WO2012046889A1 - 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지 - Google Patents

연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지 Download PDF

Info

Publication number
WO2012046889A1
WO2012046889A1 PCT/KR2010/006794 KR2010006794W WO2012046889A1 WO 2012046889 A1 WO2012046889 A1 WO 2012046889A1 KR 2010006794 W KR2010006794 W KR 2010006794W WO 2012046889 A1 WO2012046889 A1 WO 2012046889A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrolyte membrane
metal
porous structure
composite electrolyte
Prior art date
Application number
PCT/KR2010/006794
Other languages
English (en)
French (fr)
Inventor
한학수
정민수
최승혁
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020137006199A priority Critical patent/KR101441411B1/ko
Priority to US13/877,398 priority patent/US9368821B2/en
Priority to EP10858165.3A priority patent/EP2626938A4/en
Priority to PCT/KR2010/006794 priority patent/WO2012046889A1/ko
Publication of WO2012046889A1 publication Critical patent/WO2012046889A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite electrolyte membrane for a fuel cell, and more particularly, to a composite electrolyte membrane for a fuel cell having excellent thermal stability and ion conductivity, a method for manufacturing the same, and a fuel cell including the same.
  • a fuel cell is an energy conversion device that converts chemical energy of fuel directly into electrical energy and is being researched and developed as a next-generation energy source due to its high energy efficiency and eco-friendly features with low pollutant emission.
  • Polymer electrolyte membrane fuel cells are gaining popularity as portable, automotive, and household power supplies due to their low operating temperature, elimination of leakage problems due to the use of solid electrolytes, and fast operation. It is not only a high output fuel cell with a higher current density than other types of fuel cells, but also a simple structure and fast startup and response characteristics. Moreover, methanol and natural gas other than hydrogen can be used as a fuel, and it has the outstanding durability. In addition, research into portable fuel cells continues because of their miniaturization with high power density. Solid polymer electrolyte membranes currently used include Dow, Nafion, Dumion, Asamihi, and Asahi Kasei.
  • These solid high molecular electrolyte membranes generally use perf luorosulfonic acid polymer membranes having alkylene fluoride in the main chain and sulfonic acid groups at the ends of the vinyl ether side chains (e.g., Nafion, manufactured by Dupont).
  • fluorine-based polymer electrolyte membranes have high chemical stability and excellent hydrogen ion conductivity, but due to the complicated fluorine substitution process, the manufacturing cost is very high, making them difficult to apply to automotive fuel cells.
  • proton conductive polymer membranes have been developed in which a basic acid is doped with a strong acid, which may be polybenzimidazole (PBI) or poly (2,5-benzimidazole) or poly (2,6-benzimidazole). Strong acid of phosphate After doping with a proton conductive polymer film of the type to be conductive by the Gruts mechanism (Grotthus mechanism) through the phosphoric acid in the absence of moisture
  • polybenzimidazole and poly (2,5-benzimidazole) and the like are lower cost than Nafion and can conduct protons at high temperature and no humidification conditions of 100 ° C. or higher.
  • traces of carbon monoxide remain in the hydrogen generated from natural gas, gasoline, or methane, and more than several ppm of carbon monoxide adsorbs on the surface of the platinum catalyst and interferes with the reaction of fuel. It will drop dramatically. Since the adsorption reaction of carbon monoxide on the platinum catalyst is exothermic, if the operating temperature of the fuel cell is increased to 120 ° C or more, the poisoning phenomenon caused by carbon monoxide is significantly reduced, and the oxidation / reduction reaction rate of the battery can be improved. This has the advantage of increasing the efficiency of the.
  • the presence of moisture is because phosphoric acid and the like are not permanently bound to the basic polymer but merely exist as an electrolyte. In this case, there is a fatal drawback that the phosphoric acid may be eluted from the polymer membrane.
  • water is generated as a reaction product on the cathode side. When the operating temperature of the fuel cell exceeds 100 ° C., most of the generated water escapes as vapor through the gas diffusion electrode.
  • the loss is very small, when the operating temperature is less than 100 ° C in some sections or when a large amount of water is generated at high current density, the generated water is not immediately removed, so that the phosphoric acid is eluted by the water, and thus the battery life. Will lower.
  • the first problem to be solved by the present invention is to provide a composite electrolyte membrane for a fuel cell excellent in thermal stability and ion conductivity.
  • the second problem to be solved by the present invention is to provide a method for producing the composite electrolyte membrane for a fuel cell.
  • a third object of the present invention is to provide a fuel cell including the composite electrolyte membrane.
  • the present invention to solve the first problem is a polybenzimidazole-based polymer
  • a metal grafted porous structure wherein the composite electrolyte membrane for a fuel cell doped with phosphoric acid, wherein the content of the metal grafted porous structure is 0.1 to 30 wt% based on the polymer. to provide.
  • the polybenzimidazole-based polymer may include polybenzimidazole (PBI), poly (2,5-benzimidazole) (2,5-PBI), poly (2, 6—benzimidazole) (2,6—PBI) and ABPBI.
  • the metal is preferably selected from one or more of the group consisting of aluminum, copper, iron, nickel.
  • the metal grafted porous structure is A1-
  • the size of the metalol-containing porous structure is preferably 900nm or less.
