WO2012046736A1 - Organic el device, and method for producing same - Google Patents

Organic el device, and method for producing same Download PDF

Info

Publication number
WO2012046736A1
WO2012046736A1 PCT/JP2011/072882 JP2011072882W WO2012046736A1 WO 2012046736 A1 WO2012046736 A1 WO 2012046736A1 JP 2011072882 W JP2011072882 W JP 2011072882W WO 2012046736 A1 WO2012046736 A1 WO 2012046736A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
organic
atoms
substituent
Prior art date
Application number
PCT/JP2011/072882
Other languages
French (fr)
Japanese (ja)
Inventor
小野 善伸
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012046736A1 publication Critical patent/WO2012046736A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to an organic EL device and a manufacturing method thereof.
  • An organic EL (Electro Luminescence) element has a structure in which a plurality of thin films are laminated. Flexibility can be imparted to the element itself by appropriately setting the thickness and material of each thin film.
  • the entire apparatus on which the organic EL element is mounted can be a flexible apparatus.
  • Organic EL elements deteriorate when exposed to the open air.
  • the electron injection layer that constitutes a part of the organic EL element often contains Li or Na that easily reacts with oxygen or moisture. Therefore, the electron injection layer is more easily deteriorated when exposed to the outside air. Therefore, the organic EL element is usually provided on a film having a high gas barrier property that hardly transmits oxygen or moisture.
  • a film having a high gas barrier property a film formed by forming a thin film made of an inorganic oxide such as silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide on a plastic substrate has been proposed.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a film having a high gas barrier property using such a film forming method for example, Japanese Patent Laid-Open No. 4-89236 (Patent Document 1) discloses a laminated vapor deposition formed by laminating two or more silicon oxide vapor deposited films. A film having a membrane layer is disclosed.
  • Patent Document 2 a film having ceramic-based inorganic barrier films and polymer films laminated alternately is disclosed in JP-T-2002-532850 (Patent Document 2).
  • Patent Document 1 has a problem that the gas barrier property is not always sufficient and the gas barrier property is lowered by being bent.
  • Patent Document 2 According to the film described in Patent Document 2, it is expected that the gas barrier property is improved and the decrease in the gas barrier property due to bending is suppressed. However, the film production process described in Patent Document 2 has a problem that it is complicated and requires a long production time.
  • An object of the present invention is to provide an organic EL element itself, in particular, an organic EL element in which an electron injection layer constituting a part thereof is not easily deteriorated, and a high gas barrier property, and the gas barrier property is hardly lowered even when the film is bent. And an organic EL device comprising a film that can be formed in a short time by a simple process.
  • the present invention relates to an organic EL device including a first film and an organic EL element provided on the first film.
  • the organic EL element has a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer disposed between the electrodes.
  • the electron injection layer includes an ionic polymer.
  • the first film has a gas barrier layer containing silicon (silicon atoms), oxygen (oxygen atoms) and carbon (carbon atoms), and the amount (number of silicon atoms) of the total amount of silicon atoms, oxygen atoms and carbon atoms.
  • Ratio atomic ratio of silicon
  • ratio (number of oxygen atoms) of oxygen atoms atomic ratio of oxygen
  • ratio (number of carbon atoms) of carbon atoms number of carbon atoms
  • thickness direction of the gas barrier layer A silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve representing the relationship between the distance from one surface of the gas barrier layer in the film thickness direction) and the following conditions: (I) In a region of 90% or more in the thickness direction (film thickness direction) of the gas barrier layer, the number of silicon atoms among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms Is the second largest value, (Ii) the carbon distribution curve has at least one extreme value; and (iii) the difference (absolute value) between the maximum value and the minimum value of the ratio ratio of the number of carbon atoms in the carbon distribution curve is 5 atomic% ( at%) or more, Meet.
  • the present invention also includes a step of forming an organic EL element having a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer including an ionic polymer disposed between the electrodes, silicon atoms, oxygen
  • the method of manufacturing an organic electroluminescent apparatus including the process of bonding a film and a said 2nd film.
  • the gas barrier layer includes a ratio of the number of silicon atoms, a ratio of the number of oxygen atoms, and a ratio of the number of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms, and the gas barrier layer in the thickness direction of the gas barrier layer.
  • a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve representing the relationship between the distance from one surface and the following conditions are as follows: (I) In the region of 90% or more in the thickness direction of the gas barrier layer, the ratio of the number of silicon atoms is the second among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms.
  • the carbon distribution curve has at least one extreme value; and (iii) the difference between the maximum value and the minimum value of the ratio ratio of the number of carbon atoms in the carbon distribution curve is 5 atomic% or more.
  • an organic EL device in which deterioration due to outside air is suppressed, and a high gas barrier property and a gas barrier property are lowered even when the film is bent.
  • An organic EL device including a film that is difficult and can be formed in a short time by a simple process can be realized.
  • the organic EL device includes a first film and an organic EL element provided on the first film.
  • the organic EL element has a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer disposed between the electrodes.
  • the electron injection layer includes an ionic polymer.
  • the first film has a gas barrier layer containing silicon atoms, oxygen atoms, and carbon atoms.
  • the organic EL device usually has a support substrate and an organic EL element provided on the support substrate.
  • the organic EL device may further include a sealing member that is bonded to the support substrate while an organic EL element is interposed between the organic EL device and the support substrate.
  • the first film of the organic EL device according to the present embodiment may be used as a support substrate on which an organic EL element is provided, or may be used as a sealing member bonded to the support substrate.
  • a second film is further provided as a support substrate and the first film is provided as a sealing member will be described.
  • Organic EL elements mounted on organic EL devices can be broadly classified into the following three types of elements. That is, the organic EL element is (I) a so-called bottom emission type element that emits light toward the support base on which the organic EL element is mounted, and (II) the light toward the side opposite to the support base.
  • the so-called top emission type element that emits light, and (III) is broadly divided into double-sided light emitting type elements that emit light toward the support substrate and emit light toward the opposite side of the support substrate Can do.
  • the organic EL element mounted on the organic EL device according to this embodiment may be any type of element.
  • an organic EL device provided with a top emission type element will be described with reference to FIG. 1, and then an organic EL device provided with a bottom emission type element will be described with reference to FIG. .
  • FIG. 1 is a cross-sectional view schematically showing an organic EL device according to an embodiment.
  • the organic EL element 2 is mounted on the second film 1.
  • the first film 11 is disposed on the second film 1 with the organic EL element 2 interposed therebetween, and seals the organic EL element 2 together with the second film 1.
  • the first film 11 and the second film 1 are bonded to each other through the adhesive layer 4.
  • the organic EL element 2 is covered with a protective layer 3 as necessary. By providing this protective layer 3, the organic EL element 2 can be protected from the adhesive layer 4.
  • the organic EL element 2 shown in FIG. 1 is a top emission type element and emits light toward the first film 11. Therefore, the first film 11 needs to be formed by a member that transmits light.
  • the second film 1 corresponding to the support substrate may be formed of an opaque member that does not transmit light.
  • the second film 1 a plastic film or a metal film can be used, and a metal film is preferable. Since the metal film has a higher gas barrier property than a plastic film or the like, the gas barrier property of the organic EL device can be improved.
  • the metal film for example, a thin plate of Al, Cu or Fe and a thin plate of an alloy such as stainless steel can be used.
  • the first film 11 has a gas barrier layer 5 containing silicon atoms, oxygen atoms and carbon atoms.
  • the 1st film 11 is comprised from the base material 6 and the gas barrier layer 5 provided on the main surface by the side of the organic EL element 2 of the base material 6.
  • FIG. The gas barrier layer 5 has high gas barrier properties by satisfying the conditions (i), (ii), and (iii) described later, and can further suppress a decrease in gas barrier properties when bent.
  • the organic EL element according to this embodiment includes an electron injection layer containing an ionic polymer.
  • the electron injection layer according to this embodiment includes an ionic polymer, the electron injection layer is less likely to be deteriorated by outside air than a conventional electron injection layer containing Li or Na.
  • the organic EL device according to the present embodiment is sealed with the first film 11 and the second film 1 having a high gas barrier property as described above, thereby realizing the organic EL device 13 that is not easily deteriorated by the outside air. be able to.
  • An organic EL device including an electron injection layer containing an ionic polymer is stable in the air, and therefore, the deterioration in the air proceeds very slowly. For this reason, it is not always necessary to form a protective film, which is essential in the conventional organic EL element, and the number of steps in manufacturing the organic EL element can be reduced.
  • the organic EL element according to the present embodiment is not easily deteriorated even if the process (conveying process and sealing process) until the sealing process is completed in the air, it is conventionally in a vacuum or an inert gas atmosphere.
  • the sealing process can be performed in the atmosphere where the sealing process has been performed. This eliminates the need for a large and complicated manufacturing apparatus that has conventionally been required to create a vacuum or inert gas atmosphere.
  • a large and complicated production for placing a large apparatus such as a continuous laminating apparatus in a vacuum atmosphere or an inert gas atmosphere. Equipment was previously required.
  • the organic EL device according to the present embodiment such a manufacturing facility is unnecessary, and the organic EL device can be manufactured with a very simple manufacturing facility.
  • FIG. 2 is a cross-sectional view schematically showing an organic EL device 13 according to another embodiment.
  • the organic EL device 13 shown in FIG. 2 differs from the embodiment shown in FIG. 1 in the organic EL element 2 and the second film 1.
  • the organic EL element 2 of the present embodiment is a bottom emission type element, and emits light toward the second film 1 corresponding to the support base material. Therefore, the 2nd film 1 needs to be a film which shows a light transmittance.
  • the second film 1 of the present embodiment is not particularly limited as long as it is a light-transmitting film, but contains silicon atoms, oxygen atoms, and carbon atoms in the same manner as the first film 11 from the viewpoint of gas barrier properties.
  • the second gas barrier layer 8 is preferably provided.
  • the second film 1 includes a base material 7 and a second gas barrier layer 8 provided on the main surface of the base material 7 on the organic EL element 2 side.
  • the second gas barrier layer 8 has a high gas barrier property and is further bent by satisfying conditions (i), (ii) and (iii) described later. It is possible to suppress a decrease in gas barrier property when
  • an organic EL device can be manufactured with a very simple manufacturing facility as in the above-described embodiment.
  • a double-sided light emitting organic EL element may be provided in place of the bottom emission organic EL element.
  • the organic EL element may be sealed with the first film and the second film using the second film as the sealing member and the first film having the gas barrier layer as the supporting substrate.
  • an additional film may be further bonded to the second film and / or the first film.
  • Additional films include a protective film that protects the surface of the organic EL device, an antireflection film that prevents reflection of external light incident on the organic EL device, a light extraction film that increases the light extraction efficiency, and a phase of light.
  • the additional film is bonded to one side or both sides of the second film and / or the first film.
  • FIG. 13 is a cross-sectional view showing an organic EL device according to another embodiment.
  • the organic EL element 2 is provided on the first film using the first film as a supporting base material.
  • the organic EL device does not include the second film.
  • the adhesive layer 4 is a layer that adheres the first film and the second film in a state where the organic EL element is disposed between them.
  • the adhesive used for the adhesive layer 4 preferably has a high gas barrier property.
  • the light transmittance of the adhesive layer 4 is preferably high. In this case, from the viewpoint of light extraction efficiency, the absolute value of the difference in refractive index between the layer in contact with the adhesive layer 4 and the adhesive layer 4 is preferably small.
  • a curable adhesive such as a thermosetting adhesive and a photocurable adhesive is suitable.
  • thermosetting resin adhesives examples include epoxy adhesives and acrylate adhesives.
  • the epoxy adhesive examples include an adhesive containing an epoxy compound selected from bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenoxy resin.
  • acrylate adhesive for example, a monomer as a main component selected from acrylic acid, methacrylic acid, ethyl acrylate, butyl acrylate, 2-hexyl acrylate, acrylamide, acrylonitrile, hydroxyl acrylate, and the like, and copolymerizable with the main component And an adhesive containing a simple monomer.
  • photo-curable adhesive examples include radical adhesives and cationic adhesives.
  • radical adhesives include adhesives containing epoxy acrylate, ester acrylate, ester acrylate, and the like.
  • cationic adhesives examples include adhesives containing epoxy resins, vinyl ether resins, and the like.
  • the protective layer is provided so as to cover the organic EL element. By providing this protective layer, the organic EL element can be protected from the adhesive layer.
  • the protective layer preferably has a function of blocking moisture and oxygen in the atmosphere and protecting the organic EL element from these until the organic EL element is sealed by the first film.
  • the material used for the protective layer examples include a metal material that is stable in the air, an inorganic insulating material having excellent barrier properties, and an organic insulating material.
  • the metal material is selected from, for example, Al, Cu, Ag, Au, Pt, Ti, Cr, Co, and Ni.
  • Inorganic insulating material for example, SiO 2, SiN, selected from SiOxNy and SiOxCy. Parylene or the like is used as the organic insulating material.
  • the protective layer formed from a metal material is formed by, for example, a vacuum deposition method, a sputtering method, or a plating method.
  • the protective layer formed from an inorganic insulating material is formed by, for example, a sputtering method, a CVD method, or a laser ablation method.
  • the protective layer formed of an organic insulating material is formed by, for example, a film forming method including vacuum vapor deposition of a monomer gas and polymerization on a vapor deposition film (coating surface) containing the monomer.
  • a second film 1 having an organic EL element formed on the main surface is prepared.
  • the second film 1 is one in which the organic EL element is formed on the main surface, wound into a roll together with the organic EL element, and temporarily stored in the wound state.
  • the wound second film 1 and the organic EL element are stored in, for example, a vacuum, an inert gas atmosphere, or an air atmosphere. Among these, it is preferable to store in an inert gas atmosphere or an air atmosphere, and it is more preferable to store in an air atmosphere.
  • the organic EL element according to the present embodiment is gradually deteriorated by the atmosphere, so that the wound second film 1 and the organic EL element can be stored in the atmosphere.
  • the device for producing the organic EL device is not complicated, and the organic EL device can be manufactured by a simple process.
  • a mode in which a film in which an organic EL element is formed in advance on the main surface of the second film 1 and the first film are bonded together will be described.
  • a film in which an organic EL element is formed in advance on the main surface of the first film may be bonded to the second film.
  • FIG. 3 is a diagram schematically showing an apparatus for manufacturing an organic EL device.
  • the second film 1 and the first film 11 are bonded together, and an additional film 820 is bonded to the first film 11.
  • An organic EL element is formed in advance on the second film 1.
  • the unwinding roll 500 sends out the 2nd film 1 in which the organic EL element was previously formed on it.
  • the unwinding roll 510 sends out the first film 11.
  • the adhesive agent is apply
  • the first film 11 and the second film 1 are passed between two rolls (first bonding rolls 511 and 512) in a state where the organic EL element is disposed therebetween.
  • the 1st film 11 supplied via the conveyance roll 513 and the 2nd film 1 are bonded together via the 1st adhesion layer, and also 1st adhesion is carried out by hardening device 611 for the 1st adhesion layer.
  • the layer is cured (solidified).
  • an adhesive is applied by a coating device 610 for the second adhesive layer provided downstream of the curing device 611, and a second adhesive layer is further formed.
  • the second bonding rolls 521 and 522 cause the first film 11 and the additional film 820 fed from the unwinding roll 520 and supplied via the transporting roll 523 to pass through the second adhesive layer.
  • the second adhesive layer is cured (solidified) by the curing device 621 for the second adhesive layer.
  • the formed organic EL device is wound up by a winding roll 530.
  • the above-described bonding step can be performed, for example, in a vacuum, in an inert gas atmosphere, or in an air atmosphere. Among these, an inert gas atmosphere or an air atmosphere is preferable, and an air atmosphere is more preferable. As described above, since the organic EL element according to the present embodiment is gradually deteriorated by the air, it is possible to perform the bonding step in the air atmosphere. When the bonding step is performed in the atmosphere in the air, the device for manufacturing the organic EL device is not complicated, and the organic EL device can be manufactured by a simple process.
  • the organic EL device formed by bonding the first film 11 and the second film 1 is taken up by a take-up roll 530.
  • the wound organic EL device is stored in, for example, a vacuum, an inert gas atmosphere, or an air atmosphere. Especially, it is preferable to store in an inert gas atmosphere or air atmosphere, and it is still more preferable to store in air atmosphere.
  • the organic EL element according to the present embodiment is gradually deteriorated by the atmosphere, and is wound by being wound by the first film 11 and the second film 1 having a high gas barrier property.
  • the organic EL device can be stored in the atmosphere. When the wound organic EL device is stored in the air, the device for producing the organic EL device is not complicated, and the organic EL device can be manufactured by a simple process.
  • the second film in which the organic EL element is formed on the main surface is temporarily wound and stored.
  • the present invention is not limited to this form, and the organic film is formed on the main surface of the second film.
  • the first film may be bonded without winding up the second film.
  • the additional film for example, the above-described film is used.
  • one additional film is bonded, but two or more additional films may be bonded sequentially.
  • the order of bonding is appropriately changed according to the stacking order of the organic EL devices.
  • the first film 11 Next, the first film 11 will be described.
  • One of the features of the organic EL device of the present embodiment is the first film, particularly the gas barrier layer 5 thereof.
  • the gas barrier layer 5 of the first film will be described first.
  • the first film has a gas barrier layer containing silicon atoms, oxygen atoms, and carbon atoms.
  • the ratio of the number of silicon atoms (the atomic ratio of silicon), the ratio of the number of oxygen atoms (the atomic ratio of oxygen) and the ratio of the number of carbon atoms (the atomic ratio of carbon to the total amount of silicon atoms, oxygen atoms and carbon atoms ) Is measured while changing the distance from one surface of the gas barrier layer in the thickness direction (film thickness direction) of the gas barrier layer, thereby expressing the relationship between the atomic ratio of each atom and the distance from the surface of the gas barrier layer.
  • a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve can be obtained.
  • These curves obtained from the gas barrier layer according to the present embodiment satisfy the following conditions (i), (ii), and (iii).
  • the silicon atomic ratio is the second largest value among the silicon atomic ratio, oxygen atomic ratio, and carbon atomic ratio.
  • the carbon distribution curve has at least one extreme value.
  • the difference (absolute value) between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 5 at% or more.
  • condition (i) means that the following formula (1) or the following formula (2) is satisfied in a region of 90% or more in the thickness direction of the gas barrier layer.
  • the gas barrier layer described above is usually formed on a substrate. That is, the first film includes a base material and a gas barrier layer formed on the base material. Examples of the base material of the first film include a colorless and transparent resin film or resin sheet.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefin; Resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; and Polyimide resin.
  • polyester-based resins and polyolefin-based resins are preferable, and PET and PEN are more preferable from the viewpoints of high heat resistance, low coefficient of linear expansion, and low manufacturing cost.
  • These resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the thickness of the base material of the first film can be appropriately set in consideration of the stability when the first film is manufactured.
  • the thickness of the substrate of the first film is preferably in the range of 5 to 500 ⁇ m from the viewpoint that the film can be conveyed even in a vacuum.
  • the thickness of the base material of the first film is more preferably 50 to 200 ⁇ m, More preferably, it is 50 to 100 ⁇ m.
  • the first film substrate prefferably to subject the first film substrate to a surface activation treatment for cleaning the surface from the viewpoint of adhesion to a gas barrier layer described later.
  • a surface activation treatment for cleaning the surface from the viewpoint of adhesion to a gas barrier layer described later.
  • Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
  • the gas barrier layer according to this embodiment is formed on at least one surface of the substrate.
  • the 1st film concerning this embodiment should just be provided with the gas barrier layer which contains a silicon atom, an oxygen atom, and a carbon atom, and satisfy
  • the first film may have another layer that does not satisfy at least one of the above conditions (i), (ii), and (iii).
  • the gas barrier layer or other layer may further contain nitrogen atoms, aluminum atoms, and the like.
  • the gas barrier property of the gas barrier layer is deteriorated. It is preferable that the region satisfying the above formula (1) or (2) occupies 90% or more of the thickness of the gas barrier layer. This ratio is more preferably 95% or more, and still more preferably 100%.
  • the carbon distribution curve needs to have at least one extreme value as the condition (ii).
  • the carbon distribution curve preferably has two extreme values, and more preferably has three or more extreme values.
  • the gas barrier property of the gas barrier layer decreases when the first film is bent.
  • the distance in the thickness direction between adjacent extreme values of the carbon distribution curve is preferably 200 nm or less, and more preferably 100 nm or less.
  • the extreme value means a maximum value or a minimum value in a distribution curve obtained by plotting an atomic ratio of an element with respect to a distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the maximum value is a point in the distribution curve where the value of the atomic ratio of the element changes from increasing to decreasing with the change in the distance from the surface of the gas barrier layer, and the atomic ratio value of the element at that point.
  • the atomic ratio of the element at the point where the value of the atomic ratio of the element at the position where the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer from this point is further changed by 20 nm is reduced by 3 at% or more.
  • the minimum value is a point where the value of the atomic ratio of the element changes from decreasing to increasing as the distance from the surface of the gas barrier layer changes, and compared with the value of the atomic ratio of the element at that point,
  • the atomic ratio of the element at the point where the value of the atomic ratio of the element at a position where the distance from the surface in the thickness direction of the gas barrier layer from the point is further changed by 20 nm further increases by 3 at% or more.
  • the gas barrier layer according to the present embodiment requires that the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 5 at% or more as the condition (iii).
  • the difference between the maximum value and the minimum value of the atomic ratio of carbon is more preferably 6 at% or more, and further preferably 7 at% or more. If the difference is less than 5 at%, the gas barrier property of the gas barrier layer is lowered when the first film is bent.
  • the upper limit of this difference is not particularly limited, but is usually about 30 at%.
  • the oxygen distribution curve of the gas barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values.
  • the oxygen distribution curve has an extreme value
  • the gas barrier property of the gas barrier layer tends to be less likely to be lowered when the first film is bent.
  • the oxygen distribution curve of the gas barrier layer has at least three extreme values
  • the difference in the distance from the surface of each is preferably 200 nm or less, and more preferably 100 nm or less.
  • the difference between the maximum value and the minimum value of the oxygen atomic ratio in the oxygen distribution curve of the gas barrier layer is preferably 5 at% or more, more preferably 6 at% or more, and even more preferably 7 at% or more.
  • the upper limit of this difference is not particularly limited, but is usually about 30 at%.
  • the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the gas barrier layer is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%. When this difference is less than the above upper limit, the gas barrier properties of the gas barrier layer tend to be particularly high.
  • Oxygen carbon distribution curve difference between maximum and minimum values Expresses the relationship between the distance from the surface of the gas barrier layer in the thickness direction and the ratio of the total amount of oxygen atoms and carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen and carbon)
  • the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon is preferably less than 5 at%, more preferably less than 4 at%, and more preferably less than 3 at%. Further preferred. When this difference is less than the above upper limit, the gas barrier properties of the gas barrier layer tend to be particularly high.
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve are obtained by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time generally correlates with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the “distance from one surface of the gas barrier layer in the thickness direction of the gas barrier layer” is the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement.
  • an argon (Ar +) rare gas ions sputter method using the adopted as an etching ion species the etching rate (etching rate) was 0.05 nm / sec ( It is preferable to set the value in terms of SiO 2 thermal oxide film.
  • the gas barrier layer is substantially uniform in the film surface direction (direction parallel to the main surface (surface) of the gas barrier layer).
  • the gas barrier layer is substantially uniform in the film surface direction
  • “the gas barrier layer is substantially uniform in the film surface direction” means that an oxygen distribution curve and a carbon distribution curve are measured at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement.
  • the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same, and the maximum value of the carbon atomic ratio in each carbon distribution curve The difference from the minimum value is the same as each other or the difference is within 5 at%.
  • the carbon distribution curve is preferably substantially continuous.
  • “the carbon distribution curve is substantially continuous” means that a portion in which the atomic ratio of carbon in the carbon distribution curve changes discontinuously is not included. Specifically, this is because the distance (x, unit: nm) from the surface of the gas barrier layer in the thickness direction calculated from the etching rate and etching time, and the atomic ratio of carbon (c, unit: at). %) In relation to the following formula (F1): ⁇ 1.0 ⁇ (dc / dx) ⁇ 1.0 (F1) It means that the condition represented by is satisfied.
  • the first film according to the present embodiment may include at least one gas barrier layer that satisfies all of the above conditions (i), (ii), and (iii), and the first film has the above condition (i).
  • (Ii) and (iii) may be provided with two or more gas barrier layers.
  • the materials of the plurality of gas barrier layers may be the same or different.
  • these gas barrier layers may be formed on one surface of the base material, and are formed on both surfaces of the base material, respectively. Also good.
  • the first film may include a thin film layer that does not have gas barrier properties.
  • the silicon atoms and oxygen in the gas barrier layer when the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the formula (1), the silicon atoms and oxygen in the gas barrier layer
  • the atomic ratio of the silicon atom content to the total amount of atoms and carbon atoms is preferably 25 to 45 at%, more preferably 30 to 40 at%.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 33 to 67 at%, more preferably 45 to 67 at%.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
  • silicon atoms and oxygen in the gas barrier layer when the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the formula (2), silicon atoms and oxygen in the gas barrier layer
  • the atomic ratio of the silicon atom content to the total amount of atoms and carbon atoms is preferably 25 to 45 at%, more preferably 30 to 40 at%.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 1 to 33 at%, and more preferably 10 to 27 at%.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 33 to 66 at%, and more preferably 40 to 57 at%.
  • the thickness of the gas barrier layer is preferably 5 to 3000 nm, more preferably 10 to 2000 nm, and still more preferably 100 to 1000 nm. When the thickness of the gas barrier layer is within these numerical ranges, more excellent gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties can be obtained, and a decrease in gas barrier properties due to bending tends to be more effectively suppressed.
  • the total thickness of the gas barrier layers is usually 10 to 10000 nm, preferably 10 to 5000 nm, more preferably 100 to 3000 nm. Preferably, it is 200 to 2000 nm.
  • the total thickness of the gas barrier layer is within these numerical ranges, more excellent gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties can be obtained, and a decrease in gas barrier properties due to bending tends to be more effectively suppressed. is there.
  • the first film may further include a primer coat layer, a heat-sealable resin layer, an adhesive layer, and the like, if necessary, in addition to the base material of the first film and the gas barrier layer.
  • a primer coat layer can be formed using a primer coat agent capable of improving the adhesion between the substrate and the gas barrier layer.
  • the heat-sealable resin layer can be appropriately formed using a known heat-sealable resin.
  • the adhesive layer can be appropriately formed using a normal adhesive, and the plurality of first films may be bonded to each other by such an adhesive layer.
  • the gas barrier layer of the first film is preferably a layer formed by a plasma chemical vapor deposition method.
  • the gas barrier layer formed by the plasma enhanced chemical vapor deposition method is a plasma chemical vapor phase in which a base of the first film is disposed on a pair of film forming rolls, and plasma is generated by discharging between the pair of film forming rolls.
  • a layer formed by a growth method is more preferable.
  • the film forming gas used for such plasma chemical vapor deposition preferably includes an organosilicon compound and oxygen.
  • the oxygen content in the film forming gas is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas.
  • the gas barrier layer of the first film is preferably a layer formed by a continuous film forming process. Details of a method for forming a gas barrier layer using such a plasma chemical vapor deposition method will be described in a method for producing a first film described later.
  • the first film can be produced by forming a gas barrier layer on the surface of the substrate of the first film.
  • plasma chemical vapor deposition plasma CVD
  • the plasma enhanced chemical vapor deposition method may be a Penning discharge plasma type chemical vapor deposition method.
  • a plasma discharge in a space between a plurality of film forming rolls using a pair of film forming rolls, and each of the pair of film forming rolls. More preferably, a substrate is disposed on the substrate, and plasma is generated by discharging between the pair of film forming rolls.
  • a pair of film forming rolls in this manner, a base material existing on the other film forming roll while forming a gas barrier layer on the base material existing on one film forming roll during film formation.
  • a gas barrier layer can be simultaneously formed on the upper layer.
  • a thin film gas barrier layer
  • a gas barrier layer having the same structure can be simultaneously formed at a double film formation rate.
  • An apparatus that can be used for manufacturing the first film by such a plasma chemical vapor deposition method is not particularly limited, but includes at least a pair of film forming rolls and a plasma power source, and the pair of components is formed.
  • An apparatus capable of discharging between the film rolls is preferable. For example, by using the manufacturing apparatus shown in FIG. 4, it is possible to manufacture the first film by the roll-to-roll method while using the plasma chemical vapor deposition method.
  • FIG. 4 is a schematic diagram illustrating an example of a manufacturing apparatus that can be suitably used to manufacture the first film according to the present embodiment.
  • the same or corresponding elements are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate.
  • the manufacturing apparatus shown in FIG. 4 includes a feed roll 701, transport rolls 21, 22, 23, and 24, a pair of film forming rolls 31 and 32 disposed opposite to each other, a gas supply pipe 41, and a plasma generation power source. 51, magnetic field generators 61 and 62 installed inside the film forming rolls 31 and 32, and a winding roll 702.
  • a vacuum chamber (not shown).
  • This vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by such a vacuum pump.
  • each film-forming roll is for plasma generation so that a pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) can function as a pair of counter electrodes.
  • the power supply 51 is connected. By supplying electric power from the plasma generating power source 51, a discharge is generated in the space between the film forming roll 31 and the film forming roll 32, and thereby plasma is generated in the space between the film forming roll 31 and the film forming roll 32. Can be generated.
  • the film-forming roll 31 and the film-forming roll 32 are also used as electrodes, the material and design may be changed as appropriate so that they can also be used as electrodes.
  • the pair of film forming rolls are preferably arranged so that their central axes are substantially parallel on the same plane. In this way, a pair of film-forming rolls (film-forming rolls 31 and 32) are arranged, and the gas barrier layer is formed on each film-forming roll, thereby comparing with the case where the film is formed on one film-forming roll.
  • the film formation rate can be doubled.
  • the films having the same structure can be stacked, it is possible to at least double the number of extreme values in the carbon distribution curve.
  • the gas barrier layer can be efficiently formed on the surface of the substrate 6.
  • magnetic field generators 61 and 62 are provided inside the film forming roll 31 and the film forming roll 32.
  • the magnetic field generators 61 and 62 are fixed so as not to rotate even if the film forming roll rotates.
  • the diameters of the film forming rolls 31 and 32 are preferably substantially the same from the viewpoint of forming a thin film more efficiently.
  • the diameters of the film forming rolls 31 and 32 are preferably 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
  • the base material 6 is disposed on a pair of film forming rolls (film forming roll 31 and film forming roll 32) so that the surfaces of the base material 6 face each other.
  • a pair of film forming rolls film forming roll 31 and film forming roll 32
  • each of the base materials 6 existing between the pair of film forming rolls is generated when the plasma is generated by discharging between the film forming roll 31 and the film forming roll 32.
  • the winding roll 702 is not particularly limited as long as it can wind the substrate 6 on which the gas barrier layer is formed, and is appropriately selected from commonly used rolls.
  • the gas supply pipe 41 only needs to be able to supply or discharge the raw material gas at a predetermined speed.
  • a power source of a normal plasma generating apparatus can be used as appropriate.
  • the plasma generating power supply 51 supplies power to the film forming roll 31 and the film forming roll 32 connected to the power supply 51, and makes it possible to use these as counter electrodes for discharge. Since the plasma generating power source 51 can perform plasma CVD more efficiently, it is possible to use a power source (such as an AC power source) that can alternately reverse the polarity of a pair of film forming rolls. preferable.
  • the plasma generation power source 51 can set the applied power to 100 W to 10 kW and the AC frequency to 50 Hz to 500 kHz in order to perform plasma CVD more efficiently.
  • the magnetic field generators 61 and 62 normal magnetic field generators can be used as appropriate.
  • the base material 6 in addition to the base material of the first film, a film having a gas barrier layer formed in advance can be used. Thus, by using a film having a gas barrier layer formed in advance as the substrate 6, it is possible to increase the thickness of the gas barrier layer.
  • a film forming gas such as a raw material gas
  • the film gas is decomposed by plasma, and a gas barrier layer is formed on the surface of the substrate 6 on the film forming roll 31 and on the surface of the substrate 6 on the film forming roll 32 by the plasma CVD method.
  • the base material 6 is conveyed by the delivery roll 701, the film formation roll 31 and the like, respectively. Therefore, a gas barrier is formed on the surface of the base material 6 by a roll-to-roll continuous film formation process. A layer is formed.
  • the source gas in the film forming gas used for forming the gas barrier layer is appropriately selected according to the material of the gas barrier layer to be formed.
  • the source gas for example, an organosilicon compound containing silicon can be used.
  • the source gas may contain monosilane as a silicon source in addition to the organosilicon compound.
  • the source gas is, for example, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, At least one organosilicon compound selected from the group consisting of phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane including.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer.
  • organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the film forming gas may contain a reactive gas in addition to the source gas.
  • a gas that reacts with the raw material gas to form an inorganic compound such as oxide or nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • the reaction gas for forming the nitride for example, nitrogen or ammonia can be used. These reaction gases are used alone or in combination of two or more. For example, when oxynitride is formed, a reaction gas for forming an oxide and a reaction gas for forming a nitride can be combined.
  • a carrier gas may be used as necessary in order to supply a source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • a carrier gas and a discharge gas known ones can be used as appropriate.
  • a rare gas such as helium, argon, neon, and xenon, or hydrogen can be used as the carrier gas or the discharge gas.
  • the ratio of the source gas and the reactive gas is higher than the ratio of the amount of the reactive gas that is theoretically required to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive.
  • a thin film (gas barrier layer) satisfying all the above conditions (i), (ii) and (iii) can be formed particularly efficiently.
  • the deposition gas contains an organosilicon compound and oxygen
  • the amount of oxygen in the deposition gas is less than or equal to the theoretical oxygen amount required to fully oxidize the entire amount of the organosilicon compound in the deposition gas. Is preferred.
  • a gas containing hexamethyldisiloxane organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas and oxygen (O 2 ) as a reaction gas is used as a film forming gas
  • organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas
  • oxygen (O 2 ) as a reaction gas
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen-based material.
  • HMDSO hexamethyldisiloxane
  • O 2 oxygen
  • the following reaction formula (3) in the film-forming gas (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2 (3)
  • the reaction represented by this occurs and silicon dioxide is formed.
  • the amount of oxygen necessary to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol.
  • a uniform silicon dioxide film can be formed when 12 moles or more of oxygen is contained in 1 mole of hexamethyldisiloxane and completely reacted in the film forming gas.
  • the oxygen amount is set to a stoichiometric ratio of 12 with respect to 1 mol of hexamethyldisiloxane so that the reaction of the above formula (3) does not proceed completely. It is preferable to make it less than a mole.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount (flow rate) of oxygen in the reaction gas
  • the molar amount (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane
  • the reaction does not proceed completely, and oxygen is compared to the stoichiometric ratio. It is thought that the reaction is often completed only when a large excess is supplied.
  • the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material. Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane. It is preferable that the amount is more than 0.5 times.
  • the pressure in the vacuum chamber (degree of vacuum) can be adjusted as appropriate according to the type of source gas, but is preferably in the range of 0.1 Pa to 50 Pa.
  • an electrode drum connected to the plasma generating power supply 51 (in this embodiment, the film forming rolls 31 and 32 are installed).
  • the conveyance speed (line speed) of the substrate 6 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably 0.1 to 100 m / min, 0.5 More preferably, it is ⁇ 20 m / min.
  • line speed is less than the lower limit, wrinkles due to heat tend to occur in the film, and when the line speed exceeds the upper limit, the thickness of the formed gas barrier layer tends to be thin.
  • the second film when the light emitted from the organic EL element is emitted to the outside through the second film, the second film needs to be formed of a member that exhibits light transmittance. In that case, it is preferable that the 2nd film has a 2nd gas barrier layer similarly to the 1st film.
  • the second gas barrier layer contains silicon atoms, oxygen atoms, and carbon atoms, and the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the second gas barrier layer satisfy the above-described conditions (i ) To (iii) are satisfied.
  • This second gas barrier layer can be formed by the same method as the gas barrier layer in the first film described above.
  • the second gas barrier layer may have exactly the same configuration as the gas barrier layer of the first film, but as long as the oxygen distribution curve and the carbon distribution curve satisfy the conditions (i) to (iii),
  • the film may have a different structure from the gas barrier layer.
  • the organic EL element according to the present embodiment is formed on the second film or the first film before the step of bonding the first film and the second film.
  • the organic EL device has a pair of electrodes composed of an anode and a cathode, a light emitting layer provided between the electrodes, and an electron injection layer provided between the electrodes.
  • a predetermined layer may be provided between the pair of electrodes as necessary.
  • the light emitting layer is not limited to one layer, and a plurality of layers may be provided.
  • the organic EL device according to this embodiment includes an electron injection layer between the light emitting layer and the cathode.
  • Examples of the layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer in contact with the cathode is referred to as an electron injection layer, and the layer excluding this electron injection layer is referred to as an electron transport layer.
  • the electron injection layer has a function of improving the electron injection efficiency from the cathode.
  • the electron transport layer has a function of improving electron injection from the layer in contact with the surface on the cathode side.
  • the hole blocking layer has a function of blocking hole transport. When the electron injection layer and / or the electron transport layer has a function of blocking hole transport, these layers may also serve as the hole blocking layer.
  • the hole blocking layer has a function of blocking hole transport can be confirmed, for example, by fabricating a device that allows only the hole current to flow and reducing the current value.
  • Examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the layer in contact with the anode is called a hole injection layer, and the layers other than the hole injection layer are positive. It is called a hole transport layer.
  • the hole injection layer has a function of improving the hole injection efficiency from the anode.
  • the hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side.
  • the electron blocking layer has a function of blocking electron transport. When the hole injection layer and / or the hole transport layer have a function of blocking electron transport, these layers may also serve as the electron block layer.
  • the electron blocking layer has a function of blocking electron transport can be confirmed, for example, by producing an element that allows only an electron current to flow and reducing the current value.
  • the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • An example of the layer structure that the organic EL element of the present embodiment can have is shown below.
  • the organic EL element of the present embodiment may have two or more light emitting layers.
  • structural unit A when the laminate sandwiched between the anode and the cathode is referred to as “structural unit A”, the configuration of the organic EL element having two light emitting layers is as follows. And the layer structure shown in the following g). The two (structural unit A) layer structures may be the same or different. g) Anode / (constituent unit A) / charge generation layer / (constituent unit A) / cathode
  • (structural unit A) / charge generation layer” is “structural unit B”
  • examples of the configuration of the organic EL device having three or more light-emitting layers include the layer configuration shown in h) below.
  • Anode / (Structural unit B) x / (Structural unit A) / Cathode The symbol “x” represents an integer of 2 or more, and (Structural unit B) x is a stack composed of the structural units B stacked in x stages. Represents the body.
  • a plurality of (structural unit B) layer configurations may be the same or different.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer include a thin film containing vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, and the like.
  • the order of the layers to be laminated, the number of layers, and the thickness of each layer can be appropriately set in consideration of the light emission efficiency and the element lifetime.
  • an electrode exhibiting light transmittance is used as the anode.
  • an electrode exhibiting light transmittance a thin film of metal oxide, metal sulfide, metal, or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferable.
  • a thin film containing indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used.
  • a thin film made of ITO, IZO, or tin oxide is preferable.
  • Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyaniline or a derivative thereof and polythiophene or a derivative thereof may be used.
  • the thickness of the anode is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the hole injection material constituting the hole injection layer includes oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanines, amorphous carbon, polyaniline And polythiophene derivatives.
  • Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material.
  • a hole injection layer can be formed by applying a solution containing a hole injection material by a predetermined application method to form a film, and solidifying the formed solution.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the hole injection material.
  • Chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, toluene and xylene
  • aromatic hydrocarbon solvents such as acetone, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate, and water.
  • coating methods spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset Examples thereof include a printing method and an ink jet printing method.
  • the thickness of the hole injection layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • ⁇ Hole transport layer> As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylenevinylene) or derivative thereof, and poly (2,5-thienylenevinylene) or Examples thereof include derivatives thereof.
  • hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine compound groups in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, poly Polymeric hole transport materials such as arylamines or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, and poly (2,5-thienylene vinylene) or derivatives thereof are preferred. More preferable hole transport materials are polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in a side chain or a main chain.
  • the low molecular hole transport material is preferably used by being dispersed in a polymer binder.
  • the method for forming the hole transport layer is not particularly limited, but in the case of a low molecular hole transport material, film formation from a mixed solution containing a polymer binder and a hole transport material can be exemplified.
  • molecular hole transport materials include film formation from a solution containing a hole transport material.
  • the solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole transport material.
  • Chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, toluene and xylene
  • aromatic hydrocarbon solvents such as ketone solvents such as acetone and methyl ethyl ketone, and ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate.
  • the polymer binder combined with the hole transport material does not extremely impede charge transport, and that absorption with respect to visible light is weak.
  • the polymer binder is selected from, for example, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the thickness of the hole transport layer varies depending on the material used, and is appropriately set so that the drive voltage and the light emission efficiency are appropriate.
  • the hole transport layer must have at least a thickness that does not cause pinholes. If the hole transport layer is too thick, the driving voltage of the device increases. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
  • the light emitting layer is usually formed of an organic substance (light emitting material) that mainly emits fluorescence and / or phosphorescence, or the organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, to improve the luminous efficiency or to change the emission wavelength.
  • the organic substance contained in the light emitting layer may be a low molecular compound or a high molecular compound.
  • the light emitting layer preferably contains a polymer compound.
  • the light emitting layer preferably contains a high molecular compound having a polystyrene-reduced number average molecular weight of 10 3 to 10 8 .
  • Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, and coumarin derivatives.
  • Metal complex materials examples include rare earth metals such as Tb, Eu and Dy, and central metals selected from Al, Zn, Be, Ir and Pt, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and the like.
  • a metal complex having a ligand selected from a quinoline structure and the like can be given.
  • metal complexes having light emission from triplet excited state such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, And a phenanthroline europium complex.
  • Polymer material As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above dye materials or metal complex light emitting materials are polymerized. Materials etc. can be mentioned.
  • examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives. .
  • polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • Examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, and polyfluorene derivatives.
  • polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferable.
  • Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives. Of these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferred.
  • a material that emits white light a mixture of materials that emit light in the above-described blue, green, and red colors, or a component that becomes a material that emits light in each color as a monomer, and a polymer obtained by polymerizing this as a material are used. Also good.
  • an element that emits white light as a whole may be realized by stacking light emitting layers formed using materials that emit light of each color.
  • Dopant material examples include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, and phenoxazone.
  • the thickness of the light emitting layer is usually about 2 nm to 200 nm.
  • a method for forming the light emitting layer a method of applying a solution containing a light emitting material, a vacuum deposition method, a transfer method, or the like can be used.
  • the solvent used for film formation from a solution include the same solvents as those described above used for forming a hole injection layer from a solution.
  • coating methods such as coating methods, spray coating methods, and nozzle coating methods
  • printing methods such as gravure printing methods, screen printing methods, flexographic printing methods, offset printing methods, reverse printing methods, and inkjet printing methods.
  • a printing method such as a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an inkjet printing method is preferable in that pattern formation and multicolor coating are easy.
  • a vacuum deposition method can be used in the case of a low molecular compound exhibiting sublimability.
  • a method of forming a light emitting layer only at a desired portion by laser transfer or thermal transfer can also be used.
  • an electron transport material constituting the electron transport layer a commonly used material can be used, such as an oxadiazole derivative, anthraquinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, Tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, and polyfluorene or Examples thereof include derivatives thereof.
  • electron transport materials include oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, and poly Fluorene or its derivatives are preferred, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline Is more preferable.
  • the method for forming the electron transport layer is not particularly limited.
  • a vacuum deposition method from powder, or film formation from a solution or a molten state can be exemplified
  • film formation from a solution or a melt state can be exemplified. be able to.
  • a polymer binder may be used in combination. Examples of the method for forming an electron transport layer from a solution include the same film formation method as the method for forming a hole injection layer from a solution described above.
  • the thickness of the electron transport layer varies depending on the material used, and is appropriately set so that the drive voltage and the light emission efficiency are appropriate.
  • the electron transport layer needs to have at least a thickness that does not generate pinholes, and if it is too thick, the drive voltage of the device increases. Accordingly, the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the electron injection layer includes an ionic polymer.
  • an ionic polymer constituting the electron injection layer for example, a structural unit having one or more groups selected from the group consisting of a group represented by the following formula (1) and a group represented by the following formula (2): Examples include polymers.
  • a structural unit having one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) And a polymer containing 15 to 100 mol%.
  • Q 1 represents a divalent organic group
  • Y 1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 2 ⁇
  • M 1 represents a metal cation.
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ .
  • n1 represents an integer of 0 or more
  • a1 represents an integer of 1 or more
  • b1 represents an integer of 0 or more
  • a1 and b1 is the charge of the group represented by the formula (1) Selected to be 0.
  • R a is a carbon atom with or without substituents
  • Q 2 represents a divalent organic group
  • Y 2 represents a carbo cation, an ammonium cation, a phosphonyl cation or a sulfonyl cation or an iodonium cation
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 — or PF 6 —
  • Z 2 represents a metal cation or an ammonium
  • R b represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent.
  • the ionic polymer may further have a group represented by the following formula (3).
  • the group represented by the formula (3) may be contained in the structural unit of the ionic polymer.
  • the structural unit having a group represented by the formula (3) includes one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2).
  • the structural unit may be the same as the unit, or another structural unit.
  • a structural unit having at least one of a group represented by formula (1), a group represented by formula (2), and a group represented by formula (3) Examples thereof include a polymer containing 15 to 100 mol% of all structural units.
  • Q 3 represents a divalent organic group
  • Y 3 represents —CN or formulas (4), (5), (6), (7), (8), (9), (10), (11) or (12) represents a group
  • n3 represents an integer of 0 or more.
  • R ′′ represents a hydrogen atom, a monovalent hydrocarbon group with or without a substituent, —COOH, —SO 3 H, —OH, —SH, —NR c 2 , —CN or —C ( ⁇ O) NR c 2
  • R ′ ′′ represents a trivalent hydrocarbon group with or without a substituent
  • a3 represents an integer of 1 or more
  • a4 represents an integer of 0 or more
  • R c represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent.
  • the ionic polymer is composed of a structural unit represented by formula (13), a structural unit represented by formula (15), a structural unit represented by formula (17), and a structural unit represented by formula (20). It is preferable that 15 to 100 mol% of one or more structural units selected from the group is contained in all the structural units.
  • R 1 represents a monovalent group having a group represented by Formula (14), and Ar 1 has a (2 + n4) -valent fragrance with or without a substituent other than R 1.
  • n4 represents an integer of 1 or more, and when there are a plurality of R 1 s , they may be the same or different.
  • R 2 represents a (1 + m1 + m2) -valent organic group.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same as described above.
  • m2 each independently represents an integer greater than or equal to 1.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same or different when there are a plurality of each. May be.
  • R 3 represents a monovalent group having a group represented by formula (16), and Ar 2 has a (2 + n5) -valent fragrance with or without a substituent other than R 3.
  • n5 represents an integer of 1 or more, and when there are a plurality of R 3 s , they may be the same or different.
  • R 4 represents a (1 + m3 + m4) -valent organic group.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2, and n 3 are described above.
  • m4 each independently represents an integer greater than or equal to 1.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 may be the same or different when there are a plurality of each. May be.
