末101に対する通信時に無線信号に組み込まれて送信される。それゆえ、中継無線端末201は、自局の直下に属する中継無線端末201(下位機器)のみを管理するテーブルを保有するだけでよく、自局の直下に属する子無線端末301の情報を一切保有する必要がない。したがって、本実施の形態に係る中継無線端末201は、自局の直下に属する子無線端末301の数に制限を設ける必要がなく、従来よりも多くの子無線端末301を中継することができる。言い換えれば、本実施の形態に係る中継無線端末201は、従来と同じ数の子無線端末301を中継しても、自局が保有するテーブルのサイズを小さくすることができる。
 また、本実施の形態に係る親無線端末101は、直下に属する中継無線端末201を直接管理するだけでよいので、子無線端末301までのルート情報662を格納するテーブルを小さくすることができる。例えば、親無線端末101は、直下に属する第一中継無線端末211のIDを管理する必要はあるが、直下ではない第二中継無線端末221のIDを直接管理する代わりに、第一中継無線端末211が管理している第二中継無線端末221のテーブル番号を管理すればよい。各中継無線端末201が管理する最大の中継無線端末201の数を63とすれば、必要となるテーブル数は63となるので、テーブル番号は6ビットの情報で充分となる。したがって、従来では、1台の中継無線端末201につき64ビットの情報を管理することが必要であったのに対して、本実施の形態では、6ビットの管理で済むことになる。
 また、データ通信用信号に組み込まれるルート情報662は、中継ルートに介在する中継無線端末201のIDではなく、当該IDに対応したテーブル番号を含んでいる。それゆえ、ルート情報662のバイト数を小さくすることができる。例えば、各中継無線端末201が管理する最大の中継無線端末201の数を63とすれば、6ビットの情報で1段当たりの中継ルートを設定することができる。
 一般に、無線通信装置を指定するためのIDとしては、例えば64ビットのものが知られており、このようにビット数が大きくなる傾向にある。それゆえ、ルート情報662として、中継ルートに介在する中継無線端末201のIDを全て送信するのであれば、ルート情報662のビット数が非常に大きくなり通信に無駄が生じる。これに対して、本実施の形態では、テーブル番号をルート情報662として送信するので、ルート情報662のビット数を小さくすることができ、効率的な通信を行うことができる。
 また、本実施の形態では、親無線端末101は、子無線端末331のスロット位置情報665を記憶部14に記憶することで管理しているが、子無線端末331から見て直上の第二中継無線端末221において管理することもできる。この場合、第二中継無線端末221のテーブルが大きくなるものの、ルート情報662の8バイト目のスロット位置情報665が不要となる利点がある。
 [変形例、代表的な用途等]
 ここで、前述した本実施の形態は、一般的な無線通信装置または無線通信システムに適用可能であり、それゆえ、無線通信装置または無線通信システムの具体的な構成は、図1(a)~(c)または図2に示す構成に限定されず、公知のさまざまな構成の無線通信装置または無線通信システムに適用可能である。
 また、本実施の形態では、無線通信システムを構成する無線通信装置として、親無線端末、中継無線端末および子無線端末の3種類を用いる例を説明しているが、本発明はこれに限定されず、子無線端末と中継無線端末との関係は、子無線端末と親無線端末との関係と同じであり、それゆえ、無線通信システムは、親無線端末および子無線端末の2種類から構成されてもよい。