  • the present invention comprises the steps of forming a metal grafted porous structure; Mixing the metal grafted porous structure and a polymer solution to form a composite membrane; It provides a method for producing a composite electrolyte membrane for a fuel cell comprising a; imparting ion conductivity by doping the composite membrane with phosphoric acid.
  • the forming of the metal grafted porous structure may include adding a metal chloride to an aqueous solution of alkyltrimethylammonium halide; Adding ammonia water to the mixture and stirring; Adding tetraethylorthosilicate dropwise to the mixture and then stirring; And washing and drying the semi-agitated mixture and baking to obtain a powder.
  • the halogenated alkyltrimethylammonium is, for example, nucleodecyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, octadecyltrimethylammonium bromide, It is preferably selected from the group consisting of cetyltrimethylammonium chloride, myristyltrimethylammonium chloride, decyltrimethylammonium bromide, octyltrimethylammonium bromide, and nucleyltrimethylammonium bromide.
  • the polymer that can be used in the production of the composite electrolyte membrane for a fuel cell is polybenzimidazole (PBI), poly (2,5-benzimidazole) (2,5-PBI) , Poly (2,6-benzimidazole) (2,6-PBI) and ABPBI.
  • the metal is preferably at least one selected from the group consisting of aluminum, copper, iron, nickel.
  • the metal grafted porous structure is preferably A1-MCM-41.
  • the size of the porous structure containing the metal is preferably 900nm or less.
  • the addition amount of the metal chloride is preferably such that the molar ratio of metal ions to 1 to 30 mol% based on the total solution, the content of the metal grafted porous structure It is preferably 0.1 to 30% by weight based on the polybenzimidazole-based polymer.
  • the firing step is a temperature of 300 ⁇ 800
  • the present invention provides a fuel cell manufactured by employing the composite electrolyte membrane for the fuel cell.
  • a porous structure containing a metal may be introduced into a polymer to improve thermal properties of an electrolyte membrane, and to significantly improve proton conductivity by doping phosphoric acid, and to prevent leakage of an acid doped by an added metal. It is also possible to provide a fuel cell electrolyte membrane having excellent performance.
  • 1 is a graph showing the thermal stability of the fuel cell composite electrolyte membrane according to the present invention.
  • Figure 2 shows the proton conductivity for Example 1, Comparative Examples 1 and 2 and Nafion It is a graph.
  • 3 is a graph showing the results of measuring the proton conductivity of the electrolyte membrane while increasing the amount of A1-MCM-41 (13 ⁇ 4>, 3%, 53 ⁇ 4).
  • FIG. 4 is a SEM photograph of the porous structure A1-MCM-41 according to the present invention.
  • FIG. 5 is a schematic diagram showing a process of forming a porous structure according to the present invention.
  • FIG. 6 is a graph showing the results of measuring the conductance over time with respect to the electrolyte membrane including the aluminum grafted porous structure according to the present invention with respect to the selenium membrane purchased commercially.
  • Yonsei C1-110-075-012 and Yonsei C1-150-075-006 are A1-MCM—41-ol complexed membranes with selenium, each having a thickness of 110 and 150 ji and an A1-MCM-41 content, respectively. It means 12% by weight and 6% by weight of the total weight of the membrane, the parenthesis indicates that the phosphoric acid doped for 3 days and 14 days, respectively.
  • 2,5-PBI and Nafion represent uncomplexed membranes.
  • the switch is turned on and off, and the operating temperature is changed, it can be seen that the operating performance of the electrolyte membrane is excellent.
  • FIG. 7 is a graph showing the results of measuring the conductance over time for the electrolyte membrane including the aluminum grafted porous structure according to the present invention for the 2,5-PBI membrane.
  • Yonsei PB 1-025-078-134-005 and Yonsei PB I-025-080-002-005 are 2,5-PBI composited with Al-MCM-41, each having a thickness of 78 j «m and 80, meaning that the A1-MCM-41 content is all 5% by weight based on the total weight of the membrane.
  • 2,5-PBI and Nafion represent uncomplexed membranes.
  • FIG. 8 is a graph showing the results of measuring the conductance over time for the electrolyte membrane including the aluminum grafted porous structure according to the present invention with respect to the blend of saleni and 2,5-PBI membrane.
  • Yonsei C1PBI-0505-040—075-012 and Yonsei C1PBI-0703-045-075-012 are membranes that combine A1-MCM-41 in a blend of salenis and 2 ⁇ 5-PBI.
  • 5-PBI means that the mixing ratio is 5: 5 and 7: 3 respectively, and the thicknesses are 40 / m and 45, respectively, and the A1-MCM—41 content is 12% by weight relative to the total weight of the membrane. Means that.
  • 2,5-PBI and Nafion represent uncomplexed membranes.
  • Complexation of a blend of salenis and 2,5-PBI and A1-MCM-41 first disperses the gastric porous matter in methanesulfonic acid ultrasonically, and then establishes a fixed ratio of selenium and 2,5-PBI powder. By content . It is preferable to manufacture a composite film by casting, in that the uniformity of blending and complexation can be greatly improved.
  • the composite electrolyte membrane for a fuel cell according to the present invention includes a polybenzimidazole-based polymer; And a metal grafted porous structure; wherein the composite electrolyte membrane doped with phosphoric acid has a content of the metal-containing porous structure of 0.1 to 30 wt% based on the polymer.
  • the content of the porous structure is less than 0.1% by weight, the effect of addition is weak and when the content exceeds 30% by weight 3 ⁇ 4> there is a fear that the brittleness of the electrolyte membrane increases.