  • R 5 represents a monovalent group having a group represented by Formula (18)
  • R 6 represents a monovalent group having a group represented by Formula (19)
  • Ar 3 represents an aromatic group optionally having a substituent other than R 5 and R 6 (2 + n6 + n7) valent
  • each of .R 5 and R 6 represents an integer of 1 or more in each of n6 and n7 independently May be the same or different when there are multiple.
  • R 7 represents a direct bond or a (1 + m5) -valent organic group.
  • Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have been described above.
  • M5 is an integer of 1 or more.
  • Q 1 , Y 1 , M 1 , Z 1 , n 1 , a 1, and b 1 may be the same or different when there are a plurality of each.
  • R 8 represents a single bond or a (1 + m6) -valent organic group.
  • Y 3 and n3 have been described above.
  • M6 represents an integer of 1 or more, provided that when R 8 is a single bond, m6. Represents 1. When there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • R 9 represents a monovalent group having a group represented by formula (21)
  • R 10 represents a monovalent group having a group represented by formula (22)
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group having or not having a substituent other than R 9 and R 10.
  • n8 and n9 independently represents an integer of 1 or more, and each of R 9 and R 10 May be the same or different when there are multiple.
  • R 11 represents a single bond or a (1 + m7) -valent organic group.
  • Q 2 , Y 2 , M 2 , Z 2 , n 2, a 2 and b 2 have been described above.
  • M 7 is an integer of 1 or more. Provided that when R 11 is a single bond, m7 is 1. When there are a plurality of Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 , they may be the same or different. .
  • R 12 represents a single bond or a (1 + m8) -valent organic group.
  • Y 3 and n3 have been described above.
  • M8 represents an integer of 1 or more, provided that when R 12 is a single bond, m8. Represents 1. When there are a plurality of each of Q 3 , Y 3 and n 3, they may be the same or different.
  • the structural unit contained in the ionic polymer may have two or more groups represented by the formula (1), may have two or more groups represented by the formula (2), You may have 2 or more types of group represented by Formula (3).
  • examples of the divalent organic group represented by Q 1 include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, 3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, and at least one hydrogen of these groups
  • a divalent cyclic saturated hydrocarbon group having 3 to 50 atoms 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, 6-5 carbon atoms having or not having a substituent selected from a biphenyl-4,4′-diyl group and a group in which at least one hydrogen atom of these groups is substituted with a substituent.
  • arylene group a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, a pentyleneoxy group, a hexyleneoxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent
  • raw material monomer a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • substituents examples include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituent.
  • C m -C n (m, n is a positive integer satisfying m ⁇ n) indicates that the organic group described together with this term has m to n carbon atoms.
  • a C m -C n alkyl group indicates that the alkyl group has m to n carbon atoms
  • a C m -C n alkyl aryl group indicates that the alkyl group has m carbon atoms of m to n.
  • n represents an aryl-C m -C n alkyl group, the alkyl group has m to n carbon atoms.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • As the alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl Groups, decyl groups, and lauryl groups.
  • the hydrogen atom of the alkyl group may be substituted with a fluorine atom.
  • fluorine atom-substituted alkyl group examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, an isoamyl group, a hexyl group, and a cyclohexyl group. , Heptyl group, octyl group, nonyl group, decyl group, and lauryl group.
  • the alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent.
  • the alkoxy group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • Examples of alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, and lauryloxy group.
  • the hydrogen atom of the alkoxy group may be substituted with a fluorine atom.
  • Examples of the fluorine atom-substituted alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the alkoxy group also includes a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • Examples of the C 1 -C 12 alkoxy group include a methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, Examples include cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
  • the alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent.
  • the alkylthio group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • alkylthio group examples include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group Group, nonylthio group, decylthio group, and laurylthio group.
  • the hydrogen atom of the alkylthio group may be substituted with a fluorine atom.
  • the fluorine atom-substituted alkylthio group examples include a trifluoromethylthio group.
  • the aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • a group having a benzene ring, a group having a condensed ring, and two or more benzene rings or condensed rings are bonded to the aryl group via a single bond or a divalent organic group (for example, an alkenylene group such as a vinylene group). Groups are also included.
  • the aryl group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • aryl group examples include a phenyl group, a C 1 to C 12 alkoxyphenyl group, a C 1 to C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and 9- Anthracenyl group may be mentioned.
  • the hydrogen atom of the aryl group may be substituted with a fluorine atom.
  • the fluorine atom-substituted aryl group include a pentafluorophenyl group.
  • aryl group a C 1 -C 12 alkoxyphenyl group and a C 1 -C 12 alkylphenyl group are preferable.
  • Examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, an s-butoxyphenyl group, and a t-butoxyphenyl group.
  • Pentyloxyphenyl group hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyloxy A phenyl group and a lauryloxyphenyl group are mentioned.
  • Examples of the C 1 -C 12 alkylphenyl group include, for example, methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, t- Examples include a butylphenyl group, a pentylphenyl group, an isoamylphenyl group, a hexylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group, a decylphenyl group, and a dodecylphenyl group.
  • the aryloxy group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, a C 1 -C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferable.
  • Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, an s-butoxyphenoxy group, and a t-butoxyphenoxy group.
  • Pentyloxyphenoxy group hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3,7-dimethyloctyloxy Examples include phenoxy group and lauryloxyphenoxy group.
  • Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, and a butylphenoxy group.
  • Isobutylphenoxy group, s-butylphenoxy group, t-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group, and dodecylphenoxy group Can be mentioned.
  • the arylthio group is, for example, a group in which a sulfur element is bonded to the aforementioned aryl group.
  • the arylthio group may have a substituent on the aromatic ring of the aryl group.
  • the arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms.
  • Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group is, for example, a group in which the above alkyl group is bonded to the above aryl group.
  • the arylalkyl group may have a substituent.
  • the arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkyl group examples include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, -Naphthyl-C 1 -C 12 alkyl group, and 2-naphthyl-C 1 -C 12 alkyl group.
  • the arylalkoxy group is, for example, a group in which the above alkoxy group is bonded to the above aryl group.
  • the arylalkoxy group may have a substituent.
  • the arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms.
  • arylalkoxy group examples include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, 1 -Naphtyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group are mentioned.
  • the arylalkylthio group is, for example, a group in which the aforementioned alkylthio group is bonded to the aforementioned aryl group.
  • the arylalkylthio group may have a substituent.
  • the arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkylthio group examples include a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group, -Naphthyl-C 1 -C 12 alkylthio group, and 2-naphthyl-C 1 -C 12 alkylthio group.
  • the arylalkenyl group is, for example, a group in which an alkenyl group is bonded to the aforementioned aryl group.
  • the arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • Examples of the arylalkenyl group include a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, 1 -Naphthyl-C 2 -C 12 alkenyl group, and 2-naphthyl-C 2 -C 12 alkenyl group.
  • a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group and a C 2 -C 12 alkylphenyl-C 2 -C 12 alkenyl group are preferred.
  • Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2 -Hexenyl group and 1-octenyl group are mentioned.
  • the arylalkynyl group is, for example, a group in which an alkynyl group is bonded to the aforementioned aryl group.
  • the arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • arylalkynyl group examples include a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, 1 -Naphtyl-C 2 -C 12 alkynyl group and 2-naphthyl-C 2 -C 12 alkynyl group.
  • C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group and a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group are preferred.
  • C 2 -C 12 alkynyl groups include, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group, 2 -Hexynyl group and 1-octynyl group may be mentioned.
  • an amino group in which at least one hydrogen atom of the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group Groups are preferred.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted amino group is usually 1 to 60 excluding the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 2 to 48 are preferred.
  • substituted amino groups include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, and s-butyl.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted silyl group is usually 1 to 60 without including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 3 to 48 are preferred.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyl group include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, trifluoroacetyl group, and pentafluorobenzoyl group.
  • the acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the imine residue means a residue obtained by removing one hydrogen atom in this structure from an imine compound having a structure represented by at least one of the formula: HN ⁇ C ⁇ and the formula: —N ⁇ CH—.
  • the imine compound include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, and aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like.
  • the number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18.
  • Examples of the imine residue include the following groups.
  • the amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms.
  • As the amide group for example, formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group, ditriamide Examples include a fluoroacetamide group and a dipentafluorobenzamide group.
  • the acid imide group is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide.
  • the acid imide group usually has 4 to 20 carbon atoms, and preferably 4 to 18 carbon atoms.
  • the acid imide group include the following groups.
  • the monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • Heterocyclic compounds are not only carbon atoms but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms as elements constituting the ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a tellurium atom and an arsenic atom.
  • the monovalent heterocyclic group may have a substituent.
  • the monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms.
  • the number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of the monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, triazinyl Group, pyrrolidyl group, piperidyl group, quinolyl group, and isoquinolyl group.
  • a thienyl group, a C 1 -C 12 alkyl thienyl group, a pyridyl group and a C 1 -C 12 alkyl pyridyl group are preferable.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the substituted carboxyl group is a group in which a hydrogen atom of a carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, that is, a formula: —C ( ⁇ O) OR * (Wherein R * is an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group).
  • the substituted carboxyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms does not include the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have.
  • the substituted carboxyl group include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, s-butoxycarbonyl group, t-butoxycarbonyl group, pentyloxycarbonyl group, Hexyloxycarbonyl group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyloxy Carbonyl group, trifluoromethoxycarbon
  • Y 1 represents a monovalent group such as —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 — .
  • the Y 1 from the viewpoint of the acidity of the ionic polymer, -CO 2 -, -SO 2 - , and -PO 3 - are preferred, -CO 2 - is more preferable.
  • Y 1 is preferably —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 — from the viewpoint of the stability of the ionic polymer.
  • M 1 represents a metal cation or an ammonium cation with or without a substituent.
  • the metal cation is preferably a monovalent, divalent or trivalent cation.
  • metal cations Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Sn, Ti, V, W, Y, Yb, Zn, And cations such as Zr, and Li + , Na + , K + , Cs + , Ag + , Mg 2+ , and Ca 2+ are preferable.
  • Examples of the substituent that the ammonium cation may have include, for example, 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, i-butyl group, and t-butyl group. Of the alkyl group.
  • Z 1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n1 represents an integer of 0 or more. n1 is preferably an integer of 0 to 8, more preferably an integer of 0 to 2, from the viewpoint of the synthesis of raw material monomers.
  • a1 represents an integer of 1 or more.
  • b1 represents an integer of 0 or more.
  • a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 has a monovalent metal cation or substituent.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 is a divalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 is a trivalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
  • R a represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent.
  • substituents that these groups may have include the same substituents as the substituents exemplified in the aforementioned Q 1 . When a plurality of substituents are present, they may be the same or different.
  • Ra examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, C1-C20 alkyl groups such as nonyl, decyl, and lauryl, and phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, and 9-anthracenyl And aryl groups having 6 to 30 carbon atoms, such as groups.
  • Examples of the group represented by the formula (1) include the following groups.
  • the divalent organic group represented by Q 2 include the groups exemplified as the divalent organic group represented by Q 1.
  • Q 2 is preferably a divalent saturated hydrocarbon group, an arylene group, or an alkyleneoxy group from the viewpoint of ease of synthesis of the raw material monomer.
  • the divalent organic group represented by Q 2 may have a substituent.
  • substituents include a substituent that the divalent organic group represented by Q 1 described above may have. When a plurality of substituents are present, they may be the same or different.
  • Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation, or an iodonium cation.
  • R represents an alkyl group or an aryl group.
  • a plurality of R may be the same or different from each other).
  • ammonium cations include: -N + R 3 (Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
  • Examples of phosphonyl cations include: -P + R 3 (Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
  • Examples of the sulfonyl cation include: -S + R 2 (Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
  • R represents an alkyl group or an aryl group.
  • a plurality of R may be the same or different from each other).
  • Y 2 is a carbocation, an ammonium cation, a phosphonyl cation, and from the viewpoint of the ease of synthesis of the raw material monomer and the stability of the raw material monomer and the ionic polymer to air, moisture or heat.
  • a sulfonyl cation is preferred, and an ammonium cation is more preferred.
  • Z 2 represents a metal cation or an ammonium cation with or without a substituent.
  • the metal cation is preferably a monovalent, divalent or trivalent cation.
  • metal cations Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Sn, Ti, V, W, Y, Yb, Zn, And cations such as Zr.
  • Examples of the substituent that the ammonium cation may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and the like having 1 to 10 carbon atoms.
  • An alkyl group is mentioned.
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n2 represents an integer of 0 or more. n2 is preferably an integer of 0 to 6, more preferably an integer of 0 to 2.
  • a2 represents an integer of 1 or more.
  • b2 represents an integer of 0 or more.
  • a2 and b2 are selected such that the charge of the group represented by the formula (2) is zero.
  • a2 is preferably an integer from 1 to 3, more preferably 1 or 2.
  • R b represents an alkyl group having 1 to 30 carbon atoms with or without a substituent, or an aryl group having 6 to 50 carbon atoms with or without a substituent.
  • substituents that these groups may have include the same substituents as the substituents exemplified in the aforementioned Q 1 . When a plurality of substituents are present, they may be the same or different.
  • R b examples include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, C1-C20 alkyl groups such as nonyl, decyl, and lauryl, and phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, and 9-anthracenyl And aryl groups having 6 to 30 carbon atoms such as a group.
  • Examples of the group represented by the formula (2) include the following groups.
  • examples of the divalent organic group represented by Q 3 include the groups exemplified as the divalent organic group represented by Q 1 .
  • Q 3 is preferably a divalent saturated hydrocarbon group, an arylene group, or an alkyleneoxy group from the viewpoint of ease of synthesis of the raw material monomer.
  • the divalent organic group represented by Q 3 may have a substituent.
  • substituents include a substituent that the divalent organic group represented by Q 1 may have. When a plurality of substituents are present, they may be the same or different.
  • the divalent organic group represented by Q 3 is preferably a group represented by — (CH 2 ) —.
  • N3 represents an integer of 0 or more. n3 is preferably an integer of 0 to 20, more preferably an integer of 0 to 8.
  • Y 3 is represented by —CN or formula (4), (5), (6), (7), (8), (9), (10), (11) or (12). Represents a group.
  • a divalent hydrocarbon group represented by R ′ As, for example, methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 1,5- It has a substituent selected from a pentylene group, a 1,6-hexylene group, a 1,9-nonylene group, a 1,12-dodecylene group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent.
  • substituents examples include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the group for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group A decyl group, a lauryl group, and an alkyl group having 1 to 20 carbon atoms with or without a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like; Selected from phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group
  • the monovalent hydrocarbon group represented by R ′′ is preferably a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, or a 2-naphthyl group from the viewpoint of solubility of the ionic polymer.
  • substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • R ′ ′′ as the trivalent hydrocarbon group represented by R ′ ′′, for example, a methanetriyl group, an ethanetriyl group, a 1,2,3-propanetriyl group, a 1,2,4-butanetriyl group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, and at least of these groups
  • R ′′′ As the trivalent hydrocarbon group represented by R ′ ′′, from the viewpoint of solubility of the ionic polymer, methanetriyl group, ethanetriyl group, 1,2,4-benzenetriyl group, and 1,3,5- A benzenetriyl group is preferred.
  • substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • R c is the solubility of the ionic polymer. From the viewpoint, a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.
  • a3 represents an integer of 1 or more, and an integer of 3 to 10 is preferable.
  • a4 represents an integer of 0 or more.
  • a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
  • Y 3 represents —CN, a group represented by Formula (4), a group represented by Formula (6), a group represented by Formula (10), a group represented by Formula (10), from the viewpoint of ease of synthesis of the raw material monomer. 11) is preferred, the group represented by formula (4), the group represented by formula (6), and the group represented by formula (11) are more preferred, and the following groups are particularly preferred. .
  • the ionic polymer according to this embodiment is represented by the structural unit represented by the formula (13), the structural unit represented by the formula (15), the structural unit represented by the formula (17), and the formula (20). It is preferable that at least one structural unit selected from the group consisting of structural units is included, and it is more preferable that these structural units are included in an amount of 15 to 100 mol% in all the structural units.
  • R 1 represents a monovalent group having a group represented by formula (14), Ar 1 has a substituent other than R 1. Or it shows the (2 + n4) valent aromatic group which does not have, and n4 shows an integer greater than or equal to 1.
  • the group represented by the formula (14) may be directly bonded to Ar 1 , or a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene Group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, or the like
  • Ar 1 may have a substituent other than R 1 .
  • substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n4 represents an integer of 1 or more. n4 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n4) -valent aromatic group represented by Ar 1 in the formula (13) include a (2 + n4) -valent aromatic hydrocarbon group and a (2 + n4) -valent aromatic heterocyclic group, preferably A (2 + n4) -valent aromatic group consisting of only carbon atoms, and a (2 + n4) -valent aroma consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group.
  • Examples of the (2 + n4) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; consisting of the monocyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the group are condensed; from the monocyclic aromatic ring and the condensed polycyclic aromatic ring A (2 + n4)
  • Examples of monocyclic aromatic rings include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • aromatic ring assembly include the following rings.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • (2 + n4) hydrogen atoms are removed from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group obtained by removing (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred.
  • a group obtained by removing (2 + n4) hydrogen atoms from the ring is more preferred.
  • examples of the (1 + m1 + m2) -valent organic group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a (1 + m1 + m2) -valent organic group represented by R 2 a group obtained by removing (m1 + m2) hydrogen atoms from an alkyl group and (m1 + m2) hydrogens from an aryl group from the viewpoint of ease of synthesis of the raw material monomer A group in which atoms are removed and a group in which (m1 + m2) hydrogen atoms have been removed from an alkoxy group are preferred.
  • substituents examples include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • R 3 represents a monovalent group having a group represented by formula (16), and Ar 2 has a substituent other than R 3. Or it shows the (2 + n5) valent aromatic group which does not have, and n5 shows an integer greater than or equal to 1.
  • the group represented by the formula (16) may be directly bonded to Ar 2 , or a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene.
  • Ar 2 may have a substituent other than R 3 .
  • substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n5 represents an integer of 1 or more. n5 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n5) -valent aromatic group represented by Ar 2 in the formula (15) include a (2 + n5) -valent aromatic hydrocarbon group and a (2 + n5) -valent aromatic heterocyclic group, preferably (2 + n5) -valent aromatic group consisting of only carbon atoms, and (2 + n5) -valent aromatics consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group.
  • Examples of the (2 + n5) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; consisting of the monocyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the group are condensed; from the monocyclic aromatic ring and the condensed polycyclic aromatic ring A (2 + n5)
  • Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 12 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by Formulas 13 to 27 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by the formulas 37 to 44 exemplified in the description of the structural unit represented by the formula (13).
  • (2 + n5) hydrogen atoms are removed from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41.
  • a group obtained by removing (2 + n5) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred.
  • a group obtained by removing (2 + n5) hydrogen atoms from the ring is more preferred.
  • n3 and m4 each independently represent an integer of 1 or more.
  • examples of the (1 + m3 + m4) -valent organic group represented by R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a (1 + m3 + m4) -valent organic group represented by R 4 a group obtained by removing (m3 + m4) hydrogen atoms from an alkyl group and (m3 + m4) hydrogens from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m3 + m4) hydrogen atoms are removed from an alkoxy group are preferred.
  • substituents examples include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • R 5 represents a monovalent group having a group represented by formula (18)
  • R 6 represents a group represented by formula (19).
  • Ar 3 represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6 , and n6 and n7 are each independently an integer of 1 or more Indicates.
  • the group represented by the formula (18) and the group represented by the formula (19) may be directly bonded to Ar 3 , or methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene.
  • Ar 3 may have a substituent other than R 5 and R 6 .
  • substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n6 represents an integer of 1 or more. n6 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • n7 represents an integer of 1 or more. n7 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n6 + n7) -valent aromatic group represented by Ar 3 in the formula (17) include a (2 + n6 + n7) -valent aromatic hydrocarbon group and a (2 + n6 + n7) -valent aromatic heterocyclic group, preferably (2 + n6 + n7) -valent aromatic group consisting of only carbon atoms, or (2 + n6 + n7) -valent aromatics consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group.
  • Examples of the (2 + n6 + n7) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, and an imidazole.
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by Formulas 13 to 27 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by the formulas 37 to 44 exemplified in the description of the structural unit represented by the formula (13).
  • a (2 + n6 + n7) -valent aromatic group from the viewpoint of ease of synthesis of the raw material monomer, hydrogen from a ring represented by the formulas 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 A group in which (2 + n6 + n7) atoms are removed is preferred, and a group in which (2 + n6 + n7) hydrogen atoms have been removed from the ring represented by Formula 1, 37 or 41 is more preferred, and from the ring represented by Formula 1, 38 or 42 A group obtained by removing (2 + n6 + n7) hydrogen atoms is more preferable.
  • R 7 represents a single bond or a (1 + m5) -valent organic group, and is preferably a (1 + m5) -valent organic group.
  • the (1 + m5) -valent organic group represented by R 7 for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent.
  • the (1 + m5) -valent organic group represented by R 7 is a group obtained by removing m5 hydrogen atoms from an alkyl group and m5 hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group and a group obtained by removing m5 hydrogen atoms from an alkoxy group are preferred.
  • substituents examples include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • m5 represents an integer of 1 or more. Provided that when R 7 is a single bond m5 is 1.
  • R 8 represents a single bond or a (1 + m6) -valent organic group, and is preferably a (1 + m6) -valent organic group.
  • examples of the (1 + m6) -valent organic group represented by R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m6) -valent organic group represented by R 8 is a group obtained by removing m6 hydrogen atoms from an alkyl group and m6 hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group and a group obtained by removing m6 hydrogen atoms from an alkoxy group are preferred.
  • substituents examples include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • m6 represents an integer of 1 or more. Provided that when R 8 is a single bond m6 represents 1.
  • R 9 represents a monovalent group having a group represented by formula (21)
  • R 10 represents a group represented by formula (22).
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group with or without a substituent other than R 9 and R 10
  • n8 and n9 are each independently an integer of 1 or more Indicates.
  • the group represented by the formula (21) and the group represented by the formula (22) may be directly bonded to Ar 4 , or methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene.
  • Ar 4 may have a substituent other than R 9 and R 10 .
  • substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n8 represents an integer of 1 or more. n8 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • n9 represents an integer of 1 or more. n9 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n8 + n9) -valent aromatic group represented by Ar 4 in the formula (20) include a (2 + n8 + n9) -valent aromatic hydrocarbon group and a (2 + n8 + n9) -valent aromatic heterocyclic group.
  • Examples of the (2 + n8 + n9) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, And a (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from a monocyclic aromatic ring such as an imidazole ring; a condensed polycycle in which two or more rings selected from the group consisting of the monocyclic aromatic rings are condensed A (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from the formula aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring are bonded to a
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by Formulas 13 to 27 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by the formulas 37 to 44 exemplified in the description of the structural unit represented by the formula (13).
  • a (2 + n8 + n9) -valent aromatic group from the viewpoint of ease of synthesis of the raw material monomer, hydrogen from a ring represented by the formulas 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41
  • a group in which (2 + n8 + n9) atoms are removed is preferred, and a group in which (2 + n8 + n9) hydrogen atoms have been removed from the ring represented by formulas 1 to 6, 8, 14, 27, 28, 38 or 42 is more preferred.
  • 37 or 41 a group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring is more preferred.
  • R 11 represents a single bond or a (1 + m7) -valent organic group, and is preferably a (1 + m7) -valent organic group.
  • examples of the (1 + m7) -valent organic group represented by R 11 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m7) -valent organic group represented by R 11 is a group in which m7 hydrogen atoms are removed from an alkyl group and m7 hydrogen atoms are removed from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. And a group obtained by removing m7 hydrogen atoms from an alkoxy group.
  • substituents examples include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • m7 represents an integer of 1 or more. Provided that when R 11 is a single bond m7 represents 1.
  • R 12 represents a single bond or a (1 + m8) valent organic group, and is preferably a (1 + m8) valent organic group.
  • examples of the (1 + m8) -valent organic group represented by R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m8) -valent organic group represented by R 12 from the viewpoint of ease of synthesis of the raw material monomer, a group in which m8 hydrogen atoms are removed from the alkyl group, and m8 hydrogen atoms are removed from the aryl group. A group and a group obtained by removing m8 hydrogen atoms from an alkoxy group are preferred.
  • substituents examples include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  • m8 represents an integer of 1 or more. Provided that when R 12 is a single bond m8 represents 1.
  • R 13 represents a (1 + m9 + m10) valent organic group
  • R 14 represents a monovalent organic group.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1 , A1, b1, and n3 are as described above, and m9 and m10 each independently represents an integer of 1 or more, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3.
  • m9 and m10 each independently represents an integer of 1 or more, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3.
  • examples of the (1 + m9 + m10) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m9 + m10) -valent organic group represented by R 13 is a group obtained by removing (m9 + m10) hydrogen atoms from an alkyl group and (m9 + m10) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m9 + m10) hydrogen atoms have been removed from an alkoxy group are preferred.
  • examples of the monovalent organic group represented by R 14 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and pentyl.
  • the monovalent organic group represented by R 14 is a group obtained by removing one hydrogen atom from an alkyl group, a group obtained by removing one hydrogen atom from an aryl group, from the viewpoint of ease of synthesis of the raw material monomer, And a group obtained by removing one hydrogen atom from an alkoxy group is preferred.
  • Examples of the structural unit represented by the formula (23) include the following structural units.
  • R 13 represents a (1 + m11 + m12) -valent organic group.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are described above.
  • m12 each independently represents an integer greater than or equal to 1.
  • Each of R 13 , m11, m12, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 is plural. In some cases, they may be the same or different.
  • examples of the (1 + m11 + m12) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m11 + m12) -valent organic group represented by R 13 is a group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group and (m11 + m12) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m11 + m12) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (24) include the following structural units.
  • the structural unit represented by the formula (13) is preferably a structural unit represented by the formula (25) from the viewpoint of durability of the obtained ionic polymer.
  • R 15 represents a (1 + m13 + m14) -valent organic group.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are described above.
  • M14 and m15 each independently represents an integer greater than or equal to 1.
  • R 15 , m13, m14, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 and n3 are each When there are a plurality, they may be the same or different.
  • examples of the (1 + m13 + m14) -valent organic group represented by R 15 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m13 + m14) -valent organic group represented by R 15 is a group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group and (m13 + m14) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m13 + m14) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (25) include the following structural units.
  • the structural unit represented by formula (15) is the structural unit represented by formula (26) and the formula from the viewpoint of electron transport properties of the obtained ionic polymer.
  • the structural unit represented by (27) is preferred, and the structural unit represented by formula (27) is more preferred.
  • R 16 represents a (1 + m16 + m17) valent organic group
  • R 17 represents a monovalent organic group.
  • Q 3 indicating an integer of 1 or more, respectively m17 independently, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2, b2 , and n3
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m16 + m17) -valent organic group represented by R 16 is a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group and (m16 + m17) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m16 + m17) hydrogen atoms have been removed from an alkoxy group are preferred.
  • examples of the monovalent organic group represented by R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and pentyl.
  • a group in which one hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms which is not present phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl 1 hydrogen from an aryl group having 6 to 30 carbon atoms, with or without a substituent selected from a group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like
  • the monovalent organic group represented by R 17 is a group obtained by removing one hydrogen atom from an alkyl group, a group obtained by removing one hydrogen atom from an aryl group, from the viewpoint of ease of synthesis of the raw material monomer, And a group obtained by removing one hydrogen atom from an alkoxy group is preferred.
  • Examples of the structural unit represented by the formula (26) include the following structural units.
  • R 16 represents a (1 + m16 + m17) valent organic group.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2, and n 3 are described above.
  • m17 each independently represents an integer of 1 or more, and each of R 16 , m16, m17, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 is plural. In some cases, they may be the same or different.
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m16 + m17) -valent organic group represented by R 16 is a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group and (m16 + m17) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m16 + m17) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (27) include the following structural units.
  • the structural unit represented by the formula (15) is preferably a structural unit represented by the formula (28) from the viewpoint of durability of the obtained ionic polymer.
  • R 18 represents a (1 + m18 + m19) -valent organic group.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are the same as described above.
  • M19 and m20 each independently represents an integer greater than or equal to 1.
  • R 18 , m18, m19, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are each When there are a plurality, they may be the same or different.
  • examples of the (1 + m18 + m19) -valent organic group represented by R 18 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m18 + m19) -valent organic group represented by R 18 is a group obtained by removing (m18 + m19) hydrogen atoms from an alkyl group and (m18 + m19) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m18 + m19) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (28) include the following structural units.
  • the structural unit represented by formula (17) is preferably a structural unit represented by formula (29) from the viewpoint of electron transport properties of the obtained ionic polymer.
  • R 19 represents a single bond or a (1 + m21) -valent organic group
  • R 20 represents a single bond or a (1 + m22) -valent organic group.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, the b1 and n3 represents an integer of 1 or more in each .m21 and m22 described above independently.
  • m21 when R 19 is a single bond indicates 1
  • R 20 is In the case of a single bond
  • m22 represents 1.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are plural, they may be the same or different. .
  • examples of the (1 + m21) -valent organic group represented by R 19 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m21) -valent organic group represented by R 19 is a group obtained by removing (m21) hydrogen atoms from an alkyl group and (m21) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m21) hydrogen atoms have been removed from an alkoxy group are preferred.
  • examples of the (1 + m22) -valent organic group represented by R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m22) -valent organic group represented by R 20 is a group obtained by removing (m22) hydrogen atoms from an alkyl group and (m22) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m22) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (29) include the following structural units.
  • the structural unit represented by the formula (17) is preferably a structural unit represented by the formula (30) from the viewpoint of durability of the obtained ionic polymer.
  • R 21 represents a single bond or a (1 + m23) -valent organic group
  • R 22 represents a single bond or a (1 + m24) -valent organic group
  • the b1 and n3 represents an integer of 1 or more in each .m23 and m24 described above independently.
  • m23 when R 21 is a single bond indicates 1
  • R 22 is In the case of a single bond
  • m24 represents 1.
  • n25 and m26 each independently represents an integer of 1 or more, m23, m24, R 21 , R 22 , Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 may be the same or different when there are a plurality of each.
  • examples of the (1 + m23) -valent organic group represented by R 21 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • Group in which (m23) hydrogen atoms have been removed from the alkyl group methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a
  • the (1 + m23) -valent organic group represented by R 21 is a group obtained by removing (m23) hydrogen atoms from an alkyl group and (m23) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m23) hydrogen atoms have been removed from an alkoxy group are preferred.
  • examples of the (1 + m24) -valent organic group represented by R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m24) -valent organic group represented by R 22 is a group obtained by removing (m24) hydrogen atoms from an alkyl group and (m24) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m24) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (30) include the following structural units.
  • the structural unit represented by formula (20) is preferably a structural unit represented by formula (31) from the viewpoint of the obtained electron transport property.
  • R 23 represents a single bond or a (1 + m27) valent organic group
  • R 24 represents a single bond or a (1 + m28) valent organic group.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are as described above
  • m 27 and m 28 each independently represent an integer of 1 or more, provided that when R 23 is a single bond, m 27 represents 1 and R 24 represents In the case of a single bond, m28 represents 1.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 they may be the same or different. .
  • examples of the (1 + m27) -valent organic group represented by R 23 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • Group in which (m27) hydrogen atoms have been removed from the alkyl group methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl
  • R 23 (1 + m27) valent organic group, from the viewpoint of easy synthesis of the raw material monomer, the alkyl group (m27) number of groups other than hydrogen atoms, the aryl group (m27) number of hydrogen A group in which atoms are removed and a group in which (m27) hydrogen atoms have been removed from an alkoxy group are preferred.
  • examples of the (1 + m28) -valent organic group represented by R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m28) -valent organic group represented by R 24 is a group obtained by removing (m28) hydrogen atoms from an alkyl group and (m28) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m28) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (31) include the following structural units.
  • the structural unit represented by the formula (20) is preferably a structural unit represented by the formula (32) from the viewpoint of durability of the obtained ionic polymer.
  • R 25 represents a single bond or a (1 + m29) -valent organic group
  • R 26 represents a single bond or a (1 + m30) -valent organic group.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are as described above
  • m 29 and m 30 each independently represent an integer of 1 or more, provided that when R 25 is a single bond, m 29 represents 1 and R 26 represents In the case of a single bond, m30 represents 1.
  • n31 and m32 each independently represent an integer of 1 or more m29, m30, R 25 , R 26 , Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2 and n3 may be the same or different when there are a plurality of each.
  • examples of the (1 + m29) -valent organic group represented by R 25 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m29) -valent organic group represented by R 25 is a group obtained by removing (m29) hydrogen atoms from an alkyl group and (m29) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m29) hydrogen atoms have been removed from an alkoxy group are preferred.
  • examples of the (1 + m30) -valent organic group represented by R 26 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the (1 + m30) -valent organic group represented by R 26 is a group obtained by removing (m30) hydrogen atoms from an alkyl group and (m30) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer.
  • a group in which atoms are removed and a group in which (m30) hydrogen atoms have been removed from an alkoxy group are preferred.
  • Examples of the structural unit represented by the formula (32) include the following structural units.
  • the ionic polymer which concerns on this embodiment may further have 1 or more types of structural units represented by Formula (33).
  • Ar 5 represents a divalent aromatic group having or not having a substituent, or a divalent aromatic amine residue having or not having a substituent
  • X ′ represents a substituted group.
  • An imino group with or without a group, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group, and m33 and m34 are each independently 0 or 1 And at least one of m33 and m34 is 1.
  • Examples of the divalent aromatic group represented by Ar 5 in formula (33) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • Examples of the divalent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, a furan ring, A divalent group obtained by removing two hydrogen atoms from a monocyclic aromatic ring selected from a pyrrole ring, a thiophene ring, a pyrazole ring, an imidazole ring, an oxazole ring, an oxadiazole ring and an azadiazole ring; A divalent group obtained by removing two hydrogen atoms from a condensed polycyclic aromatic ring in which two or more selected from the group consisting of rings are condensed; from the
  • the condensed polycyclic aromatic ring is preferably one in which 2 to 4 monocyclic aromatic rings are condensed from the viewpoint of solubility of the ionic polymer.
  • the number of condensed monocyclic aromatic rings is more preferably 2 to 3, and further preferably 2.
  • the aromatic ring assembly is preferably one in which 2 to 4 aromatic rings are linked from the viewpoint of solubility of the ionic polymer.
  • the number of linked aromatic rings is more preferably 2 to 3, and still more preferably 2.
  • the bridged polycyclic aromatic ring is preferably one in which 2 to 4 aromatic rings are crosslinked from the viewpoint of solubility of the ionic polymer.
  • the number of aromatic rings to be bridged is more preferably 2 to 3, and even more preferably 2.
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aromatic ring assembly include the following rings.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • the divalent aromatic group represented by Ar 5 is represented by the formulas 45 to 60, 61 to 71, 77 to 80, 91. , 92, 93 or 96 is preferably a divalent group obtained by removing two hydrogen atoms from the ring represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92 or 96.
  • a divalent group in which two hydrogen atoms are removed is more preferable.
  • the above divalent aromatic group may have a substituent.
  • substituent group and substituted groups exemplified in the description with respect to Q 1.
  • Examples of the divalent aromatic amine residue represented by Ar 5 in formula (33) include a group represented by formula (34).
  • Ar 6 , Ar 7 , Ar 8 and Ar 9 are each independently an arylene group with or without a substituent or a divalent heterocyclic ring with or without a substituent.
  • Ar 10 , Ar 11 and Ar 12 each independently represent an aryl group with or without a substituent, or a monovalent heterocyclic group with or without a substituent, and n10 and m35 independently represents 0 or 1.
  • Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group may have include, for example, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, and an aryl group.
  • the substituent is vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, small ring (cyclopropyl group) , A cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.), a lactone group, a lactam group, or a cross-linking group such as a group containing a siloxane derivative structure.
  • the carbon atom in Ar 6 and the carbon atom in Ar 8 may be directly bonded, or may be bonded through a divalent group such as —O— or —S—. Good.
  • Examples of the aryl group represented by Ar 10 , Ar 11 , and Ar 12 and the monovalent heterocyclic group include the aryl groups described and exemplified as the above-described substituents, and monovalent heterocyclic groups.
  • arylene group represented by Ar 6 , Ar 7 , Ar 8 , and Ar 9 a group composed of the remaining atomic group obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • an arylene group for example, a group having a benzene ring, a group having a condensed ring, two or more benzene rings or condensed rings are bonded via a single bond or a divalent organic group (for example, an alkenylene group such as a vinylene group).
  • Groups. Arylene group has usually 6 to 60 carbon atoms, and preferably 7 to 48..
  • the arylene group include, for example, a phenylene group, a biphenylene group, a C 1 to C 17 alkoxyphenylene group, a C 1 to C 17 alkylphenylene group, a 1-naphthylene group, a 2-naphthylene group, a 1-anthracenylene group, 2- Anthracenylene group and 9-anthracenylene group may be mentioned.
  • the hydrogen atom of the aryl group may be substituted with a fluorine atom.
  • the fluorine atom-substituted aryl group include a tetrafluorophenylene group.
  • a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
  • Examples of the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , and Ar 9 include groups composed of the remaining atomic groups obtained by removing two hydrogen atoms from a heterocyclic compound.
  • a heterocyclic compound is an organic compound having a cyclic structure, and as an element constituting the ring, in addition to carbon atoms, oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms , An organic compound containing one or more heteroatoms selected from the group consisting of tellurium atoms and arsenic atoms.
  • the divalent heterocyclic group may have a substituent.
  • the divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms.
  • the number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • the divalent heterocyclic group for example, thiophenediyl group, C 1 ⁇ C 12 alkyl thiophenediyl group, pyrrolediyl group, furandiyl group, pyridinediyl group, C 1 ⁇ C 12 alkyl pyridinediyl group, pyridazine-diyl group, pyrimidine
  • Examples include diyl group, pyrazinediyl group, triazinediyl group, pyrrolidinediyl group, piperidinediyl group, quinolinediyl group, and isoquinolinediyl group.
  • the ionic polymer containing a divalent aromatic amine residue as a structural unit may further have another structural unit.
  • other structural units include arylene groups such as a phenylene group and a fluorenediyl group.
  • ionic polymers those containing a crosslinking group are preferred.
  • Examples of the divalent aromatic amine residue represented by the formula (34) include groups in which two hydrogen atoms have been removed from the aromatic amine represented by the following formulas 101 to 110.
  • the aromatic amines represented by Formulas 101 to 110 may have a substituent as long as a divalent aromatic amine residue can be generated.
  • substituents include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • X ′ represents an imino group with or without a substituent, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group.
  • Examples of the substituent that the imino group, silyl group or ethenylene group may have include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl
  • An alkyl group having 1 to 20 carbon atoms such as a group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, and lauryl group;
  • Examples thereof include aryl groups having 6 to 30 carbon atoms such as phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, and 9-anthracenyl group.
  • X ′ is preferably an imino group, an ethenylene group, or an ethynylene group.
  • m33 is preferably 1 and m34 is preferably 0.
  • the structural unit represented by the formula (33) is preferable from the viewpoint of electron accepting property of the ionic polymer.
  • Ar 13 is a pyridinediyl group with or without a substituent, a pyrazinediyl group with or without a substituent, a pyrimidinediyl group with or without a substituent, A pyridazine diyl group with or without a group or a triazinediyl group with or without a substituent is shown.
  • Examples of the substituent that the pyridinediyl group may have include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyrazinediyl group may have include the substituents exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyrimidinediyl group may have include the substituents exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyridazinediyl group may have include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the triazinediyl group may have include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the total number of structural units represented by the formula (20) is 30 to 100 mol% in all structural units contained in the ionic polymer excluding the terminal structural unit. It is more preferable that
  • terminal structural unit terminal structural unit of the ionic polymer according to the present embodiment for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, s- butyl Group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, Isobutoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group,
  • the ionic polymer according to this embodiment is preferably a conjugated compound.
  • the “conjugated compound” refers to an unshared electron pair possessed by a multiple bond (for example, a double bond or a triple bond) or a nitrogen atom and an oxygen atom in the main chain of the ionic polymer. It means that there is a region that is continuous with one single bond.
  • the ionic polymer is a conjugated compound
  • ⁇ (Number of atoms on the main chain in a region where multiple bonds or unshared electron pairs are connected via a single bond) / (Number of all atoms on the main chain) ⁇ ⁇ 100% Is preferably 50% or more, more preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and 90% or more. Even more preferably.
  • the ionic polymer according to this embodiment is preferably a polymer compound, more preferably a conjugated polymer compound.
  • the “polymer compound” refers to a compound having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more.
  • the ionic polymer is a conjugated polymer compound means that the ionic polymer is a conjugated compound and a polymer compound.
  • the number average molecular weight in terms of polystyrene of the ionic polymer is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 , and preferably 2 ⁇ 10 3 to 1 ⁇ 10 7 . More preferably, it is more preferably 3 ⁇ 10 3 to 1 ⁇ 10 7 , and still more preferably 5 ⁇ 10 3 to 1 ⁇ 10 7 .
  • the weight average molecular weight in terms of polystyrene is preferably 1 ⁇ 10 3 to 5 ⁇ 10 7 , more preferably 1 ⁇ 10 3 to 1 ⁇ 10 7 , and more preferably 1 ⁇ 10 7.
  • the number average molecular weight in terms of polystyrene is 1 ⁇ 10 3 ⁇ 5 ⁇ 10 5, more preferably 1 ⁇ 10 3 ⁇ 5 ⁇ 10 4, 1 ⁇ More preferably, it is 10 3 to 3 ⁇ 10 3 .
  • the polystyrene-equivalent number average molecular weight and weight average molecular weight of the ionic polymer can be determined using, for example, gel permeation chromatography (GPC).
  • the number of all structural units (that is, the degree of polymerization) contained in the ionic polymer excluding the terminal structural unit is preferably 1 or more and 20 or less, and preferably 1 or more and 10 or less. it is more preferable, and more preferably 1 to 5.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is preferably ⁇ 5.0 eV or more and ⁇ 2.0 eV or less, and ⁇ 4.5 eV. More preferably, it is -2.0 eV or less.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is preferably ⁇ 6.0 eV or more and ⁇ 3.0 eV or less, and more preferably ⁇ 5.5 eV or more and ⁇ 3.0 eV or less.
  • the orbital energy of HOMO is lower than that of LUMO.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer can be obtained by measuring the ionization potential of the ionic polymer and using the obtained ionization potential as the orbital energy of HOMO.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of an ionic polymer is obtained by calculating the energy difference between HOMO and LUMO and using the sum of the energy difference value and the ionization potential as the LUMO orbital energy. Can do.
  • a photoelectron spectrometer is used to measure the ionization potential.
  • the energy difference between HOMO and LUMO can be obtained from the absorption terminal by measuring the absorption spectrum of the ionic polymer using an ultraviolet / visible / near infrared spectrophotometer.
  • the polymer (ionic polymer) according to this embodiment is used as an electroluminescent device, it is preferable that the polymer is substantially non-luminescent.
  • the polymer is substantially non-luminescent.
  • “the polymer is substantially non-luminescent” has the following meaning. First, an electroluminescent element A having a layer containing a certain polymer is produced. The electroluminescent element 2 which does not have a layer containing a polymer is produced. Although the electroluminescent element A has a layer containing a polymer, the electroluminescent element 2 is different from the electroluminescent element 2 only in that it does not have a layer containing a polymer.
  • a forward voltage of 10 V is applied to the electroluminescent element A and the electroluminescent element 2 to measure an emission spectrum.
  • the wavelength ⁇ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element 2 is obtained.
  • the emission spectrum at the wavelength ⁇ is set to 1, the emission spectrum obtained for the electroluminescent element 2 is normalized, and the normalized emission amount S 0 is calculated by integrating with respect to the wavelength.
  • the emission intensity at the wavelength ⁇ is 1, the emission spectrum obtained for the electroluminescent element A is also normalized, and the normalized emission amount S is calculated by integrating the wavelength.
  • the polymer When the value calculated by (S ⁇ S 0 ) / S 0 ⁇ 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent element 2 having no polymer-containing layer, the polymer When the increase in the normalized luminescence amount of the electroluminescent element A having a layer containing is 30% or less, the polymer used is substantially non-luminescent.
  • the value calculated by (S ⁇ S 0 ) / S 0 ⁇ 100 is preferably 15% or less, and more preferably 10% or less.
  • an ionic polymer containing a group represented by the formula (1) and a group represented by the formula (3), an ionic polymer comprising only the structural unit represented by the formula (23), represented by the formula (23) And one type selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed.
  • An ionic polymer comprising the above group, an ionic polymer comprising only the structural unit represented by formula (24), a structural unit represented by formula (24), and formulas 45 to 50, 59, 60, 77 80, 91, 92, 96, and an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by 101 to 110, the formula (25)
  • An ionic polymer comprising one or more groups selected from the group, an ionic polymer comprising only a structural unit represented by formula (29), a structural unit represented by formula (29), and formulas 45 to 50 59, 60, 77, 80, 91, 92, 96, and one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from groups 101 to 110 A polymer, an ionic polymer consisting only of the structural unit represented by formula (30), a structural unit represented by formula (30), and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, And 2 hydrogen atoms from the groups represented by 101 to 110 And one or more groups selected from the group consisting of excluding groups include ionic polymer consisting of.
  • Examples of the ionic polymer containing a group represented by the formula (1) and a group represented by the formula (3) include the following polymer compounds.
  • the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100-p) mol%. , and the these structural units are arranged at random.
  • n represents the degree of polymerization.
  • an ionic polymer containing a group represented by the formula (2) and a group represented by the formula (3), an ionic polymer comprising only a structural unit represented by the formula (26), represented by the formula (26) And one type selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed.
  • An ionic polymer comprising the above group, an ionic polymer comprising only a structural unit represented by formula (27), a structural unit represented by formula (27), and formulas 45 to 50, 59, 60, 77 80, 91, 92, 96, and an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by 101 to 110, the formula (28)
  • An ionic polymer comprising at least one group selected from the group, an ionic polymer comprising only a structural unit represented by formula (31), a structural unit represented by formula (31), and formulas 45 to 50 59, 60, 77, 80, 91, 92, 96, and one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from groups 101 to 110 A polymer, an ionic polymer consisting only of the structural unit represented by formula (32), a structural unit represented by formula (32), and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 2 hydrogen atoms from a group represented by 101-110 And one or more groups selected from the group consisting of excluding groups include ionic polymer consisting of.
  • Examples of the ionic polymer containing a group represented by the formula (2) and a group represented by the formula (3) include the following polymer compounds.
  • the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100-p) mol%. , and the these structural units are arranged at random.
  • n represents the degree of polymerization.
  • a method for producing the ionic polymer according to this embodiment will be described.
  • a method in which a compound represented by the following general formula (36) is used as one of the raw materials and condensation polymerization is performed can be mentioned.
  • a compound in which —A a — is a structural unit represented by the formula (13)
  • a formula (17 It is preferable to use at least one selected from the group consisting of a compound which is a structural unit represented by formula (20) and a compound which is a structural unit represented by formula (20).
  • a a is represented by the formula (3) and one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2).
  • a structural unit having one or more groups is shown, and Y 4 and Y 5 each independently represent a group involved in condensation polymerization.