 また、親無線端末、中継無線端末および子無線端末による通信動作は、コンピュータを動作させるためのプログラムによって実現可能であり、電気機器、情報機器、および/またはコンピュータ等のハードリソースを協働させて実現することができる。また、このようなプログラムを記録媒体に記録したり通信回線を用いてプログラムを配信したりすることで、プログラムの配布および更新、プログラムのインストール作業等を簡単に行うことができる。
 さらに、本実施の形態では、ルート情報に含まれる間欠受信タイミング情報としては、受信を間欠的に待ち受けるスロット番号である「スロット位置情報」を用いているが、本発明はこれに限定されず、間欠受信タイミング(受信の間欠的な待ち受けタイミング)を特定することができれば、スロット番号に限定されず、公知の他の形式の情報を用いることができる。
 また、本発明に係る無線通信装置、無線通信システム、および無線通信方法、あるいはプログラム等は、一般的な無線通信分野全般に適用可能な構成であるが、中でも、末端の子無線端末において可能な限り省電力化が要求されるような分野に特に好適に用いることができる。このような分野の代表例としては、ガスメータ用無線検針システムを挙げることができる。
 一般に、ガスメータは非常に長期間(通常、10年間程度)交換なしに電池電源で動作するよう構成され、AC電源を備える構成はほとんど存在しない。そのため、ガスメータに取り付けられる無線通信装置(子無線端末)は、電池駆動で例えば10年間電池交換なしに動作する必要がある。それゆえ、無線通信装置は、所定の周期で受信を待ち受けるとともに、自局あての電波が検出できなければ、すぐに受信(受信の試行)を中止し待機状態になるという間欠待ち受け動作を行っている。また、ガスメータの検針は、頻繁に測定する必要はなく、せいぜい1日1回程度であり、それゆえ無線通信の頻度は大きくない。
 そこで、通信頻度の観点から、典型的なガスメータ用無線検針システムでは、無線通信を相互に行う無線通信装置がそれぞれの時計を同期させずに非同期でそれぞれ間欠待ち受け動作を行う方式、すなわち「非同期方式」が用いられている。この方式では、送信したい情報(送信情報)が発生した時だけ、通信相手の間欠受信周期よりも長いヘッダー信号をつけて、前記送信情報を送信するため、信相手は間欠受信周期よりも長いヘッダー信号を検出することができ、当該ヘッダー信号を検出すると、受信を継続してヘッダー信号に続いて送られてくる前記送信情報を受信することができる。
 ここで、近年では、コスト削減を目的として、単一の親無線端末で多数のガスメータの検針値を収集するために、中継無線端末を設けて、当該中継無線端末が多数の子無線端末と一対複数で無線通信を行う構成が採用されている。この構成では、中継無線端末を介在することから、子無線端末から親無線端末まで迅速にデータ通信を行うためには、中継無線端末の中継伝送を遅延無く行うことが必要となる。
 ただし、子無線端末は受信を間欠的に待ち受けるため、当該子無線端末の直上となる(上位の)中継無線端末は、子無線端末の間欠受信タイミングに合わせて中継伝送を行わなければならない。さらに、複数の中継無線端末が多段階で中継伝送するように設けられていれば、中継無線端末同士の中継伝送を効率的に行う必要が生ずる。このような子無線端末の受信の間欠的な待ち受け、あるいは、多段階の中継無線端末の設置は、子無線端末から親無線端末への端末発呼データの送信を遅延させる要因となる。
 これに対して、本発明であれば、中継無線端末においては、ビーコン信号の送受信の直後にリンク接続を行って上位機器および下位機器と通信可能な状態になるため、中継伝送に大きな遅延が生じることが抑えられ、迅速な中継伝送が可能となる。また、子無線端末にとっては、自身が端末発呼データを送信するタイミングに合わせて、上位の中継無線端末および上位の中継無線端末が通信可能な状態となる。それゆえ、子無線端末の端末発呼データの送信タイミングに合わせて中継無線端末が中継伝送可能な状態となるので、子無線端末の稼働時間を短くすることが可能となり、簡素な構成で子無線端末の消費電力の増大を抑制することができる。