  • a porous structure is introduced into the electrolyte membrane, thereby increasing the surface area of the electrolyte membrane, thereby increasing the amount of doped phosphoric acid. Increasing the acid doped also increases the proton conductivity.
  • the polymer is polybenzimidazole (PBI), poly(2-benzimidazole), poly(2-phenyl)-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-phenyl-N-N-N-phenyl
  • polybenzimidazole-based polymers have a high glass transition temperature, the polybenzimidazole-based polymer can be applied at high temperatures, and is useful because a film having excellent thermal and mechanical stability can be obtained.
  • Polymers in acid / polymer systems act as matrices that are highly basic to dissolve and complex in the acid, ie to retain excess acid, and on the other hand are needed to obtain high conductivity.
  • polybenzimidazole-based polymer that can be used in the present invention.
  • At least one selected from the group consisting of aluminum, copper, iron, nickel contained in the porous structure At least one selected from the group consisting of aluminum, copper, iron, nickel contained in the porous structure.
  • Metals such as aluminum have an affinity with acids, which has the effect of reducing the leakage of acid that has been doped into the electrolyte membrane over time.
  • the size of the porous structure containing the metal is 900 nm or less, because when the size exceeds 900 nra, the dispersibility of the porous structure with respect to the polymer This is because it is degraded.
  • the porous structure has a pore shape close to a spherical shape because the spherical shape can induce maximum surface area at a small size and increase the content of phosphoric acid.
  • MCM-41 is one of MCM (Mobile Crystalline Material) developed by Mobil Corporation in USA and has a structure that uniformly sized pores having a certain size are formed in a hexagonal arrangement, that is, in a honeycomb shape. . MCM-41 is known to be manufactured through the liquid crystal mold route according to the recent research results.
  • the surfactant forms a liquid crystal structure in an aqueous solution
  • the silicate ions surround it
  • a conjugate of the surfactant and MCM-41 is formed through a hydrothermal react ion
  • the surfactant is 500 to 600 ° C.
  • MCM-41 can be obtained by calcination at the temperature of. At this time, if the manufacturing conditions are changed by changing the type of surfactant or adding other organic materials, the pore size can be changed from 1.6 to !! Onm. MCM-41 is the most preferable reason in the present invention because the porosity is as high as about 80%, thereby increasing the content of phosphoric acid. On the other hand, the present invention is characterized in that not using a porous structure itself, such as MCM-41, but to prepare and use a metal-grafted porous structure by adding a metal chloride during synthesis of such a porous structure.
  • An example of the metal grafted porous structure in the present invention may be A1 grafted MCM-41, which is hereinafter referred to as A1-MCM-41.
  • the grafted A1 means that A1 is inserted and bonded between silicon and oxygen during the manufacture of the porous structure, and in the case of MCM-41, a hexagonal uniform channel Since the walls are composed of Si0 2 (silica), the chemical structures are completely different.
  • a method of manufacturing a composite electrolyte membrane for a fuel cell according to the present invention includes forming a metal graft porous structure; Mixing the metal grafted porous structure with a polymer solution to form a composite membrane; And imparting ion conductivity by doping the composite membrane with phosphoric acid.
  • the metal grafted porous structure is formed by a sol-gel process, and alkyl trimethylammonium halide, metal chloride, tetraethylorthosilicate, and the like, which are a kind of surfactant, are used.
  • the metal grafted porous structure comprises the steps of adding a metal chloride to the aqueous solution of alkyl trimethylammonium halide; Adding ammonia water to the mixture and stirring; Adding tetraethylorthosilicate dropwise to the mixture followed by stirring; And by washing the reaction mixture, drying and baking to obtain a powder; can be prepared by.
  • alkyltrimethylammonium halides usable in the preparation of the metal grafted porous structure include nucleodecyltrimethylammonium bromide, dodecyltrimethylammonium bromide, tetradecylmethylammonium bromide, octadecyltrimethylammonium bromide, cetyltrimethylammonium chloride. At least one selected from the group consisting of myristyl trimethylammonium chloride, decyltrimethylammonium bromide, octyltrimethylammonium bromide, and nucleosilmethylmethylammonium bromide.
  • the metal which can be grafted in the metal grafted porous structure is a compound which may exist in the form of metal ion when hydrated, for example, metal such as aluminum chloride, copper chloride, nickel chloride, iron chloride, etc. Chloride can be used.
  • the addition amount of the metal chloride is preferably added so that the molar ratio of the metal ion is 1 to 30 mol% based on the total solution, when the mol% is less than 1 mol%, the amount of grafted metal is too small to phosphoric acid When the ability to retain ions decreases and exceeds 30 mol%, there is a risk of poor formation or collapse in the structure of the porous structure.
  • the firing step is preferably performed at a temperature of 300 ⁇ 800 ° C.
  • Phosphoric acid can form three-dimensional hydrogen bond networks and can serve as an excellent proton conducting medium. Also pure phosphate at 30 ° C It has a conductivity of 0.53 S / cm, which is known to originate from the expanded self-ionization of phosphoric acid.
  • phosphoric acid is subjected to an automatic dehydration process in addition to a self-dissociation process. If water is supplied, dehydration is reversible at low temperatures.
  • phosphoric acid can conduct protons by forming a polyphosphate network at high temperatures with low relative humidity.