  • the ionic polymer according to the present embodiment contains a structural unit other than -A a- together with the structural unit represented by -A a- in the above formula (36), other than -A a- A compound having another structural unit and two groups involved in condensation polymerization may be subjected to condensation polymerization together with the compound represented by formula (36).
  • a compound represented by the formula (37) is exemplified.
  • An ionic polymer further having a structural unit represented by —A b — can be produced by condensation polymerization of the compound represented by formula (37) together with the compound represented by formula (36).
  • a b represents a general formula (33) a structural unit represented by the structural unit or the general formula (35) represented by, Y 6 and Y 7 are each independently a condensation polymerization Indicates the group involved.
  • Examples of the group (Y 4 , Y 5 , Y 6 and Y 7 ) involved in the condensation polymerization include a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, a borate ester residue, and a sulfonium methyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl sulfonate group examples include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group
  • aryl sulfonate group examples include a benzene sulfonate group and a p-toluene sulfonate group.
  • arylalkyl sulfonate groups examples include benzyl sulfonate groups.
  • boric acid ester residue examples include a group represented by the following formula.
  • phosphonate methyl group the following formula: —CH 2 PO (OR d ) 2 (Wherein, R d represents an alkyl group, an aryl group, or an arylalkyl group).
  • Examples of the monohalogenated methyl group include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
  • a group suitable as a group involved in condensation polymerization varies depending on the type of polymerization reaction.
  • a polymerization reaction using a zerovalent nickel complex such as a Yamamoto coupling reaction
  • a halogen atom such as a Yamamoto coupling reaction
  • an alkyl sulfonate group, an aryl sulfonate group, And arylalkyl sulfonate groups such as a Suzuki coupling reaction
  • an alkyl sulfonate group, a halogen atom, a boric acid ester residue, and —B (OH) 2 may be mentioned.
  • oxidative polymerization with an oxidizing agent or electrochemically a hydrogen atom may be mentioned.
  • the compound (monomer) represented by the general formula (36) or (37) is dissolved in an organic solvent as necessary, and an alkali or an appropriate catalyst is obtained.
  • a polymerization method in which the reaction is carried out at a temperature between the melting point and the boiling point of the organic solvent may be employed.
  • a polymerization method for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis”. ”, Collective Volume 6 (Collective Volume VI), 407-411, John Wiley & Sons, Inc., 1988, Chemical Review, Vol. 95, 2457 (1995). Journal of Organometallic Chemistry (J.
  • a known condensation polymerization reaction may be employed depending on the type of group involved in the condensation polymerization.
  • Examples of such a polymerization method include a method of polymerizing an appropriate monomer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, a method of polymerizing by a nickel zero-valent complex (Ni (0) complex), FeCl 3 and the like.
  • Examples thereof include a method of polymerizing with an oxidizing agent, a method of electrochemically oxidatively polymerizing, and a method of decomposing an intermediate polymer having an appropriate leaving group.
  • a method of polymerizing an appropriate monomer by a Suzuki coupling reaction a method of polymerizing by a Grignard reaction, and a method of polymerizing by a nickel zero-valent complex are preferable because the structure of the resulting ionic polymer can be easily controlled.
  • One aspect of a preferred method for producing an ionic polymer according to the present embodiment has a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an arylalkyl sulfonate group as a group involved in condensation polymerization.
  • an ionic polymer is produced by condensation polymerization of at least one raw material monomer in the presence of a nickel zero-valent complex.
  • raw material monomers in this case include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, halogen-aryl sulfonate compounds, and halogen-aryl.
  • Examples include alkyl sulfonate compounds, alkyl sulfonate-aryl sulfonate compounds, alkyl sulfonate-aryl alkyl sulfonate compounds, and aryl sulfonate-aryl alkyl sulfonate compounds.
  • a halogen atom as a group involved in the condensation polymerization, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an arylalkyl sulfonate group, —B (OH) 2 , and A group selected from the group consisting of boric acid ester residues, and the total number (J) of moles of halogen atoms, alkyl sulfonate groups, aryl sulfonate groups and arylalkyl sulfonate groups in the raw material monomer; A raw material monomer in which the ratio of the total number of moles (K) of B (OH) 2 and boric acid ester residues (K) is substantially 1 (usually, K / J is in the range of 0.7 to 1.2)
  • the organic solvent varies depending on the type of raw material monomer and the type of reaction, but an organic solvent that has been sufficiently deoxygenated to suppress side reactions is preferred.
  • the organic solvent is preferably dehydrated in the same manner as the deoxygenation treatment. However, this is not the case when a two-phase reaction with water such as a Suzuki coupling reaction is performed.
  • saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane
  • unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloropentane
  • Halogenated saturated hydrocarbons such as bromopentane, chlorohexane, bromohexane, chlorocyclohexane, and bromocyclohexane
  • halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene, methanol, ethanol, propanol, isopropanol, butanol
  • alcohols such as t-butyl alcohol, carboxylic acids such as formic acid, acetic acid and
  • organic solvents ethers are more preferable from the viewpoint of reactivity, and tetrahydrofuran and diethyl ether are more preferable.
  • organic solvents toluene and xylene are preferable from the viewpoint of reaction rate.
  • an alkali or an appropriate catalyst to the reaction solution in order to react the raw material monomers more efficiently. What is necessary is just to select an alkali or a catalyst according to the superposition
  • the alkali or catalyst those which are sufficiently dissolved in the solvent used in the reaction are preferable.
  • a method of mixing an alkali or a catalyst a method of slowly adding an alkali or catalyst solution while stirring the reaction solution under an inert atmosphere such as argon or nitrogen, and a method of slowly adding the reaction solution to an alkali or catalyst solution. The method of adding is illustrated.
  • the terminal group is protected with a stable group. May be.
  • the stable group that protects the terminal group has a conjugated bond and forms a structure that is continuously conjugated with the conjugated structure of the main chain of the ionic polymer. It is preferable.
  • the structure include a structure in which an aryl group or a heterocyclic group is bonded via a carbon-carbon bond.
  • the stable group for protecting the terminal group include substituents such as a monovalent aromatic compound group represented by the structural formula of Chemical Formula 10 in JP-A-9-45478.
  • an ionic polymer having no cation is polymerized in the first step, and then from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing a cation is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include a hydrolysis reaction with a metal hydroxide or an alkyl ammonium hydroxide.
  • an ionic polymer having no ions is polymerized in the first step, and ions are generated from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing this is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include a quaternary ammonium salification reaction of an amine using an alkyl halide or a halogen abstraction reaction with SbF 5 .
  • the ionic polymer according to this embodiment is excellent in charge injection and transportability. For this reason, the light emitting element which has the layer containing the ionic polymer which concerns on this embodiment light-emits with high brightness
  • Examples of a method for forming a layer containing an ionic polymer include a method of forming a film containing a solution containing an ionic polymer.
  • Solvents used in the film formation include alcohols other than water, ethers, esters, nitrile compounds, nitro compounds, halogenated alkyls, halogenated aryls, thiols, sulfides, sulfoxides, Of the solvents such as thioketones, amides, and carboxylic acids, a solvent having a solubility parameter of 9.3 or more is preferable.
  • Solvents include, for example, methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1-butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), dimethyl sulfoxide ( 12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9.6) , Bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and mixed solvents thereof.
  • the thickness of the electron injection layer varies depending on the ionic polymer used, and is appropriately selected so that the drive voltage and the light emission efficiency become appropriate values.
  • the electron injection layer needs to have a thickness that does not cause pinholes. From the viewpoint of lowering the driving voltage of the element, the thickness of the electron injection layer is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 2 nm to 200 nm. From the viewpoint of protecting the light emitting layer, the thickness of the electron injection layer is preferably 5 nm to 1 ⁇ m.
  • a material for the cathode As a material for the cathode, a material having a small work function, easy electron injection into the light emitting layer, and high electrical conductivity is preferable. In the case of an organic EL device configured to extract light from the anode side, a material having a high visible light reflectivity is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side at the cathode.
  • the material for the cathode for example, alkali metals, alkaline earth metals, transition metals, and Group 13 metals of the periodic table can be used.
  • cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. 1 or more selected from gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin, and an alloy containing two or more metals selected from these metals, one or more selected from the above metals Alloys with seeds or more, or graphite or graphite intercalation compounds are used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used as the cathode.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO
  • examples of the conductive organic substance include polyaniline or a derivative thereof and polythiophene or a derivative thereof.
  • the cathode may be composed of a laminate in which two or more layers are laminated. In some cases, the electron injection layer is used as a cathode.
  • the thickness of the cathode is appropriately designed in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
  • Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a lamination method in which a metal thin film is thermocompression bonded.
  • the above organic EL device can be used as a lighting device, a surface light source device, or a display device by adding predetermined components.
  • a first film was produced using the production apparatus shown in FIG. That is, a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) is used as a base material (base material 6), and this is sent out. Mounted on a roll 701. And while applying a magnetic field between the film-forming roll 31 and the film-forming roll 32 and supplying electric power to each of the film-forming roll 31 and the film-forming roll 32, Was discharged to generate plasma.
  • PEN film thickness: 100 ⁇ m, width: 350 mm
  • Teijin DuPont Films trade name “Teonex Q65FA”
  • a film-forming gas (mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (which also functions as a discharge gas) as a source gas) is supplied to the formed discharge region under the following conditions
  • a thin film was formed by a plasma CVD method to obtain a first film.
  • ⁇ Film formation conditions Supply amount of source gas: 50 sccm (Standard Cubic Centimeter per Minute converted to zero and 1 atm. The same applies hereinafter) Supply amount of oxygen gas: 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min.
  • the thickness of the gas barrier layer in the obtained first film was 0.3 ⁇ m. Further, the water vapor permeability of the obtained first film was 3.1 ⁇ 10 ⁇ 4 g / (m under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side, and a humidity of 90% RH on the high humidity side. 2 ⁇ day), a value below the detection limit under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side.
  • the water vapor transmission rate under the conditions of a temperature of 40 ° C., a low humidity side humidity of 10% RH, and a high humidity side humidity of 100% RH after bending the first film under the condition of a curvature radius of 8 mm is below the detection limit. It was confirmed that even when the first film was bent, the decrease in gas barrier properties was sufficiently suppressed.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe” manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the obtained silicon distribution curve, oxygen distribution curve and carbon distribution curve are shown in FIG. Regarding the obtained silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the distance from the surface of the gas barrier layer (atomic concentration) and the relationship between the etching time and the surface ( together relationship between nm) shown in the graph of FIG. “Distance (nm)” described on the horizontal axis of the graph of FIG. 6 is a value obtained by calculation from the etching time and the etching rate.
  • the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at. %, And in the region of 90% or more in the thickness direction of the gas barrier layer, the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions represented by the above formula (1). It was confirmed.
  • Reference Example A2 The first film having a gas barrier layer having a thickness of 0.3 ⁇ m obtained in Reference Example A1 was mounted on a delivery roll 701, and a gas barrier layer was newly formed on the surface of the gas barrier layer. Otherwise in the same manner as in Reference Example A1, a first film (A) was obtained. The thickness of the gas barrier layer on the base material (PEN film) in the first film (A) was 0.6 ⁇ m.
  • the first film (A) was mounted on a delivery roll 701, and a gas barrier layer was newly formed on the surface of the gas barrier layer. Otherwise in the same manner as in Reference Example A1, a first film (B) was obtained.
  • the thickness of the gas barrier layer in the first film (B) was 0.9 ⁇ m.
  • the first film (B) has a water vapor transmission rate of 6.9 ⁇ 10 ⁇ 4 g / (m 2 ⁇ m at a temperature of 40 ° C., a humidity of 0% RH on the low humidity side and a humidity of 90% RH on the high humidity side. day), a value below the detection limit under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side.
  • the water vapor transmission rate is detected under conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side after the first film (B) is bent under the condition of a curvature radius of 8 mm. It was a value below the limit, and it was confirmed that even when the first film (B) was bent, the gas barrier property was sufficiently suppressed.
  • a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve were prepared by the same method as in Reference Example A1.
  • the obtained results are shown in FIG. Regarding the silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen carbon distribution curve, the relationship between the atomic ratio (atomic concentration) and the etching time, as well as the atomic ratio (atomic concentration) and the distance (nm) from the surface of the gas barrier layer.
  • the relationship is also shown in the graph of FIG. “Distance (nm)” described on the horizontal axis of the graph of FIG. 8 is a value obtained by calculation from the etching time and the etching rate.
  • the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at. %, And in the region of 90% or more in the thickness direction of the gas barrier layer, the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions represented by the above formula (1). It was confirmed.
  • Reference Example A3 A first film was obtained in the same manner as in Reference Example A1, except that the supply amount of the source gas was changed to 100 sccm.
  • the thickness of the gas barrier layer in the first film was 0.6 ⁇ m.
  • the water vapor permeability of the first film is 3.2 ⁇ 10 ⁇ 4 g / (m 2 ⁇ day) under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side, and a humidity of 90% RH on the high humidity side. Yes, the value was below the detection limit under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side.
  • the water vapor transmission rate under the conditions of a temperature of 40 ° C., a low humidity side humidity of 10% RH, and a high humidity side humidity of 100% RH after bending the first film under the condition of a curvature radius of 8 mm is below the detection limit. It was confirmed that even when the first film was bent, the decrease in gas barrier properties was sufficiently suppressed.
  • a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve were prepared by the same method as in Reference Example A1.
  • the obtained silicon distribution curve, oxygen distribution curve and carbon distribution curve are shown in FIG. Regarding the obtained silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the distance from the surface of the gas barrier layer (nm) as well as the relationship between the atomic ratio (atomic concentration) and etching time. 10 is shown in the graph of FIG. “Distance (nm)” described on the horizontal axis of the graph of FIG. 10 is a value obtained by calculation from the etching time and the etching rate.
  • the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at. %, And in the region of 90% or more in the thickness direction of the gas barrier layer, the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions represented by the above formula (1). It was confirmed.
  • the thickness of the gas barrier layer in the first film was 100 nm.
  • the water vapor transmission rate of the first film is 1.3 g / (m 2 ⁇ day) under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side.
  • the gas barrier property was insufficient.
  • a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve were prepared by the same method as in Reference Example A1.
  • the obtained silicon distribution curve, oxygen distribution curve and carbon distribution curve are shown in FIG. Regarding the obtained silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the distance from the surface of the gas barrier layer (nm) as well as the relationship between the atomic ratio (atomic concentration) and etching time. ) the relationship conjunction with shown in the graph of FIG. 12.
  • “Distance (nm)” described on the horizontal axis of the graph of FIG. 12 is a value obtained by calculation from the etching time and the etching rate. As is clear from the results shown in FIGS. 11 and 12, it was confirmed that the obtained carbon distribution curve has no extreme value.
  • the first film having the gas barrier layer used in the organic EL device according to the present invention has a sufficient gas barrier property, and even when bent, the gas barrier property is sufficiently lowered. It is possible to suppress it.
  • an ionic polymer was produced, and an organic EL device was produced using the produced ionic polymer.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC), polystyrene equivalent weight average molecular weight and number average molecular weight. As sought.
  • the sample to be measured was dissolved in tetrahydrofuran so as to have a concentration of about 0.5% by weight, and 50 ⁇ L was injected into GPC. Tetrahydrofuran was used for the mobile phase of GPC and flowed at a flow rate of 0.5 mL / min.
  • the structural analysis of the polymer was performed by 1 H-NMR analysis using a 300 MHz NMR spectrometer manufactured by Varian. The measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom) so as to have a concentration of 20 mg / mL.
  • a soluble heavy solvent a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the polymer was determined by measuring the ionization potential of the polymer and using the obtained ionization potential as the HOMO orbital energy.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the polymer was obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the LUMO orbital energy.
  • a photoelectron spectrometer manufactured by Riken Keiki Co., Ltd .: AC-2
  • the energy difference between HOMO and LUMO was determined from the absorption terminal by measuring the absorption spectrum of the polymer using an ultraviolet / visible / near infrared spectrophotometer (Varian: Cary 5E).
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered, and the precipitate was dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column.
  • the number average molecular weight in terms of polystyrene of the polymer A was 5.2 ⁇ 10 4 .
  • the polymer A consists of a structural unit represented by the formula (A).
  • Conjugated polymer compound 1 is composed of a structural unit represented by formula (B) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the conjugated polymer compound 1 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • Conjugated polymer compound 2 is composed of a structural unit represented by formula (C) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the conjugated polymer compound 2 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • Conjugated polymer compound 3 is composed of a structural unit represented by formula (D) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the conjugated polymer compound 3 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the conjugated polymer compound 4 is composed of a structural unit represented by the formula (E) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 4 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • reaction was allowed to react for 3.5 hours. Thereafter, parabromotoluene (0.68 g) was added thereto, and the mixture was further reacted for 2.5 hours. After the reaction, the reaction solution was cooled to room temperature, 50 ml of ethyl acetate / 50 ml of distilled water were added, and the aqueous layer was removed. After adding 50 ml of distilled water again to remove the aqueous layer, magnesium sulfate was added as a desiccant to the organic solvent layer. Insoluble matter was filtered to remove the organic solvent to obtain a residue.
  • the number average molecular weight in terms of polystyrene of the polymer B was 2.0 ⁇ 10 3 .
  • the polymer B is represented by the formula (F).
  • the obtained polymer B cesium salt is referred to as a conjugated polymer compound 5.
  • the conjugated polymer compound 5 is represented by the formula (G) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 5 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer C was 526 mg.
  • the number average molecular weight in terms of polystyrene of the polymer C was 3.6 ⁇ 10 4 .
  • the polymer C consists of a structural unit represented by the formula (H).
  • N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine is disclosed in, for example, JP-A-2008-74017. It can be synthesized by the method described.
  • Conjugated polymer compound 6 is composed of a structural unit represented by formula (I) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the conjugated polymer compound 6 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer D was 590 mg.
  • the number average molecular weight in terms of polystyrene of the polymer D was 2.7 ⁇ 10 4 .
  • the polymer D consists of a structural unit represented by the formula (J). 3,7-Dibromo-N- (4-n-butylphenyl) phenoxazine was synthesized by the method described in JP2004137456.
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (210 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer D had completely disappeared.
  • the resulting cesium salt of polymer D is referred to as conjugated polymer compound 7.
  • the conjugated polymer compound 7 is composed of a structural unit represented by the formula (K) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 7 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.4 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 10 hours. Next, an aqueous sodium diethyldithiacarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 293 mg.
  • the number average molecular weight in terms of polystyrene of the polymer E was 1.8 ⁇ 10 4 .
  • the polymer E consists of a structural unit represented by the formula (L).
  • conjugated polymer compound 8 is composed of a structural unit represented by the formula (M) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 8 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 4 hours. Next, an aqueous sodium diethyldithiacarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in a mixed solvent of tetrahydrofuran / ethyl acetate (1/1 (volume ratio)) and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 343 mg.
  • the polystyrene equivalent number average molecular weight of the polymer F was 6.0 ⁇ 10 4 .
  • the polymer F consists of a structural unit represented by the formula (N).
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (130 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared.
  • the resulting cesium salt of polymer F is referred to as conjugated polymer compound 9.
  • the conjugated polymer compound 9 is composed of a structural unit represented by the formula (O) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 9 had a HOMO orbital energy of ⁇ 5.9 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the resulting precipitate was collected by filtration and redissolved in tetrahydrofuran.
  • the solution was added dropwise to a mixture of methanol (200 mL) and 15% aqueous ammonia (100 mL), and the resulting precipitate was collected by filtration.
  • the precipitate was redissolved in tetrahydrofuran, added dropwise to a mixture of methanol (200 mL) and water (100 mL), and the resulting precipitate was collected by filtration.
  • the collected precipitate was dried under reduced pressure to obtain a polymer G (360 mg).
  • the number average molecular weight in terms of polystyrene of the polymer G was 6.0 ⁇ 10 4 .
  • the polymer G consists of a structural unit represented by the formula (P).
  • Conjugated polymer compound 10 is composed of a structural unit represented by formula (Q) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the conjugated polymer compound 10 had a HOMO orbital energy of ⁇ 5.7 eV and a LUMO orbital energy of ⁇ 2.9 eV.
  • the obtained precipitate was filtered off to obtain a solid (18 g). Under an inert atmosphere, the obtained solid (1 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (1.5 g), potassium carbonate (0.7 g), DMF (15 mL) were added. The mixture was mixed and stirred at 100 ° C. for 4 hours. After allowing to cool, chloroform was added to perform liquid separation and extraction, and the solution was concentrated. The concentrate was dissolved in chloroform and purified by passing through a silica gel column. The solution was concentrated to give 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene (1.0 g).
  • Phenylboronic acid (6 mg) was added to the reaction solution and refluxed for 14 hours. Then, a sodium diethyldithiacarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The aqueous layer was removed, the organic layer was washed with distilled water, and the solid obtained by concentration was dissolved in chloroform and purified by passing through an alumina column and a silica gel column. The eluate from the column was concentrated and dried. The yield of the obtained polymer H was 0.44 g.
  • the number average molecular weight in terms of polystyrene of the polymer H was 3.6 ⁇ 10 4 .
  • the polymer H consists of a structural unit represented by the formula (R).
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer H had completely disappeared.
  • the resulting cesium salt of polymer H is referred to as conjugated polymer compound 11.
  • the conjugated polymer compound 11 is composed of a structural unit represented by the formula (S) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 11 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the number average molecular weight in terms of polystyrene of the polymer I was 2.0 ⁇ 10 3 .
  • the polymer I is represented by the formula (T).
  • 2- (4,4,5,5-tetramethyl-1,2,3-dioxaboran-2-yl) -9,9-dioctylfluorene is obtained by a method described in, for example, JP-A-2008-74017. Can be synthesized.
  • the obtained polymer I cesium salt is referred to as a conjugated polymer compound 12.
  • the conjugated polymer compound 12 is represented by the formula (U) (“one type selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 12 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • PEDOT PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name: “Baytron”) manufactured by Stark Vitec Co., Ltd. was used as the hole injection material solution.
  • a hole transporting polymer material and xylene were mixed to obtain a composition for forming a hole transporting layer containing 0.7 wt% of the hole transporting polymer material.
  • the hole transporting polymer material was synthesized by the following method. To a 1 liter three-necked round bottom flask equipped with a reflux condenser and an overhead stirrer was added 2,7-bis (1,3,2-dioxyborol) -9,9-di (1-octyl) fluorene (3.863 g). 7.283 mmol), N, N-di (p-bromophenyl) -N- (4- (butan-2-yl) phenyl) amine (3.177 g, 6.919 mmol) and di (4-bromophenyl) Benzocyclobutanamine (156.3 mg, 0.364 mmol) was added.
  • the aqueous layer was removed and the organic layer was washed with 50 mL of water.
  • the organic layer was returned to the reaction flask and 0.75 g of sodium diethyldithiocarbamate and 50 mL of water were added.
  • the resulting mixture was stirred in an 85 ° C. oil bath for 16 hours.
  • the aqueous layer was removed and the organic layer was washed 3 times with 100 mL of water and then passed through a column of silica gel and basic alumina.
  • toluene as an eluent, a toluene solution containing the eluted polymer was recovered. Next, the recovered toluene solution was poured into methanol to precipitate a polymer.
  • the precipitated polymer was dissolved again in toluene, and the obtained toluene solution was poured into methanol to precipitate the polymer again.
  • the precipitated polymer was vacuum-dried at 60 ° C. to obtain 4.2 g of a hole transporting polymer material.
  • the obtained hole transporting polymer material had a polystyrene equivalent weight average molecular weight of 1.24 ⁇ 10 5 and a molecular weight distribution index (Mw / Mn) of 2.8. It was.
  • the composition for forming a hole transport layer was applied by a spin coating method to obtain a coating film having a thickness of 20 nm.
  • the substrate provided with this coating film was heated at 190 ° C. for 20 minutes in an inert atmosphere (in a nitrogen atmosphere) to insolubilize the coating film, and then naturally cooled to room temperature to form a substrate on which the hole transport layer was formed. Obtained.
  • a light emitting polymer material (“Lumation BP361” manufactured by Summation Co., Ltd.) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material.
  • the composition for light emitting layer formation was apply
  • the substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
  • the substrate on which the layer containing the conjugated polymer compound 1 obtained above was formed was inserted into a vacuum apparatus, and an Al film was formed on the layer by vacuum vapor deposition to form a cathode, thereby forming a laminated structure. 1 was produced.
  • the laminated structure 1 obtained above was taken out from the vacuum apparatus and sealed with sealing glass and a two-component mixed epoxy resin in an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 1.
  • Example 29 Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1.
  • the composition was applied by spin coating in the air on an ITO cathode (film thickness: 45 nm) patterned on the surface of a glass substrate to obtain a coating film having a film thickness of 10 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 10 minutes to evaporate the solvent, and then naturally cooled to room temperature. A formed substrate was obtained.
  • a light emitting polymer material (“Lumation BP361” manufactured by Summation Co., Ltd.) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material.
  • a composition for forming a light-emitting layer is applied in the air by a spin coating method on the layer containing the conjugated polymer compound 1 of the substrate on which the layer containing the conjugated polymer compound 1 obtained above is formed. Coating film was obtained.
  • the substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
  • the hole injection material solution was applied in the air by a spin coating method on the light emitting layer of the substrate on which the light emitting layer obtained above was formed, to obtain a coating film having a film thickness of 60 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 15 minutes to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a hole injection layer was formed.
  • PEDOT PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid, product name: “Baytron”) manufactured by Starck Vitec Co., Ltd. was used as the hole injection material solution.
  • the substrate on which the hole injection layer formed above was formed was inserted into a vacuum apparatus, Au was deposited on the layer by 80 nm by a vacuum deposition method, and an anode was formed, whereby the laminated structure 1 was manufactured. .
  • the laminated structure 2 obtained above was taken out from the vacuum apparatus and sealed with sealing glass and a two-component mixed epoxy resin in an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 17.

Abstract

The present invention pertains to an organic EL element provided with a first film and an organic EL element disposed on the first film. The organic EL element is provided with a pair of electrodes, a light-emitting layer disposed between the electrodes, and an electron injection layer disposed between the electrodes. The electron injection layer contains an ionic polymer. The first film is provided with a gas barrier layer containing a silicon atom, an oxygen atom, and a carbon atom. The silicon distribution curve, the oxygen distribution curve and the carbon distribution curve obtained from the gas barrier layer satisfy the following conditions: (i) among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms and the ratio of the number of carbon atoms, the ratio of the number of silicon atoms is the second largest in a region accounting for 90 % or more in the thickness direction of the gas barrier layer; (ii) the carbon distribution curve has at least one extreme value; and (iii) the difference between the maximum value and the minimum value of the ratio of the number of carbon atoms is 5 atom % or more in the carbon distribution curve.

Description

有機EL装置及びその製造方法Organic EL device and manufacturing method thereof
 本発明は有機EL装置及びその製造方法に関する。 The present invention relates to an organic EL device and a manufacturing method thereof.
 有機EL(Electro Luminescence)素子は複数の薄膜が積層された構成を有している。各薄膜の厚さや材料などを適宜設定することによって、素子自体に可撓性を付与することができる。このような有機EL素子をフレキシブルなフィルム上に設けた場合、有機EL素子が搭載された装置全体が、フレキシブルな装置となり得る。 An organic EL (Electro Luminescence) element has a structure in which a plurality of thin films are laminated. Flexibility can be imparted to the element itself by appropriately setting the thickness and material of each thin film. When such an organic EL element is provided on a flexible film, the entire apparatus on which the organic EL element is mounted can be a flexible apparatus.
 有機EL素子は外気に曝されることによって劣化する。とくに有機EL素子の一部を構成する電子注入層は、酸素や水分と容易に反応するLiやNaを含む場合が多いため、外気に曝されることによってより一層容易に劣化する。そのため有機EL素子は、通常、酸素や水分などを透過しにくい、ガスバリア性の高いフィルム上に設けられる。ガスバリア性の高いフィルムとして、酸化ケイ素、窒化ケイ素、酸窒化ケイ素及び酸化アルミニウムなどの無機酸化物からなる薄膜をプラスチック基材上に成膜して形成されるフィルムが提案されている。 ¡Organic EL elements deteriorate when exposed to the open air. In particular, the electron injection layer that constitutes a part of the organic EL element often contains Li or Na that easily reacts with oxygen or moisture. Therefore, the electron injection layer is more easily deteriorated when exposed to the outside air. Therefore, the organic EL element is usually provided on a film having a high gas barrier property that hardly transmits oxygen or moisture. As a film having a high gas barrier property, a film formed by forming a thin film made of an inorganic oxide such as silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide on a plastic substrate has been proposed.
 無機酸化物からなる薄膜をプラスチック基材上に成膜する方法としては、真空蒸着法、スパッタ法、イオンプレーティング法等の物理気相成長法(PVD)、減圧化学気相成長法、プラズマ化学気相成長法等の化学気相成長法(CVD)が知られている。このような成膜方法を用いたガスバリア性の高いフィルムとして、例えば特開平4-89236号公報(特許文献1)には、ケイ素酸化物の蒸着膜を2層以上積層して形成された積層蒸着膜層を有するフィルムが開示されている。 As a method of forming a thin film made of an inorganic oxide on a plastic substrate, physical vapor deposition (PVD) such as vacuum deposition, sputtering, ion plating, vacuum chemical vapor deposition, plasma chemistry, etc. Chemical vapor deposition (CVD) such as vapor deposition is known. As a film having a high gas barrier property using such a film forming method, for example, Japanese Patent Laid-Open No. 4-89236 (Patent Document 1) discloses a laminated vapor deposition formed by laminating two or more silicon oxide vapor deposited films. A film having a membrane layer is disclosed.
 一方、交互に積層されたセラミック系の無機バリア膜及びポリマー膜を有するフィルムが特表2002-532850号(特許文献2)に開示されている。 On the other hand, a film having ceramic-based inorganic barrier films and polymer films laminated alternately is disclosed in JP-T-2002-532850 (Patent Document 2).
特開平4-89236号公報JP-A-4-89236 特表2002-532850号公報JP 2002-532850 A
 しかしながら、特許文献1に記載のフィルムは、ガスバリア性が必ずしも十分でないし、屈曲させられることによって、ガスバリア性が低下するという問題を有していた。 However, the film described in Patent Document 1 has a problem that the gas barrier property is not always sufficient and the gas barrier property is lowered by being bent.
 特許文献2に記載のフィルムによれば、ガスバリア性が高められるとともに、屈曲によるガスバリア性の低化が抑制されることが期待される。しかしながら、特許文献2に記載のフィルムの製造工程は、複雑で長い製造時間を要するという問題があった。 According to the film described in Patent Document 2, it is expected that the gas barrier property is improved and the decrease in the gas barrier property due to bending is suppressed. However, the film production process described in Patent Document 2 has a problem that it is complicated and requires a long production time.
 本発明の目的は、有機EL素子自体、とくにその一部を構成する電子注入層が劣化しにくい有機EL素子と、高いガスバリア性を備えるとともにフィルムを屈曲させたときにもガスバリア性が低下しにくく、かつ簡易な工程で短時間で形成することが可能なフィルムと、を備える有機EL装置を提供することである。 An object of the present invention is to provide an organic EL element itself, in particular, an organic EL element in which an electron injection layer constituting a part thereof is not easily deteriorated, and a high gas barrier property, and the gas barrier property is hardly lowered even when the film is bent. And an organic EL device comprising a film that can be formed in a short time by a simple process.
 本発明は、第1のフィルムと、第1のフィルム上に設けられた有機EL素子と、を備える有機EL装置に関する。有機EL素子は、一対の電極、前記電極間に配置された発光層、及び前記電極間に配置された電子注入層を有する。電子注入層はイオン性ポリマーを含む。第1のフィルムは、珪素(珪素原子)、酸素(酸素原子)及び炭素(炭素原子)を含有するガスバリア層を有し、珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の量(数)の比率(珪素の原子比)、酸素原子の量(数)の比率(酸素の原子比)及び炭素原子の量(数)の比率(炭素の原子比)と、前記ガスバリア層の厚み方向(膜厚方向)における前記ガスバリア層の一方の表面からの距離と、の関係をそれぞれ表す珪素分布曲線、酸素分布曲線及び炭素分布曲線が、下記条件:
(i)前記ガスバリア層の厚み方向(膜厚方向)の90%以上の領域において、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率のうちで、珪素原子の数の比率が2番目に大きい値である、
(ii)前記炭素分布曲線が少なくとも1つの極値を有する、及び
(iii)前記炭素分布曲線における炭素原子の数の比率比の最大値と最小値との差(絶対値)が5原子%(at%)以上である、
を満たす。
The present invention relates to an organic EL device including a first film and an organic EL element provided on the first film. The organic EL element has a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer disposed between the electrodes. The electron injection layer includes an ionic polymer. The first film has a gas barrier layer containing silicon (silicon atoms), oxygen (oxygen atoms) and carbon (carbon atoms), and the amount (number of silicon atoms) of the total amount of silicon atoms, oxygen atoms and carbon atoms. ) Ratio (atomic ratio of silicon), ratio (number of oxygen atoms) of oxygen atoms (atomic ratio of oxygen), and ratio (number of carbon atoms) of carbon atoms (number of carbon atoms), and thickness direction of the gas barrier layer ( A silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve representing the relationship between the distance from one surface of the gas barrier layer in the film thickness direction) and the following conditions:
(I) In a region of 90% or more in the thickness direction (film thickness direction) of the gas barrier layer, the number of silicon atoms among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms Is the second largest value,
(Ii) the carbon distribution curve has at least one extreme value; and (iii) the difference (absolute value) between the maximum value and the minimum value of the ratio ratio of the number of carbon atoms in the carbon distribution curve is 5 atomic% ( at%) or more,
Meet.
 また本発明は、一対の電極、前記電極間に配置される発光層、及び前記電極間に配置され、イオン性ポリマーを含む電子注入層を有する有機EL素子を形成する工程と、珪素原子、酸素原子及び炭素原子を含有するガスバリア層を有する第1のフィルムを形成する工程と、前記第1のフィルムと第2のフィルムとの間に前記有機EL素子が配置されるように、前記第1のフィルムと前記第2のフィルムとを貼合する工程と、を含む、有機EL装置を製造する方法に関する。ガスバリア層は、珪素原子、酸素原子及び炭素原子の合計量に対する、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率と、前記ガスバリア層の厚み方向における前記ガスバリア層の一方の表面からの距離と、の関係をそれぞれ表す珪素分布曲線、酸素分布曲線及び炭素分布曲線が、下記条件:
(i)前記ガスバリア層の厚み方向の90%以上の領域において、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率のうちで、珪素原子の数の比率が2番目に大きい値である、
(ii)前記炭素分布曲線が少なくとも1つの極値を有する、及び
(iii)前記炭素分布曲線における炭素原子の数の比率比の最大値と最小値との差が5原子%以上である、
を満たす。
The present invention also includes a step of forming an organic EL element having a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer including an ionic polymer disposed between the electrodes, silicon atoms, oxygen A step of forming a first film having a gas barrier layer containing atoms and carbon atoms, and the organic EL element is disposed between the first film and the second film. The method of manufacturing an organic electroluminescent apparatus including the process of bonding a film and a said 2nd film. The gas barrier layer includes a ratio of the number of silicon atoms, a ratio of the number of oxygen atoms, and a ratio of the number of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms, and the gas barrier layer in the thickness direction of the gas barrier layer. A silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve representing the relationship between the distance from one surface and the following conditions are as follows:
(I) In the region of 90% or more in the thickness direction of the gas barrier layer, the ratio of the number of silicon atoms is the second among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms. Is a large value,
(Ii) the carbon distribution curve has at least one extreme value; and (iii) the difference between the maximum value and the minimum value of the ratio ratio of the number of carbon atoms in the carbon distribution curve is 5 atomic% or more.
Meet.
 本発明によれば、イオン性ポリマーを含有する電子注入層を設けることによって外気による劣化が抑制された有機EL素子と、高いガスバリア性を備えるとともにフィルムを屈曲させたときにもガスバリア性が低下しにくく、かつ簡易な工程で短時間で形成することが可能なフィルムと、を備える有機EL装置を実現することができる。 According to the present invention, by providing an electron injection layer containing an ionic polymer, an organic EL device in which deterioration due to outside air is suppressed, and a high gas barrier property and a gas barrier property are lowered even when the film is bent. An organic EL device including a film that is difficult and can be formed in a short time by a simple process can be realized.
一実施形態に係る有機EL装置を示す断面図である。It is sectional drawing which shows the organic electroluminescent apparatus which concerns on one Embodiment. 一実施形態に係る有機EL装置を示す断面図である。It is sectional drawing which shows the organic electroluminescent apparatus which concerns on one Embodiment. 有機EL装置を製造するための装置の一実施形態を示す概念図である。It is a conceptual diagram which shows one Embodiment of the apparatus for manufacturing an organic electroluminescent apparatus. 第1のフィルムを製造するための装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the apparatus for manufacturing a 1st film. 参考例A1で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線及び炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the 1st film obtained by reference example A1. 参考例A1で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve in the 1st film obtained by reference example A1. 参考例A2で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve in the 1st film obtained by reference example A2. 参考例A2で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve in the 1st film obtained by reference example A2. 参考例A3で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線及び炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the 1st film obtained by reference example A3. 参考例A3で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve in the 1st film obtained by reference example A3. 参考比較例A1で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線及び炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the 1st film obtained by reference comparative example A1. 参考比較例A1で得られた第1のフィルムにおける珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を示すグラフである。It is a graph which shows the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve in the 1st film obtained by reference comparative example A1. 一実施形態に係る有機EL装置を示す断面図である。It is sectional drawing which shows the organic electroluminescent apparatus which concerns on one Embodiment.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本実施形態に係る有機EL装置は、第1のフィルムと、第1のフィルム上に設けられる有機EL素子とを備える。有機EL素子は、一対の電極、前記電極間に配置される発光層、及び前記電極間に配置される電子注入層を有する。電子注入層はイオン性ポリマーを含む。第1のフィルムは、珪素原子、酸素原子及び炭素原子を含有するガスバリア層を有する。 The organic EL device according to the present embodiment includes a first film and an organic EL element provided on the first film. The organic EL element has a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer disposed between the electrodes. The electron injection layer includes an ionic polymer. The first film has a gas barrier layer containing silicon atoms, oxygen atoms, and carbon atoms.
 有機EL装置は、通常、支持基板と、支持基板上に設けられた有機EL素子を有する。有機EL装置は、支持基板との間に有機EL素子を介在させながら、支持基板と貼合される封止部材を更に備えることがある。本実施形態に係る有機EL装置の第1のフィルムは、有機EL素子が設けられる支持基板として用いられても、支持基板と貼合される封止部材として用いられてもよい。以下では、支持基板として更に第2のフィルムを備え、第1のフィルムが封止部材として設けられる形態の有機EL装置について説明する。 The organic EL device usually has a support substrate and an organic EL element provided on the support substrate. The organic EL device may further include a sealing member that is bonded to the support substrate while an organic EL element is interposed between the organic EL device and the support substrate. The first film of the organic EL device according to the present embodiment may be used as a support substrate on which an organic EL element is provided, or may be used as a sealing member bonded to the support substrate. Hereinafter, an organic EL device in which a second film is further provided as a support substrate and the first film is provided as a sealing member will be described.
 有機EL装置に搭載される有機EL素子は、次の3つの型の素子に大別することができる。すなわち、有機EL素子は、(I)当該有機EL素子が搭載される支持基材に向けて光を出射する、いわゆるボトムエミッション型の素子、(II)支持基材とは反対側に向けて光を出射する、いわゆるトップエミッション型の素子、(III)支持基材に向けて光を出射するとともに、支持基材とは反対側に向けて光を出射する両面発光型の素子に大別することができる。本実施形態に係る有機EL装置に搭載される有機EL素子は、いずれの型の素子であってもよい。以下では一例として、図1を参照してトップエミッション型の素子が設けられた有機EL装置について説明し、次に図2を参照してボトムエミッション型の素子が設けられた有機EL装置について説明する。 Organic EL elements mounted on organic EL devices can be broadly classified into the following three types of elements. That is, the organic EL element is (I) a so-called bottom emission type element that emits light toward the support base on which the organic EL element is mounted, and (II) the light toward the side opposite to the support base. The so-called top emission type element that emits light, and (III) is broadly divided into double-sided light emitting type elements that emit light toward the support substrate and emit light toward the opposite side of the support substrate Can do. The organic EL element mounted on the organic EL device according to this embodiment may be any type of element. Hereinafter, as an example, an organic EL device provided with a top emission type element will be described with reference to FIG. 1, and then an organic EL device provided with a bottom emission type element will be described with reference to FIG. .
 図1は、一実施形態に係る有機EL装置を模式的に示す断面図である。図1に示す有機EL装置13は、第2のフィルム1上に有機EL素子2が搭載されている。第1のフィルム11は、有機EL素子2を介在させて第2のフィルム1上に配置され、第2のフィルム1とともに有機EL素子2を封止している。第1のフィルム11と第2のフィルム1とは、接着層4を介して貼り合わされている。また有機EL素子2は必要に応じて保護層3によって覆われる。この保護層3を設けることによって、接着層4から有機EL素子2を保護することができる。 FIG. 1 is a cross-sectional view schematically showing an organic EL device according to an embodiment. In the organic EL device 13 illustrated in FIG. 1, the organic EL element 2 is mounted on the second film 1. The first film 11 is disposed on the second film 1 with the organic EL element 2 interposed therebetween, and seals the organic EL element 2 together with the second film 1. The first film 11 and the second film 1 are bonded to each other through the adhesive layer 4. The organic EL element 2 is covered with a protective layer 3 as necessary. By providing this protective layer 3, the organic EL element 2 can be protected from the adhesive layer 4.
 図1に示す有機EL素子2は、トップエミッション型の素子であり、光を第1のフィルム11に向けて出射する。そのため、第1のフィルム11は光を透過する部材によって形成される必要がある。一方、本実施形態において支持基材に相当する第2のフィルム1は光を透過しない不透明な部材によって形成されていてもよい。 The organic EL element 2 shown in FIG. 1 is a top emission type element and emits light toward the first film 11. Therefore, the first film 11 needs to be formed by a member that transmits light. On the other hand, in the present embodiment, the second film 1 corresponding to the support substrate may be formed of an opaque member that does not transmit light.
 第2のフィルム1として、プラスチックフィルム又は金属フィルムを使用することができ、金属フィルムが好ましい。金属フィルムは、プラスチックフィルムなどに比べると高いガスバリア性を有するため、有機EL装置のガスバリア性を高めることができる。金属フィルムとしては、例えばAl、Cu又はFeの薄板、及びステンレス鋼などの合金の薄板を用いることができる。 As the second film 1, a plastic film or a metal film can be used, and a metal film is preferable. Since the metal film has a higher gas barrier property than a plastic film or the like, the gas barrier property of the organic EL device can be improved. As the metal film, for example, a thin plate of Al, Cu or Fe and a thin plate of an alloy such as stainless steel can be used.
 第1のフィルム11は、珪素原子、酸素原子及び炭素原子を含有するガスバリア層5を有する。本実施形態では第1のフィルム11は、基材6と、基材6の有機EL素子2側の主面上に設けられるガスバリア層5とから構成される。ガスバリア層5は、後述の条件(i)、(ii)及び(iii)を満たすことによって、高いガスバリア性を備え、さらに、屈曲されたときのガスバリア性の低下を抑制することができる。 The first film 11 has a gas barrier layer 5 containing silicon atoms, oxygen atoms and carbon atoms. In this embodiment, the 1st film 11 is comprised from the base material 6 and the gas barrier layer 5 provided on the main surface by the side of the organic EL element 2 of the base material 6. FIG. The gas barrier layer 5 has high gas barrier properties by satisfying the conditions (i), (ii), and (iii) described later, and can further suppress a decrease in gas barrier properties when bent.
 このような第1のフィルム11と第2のフィルム1とによって有機EL素子2を封止することにより、フレキシブルで、十分な耐久性とガスバリア性を兼ね備えた有機EL装置を実現することができる。特に第2のフィルム1として金属フィルムを用いた場合には、第1のフィルム11と第2のフィルム1の両方が高いガスバリア性を示すので、より高い耐久性とガスバリア性を兼ね備えた有機EL装置を実現することができる。 By sealing the organic EL element 2 with the first film 11 and the second film 1 as described above, a flexible organic EL device having both sufficient durability and gas barrier properties can be realized. In particular, when a metal film is used as the second film 1, since both the first film 11 and the second film 1 exhibit high gas barrier properties, an organic EL device having higher durability and gas barrier properties. Can be realized.
 本実施形態に係る有機EL素子は、イオン性ポリマーを含む電子注入層を備える。後述するように本実施形態に係る電子注入層は、イオン性ポリマーを含むため、LiやNaを含む従来の電子注入層と比較して外気によって劣化し難い。本実施形態に係る有機EL素子が、上述のガスバリア性の高い第1のフィルム11と第2のフィルム1とによって封止されることによって、より一層外気によって劣化し難い有機EL装置13を実現することができる。 The organic EL element according to this embodiment includes an electron injection layer containing an ionic polymer. As will be described later, since the electron injection layer according to this embodiment includes an ionic polymer, the electron injection layer is less likely to be deteriorated by outside air than a conventional electron injection layer containing Li or Na. The organic EL device according to the present embodiment is sealed with the first film 11 and the second film 1 having a high gas barrier property as described above, thereby realizing the organic EL device 13 that is not easily deteriorated by the outside air. be able to.
 イオン性ポリマーを含む電子注入層を備える有機EL素子は、大気中でも安定なため、大気中での劣化が極めてゆるやかに進行する。このため、従来の有機EL素子では必須であった保護膜を必ずしも形成する必要がなく、有機EL素子の製造における工程の数を削減することができる。 An organic EL device including an electron injection layer containing an ionic polymer is stable in the air, and therefore, the deterioration in the air proceeds very slowly. For this reason, it is not always necessary to form a protective film, which is essential in the conventional organic EL element, and the number of steps in manufacturing the organic EL element can be reduced.
 本実施形態に係る有機EL素子は、封止工程が終了するまでの工程(搬送工程及び封止工程)を大気中で行ってもその間に劣化しにくいため、従来は真空中又は不活性ガス雰囲気中において封止工程を行っていたところを、封止工程を大気中で行うことができる。このため、従来、真空又は不活性ガス雰囲気にするために必要であった大型で複雑な製造装置が不要となる。特に、ロールツーロール法で第1のフィルムと第2のフィルムとを貼合する場合、連続貼合装置などの大型装置を真空雰囲気下又は不活性ガス雰囲気下に置くための大型で複雑な製造設備が従来は必要であった。一方、本実施形態に係る有機EL装置では、このような製造設備が不要となり、極めて単純な製造設備で有機EL装置を製造することができる。 Since the organic EL element according to the present embodiment is not easily deteriorated even if the process (conveying process and sealing process) until the sealing process is completed in the air, it is conventionally in a vacuum or an inert gas atmosphere. The sealing process can be performed in the atmosphere where the sealing process has been performed. This eliminates the need for a large and complicated manufacturing apparatus that has conventionally been required to create a vacuum or inert gas atmosphere. In particular, when laminating the first film and the second film by the roll-to-roll method, a large and complicated production for placing a large apparatus such as a continuous laminating apparatus in a vacuum atmosphere or an inert gas atmosphere. Equipment was previously required. On the other hand, in the organic EL device according to the present embodiment, such a manufacturing facility is unnecessary, and the organic EL device can be manufactured with a very simple manufacturing facility.