 なお、前述した例では、ガスメータからガス流量データ(ガス検針データ)を自動収集する構成を例示しているが、本発明はこれに限定されず、水道、電気などの流量を検針するシステムであってもよいことはいうまでもない。
 また、本発明に係る無線通信システムは、親無線端末と、子無線端末と、親無線端末と子無線端末との間にある複数の中継無線端末と、から構成される無線通信システムに関するものであって、前記中継無線端末のうち、前記親無線端末により近いものを「上位側中継無線端末」とし、当該上位側中継無線端末との間で無線通信する子無線端末により近いものを「下位側中継無線端末」としたときに、上位側中継無線端末および下位側中継無線端末は、それぞれ、下位スロットと上位スロットとからなる単位スロットとして規定されるタイミングで無線信号を送信可能とし、当該単位スロットを繰り返す形で無線通信を行い、前記下位スロットは、自局から見て下位側中継無線端末へビーコン信号を送信可能とするスロット(ビーコン送信用スロット)を有し、当該ビーコン送信用スロットを用いて所定の周期で前記ビーコン信号を送信するよう構成され、上位スロットは、自局から見て上位側中継無線端末から送信されるビーコン信号を受信するスロット(ビーコン受信用スロット)を有するよう構成され、さらに、上位側中継無線端末がビーコン信号を送信した時点から下位側中継無線端末がビーコン信号を送信するまでの時間は、下位側中継無線端末がビーコン信号を送信した時点から上位側中継無線端末がビーコン信号を送信するまでの時間よりも長くなるよう設定される構成であってもよい。
 前記構成によれば、中継無線端末は子無線端末が送信する端末発呼データをビーコン信号の直後に受信し、受信した直後に親無線端末から送信されるビーコン信号を受信して、その直後に親無線端末に端末発呼データを中継送信するため、端末発呼データの中継伝送に大きな遅延が生じるおそれを回避することができる。
 また、中継無線端末および子無線端末は、上位機器からの無線信号を受信するために間欠受信待ち受け動作を行うよう構成され、前記子無線端末の間欠受信待ち受け周期は、前記中継無線端末の間欠受信周期よりも長くなる構成であってもよい。
 前記構成によれば、中継無線端末は、親無線端末が送信する第二のビーコン信号よりも短い周期で親無線端末からのポーリングデータの間欠的な受信待ち受け(間欠受信待ち受け動作)を行っているため、ポーリングデータの中継伝送において大きな遅延が生じることなしに、中継伝送を行うことができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
  以上のように本発明は、近距離無線通信ネットワーク、モバイル通信、構内無線通信網、交通機関用無線、防災行政無線網、無線LAN、ガス、水道、電力等のメータ用無線検針システム等の無線通信システムおよびこれらに用いられる無線通信装置の分野に好適に用いることができる。
 11  アンテナ
 12  送受信部
 13  制御部
 14  記憶部
 21  ビーコン送信部
 22  リンク接続部
 23  ルート情報解析作成部
 24  タイミング情報送信部
 25  ビーコン受信部
 26  タイミング情報解析部
 40  基本スロット
 41  下位スロット
 42  上位スロット
101  親無線端末(無線通信装置)
201  中継無線端末(無線通信装置)
211  第一中継無線端末(無線通信装置)
221  第二中継無線端末(無線通信装置)
301  子無線端末(無線通信装置)
331  子無線端末(無線通信装置)
411  ビーコン送信用スロット
412  リンク接続用スロット
421  ビーコン受信用スロット
422  リンク接続用スロット
 Ta  第一ビーコン送信間隔
 Tb  第二ビーコン送信間隔
 