  • the proton conductivity of the benzimidazole type polyimide electrolyte membrane can be increased by doping with phosphoric acid, which tends to form salts with base sites in the polymer.
  • the fuel cell manufactured by employing the composite electrolyte membrane prepared according to the present invention has improved performance.
  • Example 1- Preparation of 2.5-polybenzimidazole (2.5-? 81)
  • the powder obtained after the calcination process is A1-MCM-41 as the metal graft-tang porous structure.
  • 4 shows A ⁇ prepared according to the present invention. SEM image of MCM-41 is shown, Figure 5 shows the results of the formation of the porous structure according to the present invention.
  • Example 1- (3) A composite membrane in which a metal grafted porous structure and a polymer were mixed
  • the polymer solution is prepared by dissolving 2,5-polybenzimidazole prepared in Example 1 in methanesulfonic acid.
  • A1-MCM—41 a metal-grafted porous structure obtained in Example 2, was added to the polymer solution at a weight ratio of 1 wt%, 3 wt%, and 5 wt%.
  • Ultrasonic energy was applied for uniform mixing after the addition, and the mixture was stirred well.
  • the resultant viscous 2,5-polybenzimidazole solution was spin-coated onto the glass plate according to the content of the porous structure, respectively, at 80 ° C. 1 hour, 1 hour at 100 ° C, 1 hour at 120 ° C and 2 hours at 160 ° C was added to cure.
  • the resulting film was immersed in deionized water for 10 minutes and then the film was peeled off from the glass plate.
  • phosphoric acid doping of the composite membrane is performed.
  • the process of phosphate doping allows the composite membrane to contain phosphoric acid evenly by dipping the membrane of the prepared composite into the phosphate solution.
  • the composite membrane was usually immersed in phosphate solution for about 72 hours, and the concentration of phosphate solution was 85% by weight.
  • Phosphoric acid doped electrolyte membrane was prepared in the same manner as in Example 1 except that only 2,5-PBI was used without using any porous structure.
  • a phosphoric acid doped electrolyte membrane was prepared in the same manner as in Example 1, except that MCM-41 was used as the porous structure.
  • the results of the TA meter showed a high thermal stability of more than 90% in the temperature range up to 350 ° C.
  • the efficiency of a fuel cell can be expressed as an output voltage that depends on the fuel cell charge density. Since the charge density of the fuel cell depends on the proton conductivity, a polymer having high proton conductivity is highly desirable as PEMFC.
  • Proton conductivity was measured using electrochemical impedance spectroscopy techniques in the frequency range of 100 kHz to 10 Hz.
  • the resistance of polybenzimidazoles doped with inorganic acids was measured using an Autolab impedance analyzer and proton conductivity sal.
  • Proton conductivity ⁇ is determined from the following equation.
  • d, Ls, WS, and R represent the distance of the electrode, the film thickness, the width of the film, and the resistance of polybenzimidazole, respectively.
  • Table 1 shows the proton conductivity of the composite electrolyte membrane doped with plybenzimidazole oleic acid including the inorganic porous structure according to the present invention:
  • Comparative Example 1 is a 2,5-PBI
  • FIG. 2 shows a graph comparing the proton conductivity of Example 1, Comparative Examples 1-2, and Nafion electrolyte membrane.
  • the proton conductivity of the electrolyte membrane (Example) to which 5% of A1-MCM-41 was added according to the present invention was about 200 times higher than that of the simple 2,5-polybenzimidazole electrolyte membrane (Comparative Example 1). Incense It can be confirmed that it is about 3 times better than the electrolyte membrane (Comparative Example 2) to which MCM-41 is added, and about 1.5 times better than that of commercial Nafion.
  • Figure 3 shows a graph showing the results of measuring the proton conductivity of the electrolyte membrane while increasing the amount of A ⁇ MCM-41 (13 ⁇ 4>, 3%, 5%), according to the metal according to the present invention It can be seen that the proton conductivity is also increased as the amount of the grafted porous structure is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 연료전지용 복합체 전해질막에 관한 것으로서, 폴리벤즈이미다졸 계 고분자; 및 금속 그래프팅 다공성 구조체를 포함하며, 인산으로 도핑된 연료전 지용 복합체 전해질막으로서, 상기 금속 함유 다공성 구조체의 함량은 상기 고분자 를 기준으로 0.1 내지 30 중량%인 것이 특징이며, 이에 따라 열적 특성 및 양성자 전도성이 우수한 연료전지 전해질막을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지 【기술분야】
본 발명은 연료전지용 복합체 전해질 막에 관한 것으로서, 더욱 상세하게는 열적 안정성 및 이온 전도성이 우수한 연료전지용 복합체 전해질 막, 이의 제조 방 법 및 이를 포함하는 연료전지에 관한 것이다.
【배경기술】
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너 지 전환 장치로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 차세대 에너지원으로 연구 개발되고 있다.
이중 고분자 전해질 연료전지 (polymer electrolyte membrane fuel cell, PEMFC)는 낮은 작동 온도, 고체 전해질 사용에 의한 누수 문제 배제, 빠른 구동 등 의 장점에 의해 휴대용, 차량용, 및 가정용 전원장치로 각광받고 있다. 또한 다른 형태의 연료전지에 비하여 전류밀도가 큰 고출력 연료전지일 뿐만 아니라, 구조가 간단하고, 빠른 시동과 응답 특성을 나타낸다. 또한 수소 이외의 메탄올이나 천연 가스를 연료로 사용할 수 있으며, 우수한 내구성을 갖는다. 게다가 높은 출력 밀도 로 소형화가 가능하기 때문에, 휴대용 연료전지로의 연구가 계속 진행되고 있다. 현재 사용되는 고체고분자 전해질 막으로는 다우막 (Dow), 나피온막 (DuPont), 플레미온 (Asahi 초자), 아시프렉스 (Asahi Kasei) 등을 들 수 있다. 이러한 고체고 분자 전해질 막들은 일반적으로 주사슬에 플루오르화 알킬렌을 가지고 있고, 플루 오르화비닐 에테르 측쇄의 말단에 술폰산기를 가지는 과플루오로설폰산 고분자 (perf luorosulfonic acid polymer)막을 사용하고 있다 (예: Nafion, Dupont사 제조 ). 이와 같은 플루오르계 고분자 전해질 막은 화학적 안정성이 높고, 수소이온 전 도성도 우수하지만, 플루오르 치환 공정이 복잡하기 때문에 제조 단가가 매우 높아 서 자동차용 연료전지에 적용하기에는 난점이 있으며, 수분의 함습량이 좋지 않기 때문에, 촉매의 피독을 방지하기 위해 100°C 이상의 고온운전을 하는 경우에는 수 분이 증발하여 이온전도도가 급격히 저하되고 전지의 운전이 정지되며, 유리전이온 도가 낮기 때문에 고온에서의 기계적 물성이 열악하다는 문제점이 있었다.
이러한 단점을 개선하기 위하여, 염기성 중합체에 강산을 도핑시킨 양성자 전도성 고분자막들이 개발되었는데, 이들은 폴리벤즈이미다졸 (PBI) 또는 폴리 (2,5- 벤즈이미다졸) 또는 폴리 (2,6-벤즈이미다졸) 등의 염기성 중합체를 인산 둥의 강산 으로 도핑시킨 후, 수분이 개재되지 않은 상태에서 상기 인산을 통한 그루트스 메 커니즘 (Grotthus mechanism)에 의해 전도성을 갖도록 하는 형태의 양성자 전도성 고분자막이다