 図2は、他の実施形態の有機EL装置13を模式的に示す断面図である。図2に示す有機EL装置13は、図1に示す実施形態とは有機EL素子2と、第2のフィルム1とが異なる。本実施形態の有機EL素子2は、ボトムエミッション型の素子であり、支持基材に相当する第2のフィルム1に向けて光を出射する。そのため、第2のフィルム1は光透過性を示すフィルムである必要がある。 FIG. 2 is a cross-sectional view schematically showing an organic EL device 13 according to another embodiment. The organic EL device 13 shown in FIG. 2 differs from the embodiment shown in FIG. 1 in the organic EL element 2 and the second film 1. The organic EL element 2 of the present embodiment is a bottom emission type element, and emits light toward the second film 1 corresponding to the support base material. Therefore, the 2nd film 1 needs to be a film which shows a light transmittance.
 本実施形態の第2のフィルム1は光透過性を示すフィルムであればとくに制限はないが、ガスバリア性の観点から、第1のフィルム11と同様に、珪素原子、酸素原子及び炭素原子を含有する第2のガスバリア層8を有することが好ましい。本実施形態では第2のフィルム1は、基材7と、この基材7の有機EL素子2側の主面上に設けられる第2のガスバリア層8とから構成される。この第2のガスバリア層8は、第1のフィルム1のガスバリア層5と同様に、後述の条件(i)、(ii)及び(iii)を満たすことによって、高いガスバリア性を備え、さらに屈曲されたときのガスバリア性の低下を抑制することができる。 The second film 1 of the present embodiment is not particularly limited as long as it is a light-transmitting film, but contains silicon atoms, oxygen atoms, and carbon atoms in the same manner as the first film 11 from the viewpoint of gas barrier properties. The second gas barrier layer 8 is preferably provided. In the present embodiment, the second film 1 includes a base material 7 and a second gas barrier layer 8 provided on the main surface of the base material 7 on the organic EL element 2 side. Like the gas barrier layer 5 of the first film 1, the second gas barrier layer 8 has a high gas barrier property and is further bent by satisfying conditions (i), (ii) and (iii) described later. It is possible to suppress a decrease in gas barrier property when
 このような第1のフィルム11と第2のフィルム1ととによって有機EL素子2を封止することによっても、フレキシブルで、十分な耐久性とガスバリア性を兼ね備えた有機EL装置を実現することができる。 Even when the organic EL element 2 is sealed with the first film 11 and the second film 1 as described above, it is possible to realize an organic EL device that is flexible and has both sufficient durability and gas barrier properties. it can.
 イオン性ポリマーを含む有機EL素子は、大気中で安定なため、前述の実施形態と同様、極めて単純な製造設備で有機EL装置を製造することができる。 Since an organic EL element containing an ionic polymer is stable in the air, an organic EL device can be manufactured with a very simple manufacturing facility as in the above-described embodiment.
 図2に示す実施形態の有機EL装置において、ボトムエミッション型の有機EL素子にかえて、両面発光型の有機EL素子を設けてもよい。 In the organic EL device of the embodiment shown in FIG. 2, a double-sided light emitting organic EL element may be provided in place of the bottom emission organic EL element.
 第2のフィルムを封止部材として用い、ガスバリア層を有する第1のフィルムを支持基材として用い、この第1のフィルムと第2のフィルムとによって有機EL素子が封止されていてもよい。 The organic EL element may be sealed with the first film and the second film using the second film as the sealing member and the first film having the gas barrier layer as the supporting substrate.
 例えば、図1及び図2に示す実施形態において、第2のフィルム及び/又は第1のフィルムに対して、付加的なフィルムがさらに貼合されていてもよい。付加的なフィルムとしては、有機EL装置の表面を保護する保護フィルム、有機EL装置に入射する外光の反射を防止する反射防止フィルム、光取出し効率を高める作用を有する光取出しフィルム、光の位相及び偏光を調整するための光学機能性フィルム、並びに、これらから選ばれる複数のフィルムが積層された構成を有する光学フィルムなどが挙げられる。付加的なフィルムは第2のフィルム及び/又は第1のフィルムの片面又は両面に貼合される。 For example, in the embodiment shown in FIGS. 1 and 2, an additional film may be further bonded to the second film and / or the first film. Additional films include a protective film that protects the surface of the organic EL device, an antireflection film that prevents reflection of external light incident on the organic EL device, a light extraction film that increases the light extraction efficiency, and a phase of light. And an optical functional film for adjusting polarization, and an optical film having a configuration in which a plurality of films selected from these films are laminated. The additional film is bonded to one side or both sides of the second film and / or the first film.
 図13は他の実施形態に係る有機EL装置を示す断面図である。図13に示す有機EL装置は、第1のフィルムを支持基材として、第1のフィルム上に有機EL素子2が設けられている。本実施形態は、有機EL装置が第2のフィルムを備えない態様である。 FIG. 13 is a cross-sectional view showing an organic EL device according to another embodiment. In the organic EL device shown in FIG. 13, the organic EL element 2 is provided on the first film using the first film as a supporting base material. In the present embodiment, the organic EL device does not include the second film.
 (接着層)
 接着層4は、第1のフィルムと第2のフィルムとを、それらの間に有機EL素子が配置された状態で接着する層である。接着層4に用いられる接着剤は、高いガスバリア性を有することが好ましい。図1に示すような、有機EL素子2から出射する光が、接着層4を通って外界に出射される有機EL装置では、接着層4の光透過率が高いことが好ましい。この場合、光取出し効率の観点からは、接着層4に接する層と、接着層4との屈折率の差の絶対値は小さいほうが好ましい。
(Adhesive layer)
The adhesive layer 4 is a layer that adheres the first film and the second film in a state where the organic EL element is disposed between them. The adhesive used for the adhesive layer 4 preferably has a high gas barrier property. In the organic EL device in which the light emitted from the organic EL element 2 as shown in FIG. 1 is emitted to the outside through the adhesive layer 4, the light transmittance of the adhesive layer 4 is preferably high. In this case, from the viewpoint of light extraction efficiency, the absolute value of the difference in refractive index between the layer in contact with the adhesive layer 4 and the adhesive layer 4 is preferably small.
 接着層に利用可能な接着剤としては、熱硬化性接着剤及び光硬化性接着剤などの硬化性接着剤が好適である。 As the adhesive that can be used for the adhesive layer, a curable adhesive such as a thermosetting adhesive and a photocurable adhesive is suitable.
 熱硬化性樹脂接着剤としては、エポキシ系接着剤、及びアクリレート系接着剤などを挙げることができる。 Examples of thermosetting resin adhesives include epoxy adhesives and acrylate adhesives.
 エポキシ系接着剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びフェノキシ樹脂から選ばれるエポキシ化合物を含む接着剤を挙げることができる。 Examples of the epoxy adhesive include an adhesive containing an epoxy compound selected from bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenoxy resin.
 アクリレート系接着剤としては、例えば、アクリル酸、メタクリル酸、エチルアクリレート、ブチルアクリレート、2-ヘキシルアクリレート、アクリルアミド、アクリロニトリル及びヒドロキシルアクリレートなどから選ばれる主成分としてのモノマーと、該主成分と共重合可能なモノマーとを含む接着剤を挙げることができる。 As the acrylate adhesive, for example, a monomer as a main component selected from acrylic acid, methacrylic acid, ethyl acrylate, butyl acrylate, 2-hexyl acrylate, acrylamide, acrylonitrile, hydroxyl acrylate, and the like, and copolymerizable with the main component And an adhesive containing a simple monomer.
 光硬化性接着剤としては、ラジカル系接着剤、及びカチオン系接着剤などを挙げることができる。 Examples of the photo-curable adhesive include radical adhesives and cationic adhesives.
 ラジカル系接着剤としては、エポキシアクリレート、エステルアクリレート、及びエステルアクリレートなどを含む接着剤を挙げることができる。 Examples of radical adhesives include adhesives containing epoxy acrylate, ester acrylate, ester acrylate, and the like.
 カチオン系接着剤としては、エポキシ系樹脂、ビニルエーテル系樹脂などを含む接着剤を挙げることができる。 Examples of cationic adhesives include adhesives containing epoxy resins, vinyl ether resins, and the like.
 (保護層)
 保護層は、有機EL素子を覆うように設けられる。この保護層を設けることによって有機EL素子を接着層から保護することができる。
(Protective layer)
The protective layer is provided so as to cover the organic EL element. By providing this protective layer, the organic EL element can be protected from the adhesive layer.
 有機EL素子を構成する電子注入層及び陰極は、通常、大気中で不安定な材料を主成分として含むため、有機EL素子を形成した後、第1のフィルムを貼合して当該有機EL素子が封止されるまでの間に、電子注入層及び陰極が雰囲気中の水分及び酸素などによって劣化するおそれがある。そのため保護層は、第1のフィルムによって有機EL素子が封止されるまでの間、雰囲気中の水分及び酸素などを遮断し、これらから有機EL素子を保護する機能を有することが好ましい。 Since the electron injection layer and the cathode constituting the organic EL element usually contain a material that is unstable in the atmosphere as a main component, after forming the organic EL element, the first film is pasted to the organic EL element. There is a possibility that the electron injection layer and the cathode may be deteriorated by moisture, oxygen, etc. in the atmosphere before being sealed. Therefore, the protective layer preferably has a function of blocking moisture and oxygen in the atmosphere and protecting the organic EL element from these until the organic EL element is sealed by the first film.
 保護層に用いられる材料としては、大気中で安定な金属材料、バリア性の優れた無機絶縁性材料及び有機絶縁性材料などが挙げられる。金属材料は、例えば、Al、Cu、Ag、Au、Pt、Ti、Cr、Co及びNiから選ばれる。無機絶縁材料は、例えば、SiO、SiN、SiOxNy及びSiOxCyから選ばれる。有機絶縁材料としては、パリレンなどが用いられる。 Examples of the material used for the protective layer include a metal material that is stable in the air, an inorganic insulating material having excellent barrier properties, and an organic insulating material. The metal material is selected from, for example, Al, Cu, Ag, Au, Pt, Ti, Cr, Co, and Ni. Inorganic insulating material, for example, SiO 2, SiN, selected from SiOxNy and SiOxCy. Parylene or the like is used as the organic insulating material.
 金属材料から形成される保護層は、例えば、真空蒸着法、スパッタリング法、又はメッキ法によって形成される。無機絶縁材料から形成される保護層は、例えば、スパッタリング法、CVD法、又はレーザーアブレーション法によって形成される。有機絶縁材料から形成される保護層は、例えば、モノマーガスの真空蒸着と、モノマーを含む蒸着膜(被コーティング表面)での重合とを含む製膜法によって形成される。 The protective layer formed from a metal material is formed by, for example, a vacuum deposition method, a sputtering method, or a plating method. The protective layer formed from an inorganic insulating material is formed by, for example, a sputtering method, a CVD method, or a laser ablation method. The protective layer formed of an organic insulating material is formed by, for example, a film forming method including vacuum vapor deposition of a monomer gas and polymerization on a vapor deposition film (coating surface) containing the monomer.
 (有機EL装置の製造方法)
 以下、図3を参照して有機EL装置の製造方法について説明する。
(Method for manufacturing organic EL device)
Hereinafter, a method for manufacturing the organic EL device will be described with reference to FIG.
 本実施形態に係る製造方法では、主面上に有機EL素子が形成された第2のフィルム1を用意する。第2のフィルム1は、有機EL素子が主面上に形成された後、有機EL素子とともにロール状に巻き取られ、巻き取られた状態で一旦保管されたものである。巻き取られた第2のフィルム1及び有機EL素子は、例えば、真空中、不活性ガス雰囲気中又は大気中雰囲気中で保管される。中でも不活性ガス雰囲気中又は大気中雰囲気中で保管されることが好ましく、大気中雰囲気で保管されることが更に好ましい。本実施形態に係る有機EL素子は前述したように大気による劣化がゆるやかに進行するため、巻き取られた第2のフィルム1及び有機EL素子を大気中で保管することができる。巻き取られた第2のフィルム1及び有機EL素子を大気中で保管する場合、有機EL装置を作製するための装置が複雑にならず、簡易な工程で有機EL装置を製造することができる。 In the manufacturing method according to the present embodiment, a second film 1 having an organic EL element formed on the main surface is prepared. The second film 1 is one in which the organic EL element is formed on the main surface, wound into a roll together with the organic EL element, and temporarily stored in the wound state. The wound second film 1 and the organic EL element are stored in, for example, a vacuum, an inert gas atmosphere, or an air atmosphere. Among these, it is preferable to store in an inert gas atmosphere or an air atmosphere, and it is more preferable to store in an air atmosphere. As described above, the organic EL element according to the present embodiment is gradually deteriorated by the atmosphere, so that the wound second film 1 and the organic EL element can be stored in the atmosphere. When the wound second film 1 and the organic EL element are stored in the air, the device for producing the organic EL device is not complicated, and the organic EL device can be manufactured by a simple process.
 本実施形態では、第2のフィルム1の主面上に有機EL素子が予め形成されたフィルムと、第1のフィルムとを貼り合せる形態について説明する。他の実施形態では、第1のフィルムの主面上に有機EL素子が予め形成されたフィルムと、第2のフィルムとを貼り合わせてもよい。 In this embodiment, a mode in which a film in which an organic EL element is formed in advance on the main surface of the second film 1 and the first film are bonded together will be described. In other embodiments, a film in which an organic EL element is formed in advance on the main surface of the first film may be bonded to the second film.
 図3は有機EL装置を製造する装置を概略的に示す図である。図3に示す装置では、第2のフィルム1と、第1のフィルム11とが貼り合わせられ、さらに付加的なフィルム820が第1のフィルム11に貼り合わせられる。第2のフィルム1上には、有機EL素子が予め形成されている。 FIG. 3 is a diagram schematically showing an apparatus for manufacturing an organic EL device. In the apparatus shown in FIG. 3, the second film 1 and the first film 11 are bonded together, and an additional film 820 is bonded to the first film 11. An organic EL element is formed in advance on the second film 1.
 巻き出しロール500は、有機EL素子が予めその上に形成された第2のフィルム1を送り出す。巻き出しロール510は、第1のフィルム11を送り出す。巻き出しロール500から送り出された第2のフィルム1上には、第1接着層用の塗布装置610によって接着剤が塗布され、第1接着層が形成される。その後、第1のフィルム11と前記第2のフィルム1とを、それらの間に有機EL素子が配置された状態で、これを2つのロール(第1貼り合せロール511,512)間を通過させることにより、搬送ロール513を経て供給された第1のフィルム11と、第2のフィルム1とが第1接着層を介して貼り合わされ、さらに第1接着層用の硬化装置611によって、第1接着層が硬化(固化)される。 The unwinding roll 500 sends out the 2nd film 1 in which the organic EL element was previously formed on it. The unwinding roll 510 sends out the first film 11. On the 2nd film 1 sent out from the unwinding roll 500, the adhesive agent is apply | coated by the coating device 610 for 1st contact bonding layers, and a 1st contact bonding layer is formed. Thereafter, the first film 11 and the second film 1 are passed between two rolls (first bonding rolls 511 and 512) in a state where the organic EL element is disposed therebetween. Thereby, the 1st film 11 supplied via the conveyance roll 513 and the 2nd film 1 are bonded together via the 1st adhesion layer, and also 1st adhesion is carried out by hardening device 611 for the 1st adhesion layer. The layer is cured (solidified).
 第1のフィルム11上に、硬化装置611の下流に設けられた第2接着層用の塗布装置610によって接着剤が塗布され、第2接着層が更に形成される。続いて、第2貼り合わせロール521,522によって、第1のフィルム11と、巻き出しロール520から送り出され、搬送ロール523を経て供給された付加的なフィルム820とが、第2接着層を介して貼り合わされ、さらに第2接着層用の硬化装置621によって、第2接着層が硬化(固化)される。その後、形成された有機EL装置は巻き取りロール530によって巻き取られる。 On the first film 11, an adhesive is applied by a coating device 610 for the second adhesive layer provided downstream of the curing device 611, and a second adhesive layer is further formed. Subsequently, the second bonding rolls 521 and 522 cause the first film 11 and the additional film 820 fed from the unwinding roll 520 and supplied via the transporting roll 523 to pass through the second adhesive layer. Then, the second adhesive layer is cured (solidified) by the curing device 621 for the second adhesive layer. Thereafter, the formed organic EL device is wound up by a winding roll 530.
 上述の貼り合わせ工程は、例えば真空中、不活性ガス雰囲気中、又は大気中雰囲気中において行うことができる。なかでも不活性ガス雰囲気中、又は大気中雰囲気中が好ましく、大気中雰囲気中が更に好ましい。本実施形態に係る有機EL素子は、前述したように大気による劣化がゆるやかに生じるため、大気中雰囲気中で貼り合わせ工程を行うことが可能である。大気中雰囲気中で貼り合わせ工程を行う場合、有機EL装置を作製するための装置が複雑にならず、簡易な工程で有機EL装置を製造することができる。 The above-described bonding step can be performed, for example, in a vacuum, in an inert gas atmosphere, or in an air atmosphere. Among these, an inert gas atmosphere or an air atmosphere is preferable, and an air atmosphere is more preferable. As described above, since the organic EL element according to the present embodiment is gradually deteriorated by the air, it is possible to perform the bonding step in the air atmosphere. When the bonding step is performed in the atmosphere in the air, the device for manufacturing the organic EL device is not complicated, and the organic EL device can be manufactured by a simple process.
 第1のフィルム11と第2のフィルム1とが貼り合わされて形成された有機EL装置は、巻き取りロール530によって巻き取られる。巻き取られた有機EL装置は、例えば、真空中、不活性ガス雰囲気中又は大気中雰囲気中で保管される。中でも、不活性ガス雰囲気中又は大気中雰囲気中で保管されることが好ましく、大気中雰囲気中で保管されることが更に好ましい。本実施形態に係る有機EL素子は前述したように大気による劣化がゆるやかに生じ、またガスバリア性の高い第1のフィルム11と第2のフィルム1とによって封止されているため、巻き取られた有機EL装置を大気中で保管することができる。巻き取られた有機EL装置を大気中で保管する場合、有機EL装置を作製するための装置が複雑にならず、簡易な工程で有機EL装置を製造することができる。 The organic EL device formed by bonding the first film 11 and the second film 1 is taken up by a take-up roll 530. The wound organic EL device is stored in, for example, a vacuum, an inert gas atmosphere, or an air atmosphere. Especially, it is preferable to store in an inert gas atmosphere or air atmosphere, and it is still more preferable to store in air atmosphere. As described above, the organic EL element according to the present embodiment is gradually deteriorated by the atmosphere, and is wound by being wound by the first film 11 and the second film 1 having a high gas barrier property. The organic EL device can be stored in the atmosphere. When the wound organic EL device is stored in the air, the device for producing the organic EL device is not complicated, and the organic EL device can be manufactured by a simple process.
 本実施形態では、主面上に有機EL素子が形成された第2のフィルムが一旦巻き取られて保管されているが、このような形態に限らず、第2のフィルムの主面上に有機EL素子を形成した後、第2のフィルムを巻き取ることなく第1のフィルムを貼合してもよい。 In the present embodiment, the second film in which the organic EL element is formed on the main surface is temporarily wound and stored. However, the present invention is not limited to this form, and the organic film is formed on the main surface of the second film. After forming the EL element, the first film may be bonded without winding up the second film.
 付加的なフィルムとしては、例えば前述のフィルムが用いられる。本実施形態では1枚の付加的なフィルムが貼り合わされるが、2枚以上の付加的なフィルムが順次貼合されてもよい。3枚以上の付加的なフィルムが貼り合せられる場合、貼り合せの順序は有機EL装置の積層順に応じて適宜変更される。 As the additional film, for example, the above-described film is used. In the present embodiment, one additional film is bonded, but two or more additional films may be bonded sequentially. When three or more additional films are bonded, the order of bonding is appropriately changed according to the stacking order of the organic EL devices.
 (第1のフィルム)
 つぎに第1のフィルム11について説明する。本実施形態の有機EL装置の特徴の一つは、第1のフィルム、特にそのガスバリア層5にある。以下ではまず第1のフィルムのガスバリア層5について説明する。
(First film)
Next, the first film 11 will be described. One of the features of the organic EL device of the present embodiment is the first film, particularly the gas barrier layer 5 thereof. Hereinafter, the gas barrier layer 5 of the first film will be described first.
 第1のフィルムは、珪素原子、酸素原子及び炭素原子を含有するガスバリア層を有する。珪素原子、酸素原子及び炭素原子の合計量に対する、珪素原子の数の比率(珪素の原子比)、酸素原子の数の比率(酸素の原子比)及び炭素原子の数の比率(炭素の原子比)を、ガスバリア層の厚み方向(膜厚方向)におけるガスバリア層の一方の表面からの距離を変えながら測定することにより、各原子の原子比とガスバリア層の表面からの距離との関係をそれぞれ表す珪素分布曲線、酸素分布曲線及び炭素分布曲線を得ることができる。本実施形態に係るガスバリア層から得られるこれらの曲線は、下記条件(i)、(ii)及び(iii)を満たす。
(i)ガスバリア層の厚み方向の90%以上の領域において、珪素の原子比、酸素の原子比及び炭素の原子比のうちで、珪素の原子比が2番目に大きい値である。
(ii)炭素分布曲線が少なくとも1つの極値を有する。
(iii)炭素分布曲線における炭素の原子比の最大値と最小値との差(絶対値)が5at%以上である。
The first film has a gas barrier layer containing silicon atoms, oxygen atoms, and carbon atoms. The ratio of the number of silicon atoms (the atomic ratio of silicon), the ratio of the number of oxygen atoms (the atomic ratio of oxygen) and the ratio of the number of carbon atoms (the atomic ratio of carbon to the total amount of silicon atoms, oxygen atoms and carbon atoms ) Is measured while changing the distance from one surface of the gas barrier layer in the thickness direction (film thickness direction) of the gas barrier layer, thereby expressing the relationship between the atomic ratio of each atom and the distance from the surface of the gas barrier layer. A silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve can be obtained. These curves obtained from the gas barrier layer according to the present embodiment satisfy the following conditions (i), (ii), and (iii).
(I) In the region of 90% or more in the thickness direction of the gas barrier layer, the silicon atomic ratio is the second largest value among the silicon atomic ratio, oxygen atomic ratio, and carbon atomic ratio.
(Ii) The carbon distribution curve has at least one extreme value.
(Iii) The difference (absolute value) between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 5 at% or more.
 (i)の条件は、換言すると、ガスバリア層の厚み方向の90%以上の領域において、下記式(1)又は下記式(2)が満たされることを意味する。
 (酸素の原子比)>(珪素の原子比)>(炭素の原子比)・・・(1)
 (炭素の原子比)>(珪素の原子比)>(酸素の原子比)・・・(2)
In other words, the condition (i) means that the following formula (1) or the following formula (2) is satisfied in a region of 90% or more in the thickness direction of the gas barrier layer.
(Atomic ratio of oxygen)> (atomic ratio of silicon)> (atomic ratio of carbon) (1)
(Atomic ratio of carbon)> (Atomic ratio of silicon)> (Atomic ratio of oxygen) (2)
 <第1のフィルムの基材>
 上述のガスバリア層は通常、基材上に形成される。すなわち第1のフィルムは、基材と、この基材上に形成されるガスバリア層とを含む。第1のフィルムの基材としては、無色透明な樹脂フィルム又は樹脂シートが挙げられる。このような基材に用いる樹脂は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)及び環状ポリオレフィン等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリビニルアルコール系樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル系樹脂;アセタール系樹脂;並びにポリイミド系樹脂から選ばれる。これらの樹脂の中でも、耐熱性が高く、線膨張率が小さく、製造コストが低いという観点から、ポリエステル系樹脂及びポリオレフィン系樹脂が好ましく、PET及びPENがより好ましい。これらの樹脂は1種を単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
<Base material of first film>
The gas barrier layer described above is usually formed on a substrate. That is, the first film includes a base material and a gas barrier layer formed on the base material. Examples of the base material of the first film include a colorless and transparent resin film or resin sheet. Examples of the resin used for such a substrate include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefin; Resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; and Polyimide resin. Among these resins, polyester-based resins and polyolefin-based resins are preferable, and PET and PEN are more preferable from the viewpoints of high heat resistance, low coefficient of linear expansion, and low manufacturing cost. These resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 第1のフィルムの基材の厚みは、第1のフィルムを製造する際の安定性を考慮して、適宜設定することができる。第1のフィルムの基材の厚みとしては、真空中においてもフィルムの搬送が可能であるという観点から、5~500μmの範囲であることが好ましい。プラズマCVD法によりガスバリア層を形成する場合、第1のフィルムの基材を通して放電しつつガスバリア層を形成することから、第1のフィルムの基材の厚みが50~200μmであることがより好ましく、50~100μmであることが更に好ましい。 The thickness of the base material of the first film can be appropriately set in consideration of the stability when the first film is manufactured. The thickness of the substrate of the first film is preferably in the range of 5 to 500 μm from the viewpoint that the film can be conveyed even in a vacuum. When the gas barrier layer is formed by the plasma CVD method, since the gas barrier layer is formed while discharging through the base material of the first film, the thickness of the base material of the first film is more preferably 50 to 200 μm, More preferably, it is 50 to 100 μm.
 第1のフィルムの基材に対して、後述するガスバリア層との密着性の観点から、表面を清浄するための表面活性処理を施すことが好ましい。このような表面活性処理としては、例えば、コロナ処理、プラズマ処理、及びフレーム処理が挙げられる。 It is preferable to subject the first film substrate to a surface activation treatment for cleaning the surface from the viewpoint of adhesion to a gas barrier layer described later. Examples of such surface activation treatment include corona treatment, plasma treatment, and flame treatment.
 <ガスバリア層>
 本実施形態に係るガスバリア層は、上記基材の少なくとも片面上に形成される。本実施形態に係る第1のフィルムは、珪素原子、酸素原子及び炭素原子を含有し、上記条件(i)、(ii)及び(iii)を全て満たすガスバリア層を少なくとも一層備えていればよい。例えば、第1のフィルムは上記条件(i)、(ii)及び(iii)の少なくともいずれかを満たさない他の層を有していてもよい。ガスバリア層又は他の層は、窒素原子及びアルミニウム原子等を更に含有していてもよい。
<Gas barrier layer>
The gas barrier layer according to this embodiment is formed on at least one surface of the substrate. The 1st film concerning this embodiment should just be provided with the gas barrier layer which contains a silicon atom, an oxygen atom, and a carbon atom, and satisfy | fills all the said conditions (i), (ii), and (iii). For example, the first film may have another layer that does not satisfy at least one of the above conditions (i), (ii), and (iii). The gas barrier layer or other layer may further contain nitrogen atoms, aluminum atoms, and the like.
 珪素の原子比、酸素の原子比及び炭素の原子比が条件(i)を満たさない場合、ガスバリア層のガスバリア性が低下する。上記式(1)又は(2)を満たす領域が、ガスバリア層の厚みの90%以上を占めることが好ましい。この割合は、より好ましくは95%以上であり、更に好ましくは100%である。 When the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon do not satisfy the condition (i), the gas barrier property of the gas barrier layer is deteriorated. It is preferable that the region satisfying the above formula (1) or (2) occupies 90% or more of the thickness of the gas barrier layer. This ratio is more preferably 95% or more, and still more preferably 100%.
 本実施形態に係るガスバリア層において、上記条件(ii)として炭素分布曲線が少なくとも1つの極値を有することが必要である。このようなガスバリア層においては、炭素分布曲線が2つの極値を有することがより好ましく、3つ以上の極値を有することが更に好ましい。炭素分布曲線が極値を有さない場合には、第1のフィルムを屈曲させたときに、ガスバリア層のガスバリア性が低下する。炭素分布曲線が少なくとも3つの極値を有する場合、炭素分布曲線の隣接する極値間の厚み方向における距離が200nm以下であることが好ましく、100nm以下であることがより好ましい。 In the gas barrier layer according to this embodiment, the carbon distribution curve needs to have at least one extreme value as the condition (ii). In such a gas barrier layer, the carbon distribution curve preferably has two extreme values, and more preferably has three or more extreme values. When the carbon distribution curve does not have an extreme value, the gas barrier property of the gas barrier layer decreases when the first film is bent. When the carbon distribution curve has at least three extreme values, the distance in the thickness direction between adjacent extreme values of the carbon distribution curve is preferably 200 nm or less, and more preferably 100 nm or less.
 本明細書において、極値とは、ガスバリア層の厚み方向におけるガスバリア層の表面からの距離に対して元素の原子比をプロットして得られる分布曲線における極大値又は極小値のことをいう。極大値とは、上記分布曲線において、ガスバリア層の表面からの距離の変化に伴って元素の原子比の値が増加から減少に変わる点であって、且つその点における元素の原子比の値と比較して、該点からガスバリア層の厚み方向におけるガスバリア層の表面からの距離を更に20nm変化させた位置における元素の原子比の値が3at%以上減少する点における元素の原子比のことをいう。極小値とは、ガスバリア層の表面からの距離の変化に伴って元素の原子比の値が減少から増加に変わる点であって、且つその点における元素の原子比の値と比較して、該点からガスバリア層の厚み方向におけるガスバリア層の表面からの距離を更に20nm変化させた位置における元素の原子比の値が3at%以上増加する点における元素の原子比のことをいう。 In this specification, the extreme value means a maximum value or a minimum value in a distribution curve obtained by plotting an atomic ratio of an element with respect to a distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. The maximum value is a point in the distribution curve where the value of the atomic ratio of the element changes from increasing to decreasing with the change in the distance from the surface of the gas barrier layer, and the atomic ratio value of the element at that point. In comparison, the atomic ratio of the element at the point where the value of the atomic ratio of the element at the position where the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer from this point is further changed by 20 nm is reduced by 3 at% or more. . The minimum value is a point where the value of the atomic ratio of the element changes from decreasing to increasing as the distance from the surface of the gas barrier layer changes, and compared with the value of the atomic ratio of the element at that point, The atomic ratio of the element at the point where the value of the atomic ratio of the element at a position where the distance from the surface in the thickness direction of the gas barrier layer from the point is further changed by 20 nm further increases by 3 at% or more.
 本実施形態に係るガスバリア層は、上記条件(iii)として、炭素分布曲線における炭素の原子比の最大値と最小値との差が5at%以上であることが必要である。このようなガスバリア層においては、炭素の原子比の最大値と最小値との差が6at%以上であることがより好ましく、7at%以上であることが更に好ましい。この差が5at%未満では、第1のフィルムを屈曲させたときに、ガスバリア層のガスバリア性が低下する。この差の上限は、特に制限されないが、通常、30at%程度である。 The gas barrier layer according to the present embodiment requires that the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 5 at% or more as the condition (iii). In such a gas barrier layer, the difference between the maximum value and the minimum value of the atomic ratio of carbon is more preferably 6 at% or more, and further preferably 7 at% or more. If the difference is less than 5 at%, the gas barrier property of the gas barrier layer is lowered when the first film is bent. The upper limit of this difference is not particularly limited, but is usually about 30 at%.
 (酸素分布曲線、極値)
 ガスバリア層の酸素分布曲線は、少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが更に好ましい。酸素分布曲線が極値を有する場合、第1のフィルムを屈曲させたときの、ガスバリア層のガスバリア性の低下が更に生じ難い傾向にある。ガスバリア層の酸素分布曲線が少なくとも3つの極値を有する場合、酸素分布曲線の有する一つの極値と、該極値に隣接する極値との間で、それぞれのガスバリア層の厚み方向におけるガスバリア層の表面からの距離の差が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。
(Oxygen distribution curve, extreme value)
The oxygen distribution curve of the gas barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values. When the oxygen distribution curve has an extreme value, the gas barrier property of the gas barrier layer tends to be less likely to be lowered when the first film is bent. When the oxygen distribution curve of the gas barrier layer has at least three extreme values, the gas barrier layer in the thickness direction of each gas barrier layer between one extreme value of the oxygen distribution curve and the extreme value adjacent to the extreme value. The difference in the distance from the surface of each is preferably 200 nm or less, and more preferably 100 nm or less.
 (酸素分布曲線、最大値と最小値との差)
 ガスバリア層の酸素分布曲線における酸素の原子比の最大値と最小値との差が5at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることが更に好ましい。この差が上記の下限以上であると、第1のフィルムを屈曲させたときの、ガスバリア層のガスバリア性の低下が更に生じ難い傾向にある。この差の上限は、特に制限されないが、通常、30at%程度である。
(Oxygen distribution curve, difference between maximum and minimum values)
The difference between the maximum value and the minimum value of the oxygen atomic ratio in the oxygen distribution curve of the gas barrier layer is preferably 5 at% or more, more preferably 6 at% or more, and even more preferably 7 at% or more. When this difference is not less than the above lower limit, the gas barrier property of the gas barrier layer is less likely to be lowered when the first film is bent. The upper limit of this difference is not particularly limited, but is usually about 30 at%.
 ガスバリア層の珪素分布曲線における珪素の原子比の最大値と最小値との差が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが更に好ましい。この差が上記の上限未満であると、ガスバリア層のガスバリア性が特に高くなる傾向にある。 The difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the gas barrier layer is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%. When this difference is less than the above upper limit, the gas barrier properties of the gas barrier layer tend to be particularly high.
 (酸素炭素分布曲線、最大値と最小値との差)
 ガスバリア層の厚み方向における該層の表面からの距離と、珪素原子、酸素原子及び炭素原子の合計量に対する酸素原子及び炭素原子の合計量の比率(酸素及び炭素の原子比)との関係を表す酸素炭素分布曲線において、酸素及び炭素の原子比の合計の最大値と最小値との差が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが更に好ましい。この差が上記の上限未満であると、ガスバリア層のガスバリア性が特に高くなる傾向にある。
(Oxygen carbon distribution curve, difference between maximum and minimum values)
Expresses the relationship between the distance from the surface of the gas barrier layer in the thickness direction and the ratio of the total amount of oxygen atoms and carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen and carbon) In the oxygen-carbon distribution curve, the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon is preferably less than 5 at%, more preferably less than 4 at%, and more preferably less than 3 at%. Further preferred. When this difference is less than the above upper limit, the gas barrier properties of the gas barrier layer tend to be particularly high.
 珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。エッチング時間は、ガスバリア層の厚み方向におけるガスバリア層の表面からの距離に概ね相関する。したがって、「ガスバリア層の厚み方向におけるガスバリア層の一方の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリア層の表面からの距離を採用することができる。このようなXPSデプスプロファイル測定に際して採用するスパッタ法においては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。 The silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve are obtained by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). The etching time generally correlates with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. Therefore, the “distance from one surface of the gas barrier layer in the thickness direction of the gas barrier layer” is the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. Can be adopted. In such XPS depth profile sputtering employing for the measurement, an argon (Ar +) rare gas ions sputter method using the adopted as an etching ion species, the etching rate (etching rate) was 0.05 nm / sec ( It is preferable to set the value in terms of SiO 2 thermal oxide film.
 膜面全体において均一で且つ優れたガスバリア性を有するガスバリア層を形成するという観点から、ガスバリア層が、膜面方向(ガスバリア層の主面(表面)に平行な方向)において実質的に一様であることが好ましい。本明細書において、「ガスバリア層が膜面方向において実質的に一様である」とは、XPSデプスプロファイル測定によりガスバリア層の膜面の任意の2箇所の測定箇所について酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が互いに同じで、それぞれの炭素分布曲線における炭素の原子比の最大値と最小値との差が、互いに同じであるか若しくはそれらの差が5at%以内であることをいう。 From the viewpoint of forming a gas barrier layer having a uniform and excellent gas barrier property over the entire film surface, the gas barrier layer is substantially uniform in the film surface direction (direction parallel to the main surface (surface) of the gas barrier layer). Preferably there is. In this specification, “the gas barrier layer is substantially uniform in the film surface direction” means that an oxygen distribution curve and a carbon distribution curve are measured at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement. When the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same, and the maximum value of the carbon atomic ratio in each carbon distribution curve The difference from the minimum value is the same as each other or the difference is within 5 at%.
 炭素分布曲線は実質的に連続であることが好ましい。本明細書において、「炭素分布曲線が実質的に連続である」とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味する。具体的には、これは、エッチング速度とエッチング時間とから算出されるガスバリア層の厚み方向における該層の表面からの距離(x、単位:nm)と、炭素の原子比(c、単位:at%)との関係において、下記数式(F1):
-1.0 ≦(dc/dx)≦ 1.0 ・・・(F1)
で表される条件が満たされることをいう。
The carbon distribution curve is preferably substantially continuous. In the present specification, “the carbon distribution curve is substantially continuous” means that a portion in which the atomic ratio of carbon in the carbon distribution curve changes discontinuously is not included. Specifically, this is because the distance (x, unit: nm) from the surface of the gas barrier layer in the thickness direction calculated from the etching rate and etching time, and the atomic ratio of carbon (c, unit: at). %) In relation to the following formula (F1):
−1.0 ≦ (dc / dx) ≦ 1.0 (F1)
It means that the condition represented by is satisfied.
 本実施形態に係る第1のフィルムは、上記条件(i)、(ii)及び(iii)を全て満たすガスバリア層を少なくとも1層備えていればよく、第1のフィルムは、上記条件(i)、(ii)及び(iii)を全て満たすガスバリア層を2層以上備えていてもよい。第1のフィルムがこのようなガスバリア層を2層以上備える場合、これら複数のガスバリア層の材質は、同一であってもよく、異なっていてもよい。第1のフィルムがこのようなガスバリア層を2層以上備える場合、これらガスバリア層は、基材の一方の表面上に形成されていてもよく、基材の両方の表面上にそれぞれ形成されていてもよい。第1のフィルムは、ガスバリア性を有しない薄膜層を含んでいてもよい。 The first film according to the present embodiment may include at least one gas barrier layer that satisfies all of the above conditions (i), (ii), and (iii), and the first film has the above condition (i). , (Ii) and (iii) may be provided with two or more gas barrier layers. When the first film includes two or more such gas barrier layers, the materials of the plurality of gas barrier layers may be the same or different. When the first film includes two or more such gas barrier layers, these gas barrier layers may be formed on one surface of the base material, and are formed on both surfaces of the base material, respectively. Also good. The first film may include a thin film layer that does not have gas barrier properties.
 珪素分布曲線、酸素分布曲線及び炭素分布曲線において、珪素の原子比、酸素の原子比及び炭素の原子比が、式(1)で表される条件を満たす場合、ガスバリア層中における珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。ガスバリア層中における珪素原子、酸素原子及び炭素原子の合計量に対する酸素原子の含有量の原子比率は、33~67at%であることが好ましく、45~67at%であることがより好ましい。ガスバリア層中における珪素原子、酸素原子及び炭素原子の合計量に対する炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。 In the silicon distribution curve, oxygen distribution curve, and carbon distribution curve, when the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the formula (1), the silicon atoms and oxygen in the gas barrier layer The atomic ratio of the silicon atom content to the total amount of atoms and carbon atoms is preferably 25 to 45 at%, more preferably 30 to 40 at%. The atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 33 to 67 at%, more preferably 45 to 67 at%. The atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
 珪素分布曲線、酸素分布曲線及び炭素分布曲線において、珪素の原子比、酸素の原子比及び炭素の原子比が、式(2)で表される条件を満たす場合、ガスバリア層中における珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。ガスバリア層中における珪素原子、酸素原子及び炭素原子の合計量に対する酸素原子の含有量の原子比率は、1~33at%であることが好ましく、10~27at%であることがより好ましい。ガスバリア層中における珪素原子、酸素原子及び炭素原子の合計量に対する炭素原子の含有量の原子比率は、33~66at%であることが好ましく、40~57at%であることがより好ましい。 In the silicon distribution curve, oxygen distribution curve, and carbon distribution curve, when the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the formula (2), silicon atoms and oxygen in the gas barrier layer The atomic ratio of the silicon atom content to the total amount of atoms and carbon atoms is preferably 25 to 45 at%, more preferably 30 to 40 at%. The atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 1 to 33 at%, and more preferably 10 to 27 at%. The atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 33 to 66 at%, and more preferably 40 to 57 at%.
 ガスバリア層の厚みは、5~3000nmであることが好ましく、10~2000nmであることがより好ましく、100~1000nmであることが更に好ましい。ガスバリア層の厚みがこれら数値範囲内にあると、より優れた酸素ガスバリア性、水蒸気バリア性等のガスバリア性が得られるとともに屈曲によるガスバリア性の低下が更に効果的に抑制される傾向にある。 The thickness of the gas barrier layer is preferably 5 to 3000 nm, more preferably 10 to 2000 nm, and still more preferably 100 to 1000 nm. When the thickness of the gas barrier layer is within these numerical ranges, more excellent gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties can be obtained, and a decrease in gas barrier properties due to bending tends to be more effectively suppressed.
 第1のフィルムが複数のガスバリア層を備える場合には、それらのガスバリア層の厚みの合計値は、通常10~10000nmであり、10~5000nmであることが好ましく、100~3000nmであることがより好ましく、200~2000nmであることが更に好ましい。ガスバリア層の厚みの合計値がこれら数値範囲内にあると、より優れた酸素ガスバリア性、水蒸気バリア性等のガスバリア性が得られるとともに屈曲によるガスバリア性の低下が更に効果的に抑制される傾向にある。 When the first film includes a plurality of gas barrier layers, the total thickness of the gas barrier layers is usually 10 to 10000 nm, preferably 10 to 5000 nm, more preferably 100 to 3000 nm. Preferably, it is 200 to 2000 nm. When the total thickness of the gas barrier layer is within these numerical ranges, more excellent gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties can be obtained, and a decrease in gas barrier properties due to bending tends to be more effectively suppressed. is there.
 第1のフィルムは、第1のフィルムの基材及びガスバリア層の他に、必要に応じて、更にプライマーコート層、ヒートシール性樹脂層、接着剤層等を備えていてもよい。このようなプライマーコート層は、基材及びガスバリア層との接着性を向上させることが可能なプライマーコート剤を用いて形成することができる。ヒートシール性樹脂層は、適宜公知のヒートシール性樹脂を用いて形成することができる。接着剤層は、適宜通常の接着剤を用いて形成することができ、このような接着剤層により複数の第1のフィルム同士が接着されていてもよい。 The first film may further include a primer coat layer, a heat-sealable resin layer, an adhesive layer, and the like, if necessary, in addition to the base material of the first film and the gas barrier layer. Such a primer coat layer can be formed using a primer coat agent capable of improving the adhesion between the substrate and the gas barrier layer. The heat-sealable resin layer can be appropriately formed using a known heat-sealable resin. The adhesive layer can be appropriately formed using a normal adhesive, and the plurality of first films may be bonded to each other by such an adhesive layer.
 第1のフィルムのガスバリア層は、プラズマ化学気相成長法により形成される層であることが好ましい。プラズマ化学気相成長法により形成されるガスバリア層は、第1のフィルムの基材を一対の成膜ロール上に配置し、一対の成膜ロール間に放電してプラズマを発生させるプラズマ化学気相成長法により形成される層であることがより好ましい。一対の成膜ロール間に放電する際には、一対の成膜ロールの極性を交互に反転させることが好ましい。このようなプラズマ化学気相成長法に用いる成膜ガスは、有機ケイ素化合物と酸素とを含むことが好ましい。成膜ガス中の酸素の含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。第1のフィルムのガスバリア層は、連続的な成膜プロセスにより形成された層であることが好ましい。このようなプラズマ化学気相成長法を利用してガスバリア層を形成する方法の詳細は、後述の第1のフィルムを製造する方法において説明される。 The gas barrier layer of the first film is preferably a layer formed by a plasma chemical vapor deposition method. The gas barrier layer formed by the plasma enhanced chemical vapor deposition method is a plasma chemical vapor phase in which a base of the first film is disposed on a pair of film forming rolls, and plasma is generated by discharging between the pair of film forming rolls. A layer formed by a growth method is more preferable. When discharging between the pair of film forming rolls, it is preferable to reverse the polarity of the pair of film forming rolls alternately. The film forming gas used for such plasma chemical vapor deposition preferably includes an organosilicon compound and oxygen. The oxygen content in the film forming gas is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. The gas barrier layer of the first film is preferably a layer formed by a continuous film forming process. Details of a method for forming a gas barrier layer using such a plasma chemical vapor deposition method will be described in a method for producing a first film described later.
 <第1のフィルムの製造方法>
 次に、第1のフィルムを製造する方法について説明する。第1のフィルムは、第1のフィルムの基材の表面上にガスバリア層を形成させることにより製造することができる。ガスバリア層を第1のフィルムの基材の表面上に形成させる方法としては、ガスバリア性の観点から、プラズマ化学気相成長法(プラズマCVD)が好ましい。プラズマ化学気相成長法はペニング放電プラズマ方式のプラズマ化学気相成長法であってもよい。
<Method for producing first film>
Next, a method for producing the first film will be described. The first film can be produced by forming a gas barrier layer on the surface of the substrate of the first film. As a method for forming the gas barrier layer on the surface of the substrate of the first film, plasma chemical vapor deposition (plasma CVD) is preferable from the viewpoint of gas barrier properties. The plasma enhanced chemical vapor deposition method may be a Penning discharge plasma type chemical vapor deposition method.
 プラズマ化学気相成長法においてプラズマを発生させる際には、複数の成膜ロールの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ロールを用い、その一対の成膜ロールのそれぞれに基材を配置して、一対の成膜ロール間に放電してプラズマを発生させることがより好ましい。このように一対の成膜ロールを用いることにより、成膜時に、一方の成膜ロール上に存在する基材上にガスバリア層を成膜しつつ、もう一方の成膜ロール上に存在する基材上にも同時にガスバリア層を成膜することが可能である。これにより、効率よく薄膜(ガスバリア層)を製造できるだけでなく、2倍の成膜レートで、同じ構造のガスバリア層を同時に成膜できる。その結果、炭素分布曲線における極値を少なくとも倍増させて、効率よく上記条件(i)、(ii)及び(iii)を全て満たすガスバリア層を形成することが可能となる。生産性の観点から、ロールツーロール方式で第1のフィルムの基材の表面上にガスバリア層を形成させることが好ましい。このようなプラズマ化学気相成長法により第1のフィルムを製造する際に用いることが可能な装置は、特に制限されないが、少なくとも一対の成膜ロールと、プラスマ電源とを備え、前記一対の成膜ロール間において放電することが可能な装置であることが好ましい。例えば、図4に示す製造装置を用いることにより、プラズマ化学気相成長法を利用しながらロールツーロール方式で第1のフィルムを製造することが可能である。 When generating plasma in the plasma enhanced chemical vapor deposition method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rolls, using a pair of film forming rolls, and each of the pair of film forming rolls. More preferably, a substrate is disposed on the substrate, and plasma is generated by discharging between the pair of film forming rolls. By using a pair of film forming rolls in this manner, a base material existing on the other film forming roll while forming a gas barrier layer on the base material existing on one film forming roll during film formation. A gas barrier layer can be simultaneously formed on the upper layer. Thereby, not only a thin film (gas barrier layer) can be efficiently produced, but also a gas barrier layer having the same structure can be simultaneously formed at a double film formation rate. As a result, it is possible to at least double the extreme value in the carbon distribution curve and efficiently form a gas barrier layer that satisfies all of the above conditions (i), (ii), and (iii). From the viewpoint of productivity, it is preferable to form a gas barrier layer on the surface of the substrate of the first film by a roll-to-roll method. An apparatus that can be used for manufacturing the first film by such a plasma chemical vapor deposition method is not particularly limited, but includes at least a pair of film forming rolls and a plasma power source, and the pair of components is formed. An apparatus capable of discharging between the film rolls is preferable. For example, by using the manufacturing apparatus shown in FIG. 4, it is possible to manufacture the first film by the roll-to-roll method while using the plasma chemical vapor deposition method.