 

Claims (6)

  1.  複数の無線通信装置から構成され、当該無線通信装置として、最下位となる複数の子無線端末と、これら子無線端末との間で無線通信を行う最上位の親無線端末と、前記子無線端末および親無線端末の間に介在し、これらの間で無線通信の中継を行う中継無線端末とを備えている無線通信システムであって、
     前記親無線端末および前記中継無線端末は、下位の無線通信装置に対して定期的にビーコン信号を送信するよう構成されるとともに、前記中継無線端末および前記子無線端末は、上位の無線通信装置から送信された前記ビーコン信号を定期的に受信して、自局の内部時計を上位の無線通信装置の内部時計に同期するよう構成され、
     前記親無線端末または前記中継無線端末が前記ビーコン信号を送信した時点である先上位ビーコン送信時点から、当該先上位ビーコン送信時点後にその下位の中継無線端末が最初の前記ビーコン信号を送信する時点である下位ビーコン送信時点までの時間を、第一ビーコン送信間隔とし、
     前記下位ビーコン送信時点から、当該下位ビーコン送信時点後にその上位の前記親無線端末または前記中継無線端末が最初の前記ビーコン信号を送信する時点である後上位ビーコン送信時点までの時間を、第二ビーコン送信間隔としたときに、
     前記第一ビーコン送信間隔は、前記第二ビーコン送信間隔よりも長くなるように設定されている
    ことを特徴とする、無線通信システム。
  2.  前記上位および下位の無線通信装置の間で行われる前記無線通信は、複数のタイムスロットに分割した1周期を繰り返すように周期的に行われ、
     前記各タイムスロットは、前記下位の無線通信装置との間で無線通信を行うための下位スロットと、当該下位スロットの後に続く、前記上位の無線通信装置との間で無線通信を行うための上位スロットとに区分され、
     前記下位スロットには、前記ビーコン信号を送信するためのビーコン送信用スロットと、当該ビーコン送信用スロットの後に続く、前記下位の無線通信装置との間でリンク接続を行うためのリンク接続用スロットとが含まれ、
     前記上位スロットには、前記ビーコン信号を受信するためのビーコン受信用スロットと、当該ビーコン受信用スロットの後に続く、前記上位の無線通信装置との間でリンク接続を行うためのリンク接続用スロットとが含まれ、
     前記子無線端末の上位の中継無線端末を基準局としたときに、前記上位の無線通信装置、基準局、および当該子無線端末のそれぞれの前記無線通信は、基準局の下位スロットが前記子無線端末の上位スロットに対応し、基準局の上位スロットが前記上位の無線通信装置の下位スロットに対応するように、その周期を対応させている
    ことを特徴とする、請求項1に記載の無線通信システム。
  3.  前記中継無線端末は、前記ビーコン信号を送信した下位スロットでリンク接続を行うよう構成され、
     前記基準局の上位の無線通信装置が中継無線端末であるときに、前記上位の中継無線端末、基準局、および当該子無線端末のそれぞれの前記無線通信は、基準局におけるリンク接続を行う下位スロットが前記子無線端末のリンク接続を行う上位スロットに対応し、基準局の上位スロットが前記上位の中継無線端末におけるリンク接続を行う下位スロットに対応するように、その周期を対応させている
    ことを特徴とする、請求項2に記載の無線通信システム。
  4.  前記子無線端末は、複数回に1回の上位スロットでリンク接続を行うよう構成され、
     前記基準局および当該子無線端末のそれぞれの前記無線通信は、基準局の下位スロットが、前記子無線端末の最先のリンク接続を行う上位スロットに対応するように、その周期を対応させている
    ことを特徴とする、請求項2に記載の無線通信システム。
  5.  前記子無線端末の上位となる中継無線端末を除く、他の中継無線端末は、
     その上位の無線通信装置の下位スロットと自局の上位スロットとの間でリンク接続が行われれば、直後の自局の下位スロットとその下位の無線通信装置の上位スロットとの間でリンク接続を行うよう構成されている
    ことを特徴とする、請求項4に記載の無線通信システム。
  6.  中継無線端末および子無線端末は、上位の親無線端末または中継無線端末からの無線信号を受信するために定期的に間欠受信待ち受け動作を行うよう構成され、前記子無線端末の間欠受信待ち受け周期は前記中継無線端末の間欠受信周期よりも長い
    ことを特徴とする、請求項1に記載の無線通信システム。
     
     
PCT/JP2011/004994 2010-10-12 2011-09-06 無線通信システム WO2012049806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180049589.9A CN103168435B (zh) 2010-10-12 2011-09-06 无线通信系统
JP2012538556A JP5603949B2 (ja) 2010-10-12 2011-09-06 無線通信システム
EP11832252.8A EP2629437A1 (en) 2010-10-12 2011-09-06 Wireless communications system
US13/878,339 US20130215821A1 (en) 2010-10-12 2011-09-06 Radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010229418 2010-10-12
JP2010-229418 2010-10-12

Publications (1)

Publication Number Publication Date
WO2012049806A1 true WO2012049806A1 (ja) 2012-04-19

Family

ID=45938048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004994 WO2012049806A1 (ja) 2010-10-12 2011-09-06 無線通信システム

Country Status (5)