상기 폴리벤즈이미다졸 및 폴리 (2, 5-벤즈이미다졸) 등의 장점은 나피온보다 가격이 저렴하며, 100°C 이상의 고온 무가습 조건에서 양성자를 전도시킬 수 있다 는 것이다. 천연가스, 가솔린 또는 메탄을 등으로부터 생성된 수소에는 여하한 경 우든지 미량의 일산화탄소가 잔류하게 되며, 수 ppm 이상의 일산화탄소는 백금 촉 매 표면에 흡착되어 연료의 산화 반웅을 방해하므로 연료전지의 성능을 급격히 저 하시키게 된다. 이러한 일산화탄소의 백금촉매에 대한 흡착반응은 발열반웅이므로 연료전지의 작동온도를 120 °C 이상으로 높이게 되면 일산화탄소에 의한 피독현상이 현저하게 줄어들며, 전지의 산화 /환원 반웅속도를 향상시킬 수 있어서, 전지의 효 율이 증가한다는 장점이 있다.
또한, 개질기 (reformer) 등을 사용할 경우 시스템 자체에서 열이 발생하게 되는데, 10CTC 이하의 온도에서 작동되는 연료전지의 경우에는 시스템의 과열방지 를 위해서 상기 발생되는 열을 제거해야 하기 때문에 추가적인 넁각장치가 필요한 데 반하여, 고은에서 작동되는 연료전지의 경우에는 이러한 열을 그대로 사용할 수 있으므로 부가적인 냉각장치 등을 필요로 하지 않는다는 장점도 있다.
그러나, PBI 또는 ABPBI 등의 염기성 중합체를 사용한 연료전지 시스템은 상 기와 같은 장점에도 불구하고, 인산 등이 상기 염기성 중합체에 영구적으로 결합되 어 있는 것이 아니라 전해질로서 존재하는 것에 불과하기 때문에, 수분이 존재하는 경우에는 상기 인산이 상기 고분자 막에서 용출되어 나을 수 있다는 치명적인 결점 이 있다. 특히, 연료전지의 작동시 캐소드 측에서는 반응산물로서 물이 생성되는 데, 연료전지의 작동온도가 100°C를 초과하는 때에는 상기에서 생성된 물은 대부분 기체확산 전극을 통해 증기로 빠져나가기 때문에 인산의 손실이 매우 적지만, 일부 구간에서 작동온도가 100°C 미만이 되거나, 높은 전류밀도에서 다량의 수분이 발생 하는 때에는 생성된 물이 즉시 제거되지 않기 때문에 상기 물에 의해 인산이 용출 되어 전지의 수명을 저하시키게 된다.
또한, 상기 ABPBI의 경우에는 인산의 농도를 증가시킬수록 기계적 물성이 열 악해지고, 상기 농도를 8OT로 증가시키게 되면 고분자 막이 녹아버리는 현상이 발 생하며, 사이클올 반복함에 따라 출력이 많이 저하된다는 문제점이 있었다.
따라서 성능이 우수하고, 열적 기계적 안정성이 높으면서, 고온에서도 작동 이 가능한 전해질 막의 개발이 요구되어 왔다. 【발명의 상세한 설명】
【기술적 과제】
<11> 본 발명이 해결하고자 하는 첫 번째 과제는 열적 안정성 및 이온전도성이 우 수한 연료전지용 복합체 전해질 막을 제공하는 것이다.
<12> 본 발명이 해결하고자 하는 두 번째 과제는 상기 연료전지용 복합체 전해질 막을 제조하는 방법을 제공하는 것이다.
<13> 본 발명이 해결하고자 하는 세 번째 과제는 상기 복합체 전해질막을 포함하 는 연료전지를 제공하는 것이다.
【기술적 해결방법】
<14> 상기 첫번째 과제를 해결하기 위하여 본 발명은 폴리벤즈이미다졸계 고분자;
및 금속 그래프팅 다공성 구조체를 포함하며, 인산으로 도핑된 연료전지용 복합체 전해질막으로서, 상기 금속 그래프팅 다공성 구조체의 함량은 상기 고분자를 기준 으로 0.1 내지 30 중량 %인 것을 특징으로 하는 연료전지용 복합체 전해질막을 제공 한다.
<15> 본 발명의 일실시예에 의하면, 상기 폴리벤즈이미다졸계 고분자는 폴리벤즈 이미다졸 (PBI), 폴리 (2,5-벤즈이미다졸 )(2,5-PBI), 폴리 (2,6—벤즈이미다졸 )(2,6— PBI) 및 ABPBI로 이루어진 군에서 선택된 어느 하나인 것이 바람직하다.
<16> 또한 본 발명의 다른 일실시예에 의하면, 상기 금속은 알루미늄, 구리, 철, 니켈로 이루어진 군으로부터 하나 이상 선택되는 것이 바람직하다.
<17> 본 발명의 다른 실시예에 의하면 상기 금속 그래프팅 다공성 구조체는 A1-
MCM-41인 것이 바람직하다.
<18> 또한 본 발명의 다른 일실시예에 의하면, 상기 금속올 함유한 다공성 구조체 의 크기는 900nm 이하인 것이 바람직하다.
<19> 상기 두 번째 과제를 해결하기 위하여, 본 발명은 금속 그래프팅 다공성 구 조체를 형성하는 단계; 상기 금속 그래프팅 다공성 구조체와 고분자 용액을 흔합하 여 복합체막을 형성하는 단계; 상기 복합체막을 인산으로 도핑시켜 이온전도성을 부여하는 단계;를 포함하는 연료전지용 복합체 전해질막의 제조 방법을 제공한다.
<20> 본 발명의 일실시예에 의하면, 상기 금속 그래프팅 다공성 구조체를 형성하 는 단계는ᅳ 할로겐화알킬트리메틸암모늄 수용액에 금속염화물을 첨가하는 단계; 상 기 흔합물에 암모니아수를 첨가하여 교반하는 단계 ; 상기 흔합물에 테트라에틸오르 소실리케이트를 적가한 후 교반하는 단계; 및 상기 반웅흔합물을 세척, 건조시킨 후 소성하여 분말을 얻는 단계;를 포함할 수 있다. <21> 또한 본 발명의 다른 일실시예에 의하면, 상기 할로겐화알킬트리메틸암모늄 은 예를 들어, 핵사데실트리메틸암모늄 브로마이드, 도데실트리메틸암모늄 브로마 이드, 테트라데실트리메틸암모늄 브로마이드, 옥타데실트리메틸암모늄 브로마이드, 세틸트리메틸암모늄 클로라이드, 미리스틸트리메틸암모늄 클로라이드, 데실트리메 틸암모늄 브로마이드, 옥틸트리메틸암모늄 브로마이드, 핵실트리메틸암모늄 브로마 이드로 이루어진 군으로부터 하나 이상 선택되는 것이 바람직하다 .
<22> 본 발명의 일실시예에 의하면, 상기 연료전지용 복합체 전해질막의 제조에 사용될 수 있는 고분자는 폴리벤즈이미다졸 (PBI), 폴리 (2,5-벤즈이미다졸 )(2,5- PBI), 폴리 (2,6-벤즈이미다졸 )(2,6-PBI) 및 ABPBI로 이루어진 군에서 선택된 어느 하나일 수 있다.
<23> 또한 본 발명의 다른 일실시예에 의하면, 상기 금속은 알루미늄, 구리, 철, 니켈로 이루어진 군으로부터 하나 이상 선택되는 것이 바람직하다.
<24> 또한 상기 금속 그래프팅 다공성 구조체는 A1-MCM-41인 것이 바람직하다.
<25> 또한 본 발명의 다른 일실시예에 의하면, 상기 금속을 함유한 다공성 구조체 의 크기는 900nm 이하인 것이 바람직하다.
<26> 본 발명의 다른 일실시예에 의하면, 상기 금속염화물의 첨가량은 금속이온의 몰비가 전체 용액을 기준으로 1 내지 30 몰%이 되도록 하는 것이 바람직하며, 상기 금속 그래프팅 다공성 구조체의 함량은 상기 폴리벤즈이미다졸계 고분자를 기준으 로 0.1 내지 30 중량 %인 것이 바람직하다.
<27> 또한 본 발명의 다른 일실시예에 의하면, 상기 소성 단계는 온도 300 ~ 800
°C 범위에서 수행되는 것이 바람직하다.
<28> 또한 상기 세 번째 과제를 해결하기 위하여, 본 발명은 상기 연료전지용 복 합체 전해질막을 채용하여 제조된 연료전지를 제공한다.
【유리한 효과】
<29> 본 발명은 금속을 함유하는 다공성 구조체를 고분자에 도입함으로써 전해질 막의 열적 특성을 향상시키고, 인산을 도핑시켜 양성자 전도성을 대폭 향상시킬 수 있으며, 첨가되는 금속에 의해 도핑되는 산의 누출이 방지되는 효과도 있어 성능이 매우 우수한 연료전지 전해질막을 제공할 수 있다.
【도면의 간단한 설명】
<30> 도 1은 본 발명에 따른 연료전지 복합체 전해질막의 열적 안정성을 보여주는 그래프이다.
<31> 도 2는 실시예 1, 비교예 1~2 및 나피온에 대한 양성자 전도성을 나타내는 그래프이다.
<32> 도 3은 A1-MCM-41의 첨가량 (1¾>, 3%, 5¾))을 증가시키면서 전해질막의 양성자 전도성을 측정한 결과를 나타내는 그래프이다.
<33> 도 4는 본 발명에 따른 다공성 구조체 (A1-MCM-41)의 SEM사진이다.
<34> 도 5는 본 발명에 따른 다공성 구조체의 형성과정을 보여주는 모식도이다.
<35> 도 6은 상용으로 구입한 셀레니스막에 대해서 본 발명에 따른 알루미늄 그래 프팅 다공성 구조체를 포함시킨 전해질막에 대해 시간에 따른 컨덕티비티를 측정한 결과를 보여주는 그래프이다. 여기서 Yonsei C1-110-075-012 및 Yonsei C1-150- 075-006는 셀레니스에 A1-MCM— 41올 복합화시킨 막으로서, 두께가 각각 110 과 150 j i이고, A1-MCM-41 함량이 각각 막 전체 중량에 대해서 12 중량 %와 6 중량 %인 것을 의미하며, 괄호 안의 표시는 각각 3일과 14일 동안 인산 도핑을 시켰음을 의 미한다. 또한, 2,5-PBI와 Nafion은 복합화되지 않은 막을 나타낸다. 여기서 스위치 를 on/off시킨 후에도, 그리고 작동온도가 변화됨에도 불구하고, 전해질막의 작동 성능이 우수하게 유지됨을 확인할 수 있다.
<36> 도 7은 2,5-PBI 막에 대해서 본 발명에 따른 알루미늄 그래프팅 다공성 구조 체를 포함시킨 전해질막에 대해 시간에 따른 컨덕티비티를 측정한 결과를 보여주는 그래프이다. 여기서 Yonsei PB 1-025-078- 134-005 및 Yonsei PB I -025-080-002-005 는 2,5-PBI에 Al-MCM-41을 복합화시킨 막으로서, 두께가 각각 78 j«m과 80 이고, A1-MCM-41 함량이 모두 막 전체 중량에 대해서 5 중량 %인 것을 의미한다. 또한, 2,5-PBI와 Nafion은 복합화되지 않은 막을 나타낸다.
<37> 도 8은 샐레니스와 2,5-PBI막의 블렌드에 대해서 본 발명에 따른 알루미늄 그래프팅 다공성 구조체를 포함시킨 전해질막에 대해 시간에 따른 컨덕티비티를 측 정한 결과를 보여주는 그래프이다. 여기서 Yonsei C1PBI-0505-040—075-012와 Yonsei C1PBI-0703-045-075-012는 샐레니스와 2ᅳ 5-PBI의 블렌드에 A1-MCM-41을 복 합화시킨 막으로서, 샐레니스와 2,5-PBI의 흔합비가 각각 5 :5와 7 :3인 것을 의미하 고, 두께가 각각 40 /m과 45 이고, A1-MCM— 41 함량이 모두 막 전체 중량에 대해 서 12 중량 %인 것을 의미한다. 또한, 2,5-PBI와 Nafion은 복합화되지 않은 막을 나 타낸다. 샐레니스와 2,5-PBI의 블렌드와 A1-MCM-41의 복합화는 먼저 위 다공성 물 질은 메탄술폰산에 초음파로 분산시키고, 정해진 비율의 셀레니스와 2,5-PBI 파우 더 흔합물을 정해진 함량만큼. 투입하여, 캐스팅에 의해 복합막을 제조하는 것이 블 렌딩과 복합화의 균일성을 크게 향상시킬 수 있다는 점에서 바람직하다.
【발명의 실시를 위한 형태】 <38> 본 발명에 따른 연료전지용 복합체 전해질막은 폴리벤즈이미다졸계 고분자; 및 금속 그래프팅 다공성 구조체;를 포함하며, 인산으로 도핑된 복합체 전해질막으 로서, 상기 금속을 함유한 다공성 구조체의 함량은 상기 고분자를 기준으로 0.1 내 지 30 중량 %이다. 상기 다공성 구조체의 함량이 0.1 중량 % 미만인 때에는 첨가효과 가 미약하고 30 중량 ¾>를 초과하는 때에는 전해질막의 취성이 증가할 염려가 있다.
<39> 본 발명에서는 전해질막에 다공성 구조체가 도입되는데, 이에 따라 전해질막 의 표면적이 넓어지는 효과를 나타내어 도핑되는 인산의 양을 증가시킬 수 있다. 또한 도핑되는 산의 증가는 양성자 전도성을 증가시켜 준다.
<40> 본 발명의 일실시예에 의하면, 상기 고분자는 폴리벤즈이미다졸 (PBI), 폴리
(2,5-벤즈이미다졸)(2,5-1 1), 폴리 (2,6—벤즈이미다졸)(2,6-?81) 및 ABPBI로 이루 어진 군에서 선택된 어느 하나인 것이 바람직하다. 폴리벤즈이미다졸계 고분자는 높은 유리 전이 온도를 갖기 때문에 고온에 적용할 수 있고, 열적, 기계적 안정성 이 우수한 막을 얻을 수 있어 유용하다. 산 /고분자 시스템에서 고분자는 산에 용해 되고 착화되기에 층분히 염기성인, 즉 과량의 산을 유지하는 매트릭스로서 역할을 하며, 다른 한편으로 높은 전도성올 얻는 데에 필요하다. 이하에는 본 발명에 사용 될 수 있는 폴리벤즈이미다졸계 고분자를 도시하였다.
<41>
Figure imgf000008_0001
<43>
<44> 또한 본 발명의 다른 일실시예에 의하면, 다공성 구조체에 함유되는 알루미 늄, 구리, 철, 니켈로 이루어진 군으로부터 하나 이상 선택되는 것이 바람직하다. 알루미늄 등의 금속은 산과 친화력이 있어서 시간이 흐름에 따라 전해질막에 도핑 이 되었던 산의 누출을 감소시켜주는 효과를 주게 된다.
<45> 또한 본 발명의 다른 일실시예에 의하면, 상기 금속을 함유한 다공성 구조체 의 크기는 900nm 이하인 것이 바람직한데, 그 이유는 크기가 900nra를 초과하는 경 우 고분자에 대한 다공성 구조체의 분산성이 저하되기 때문이다. 또한 상기 다공성 구조체는 기공의 형상이 구형에 가까운 것이 바람직한데 그 이유로는 구형의 경우 에 작은 크기에 최대의 표면적을 유도할 수 있으며 인산의 함유량을 높일 수 있기 때문이다.