 以下、図4を参照しながら、第1のフィルムを製造する方法についてより詳細に説明する。図4は、本実施形態に係る第1のフィルムを製造するために好適に利用することが可能な製造装置の一例を示す模式図である。以下の説明及び図面中、同一又は相当する要素には同一の符号が付され、重複する説明は適宜省略される。 Hereinafter, the method for producing the first film will be described in more detail with reference to FIG. FIG. 4 is a schematic diagram illustrating an example of a manufacturing apparatus that can be suitably used to manufacture the first film according to the present embodiment. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate.
 図4に示す製造装置は、送り出しロール701と、搬送ロール21、22、23、24と、対向して配置された一対の成膜ロール31、32と、ガス供給管41と、プラズマ発生用電源51と、成膜ロール31及び32の内部に設置された磁場発生装置61、62と、巻取りロール702とを備えている。この製造装置においては、少なくとも、成膜ロール31、32と、ガス供給管41と、プラズマ発生用電源51と、磁場発生装置61、62とは、図示を省略した真空チャンバー内に配置されている。この真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能である。 The manufacturing apparatus shown in FIG. 4 includes a feed roll 701, transport rolls 21, 22, 23, and 24, a pair of film forming rolls 31 and 32 disposed opposite to each other, a gas supply pipe 41, and a plasma generation power source. 51, magnetic field generators 61 and 62 installed inside the film forming rolls 31 and 32, and a winding roll 702. In this manufacturing apparatus, at least the film forming rolls 31 and 32, the gas supply pipe 41, the plasma generation power source 51, and the magnetic field generators 61 and 62 are disposed in a vacuum chamber (not shown). . This vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by such a vacuum pump.
 図4に示す製造装置においては、一対の成膜ロール(成膜ロール31と成膜ロール32)を一対の対向電極として機能させることが可能となるように、各成膜ロールがそれぞれプラズマ発生用電源51に接続されている。プラズマ発生用電源51から電力を供給することにより、成膜ロール31と成膜ロール32との間の空間に放電し、これにより成膜ロール31と成膜ロール32との間の空間にプラズマを発生させることができる。成膜ロール31と成膜ロール32を電極としても利用する場合には、電極としても利用可能なようにその材質及び設計を適宜変更すればよい。一対の成膜ロール(成膜ロール31及び32)は、その中心軸が同一平面上において略平行となるようにして配置されることが好ましい。このように一対の成膜ロール(成膜ロール31及び32)を配置して、それぞれの成膜ロール上でガスバリア層を成膜することにより、1つの成膜ロール上で成膜する場合と比較して、成膜レートを倍にできる。なおかつ、同じ構造の膜を重ねて成膜できるので、炭素分布曲線における極値の数を少なくとも倍増させることが可能である。このような製造装置によれば、CVD法により基材6の表面上にガスバリア層を形成することが可能であり、成膜ロール31上において基材6の表面上に膜成分を堆積させつつ、更に成膜ロール32上においても基材6の表面上に膜成分を堆積させることもできる。そのため、基材6の表面上にガスバリア層を効率よく形成することができる。 In the manufacturing apparatus shown in FIG. 4, each film-forming roll is for plasma generation so that a pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) can function as a pair of counter electrodes. The power supply 51 is connected. By supplying electric power from the plasma generating power source 51, a discharge is generated in the space between the film forming roll 31 and the film forming roll 32, and thereby plasma is generated in the space between the film forming roll 31 and the film forming roll 32. Can be generated. When the film-forming roll 31 and the film-forming roll 32 are also used as electrodes, the material and design may be changed as appropriate so that they can also be used as electrodes. The pair of film forming rolls (film forming rolls 31 and 32) are preferably arranged so that their central axes are substantially parallel on the same plane. In this way, a pair of film-forming rolls (film-forming rolls 31 and 32) are arranged, and the gas barrier layer is formed on each film-forming roll, thereby comparing with the case where the film is formed on one film-forming roll. Thus, the film formation rate can be doubled. In addition, since the films having the same structure can be stacked, it is possible to at least double the number of extreme values in the carbon distribution curve. According to such a manufacturing apparatus, it is possible to form a gas barrier layer on the surface of the substrate 6 by the CVD method, and while depositing a film component on the surface of the substrate 6 on the film forming roll 31, Furthermore, film components can also be deposited on the surface of the substrate 6 on the film forming roll 32. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate 6.
 成膜ロール31及び成膜ロール32の内部には、磁場発生装置61及び62が設けられている。この磁場発生装置61及び62は、たとえ成膜ロールが回転したとしても、それ自体は回転しないようにして固定されている。 Inside the film forming roll 31 and the film forming roll 32, magnetic field generators 61 and 62 are provided. The magnetic field generators 61 and 62 are fixed so as not to rotate even if the film forming roll rotates.
 成膜ロール31及び成膜ロール32として、適宜通常のロールを用いることができる。成膜ロール31及び32の直径は、より効率よく薄膜を形成せしめるという観点から、実質的に同一であることが好ましい。成膜ロール31及び32の直径は、放電条件、チャンバーのスペース等の観点から、5~100cmであることが好ましい。 As the film forming roll 31 and the film forming roll 32, normal rolls can be appropriately used. The diameters of the film forming rolls 31 and 32 are preferably substantially the same from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rolls 31 and 32 are preferably 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
 図4に示す製造装置においては、基材6の表面が互いに対向するように、一対の成膜ロール(成膜ロール31と成膜ロール32)上に、基材6が配置されている。このように基材6を配置することにより、成膜ロール31と成膜ロール32との間に放電を行ってプラズマを発生させる際に、一対の成膜ロール間に存在する基材6のそれぞれの表面を同時に成膜することが可能である。すなわち、このような製造装置によれば、CVD法により、成膜ロール31上にて基材6の表面上に膜成分を堆積させ、更に成膜ロール32上にて膜成分を堆積させることができる。そのため、基材6の表面上にガスバリア層を効率よく形成することが可能である。 In the manufacturing apparatus shown in FIG. 4, the base material 6 is disposed on a pair of film forming rolls (film forming roll 31 and film forming roll 32) so that the surfaces of the base material 6 face each other. By disposing the base material 6 in this way, each of the base materials 6 existing between the pair of film forming rolls is generated when the plasma is generated by discharging between the film forming roll 31 and the film forming roll 32. It is possible to form films on the surfaces simultaneously. That is, according to such a manufacturing apparatus, a film component is deposited on the surface of the substrate 6 on the film forming roll 31 and a film component is further deposited on the film forming roll 32 by the CVD method. it can. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate 6.
 送り出しロール701及び搬送ロール21、22、23、24としては適宜、通常のロールを用いることができる。巻取りロール702は、ガスバリア層を形成した基材6を巻き取ることが可能なものであれば特に制限されず、適宜、通常用いられるロールから選択される。 As the delivery roll 701 and the transport rolls 21, 22, 23, 24, normal rolls can be used as appropriate. The winding roll 702 is not particularly limited as long as it can wind the substrate 6 on which the gas barrier layer is formed, and is appropriately selected from commonly used rolls.
 ガス供給管41は、原料ガス等を所定の速度で供給又は排出することが可能であればよい。プラズマ発生用電源51は、適宜、通常のプラズマ発生装置の電源を用いることができる。プラズマ発生用電源51は、これに接続された成膜ロール31と成膜ロール32に電力を供給して、これらを放電のための対向電極として利用することを可能とする。プラズマ発生用電源51は、より効率よくプラズマCVDを実施することが可能であることから、一対の成膜ロールの極性を交互に反転させることが可能な電源(交流電源など)を利用することが好ましい。プラズマ発生用電源51は、より効率よくプラズマCVDを実施するために、印加電力を100W~10kWに、交流の周波数を50Hz~500kHzに設定することが可能であることがより好ましい。磁場発生装置61、62は、適宜通常の磁場発生装置を用いることができる。基材6としては、第1のフィルムの基材の他に、予め形成されたガスバリア層を有するフィルムを用いることができる。このように、基材6として予め形成されたガスバリア層を有するフィルムを用いることにより、ガスバリア層の厚みを厚くすることが可能である。 The gas supply pipe 41 only needs to be able to supply or discharge the raw material gas at a predetermined speed. As the plasma generating power source 51, a power source of a normal plasma generating apparatus can be used as appropriate. The plasma generating power supply 51 supplies power to the film forming roll 31 and the film forming roll 32 connected to the power supply 51, and makes it possible to use these as counter electrodes for discharge. Since the plasma generating power source 51 can perform plasma CVD more efficiently, it is possible to use a power source (such as an AC power source) that can alternately reverse the polarity of a pair of film forming rolls. preferable. More preferably, the plasma generation power source 51 can set the applied power to 100 W to 10 kW and the AC frequency to 50 Hz to 500 kHz in order to perform plasma CVD more efficiently. As the magnetic field generators 61 and 62, normal magnetic field generators can be used as appropriate. As the base material 6, in addition to the base material of the first film, a film having a gas barrier layer formed in advance can be used. Thus, by using a film having a gas barrier layer formed in advance as the substrate 6, it is possible to increase the thickness of the gas barrier layer.
 図4に示す製造装置を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ロールの直径、並びに、フィルムの搬送速度を適宜調整することにより、第1のフィルムを製造することができる。 Using the manufacturing apparatus shown in FIG. 4, for example, by appropriately adjusting the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roll, and the film transport speed A first film can be produced.
 図4に示す製造装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール31及び32)間に放電を発生させることにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ロール31上の基材6の表面上並びに成膜ロール32上の基材6の表面上に、ガスバリア層がプラズマCVD法により形成される。このような成膜に際しては、基材6が送り出しロール701及び成膜ロール31等により、それぞれ搬送されることから、ロールツーロール方式の連続的な成膜プロセスにより基材6の表面上にガスバリア層が形成される。 By using the manufacturing apparatus shown in FIG. 4 to generate a discharge between a pair of film forming rolls (film forming rolls 31 and 32) while supplying a film forming gas (such as a raw material gas) into the vacuum chamber, The film gas (source gas or the like) is decomposed by plasma, and a gas barrier layer is formed on the surface of the substrate 6 on the film forming roll 31 and on the surface of the substrate 6 on the film forming roll 32 by the plasma CVD method. . In such film formation, the base material 6 is conveyed by the delivery roll 701, the film formation roll 31 and the like, respectively. Therefore, a gas barrier is formed on the surface of the base material 6 by a roll-to-roll continuous film formation process. A layer is formed.
 ガスバリア層の形成に用いられる成膜ガス中の原料ガスは、形成されるガスバリア層の材質に応じて適宜選択される。原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物を用いることができる。原料ガスは、有機ケイ素化合物の他に、ケイ素源としてのモノシランを含有してもよい。 The source gas in the film forming gas used for forming the gas barrier layer is appropriately selected according to the material of the gas barrier layer to be formed. As the source gas, for example, an organosilicon compound containing silicon can be used. The source gas may contain monosilane as a silicon source in addition to the organosilicon compound.
 原料ガスは、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、及びオクタメチルシクロテトラシロキサンからなる群より選ばれる少なくとも1種の有機ケイ素化合物を含む。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られるガスバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン及び1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。 The source gas is, for example, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, At least one organosilicon compound selected from the group consisting of phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane including. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer. These organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 成膜ガスは、原料ガスの他に反応ガスを含んでいてもよい。この反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物を形成するガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素又はオゾンを用いることができる。窒化物を形成するための反応ガスとしては、例えば、窒素又はアンモニアを用いることができる。これらの反応ガスは、1種を単独で又は2種以上を組み合わせて使用される。例えば、酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせることができる。 The film forming gas may contain a reactive gas in addition to the source gas. As this reaction gas, a gas that reacts with the raw material gas to form an inorganic compound such as oxide or nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. As the reaction gas for forming the nitride, for example, nitrogen or ammonia can be used. These reaction gases are used alone or in combination of two or more. For example, when oxynitride is formed, a reaction gas for forming an oxide and a reaction gas for forming a nitride can be combined.
 成膜ガスとして、原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。成膜ガスとして、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができる。例えば、ヘリウム、アルゴン、ネオン及びキセノン等の希ガス又は水素を、キャリアガス又は放電用ガスとして用いることができる。 As a film forming gas, a carrier gas may be used as necessary in order to supply a source gas into the vacuum chamber. As the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such a carrier gas and a discharge gas, known ones can be used as appropriate. For example, a rare gas such as helium, argon, neon, and xenon, or hydrogen can be used as the carrier gas or the discharge gas.
 成膜ガスが原料ガスと反応ガスを含有する場合、原料ガスと反応ガスの比率は、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を適切に制御することにより、上記条件(i)、(ii)及び(iii)を全て満たす薄膜(ガスバリア層)を特に効率よく形成することができる。成膜ガスが有機ケイ素化合物と酸素とを含有する場合には、成膜ガスの酸素量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When the film forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is higher than the ratio of the amount of the reactive gas that is theoretically required to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive. By appropriately controlling the ratio of the reaction gas, a thin film (gas barrier layer) satisfying all the above conditions (i), (ii) and (iii) can be formed particularly efficiently. When the deposition gas contains an organosilicon compound and oxygen, the amount of oxygen in the deposition gas is less than or equal to the theoretical oxygen amount required to fully oxidize the entire amount of the organosilicon compound in the deposition gas. Is preferred.
 以下、成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物:HMDSO:(CHSiO:)と、反応ガスとしての酸素(O)を含有するガスを用い、ケイ素-酸素系のガスバリア層を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスの好適な比率等についてより詳細に説明する。 Hereinafter, a gas containing hexamethyldisiloxane (organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas and oxygen (O 2 ) as a reaction gas is used as a film forming gas, Taking a case of producing a silicon-oxygen-based gas barrier layer as an example, a suitable ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)とを含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系のガスバリア層を作製する場合、その成膜ガス中で下記反応式(3):
 (CHSiO+12O→6CO+9HO+2SiO   (3)
で表される反応が起こり、二酸化ケイ素が形成される。この反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成され得る。その場合、上記条件(i)~(iii)を全て満たすガスバリア層を形成することができない可能性が高い。そのため、本実施形態に係るガスバリア層を形成する際には、上記(3)式の反応が完全には進行しないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素は、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には反応が完全には進行せず、酸素を化学量論比に比して大過剰に供給して初めて反応が完結することが多いと考えられる。例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とされる場合もある。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を成膜ガスに含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子及び水素原子がガスバリア層中に取り込まれる。その結果、上記条件(i)、(ii)及び(iii)を全て満たすガスバリア層を形成することができる。これにより、得られる第1のフィルムに優れたバリア性及び耐屈曲性を発揮させることが可能となる。成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子及び水素原子がガスバリア層中に過剰に取り込まれる。この場合はガスバリア層の透明性が低下するため、ガスバリア層を、有機ELデバイス及び有機薄膜太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板として利用することが困難になる。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量であることが好ましく、0.5倍より多い量であることがより好ましい。
A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen-based material. When producing a gas barrier layer, the following reaction formula (3) in the film-forming gas:
(CH 3 ) 6 Si 2 O + 12O 2 → 6CO 2 + 9H 2 O + 2SiO 2 (3)
The reaction represented by this occurs and silicon dioxide is formed. In this reaction, the amount of oxygen necessary to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film can be formed when 12 moles or more of oxygen is contained in 1 mole of hexamethyldisiloxane and completely reacted in the film forming gas. In that case, there is a high possibility that a gas barrier layer satisfying all the above conditions (i) to (iii) cannot be formed. Therefore, when the gas barrier layer according to this embodiment is formed, the oxygen amount is set to a stoichiometric ratio of 12 with respect to 1 mol of hexamethyldisiloxane so that the reaction of the above formula (3) does not proceed completely. It is preferable to make it less than a mole. In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount (flow rate) of oxygen in the reaction gas Even though the molar amount (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane, in reality, the reaction does not proceed completely, and oxygen is compared to the stoichiometric ratio. It is thought that the reaction is often completed only when a large excess is supplied. For example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material. Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. . By containing hexamethyldisiloxane and oxygen in the film forming gas at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the gas barrier layer. As a result, a gas barrier layer that satisfies all the conditions (i), (ii), and (iii) can be formed. Thereby, it becomes possible to exhibit the outstanding barrier property and bending resistance in the 1st film obtained. If the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is too small, unoxidized carbon atoms and hydrogen atoms are excessively taken into the gas barrier layer. In this case, since the transparency of the gas barrier layer is lowered, it becomes difficult to use the gas barrier layer as a flexible substrate for devices that require transparency, such as organic EL devices and organic thin-film solar cells. From such a viewpoint, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane. It is preferable that the amount is more than 0.5 times.
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.1Pa~50Paの範囲であることが好ましい。 The pressure in the vacuum chamber (degree of vacuum) can be adjusted as appropriate according to the type of source gas, but is preferably in the range of 0.1 Pa to 50 Pa.
 このようなプラズマCVD法において、成膜ロール31及び32間に放電するために、プラズマ発生用電源51に接続された電極ドラム(本実施形態においては成膜ロール31及び32に設置されている。)に印加する電力は、原料ガスの種類及び真空チャンバー内の圧力等に応じて適宜調整されるが、好ましくは0.1~10kWである。印加電力が前記下限未満ではパーティクルが発生し易くなる傾向にあり、印加電力が前記上限を超えると成膜時に発生する熱量が多くなり、成膜時の基材表面の温度が上昇する。温度が上昇しすぎると、基材が熱によって損傷し、成膜時に皺が発生する可能性がある。場合によっては、熱によってフィルムが溶け、成膜ロールが露出し、成膜ロール間に大電流の放電が発生して成膜ロール自体が損傷するおそれがある。 In such a plasma CVD method, in order to discharge between the film forming rolls 31 and 32, an electrode drum connected to the plasma generating power supply 51 (in this embodiment, the film forming rolls 31 and 32 are installed). ) Is appropriately adjusted according to the type of source gas and the pressure in the vacuum chamber, but is preferably 0.1 to 10 kW. If the applied power is less than the lower limit, particles tend to be generated. If the applied power exceeds the upper limit, the amount of heat generated during film formation increases, and the temperature of the substrate surface during film formation increases. If the temperature rises too much, the substrate may be damaged by heat, and wrinkles may occur during film formation. In some cases, the film is melted by heat, the film forming roll is exposed, a large current discharge is generated between the film forming rolls, and the film forming roll itself may be damaged.
 基材6の搬送速度(ライン速度)は、原料ガスの種類及び真空チャンバー内の圧力等に応じて適宜調整することができるが、0.1~100m/minであることが好ましく、0.5~20m/minであることがより好ましい。ライン速度が前記下限未満では、フィルムに熱に起因する皺の発生しやすくなる傾向にあり、ライン速度が前記上限を超えると、形成されるガスバリア層の厚みが薄くなる傾向にある。 The conveyance speed (line speed) of the substrate 6 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably 0.1 to 100 m / min, 0.5 More preferably, it is ˜20 m / min. When the line speed is less than the lower limit, wrinkles due to heat tend to occur in the film, and when the line speed exceeds the upper limit, the thickness of the formed gas barrier layer tends to be thin.
 (第2のフィルム)
 前述したように第2のフィルムは、有機EL素子から出射される光が第2のフィルムを通って外界に出射する場合、光透過性を示す部材によって形成される必要がある。その場合、第2のフィルムは、第1のフィルムと同様に、第2のガスバリア層を有することが好ましい。一実施形態に係る第2のガスバリア層は、珪素原子、酸素原子及び炭素原子を含有しており、当該第2のガスバリア層における珪素分布曲線、酸素分布曲線及び炭素分布曲線が上述の条件(i)~(iii)を満たす。この第2のガスバリア層は、上述の第1のフィルムにおけるガスバリア層と同様の方法により形成することができる。第2のガスバリア層は、第1のフィルムのガスバリア層と全く同じ構成を有していてもよいが、酸素分布曲線及び炭素分布曲線が条件(i)~(iii)を満たす限りにおいて、第1のフィルムのガスバリア層とは異なる構成を有していてもよい。
(Second film)
As described above, when the light emitted from the organic EL element is emitted to the outside through the second film, the second film needs to be formed of a member that exhibits light transmittance. In that case, it is preferable that the 2nd film has a 2nd gas barrier layer similarly to the 1st film. The second gas barrier layer according to an embodiment contains silicon atoms, oxygen atoms, and carbon atoms, and the silicon distribution curve, oxygen distribution curve, and carbon distribution curve in the second gas barrier layer satisfy the above-described conditions (i ) To (iii) are satisfied. This second gas barrier layer can be formed by the same method as the gas barrier layer in the first film described above. The second gas barrier layer may have exactly the same configuration as the gas barrier layer of the first film, but as long as the oxygen distribution curve and the carbon distribution curve satisfy the conditions (i) to (iii), The film may have a different structure from the gas barrier layer.
 (有機EL素子)
 次に有機EL素子の構成について説明する。本実施形態に係る有機EL素子は、第1のフィルムと第2のフィルムとが貼合される工程の前に、第2のフィルム又は第1のフィルム上に形成される。
(Organic EL device)
Next, the configuration of the organic EL element will be described. The organic EL element according to the present embodiment is formed on the second film or the first film before the step of bonding the first film and the second film.
 本実施形態に係る有機EL素子は、陽極及び陰極からなる一対の電極と、該電極間に設けられる発光層と、該電極間に設けられる電子注入層とを有する。一対の電極間には、発光層及び電子注入層に加えて、必要に応じて所定の層が設けられることがある。発光層は1層に限らず複数層設けられることがある。本実施形態に係る有機EL素子は、発光層と陰極との間に電子注入層を備える。 The organic EL device according to this embodiment has a pair of electrodes composed of an anode and a cathode, a light emitting layer provided between the electrodes, and an electron injection layer provided between the electrodes. In addition to the light emitting layer and the electron injection layer, a predetermined layer may be provided between the pair of electrodes as necessary. The light emitting layer is not limited to one layer, and a plurality of layers may be provided. The organic EL device according to this embodiment includes an electron injection layer between the light emitting layer and the cathode.
 陰極と発光層との間に設けられる層としては、電子注入層、電子輸送層及び正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に接する層を電子注入層といい、この電子注入層を除く層を電子輸送層という。 Examples of the layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer. In the case where both the electron injection layer and the electron transport layer are provided between the cathode and the light emitting layer, the layer in contact with the cathode is referred to as an electron injection layer, and the layer excluding this electron injection layer is referred to as an electron transport layer.
 電子注入層は、陰極からの電子注入効率を改善する機能を有する。電子輸送層は陰極側の表面に接する層からの電子注入を改善する機能を有する。正孔ブロック層は、正孔の輸送を堰き止める機能を有する。電子注入層、及び/又は電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。 The electron injection layer has a function of improving the electron injection efficiency from the cathode. The electron transport layer has a function of improving electron injection from the layer in contact with the surface on the cathode side. The hole blocking layer has a function of blocking hole transport. When the electron injection layer and / or the electron transport layer has a function of blocking hole transport, these layers may also serve as the hole blocking layer.
 正孔ブロック層が正孔の輸送を堰き止める機能を有することは、例えばホール電流のみを流す素子を作製し、その電流値の減少に基づいて確認することが可能である。 The fact that the hole blocking layer has a function of blocking hole transport can be confirmed, for example, by fabricating a device that allows only the hole current to flow and reducing the current value.
 陽極と発光層との間に設けられる層としては、正孔注入層、正孔輸送層及び電子ブロック層などを挙げることができる。陽極と発光層との間に、正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に接する層を正孔注入層といい、この正孔注入層を除く層を正孔輸送層という。 Examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer. When both the hole injection layer and the hole transport layer are provided between the anode and the light-emitting layer, the layer in contact with the anode is called a hole injection layer, and the layers other than the hole injection layer are positive. It is called a hole transport layer.
 正孔注入層は、陽極からの正孔注入効率を改善する機能を有する。正孔輸送層は陽極側の表面に接する層からの正孔注入を改善する機能を有する。電子ブロック層は、電子の輸送を堰き止める機能を有する。正孔注入層、及び/又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。 The hole injection layer has a function of improving the hole injection efficiency from the anode. The hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side. The electron blocking layer has a function of blocking electron transport. When the hole injection layer and / or the hole transport layer have a function of blocking electron transport, these layers may also serve as the electron block layer.
 電子ブロック層が電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少に基づいて確認することが可能である。 The fact that the electron blocking layer has a function of blocking electron transport can be confirmed, for example, by producing an element that allows only an electron current to flow and reducing the current value.
 電子注入層及び正孔注入層を総称して電荷注入層ということがあり、電子輸送層及び正孔輸送層を総称して電荷輸送層ということがある。 The electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
 本実施の形態の有機EL素子が有し得る層構成の一例を以下に示す。
a)陽極/正孔注入層/発光層/電子注入層/陰極
b)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
c)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
d)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
e)陽極/発光層/電子注入層/陰極
f)陽極/発光層/電子輸送層/電子注入層/陰極
(ここで、記号「/」は、記号「/」を間に挟んで記載された2つの層が隣接して積層されていることを示す。以下同じ。)
An example of the layer structure that the organic EL element of the present embodiment can have is shown below.
a) Anode / hole injection layer / light emitting layer / electron injection layer / cathode b) Anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode c) Anode / hole injection layer / hole transport Layer / light emitting layer / electron injection layer / cathode d) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode e) anode / light emitting layer / electron injection layer / cathode f) Anode / light-emitting layer / electron transport layer / electron injection layer / cathode (here, the symbol “/” indicates that two layers described with the symbol “/” in between are stacked adjacent to each other) .same as below.)
 本実施の形態の有機EL素子は2層以上の発光層を有していてもよい。上記a)~f)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構成単位A」とすると、2層の発光層を有する有機EL素子の構成として、下記g)に示す層構成を挙げることができる。2つある(構成単位A)の層構成は互いに同じでも、異なっていてもよい。
g)陽極/(構成単位A)/電荷発生層/(構成単位A)/陰極
The organic EL element of the present embodiment may have two or more light emitting layers. In any one of the layer configurations of a) to f) above, when the laminate sandwiched between the anode and the cathode is referred to as “structural unit A”, the configuration of the organic EL element having two light emitting layers is as follows. And the layer structure shown in the following g). The two (structural unit A) layer structures may be the same or different.
g) Anode / (constituent unit A) / charge generation layer / (constituent unit A) / cathode
 「(構成単位A)/電荷発生層」を「構成単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、下記h)に示す層構成を挙げることができる。
h)陽極/(構成単位B)x/(構成単位A)/陰極
 記号「x」は、2以上の整数を表し、(構成単位B)xは、x段積層された構成単位Bからなる積層体を表す。複数ある(構成単位B)の層構成は同じでも、異なっていてもよい。
Assuming that “(structural unit A) / charge generation layer” is “structural unit B”, examples of the configuration of the organic EL device having three or more light-emitting layers include the layer configuration shown in h) below.
h) Anode / (Structural unit B) x / (Structural unit A) / Cathode The symbol “x” represents an integer of 2 or more, and (Structural unit B) x is a stack composed of the structural units B stacked in x stages. Represents the body. A plurality of (structural unit B) layer configurations may be the same or different.
 電荷発生層とは電界を印加することにより正孔と電子を発生する層である。電荷発生層としては、例えば酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、及び酸化モリブデンなどを含む薄膜を挙げることができる。 The charge generation layer is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer include a thin film containing vanadium oxide, indium tin oxide (abbreviated as ITO), molybdenum oxide, and the like.
 積層する層の順序、層数、及び各層の厚さは、発光効率及び素子寿命を勘案して適宜設定することができる。 The order of the layers to be laminated, the number of layers, and the thickness of each layer can be appropriately set in consideration of the light emission efficiency and the element lifetime.
 次に有機EL素子を構成する各層の材料及び形成方法について、より具体的に説明する。 Next, the material and forming method of each layer constituting the organic EL element will be described more specifically.
 <陽極>
 発光層から放射される光が陽極を通って外に出射される構成を有する有機EL素子の場合、陽極として光透過性を示す電極が用いられる。光透過性を示す電極としては、金属酸化物、金属硫化物及び金属などの薄膜を用いることができ、電気伝導度及び光透過率の高い電極が好適である。具体的には酸化インジウム、酸化亜鉛、酸化スズ、ITO、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、及び銅などを含む薄膜が用いられる。これらの中でもITO、IZO、又は酸化スズから成る薄膜が好適である。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、及びメッキ法などを挙げることができる。該陽極として、ポリアニリン若しくはその誘導体、及びポリチオフェン若しくはその誘導体などの有機の透明導電膜を用いてもよい。
<Anode>
In the case of an organic EL element having a configuration in which light emitted from the light emitting layer is emitted outside through the anode, an electrode exhibiting light transmittance is used as the anode. As an electrode exhibiting light transmittance, a thin film of metal oxide, metal sulfide, metal, or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferable. Specifically, a thin film containing indium oxide, zinc oxide, tin oxide, ITO, indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, or the like is used. Among these, a thin film made of ITO, IZO, or tin oxide is preferable. Examples of the method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. As the anode, an organic transparent conductive film such as polyaniline or a derivative thereof and polythiophene or a derivative thereof may be used.
 陽極の厚みは、要求される特性及び工程の簡易さなどを考慮して適宜設定され、例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The thickness of the anode is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 <正孔注入層>
 正孔注入層を構成する正孔注入材料としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、及び酸化アルミニウムなどの酸化物、フェニルアミン系化合物、スターバースト型アミン系化合物、フタロシアニン系、アモルファスカーボン、ポリアニリン、並びにポリチオフェン誘導体などを挙げることができる。
<Hole injection layer>
The hole injection material constituting the hole injection layer includes oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanines, amorphous carbon, polyaniline And polythiophene derivatives.
 正孔注入層の成膜方法としては、例えば正孔注入材料を含む溶液からの成膜を挙げることができる。例えば、正孔注入材料を含む溶液を所定の塗布法によって塗布して成膜し、成膜された溶液を固化することによって正孔注入層を形成することができる。 Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material. For example, a hole injection layer can be formed by applying a solution containing a hole injection material by a predetermined application method to form a film, and solidifying the formed solution.
 溶液からの成膜に用いられる溶媒としては、正孔注入材料を溶解させるものであれば特に制限はなく、クロロホルム、塩化メチレン及びジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン及びキシレンなどの芳香族炭化水素系溶媒、アセトン及びメチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル及びエチルセルソルブアセテートなどのエステル系溶媒、並びに水を挙げることができる。 The solvent used for film formation from a solution is not particularly limited as long as it dissolves the hole injection material. Chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, toluene and xylene And aromatic hydrocarbon solvents such as acetone, ketone solvents such as acetone and methyl ethyl ketone, ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate, and water.
 塗布法としてはスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法及びインクジェットプリント法などを挙げることができる。 As coating methods, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset Examples thereof include a printing method and an ink jet printing method.
 正孔注入層の厚みは、求められる特性及び工程の簡易さなどを考慮して適宜設定され、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the hole injection layer is appropriately set in consideration of required characteristics and process simplicity, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、及びポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
<Hole transport layer>
As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylenevinylene) or derivative thereof, and poly (2,5-thienylenevinylene) or Examples thereof include derivatives thereof.
 これらの中で正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、及びポリ(2,5-チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましい。さらに好ましい正孔輸送材料は、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、及び側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料は、好ましくは、高分子バインダーに分散させて用いられる。 Among these, hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine compound groups in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, poly Polymeric hole transport materials such as arylamines or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, and poly (2,5-thienylene vinylene) or derivatives thereof are preferred. More preferable hole transport materials are polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in a side chain or a main chain. The low molecular hole transport material is preferably used by being dispersed in a polymer binder.
 正孔輸送層の成膜方法としては、特に制限はないが、低分子の正孔輸送材料では、高分子バインダーと正孔輸送材料とを含む混合液からの成膜を挙げることができ、高分子の正孔輸送材料では、正孔輸送材料を含む溶液からの成膜を挙げることができる。 The method for forming the hole transport layer is not particularly limited, but in the case of a low molecular hole transport material, film formation from a mixed solution containing a polymer binder and a hole transport material can be exemplified. Examples of molecular hole transport materials include film formation from a solution containing a hole transport material.
 溶液からの成膜に用いられる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はなく、クロロホルム、塩化メチレン及びジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン及びキシレンなどの芳香族炭化水素系溶媒、アセトン及びメチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル及びエチルセルソルブアセテートなどのエステル系溶媒などを挙げることができる。 The solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole transport material. Chlorine solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, toluene and xylene And aromatic hydrocarbon solvents such as ketone solvents such as acetone and methyl ethyl ketone, and ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate.
 溶液からの成膜方法としては、前述した正孔注入層の成膜法と同様の塗布法を挙げることができる。 As a film formation method from a solution, the same coating method as the above-described film formation method of the hole injection layer can be exemplified.
 正孔輸送材料と組み合わせられる高分子バインダーは、電荷輸送を極度に阻害しないことが好ましく、また可視光に対する吸収が弱いことが好ましい。この高分子バインダーは、例えば、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル及びポリシロキサンから選ばれる。 It is preferable that the polymer binder combined with the hole transport material does not extremely impede charge transport, and that absorption with respect to visible light is weak. The polymer binder is selected from, for example, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
 正孔輸送層の厚みとしては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。正孔輸送層は、少なくともピンホールが発生しないような厚さを有することが必要であり、あまり厚いと、素子の駆動電圧が高くなる。従って、該正孔輸送層の厚みは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the hole transport layer varies depending on the material used, and is appropriately set so that the drive voltage and the light emission efficiency are appropriate. The hole transport layer must have at least a thickness that does not cause pinholes. If the hole transport layer is too thick, the driving voltage of the device increases. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm.
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物(発光材料)、又は該有機物とこれを補助するドーパントとから形成される。ドーパントは、例えば発光効率を向上させるため、又は発光波長を変化させるために加えられる。発光層に含まれる有機物は、低分子化合物でも高分子化合物でもよい。一般的に低分子よりも溶媒への溶解性の高い高分子化合物は塗布法に好適に用いられるため、発光層は高分子化合物を含むことが好ましい。発光層は、ポリスチレン換算の数平均分子量が10~10の高分子化合物を含むことが好ましい。発光層を構成する発光材料としては、例えば以下の色素系材料、金属錯体系材料、高分子系材料、及びドーパント材料を挙げることができる。
<Light emitting layer>
The light emitting layer is usually formed of an organic substance (light emitting material) that mainly emits fluorescence and / or phosphorescence, or the organic substance and a dopant that assists the organic substance. The dopant is added, for example, to improve the luminous efficiency or to change the emission wavelength. The organic substance contained in the light emitting layer may be a low molecular compound or a high molecular compound. In general, since a polymer compound having higher solubility in a solvent than a low molecule is preferably used in the coating method, the light emitting layer preferably contains a polymer compound. The light emitting layer preferably contains a high molecular compound having a polystyrene-reduced number average molecular weight of 10 3 to 10 8 . Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
 (色素系材料)
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、及びクマリン誘導体を挙げることができる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, and coumarin derivatives.
 (金属錯体系材料)
 金属錯体系材料としては、例えば、Tb、Eu及びDyなどの希土類金属、並びにAl、Zn、Be、Ir及びPtなどから選ばれる中心金属と、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール及びキノリン構造などから選ばれる配位子とを有する金属錯体を挙げることができる。例えば、イリジウム錯体及び白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、並びにフェナントロリンユーロピウム錯体から選ばれる。
(Metal complex materials)
Examples of metal complex materials include rare earth metals such as Tb, Eu and Dy, and central metals selected from Al, Zn, Be, Ir and Pt, oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and the like. A metal complex having a ligand selected from a quinoline structure and the like can be given. For example, metal complexes having light emission from triplet excited state such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, And a phenanthroline europium complex.
 (高分子系材料)
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料又は金属錯体系発光材料を高分子化した材料などを挙げることができる。
(Polymer material)
As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above dye materials or metal complex light emitting materials are polymerized. Materials etc. can be mentioned.
 上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、及びそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、並びにポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体及びポリフルオレン誘導体などが好ましい。 Among the above light emitting materials, examples of materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives. . Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
 緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、及びそれらの重合体、ポリパラフェニレンビニレン誘導体、並びにポリフルオレン誘導体などを挙げることができる。中でも高分子材料のポリパラフェニレンビニレン誘導体及びポリフルオレン誘導体などが好ましい。 Examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, and polyfluorene derivatives. Among these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferable.
 赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、及びそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、並びにポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体及びポリフルオレン誘導体などが好ましい。 Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives. Of these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferred.
 白色に発光する材料としては、上述の青色、緑色、赤色の各色に発光する材料を混合したものや、各色に発光する材料となる成分をモノマーとして、これを重合したポリマーをその材料として用いてもよい。また各色に発光する材料をそれぞれ用いて形成される発光層を積層して、全体として白色を発光する素子を実現してもよい。 As a material that emits white light, a mixture of materials that emit light in the above-described blue, green, and red colors, or a component that becomes a material that emits light in each color as a monomer, and a polymer obtained by polymerizing this as a material are used. Also good. Alternatively, an element that emits white light as a whole may be realized by stacking light emitting layers formed using materials that emit light of each color.
(ドーパント材料)
 ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン及びフェノキサゾンなどを挙げることができる。発光層の厚さは、通常約2nm~200nmである。
(Dopant material)
Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, and phenoxazone. The thickness of the light emitting layer is usually about 2 nm to 200 nm.
 <発光層の成膜方法>
 発光層の成膜方法としては、発光材料を含む溶液を塗布する方法、真空蒸着法、及び転写法などを用いることができる。溶液からの成膜に用いる溶媒としては、溶液から正孔注入層を成膜する際に用いられる前述の溶媒と同様の溶媒を挙げることができる。
<Method for forming light emitting layer>
As a method for forming the light emitting layer, a method of applying a solution containing a light emitting material, a vacuum deposition method, a transfer method, or the like can be used. Examples of the solvent used for film formation from a solution include the same solvents as those described above used for forming a hole injection layer from a solution.
 発光材料を含む溶液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法及びノズルコート法などのコート法、並びに、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、及びインクジェットプリント法などの印刷法を挙げることができる。パターン形成及び多色の塗分けが容易であるという点で、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法及びインクジェットプリント法などの印刷法が好ましい。昇華性を示す低分子化合物の場合には、真空蒸着法を用いることができる。レーザーによる転写又は熱転写により、所望の部分のみに発光層を形成する方法も用いることができる。 As a method for applying a solution containing a light emitting material, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a slit coating method, a capillary Examples include coating methods such as coating methods, spray coating methods, and nozzle coating methods, and printing methods such as gravure printing methods, screen printing methods, flexographic printing methods, offset printing methods, reverse printing methods, and inkjet printing methods. . A printing method such as a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, and an inkjet printing method is preferable in that pattern formation and multicolor coating are easy. In the case of a low molecular compound exhibiting sublimability, a vacuum deposition method can be used. A method of forming a light emitting layer only at a desired portion by laser transfer or thermal transfer can also be used.
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、通常用いられている材料を使用でき、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、及びポリフルオレン若しくはその誘導体などを挙げることができる。
<Electron transport layer>
As an electron transport material constituting the electron transport layer, a commonly used material can be used, such as an oxadiazole derivative, anthraquinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, Tetracyanoanthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, and polyfluorene or Examples thereof include derivatives thereof.
 これらのうち、電子輸送材料としては、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、及びポリフルオレン若しくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、及びポリキノリンがさらに好ましい。 Among these, electron transport materials include oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, and poly Fluorene or its derivatives are preferred, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline Is more preferable.
 電子輸送層の成膜法は特に制限されない。低分子の電子輸送材料の場合、粉末からの真空蒸着法、または溶液若しくは溶融状態からの成膜を挙げることができ、高分子の電子輸送材料の場合、溶液または溶融状態からの成膜を挙げることができる。溶液または溶融状態からの成膜の場合には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔注入層を成膜する方法と同様の成膜法を挙げることができる。 The method for forming the electron transport layer is not particularly limited. In the case of a low-molecular electron transport material, a vacuum deposition method from powder, or film formation from a solution or a molten state can be exemplified, and in the case of a polymer electron transport material, film formation from a solution or a melt state can be exemplified. be able to. In the case of film formation from a solution or a molten state, a polymer binder may be used in combination. Examples of the method for forming an electron transport layer from a solution include the same film formation method as the method for forming a hole injection layer from a solution described above.
 電子輸送層の厚みは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。電子輸送層は、少なくともピンホールが発しないような厚さを有することが必要であり、あまり厚いと、素子の駆動電圧が高くなる。従って該電子輸送層の厚みは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The thickness of the electron transport layer varies depending on the material used, and is appropriately set so that the drive voltage and the light emission efficiency are appropriate. The electron transport layer needs to have at least a thickness that does not generate pinholes, and if it is too thick, the drive voltage of the device increases. Accordingly, the thickness of the electron transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
 <電子注入層>
 電子注入層はイオン性ポリマーを含む。電子注入層を構成するイオン性ポリマーとして、例えば、下記式(1)で表される基及び下記式(2)で表される基からなる群より選ばれる1種以上の基を有する構造単位を含む重合体が挙げられる。イオン性ポリマーの一実施形態としては、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基を有する構造単位を、全構造単位中、15~100モル%含む重合体が挙げられる。
<Electron injection layer>
The electron injection layer includes an ionic polymer. As an ionic polymer constituting the electron injection layer, for example, a structural unit having one or more groups selected from the group consisting of a group represented by the following formula (1) and a group represented by the following formula (2): Examples include polymers. As one embodiment of the ionic polymer, a structural unit having one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) , And a polymer containing 15 to 100 mol%.
-(Qn1-Y(Ma1(Zb1  (1)
(式(1)中、Qは2価の有機基を示し、Yは、-CO 、-SO 、-SO 又は-PO 2-を示し、Mは金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを示し、ZはF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を示し、n1は0以上の整数を示し、a1は1以上の整数を示し、b1は0以上の整数を示す。ただし、a1及びb1は、式(1)で表される基の電荷が0となるように選択される。Rは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を示す。Q、M及びZの各々は複数個ある場合、同一でも異なっていてもよい。)
-(Q 1 ) n1 -Y 1 (M 1 ) a1 (Z 1 ) b1 (1)
(In formula (1), Q 1 represents a divalent organic group, Y 1 represents —CO 2 , —SO 3 , —SO 2 or —PO 3 2− , and M 1 represents a metal cation. Or an ammonium cation with or without a substituent, wherein Z 1 is F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 −. , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 -. indicates, n1 represents an integer of 0 or more, a1 represents an integer of 1 or more, b1 represents an integer of 0 or more however, a1 and b1 is the charge of the group represented by the formula (1) Selected to be 0. R a is a carbon atom with or without substituents An alkyl group having a number of 1 to 30 or an aryl group having 6 to 50 carbon atoms with or without a substituent, and when there are a plurality of Q 1 , M 1 and Z 1 , they may be the same or different; May be good.)
-(Qn2-Y(Ma2(Zb2  (2)
(式(2)中、
 Qは2価の有機基を示し、
 Yはカルボカチオン、アンモニウムカチオン、ホスホニルカチオン又はスルホニルカチオン又はヨードニウムカチオンを示し、MはF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を示し、Zは金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを示し、n2は0以上の整数を示し、a2は1以上の整数を示し、b2は0以上の整数を示す。ただし、a2及びb2は、式(2)で表される基の電荷が0となるように選択される。Rは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を示す。Q、M及びZの各々は複数個ある場合、同一でも異なっていてもよい。)
-(Q 2 ) n2 -Y 2 (M 2 ) a2 (Z 2 ) b2 (2)
(In the formula (2),
Q 2 represents a divalent organic group,
Y 2 represents a carbo cation, an ammonium cation, a phosphonyl cation or a sulfonyl cation or an iodonium cation, and M 2 represents F , Cl , Br , I , OH , R b SO 3 , R b COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 , Z 2 represents a metal cation or an ammonium cation with or without a substituent, n2 represents an integer of 0 or more, a2 represents an integer of 1 or more, and b2 represents An integer of 0 or more is shown. However, a2 and b2 are selected so that the charge of the group represented by the formula (2) becomes zero. R b represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent. When there are a plurality of Q 2 , M 2 and Z 2 , they may be the same or different. )
 上記イオン性ポリマーは、下記式(3)で表される基を更に有していてもよい。式(3)で表される基は、イオン性ポリマーの構造単位中に含まれていてもよい。この場合、式(3)で表される基を有する構造単位は、式(1)で表される基及び式(2)で表される基からなる群より選ばれる一種以上の基を含む構造単位と同一の構造単位であってもよく、他の構造単位であってもよい。イオン性ポリマーの一実施形態として、式(1)で表される基、式(2)で表される基、及び式(3)で表される基のうち少なくとも1種を有する構造単位を、全構造単位中、15~100モル%含む重合体が挙げられる。 The ionic polymer may further have a group represented by the following formula (3). The group represented by the formula (3) may be contained in the structural unit of the ionic polymer. In this case, the structural unit having a group represented by the formula (3) includes one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2). The structural unit may be the same as the unit, or another structural unit. As one embodiment of the ionic polymer, a structural unit having at least one of a group represented by formula (1), a group represented by formula (2), and a group represented by formula (3), Examples thereof include a polymer containing 15 to 100 mol% of all structural units.
  -(Qn3-Y   (3)
(式(3)中、
 Qは2価の有機基を示し、Yは-CN又は式(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)若しくは(12)で表される基を示し、n3は0以上の整数を示す。
-(Q 3 ) n3 -Y 3 (3)
(In Formula (3),
Q 3 represents a divalent organic group, Y 3 represents —CN or formulas (4), (5), (6), (7), (8), (9), (10), (11) or (12) represents a group, and n3 represents an integer of 0 or more.
  -O-(R’O)a3-R’’ (4) -O- (R'O) a3 -R '' (4)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
  -S-(R’S)a4-R’’ (6)
  -C(=O)-(R’-C(=O))a4-R’’ (7)
  -C(=S)-(R’-C(=S))a4-R’’ (8)
  -N{(R’)a4R’’} (9)
  -C(=O)O-(R’-C(=O)O)a4-R’’ (10)
  -C(=O)O-(R’O)a4-R’’ (11)
  -NHC(=O)-(R’NHC(=O))a4-R’’ (12)
(式(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)及び(12)中、R’は置換基を有し又は有さない2価の炭化水素基を示し、R’’は水素原子、置換基を有し若しくは有さない1価の炭化水素基、-COOH、-SOH、-OH、-SH、-NR 、-CN又は-C(=O)NR を示し、R’’’は置換基を有し若しくは有さない3価の炭化水素基を示し、a3は1以上の整数を示し、a4は0以上の整数を示し、Rは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を示す。R’、R’’及びR’’’の各々は複数個ある場合、同一でも異なっていてもよい。))
-S- (R'S) a4 -R '' (6)
-C (= O)-(R'-C (= O)) a4 -R '' (7)
-C (= S)-(R'-C (= S)) a4 -R '' (8)
−N {(R ′) a4 R ″} 2 (9)
—C (═O) O— (R′—C (═O) O) a4 —R ″ (10)
—C (═O) O— (R′O) a4 —R ″ (11)
—NHC (═O) — (R′NHC (═O)) a4 —R ″ (12)
(In the formulas (4), (5), (6), (7), (8), (9), (10), (11) and (12), R ′ has or has a substituent). R ″ represents a hydrogen atom, a monovalent hydrocarbon group with or without a substituent, —COOH, —SO 3 H, —OH, —SH, —NR c 2 , —CN or —C (═O) NR c 2 , R ′ ″ represents a trivalent hydrocarbon group with or without a substituent, a3 represents an integer of 1 or more, and a4 Represents an integer of 0 or more, and R c represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent. When there are a plurality of R ′, R ″ and R ′ ″, they may be the same or different.))
 イオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群より選ばれる1種以上の構造単位を、全構造単位中、15~100モル%含むことが好ましい。 The ionic polymer is composed of a structural unit represented by formula (13), a structural unit represented by formula (15), a structural unit represented by formula (17), and a structural unit represented by formula (20). It is preferable that 15 to 100 mol% of one or more structural units selected from the group is contained in all the structural units.
Figure JPOXMLDOC01-appb-C000002
(式(13)中、Rは式(14)で表される基を有する1価の基を示し、ArはR以外の置換基を有し又は有さない(2+n4)価の芳香族基を示し、n4は1以上の整数を示す。Rは複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002
(In Formula (13), R 1 represents a monovalent group having a group represented by Formula (14), and Ar 1 has a (2 + n4) -valent fragrance with or without a substituent other than R 1. And n4 represents an integer of 1 or more, and when there are a plurality of R 1 s , they may be the same or different.
Figure JPOXMLDOC01-appb-C000003
(式(14)中、Rは(1+m1+m2)価の有機基を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述した。m1及びm2はそれぞれ独立に1以上の整数を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(In formula (14), R 2 represents a (1 + m1 + m2) -valent organic group. Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same as described above. And m2 each independently represents an integer greater than or equal to 1. Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same or different when there are a plurality of each. May be.)
Figure JPOXMLDOC01-appb-C000004
(式(15)中、Rは式(16)で表される基を有する1価の基を示し、ArはR以外の置換基を有し又は有さない(2+n5)価の芳香族基を示し、n5は1以上の整数を示す。Rは複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000004
(In formula (15), R 3 represents a monovalent group having a group represented by formula (16), and Ar 2 has a (2 + n5) -valent fragrance with or without a substituent other than R 3. And n5 represents an integer of 1 or more, and when there are a plurality of R 3 s , they may be the same or different.
Figure JPOXMLDOC01-appb-C000005
(式(16)中、Rは(1+m3+m4)価の有機基を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述した。m3及びm4はそれぞれ独立に1以上の整数を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005
(In Formula (16), R 4 represents a (1 + m3 + m4) -valent organic group. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2, and n 3 are described above. And m4 each independently represents an integer greater than or equal to 1. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 may be the same or different when there are a plurality of each. May be.)
Figure JPOXMLDOC01-appb-C000006
(式(17)中、Rは式(18)で表される基を有する1価の基を示し、Rは式(19)で表される基を有する1価の基を示し、ArはR及びR以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を示し、n6及びn7はそれぞれ独立に1以上の整数を示す。R及びRの各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000006
(In Formula (17), R 5 represents a monovalent group having a group represented by Formula (18), R 6 represents a monovalent group having a group represented by Formula (19), Ar 3 represents an aromatic group optionally having a substituent other than R 5 and R 6 (2 + n6 + n7) valent, each of .R 5 and R 6 represents an integer of 1 or more in each of n6 and n7 independently May be the same or different when there are multiple.
-R-{(Qn1-Y(Ma1(Zb1m5  (18)
(式(18)中、Rは直接結合又は(1+m5)価の有機基を示す。Q、Y、M、Z、n1、a1及びb1は前述した。m5は1以上の整数を示す。Q、Y、M、Z、n1、a1及びb1の各々は複数個ある場合、同一でも異なっていてもよい。)
-R 7 -{(Q 1 ) n1 -Y 1 (M 1 ) a1 (Z 1 ) b1 } m5 (18)
(In the formula (18), R 7 represents a direct bond or a (1 + m5) -valent organic group. Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have been described above. M5 is an integer of 1 or more. Q 1 , Y 1 , M 1 , Z 1 , n 1 , a 1, and b 1 may be the same or different when there are a plurality of each.
-R-{(Qn3-Ym6  (19)
(式(19)中、Rは単結合又は(1+m6)価の有機基を示す。Y及びn3は前述した。m6は1以上の整数を示す。ただし、Rが単結合のときm6は1を示す。Q、Y及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
-R 8 -{(Q 3 ) n3 -Y 3 } m6 (19)
(In the formula (19), R 8 represents a single bond or a (1 + m6) -valent organic group. Y 3 and n3 have been described above. M6 represents an integer of 1 or more, provided that when R 8 is a single bond, m6. Represents 1. When there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
Figure JPOXMLDOC01-appb-C000007
(式(20)中、Rは式(21)で表される基を有する1価の基を示し、R10は式(22)で表される基を有する1価の基を示し、ArはR及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を示し、n8及びn9はそれぞれ独立に1以上の整数を示す。R及びR10の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000007
(In formula (20), R 9 represents a monovalent group having a group represented by formula (21), R 10 represents a monovalent group having a group represented by formula (22), and Ar 4 represents a (2 + n8 + n9) -valent aromatic group having or not having a substituent other than R 9 and R 10. Each of n8 and n9 independently represents an integer of 1 or more, and each of R 9 and R 10 May be the same or different when there are multiple.
-R11-{(Qn2-Y(Ma2(Zb2m7  (21)
(式(21)中、R11は単結合又は(1+m7)価の有機基を示す。Q、Y、M、Z、n2、a2及びb2は前述した。m7は1以上の整数を示す。ただし、R11が単結合のときm7は1を示す。Q、Y、M、Z、n2、a2及びb2の各々は複数個ある場合、同一でも異なっていてもよい。)
-R 11 -{(Q 2 ) n2 -Y 2 (M 2 ) a2 (Z 2 ) b2 } m7 (21)
(In the formula (21), R 11 represents a single bond or a (1 + m7) -valent organic group. Q 2 , Y 2 , M 2 , Z 2 , n 2, a 2 and b 2 have been described above. M 7 is an integer of 1 or more. Provided that when R 11 is a single bond, m7 is 1. When there are a plurality of Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 , they may be the same or different. .)
-R12-{(Qn3-Ym8  (22)
(式(22)中、R12は単結合又は(1+m8)価の有機基を示す。Y及びn3は前述した。m8は1以上の整数を示す。ただし、R12が単結合のときm8は1を示す。Q、Y及びn3、の各々は複数個ある場合、同一でも異なっていてもよい。)
-R 12 -{(Q 3 ) n3 -Y 3 } m8 (22)
(In the formula (22), R 12 represents a single bond or a (1 + m8) -valent organic group. Y 3 and n3 have been described above. M8 represents an integer of 1 or more, provided that when R 12 is a single bond, m8. Represents 1. When there are a plurality of each of Q 3 , Y 3 and n 3, they may be the same or different.
 イオン性ポリマーに含まれる構造単位は、式(1)で表される基を2種類以上有していてもよく、式(2)で表される基を2種類以上有していてもよく、式(3)で表される基を2種類以上有していてもよい。 The structural unit contained in the ionic polymer may have two or more groups represented by the formula (1), may have two or more groups represented by the formula (2), You may have 2 or more types of group represented by Formula (3).
 -式(1)で表される基-
 式(1)中、Qで表される2価の有機基として、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数2~50のアルケニレン基、並びに、エチニレン基を含み、置換基を有し又は有さない炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルキレンオキシ基;炭素原子を含み、置換基を有するイミノ基;並びに、炭素原子を含み、置換基を有するシリレン基が挙げられる。イオン性ポリマーの原料となるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、及びアルキレンオキシ基が好ましい。
-Group represented by Formula (1)-
In the formula (1), examples of the divalent organic group represented by Q 1 include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1, 3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, and at least one hydrogen of these groups A divalent saturated hydrocarbon group having 1 to 50 carbon atoms having or not having a substituent selected from a group in which an atom is substituted with a substituent, etc .; ethenylene, propenylene, 3-butenylene, 2-butenylene A substituent selected from a group, a 2-pentenylene group, a 2-hexenylene group, a 2-nonenylene group, a 2-dodecenylene group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, or the like 2 to no carbon atoms 50 alkenylene groups, as well as divalent unsaturated hydrocarbon groups having 2 to 50 carbon atoms containing or not having a substituent, including an ethynylene group; a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, Carbon having or not having a substituent selected from a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A divalent cyclic saturated hydrocarbon group having 3 to 50 atoms; 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, 6-5 carbon atoms having or not having a substituent selected from a biphenyl-4,4′-diyl group and a group in which at least one hydrogen atom of these groups is substituted with a substituent. 0 arylene group; a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, a pentyleneoxy group, a hexyleneoxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent An alkyleneoxy group having 1 to 50 carbon atoms with or without a substituent selected from: an imino group having a carbon atom with a substituent; and a silylene group having a carbon atom with a substituent It is done. From the viewpoint of ease of synthesis of a monomer that is a raw material for the ionic polymer (hereinafter referred to as “raw material monomer”), a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
 前記置換基として、例えば、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基が挙げられる。前記置換基が複数個存在する場合、それらは同一でも異なっていてもよい。上記置換基のうち、アミノ基、シリル基、ハロゲン原子、ヒドロキシ基及びニトロ基以外の置換基は炭素原子を含む。 Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, and a substituent. Amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, hydroxy group, carboxyl group, substituted carboxyl group, cyano group and A nitro group is mentioned. When a plurality of the substituents are present, they may be the same or different. Of the above substituents, substituents other than amino groups, silyl groups, halogen atoms, hydroxy groups, and nitro groups contain carbon atoms.
 以下、置換基について説明する。なお、「C~C」(m、nはm<nを満たす正の整数である)という用語は、この用語とともに記載された有機基の炭素原子数がm~nであることを表す。例えば、C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表し、C~Cアルキルアリール基であれば、アルキル基の炭素原子数がm~nであることを表し、アリール-C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表す。 Hereinafter, the substituent will be described. The term “C m -C n ” (m, n is a positive integer satisfying m <n) indicates that the organic group described together with this term has m to n carbon atoms. . For example, a C m -C n alkyl group indicates that the alkyl group has m to n carbon atoms, and a C m -C n alkyl aryl group indicates that the alkyl group has m carbon atoms of m to n. n represents an aryl-C m -C n alkyl group, the alkyl group has m to n carbon atoms.
 アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は通常1~20であり、1~10が好ましい。アルキル基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、及びラウリル基が挙げられる。アルキル基の水素原子はフッ素原子で置換されていてもよい。フッ素原子置換アルキル基として、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、及びパーフルオロオクチル基が挙げられる。C~C12アルキル基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、及びラウリル基が挙げられる。 The alkyl group may be linear or branched, and may be a cycloalkyl group. The alkyl group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. As the alkyl group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl Groups, decyl groups, and lauryl groups. The hydrogen atom of the alkyl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group. Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, an isoamyl group, a hexyl group, and a cyclohexyl group. , Heptyl group, octyl group, nonyl group, decyl group, and lauryl group.
 アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は通常1~20であり、1~10が好ましい。アルコキシ基として、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、及びラウリルオキシ基が挙げられる。アルコキシ基の水素原子はフッ素原子で置換されていてもよい。フッ素原子置換アルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、及びパーフルオロオクチルオキシ基が挙げられる。アルコキシ基には、メトキシメチルオキシ基、及び2-メトキシエチルオキシ基も含まれる。C~C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、及びラウリルオキシ基が挙げられる。 The alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent. The alkoxy group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. Examples of alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, and lauryloxy group. The hydrogen atom of the alkoxy group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group. The alkoxy group also includes a methoxymethyloxy group and a 2-methoxyethyloxy group. Examples of the C 1 -C 12 alkoxy group include a methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, Examples include cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, and lauryloxy group.
 アルキルチオ基は、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は通常1~20であり、1~10が好ましい。アルキルチオ基として、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、及びラウリルチオ基が挙げられる。アルキルチオ基の水素原子はフッ素原子で置換されていてもよい。フッ素原子置換アルキルチオ基としては、例えば、トリフルオロメチルチオ基が挙げられる。 The alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent. The alkylthio group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. Examples of the alkylthio group include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group Group, nonylthio group, decylthio group, and laurylthio group. The hydrogen atom of the alkylthio group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted alkylthio group include a trifluoromethylthio group.
 アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団である。アリール基には、ベンゼン環を持つ基、縮合環を持つ基、及びベンゼン環又は縮合環2個以上が単結合又は2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基も含まれる。アリール基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリール基として、例えば、フェニル基、C~C12アルコキシフェニル基、C~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、及び9-アントラセニル基が挙げられる。アリール基の水素原子はフッ素原子で置換されていてもよい。フッ素原子置換アリール基としては、例えば、ペンタフルオロフェニル基が挙げられる。アリール基としては、C~C12アルコキシフェニル基、及びC~C12アルキルフェニル基が好ましい。 The aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon. A group having a benzene ring, a group having a condensed ring, and two or more benzene rings or condensed rings are bonded to the aryl group via a single bond or a divalent organic group (for example, an alkenylene group such as a vinylene group). Groups are also included. The aryl group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms. Examples of the aryl group include a phenyl group, a C 1 to C 12 alkoxyphenyl group, a C 1 to C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and 9- Anthracenyl group may be mentioned. The hydrogen atom of the aryl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted aryl group include a pentafluorophenyl group. As the aryl group, a C 1 -C 12 alkoxyphenyl group and a C 1 -C 12 alkylphenyl group are preferable.
 C~C12アルコキシフェニル基として、例えば、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、及びラウリルオキシフェニル基が挙げられる。 Examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, an s-butoxyphenyl group, and a t-butoxyphenyl group. Pentyloxyphenyl group, hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyloxy A phenyl group and a lauryloxyphenyl group are mentioned.
 C~C12アルキルフェニル基として、例えば、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、及びドデシルフェニル基が挙げられる。 Examples of the C 1 -C 12 alkylphenyl group include, for example, methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, t- Examples include a butylphenyl group, a pentylphenyl group, an isoamylphenyl group, a hexylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group, a decylphenyl group, and a dodecylphenyl group.
 アリールオキシ基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリールオキシ基として、例えば、フェノキシ基、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、及びペンタフルオロフェニルオキシ基が挙げられる。アリールオキシ基としては、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が好ましい。 The aryloxy group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms. Examples of the aryloxy group include a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, a C 1 -C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group. As the aryloxy group, a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferable.
 C~C12アルコキシフェノキシ基として、例えば、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、s-ブトキシフェノキシ基、t-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基、及びラウリルオキシフェノキシ基が挙げられる。 Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, an s-butoxyphenoxy group, and a t-butoxyphenoxy group. Pentyloxyphenoxy group, hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3,7-dimethyloctyloxy Examples include phenoxy group and lauryloxyphenoxy group.
 C~C12アルキルフェノキシ基として、例えば、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、s-ブチルフェノキシ基、t-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、及びドデシルフェノキシ基が挙げられる。 Examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group, and a butylphenoxy group. , Isobutylphenoxy group, s-butylphenoxy group, t-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group, and dodecylphenoxy group Can be mentioned.
 アリールチオ基は、例えば、前述のアリール基に硫黄元素が結合した基である。アリールチオ基は、アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が通常6~60であり、6~30であることが好ましい。アリールチオ基として、例えば、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、及びペンタフルオロフェニルチオ基が挙げられる。 The arylthio group is, for example, a group in which a sulfur element is bonded to the aforementioned aryl group. The arylthio group may have a substituent on the aromatic ring of the aryl group. The arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms. Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
 アリールアルキル基は、例えば、前述のアリール基に前述のアルキル基が結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキル基として、例えば、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基、及び2-ナフチル-C~C12アルキル基が挙げられる。 The arylalkyl group is, for example, a group in which the above alkyl group is bonded to the above aryl group. The arylalkyl group may have a substituent. The arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms. Examples of the arylalkyl group include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, -Naphthyl-C 1 -C 12 alkyl group, and 2-naphthyl-C 1 -C 12 alkyl group.
 アリールアルコキシ基は、例えば、前述のアリール基に前述のアルコキシ基が結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルコキシ基として、例えば、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基、及び2-ナフチル-C~C12アルコキシ基が挙げられる。 The arylalkoxy group is, for example, a group in which the above alkoxy group is bonded to the above aryl group. The arylalkoxy group may have a substituent. The arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms. Examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, 1 -Naphtyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group are mentioned.
 アリールアルキルチオ基は、例えば、前述のアリール基に前述のアルキルチオ基が結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキルチオ基として、例えば、フェニル-C~C12アルキルチオ基、C~C12アルコキシフェニル-C~C12アルキルチオ基、C~C12アルキルフェニル-C~C12アルキルチオ基、1-ナフチル-C~C12アルキルチオ基、及び2-ナフチル-C~C12アルキルチオ基が挙げられる。 The arylalkylthio group is, for example, a group in which the aforementioned alkylthio group is bonded to the aforementioned aryl group. The arylalkylthio group may have a substituent. The arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms. Examples of the arylalkylthio group include a phenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group, -Naphthyl-C 1 -C 12 alkylthio group, and 2-naphthyl-C 1 -C 12 alkylthio group.
 アリールアルケニル基は、例えば、前述のアリール基にアルケニル基が結合した基である。アリールアルケニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルケニル基として、例えば、フェニル-C~C12アルケニル基、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基、1-ナフチル-C~C12アルケニル基、及び2-ナフチル-C~C12アルケニル基が挙げられる。中でも、C~C12アルコキシフェニル-C~C12アルケニル基、及びC~C12アルキルフェニル-C~C12アルケニル基が好ましい。C~C12アルケニル基として、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、及び1-オクテニル基が挙げられる。 The arylalkenyl group is, for example, a group in which an alkenyl group is bonded to the aforementioned aryl group. The arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms. Examples of the arylalkenyl group include a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, 1 -Naphthyl-C 2 -C 12 alkenyl group, and 2-naphthyl-C 2 -C 12 alkenyl group. Of these, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group and a C 2 -C 12 alkylphenyl-C 2 -C 12 alkenyl group are preferred. Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2 -Hexenyl group and 1-octenyl group are mentioned.
 アリールアルキニル基は、例えば、前述のアリール基にアルキニル基が結合した基である。アリールアルキニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルキニル基として、例えば、フェニル-C~C12アルキニル基、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基、1-ナフチル-C~C12アルキニル基、及び2-ナフチル-C~C12アルキニル基が挙げられる。中でも、C~C12アルコキシフェニル-C~C12アルキニル基、及びC~C12アルキルフェニル-C~C12アルキニル基が好ましい。C~C12アルキニル基として、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、及び1-オクチニル基が挙げられる。 The arylalkynyl group is, for example, a group in which an alkynyl group is bonded to the aforementioned aryl group. The arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms. Examples of the arylalkynyl group include a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, 1 -Naphtyl-C 2 -C 12 alkynyl group and 2-naphthyl-C 2 -C 12 alkynyl group. Of these, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group and a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group are preferred. C 2 -C 12 alkynyl groups include, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group, 2 -Hexynyl group and 1-octynyl group may be mentioned.
 置換アミノ基としては、アミノ基の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群より選ばれる1又は2個の基によって置換されたアミノ基が好ましい。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1~60であり、2~48が好ましい。置換アミノ基として、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C~C12アルキル)アミノ基、(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、(C~C12アルキルフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基、及び2-ナフチル-C~C12アルキルアミノ基が挙げられる。 As the substituted amino group, an amino group in which at least one hydrogen atom of the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group Groups are preferred. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. The number of carbon atoms of the substituted amino group is usually 1 to 60 excluding the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 2 to 48 are preferred. Examples of substituted amino groups include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, and s-butyl. Amino group, t-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, lauryl amino group, cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, (C 1 ~ C 12 alkoxyphenyl Amino group, di (C 1 ~ C 12 alkoxyphenyl) amino group, di (C 1 ~ C 12 alkylphenyl) amino groups, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, Pyridazinylamino group, pyrimidylamino group, pyrazinylamino group, triazinylamino group, (phenyl-C 1 -C 12 alkyl) amino group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group , (C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkyl) amino group, di (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) amino group, di (C 1 ~ C 12 alkylphenyl - C 1 ~ C 12 alkyl) amino groups, 1-naphthyl -C 1 ~ C 12 alkyl group, and 2-na It includes chill -C 1 ~ C 12 alkylamino group.
 置換シリル基として、シリル基の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群より選ばれる1~3個の基によって置換されたシリル基が挙げられる。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換シリル基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1~60であり、3~48が好ましい。置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C~C12アルキル)シリル基、(C~C12アルコキシフェニル-C~C12アルキル)シリル基、(C~C12アルキルフェニル-C~C12アルキル)シリル基、(1-ナフチル-C~C12アルキル)シリル基、(2-ナフチル-C~C12アルキル)シリル基、(フェニル-C~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、及びジメチルフェニルシリル基が挙げられる。 As the substituted silyl group, a silyl group in which at least one hydrogen atom of the silyl group is substituted with 1 to 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group Is mentioned. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. The number of carbon atoms of the substituted silyl group is usually 1 to 60 without including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 3 to 48 are preferred. Examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group. Group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, lauryldimethylsilyl group, (phenyl-C 1- (C 12 alkyl) silyl group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) silyl group, (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) silyl group, (1-naphthyl- C 1 -C 12 alkyl) silyl group, (2-naphthyl-C 1 -C 12 alkyl) silyl group, (phenyl-C 1 -C 12 alkyl) dimethylsilyl group, triphenylsilyl group, tri (p-xylyl) silyl group , Tribenzylsilyl group, diphenylmethylsilyl group, t-butyldiphenylsilyl group, and dimethylphenylsilyl group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 アシル基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシル基として、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、及びペンタフルオロベンゾイル基が挙げられる。 The acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms. Examples of the acyl group include acetyl group, propionyl group, butyryl group, isobutyryl group, pivaloyl group, benzoyl group, trifluoroacetyl group, and pentafluorobenzoyl group.
 アシルオキシ基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシルオキシ基として、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、及びペンタフルオロベンゾイルオキシ基が挙げられる。 The acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
 イミン残基は、式:H-N=C<及び式:-N=CH-の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた残基を意味する。イミン化合物として、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、通常2~20であり、2~18が好ましい。イミン残基として、例えば、一般式:-CRβ=N-Rγ又は一般式:-N=C(Rγ(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、ただし、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、及びヘキサメチレン基等の炭素原子数2~18のアルキレン基として環を形成してもよい。)で表される基が挙げられる。イミン残基としては、以下の基が挙げられる。 The imine residue means a residue obtained by removing one hydrogen atom in this structure from an imine compound having a structure represented by at least one of the formula: HN═C <and the formula: —N═CH—. To do. Examples of the imine compound include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, and aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like. The number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18. Examples of the imine residue include a general formula: —CR β = N—R γ or a general formula: —N═C (R γ ) 2 (wherein R β is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group) , An arylalkenyl group, or an arylalkynyl group, and R γ independently represents an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, provided that when two R γ are present, Two R γ are bonded to each other to form a divalent group, for example, an alkylene group having 2 to 18 carbon atoms such as an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and hexamethylene group. As a ring may be formed.). Examples of the imine residue include the following groups.
Figure JPOXMLDOC01-appb-C000008
(式中、Meはメチル基を示す。以下、同様である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, Me represents a methyl group. The same shall apply hereinafter.)
 アミド基は、炭素原子数が通常1~20であり、2~18であることが好ましい。アミド基として、例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、及びジペンタフルオロベンズアミド基が挙げられる。 The amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms. As the amide group, for example, formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group, ditriamide Examples include a fluoroacetamide group and a dipentafluorobenzamide group.
 酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基である。酸イミド基は、炭素原子数が通常4~20であり、4~18であることが好ましい。酸イミド基としては、以下の基が挙げられる。 The acid imide group is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide. The acid imide group usually has 4 to 20 carbon atoms, and preferably 4 to 18 carbon atoms. The acid imide group include the following groups.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団をいう。複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、及びヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が通常3~60であり、3~20が好ましい。1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。1価の複素環基として、例えば、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、及びイソキノリル基が挙げられる。中でも、チエニル基、C~C12アルキルチエニル基、ピリジル基及びC~C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。 The monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound. Heterocyclic compounds are not only carbon atoms but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms as elements constituting the ring among organic compounds having a cyclic structure. , An organic compound containing a heteroatom such as a tellurium atom and an arsenic atom. The monovalent heterocyclic group may have a substituent. The monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms. The number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent. Examples of the monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, triazinyl Group, pyrrolidyl group, piperidyl group, quinolyl group, and isoquinolyl group. Of these, a thienyl group, a C 1 -C 12 alkyl thienyl group, a pyridyl group and a C 1 -C 12 alkyl pyridyl group are preferable. The monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
 置換カルボキシル基は、カルボキシル基の水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換された基、すなわち、式:-C(=O)OR
(式中、Rはアルキル基、アリール基、アリールアルキル基又は1価の複素環基)で表される基である。置換カルボキシル基は、炭素原子数が通常2~60であり、2~48であることが好ましい。前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。炭素原子数には、前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数は含まないものとする。置換カルボキシル基として、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、s-ブトキシカルボニル基、t-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、及びピリジルオキシカルボニル基が挙げられる。
The substituted carboxyl group is a group in which a hydrogen atom of a carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, that is, a formula: —C (═O) OR *
(Wherein R * is an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group). The substituted carboxyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. The number of carbon atoms does not include the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have. Examples of the substituted carboxyl group include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, s-butoxycarbonyl group, t-butoxycarbonyl group, pentyloxycarbonyl group, Hexyloxycarbonyl group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyloxy Carbonyl group, trifluoromethoxycarbonyl group, pentafluoroethoxycarbonyl group, perfluorobutoxycarbonyl group, perfluorohexyloxycarboro Group, perfluorooctyl group, phenoxycarbonyl group, naphthoxycarbonyl group, and a pyridyloxycarbonyl group.
 式(1)中、Yは、-CO 、-SO 、-SO 、-PO 、又は-B(R 等の1価の基を表す。Yとしては、イオン性ポリマーの酸性度の観点から、-CO 、-SO 、及び-PO が好ましく、-CO がより好ましい。Yとしては、イオン性ポリマーの安定性の観点から、-CO 、-SO 、-SO 及び-PO が好ましい。 In Formula (1), Y 1 represents a monovalent group such as —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 . The Y 1, from the viewpoint of the acidity of the ionic polymer, -CO 2 -, -SO 2 - , and -PO 3 - are preferred, -CO 2 - is more preferable. Y 1 is preferably —CO 2 , —SO 3 , —SO 2 — or —PO 3 from the viewpoint of the stability of the ionic polymer.
 式(1)中、Mは金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のカチオンが好ましい。金属カチオンとして、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、及びZr等のカチオンが挙げられ、Li、Na、K、Cs、Ag、Mg2+、及びCa2+が好ましい。アンモニウムカチオンが有していてもよい置換基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、及びt-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。 In formula (1), M 1 represents a metal cation or an ammonium cation with or without a substituent. The metal cation is preferably a monovalent, divalent or trivalent cation. As metal cations, Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Sn, Ti, V, W, Y, Yb, Zn, And cations such as Zr, and Li + , Na + , K + , Cs + , Ag + , Mg 2+ , and Ca 2+ are preferable. Examples of the substituent that the ammonium cation may have include, for example, 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, i-butyl group, and t-butyl group. Of the alkyl group.
 式(1)中、ZはF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表す。 In the formula (1), Z 1 represents F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 are represented.
 式(1)中、n1は0以上の整数を表す。n1は、原料モノマーの合成の観点から、好ましくは0から8の整数であり、より好ましくは0から2の整数である。 In formula (1), n1 represents an integer of 0 or more. n1 is preferably an integer of 0 to 8, more preferably an integer of 0 to 2, from the viewpoint of the synthesis of raw material monomers.
式(1)中、a1は1以上の整数を表す。b1は0以上の整数を表す。 Wherein (1), a1 represents an integer of 1 or more. b1 represents an integer of 0 or more.
 a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Yが-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、ZがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合、a1=b1+1を満たすように選択される。Yが-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが2価の金属カチオンであり、ZがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合、b1=2×a1-1を満たすように選択される。Yが-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが3価の金属カチオンであり、ZがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合、b1=3×a1-1を満たすように選択される。Yが-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、ZがSO 2-又はHPO 2-である場合、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。 a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero. For example, Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , and M 1 has a monovalent metal cation or substituent. An ammonium cation with or without Z 1 being F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , When ClO 4 , SCN , CN , NO 3 , HSO 4 , H 2 PO 4 , BF 4 or PF 6 is selected, it is selected to satisfy a1 = b1 + 1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , M 1 is a divalent metal cation, and Z 1 is F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , In the case of HSO 4 , H 2 PO 4 , BF 4 or PF 6 −, it is selected so as to satisfy b1 = 2 × a1-1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , M 1 is a trivalent metal cation, and Z 1 is F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , In the case of HSO 4 , H 2 PO 4 , BF 4 or PF 6 −, it is selected so as to satisfy b1 = 3 × a1-1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , and M 1 has a monovalent metal cation or substituent, or When it is an ammonium cation that is not present and Z 1 is SO 4 2− or HPO 4 2−, it is selected to satisfy a1 = 2 × b1 + 1. In any of the above mathematical expressions representing the relationship between a1 and b1, a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
 Rは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表す。これらの基が有していてもよい置換基としては、前述のQで例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、及びラウリル基等の炭素原子数1~20のアルキル基、並びに、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、及び9-アントラセニル基等の炭素原子数6~30のアリール基が挙げられる。 R a represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent. Examples of the substituent that these groups may have include the same substituents as the substituents exemplified in the aforementioned Q 1 . When a plurality of substituents are present, they may be the same or different. Examples of Ra include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, C1-C20 alkyl groups such as nonyl, decyl, and lauryl, and phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, and 9-anthracenyl And aryl groups having 6 to 30 carbon atoms, such as groups.
 式(1)で表される基として、例えば、以下の基が挙げられる。 Examples of the group represented by the formula (1) include the following groups.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 -式(2)で表される基-
 式(2)中、Qで表される2価の有機基として、Qで表される2価の有機基として例示した基が挙げられる。Qとして、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、及びアルキレンオキシ基が好ましい。
-Group represented by Formula (2)-
In the formula (2), the divalent organic group represented by Q 2, include the groups exemplified as the divalent organic group represented by Q 1. Q 2 is preferably a divalent saturated hydrocarbon group, an arylene group, or an alkyleneoxy group from the viewpoint of ease of synthesis of the raw material monomer.
 Qで表される2価の有機基は、置換基を有していてもよい。当該置換基として、前述のQで表される2価の有機基が有していてもよい置換基等が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 The divalent organic group represented by Q 2 may have a substituent. Examples of the substituent include a substituent that the divalent organic group represented by Q 1 described above may have. When a plurality of substituents are present, they may be the same or different.
 式(2)中、Yはカルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオン、又はヨードニウムカチオンを表す。 In formula (2), Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation, or an iodonium cation.
 カルボカチオンとしては、例えば、
-C
(式中、Rはアルキル基又はアリール基を示す。複数あるRは、同一であってもよく、又は相異なっていてもよい。)で表される基が挙げられる。
As the carbocation, for example,
-C + R 2
(Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
 アンモニウムカチオンとしては、例えば、
-N
(式中、Rはアルキル基又はアリール基を示す。複数あるRは、同一であってもよく、又は相異なっていてもよい。)で表される基が挙げられる。
Examples of ammonium cations include:
-N + R 3
(Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
 ホスホニルカチオンとしては、例えば、
-P
(式中、Rはアルキル基又はアリール基を示す。複数あるRは、同一であってもよく、又は相異なっていてもよい。)で表される基が挙げられる。
Examples of phosphonyl cations include:
-P + R 3
(Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
 スルホニルカチオンとしては、例えば、
-S
(式中、Rはアルキル基又はアリール基を示す。複数あるRは、同一であってもよく、又は相異なっていてもよい。)で表される基が挙げられる。
Examples of the sulfonyl cation include:
-S + R 2
(Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
 ヨードニウムカチオンとしては、例えば、
-I
(式中、Rはアルキル基又はアリール基を示す。複数あるRは、同一であってもよく、又は相異なっていてもよい。)で表される基が挙げられる。
As an iodonium cation, for example,
-I + R 2
(Wherein, R represents an alkyl group or an aryl group. A plurality of R may be the same or different from each other).
 式(2)中、Yとしては、原料モノマーの合成の容易さ、並びに原料モノマー及びイオン性ポリマーの空気、湿気又は熱に対する安定性の観点から、カルボカチオン、アンモニウムカチオン、ホスホニルカチオン、及びスルホニルカチオンが好ましく、アンモニウムカチオンがより好ましい。 In formula (2), Y 2 is a carbocation, an ammonium cation, a phosphonyl cation, and from the viewpoint of the ease of synthesis of the raw material monomer and the stability of the raw material monomer and the ionic polymer to air, moisture or heat. A sulfonyl cation is preferred, and an ammonium cation is more preferred.
 式(2)中、Zは金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のカチオンが好ましい。金属カチオンとして、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、及びZr等のカチオンが挙げられる。アンモニウムカチオンが有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。 In formula (2), Z 2 represents a metal cation or an ammonium cation with or without a substituent. The metal cation is preferably a monovalent, divalent or trivalent cation. As metal cations, Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Sn, Ti, V, W, Y, Yb, Zn, And cations such as Zr. Examples of the substituent that the ammonium cation may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and the like having 1 to 10 carbon atoms. An alkyl group is mentioned.
 式(2)中、MはF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表す。 In the formula (2), M 2 represents F , Cl , Br , I , OH , R b SO 3 , R b COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 are represented.
 式(2)中、n2は0以上の整数を表す。n2は、好ましくは0から6の整数であり、より好ましくは0から2の整数である。 In formula (2), n2 represents an integer of 0 or more. n2 is preferably an integer of 0 to 6, more preferably an integer of 0 to 2.
 式(2)中、a2は1以上の整数を表す。b2は、0以上の整数を表す。 Wherein (2), a2 represents an integer of 1 or more. b2 represents an integer of 0 or more.
 a2及びb2は、式(2)で表される基の電荷が0となるように選択される。例えば、MがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合、Zが1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、a2=b2+1を満たすように選択され、Zが2価の金属イオンであれば、a2=2×b2+1を満たすように選択され、Zが3価の金属イオンであれば、a2=3×b2+1を満たすように選択される。MがSO 2-、HPO 2-である場合、Zが1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、b2=2×a2-1を満たすように選択され、Zが3価の金属イオンであれば、2×a2=3×b2+1の関係を満たすように選択される。a2とb2との関係を表す上記のいずれの数式においても、a2は好ましくは1から3の整数であり、より好ましくは1又は2である。 a2 and b2 are selected such that the charge of the group represented by the formula (2) is zero. For example, M 2 is F , Cl , Br , I , OH , R b SO 3 , R b COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN -, nO 3 -, HSO 4 -, H 2 PO 4 -, BF 4 - or PF 6 - if it is, if an ammonium ion Z 2 has no or have a monovalent metal ion or a substituent , are selected so as to satisfy a2 = b2 + 1, if Z 2 is a divalent metal ion, it is selected so as to satisfy a2 = 2 × b2 + 1, if Z 2 is a trivalent metal ion, a2 = 3 Xb2 + 1 is selected to satisfy. When M 2 is SO 4 2− or HPO 4 2− , if Z 2 is a monovalent metal ion or an ammonium ion with or without a substituent, b2 = 2 × a2-1 is satisfied. If Z 2 is a trivalent metal ion, it is selected so as to satisfy the relationship of 2 × a2 = 3 × b2 + 1. In any of the above formulas representing the relationship between a2 and b2, a2 is preferably an integer from 1 to 3, more preferably 1 or 2.
 Rは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表す。これらの基が有していてもよい置換基としては、前述のQで例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、及びラウリル基等の炭素原子数1~20のアルキル基、並びに、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、及び9-アントラセニル基等の炭素原子数6~30のアリール基が挙げられる。 R b represents an alkyl group having 1 to 30 carbon atoms with or without a substituent, or an aryl group having 6 to 50 carbon atoms with or without a substituent. Examples of the substituent that these groups may have include the same substituents as the substituents exemplified in the aforementioned Q 1 . When a plurality of substituents are present, they may be the same or different. Examples of R b include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, C1-C20 alkyl groups such as nonyl, decyl, and lauryl, and phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, and 9-anthracenyl And aryl groups having 6 to 30 carbon atoms such as a group.
 前記式(2)で表される基としては、例えば、以下の基が挙げられる。 Examples of the group represented by the formula (2) include the following groups.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 -式(3)で表される基-
 式(3)中、Qで表される2価の有機基として、Qで表される2価の有機基として例示した基が挙げられる。Qとして、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、及びアルキレンオキシ基が好ましい。
-Group represented by Formula (3)-
In the formula (3), examples of the divalent organic group represented by Q 3 include the groups exemplified as the divalent organic group represented by Q 1 . Q 3 is preferably a divalent saturated hydrocarbon group, an arylene group, or an alkyleneoxy group from the viewpoint of ease of synthesis of the raw material monomer.
 Qで表される2価の有機基は、置換基を有していてもよい。当該置換基として、Qで表される2価の有機基が有していてもよい置換基等が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 The divalent organic group represented by Q 3 may have a substituent. Examples of the substituent include a substituent that the divalent organic group represented by Q 1 may have. When a plurality of substituents are present, they may be the same or different.
 Qで表される2価の有機基は、-(CH)-で表される基であることが好ましい。 The divalent organic group represented by Q 3 is preferably a group represented by — (CH 2 ) —.
 n3は0以上の整数を表す。n3は、好ましくは0から20の整数であり、より好ましくは0から8の整数である。 N3 represents an integer of 0 or more. n3 is preferably an integer of 0 to 20, more preferably an integer of 0 to 8.
 式(3)中、Yは-CN又は式(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)若しくは(12)で表される基を示す。 In formula (3), Y 3 is represented by —CN or formula (4), (5), (6), (7), (8), (9), (10), (11) or (12). Represents a group.
 式(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)及び(12)中、R’で表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数2~50のアルケニレン基、並びに、エチニレン基を含み、置換基を有し又は有さない炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~50のアリーレン基;並びに、メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルキレンオキシ基が挙げられる。 In formulas (4), (5), (6), (7), (8), (9), (10), (11) and (12), a divalent hydrocarbon group represented by R ′ As, for example, methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 1,5- It has a substituent selected from a pentylene group, a 1,6-hexylene group, a 1,9-nonylene group, a 1,12-dodecylene group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A divalent saturated hydrocarbon group having 1 to 50 carbon atoms with or without; ethenylene group, propenylene group, 3-butenylene group, 2-butenylene group, 2-pentenylene group, 2-hexenylene group, 2-nonenylene group , 2-dodecenylene group, and at least one of these groups Alkenylene group having 2 to 50 carbon atoms having or not having a substituent selected from a group in which an elementary atom is substituted with a substituent, etc., and a carbon atom having or not having a substituent, including an ethynylene group A divalent unsaturated hydrocarbon group of 2 to 50; cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and these groups A divalent cyclic saturated hydrocarbon group having 3 to 50 carbon atoms with or without a substituent selected from a group in which at least one hydrogen atom is substituted with a substituent, etc .; 1,3-phenylene group, , 4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, biphenyl-4,4′-diyl group, and at least one of these groups An arylene group having 6 to 50 carbon atoms having or not having a substituent selected from a group in which an elementary atom is substituted with a substituent, and the like; and a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, C 1-50 alkyleneoxy with or without a substituent selected from a pentyleneoxy group, a hexyleneoxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. Groups.
 前記置換基として、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituent include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 式(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)及び(12)中、R’’で表される1価の炭化水素基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基;並びに、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基等が挙げられる。R’’で表される1価の炭化水素基として、イオン性ポリマーの溶解性の観点から、メチル基、エチル基、フェニル基、1-ナフチル基、及び2-ナフチル基が好ましい。前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Monovalent hydrocarbon represented by R ″ in formulas (4), (5), (6), (7), (8), (9), (10), (11) and (12) As the group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group A decyl group, a lauryl group, and an alkyl group having 1 to 20 carbon atoms with or without a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like; Selected from phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, and groups in which at least one hydrogen atom of these groups is substituted with a substituent. Has a substituent or It is not an aryl group having 6 to 30 carbon atoms can be mentioned. The monovalent hydrocarbon group represented by R ″ is preferably a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, or a 2-naphthyl group from the viewpoint of solubility of the ionic polymer. Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 式(5)中、R’’’で表される3価の炭化水素基として、例えば、メタントリイル基、エタントリイル基、1,2,3-プロパントリイル基、1,2,4-ブタントリイル基、1,2,5-ペンタントリイル基、1,3,5-ペンタントリイル基、1,2,6-ヘキサントリイル基、1,3,6-ヘキサントリイル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキルトリイル基;並びに、1,2,3-ベンゼントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基等が挙げられる。R’’’で表される3価の炭化水素基として、イオン性ポリマーの溶解性の観点から、メタントリイル基、エタントリイル基、1,2,4-ベンゼントリイル基、及び1,3,5-ベンゼントリイル基が好ましい。前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 In the formula (5), as the trivalent hydrocarbon group represented by R ′ ″, for example, a methanetriyl group, an ethanetriyl group, a 1,2,3-propanetriyl group, a 1,2,4-butanetriyl group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, and at least of these groups An alkyltriyl group having 1 to 20 carbon atoms with or without a substituent selected from a group in which one hydrogen atom is substituted with a substituent, and the like, 1,2,3-benzenetriyl group, A substituent selected from a 1,2,4-benzenetriyl group, a 1,3,5-benzenetriyl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, or the like; or And aryl groups having 6 to 30 carbon atoms that do not have . As the trivalent hydrocarbon group represented by R ′ ″, from the viewpoint of solubility of the ionic polymer, methanetriyl group, ethanetriyl group, 1,2,4-benzenetriyl group, and 1,3,5- A benzenetriyl group is preferred. Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 式(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)及び(12)中、Rとしては、イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、及び2-ナフチル基が好ましい。 In formulas (4), (5), (6), (7), (8), (9), (10), (11) and (12), R c is the solubility of the ionic polymer. From the viewpoint, a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.
 式(4)及び式(5)中、a3は1以上の整数を表し、3~10の整数が好ましい。式(6)、(7)、(8)、(9)、(10)、(11)及び(12)中、a4は0以上の整数を表す。式(6)においては、a4は、0~30の整数が好ましく、3~20の整数がより好ましい。式(7)(8)、(9)及び(10)においては、a4は、0~10の整数が好ましく、0~5の整数がより好ましい。式(11)においては、a4は、0~20の整数が好ましく、3~20の整数がより好ましい。式(12)においては、a4は、0~20の整数が好ましく、0~10の整数がより好ましい。 In the formulas (4) and (5), a3 represents an integer of 1 or more, and an integer of 3 to 10 is preferable. In formulas (6), (7), (8), (9), (10), (11) and (12), a4 represents an integer of 0 or more. In the formula (6), a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20. In the formulas (7), (8), (9) and (10), a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5. In the formula (11), a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20. In the formula (12), a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
 Yとして、原料モノマーの合成の容易さの観点から、-CN、式(4)で表される基、式(6)で表される基、式(10)で表される基、式(11)で表される基が好ましく、式(4)で表される基、式(6)で表される基、及び式(11)で表される基がより好ましく、以下の基が特に好ましい。 Y 3 represents —CN, a group represented by Formula (4), a group represented by Formula (6), a group represented by Formula (10), a group represented by Formula (10), from the viewpoint of ease of synthesis of the raw material monomer. 11) is preferred, the group represented by formula (4), the group represented by formula (6), and the group represented by formula (11) are more preferred, and the following groups are particularly preferred. .
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 -イオン性ポリマー中の構造単位-
 本実施形態に係るイオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を含むことが好ましく、これらの構造単位を全構造単位中、15~100モル%含むことがより好ましい。
-Structural units in ionic polymers-
The ionic polymer according to this embodiment is represented by the structural unit represented by the formula (13), the structural unit represented by the formula (15), the structural unit represented by the formula (17), and the formula (20). It is preferable that at least one structural unit selected from the group consisting of structural units is included, and it is more preferable that these structural units are included in an amount of 15 to 100 mol% in all the structural units.
  ・式(13)で表される構造単位
 式(13)中、Rは式(14)で表される基を有する1価の基を示し、ArはR以外の置換基を有し又は有さない(2+n4)価の芳香族基を示し、n4は1以上の整数を示す。
Structural unit represented by formula (13) In formula (13), R 1 represents a monovalent group having a group represented by formula (14), Ar 1 has a substituent other than R 1. Or it shows the (2 + n4) valent aromatic group which does not have, and n4 shows an integer greater than or equal to 1.
 式(14)で表される基は、Arに直接結合していてもよく、又は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;並びに、酸素原子、窒素原子、及び硫黄原子等のヘテロ原子を介してArに結合していてもよい。 The group represented by the formula (14) may be directly bonded to Ar 1 , or a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene Group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, or the like An alkylene group having 1 to 50 carbon atoms, which may or may not have a substituent; an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxypentylene group, an oxyhexylene group, an oxynonylene group, an oxide Decylene group, cyclopropyleneoxy group, cyclobutyleneoxy group, cyclopentylene Noxy group, cyclohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, and at least one hydrogen atom of these groups is substituted with a substituent An oxyalkylene group having 1 to 50 carbon atoms with or without a substituent selected from a group, etc .; an imino group with or without a substituent; a silylene group with or without a substituent; An ethenylene group with or without a group; an ethynylene group; a methanetriyl group with or without a substituent; and an Ar 1 through a heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom. May be.
 ArはR以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Ar 1 may have a substituent other than R 1 . Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 Arが有するR以外の置換基として、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基及び置換カルボキシル基が好ましい。 As a substituent other than R 1 possessed by Ar 1 , an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
 式(13)中、n4は1以上の整数を表す。n4は、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (13), n4 represents an integer of 1 or more. n4 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(13)中のArで表される(2+n4)価の芳香族基として、(2+n4)価の芳香族炭化水素基、及び(2+n4)価の芳香族複素環基が挙げられ、好ましくは、炭素原子のみからなる(2+n4)価の芳香族基、並びに、炭素原子と、水素原子、窒素原子及び酸素原子からなる群より選ばれる1つ以上の原子と、からなる(2+n4)価の芳香族基である。該(2+n4)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、及びアザジアゾール環等の単環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環からなる群より選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n4)個除いた(2+n4)価の基;並びに、該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、及びカルボニル基等の2価の基で架橋した有橋多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基が挙げられる。 Examples of the (2 + n4) -valent aromatic group represented by Ar 1 in the formula (13) include a (2 + n4) -valent aromatic hydrocarbon group and a (2 + n4) -valent aromatic heterocyclic group, preferably A (2 + n4) -valent aromatic group consisting of only carbon atoms, and a (2 + n4) -valent aroma consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group. Examples of the (2 + n4) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; consisting of the monocyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the group are condensed; from the monocyclic aromatic ring and the condensed polycyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from an aromatic ring assembly formed by linking two or more aromatic rings selected from the group consisting of a single bond, ethenylene group or ethynylene group; A polycyclic aromatic ring or the aromatic ring (2 + n4) valences obtained by removing (2 + n4) hydrogen atoms from a bridged polycyclic aromatic ring in which two adjacent aromatic rings in a ring assembly are bridged by a divalent group such as a methylene group, an ethylene group, and a carbonyl group Groups.