Country Link
US (1) US20130215821A1 (ja)
EP (1) EP2629437A1 (ja)
JP (1) JP5603949B2 (ja)
CN (1) CN103168435B (ja)
WO (1) WO2012049806A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055418A (ja) * 2016-10-19 2017-03-16 能美防災株式会社 無線通信システム
JP2022185706A (ja) * 2021-06-03 2022-12-15 Necプラットフォームズ株式会社 親機、端末、中継機、通信システム、制御方法、及び制御プログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044979A1 (en) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Mobile relay support in relay-enhanced access networks
US9245427B2 (en) * 2011-10-12 2016-01-26 Tyco Fire & Security Gmbh System and method for synchronization of networked fire alarm panels
JP2017028620A (ja) * 2015-07-27 2017-02-02 京セラ株式会社 中継装置および無線中継方法
JP6967738B2 (ja) * 2017-09-01 2021-11-17 パナソニックIpマネジメント株式会社 通信システム、照明制御システム、及び通信装置
KR102392270B1 (ko) * 2017-09-18 2022-04-29 에스케이플래닛 주식회사 사용자단말 및 그 동작 방법, 그리고 아이오티장치
WO2023180438A1 (en) * 2022-03-23 2023-09-28 Koninklijke Philips N.V. Methods, devices, and systems for private patient monitoring networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738492A (ja) * 1993-07-21 1995-02-07 Nippondenso Co Ltd 移動体用通信装置
JPH0965420A (ja) * 1995-08-29 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> 簡易型携帯電話装置
JP2002077978A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd 無線中継装置、無線中継方法および記録媒体
JP2009288897A (ja) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd 火災警報システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671291B1 (en) * 1999-07-21 2003-12-30 Qualcomm Incorporated Method and apparatus for sequentially synchronized network
US8068467B2 (en) * 2004-10-22 2011-11-29 Motorola Soulutions, Inc. Multi-tier WLAN and method for propagating beacons in a multi-tier WLAN thereof
US8737285B2 (en) * 2008-10-06 2014-05-27 Mitsubishi Electronic Corporation Data relay system and operating time allocating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738492A (ja) * 1993-07-21 1995-02-07 Nippondenso Co Ltd 移動体用通信装置
JPH0965420A (ja) * 1995-08-29 1997-03-07 Nippon Telegr & Teleph Corp <Ntt> 簡易型携帯電話装置
JP2002077978A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd 無線中継装置、無線中継方法および記録媒体
JP2009288897A (ja) 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd 火災警報システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055418A (ja) * 2016-10-19 2017-03-16 能美防災株式会社 無線通信システム
JP2022185706A (ja) * 2021-06-03 2022-12-15 Necプラットフォームズ株式会社 親機、端末、中継機、通信システム、制御方法、及び制御プログラム
JP7452871B2 (ja) 2021-06-03 2024-03-19 Necプラットフォームズ株式会社 親機、端末、中継機、通信システム、制御方法、及び制御プログラム

Also Published As

Publication number Publication date
CN103168435A (zh) 2013-06-19
US20130215821A1 (en) 2013-08-22
CN103168435B (zh) 2015-08-19
EP2629437A1 (en) 2013-08-21
JPWO2012049806A1 (ja) 2014-02-24
JP5603949B2 (ja) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5669110B2 (ja) 無線通信装置、無線通信システムおよび無線通信方法
JP5603949B2 (ja) 無線通信システム
JP6206741B2 (ja) 無線通信システム、無線端末、無線端末の制御方法、および無線端末の制御プログラム
CN102143570B (zh) 实现低功耗节点实时监控的无线传感网调度方法和系统
WO2011007567A1 (ja) 無線通信装置、無線通信システム、および無線通信方法、並びにこの無線通信方法を実行させるプログラム
CN103516924A (zh) 基于开放标准无线协议的无线火灾系统
WO2005125055A1 (en) Method for transmitting traffic indication message in wireless communication system, base station thereof, method for receiving the same, terminal thereof and message structure thereof
CN106102096B (zh) 用于超低功率模式传输的系统及方法
JP5626349B2 (ja) 無線通信装置、無線通信システムおよび無線通信方法
JP2024069697A (ja) サイドリンク通信のための方法およびデバイス
CN104798399A (zh) 数据收发方法
AU2014406732A1 (en) Radio base station and system having said radio base station
CN105357744A (zh) 一种随机接入中继器、中继系统及其中继方法
JP2010278763A (ja) 基地局装置
JP2019515565A (ja) 保証タイムスロットを利用する時間同期チャンネルホッピングネットワークの形成方法
US9578599B2 (en) System and method for optimizing battery life in wireless multi-hop communication systems
US20130182699A1 (en) Wireless communication device and wireless communication method
JP5691016B2 (ja) 無線通信システム、無線端末及びプログラム
JP2002109673A (ja) 自動検針システム
Terada et al. Enhancement of MAC protocol for power reduction in LoRa WAn
JP2016163276A (ja) 無線中継装置、無線通信システムおよび無線通信方法
CN101965045B (zh) 一种子母钟系统及时钟同步方法
JP6983931B2 (ja) 無線通信装置、無線通信システム、無線通信方法及びプログラム
CN117119609A (zh) 设备调度方法、装置、设备、存储介质及计算机程序
KR20160020052A (ko) 복수의 비콘 아이디를 송출하기 위한 비콘장치의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13878339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011832252

Country of ref document: EP