<46> 일반적으로 다공성 물질 중에서 균일한 크기의 기공이 균일하게 배열된 물질 을 분자체 (molecular sieve)라고 한다. 미국의 모빌사에서 개발된 MCM(Mobile Crystalline Material) 중 MCM-41은 실리카 판 위에 일정한 크기를 갖는 일직선 모 양의 기공이 육각형 배열, 즉 벌집모양으로 균일하게 채널을 형성하고 있는 구조를 갖는 물질이다. MCM-41은 최근까지의 연구 결과에 의하면 액정 주형 경로를 통하여 제조된다고 알려져 있다. 즉, 계면 활성제가 수용액 내에서 액정구조를 형성하고 이 주위를 규산염 이온이 둘러싸면서 수열 반응 (hydrothermal react ion)올 통해 계 면활성제와 MCM-41의 접합체가 형성되고 계면활성제를 500~600°C의 온도에서 소성 처리하여 제거하게 되면 MCM-41을 얻을 수 있다. 이때 계면활성제의 종류를 변화시 키거나 다른 유기 물질을 넣어주는 등 제조 조건을 변화시키게 되면 기공 크기를 1.6〜: !Onm까지 변화시킬 수 있다. 본 발명에서 MCM-41이 가장 바람직한 이유는 기 공도가 약 80%에 이를 정도로 높으며 이에 따라 인산의 함유량을 증가시킬 수 있기 때문이다. 한편, 본 발명은 이러한 MCM-41과 같은 다공성 구조체 자체를 사용하는 것이 아니라 이러한 다공성 구조체의 합성시에 금속염화물을 첨가함으로써 금속이 그래프팅된 다공성 구조체를 제조하여 사용한다는 것을 특징으로 한다. 종래의 다 공성 실리카, 제을라이트 또는 단순한 MCM(MCM-41 포함)만을 사용하는 경우에는 인 산이 기공 사이에 함침되기는 하지만 여전히 용출문제가 존재하는 반면, 금속 그래 프팅 다공성 구조체를 사용하게 되면 상기 기공내부의 벽에 그래프팅되어 있는 금 속원자와 인산간의 상호작용으로 인해 인산의 용출문제가 현저히 줄어들게 되며 이 로 인해 양성자 전도성을 대폭 향상시킬 수 있게 된다.
<47> 본 발명에서 금속 그래프팅 다공성 구조체의 예시로서 A1 그래프팅 MCM-41을 들 수 있는데 이는 이하에서는 A1-MCM-41로 나타낸다. 상기 A1이 그래프팅되었다 는 의미는 다공성 구조체의 제조시에 실리콘과 산소의 사이에 A1이 삽입되어 결합 을 하고 있는 구조라고 할 수 있으며, MCM-41의 경우는 육각형 모양의 균일한 채널 을 이루는 벽이 Si02(실리카)로 이루어져 있기 때문에 양자는 화학적 구조가 전혀 다르다.
<48> 한편 본 발명에 따른 연료전지용 복합체 전해질막의 제조 방법은 금속 그래 프팅 다공성 구조체를 형성하는 단계; 상기 금속 그래프팅 다공성 구조체와 고분자 용액올 흔합하여 복합체막을 형성하는 단계; 상기 복합체막을 인산으로 도핑시켜 이온전도성을 부여하는 단계;를 포함하는 것이 특징이다.
<49> 또한 본 발명에서 금속 그래프팅 다공성 구조체는 졸-겔 프로세스에 의해 이 루어지는데, 계면활성제의 일종인 할로겐화알킬트리메틸암모늄과 금속염화물, 테트 라에틸오르소실리케이트 등이 사용된다.
<50> 구체적으로, 상기 금속 그래프팅 다공성 구조체는 할로겐화알킬트리메틸암모 늄 수용액에 금속염화물을 첨가하는 단계; 상기 흔합물에 암모니아수를 첨가하여 교반하는 단계; 상기 혼합물에 테트라에틸오르소실리케이트를 적가한 후 교반하는 단계; 및 상기 반응혼합물을 세척, 건조시킨 후 소성하여 분말을 얻는 단계;에 의 해 제조할 수 있다.
<51> 상기 금속 그래프팅 다공성 구조체의 제조에서 사용가능한 할로겐화알킬트리 메틸암모늄으로는 핵사데실트리메틸암모늄 브로마이드, 도데실트리메틸암모늄 브로 마이드, 테트라데실메틸암모늄 브로마이드, 옥타데실트리메틸암모늄 브로마이드, 세틸트리메틸암모늄 클로라이드, 미리스틸트리메틸암모늄 클로라이드, 데실트리메 틸암모늄 브로마이드, 옥틸트리메틸암모늄 브로마이드, 핵실트리메틸암모늄 브로마 이드로 이루어진 군으로부터 하나 이상 선택할 수 있다.
<52> 본 발명에서 금속 그래프팅 다공성 구조체 내에 그래프팅될 수 있는 금속은 수화되었을 때에 금속이온형태로 존재할수 있는 화합물로서, 예를 들어, 염화알루 미늄, 염화구리, 염화니켈, 염화철 등의 금속염화물을 사용할 수 있다. 이때, 상기 금속염화물의 첨가량은 금속이온의 몰비가 전체 용액을 기준으로 1 내지 30 몰%가 되도록 첨가하는 것이 바람직하며, 상기 몰%가 1몰% 미만인 때에는 그래프팅된 금 속의 양이 너무 적어서 인산을 보유하는 능력이 떨어지고 30 몰 %를 초과하는 때에 는 다공성 구조체의 구조에 제대로 형성되지 않거나 무너질 염려가 있다.
<53> 또한 다공성 구조체 제조 과정에서, 소성 단계는 온도 300 ~ 800 °C 범위에서 수행되는 것이 바람직하다.
<54> 한편 본 발명에서는 폴리벤즈이미다졸 계 전해질 막의 전도성을 개선하기 위 해 인산으로 도핑을 수행한다. 인산은 3차원 수소결합 네트워크를 형성할 수 있고, 우수한 양성자 전도성 매질 역할을 할 수 있다. 또한 순수한 인산은 30 °C에서 0.53 S/cm의 전도성을 가지는데, 이러한 수치는 인산의 확대된 자기이온화 (extensive self-ionization)으로부터 비롯된 것이라고 알려져 있다.
<55> 또한 고온에서 인산은 자가해리 공정에 부가하여 자동탈수 공정을 수행하는 데, 물이 공급된다면 탈수는 저온에서 가역적이다. 따라서 인산은 낮은 상대 습도 를 갖는 고온에서 폴리인산 네트워크를 형성함으로써 양성자를 전도시킬 수 있다. 벤즈이미다졸형 폴리이미드 전해질 막의 양성자 전도성은 폴리머에서의 염기 부위 와 염을 형성하는 경향이 있는 인산으로 도핑됨으로써 증가될 수 있다.
<56> 따라서 본 발명에 따라 제조된 복합체 전해질막을 채용하여 제조된 연료전지 는 성능이 향상된다.
<57>
<58> 이하, 바람직한 실시예를 ί「어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명올 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위 가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명 할 것이다.
<59> 실시예 1 '
<60> 실시예 1-(1): 2.5-폴리벤즈이미다졸(2.5-?81)의 제조
<6i> 3구 플라스크에 폴리인산 (PPA) 100g을 넣고, 3.3-디아미노벤지딘 0.01 η)1과
2,5-피리딘디카르복실산 0.01 nral을 첨가한 다음, 환류 응축기를 이용하여 질소 분 위기내에서 천천히 220°C까지 가열하여 30시간 동안 반웅시킨 후에 탈이온수에 붓 고 침전물을 여과시켰다. 1M의 K0H 용액을 만들어서 여과물을 적정시킨 후, 적정된 여과물을 탈이온수로 세척을 하고 다시 여과하여 건조시켰다. 수율은 63%이었다.
<62>
<63> 실시예 1ᅳ(2): 금속 그래프팅 다공성 구조체의 제조
<64> 먼저 핵사데실트리메틸암모늄 브로마이드 (Hexadecyltrimethylammonium bromide) 2.5g을 물 90g과 에탄을 60g에 녹였다. 그 후에 금속이온으로서, 염화알 루미늄 lg을 첨가했다. 그 다음 16.9g의 25wt%의 암모니아수를 첨가하고, 1분여동 안 교반시켰다. 그 후에 4.7g의 테트라에틸오르소실리케이트 (TE0S: Tetra-Ethyl- Ortho-Silicate)를 한방울씩 천천히 적가했다. TE0S 첨가가 완료된 후에 2시간 정 도 더 교반시킨 다음 물로 3~4번을 세척하고, 60°C에서 진공건조시켰다. 진공건조 후 얻은 분말에서 템플릿 (Template)을 제거하기 위해 분당 2°C씩 을려주는 조건으 로 섭씨 540°C에서 5시간 정도 소성시켰다. 상기 소성과정 후 얻어진 분말이 금속 그래프탕 다공성 구조체로서 A1-MCM-41이다. 도 4에는 본 발명에 따라 제조된 A卜 MCM-41의 SEM사진이 도시되어 있으며 , 도 5는 본 발명에 따른 다공성 구조체의 형 성과정을 보여준다.
<65>
<66> 심시예 1-(3): 금속 그래프팅 다공성 구조체와 고분자가 혼합된 복합체 막의
제조
<67> 복합체 막을 제조하기 위하여 상기 실시예 1에서 제조한 2, 5-폴리벤즈 이미 다졸을 메탄술폰산에 녹여 고분자 용액을 제조한다. 상기 고분자 용액에 상기 실시 예 2에서 얻은 금속 그래프팅 다공성 구조체인 A1-MCM— 41을 무게비율로 lwt%, 3wt%, 5wt% 로 첨가했다. 첨가 후 균일한 흔합을 위해서 초음파에너지를 가해주고, 층분히 교반시킨 다음, 생성된 점성의 2, 5-폴리벤즈이미다졸 용액을 다공성 구조체 의 함유량 별로 각기 유리판상에 스핀코팅하고, 80°C에서 1시간, 100°C에서 1시간, 120°C에서 1시간 160°C에서 2시간 열을 가하여 경화하였다. 생성된 막을 10분동안 탈이온수에 담그고, 이어서 유리판으로부터 필름을 박리하였다.
<68>
<69> 심시예 1-(4): 복합체 막의 인산도핑
<70> 상기 실시예 3에서 제조된 복합체의 막에 이온전도성능을 부여하기 위하여 복합체 막의 인산도핑의 과정을 거친다. 인산도핑의 과정은 제조된 복합체의 막을 인산용액에 층분히 담금으로써 복합체 막이 인산을 층분히 포함할 수 있게 한다. 보통 72시간 정도 복합체 막을 인산용액에 담그며, 인산 용액의 농도는 무게 비율 로 85 % 로 물에 녹아있는 인산용액을 사용하였다.
<71>
<72> 비교예 1
<73> 다공성 구조체를 전혀 사용하지 않은 채 2,5-PBI만을 사용한 것을 제외하고 는 상기 실시예 1과 동일한 방법으로 인산 도핑된 전해질 막을 제조하였다.
<74>
<75> 비교예 2
<76> 다공성 구조체로서 MCM-41을 사용한 것을 제외하고는 상기 실시예 1과 동일 한 방법으로 인산 도핑된 전해질 막을 제조하였다.
<77>
<78> 실험예 1: 염적 안정성 측정 결과
<79> 본 발명에 따라 무기 다공성 구조체를 함유하는 2,5-PBI 막의 열적 안정성은
N2 대기중의 가열속도 10°C/분에서의 열중량 분석기 (TA instrument, Q-50)으로부터 얻을 수 있었다.
<80> 도 1에서 확인할 수 있는 바와 같이, TA 측정기의 결과 350°C까지의 온도 범 위 내에서 90% 이상의 높은 열적 안정성을 보여주었다.
<81>
<82> 실험예 2: 양성자의 저도성 측정 결과
<83> 연료전지의 효율성은 연료전지 전하 밀도에 의존하는 출력 전압으로 나타낼 수 있다. 연료전지의 전하 밀도는 양성자 전도성에 의존하므로 높은 양성자 전도성 을 갖는 폴리머가 PEMFC로서 매우 바람직하다.
<84> 양성자 전도성은 100 kHz 내지 10 Hz의 주파수 범위에서 전기화학적 임피던 스 스펙트로스코피 테크닉을 이용하여 측정하였다. 무기산으로 도핑된 폴리벤즈이 미다졸의 저항은 Autolab 임피던스 분석기 및 양성자 도전율 샐을 이용하여 측정하 였다. 양성자 도전율 σ는 하기의 수학식으로부터 결정된다.
<85> 【수학식 1】
Figure imgf000013_0001
<86>
<87>
<88> 상기 식에서, d, Ls, WS, 및 R은 각각 전극의 거리, 필름 두께, 필름의 폭 및 폴리벤즈이미다졸의 저항을 나타낸다.
<89> 하기 표 1은 본 발명에 따른 무기 다공성 구조체를 포함한 플리벤즈이미다졸 올 산으로 도핑시킨 복합체 전해질막의 양성자 전도성을 나타낸다:
<90> 【표 1】
Figure imgf000013_0002
비교예 1은 2,5-PBI로서, 도 2에는 실시예 1, 비교예 1~2 및 나피온 전해질 막의 양성자 전도성을 비교하여 나타낸 그래프가 도시되어 있다. 이에 따르면 본 발명에 따라 A1-MCM-41을 5% 첨가한 전해질막 (실시예)의 양성자 전도성이 단순한 2, 5-폴리벤즈이미다졸 전해질막 (비교예 1)의 경우보다 고은에서 약 200배 까지 향 상되며 MCM-41을 첨가한 전해질막 (비교예 2)에 비해서도 약 3배 가량 우수하고 상 용 나피온의 경우보다도 1.5배 가량 우수하여 획기적인 특성을 보인다는 것올 확인 할 수 있다.
<93> 또한 도 3에는 A卜 MCM-41의 첨가량을 증가 (1¾>, 3%, 5%)시키면서 전해질막의 양성자 전도성을 측정한 결과를 나타낸 그래프가 도시되어 있는데, 이에 따르면 본 발명에 따른 금속 그래프팅 다공성 구조체의 첨가량이 증가할수록 양성자 전도성도 상승됨을 알 수 있다.