 単環式芳香環として、例えば、以下の環が挙げられる。 Examples of monocyclic aromatic rings include the following rings.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 縮合多環式芳香環として、例えば、以下の環が挙げられる。 Examples of the condensed polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 芳香環集合として、例えば、以下の環が挙げられる。 As the aromatic ring assembly include the following rings.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 有橋多環式芳香環として、例えば、以下の環が挙げられる。 Examples of the Aribashi polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (2+n4)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n4)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n4)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n4)個除いた基がさらに好ましい。 As the (2 + n4) -valent aromatic group, (2 + n4) hydrogen atoms are removed from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer. A group obtained by removing (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred. A group obtained by removing (2 + n4) hydrogen atoms from the ring is more preferred.
 式(14)中、Rで表される(1+m1+m2)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m1+m2)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m1+m2)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m1+m2)個の水素原子を除いた基が挙げられる。Rで表される(1+m1+m2)価の有機基として、原料モノマーの合成の容易さの観点から、アルキル基から(m1+m2)個の水素原子を除いた基、アリール基から(m1+m2)個の水素原子を除いた基、及びアルコキシ基から(m1+m2)個の水素原子を除いた基が好ましい。 In the formula (14), examples of the (1 + m1 + m2) -valent organic group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m1 + m2) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and a group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like A group obtained by removing (m1 + m2) hydrogen atoms from the aryl group of; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m1 + m2) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m1 + m2) amino groups having a substituent containing a carbon atom A group excluding a hydrogen atom; and a silyl group containing a carbon atom and having a substituent (m1 + m ) Include groups obtained by removing hydrogen atoms. As a (1 + m1 + m2) -valent organic group represented by R 2 , a group obtained by removing (m1 + m2) hydrogen atoms from an alkyl group and (m1 + m2) hydrogens from an aryl group from the viewpoint of ease of synthesis of the raw material monomer A group in which atoms are removed and a group in which (m1 + m2) hydrogen atoms have been removed from an alkoxy group are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  ・式(15)で表される構造単位
 式(15)中、Rは式(16)で表される基を有する1価の基を示し、ArはR以外の置換基を有し又は有さない(2+n5)価の芳香族基を示し、n5は1以上の整数を示す。
Structural unit represented by formula (15) In formula (15), R 3 represents a monovalent group having a group represented by formula (16), and Ar 2 has a substituent other than R 3. Or it shows the (2 + n5) valent aromatic group which does not have, and n5 shows an integer greater than or equal to 1.
 式(16)で表される基は、Arに直接結合していてもよく、又は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;並びに、酸素原子、窒素原子、及び硫黄原子等のヘテロ原子を介してArに結合していてもよい。 The group represented by the formula (16) may be directly bonded to Ar 2 , or a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene. Group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, or the like An alkylene group having 1 to 50 carbon atoms, which may or may not have a substituent; oxymethylene group, oxyethylene group, oxypropylene group, oxybutylene group, oxypentylene group, oxyhexylene group, oxynonylene group, oxide Decylene group, cyclopropyleneoxy group, cyclobutyleneoxy group, cyclopentylene Noxy group, cyclohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, and at least one hydrogen atom of these groups is substituted with a substituent An oxyalkylene group having 1 to 50 carbon atoms with or without a substituent selected from a group, etc .; an imino group with or without a substituent; a silylene group with or without a substituent; An ethenylene group with or without a group; an ethynylene group; a methanetriyl group with or without a substituent; and an Ar 2 through a heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom. May be.
 ArはR以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Ar 2 may have a substituent other than R 3 . Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 Arが有するR以外の置換基として、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基及び置換カルボキシル基が好ましい。 As a substituent other than R 3 possessed by Ar 2 , an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
 式(15)中、n5は1以上の整数を表す。n5は、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 Wherein (15), n5 represents an integer of 1 or more. n5 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(15)中のArで表される(2+n5)価の芳香族基として、(2+n5)価の芳香族炭化水素基、及び(2+n5)価の芳香族複素環基が挙げられ、好ましくは、炭素原子のみからなる(2+n5)価の芳香族基、並びに、炭素原子と、水素原子、窒素原子及び酸素原子からなる群より選ばれる1つ以上の原子と、からなる(2+n5)価の芳香族基である。該(2+n5)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、及びアザジアゾール環等の単環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環からなる群より選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n5)個除いた(2+n5)価の基;並びに、該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、及びカルボニル基等の2価の基で架橋した有橋多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基が挙げられる。 Examples of the (2 + n5) -valent aromatic group represented by Ar 2 in the formula (15) include a (2 + n5) -valent aromatic hydrocarbon group and a (2 + n5) -valent aromatic heterocyclic group, preferably (2 + n5) -valent aromatic group consisting of only carbon atoms, and (2 + n5) -valent aromatics consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group. Examples of the (2 + n5) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; consisting of the monocyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the group are condensed; from the monocyclic aromatic ring and the condensed polycyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from an aromatic ring assembly formed by linking two or more aromatic rings selected from the group consisting of a single bond, ethenylene group or ethynylene group; A polycyclic aromatic ring or the aromatic ring (2 + n5) valences obtained by removing (2 + n5) hydrogen atoms from a bridged polycyclic aromatic ring in which two adjacent aromatic rings in a ring assembly are bridged by a divalent group such as a methylene group, an ethylene group, and a carbonyl group Groups.
 単環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式1~12で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 12 exemplified in the description of the structural unit represented by formula (13).
 縮合多環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式13~27で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by Formulas 13 to 27 exemplified in the description of the structural unit represented by Formula (13).
 芳香環集合として、例えば、式(13)で表される構造単位に関する説明で例示した式28~36で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
 有橋多環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式37~44で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by the formulas 37 to 44 exemplified in the description of the structural unit represented by the formula (13).
 (2+n5)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n5)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n5)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n5)個除いた基がさらに好ましい。 As the (2 + n5) -valent aromatic group, from the viewpoint of easy synthesis of the raw material monomer, (2 + n5) hydrogen atoms are removed from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41. A group obtained by removing (2 + n5) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred. A group obtained by removing (2 + n5) hydrogen atoms from the ring is more preferred.
 式(16)中、m3及びm4はそれぞれ独立に1以上の整数を表す。 In formula (16), m3 and m4 each independently represent an integer of 1 or more.
 式(16)中、Rで表される(1+m3+m4)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m3+m4)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m3+m4)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m3+m4)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m3+m4)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m3+m4)個の水素原子を除いた基が挙げられる。Rで表される(1+m3+m4)価の有機基として、原料モノマーの合成の容易さの観点から、アルキル基から(m3+m4)個の水素原子を除いた基、アリール基から(m3+m4)個の水素原子を除いた基、及びアルコキシ基から(m3+m4)個の水素原子を除いた基が好ましい。 In the formula (16), examples of the (1 + m3 + m4) -valent organic group represented by R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent A group obtained by removing (m3 + m4) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl 6 to 3 carbon atoms having or not having a substituent selected from a group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like A group obtained by removing (m3 + m4) hydrogen atoms from 0 aryl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclo Butyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent A group obtained by removing (m3 + m4) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: an amino group containing a carbon atom and having a substituent (m3 + m4) A group excluding one hydrogen atom; and a silyl group containing a carbon atom and having a substituent (m3 They include groups obtained by removing m4) hydrogen atoms. As a (1 + m3 + m4) -valent organic group represented by R 4 , a group obtained by removing (m3 + m4) hydrogen atoms from an alkyl group and (m3 + m4) hydrogens from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m3 + m4) hydrogen atoms are removed from an alkoxy group are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
  ・式(17)で表される構造単位
 式(17)中、Rは式(18)で表される基を有する1価の基を示し、Rは式(19)で表される基を有する1価の基を示し、ArはR及びR以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を示し、n6及びn7はそれぞれ独立に1以上の整数を示す。
Structural unit represented by formula (17) In formula (17), R 5 represents a monovalent group having a group represented by formula (18), and R 6 represents a group represented by formula (19). Ar 3 represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6 , and n6 and n7 are each independently an integer of 1 or more Indicates.
 式(18)で表される基及び式(19)で表される基は、Arに直接結合していてもよく、又は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;並びに、酸素原子、窒素原子、及び硫黄原子等のヘテロ原子を介してArに結合していてもよい。 The group represented by the formula (18) and the group represented by the formula (19) may be directly bonded to Ar 3 , or methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene. Group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and at least one hydrogen atom of these groups An alkylene group having 1 to 50 carbon atoms with or without a substituent selected from a group substituted with a substituent, etc .; an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxypentylene group Oxyhexylene group, oxynonylene group, oxide decylene group, cyclopropyleneoxy group, cyclobutylene Noxy group, cyclopentyleneoxy group, cyclohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, and at least one hydrogen atom of these groups An oxyalkylene group having 1 to 50 carbon atoms having or not having a substituent selected from a group substituted with a substituent, etc .; an imino group having or not having a substituent; having or having a substituent Via a heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom; and an ethenylene group with or without a substituent; an ethynylene group; a methanetriyl group with or without a substituent; It may be bonded to Ar 3 .
 ArはR及びR以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Ar 3 may have a substituent other than R 5 and R 6 . Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 Arが有するR及びR以外の置換基として、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基及び置換カルボキシル基が好ましい。 As a substituent other than R 5 and R 6 possessed by Ar 3 , an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
 式(17)中、n6は1以上の整数を表す。n6は、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (17), n6 represents an integer of 1 or more. n6 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(17)中、n7は1以上の整数を表す。n7は、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (17), n7 represents an integer of 1 or more. n7 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(17)中のArで表される(2+n6+n7)価の芳香族基として、(2+n6+n7)価の芳香族炭化水素基、及び(2+n6+n7)価の芳香族複素環基が挙げられ、好ましくは、炭素原子のみからなる(2+n6+n7)価の芳香族基、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群より選ばれる1つ以上の原子と、からなる(2+n6+n7)価の芳香族基である。該(2+n6+n7)価の芳香族基として、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、及びオキサゾール環等の単環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環からなる群より選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;並びに、該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、及びカルボニル基等の2価の基で架橋した有橋多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基が挙げられる。 Examples of the (2 + n6 + n7) -valent aromatic group represented by Ar 3 in the formula (17) include a (2 + n6 + n7) -valent aromatic hydrocarbon group and a (2 + n6 + n7) -valent aromatic heterocyclic group, preferably (2 + n6 + n7) -valent aromatic group consisting of only carbon atoms, or (2 + n6 + n7) -valent aromatics consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group. Examples of the (2 + n6 + n7) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, and an imidazole. A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from a monocyclic aromatic ring such as a ring and an oxazole ring; a condensation in which two or more rings selected from the group consisting of the monocyclic aromatic ring are condensed A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from the polycyclic aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring; A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from an aromatic ring assembly formed by a single bond, an ethenylene group or an ethynylene group; and the condensed polycyclic aromatic ring or the aromatic ring (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from a bridged polycyclic aromatic ring in which two adjacent aromatic rings are bridged by a divalent group such as a methylene group, an ethylene group, and a carbonyl group Is mentioned.
 単環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式1~5、式7~10で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
 縮合多環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式13~27で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by Formulas 13 to 27 exemplified in the description of the structural unit represented by Formula (13).
 芳香環集合として、例えば、式(13)で表される構造単位に関する説明で例示した式28~36で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
 有橋多環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式37~44で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by the formulas 37 to 44 exemplified in the description of the structural unit represented by the formula (13).
 (2+n6+n7)価の芳香族基として、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n6+n7)個除いた基が好ましく、式1、37又は41で表される環から水素原子を(2+n6+n7)個除いた基がより好ましく、式1、38又は42で表される環から水素原子を(2+n6+n7)個除いた基がさらに好ましい。 As a (2 + n6 + n7) -valent aromatic group, from the viewpoint of ease of synthesis of the raw material monomer, hydrogen from a ring represented by the formulas 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 A group in which (2 + n6 + n7) atoms are removed is preferred, and a group in which (2 + n6 + n7) hydrogen atoms have been removed from the ring represented by Formula 1, 37 or 41 is more preferred, and from the ring represented by Formula 1, 38 or 42 A group obtained by removing (2 + n6 + n7) hydrogen atoms is more preferable.
 式(18)中、Rは単結合又は(1+m5)価の有機基を表し、(1+m5)価の有機基であることが好ましい。 In Formula (18), R 7 represents a single bond or a (1 + m5) -valent organic group, and is preferably a (1 + m5) -valent organic group.
 式(18)中、Rで表される(1+m5)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基からm5個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基からm5個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm5個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基からm5個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基からm5個の水素原子を除いた基が挙げられる。Rで表される(1+m5)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基からm5個の水素原子を除いた基、アリール基からm5個の水素原子を除いた基、及びアルコキシ基からm5個の水素原子を除いた基が好ましい。 In the formula (18), as the (1 + m5) -valent organic group represented by R 7 , for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing m5 hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, which is present or absent; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9 An anthracenyl group and an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like m group in which 5 hydrogen atoms are removed; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group A substituent selected from a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group obtained by substituting at least one hydrogen atom of these groups with a substituent. A group obtained by removing m5 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without; a group obtained by removing m5 hydrogen atoms from an amino group containing a carbon atom and having a substituent; and And a group obtained by removing m5 hydrogen atoms from a silyl group containing a carbon atom and having a substituent. The (1 + m5) -valent organic group represented by R 7 is a group obtained by removing m5 hydrogen atoms from an alkyl group and m5 hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group and a group obtained by removing m5 hydrogen atoms from an alkoxy group are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 式(18)中、m5は1以上の整数を表す。ただし、Rが単結合のときm5は1を表す。 In formula (18), m5 represents an integer of 1 or more. Provided that when R 7 is a single bond m5 is 1.
 式(19)中、Rは単結合又は(1+m6)価の有機基を表し、(1+m6)価の有機基であることが好ましい。 In Formula (19), R 8 represents a single bond or a (1 + m6) -valent organic group, and is preferably a (1 + m6) -valent organic group.
 式(19)中、Rで表される(1+m6)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基からm6個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基からm6個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm6個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基からm6個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基からm6個の水素原子を除いた基が挙げられる。Rで表される(1+m6)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基からm6個の水素原子を除いた基、アリール基からm6個の水素原子を除いた基、及びアルコキシ基からm6個の水素原子を除いた基が好ましい。 In the formula (19), examples of the (1 + m6) -valent organic group represented by R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing m6 hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, which is present or absent; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9 An anthracenyl group and an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like m 6 groups excluding hydrogen atoms; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group A substituent selected from a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group obtained by substituting at least one hydrogen atom of these groups with a substituent. A group obtained by removing m6 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without; a group obtained by removing m6 hydrogen atoms from an amino group containing a carbon atom and having a substituent; and And a group obtained by removing m6 hydrogen atoms from a silyl group containing a carbon atom and having a substituent. The (1 + m6) -valent organic group represented by R 8 is a group obtained by removing m6 hydrogen atoms from an alkyl group and m6 hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group and a group obtained by removing m6 hydrogen atoms from an alkoxy group are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 式(19)中、m6は1以上の整数を表す。ただし、Rが単結合のときm6は1を表す。 In formula (19), m6 represents an integer of 1 or more. Provided that when R 8 is a single bond m6 represents 1.
  ・式(20)で表される構造単位
 式(20)中、Rは式(21)で表される基を有する1価の基を示し、R10は式(22)で表される基を有する1価の基を示し、ArはR及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を示し、n8及びn9はそれぞれ独立に1以上の整数を示す。
Structural unit represented by formula (20) In formula (20), R 9 represents a monovalent group having a group represented by formula (21), and R 10 represents a group represented by formula (22). Ar 4 represents a (2 + n8 + n9) -valent aromatic group with or without a substituent other than R 9 and R 10 , and n8 and n9 are each independently an integer of 1 or more Indicates.
 式(21)で表される基及び式(22)で表される基は、Arに直接結合していてもよく、又は、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;並びに、酸素原子、窒素原子、及び硫黄原子等のヘテロ原子を介してArに結合していてもよい。 The group represented by the formula (21) and the group represented by the formula (22) may be directly bonded to Ar 4 , or methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene. Group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and at least one hydrogen atom of these groups An alkylene group having 1 to 50 carbon atoms which has or does not have a substituent selected from a group substituted by a substituent, etc .; an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxypentylene group , Oxyhexylene group, oxynonylene group, oxide decylene group, cyclopropyleneoxy group, cyclobutylene Oxy group, cyclopentyleneoxy group, cyclohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, and at least one hydrogen atom of these groups An oxyalkylene group having 1 to 50 carbon atoms having or not having a substituent selected from a group substituted with a substituent, etc .; an imino group having or not having a substituent; having or having a substituent Via a heteroatom such as an oxygen atom, a nitrogen atom, and a sulfur atom; and an ethenylene group with or without a substituent; an ethynylene group; a methanetriyl group with or without a substituent; It may be bonded to Ar 4 .
 ArはR及びR10以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Ar 4 may have a substituent other than R 9 and R 10 . Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 Arが有するR及びR10以外の置換基として、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基及び置換カルボキシル基が好ましい。 As a substituent other than R 9 and R 10 that Ar 4 has, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, and a substituted carboxyl group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
 式(20)中、n8は1以上の整数を表す。n8は、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In the formula (20), n8 represents an integer of 1 or more. n8 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(20)中、n9は1以上の整数を表す。n9は、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (20), n9 represents an integer of 1 or more. n9 is preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(20)中のArで表される(2+n8+n9)価の芳香族基として、(2+n8+n9)価の芳香族炭化水素基、及び(2+n8+n9)価の芳香族複素環基が挙げられ、好ましくは、炭素原子のみからなる(2+n8+n9)価の芳香族基、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群より選ばれる1つ以上の原子と、からなる(2+n8+n9)価の芳香族基である。該(2+n8+n9)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、及びイミダゾール環等の単環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環からなる群より選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、及びカルボニル基等の2価の基で架橋した有橋多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基が挙げられる。 Examples of the (2 + n8 + n9) -valent aromatic group represented by Ar 4 in the formula (20) include a (2 + n8 + n9) -valent aromatic hydrocarbon group and a (2 + n8 + n9) -valent aromatic heterocyclic group. (2 + n8 + n9) -valent aromatic group consisting of only carbon atoms, or (2 + n8 + n9) -valent aromatics consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is a family group. Examples of the (2 + n8 + n9) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, And a (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from a monocyclic aromatic ring such as an imidazole ring; a condensed polycycle in which two or more rings selected from the group consisting of the monocyclic aromatic rings are condensed A (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from the formula aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring are bonded to a single bond , A (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from an aromatic ring assembly connected by an ethenylene group or an ethynylene group; the condensed polycyclic aromatic ring or two adjacent aromatic rings in the aromatic ring assembly Ring methylene group, divalent crosslinked the bridged polycyclic aromatic ring hydrogen atoms in radical (2 + n8 + n9) pieces remaining after removing (2 + n8 + n9) valent group such as ethylene group and a carbonyl group.
 単環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式1~5、式7~10で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
 縮合多環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式13~27で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by Formulas 13 to 27 exemplified in the description of the structural unit represented by Formula (13).
 芳香環集合として、例えば、式(13)で表される構造単位に関する説明で例示した式28~36で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
 有橋多環式芳香環として、例えば、式(13)で表される構造単位に関する説明で例示した式37~44で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by the formulas 37 to 44 exemplified in the description of the structural unit represented by the formula (13).
 (2+n8+n9)価の芳香族基として、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n8+n9)個除いた基が好ましく、式1~6、8、14、27、28、38又は42で表される環から水素原子を(2+n8+n9)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n8+n9)個除いた基がさらに好ましい。 As a (2 + n8 + n9) -valent aromatic group, from the viewpoint of ease of synthesis of the raw material monomer, hydrogen from a ring represented by the formulas 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 A group in which (2 + n8 + n9) atoms are removed is preferred, and a group in which (2 + n8 + n9) hydrogen atoms have been removed from the ring represented by formulas 1 to 6, 8, 14, 27, 28, 38 or 42 is more preferred. , 37 or 41, a group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring is more preferred.
 式(21)中、R11は単結合又は(1+m7)価の有機基を表し、(1+m7)価の有機基であることが好ましい。 In Formula (21), R 11 represents a single bond or a (1 + m7) -valent organic group, and is preferably a (1 + m7) -valent organic group.
 式(21)中、R11で表される(1+m7)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基からm7個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基からm7個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm7個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基からm7個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基からm7個の水素原子を除いた基が挙げられる。R11で表される(1+m7)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基からm7個の水素原子を除いた基、アリール基からm7個の水素原子を除いた基、及びアルコキシ基からm7個の水素原子を除いた基が好ましい。 In the formula (21), examples of the (1 + m7) -valent organic group represented by R 11 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group in which an m7 hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms, which is present or absent; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9 An anthracenyl group and an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group excluding m7 hydrogen atoms; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy A substituent selected from a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent A group in which an m7 hydrogen atom is removed from an alkoxy group having 1 to 50 carbon atoms with or without a carbon atom; a group in which an m7 hydrogen atom is removed from an amino group having a carbon atom and having a substituent; and And a group in which m7 hydrogen atoms have been removed from a silyl group containing a carbon atom and having a substituent. The (1 + m7) -valent organic group represented by R 11 is a group in which m7 hydrogen atoms are removed from an alkyl group and m7 hydrogen atoms are removed from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. And a group obtained by removing m7 hydrogen atoms from an alkoxy group.
 前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 式(21)中、m7は1以上の整数を表す。ただし、R11が単結合のときm7は1を表す。 In formula (21), m7 represents an integer of 1 or more. Provided that when R 11 is a single bond m7 represents 1.
 式(22)中、R12は単結合又は(1+m8)価の有機基を表し、(1+m8)価の有機基であることが好ましい。 In Formula (22), R 12 represents a single bond or a (1 + m8) valent organic group, and is preferably a (1 + m8) valent organic group.
 式(22)中、R12で表される(1+m8)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基からm8個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基からm8個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm8個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基からm8個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基からm8個の水素原子を除いた基が挙げられる。R12で表される(1+m8)価の有機基として、原料モノマーの合成の容易さの観点から、アルキル基からm8個の水素原子を除いた基、アリール基からm8個の水素原子を除いた基、及びアルコキシ基からm8個の水素原子を除いた基が好ましい。 In the formula (22), examples of the (1 + m8) -valent organic group represented by R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group in which an m8 hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms, which is present or absent; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9 An anthracenyl group and an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group excluding m8 hydrogen atoms; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy A substituent selected from a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent A group obtained by removing m8 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a carbon; a group obtained by removing m8 hydrogen atoms from an amino group containing a carbon atom and having a substituent; and , A group obtained by removing m8 hydrogen atoms from a silyl group containing a carbon atom and having a substituent. As the (1 + m8) -valent organic group represented by R 12 , from the viewpoint of ease of synthesis of the raw material monomer, a group in which m8 hydrogen atoms are removed from the alkyl group, and m8 hydrogen atoms are removed from the aryl group. A group and a group obtained by removing m8 hydrogen atoms from an alkoxy group are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituents include exemplified substituents such as in the description with respect to Q 1. When a plurality of substituents are present, they may be the same or different.
 式(22)中、m8は1以上の整数を表す。ただし、R12が単結合のときm8は1を表す。 In formula (22), m8 represents an integer of 1 or more. Provided that when R 12 is a single bond m8 represents 1.
 ・式(13)で表される構造単位の例
 式(13)で表される構造単位として、得られるイオン性ポリマーの電子輸送性の観点から、式(23)で表される構造単位、及び式(24)で表される構造単位が好ましく、式(24)で表される構造単位がより好ましい。
-Example of the structural unit represented by Formula (13) From the viewpoint of the electron transport property of the ionic polymer obtained as a structural unit represented by Formula (13), the structural unit represented by Formula (23), and The structural unit represented by Formula (24) is preferable, and the structural unit represented by Formula (24) is more preferable.
Figure JPOXMLDOC01-appb-C000018
(式(23)中、R13は(1+m9+m10)価の有機基を示し、R14は1価の有機基を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述した。m9及びm10はそれぞれ独立に1以上の整数を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000018
(In the formula (23), R 13 represents a (1 + m9 + m10) valent organic group, and R 14 represents a monovalent organic group. Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1 , A1, b1, and n3 are as described above, and m9 and m10 each independently represents an integer of 1 or more, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3. When there are a plurality of each, they may be the same or different.)
 式(23)中、R13で表される(1+m9+m10)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m9+m10)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m9+m10)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m9+m10)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m9+m10)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m9+m10)個の水素原子を除いた基が挙げられる。R13で表される(1+m9+m10)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m9+m10)個の水素原子を除いた基、アリール基から(m9+m10)個の水素原子を除いた基、及びアルコキシ基から(m9+m10)個の水素原子を除いた基が好ましい。 In the formula (23), examples of the (1 + m9 + m10) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing (m9 + m10) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and carbon atoms having or not having a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like A group obtained by removing (m9 + m10) hydrogen atoms from 30 aryl groups; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, A cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and at least one hydrogen atom of these groups is substituted with a substituent A group obtained by removing (m9 + m10) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from a group and the like; from an amino group containing a carbon atom and having a substituent (m9 + m10) ) Group excluding one hydrogen atom; and a silyl group containing a carbon atom and having a substituent Luo (m9 + m10) number of groups other than a hydrogen atom. The (1 + m9 + m10) -valent organic group represented by R 13 is a group obtained by removing (m9 + m10) hydrogen atoms from an alkyl group and (m9 + m10) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m9 + m10) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(23)中、R14で表される1価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から1個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から1個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から1個の水素原子を除いた基が挙げられる。R14で表される1価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、及びアルコキシ基から1個の水素原子を除いた基が好ましい。 In the formula (23), examples of the monovalent organic group represented by R 14 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and pentyl. A substituent selected from a group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Or a group in which one hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms which is not present; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl 1 hydrogen from an aryl group having 6 to 30 carbon atoms with or without a substituent selected from a group and a group in which at least one hydrogen atom of these groups is substituted with a substituent Groups excluding atoms: methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group Or having a substituent selected from a group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing one hydrogen atom from an alkoxy group having 1 to 50 carbon atoms; a group obtained by removing one hydrogen atom from an amino group containing a carbon atom and having a substituent; and a carbon atom And a group obtained by removing one hydrogen atom from a silyl group having a substituent. The monovalent organic group represented by R 14 is a group obtained by removing one hydrogen atom from an alkyl group, a group obtained by removing one hydrogen atom from an aryl group, from the viewpoint of ease of synthesis of the raw material monomer, And a group obtained by removing one hydrogen atom from an alkoxy group is preferred.
 式(23)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (23) include the following structural units.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式(24)中、R13は(1+m11+m12)価の有機基を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述した。m11及びm12はそれぞれ独立に1以上の整数を示す。R13、m11、m12、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3の各々は複数個ある場合、同一でも異なっていてもよい。) (In the formula (24), R 13 represents a (1 + m11 + m12) -valent organic group. Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are described above. And m12 each independently represents an integer greater than or equal to 1. Each of R 13 , m11, m12, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 is plural. In some cases, they may be the same or different.)
 式(24)中、R13で表される(1+m11+m12)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m11+m12)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m11+m12)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m11+m12)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m11+m12)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m11+m12)個の水素原子を除いた基が挙げられる。R13で表される(1+m11+m12)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m11+m12)個の水素原子を除いた基、アリール基から(m11+m12)個の水素原子を除いた基、及びアルコキシ基から(m11+m12)個の水素原子を除いた基が好ましい。 In the formula (24), examples of the (1 + m11 + m12) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and a carbon atom having or not having a substituent selected from a group obtained by substituting at least one hydrogen atom of these groups with a substituent A group obtained by removing (m11 + m12) hydrogen atoms from an aryl group of 6 to 30; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy Group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, and at least one hydrogen atom of these groups as a substituent A group obtained by removing (m11 + m12) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from substituted groups, etc .; from an amino group containing a carbon atom and having a substituent A group excluding (m11 + m12) hydrogen atoms; and containing a carbon atom and having a substituent Silyl group (m11 + m12) include groups obtained by removing hydrogen atoms. The (1 + m11 + m12) -valent organic group represented by R 13 is a group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group and (m11 + m12) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m11 + m12) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(24)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (24) include the following structural units.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(13)で表される構造単位は、得られるイオン性ポリマーの耐久性の観点から、式(25)で表される構造単位が好ましい。 The structural unit represented by the formula (13) is preferably a structural unit represented by the formula (25) from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000025
(式(25)中、R15は(1+m13+m14)価の有機基を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述した。m13、m14及びm15はそれぞれ独立に1以上の整数を示す。R15、m13、m14、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000025
(In the formula (25), R 15 represents a (1 + m13 + m14) -valent organic group. Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are described above. , M14 and m15 each independently represents an integer greater than or equal to 1. R 15 , m13, m14, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 and n3 are each When there are a plurality, they may be the same or different.)
 式(25)中、R15で表される(1+m13+m14)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m13+m14)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m13+m14)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m13+m14)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m13+m14)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m13+m14)個の水素原子を除いた基が挙げられる。R15で表される(1+m13+m14)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m13+m14)個の水素原子を除いた基、アリール基から(m13+m14)個の水素原子を除いた基、及びアルコキシ基から(m13+m14)個の水素原子を除いた基が好ましい。 In formula (25), examples of the (1 + m13 + m14) -valent organic group represented by R 15 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and a carbon atom having or not having a substituent selected from a group obtained by substituting at least one hydrogen atom of these groups with a substituent A group obtained by removing (m13 + m14) hydrogen atoms from an aryl group of 6 to 30; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy Group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, and at least one hydrogen atom of these groups as a substituent A group obtained by removing (m13 + m14) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from substituted groups, etc .; from an amino group containing a carbon atom and having a substituent A group excluding (m13 + m14) hydrogen atoms; and containing a carbon atom and having a substituent Silyl group (m13 + m14) include groups obtained by removing hydrogen atoms. The (1 + m13 + m14) -valent organic group represented by R 15 is a group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group and (m13 + m14) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m13 + m14) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(25)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (25) include the following structural units.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(15)で表される構造単位の例
 式(15)で表される構造単位は、得られるイオン性ポリマーの電子輸送性の観点から、式(26)で表される構造単位、及び式(27)で表される構造単位が好ましく、式(27)で表される構造単位がより好ましい。
Example of Structural Unit Represented by Formula (15) The structural unit represented by formula (15) is the structural unit represented by formula (26) and the formula from the viewpoint of electron transport properties of the obtained ionic polymer. The structural unit represented by (27) is preferred, and the structural unit represented by formula (27) is more preferred.
Figure JPOXMLDOC01-appb-C000027
(式(26)中、R16は(1+m16+m17)価の有機基を示し、R17は1価の有機基を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述した。m16及び、m17はそれぞれ独立に1以上の整数を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000027
(In the formula (26), R 16 represents a (1 + m16 + m17) valent organic group, and R 17 represents a monovalent organic group. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2 , a2, b2 and n3 .m16 and described above, .Q 2 indicating an integer of 1 or more, respectively m17 independently, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2, b2 , and n3 When there are a plurality of each, they may be the same or different.)
 式(26)中、R16で表される(1+m16+m17)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。R16で表される(1+m16+m17)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、及びアルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。 In the formula (26), examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and a carbon atom having or not having a substituent selected from a group obtained by substituting at least one hydrogen atom of these groups with a substituent A group obtained by removing (m16 + m17) hydrogen atoms from an aryl group of 6 to 30; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy Group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, and at least one hydrogen atom of these groups as a substituent A group obtained by removing (m16 + m17) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from substituted groups and the like; from an amino group having a substituent and containing a carbon atom A group excluding (m16 + m17) hydrogen atoms; and containing a carbon atom and having a substituent Silyl group (m16 + m17) include groups obtained by removing hydrogen atoms. The (1 + m16 + m17) -valent organic group represented by R 16 is a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group and (m16 + m17) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m16 + m17) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(26)中、R17で表される1価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から1個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から1個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から1個の水素原子を除いた基が挙げられる。R17で表される1価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、及びアルコキシ基から1個の水素原子を除いた基が好ましい。 In the formula (26), examples of the monovalent organic group represented by R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and pentyl. A substituent selected from a group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Or a group in which one hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms which is not present; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl 1 hydrogen from an aryl group having 6 to 30 carbon atoms, with or without a substituent selected from a group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like Groups excluding atoms: methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group Or having a substituent selected from a group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing one hydrogen atom from an alkoxy group having 1 to 50 carbon atoms; a group obtained by removing one hydrogen atom from an amino group containing a carbon atom and having a substituent; and a carbon atom And a group obtained by removing one hydrogen atom from a silyl group having a substituent. The monovalent organic group represented by R 17 is a group obtained by removing one hydrogen atom from an alkyl group, a group obtained by removing one hydrogen atom from an aryl group, from the viewpoint of ease of synthesis of the raw material monomer, And a group obtained by removing one hydrogen atom from an alkoxy group is preferred.
 式(26)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (26) include the following structural units.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(式(27)中、R16は(1+m16+m17)価の有機基を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述した。m16及びm17はそれぞれ独立に1以上の整数を示す。R16、m16、m17、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000029
(In the formula (27), R 16 represents a (1 + m16 + m17) valent organic group. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2, and n 3 are described above. And m17 each independently represents an integer of 1 or more, and each of R 16 , m16, m17, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 is plural. In some cases, they may be the same or different.)
 式(27)中、R16で表される(1+m16+m17)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。R16で表される(1+m16+m17)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、及びアルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。 In the formula (27), examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and a carbon atom having or not having a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like A group obtained by removing (m16 + m17) hydrogen atoms from an aryl group of 6 to 30; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy Group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, and at least one hydrogen atom of these groups as a substituent A group obtained by removing (m16 + m17) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from substituted groups and the like; from an amino group having a substituent and containing a carbon atom A group excluding (m16 + m17) hydrogen atoms; and containing a carbon atom and having a substituent Silyl group (m16 + m17) include groups obtained by removing hydrogen atoms. The (1 + m16 + m17) -valent organic group represented by R 16 is a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group and (m16 + m17) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m16 + m17) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(27)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (27) include the following structural units.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(15)で表される構造単位は、得られるイオン性ポリマーの耐久性の観点から、式(28)で表される構造単位が好ましい。 The structural unit represented by the formula (15) is preferably a structural unit represented by the formula (28) from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000033
(式(28)中、R18は(1+m18+m19)価の有機基を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述した。m18、m19及びm20はそれぞれ独立に1以上の整数を示す。R18、m18、m19、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000033
(In formula (28), R 18 represents a (1 + m18 + m19) -valent organic group. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are the same as described above. , M19 and m20 each independently represents an integer greater than or equal to 1. R 18 , m18, m19, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are each When there are a plurality, they may be the same or different.)
 式(28)中、R18で表される(1+m18+m19)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m18+m19)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m18+m19)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m18+m19)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m18+m19)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m18+m19)個の水素原子を除いた基が挙げられる。R18で表される(1+m18+m19)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m18+m19)個の水素原子を除いた基、アリール基から(m18+m19)個の水素原子を除いた基、及びアルコキシ基から(m18+m19)個の水素原子を除いた基が好ましい。 In the formula (28), examples of the (1 + m18 + m19) -valent organic group represented by R 18 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m18 + m19) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and a carbon atom having or not having a substituent selected from a group obtained by substituting at least one hydrogen atom of these groups with a substituent A group obtained by removing (m18 + m19) hydrogen atoms from an aryl group of 6 to 30; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy Group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, and at least one hydrogen atom of these groups as a substituent A group obtained by removing (m18 + m19) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from substituted groups, etc .; from an amino group containing a carbon atom and having a substituent A group excluding (m18 + m19) hydrogen atoms; and containing a carbon atom and having a substituent Silyl group (m18 + m19) include groups obtained by removing hydrogen atoms. The (1 + m18 + m19) -valent organic group represented by R 18 is a group obtained by removing (m18 + m19) hydrogen atoms from an alkyl group and (m18 + m19) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m18 + m19) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(28)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (28) include the following structural units.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(17)で表される構造単位の例
 式(17)で表される構造単位は、得られるイオン性ポリマーの電子輸送性の観点から、式(29)で表される構造単位が好ましい。
Example of Structural Unit Represented by Formula (17) The structural unit represented by formula (17) is preferably a structural unit represented by formula (29) from the viewpoint of electron transport properties of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000035
(式(29)中、R19は単結合又は(1+m21)価の有機基を示し、R20は単結合又は(1+m22)価の有機基を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述した。m21及びm22はそれぞれ独立に1以上の整数を示す。ただし、R19が単結合のときm21は1を示し、R20が単結合のときm22は1を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000035
(In formula (29), R 19 represents a single bond or a (1 + m21) -valent organic group, and R 20 represents a single bond or a (1 + m22) -valent organic group. Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, the b1 and n3 represents an integer of 1 or more in each .m21 and m22 described above independently. However, m21 when R 19 is a single bond indicates 1, R 20 is In the case of a single bond, m22 represents 1. When Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are plural, they may be the same or different. .)
 式(29)中、R19で表される(1+m21)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m21)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m21)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m21)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m21)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m21)個の水素原子を除いた基が挙げられる。R19で表される(1+m21)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m21)個の水素原子を除いた基、アリール基から(m21)個の水素原子を除いた基、及びアルコキシ基から(m21)個の水素原子を除いた基が好ましい。 In the formula (29), examples of the (1 + m21) -valent organic group represented by R 19 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent A group in which (m21) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl An aryl group having 6 to 30 carbon atoms with or without a substituent selected from a group, a 9-anthracenyl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent A group obtained by removing (m21) hydrogen atoms from a reel group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy A group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, or the like A group obtained by removing (m21) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a selected substituent; from an amino group containing a carbon atom and having a substituent, (m21) A group excluding a hydrogen atom; and (m21) hydrogen atoms from a silyl group containing a carbon atom and having a substituent Like stomach group. The (1 + m21) -valent organic group represented by R 19 is a group obtained by removing (m21) hydrogen atoms from an alkyl group and (m21) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m21) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(29)中、R20で表される(1+m22)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m22)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m22)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m22)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m22)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m22)個の水素原子を除いた基が挙げられる。R20で表される(1+m22)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m22)個の水素原子を除いた基、アリール基から(m22)個の水素原子を除いた基、及びアルコキシ基から(m22)個の水素原子を除いた基が好ましい。 In the formula (29), examples of the (1 + m22) -valent organic group represented by R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing (m22) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and an aryl group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like Group in which (m22) hydrogen atoms have been removed from the alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m22) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m22) from an amino group containing a carbon atom and having a substituent And (m22) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. The (1 + m22) -valent organic group represented by R 20 is a group obtained by removing (m22) hydrogen atoms from an alkyl group and (m22) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m22) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(29)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (29) include the following structural units.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(17)で表される構造単位は、得られるイオン性ポリマーの耐久性の観点から、式(30)で表される構造単位が好ましい。 The structural unit represented by the formula (17) is preferably a structural unit represented by the formula (30) from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000037
(式(30)中、R21は単結合又は(1+m23)価の有機基を示し、R22は単結合又は(1+m24)価の有機基を示す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述した。m23及びm24はそれぞれ独立に1以上の整数を示す。ただし、R21が単結合のときm23は1を示し、R22が単結合のときm24は1を示す。m25及びm26はそれぞれ独立に1以上の整数を示す。m23、m24、R21、R22、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000037
(In Formula (30), R 21 represents a single bond or a (1 + m23) -valent organic group, and R 22 represents a single bond or a (1 + m24) -valent organic group. Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, the b1 and n3 represents an integer of 1 or more in each .m23 and m24 described above independently. However, m23 when R 21 is a single bond indicates 1, R 22 is In the case of a single bond, m24 represents 1. m25 and m26 each independently represents an integer of 1 or more, m23, m24, R 21 , R 22 , Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 may be the same or different when there are a plurality of each.
 式(30)中、R21で表される(1+m23)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m23)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m23)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m23)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m23)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m23)個の水素原子を除いた基が挙げられる。R21で表される(1+m23)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m23)個の水素原子を除いた基、アリール基から(m23)個の水素原子を除いた基、及びアルコキシ基から(m23)個の水素原子を除いた基が好ましい。 In the formula (30), examples of the (1 + m23) -valent organic group represented by R 21 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m23) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and an aryl group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like Group in which (m23) hydrogen atoms have been removed from the alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m23) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m23) from an amino group containing a carbon atom and having a substituent And (m23) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. The (1 + m23) -valent organic group represented by R 21 is a group obtained by removing (m23) hydrogen atoms from an alkyl group and (m23) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m23) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(30)中、R22で表される(1+m24)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m24)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m24)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m24)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m24)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m24)個の水素原子を除いた基が挙げられる。R22で表される(1+m24)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m24)個の水素原子を除いた基、アリール基から(m24)個の水素原子を除いた基、及びアルコキシ基から(m24)個の水素原子を除いた基が好ましい。 In the formula (30), examples of the (1 + m24) -valent organic group represented by R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m24) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and an aryl group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like A group in which (m24) hydrogen atoms have been removed from an alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m24) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m24) from an amino group containing a carbon atom and having a substituent And (m24) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. The (1 + m24) -valent organic group represented by R 22 is a group obtained by removing (m24) hydrogen atoms from an alkyl group and (m24) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m24) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(30)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (30) include the following structural units.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(20)で表される構造単位の例
 式(20)で表される構造単位は、得られる電子輸送性の観点から、式(31)で表される構造単位が好ましい。
Example of Structural Unit Represented by Formula (20) The structural unit represented by formula (20) is preferably a structural unit represented by formula (31) from the viewpoint of the obtained electron transport property.
Figure JPOXMLDOC01-appb-C000039
(式(31)中、R23は単結合又は(1+m27)価の有機基を示し、R24は単結合又は(1+m28)価の有機基を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述した。m27及びm28はそれぞれ独立に1以上の整数を示す。ただし、R23が単結合のときm27は1を示し、R24が単結合のときm28は1を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000039
(In Formula (31), R 23 represents a single bond or a (1 + m27) valent organic group, and R 24 represents a single bond or a (1 + m28) valent organic group. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are as described above, m 27 and m 28 each independently represent an integer of 1 or more, provided that when R 23 is a single bond, m 27 represents 1 and R 24 represents In the case of a single bond, m28 represents 1. When there are a plurality of Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3, they may be the same or different. .)
 式(31)中、R23で表される(1+m27)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m27)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m27)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m27)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m27)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m27)個の水素原子を除いた基が挙げられる。R23で表される(1+m27)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m27)個の水素原子を除いた基、アリール基から(m27)個の水素原子を除いた基、及びアルコキシ基から(m27)個の水素原子を除いた基が好ましい。 In the formula (31), examples of the (1 + m27) -valent organic group represented by R 23 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing (m27) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and an aryl group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like Group in which (m27) hydrogen atoms have been removed from the alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m27) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m27) from an amino group containing a carbon atom and having a substituent And (m27) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. Represented by R 23 (1 + m27) valent organic group, from the viewpoint of easy synthesis of the raw material monomer, the alkyl group (m27) number of groups other than hydrogen atoms, the aryl group (m27) number of hydrogen A group in which atoms are removed and a group in which (m27) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(31)中、R24で表される(1+m28)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m28)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m28)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m28)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m28)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m28)個の水素原子を除いた基が挙げられる。R24で表される(1+m28)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m28)個の水素原子を除いた基、アリール基から(m28)個の水素原子を除いた基、及びアルコキシ基から(m28)個の水素原子を除いた基が好ましい。 In the formula (31), examples of the (1 + m28) -valent organic group represented by R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing (m28) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, which is present or absent; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and an aryl group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like Group in which (m28) hydrogen atoms have been removed from the alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m28) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m28) from an amino group containing a carbon atom and having a substituent And (m28) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. The (1 + m28) -valent organic group represented by R 24 is a group obtained by removing (m28) hydrogen atoms from an alkyl group and (m28) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m28) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(31)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (31) include the following structural units.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式(20)で表される構造単位は、得られるイオン性ポリマーの耐久性の観点から、式(32)で表される構造単位が好ましい。 The structural unit represented by the formula (20) is preferably a structural unit represented by the formula (32) from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000041
(式(32)中、R25は単結合又は(1+m29)価の有機基を示し、R26は単結合又は(1+m30)価の有機基を示す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述した。m29及びm30はそれぞれ独立に1以上の整数を示す。ただし、R25が単結合のときm29は1を示し、R26が単結合のときm30は1を示す。m31及びm32はそれぞれ独立に1以上の整数を示す。m29、m30、R25、R26、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3の各々は複数個ある場合、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000041
(In Formula (32), R 25 represents a single bond or a (1 + m29) -valent organic group, and R 26 represents a single bond or a (1 + m30) -valent organic group. Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are as described above, m 29 and m 30 each independently represent an integer of 1 or more, provided that when R 25 is a single bond, m 29 represents 1 and R 26 represents In the case of a single bond, m30 represents 1. m31 and m32 each independently represent an integer of 1 or more m29, m30, R 25 , R 26 , Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2 and n3 may be the same or different when there are a plurality of each.
 式(32)中、R25で表される(1+m29)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m29)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m29)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m29)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m29)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m29)個の水素原子を除いた基が挙げられる。R25で表される(1+m29)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m29)個の水素原子を除いた基、アリール基から(m29)個の水素原子を除いた基、及びアルコキシ基から(m29)個の水素原子を除いた基が好ましい。 In the formula (32), examples of the (1 + m29) -valent organic group represented by R 25 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like. A group obtained by removing (m29) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and at least one hydrogen atom having a substituent selected from group substituted with a substituent or ants having 6 to 30 carbon atoms which does not have these groups Group in which (m29) hydrogen atoms have been removed from the alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m29) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m29) from an amino group containing a carbon atom and having a substituent And (m29) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. The (1 + m29) -valent organic group represented by R 25 is a group obtained by removing (m29) hydrogen atoms from an alkyl group and (m29) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m29) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(32)中、R26で表される(1+m30)価の有機基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~20のアルキル基から(m30)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数6~30のアリール基から(m30)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、及びこれらの基の少なくとも1個の水素原子を置換基で置換した基等から選ばれる置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m30)個の水素原子を除いた基;炭素原子を含み、置換基を有するアミノ基から(m30)個の水素原子を除いた基;並びに、炭素原子を含み、置換基を有するシリル基から(m30)個の水素原子を除いた基が挙げられる。R26で表される(1+m30)価の有機基は、原料モノマーの合成の容易さの観点から、アルキル基から(m30)個の水素原子を除いた基、アリール基から(m30)個の水素原子を除いた基、及びアルコキシ基から(m30)個の水素原子を除いた基が好ましい。 In the formula (32), examples of the (1 + m30) -valent organic group represented by R 26 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent selected from a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent. A group obtained by removing (m30) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without carbon; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group , 9-anthracenyl group, and an aryl group having 6 to 30 carbon atoms, which has or does not have a substituent selected from a group in which at least one hydrogen atom of these groups is substituted with a substituent, and the like Group in which (m30) hydrogen atoms have been removed from the alkyl group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, and a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m30) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent selected from: (m30) from an amino group containing a carbon atom and having a substituent And (m30) hydrogen atoms are removed from a silyl group containing a carbon atom and having a substituent. Groups, and the like. The (1 + m30) -valent organic group represented by R 26 is a group obtained by removing (m30) hydrogen atoms from an alkyl group and (m30) hydrogen atoms from an aryl group from the viewpoint of ease of synthesis of the raw material monomer. A group in which atoms are removed and a group in which (m30) hydrogen atoms have been removed from an alkoxy group are preferred.