Claims

【청구의 범위】
【청구항 11
폴리벤즈이미다졸계 고분자; 및 금속 그래프팅 다공성 구조체를 포함하며, 인산으로 도핑된 연료전지용 복합체 전해질막으로서,
상기 금속 그래프팅 다공성 구조체의 함량은 상기 고분자를 기준으로 0.1 내 지 30중량 %인 것을 특징으로 하는 연료전지용 복합체 전해질막.
【청구항 2]
제 1항에 있어서,
상기 폴리벤즈이미다졸계 고분자는 폴리벤즈이미다졸 (PBI), 폴리 (2 ,5-벤즈이 미다졸 )(2,5-PBI), 폴리 (2,6-벤즈이미다졸 )(2,6-PBI) 및 ABPBI로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 연료전지용 복합체 전해질막.
【청구항 3]
제 1항에 있어서,
상기 금속은 알루미늄, 구리 , 철, 니켈로 이루어진 군으로부터 하나 이상 선 택되는 것을 특징으로 하는 연료전지용 복합체 전해질막.
【청구항 4]
제 1항에 있어서,
상기 금속 그래프팅 다공성 구조체는 A1-MCM-41인 것을 특징으로 하는 연료 전지용 복합체 전해질막.
【청구항 5】
제 1항에 있어서,
상기 금속 그래프팅 다공성 구조체의 크기는 900nm 이하인 것올 특징으로 하 는 연료전지용 복합체 전해질막.
【청구항 6】
금속 그래프팅 다공성 구조체를 형성하는 단계;
상기 금속 그래프팅 다공성 구조체와 폴리벤즈이미다졸계 고분자 용액을 흔 합하여 복합체막을 형성하는 단계;
상기 복합체막을 인산으로 도핑시켜 이온전도성을 부여하는 단계;를 포함하 는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 7】
제 6항에 있어서,
상기 금속 그래프팅 다공성 구조체를 형성하는 단계는 할로겐화알킬트리메틸암모늄 수용액에 금속염화물을 첨가하는 단계;
상기 흔합물에 암모니아수를 첨가하여 교반하는 단계 ;
상기 흔합물에 테트라에틸오르소실리케이트를 적가한 후 교반하는 단계 ; 및 상기 반웅혼합물을 세척, 건조시킨 후 소성하여 분말을 얻는 단계;를 포함하 는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 8】
제 7항에 있어서,
상기 할로겐화알킬트리메틸암모늄은 핵사데실트리메틸암모늄 브로마이드, 도 데실트리메틸암모늄 브로마이드, 테트라데실메틸암모늄 브로마이드, 옥타데실트리 메틸암모늄 브로마이드, 세틸트리메틸암모늄 클로라이드, 미리스틸트리메틸암모늄 클로라이드, 데실트리메틸암모늄 브로마이드, 옥틸트리메틸암모늄 브로마이드 및 핵실트리메틸암모늄 브로마이드로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 9】
저】 6항에 있어서,
상기 폴리벤즈이미다졸계 고분자는 폴리벤즈이미다졸 (PBI), 폴리 (2, 5-벤즈이 미다졸 )(2,5-PBI), 폴리 (2,6-벤즈이미다졸)(2,6-1 1) 및 ABPBI로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 10】
제 6항에 있어서,
상기 금속은 알루미늄, 구리, 철, 니켈로 이루어진 군으로부터 하나 이상 선 택되는 것을 특징으로 하는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 111
제 6항에 있어서,
상기 금속 그래프팅 다공성 구조체는 A1-MCM-41인 것을 특징으로 하는 연료 전지용 복합체 전해질막의 제조 방법.
【청구항 12】
겨 16항에 있어서,
상기 금속 그래프팅 다공성 구조체의 크기는 900nm 이하인 것을 특징으로 하 는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 13]
제 7항에 있어서, 상기 금속염화물의 첨가량은 금속이은의 몰비가 전체 용액을 기준으로 1 내 지 30 몰%인 것을 특징으로 하는 연료전지용 복합체 전해질막의 제조 방법 .
【청구항 14]
제 6항에 있어서,
상기 금속 그래프팅 다공성 구조체의 함량은 상기 폴리벤즈이미다졸계 고분 자를 기준으로 0.1 내지 30 중량 %인 것을 특징으로 하는 연료전지용 복합체 전해질 막의 제조 방법 .
【청구항 15]
제 7항에 있어서,
상기 소성 단계는 온도 300 ~ 800 °C 범위에서 수행되는 것을 특징으로 하는 연료전지용 복합체 전해질막의 제조 방법.
【청구항 16]
제 1항 내지 제 5항 중 어느 한 항에 따른 연료전지용 복합체 전해질막을 채용 하여 제조된 연료전지 .
PCT/KR2010/006794 2010-10-05 2010-10-05 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지 WO2012046889A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137006199A KR101441411B1 (ko) 2010-10-05 2010-10-05 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지
US13/877,398 US9368821B2 (en) 2010-10-05 2010-10-05 Composite electrolyte membrane for fuel cell, method for producing the electrolyte membrane and fuel cell including the electrolyte membrane
EP10858165.3A EP2626938A4 (en) 2010-10-05 2010-10-05 COMPLEX ELECTROLYTIC MEMBRANE FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL COMPRISING SAME
PCT/KR2010/006794 WO2012046889A1 (ko) 2010-10-05 2010-10-05 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/006794 WO2012046889A1 (ko) 2010-10-05 2010-10-05 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지

Publications (1)

Publication Number Publication Date
WO2012046889A1 true WO2012046889A1 (ko) 2012-04-12

Family

ID=45927873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006794 WO2012046889A1 (ko) 2010-10-05 2010-10-05 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지

Country Status (4)

Country Link
US (1) US9368821B2 (ko)
EP (1) EP2626938A4 (ko)
KR (1) KR101441411B1 (ko)
WO (1) WO2012046889A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064908A1 (ko) * 2013-10-29 2015-05-07 연세대학교 산학협력단 연료전지용 고분자 전해질막, 이의 제조방법 및 이를 포함하는 연료전지
CN105529485B (zh) * 2015-12-28 2018-01-02 湖北工程学院 一种碳纳米管负载杂多酸‑磺化聚醚醚酮质子交换膜的制备方法
KR101696797B1 (ko) * 2016-05-20 2017-01-16 서운학 케이블 피복 수지, 이를 이용한 동축 케이블 및 이의 피복 장치
WO2018163203A1 (en) * 2017-03-06 2018-09-13 Council Of Scientific And Industrial Research Porous polybenzimidazole as separator for lithium ion batteries
KR20240073280A (ko) 2022-11-17 2024-05-27 현대자동차주식회사 고온 및 무가습 조건 하에서 높은 이온 전도도를 갖는 벤지미다졸계 고분자 전해질막 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048129A1 (en) * 2002-08-13 2004-03-11 Taft Karl Milton Composite polymer electrolytes for proton exchange membrane fuel cells
EP1427044A2 (en) * 2002-11-15 2004-06-09 Celgard Inc. Proton exchange membrane (PEM) for a fuel cell
US20060148953A1 (en) * 2005-01-05 2006-07-06 Wenbin Hong Hydrophilic polymer-oxide-phosphoric acid compositions for proton conducting membranes
EP1796198A2 (en) * 2005-11-29 2007-06-13 Samsung SDI Co., Ltd. Polymer electrolyte membrane for fuel cell and fuel cell system including the same
US20070191499A1 (en) * 2005-12-01 2007-08-16 The Regents Of The University Of California Functionalized inorganic films for ion conduction

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229548B2 (en) * 1997-07-15 2007-06-12 Exxonmobil Research And Engineering Company Process for upgrading naphtha
BR0015178A (pt) * 1999-11-05 2002-06-18 Ici Plc Lìquidos iÈnicos imobilizados
CN100375741C (zh) * 2001-09-12 2008-03-19 旭化成化学株式会社 生产内酰胺的方法
US6733828B2 (en) * 2002-01-29 2004-05-11 Kuei-Jung Chao Method of fabricating nanostructured materials
US7754197B2 (en) * 2003-10-16 2010-07-13 Kimberly-Clark Worldwide, Inc. Method for reducing odor using coordinated polydentate compounds
US7488520B2 (en) * 2003-10-16 2009-02-10 Kimberly-Clark Worldwide, Inc. High surface area material blends for odor reduction, articles utilizing such blends and methods of using same
US7811693B2 (en) * 2004-05-13 2010-10-12 Toyota Motor Engineering & Manfacturing North America, Inc. Proton exchange membranes (PEM) based on hybrid inorganic-organic copolymers with grafted phosphoric acid groups and implanted metal cations
US20070244000A1 (en) * 2006-04-13 2007-10-18 Michel Molinier Producing olefin product from syngas
US7851557B2 (en) * 2006-06-20 2010-12-14 Lg Chem, Ltd. Organic/inorganic composite electrolyte membranes using zeolite and fuel cell comprising the same
KR100745741B1 (ko) * 2006-08-22 2007-08-02 삼성에스디아이 주식회사 연료전지용 막 전극 접합체 및 이를 채용한 연료전지
DE102007002515A1 (de) * 2007-01-17 2008-08-14 Volkswagen Ag Hybrid-Polymerelektrolytmembran und Membran-Elektroden-Einheit für Brennstoffzelle
US20080264254A1 (en) * 2007-04-11 2008-10-30 The Penn State Research Foundation Novel sorbents and purification and bulk separation of gas streams
FR2928492B1 (fr) * 2008-03-06 2011-10-21 Ceram Hyd Materiau pour un dispositif electrochimique.
DE102008002457A1 (de) * 2008-06-16 2009-12-17 Elcomax Membranes Gmbh Verwendung eines protonenleitfähigkeitverleihenden Materials bei der Herstellung von Brennstoffzellen
US20100089238A1 (en) * 2008-10-15 2010-04-15 Centre National De La Recherche Scientifique Method for Dissolving, Recovering and Treating a Gas, Installation for the Stocking of a Gas and Its Method of Manufacture
PT104812A (pt) * 2009-11-06 2011-05-06 Cuf Qu Micos Ind S A Reactor catal?tico de membrana com bombagem electroqu?mica de hidrog?nio ou de oxig?nio e suas aplica??es
GB0921451D0 (en) * 2009-12-08 2010-01-20 Univ St Andrews Membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048129A1 (en) * 2002-08-13 2004-03-11 Taft Karl Milton Composite polymer electrolytes for proton exchange membrane fuel cells
EP1427044A2 (en) * 2002-11-15 2004-06-09 Celgard Inc. Proton exchange membrane (PEM) for a fuel cell
US20060148953A1 (en) * 2005-01-05 2006-07-06 Wenbin Hong Hydrophilic polymer-oxide-phosphoric acid compositions for proton conducting membranes
EP1796198A2 (en) * 2005-11-29 2007-06-13 Samsung SDI Co., Ltd. Polymer electrolyte membrane for fuel cell and fuel cell system including the same
US20070191499A1 (en) * 2005-12-01 2007-08-16 The Regents Of The University Of California Functionalized inorganic films for ion conduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626938A4 *

Also Published As

Publication number Publication date
EP2626938A4 (en) 2016-11-16
EP2626938A1 (en) 2013-08-14
US20130236798A1 (en) 2013-09-12
US9368821B2 (en) 2016-06-14
KR101441411B1 (ko) 2014-09-24
KR20130069760A (ko) 2013-06-26

Similar Documents

Publication Publication Date Title
Geng et al. Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells
JP4416778B2 (ja) 燃料電池用スルホン化パーフルオロシクロブタン多価電解質膜
JP5101889B2 (ja) 分岐スルホン化マルチブロック共重合体及びこれを用いた電解質膜
KR100864165B1 (ko) 제올라이트를 이용한 유/무기 복합 전해질막 및 이를포함하는 연료전지
JP3737751B2 (ja) 燃料電池、それに用いる高分子電解質及びイオン交換性樹脂
Park et al. Composite membranes based on a sulfonated poly (arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs
TW201030066A (en) Anion-exchange membrane and method for producing same
JP2008504660A (ja) イオン交換膜を含む固体アルカリ型燃料電池
JP4508954B2 (ja) 固体高分子型燃料電池用膜−電極構造体
Salarizadeh et al. Enhanced properties of SPEEK with incorporating of PFSA and barium strontium titanate nanoparticles for application in DMFCs
WO2007007767A1 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
WO2012046889A1 (ko) 연료전지용 복합체 전해질 막, 이의 제조방법 및 이를 포함하는 연료전지
Amalorpavadoss et al. Synthesis and characterization of piperazine containing polyaspartimides blended polysulfone membranes for fuel cell applications
Li et al. In situ-doped sulfonated schiff-base networks in SPEEK composite membranes with enhanced proton conductivity
JP4896435B2 (ja) 固体高分子型燃料電池の電極用電解質
JP4534445B2 (ja) イオン伝導体とその製造方法、並びに電気化学デバイス
Huang et al. An in situ cross-linked vinylphosphonic acid-modified aminosilicon oxide gel electrolyte for proton exchange membrane fuel cells
JP2005093417A (ja) プロトン伝導性複合体とその製造方法、並びに電気化学デバイス
JP2004234931A (ja) ポリフェニレンサルファイドフィルムおよびその製造方法
JP2010238373A (ja) 高分子電解質膜、その製造方法、及びこれを用いた電極−膜接合体、固体高分子型燃料電池
JP2006185832A (ja) 複合固体高分子電解質膜
JP2007115426A (ja) 燃料電池用のプロトン伝導性電解質膜及びその製造方法並びに燃料電池
JP2006342244A (ja) 熱安定性改良プロトン伝導膜および該伝導膜形成用組成物
KR100600150B1 (ko) 나노 크기의 덴드리머가 함침된 복합 전해질막 및 이의 제조방법
Zhang et al. Development and Challenges of Electrode Ionomers Used in the Catalyst Layer of Proton-Exchange Membrane Fuel Cells: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137006199

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010858165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13877398

Country of ref document: US