 式(32)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (32) include the following structural units.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
  ・その他の構造単位
 本実施形態に係るイオン性ポリマーは、式(33)で表される1種以上の構造単位を更に有していてもよい。
-Other structural unit The ionic polymer which concerns on this embodiment may further have 1 or more types of structural units represented by Formula (33).
Figure JPOXMLDOC01-appb-C000043
(式(33)中、Arは置換基を有し若しくは有さない2価の芳香族基又は置換基を有し若しくは有さない2価の芳香族アミン残基を示し、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を示し、m33及びm34はそれぞれ独立に0又は1を示し、m33及びm34の少なくとも1つは1である。)
Figure JPOXMLDOC01-appb-C000043
(In formula (33), Ar 5 represents a divalent aromatic group having or not having a substituent, or a divalent aromatic amine residue having or not having a substituent, and X ′ represents a substituted group. An imino group with or without a group, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group, and m33 and m34 are each independently 0 or 1 And at least one of m33 and m34 is 1.)
 式(33)中のArで表される2価の芳香族基として、2価の芳香族炭化水素基、及び2価の芳香族複素環基が挙げられる。該2価の芳香族基として、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、及びアザジアゾール環等から選ばれる単環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環からなる群より選ばれる二つ以上が縮合した縮合多環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を2個除いた2価の基;並びに、該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基、及びイミノ基等の2価の基で架橋した有橋多環式芳香環から水素原子を2個除いた2価の基が挙げられる。 Examples of the divalent aromatic group represented by Ar 5 in formula (33) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group. Examples of the divalent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, a furan ring, A divalent group obtained by removing two hydrogen atoms from a monocyclic aromatic ring selected from a pyrrole ring, a thiophene ring, a pyrazole ring, an imidazole ring, an oxazole ring, an oxadiazole ring and an azadiazole ring; A divalent group obtained by removing two hydrogen atoms from a condensed polycyclic aromatic ring in which two or more selected from the group consisting of rings are condensed; from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring A divalent group in which two hydrogen atoms are removed from an aromatic ring assembly formed by connecting two or more selected aromatic rings with a single bond, an ethenylene group or an ethynylene group; and the condensed polycyclic aromatic ring or the Two adjacent aromatic rings in an aromatic ring assembly Styrene group, an ethylene group, a carbonyl group, and a divalent divalent group in which two hydrogen atoms are removed from the bridged polycyclic aromatic ring crosslinked with groups such as an imino group.
 縮合多環式芳香環は、イオン性ポリマーの溶解性の観点から、2~4の単環式芳香環が縮合したものが好ましい。該単環式芳香環の縮合数は、2~3がより好ましく、2が更に好ましい。 The condensed polycyclic aromatic ring is preferably one in which 2 to 4 monocyclic aromatic rings are condensed from the viewpoint of solubility of the ionic polymer. The number of condensed monocyclic aromatic rings is more preferably 2 to 3, and further preferably 2.
 芳香環集合は、イオン性ポリマーの溶解性の観点から、2~4の芳香環が連結したものが好ましい。該芳香環の連結数は、2~3がより好ましく、2が更に好ましい。 The aromatic ring assembly is preferably one in which 2 to 4 aromatic rings are linked from the viewpoint of solubility of the ionic polymer. The number of linked aromatic rings is more preferably 2 to 3, and still more preferably 2.
 有橋多環式芳香環は、イオン性ポリマーの溶解性の観点から、2~4の芳香環が架橋したものが好ましい。架橋される芳香環の数は、2~3がより好ましく、2が更に好ましい。 The bridged polycyclic aromatic ring is preferably one in which 2 to 4 aromatic rings are crosslinked from the viewpoint of solubility of the ionic polymer. The number of aromatic rings to be bridged is more preferably 2 to 3, and even more preferably 2.
 単環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the monocyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 縮合多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the condensed polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 芳香環集合としては、例えば、以下の環が挙げられる。 Examples of the aromatic ring assembly include the following rings.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 有橋多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the Aribashi polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 イオン性ポリマーの電子受容性及び正孔受容性のいずれか一方又は両方の観点から、Arで表される2価の芳香族基は、式45~60、61~71、77~80、91、92、93又は96で表される環から水素原子を2個除いた2価の基が好ましく、式45~50、59、60、77、80、91、92又は96で表される環から水素原子を2個除いた2価の基がより好ましい。 From the viewpoint of either or both of the electron accepting property and the hole accepting property of the ionic polymer, the divalent aromatic group represented by Ar 5 is represented by the formulas 45 to 60, 61 to 71, 77 to 80, 91. , 92, 93 or 96 is preferably a divalent group obtained by removing two hydrogen atoms from the ring represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92 or 96. A divalent group in which two hydrogen atoms are removed is more preferable.
 上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。 The above divalent aromatic group may have a substituent. Examples of the substituent group, and substituted groups exemplified in the description with respect to Q 1.
 式(33)中のArで表される2価の芳香族アミン残基として、式(34)で表される基が挙げられる。 Examples of the divalent aromatic amine residue represented by Ar 5 in formula (33) include a group represented by formula (34).
Figure JPOXMLDOC01-appb-C000048
(式(34)中、Ar、Ar、Ar及びArは、それぞれ独立に、置換基を有し若しくは有さないアリーレン基又は置換基を有し若しくは有さない2価の複素環基を示し、Ar10、Ar11及びAr12は、それぞれ独立に、置換基を有し若しくは有さないアリール基又は置換基を有し若しくは有さない1価の複素環基を示し、n10及びm35は、それぞれ独立に、0又は1を示す。)
Figure JPOXMLDOC01-appb-C000048
(In the formula (34), Ar 6 , Ar 7 , Ar 8 and Ar 9 are each independently an arylene group with or without a substituent or a divalent heterocyclic ring with or without a substituent. Ar 10 , Ar 11 and Ar 12 each independently represent an aryl group with or without a substituent, or a monovalent heterocyclic group with or without a substituent, and n10 and m35 independently represents 0 or 1.)
 前記アリーレン基、アリール基、2価の複素環基、1価の複素環基が有していてもよい置換基として、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基が挙げられる。該置換基は、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。 Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group may have include, for example, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, and an aryl group. Oxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue, Substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryloxy Carbonyl group, arylalkyloxycarbonyl Include heteroaryl aryloxycarbonyl group and a carboxyl group. The substituent is vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, small ring (cyclopropyl group) , A cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.), a lactone group, a lactam group, or a cross-linking group such as a group containing a siloxane derivative structure.
 n10が0の場合、Ar中の炭素原子とAr中の炭素原子とが直接結合してもよく、又は-O-、-S-等の2価の基を介して結合していてもよい。 When n10 is 0, the carbon atom in Ar 6 and the carbon atom in Ar 8 may be directly bonded, or may be bonded through a divalent group such as —O— or —S—. Good.
 Ar10、Ar11、Ar12で表されるアリール基、及び1価の複素環基としては、前述の置換基として説明し例示したアリール基、及び1価の複素環基が挙げられる。 Examples of the aryl group represented by Ar 10 , Ar 11 , and Ar 12 and the monovalent heterocyclic group include the aryl groups described and exemplified as the above-described substituents, and monovalent heterocyclic groups.
 Ar、Ar、Ar、及びArで表されるアリーレン基として、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子を2個除いた残りの原子団からなる基が挙げられる。アリーレン基として、例えば、ベンゼン環を有する基、縮合環を有する基、ベンゼン環又は縮合環2個以上が単結合又は2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基が挙げられる。アリーレン基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリーレン基の具体例として、例えば、フェニレン基、ビフェニレン基、C~C17アルコキシフェニレン基、C~C17アルキルフェニレン基、1-ナフチレン基、2-ナフチレン基、1-アントラセニレン基、2-アントラセニレン基、及び9-アントラセニレン基が挙げられる。アリール基の水素原子はフッ素原子で置換されていてもよい。フッ素原子置換アリール基として、例えば、テトラフルオロフェニレン基が挙げられる。アリール基の中では、フェニレン基、ビフェニレン基、C~C12アルコキシフェニレン基、及びC~C12アルキルフェニレン基が好ましい。 As the arylene group represented by Ar 6 , Ar 7 , Ar 8 , and Ar 9 , a group composed of the remaining atomic group obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon. Can be mentioned. As an arylene group, for example, a group having a benzene ring, a group having a condensed ring, two or more benzene rings or condensed rings are bonded via a single bond or a divalent organic group (for example, an alkenylene group such as a vinylene group). Groups. Arylene group has usually 6 to 60 carbon atoms, and preferably 7 to 48.. Specific examples of the arylene group include, for example, a phenylene group, a biphenylene group, a C 1 to C 17 alkoxyphenylene group, a C 1 to C 17 alkylphenylene group, a 1-naphthylene group, a 2-naphthylene group, a 1-anthracenylene group, 2- Anthracenylene group and 9-anthracenylene group may be mentioned. The hydrogen atom of the aryl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted aryl group include a tetrafluorophenylene group. Among the aryl groups, a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
 Ar、Ar、Ar、及びArで表される2価の複素環基として、複素環式化合物から水素原子2個を除いた残りの原子団からなる基が挙げられる。複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子に加えて、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、及びヒ素原子等からなる群より選ばれる1種以上のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が通常4~60であり、4~20が好ましい。2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。2価の複素環基として、例えば、チオフェンジイル基、C~C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C~C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、及びイソキノリンジイル基が挙げられ、中でも、チオフェンジイル基、C~C12アルキルチオフェンジイル基、ピリジンジイル基及びC~C12アルキルピリジンジイル基がより好ましい。 Examples of the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , and Ar 9 include groups composed of the remaining atomic groups obtained by removing two hydrogen atoms from a heterocyclic compound. A heterocyclic compound is an organic compound having a cyclic structure, and as an element constituting the ring, in addition to carbon atoms, oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, silicon atoms, selenium atoms , An organic compound containing one or more heteroatoms selected from the group consisting of tellurium atoms and arsenic atoms. The divalent heterocyclic group may have a substituent. The divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms. The number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent. As the divalent heterocyclic group, for example, thiophenediyl group, C 1 ~ C 12 alkyl thiophenediyl group, pyrrolediyl group, furandiyl group, pyridinediyl group, C 1 ~ C 12 alkyl pyridinediyl group, pyridazine-diyl group, pyrimidine Examples include diyl group, pyrazinediyl group, triazinediyl group, pyrrolidinediyl group, piperidinediyl group, quinolinediyl group, and isoquinolinediyl group. Among them, thiophenediyl group, C 1 -C 12 alkylthiophenediyl group, pyridinediyl group More preferred are 1 to C 12 alkyl pyridine diyl groups.
 構造単位として2価の芳香族アミン残基を含むイオン性ポリマーは、他の構造単位を更に有していてもよい。他の構造単位としては、例えば、フェニレン基、及びフルオレンジイル基等のアリーレン基が挙げられる。イオン性ポリマーの中でも、架橋基を含んでいるものが好ましい。 The ionic polymer containing a divalent aromatic amine residue as a structural unit may further have another structural unit. Examples of other structural units include arylene groups such as a phenylene group and a fluorenediyl group. Among ionic polymers, those containing a crosslinking group are preferred.
 式(34)で表される2価の芳香族アミン残基として、下記式101~110で表される芳香族アミンから水素原子を2個除いた基が例示される。 Examples of the divalent aromatic amine residue represented by the formula (34) include groups in which two hydrogen atoms have been removed from the aromatic amine represented by the following formulas 101 to 110.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 式101~110で表される芳香族アミンは2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよい。該置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 The aromatic amines represented by Formulas 101 to 110 may have a substituent as long as a divalent aromatic amine residue can be generated. Examples of the substituent include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 式(33)中、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表す。イミノ基、シリル基又はエテニレン基が有していてもよい置換基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、及びラウリル基等の炭素原子数1~20のアルキル基;並びに、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、及び9-アントラセニル基等の炭素原子数6~30のアリール基が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 In formula (33), X ′ represents an imino group with or without a substituent, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group. Examples of the substituent that the imino group, silyl group or ethenylene group may have include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl An alkyl group having 1 to 20 carbon atoms such as a group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, and lauryl group; Examples thereof include aryl groups having 6 to 30 carbon atoms such as phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, and 9-anthracenyl group. When a plurality of substituents are present, they may be the same or different.
 イオン性ポリマーの空気、湿気又は熱に対する安定性の観点から、X’として、イミノ基、エテニレン基、及びエチニレン基が好ましい。 From the viewpoint of the stability of the ionic polymer against air, moisture, or heat, X ′ is preferably an imino group, an ethenylene group, or an ethynylene group.
 イオン性ポリマーの電子受容性及び正孔受容性の観点からは、m33が1であり、m34が0であることが好ましい。 From the viewpoint of electron acceptability and hole acceptability of the ionic polymer, m33 is preferably 1 and m34 is preferably 0.
 式(33)で表される構造単位としては、イオン性ポリマーの電子受容性の観点から、式(35)で表される構造単位が好ましい。 As the structural unit represented by the formula (33), the structural unit represented by the formula (35) is preferable from the viewpoint of electron accepting property of the ionic polymer.
Figure JPOXMLDOC01-appb-C000050
(式(35)中、Ar13は、置換基を有し若しくは有さないピリジンジイル基、置換基を有し若しくは有さないピラジンジイル基、置換基を有し若しくは有さないピリミジンジイル基、置換基を有し若しくは有さないピリダジンジイル基又は置換基を有し若しくは有さないトリアジンジイル基を示す。)
Figure JPOXMLDOC01-appb-C000050
(In the formula (35), Ar 13 is a pyridinediyl group with or without a substituent, a pyrazinediyl group with or without a substituent, a pyrimidinediyl group with or without a substituent, A pyridazine diyl group with or without a group or a triazinediyl group with or without a substituent is shown.
 ピリジンジイル基が有していてもよい置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituent that the pyridinediyl group may have include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 ピラジンジイル基が有していてもよい置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituent that the pyrazinediyl group may have include the substituents exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 ピリミジンジイル基が有していてもよい置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituent that the pyrimidinediyl group may have include the substituents exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 ピリダジンジイル基が有していてもよい置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituent that the pyridazinediyl group may have include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 トリアジンジイル基が有していてもよい置換基としては、前述のQに関する説明で例示した置換基等が挙げられる。置換基が複数個存在する場合、それらは同一でも異なっていてもよい。 Examples of the substituent that the triazinediyl group may have include the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  ・構造単位の割合
 本実施形態に係るイオン性ポリマーに含まれる式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位の数の合計は、有機EL素子の発光効率の観点からは、末端の構造単位を除く該イオン性ポリマーに含まれる全構造単位中、30~100モル%であることがより好ましい。
-Ratio of structural unit Structural unit represented by formula (13), structural unit represented by formula (15), structural unit represented by formula (17), and ionic polymer according to the present embodiment From the viewpoint of the luminous efficiency of the organic EL device, the total number of structural units represented by the formula (20) is 30 to 100 mol% in all structural units contained in the ionic polymer excluding the terminal structural unit. It is more preferable that
  ・末端の構造単位
 本実施形態に係るイオン性ポリマーの末端の構造単位(末端基)として、例えば、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C~C12アルキル)アミノ基、(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、(C~C12アルキルフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基、2-ナフチル-C~C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C~C12アルキル)シリル基、(C~C12アルコキシフェニル-C~C12アルキル)シリル基、(C~C12アルキルフェニル-C~C12アルキル)シリル基、(1-ナフチル-C~C12アルキル)シリル基、(2-ナフチル-C~C12アルキル)シリル基、(フェニル-C~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシ基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。末端の構造単位が複数個存在する場合、それらは同一でも異なっていてもよい。
As-terminal structural unit terminal structural unit of the ionic polymer according to the present embodiment (terminal group), for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, s- butyl Group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, Isobutoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyl Octyloxy group, lauryloxy group, methylthio group, ethylthio Group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, laurylthio group , Methoxyphenyl group, ethoxyphenyl group, propyloxyphenyl group, isopropyloxyphenyl group, butoxyphenyl group, isobutoxyphenyl group, s-butoxyphenyl group, t-butoxyphenyl group, pentyloxyphenyl group, hexyloxyphenyl group, Cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyl Oxy phenyl group, lauryl oxy phenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, t- butyl phenyl Group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group, methylamino group, dimethylamino group, ethylamino group, diethylamino group, propyl amino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, s- butyl amino group, t- butyl amino group, pentylamino group, hexylamino group Cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexyl amino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, (C 1 ~ C 12 alkoxyphenyl) amino group, di (C 1 ~ C 12 alkoxyphenyl) amino group, di (C 1 ~ C 12 Alkylphenyl) amino group, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, pyridazinylamino group, pyrimidylamino group, pyrazinylamino group, triazinylamino group, (pheny Ru-C 1 -C 12 alkyl) amino group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group, (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) amino group, Di (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group, di (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) amino group, 1-naphthyl-C 1 -C 12 alkyl group Amino group, 2-naphthyl-C 1 -C 12 alkylamino group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, Pentyldimethylsilyl group, hexyldimethylsilyl group, heptyldimethylsilyl group, Chill dimethylsilyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, a 3,7-dimethyl silyl group, lauryl dimethyl silyl group, (phenyl -C 1 ~ C 12 alkyl) silyl group, (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) silyl group, (C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkyl) silyl group, (1-naphthyl -C 1 ~ C 12 alkyl) silyl group, (2-naphthyl -C 1 ~ C 12 alkyl) silyl group, (phenyl -C 1 ~ C 12 alkyl) dimethyl silyl group, a triphenylsilyl group, tri (p- xylyl) silyl group, tribenzylsilyl group , Diphenylmethylsilyl group, t-butyldiphenylsilyl group, dimethylphenylsilyl , A thienyl group, C 1 ~ C 12 alkyl thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, C 1 ~ C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, triazinyl group, pyrrolidyl group, piperidyl group, quinolyl Group, isoquinolyl group, hydroxy group, mercapto group, fluorine atom, chlorine atom, bromine atom and iodine atom. When a plurality of terminal structural units are present, they may be the same or different.
 -イオン性ポリマーの特性-
 本実施形態に係るイオン性ポリマーは、好ましくは共役化合物である。本明細書において、「共役化合物」とは、該イオン性ポリマーの主鎖中に、多重結合(例えば、二重結合若しくは三重結合)又は窒素原子、及び酸素原子等が有する非共有電子対が、1つの単結合を挟んで連なっている領域が存在することを意味する。イオン性ポリマーが共役化合物である場合、共役化合物の電子輸送性の観点から、
 {(多重結合又は非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(主鎖上の全原子の数)}×100%
で計算される比が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましく、90%以上であることが更により好ましい。
-Characteristics of ionic polymers-
The ionic polymer according to this embodiment is preferably a conjugated compound. In the present specification, the “conjugated compound” refers to an unshared electron pair possessed by a multiple bond (for example, a double bond or a triple bond) or a nitrogen atom and an oxygen atom in the main chain of the ionic polymer. It means that there is a region that is continuous with one single bond. When the ionic polymer is a conjugated compound, from the viewpoint of electron transport properties of the conjugated compound,
{(Number of atoms on the main chain in a region where multiple bonds or unshared electron pairs are connected via a single bond) / (Number of all atoms on the main chain)} × 100%
Is preferably 50% or more, more preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and 90% or more. Even more preferably.
 本実施形態に係るイオン性ポリマーは、好ましくは高分子化合物であり、より好ましくは共役高分子化合物である。本明細書において、「高分子化合物」とは、ポリスチレン換算の数平均分子量が1×10以上である化合物をいう。本明細書において、「イオン性ポリマーが共役高分子化合物である」とは、イオン性ポリマーが共役化合物かつ高分子化合物であることを意味する。 The ionic polymer according to this embodiment is preferably a polymer compound, more preferably a conjugated polymer compound. In the present specification, the “polymer compound” refers to a compound having a polystyrene-equivalent number average molecular weight of 1 × 10 3 or more. In the present specification, “the ionic polymer is a conjugated polymer compound” means that the ionic polymer is a conjugated compound and a polymer compound.
 イオン性ポリマーの塗布による成膜性の観点から、イオン性ポリマーのポリスチレン換算の数平均分子量が1×10~1×10であることが好ましく、2×10~1×10であることがより好ましく、3×10~1×10であることが更に好ましく、5×10~1×10であることが更により好ましい。イオン性ポリマーの純度の観点から、ポリスチレン換算の重量平均分子量が1×10~5×10であることが好ましく、1×10~1×10であることがより好ましく、1×10~5×10であることが更に好ましい。イオン性ポリマーの溶解性の観点から、ポリスチレン換算の数平均分子量は1×10~5×10であることが好ましく、1×10~5×10であることがより好ましく、1×10~3×10であることが更に好ましい。イオン性ポリマーのポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、求めることができる。 From the viewpoint of film formability by application of the ionic polymer, the number average molecular weight in terms of polystyrene of the ionic polymer is preferably 1 × 10 3 to 1 × 10 8 , and preferably 2 × 10 3 to 1 × 10 7 . More preferably, it is more preferably 3 × 10 3 to 1 × 10 7 , and still more preferably 5 × 10 3 to 1 × 10 7 . From the viewpoint of the purity of the ionic polymer, the weight average molecular weight in terms of polystyrene is preferably 1 × 10 3 to 5 × 10 7 , more preferably 1 × 10 3 to 1 × 10 7 , and more preferably 1 × 10 7. More preferably, it is 3 to 5 × 10 6 . From the viewpoint of the solubility of the ionic polymer, it is preferred that the number average molecular weight in terms of polystyrene is 1 × 10 3 ~ 5 × 10 5, more preferably 1 × 10 3 ~ 5 × 10 4, 1 × More preferably, it is 10 3 to 3 × 10 3 . The polystyrene-equivalent number average molecular weight and weight average molecular weight of the ionic polymer can be determined using, for example, gel permeation chromatography (GPC).
 イオン性ポリマーの純度の観点から、末端構造単位を除くイオン性ポリマーに含まれる全構造単位の数(即ち、重合度)は、1以上20以下であることが好ましく、1以上10以下であることがより好ましく、1以上5以下であることが更に好ましい。 From the viewpoint of the purity of the ionic polymer, the number of all structural units (that is, the degree of polymerization) contained in the ionic polymer excluding the terminal structural unit is preferably 1 or more and 20 or less, and preferably 1 or more and 10 or less. it is more preferable, and more preferably 1 to 5.
 イオン性ポリマーの電子受容性及び正孔受容性の観点から、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、-5.0eV以上-2.0eV以下が好ましく、-4.5eV以上-2.0eV以下がより好ましい。同様の観点から、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、-6.0eV以上-3.0eV以下が好ましく、-5.5eV以上-3.0eV以下がより好ましい。ただし、HOMOの軌道エネルギーはLUMOの軌道エネルギーよりも低い。イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、イオン性ポリマーのイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルをHOMOの軌道エネルギーとすることにより求めることができる。イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、そのエネルギー差の値と上記イオン化ポテンシャルとの和をLUMOの軌道エネルギーとすることにより求めることができる。イオン化ポテンシャルの測定には光電子分光装置が用いられる。HOMOとLUMOのエネルギー差は、紫外・可視・近赤外分光光度計を用いてイオン性ポリマーの吸収スペクトルを測定し、その吸収末端より求めることができる。 From the viewpoints of electron acceptability and hole acceptability of the ionic polymer, the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is preferably −5.0 eV or more and −2.0 eV or less, and −4.5 eV. More preferably, it is -2.0 eV or less. From the same viewpoint, the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is preferably −6.0 eV or more and −3.0 eV or less, and more preferably −5.5 eV or more and −3.0 eV or less. However, the orbital energy of HOMO is lower than that of LUMO. The orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer can be obtained by measuring the ionization potential of the ionic polymer and using the obtained ionization potential as the orbital energy of HOMO. The orbital energy of the lowest unoccupied molecular orbital (LUMO) of an ionic polymer is obtained by calculating the energy difference between HOMO and LUMO and using the sum of the energy difference value and the ionization potential as the LUMO orbital energy. Can do. A photoelectron spectrometer is used to measure the ionization potential. The energy difference between HOMO and LUMO can be obtained from the absorption terminal by measuring the absorption spectrum of the ionic polymer using an ultraviolet / visible / near infrared spectrophotometer.
 本実施形態に係る重合体(イオン性ポリマー)は、電界発光素子として用いられる場合、実質的に非発光性であることが好ましい。本明細書において、「重合体が実質的に非発光性である」とは、以下のとおりの意味である。まず、ある重合体を含む層を有する電界発光素子Aを作製する。重合体を含む層を有さない電界発光素子2を作製する。電界発光素子Aは重合体を含む層を有するが、電界発光素子2は重合体を含む層を有さない点でのみ、電界発光素子Aと電界発光素子2とは異なる。次に、電界発光素子A及び電界発光素子2に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子2について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子2について得られた発光スペクトルを規格化し、波長について積分して規格化発光量Sを計算する。一方、波長λにおける発光強度を1として、電界発光素子Aについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S-S)/S×100%で計算される値が30%以下である場合、即ち、重合体を含む層を有さない電界発光素子2の規格化発光量に比べ、重合体を含む層を有する電界発光素子Aの規格化発光量の増加分が30%以下である場合、用いた重合体は実質的に非発光性であるものとする。(S-S)/S×100で計算される値は、15%以下であることが好ましく、10%以下であることがより好ましい。 When the polymer (ionic polymer) according to this embodiment is used as an electroluminescent device, it is preferable that the polymer is substantially non-luminescent. In the present specification, “the polymer is substantially non-luminescent” has the following meaning. First, an electroluminescent element A having a layer containing a certain polymer is produced. The electroluminescent element 2 which does not have a layer containing a polymer is produced. Although the electroluminescent element A has a layer containing a polymer, the electroluminescent element 2 is different from the electroluminescent element 2 only in that it does not have a layer containing a polymer. Next, a forward voltage of 10 V is applied to the electroluminescent element A and the electroluminescent element 2 to measure an emission spectrum. The wavelength λ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element 2 is obtained. The emission spectrum at the wavelength λ is set to 1, the emission spectrum obtained for the electroluminescent element 2 is normalized, and the normalized emission amount S 0 is calculated by integrating with respect to the wavelength. On the other hand, assuming that the emission intensity at the wavelength λ is 1, the emission spectrum obtained for the electroluminescent element A is also normalized, and the normalized emission amount S is calculated by integrating the wavelength. When the value calculated by (S−S 0 ) / S 0 × 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent element 2 having no polymer-containing layer, the polymer When the increase in the normalized luminescence amount of the electroluminescent element A having a layer containing is 30% or less, the polymer used is substantially non-luminescent. The value calculated by (S−S 0 ) / S 0 × 100 is preferably 15% or less, and more preferably 10% or less.
 式(1)で表される基及び式(3)で表される基を含むイオン性ポリマーとして、式(23)で表される構造単位のみからなるイオン性ポリマー、式(23)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(24)で表される構造単位のみからなるイオン性ポリマー、式(24)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(25)で表される構造単位のみからなるイオン性ポリマー、式(25)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(29)で表される構造単位のみからなるイオン性ポリマー、式(29)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(30)で表される構造単位のみからなるイオン性ポリマー、式(30)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマーが挙げられる。 As an ionic polymer containing a group represented by the formula (1) and a group represented by the formula (3), an ionic polymer comprising only the structural unit represented by the formula (23), represented by the formula (23) And one type selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed. An ionic polymer comprising the above group, an ionic polymer comprising only the structural unit represented by formula (24), a structural unit represented by formula (24), and formulas 45 to 50, 59, 60, 77 80, 91, 92, 96, and an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by 101 to 110, the formula (25) An ionic polymer consisting only of structural units represented by And a group obtained by removing two hydrogen atoms from the groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110. An ionic polymer comprising one or more groups selected from the group, an ionic polymer comprising only a structural unit represented by formula (29), a structural unit represented by formula (29), and formulas 45 to 50 59, 60, 77, 80, 91, 92, 96, and one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from groups 101 to 110 A polymer, an ionic polymer consisting only of the structural unit represented by formula (30), a structural unit represented by formula (30), and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, And 2 hydrogen atoms from the groups represented by 101 to 110 And one or more groups selected from the group consisting of excluding groups include ionic polymer consisting of.
 式(1)で表される基及び式(3)で表される基を含むイオン性ポリマーとして、以下の高分子化合物が挙げられる。2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物は、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。以下の式中、nは重合度を表す。 Examples of the ionic polymer containing a group represented by the formula (1) and a group represented by the formula (3) include the following polymer compounds. In the polymer compound represented by the formula in which two structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100-p) mol%. , and the these structural units are arranged at random. In the following formula, n represents the degree of polymerization.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(式中、pは15~100の数を表す。)
Figure JPOXMLDOC01-appb-C000058
(In the formula, p represents a number of 15 to 100.)
 式(2)で表される基及び式(3)で表される基を含むイオン性ポリマーとして、式(26)で表される構造単位のみからなるイオン性ポリマー、式(26)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(27)で表される構造単位のみからなるイオン性ポリマー、式(27)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(28)で表される構造単位のみからなるイオン性ポリマー、式(28)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(31)で表される構造単位のみからなるイオン性ポリマー、式(31)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマー、式(32)で表される構造単位のみからなるイオン性ポリマー、式(32)で表される構造単位と、式45~50、59、60、77、80、91、92、96、及び101~110で表される基から水素原子を2個除いた基からなる群より選ばれる1種以上の基と、からなるイオン性ポリマーが挙げられる。 As an ionic polymer containing a group represented by the formula (2) and a group represented by the formula (3), an ionic polymer comprising only a structural unit represented by the formula (26), represented by the formula (26) And one type selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed. An ionic polymer comprising the above group, an ionic polymer comprising only a structural unit represented by formula (27), a structural unit represented by formula (27), and formulas 45 to 50, 59, 60, 77 80, 91, 92, 96, and an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by 101 to 110, the formula (28) An ionic polymer consisting only of structural units represented by A structural unit represented by (28) and a group obtained by removing two hydrogen atoms from the groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110. An ionic polymer comprising at least one group selected from the group, an ionic polymer comprising only a structural unit represented by formula (31), a structural unit represented by formula (31), and formulas 45 to 50 59, 60, 77, 80, 91, 92, 96, and one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from groups 101 to 110 A polymer, an ionic polymer consisting only of the structural unit represented by formula (32), a structural unit represented by formula (32), and formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 2 hydrogen atoms from a group represented by 101-110 And one or more groups selected from the group consisting of excluding groups include ionic polymer consisting of.
 式(2)で表される基及び式(3)で表される基を含むイオン性ポリマーとして、以下の高分子化合物が挙げられる。2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物は、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。以下の式中、nは重合度を表す。 Examples of the ionic polymer containing a group represented by the formula (2) and a group represented by the formula (3) include the following polymer compounds. In the polymer compound represented by the formula in which two structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100-p) mol%. , and the these structural units are arranged at random. In the following formula, n represents the degree of polymerization.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(式中、pは15~100の数を表す。)
Figure JPOXMLDOC01-appb-C000062
(In the formula, p represents a number of 15 to 100.)
 -イオン性ポリマーの製造方法-
 本実施形態に係るイオン性ポリマーを製造する方法について説明する。本実施形態に係るイオン性ポリマーを製造するための好適な方法として、例えば、下記一般式(36)で表される化合物を原料の1つとし、縮合重合させる方法が挙げられる。下記一般式(36)で表される化合物の中でも、-A-が式(13)で表される構造単位である化合物、式(15)で表される構造単位である化合物、式(17)で表される構造単位である化合物及び式(20)で表される構造単位である化合物からなる群より選ばれる少なくとも1種を用いることが好ましい。
-Production method of ionic polymer-
A method for producing the ionic polymer according to this embodiment will be described. As a suitable method for producing the ionic polymer according to this embodiment, for example, a method in which a compound represented by the following general formula (36) is used as one of the raw materials and condensation polymerization is performed can be mentioned. Among the compounds represented by the following general formula (36), a compound in which —A a — is a structural unit represented by the formula (13), a compound that is a structural unit represented by the formula (15), a formula (17 It is preferable to use at least one selected from the group consisting of a compound which is a structural unit represented by formula (20) and a compound which is a structural unit represented by formula (20).
  Y-A-Y   (36)
(式(36)中、Aは式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と、式(3)で表される1種以上の基を有する構造単位を示し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
Y 4 -A a -Y 5 (36)
(In the formula (36), A a is represented by the formula (3) and one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2). A structural unit having one or more groups is shown, and Y 4 and Y 5 each independently represent a group involved in condensation polymerization.)
 本実施形態に係るイオン性ポリマーに、上記式(36)中の-A-で表される構造単位とともに、-A-以外の他の構造単位を含有させる場合、-A-以外の他の構造単位と、縮合重合に関与する2個の基とを有する化合物を、式(36)で表される化合物とともに縮合重合させればよい。 When the ionic polymer according to the present embodiment contains a structural unit other than -A a- together with the structural unit represented by -A a- in the above formula (36), other than -A a- A compound having another structural unit and two groups involved in condensation polymerization may be subjected to condensation polymerization together with the compound represented by formula (36).
 -A-以外の他の構造単位と、縮合重合に関与する2個の基とを有する化合物として、式(37)で表される化合物が例示される。式(36)で表される化合物とともに、式(37)で表される化合物を縮合重合させることにより、-A-で表される構造単位を更に有するイオン性ポリマーを製造することができる。 As the compound having a structural unit other than —A a — and two groups involved in condensation polymerization, a compound represented by the formula (37) is exemplified. An ionic polymer further having a structural unit represented by —A b — can be produced by condensation polymerization of the compound represented by formula (37) together with the compound represented by formula (36).
  Y-A-Y    (37)
(式(37)中、Aは一般式(33)で表される構造単位又は一般式(35)で表される構造単位を示し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
Y 6 -A b -Y 7 (37)
(In the formula (37), A b represents a general formula (33) a structural unit represented by the structural unit or the general formula (35) represented by, Y 6 and Y 7 are each independently a condensation polymerization Indicates the group involved.)
 縮合重合に関与する基(Y、Y、Y及びY)として、例えば、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、-B(OH)、ホルミル基、シアノ基、及びビニル基が挙げられる。 Examples of the group (Y 4 , Y 5 , Y 6 and Y 7 ) involved in the condensation polymerization include a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, a borate ester residue, and a sulfonium methyl group. Group, phosphonium methyl group, phosphonate methyl group, monohalogenated methyl group, —B (OH) 2 , formyl group, cyano group, and vinyl group.
 ハロゲン原子として、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 アルキルスルホネート基として、メタンスルホネート基、エタンスルホネート基、及びトリフルオロメタンスルホネート基が例示され、アリールスルホネート基として、ベンゼンスルホネート基、及びp-トルエンスルホネート基が例示される。 Examples of the alkyl sulfonate group include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group, and examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group.
 アリールアルキルスルホネート基として、ベンジルスルホネート基が例示される。 Examples of arylalkyl sulfonate groups include benzyl sulfonate groups.
 ホウ酸エステル残基として、下記式で表される基が例示される。 Examples of the boric acid ester residue include a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 スルホニウムメチル基として、下記式:
  -CHMe、又は、-CHPh
(式中、Eはハロゲン原子を示す。Phはフェニル基を示す。以下、同じである。)で表される基が例示される。
As the sulfonium methyl group, the following formula:
—CH 2 S + Me 2 E or —CH 2 S + Ph 2 E
(Wherein E represents a halogen atom, Ph represents a phenyl group, and the same shall apply hereinafter).
 ホスホニウムメチル基として、下記式:
  -CHPh
(式中、Eはハロゲン原子を示す。)で表される基が例示される。
As the phosphonium methyl group, the following formula:
-CH 2 P + Ph 3 E -
(Wherein E represents a halogen atom).
 ホスホネートメチル基として、下記式:
  -CHPO(OR
(式中、Rはアルキル基、アリール基、又はアリールアルキル基を示す。)で表される基が例示される。
As the phosphonate methyl group, the following formula:
—CH 2 PO (OR d ) 2
(Wherein, R d represents an alkyl group, an aryl group, or an arylalkyl group).
 モノハロゲン化メチル基として、フッ化メチル基、塩化メチル基、臭化メチル基、及びヨウ化メチル基が例示される。 Examples of the monohalogenated methyl group include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
 縮合重合に関与する基として好適な基は、重合反応の種類によって異なるが、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる重合反応の場合、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、及びアリールアルキルスルホネート基が挙げられる。Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる重合反応の場合、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、及び-B(OH)等が挙げられる。酸化剤又は電気化学的に酸化重合する場合、水素原子が挙げられる。 A group suitable as a group involved in condensation polymerization varies depending on the type of polymerization reaction. For example, in the case of a polymerization reaction using a zerovalent nickel complex such as a Yamamoto coupling reaction, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, And arylalkyl sulfonate groups. In the case of a polymerization reaction using a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction, an alkyl sulfonate group, a halogen atom, a boric acid ester residue, and —B (OH) 2 may be mentioned. In the case of oxidative polymerization with an oxidizing agent or electrochemically, a hydrogen atom may be mentioned.
 本実施形態に係るイオン性ポリマーを製造する方法として、例えば、一般式(36)又は(37)で表される化合物(モノマー)を、必要に応じて有機溶媒に溶解し、アルカリ又は適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。このような重合方法として、例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270-490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、”オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407-411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の方法を採用することができる。 As a method for producing the ionic polymer according to this embodiment, for example, the compound (monomer) represented by the general formula (36) or (37) is dissolved in an organic solvent as necessary, and an alkali or an appropriate catalyst is obtained. A polymerization method in which the reaction is carried out at a temperature between the melting point and the boiling point of the organic solvent may be employed. As such a polymerization method, for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis”. ”, Collective Volume 6 (Collective Volume VI), 407-411, John Wiley & Sons, Inc., 1988, Chemical Review, Vol. 95, 2457 (1995). Journal of Organometallic Chemistry (J. Organomet. Chem.), 576, 147 (1999), Ma Romorekyura Chemistry Macromolecular Symposium (Macromol.Chem., Macromol.Symp.), Vol. 12, it is possible to employ the method described in page 229 (1987).
 本実施形態に係るイオン性ポリマーを製造する方法として、縮合重合に関与する基の種類に応じて、既知の縮合重合反応を採用してもよい。このような重合方法として、例えば、適切なモノマーを、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、ニッケルゼロ価錯体(Ni(0)錯体)により重合する方法、FeCl等の酸化剤により重合する方法、及び電気化学的に酸化重合する方法、又は適当な脱離基を有する中間体高分子を分解する方法が挙げられる。中でも、適切なモノマーをSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、得られるイオン性ポリマーの構造制御がし易いので好ましい。 As a method for producing the ionic polymer according to this embodiment, a known condensation polymerization reaction may be employed depending on the type of group involved in the condensation polymerization. Examples of such a polymerization method include a method of polymerizing an appropriate monomer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, a method of polymerizing by a nickel zero-valent complex (Ni (0) complex), FeCl 3 and the like. Examples thereof include a method of polymerizing with an oxidizing agent, a method of electrochemically oxidatively polymerizing, and a method of decomposing an intermediate polymer having an appropriate leaving group. Among them, a method of polymerizing an appropriate monomer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, and a method of polymerizing by a nickel zero-valent complex are preferable because the structure of the resulting ionic polymer can be easily controlled.
 本実施形態に係るイオン性ポリマーの好ましい製造方法の1つの態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群より選ばれる基を有する原料モノマーの少なくとも1種を、ニッケルゼロ価錯体の存在下で縮合重合して、イオン性ポリマーを製造する方法である。この場合の原料モノマーとして、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン-アルキルスルホネート化合物、ハロゲン-アリールスルホネート化合物、ハロゲン-アリールアルキルスルホネート化合物、アルキルスルホネート-アリールスルホネート化合物、アルキルスルホネート-アリールアルキルスルホネート化合物及びアリールスルホネート-アリールアルキルスルホネート化合物が挙げられる。 One aspect of a preferred method for producing an ionic polymer according to the present embodiment has a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an arylalkyl sulfonate group as a group involved in condensation polymerization. In this method, an ionic polymer is produced by condensation polymerization of at least one raw material monomer in the presence of a nickel zero-valent complex. Examples of raw material monomers in this case include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, halogen-aryl sulfonate compounds, and halogen-aryl. Examples include alkyl sulfonate compounds, alkyl sulfonate-aryl sulfonate compounds, alkyl sulfonate-aryl alkyl sulfonate compounds, and aryl sulfonate-aryl alkyl sulfonate compounds.
 本実施形態に係るイオン性ポリマーの好ましい製造方法の他の態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、-B(OH)、及びホウ酸エステル残基からなる群より選ばれる基を有し、原料モノマー中のハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、原料モノマー中の-B(OH)及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常、K/Jは、0.7~1.2の範囲)である原料モノマーを、ニッケル触媒又はパラジウム触媒の存在下で縮合重合して、イオン性ポリマーを製造する方法である。 In another aspect of the preferred method for producing the ionic polymer according to the present embodiment, as a group involved in the condensation polymerization, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an arylalkyl sulfonate group, —B (OH) 2 , and A group selected from the group consisting of boric acid ester residues, and the total number (J) of moles of halogen atoms, alkyl sulfonate groups, aryl sulfonate groups and arylalkyl sulfonate groups in the raw material monomer; A raw material monomer in which the ratio of the total number of moles (K) of B (OH) 2 and boric acid ester residues (K) is substantially 1 (usually, K / J is in the range of 0.7 to 1.2) This is a method for producing an ionic polymer by condensation polymerization in the presence of a nickel catalyst or a palladium catalyst.
 有機溶媒としては、原料モノマーの種類及び反応の種類によっても異なるが、副反応を抑制するために、十分に脱酸素処理した有機溶媒が好ましい。本実施形態に係るイオン性ポリマーを製造する場合、脱酸素処理した有機溶媒を用いて不活性雰囲気下で反応を進行させることが好ましい。有機溶媒は、脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応を行う場合にはその限りではない。 The organic solvent varies depending on the type of raw material monomer and the type of reaction, but an organic solvent that has been sufficiently deoxygenated to suppress side reactions is preferred. When manufacturing the ionic polymer which concerns on this embodiment, it is preferable to advance reaction in inert atmosphere using the organic solvent which carried out the deoxygenation process. The organic solvent is preferably dehydrated in the same manner as the deoxygenation treatment. However, this is not the case when a two-phase reaction with water such as a Suzuki coupling reaction is performed.
 有機溶媒として、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、及びブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、及びトリクロロベンゼン等のハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、及びt-ブチルアルコール等のアルコール類、蟻酸、酢酸、及びプロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、及びジオキサン等のエーテル類、トリメチルアミン、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、及びピリジン等のアミン類、並びに、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、及びN-メチルモルホリンオキシド等のアミド類が挙げられる。有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。有機溶媒の中でも、反応性の観点から、エーテル類がより好ましく、テトラヒドロフラン、及びジエチルエーテルが更に好ましい。有機溶媒の中でも、反応速度の観点から、トルエン、及びキシレンが好ましい。 As the organic solvent, for example, saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloropentane, Halogenated saturated hydrocarbons such as bromopentane, chlorohexane, bromohexane, chlorocyclohexane, and bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene, and trichlorobenzene, methanol, ethanol, propanol, isopropanol, butanol, And alcohols such as t-butyl alcohol, carboxylic acids such as formic acid, acetic acid and propionic acid, dimethyl ether, diethyl ether, methyl t-butyl Ethers such as ether, tetrahydrofuran, tetrahydropyran, and dioxane, amines such as trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine, and pyridine, and N, N-dimethylformamide, N, Examples include amides such as N-dimethylacetamide, N, N-diethylacetamide, and N-methylmorpholine oxide. You may use an organic solvent individually by 1 type or in mixture of 2 or more types. Among organic solvents, ethers are more preferable from the viewpoint of reactivity, and tetrahydrofuran and diethyl ether are more preferable. Among organic solvents, toluene and xylene are preferable from the viewpoint of reaction rate.
 イオン性ポリマーを製造する際、原料モノマーをより効率よく反応させるために、アルカリ又は適当な触媒を反応液に添加することが好ましい。アルカリ又は触媒は、採用する重合方法等に応じて選択すればよい。アルカリ又は触媒としては、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリ又は触媒を混合する方法としては、反応液をアルゴン又は窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加する方法、及びアルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。 In producing the ionic polymer, it is preferable to add an alkali or an appropriate catalyst to the reaction solution in order to react the raw material monomers more efficiently. What is necessary is just to select an alkali or a catalyst according to the superposition | polymerization method etc. to employ | adopt. As the alkali or catalyst, those which are sufficiently dissolved in the solvent used in the reaction are preferable. As a method of mixing an alkali or a catalyst, a method of slowly adding an alkali or catalyst solution while stirring the reaction solution under an inert atmosphere such as argon or nitrogen, and a method of slowly adding the reaction solution to an alkali or catalyst solution. The method of adding is illustrated.
 本実施形態に係るイオン性ポリマーは、末端基に重合活性基が残っていると得られる発光素子の発光特性や寿命特性が低下する可能性があるため、末端基が安定な基で保護されていてもよい。本実施形態に係るイオン性ポリマーが共役化合物である場合、末端基を保護する安定な基は、共役結合を有し、イオン性ポリマーの主鎖の共役構造と連続して共役する構造を形成していることが好ましい。その構造としては、例えば、炭素-炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。末端基を保護する安定な基としては、特開平9-45478号公報において化10の構造式で示される1価の芳香族化合物基等の置換基が挙げられる。 In the ionic polymer according to the present embodiment, if the polymerization active group remains in the terminal group, the light emitting characteristics and life characteristics of the obtained light emitting device may be deteriorated. Therefore, the terminal group is protected with a stable group. May be. When the ionic polymer according to this embodiment is a conjugated compound, the stable group that protects the terminal group has a conjugated bond and forms a structure that is continuously conjugated with the conjugated structure of the main chain of the ionic polymer. It is preferable. Examples of the structure include a structure in which an aryl group or a heterocyclic group is bonded via a carbon-carbon bond. Examples of the stable group for protecting the terminal group include substituents such as a monovalent aromatic compound group represented by the structural formula of Chemical Formula 10 in JP-A-9-45478.
 式(1)で表される構造単位を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でカチオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからカチオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のカチオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、金属水酸化物、又はアルキルアンモニウムヒドロキシド等による加水分解反応等が挙げられる。 As another preferable method for producing the ionic polymer containing the structural unit represented by the formula (1), an ionic polymer having no cation is polymerized in the first step, and then from the ionic polymer in the second step. The method of manufacturing the ionic polymer containing a cation is mentioned. As the method for polymerizing the ionic polymer having no cation in the first step, the above-mentioned condensation polymerization reaction may be mentioned. Examples of the reaction in the second step include a hydrolysis reaction with a metal hydroxide or an alkyl ammonium hydroxide.
 式(2)で表される基を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でイオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからイオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のイオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、ハロゲン化アルキルを用いたアミンの4級アンモニウム塩化反応、又はSbFによるハロゲン引き抜き反応等が挙げられる。 As another preferred method for producing an ionic polymer containing a group represented by the formula (2), an ionic polymer having no ions is polymerized in the first step, and ions are generated from the ionic polymer in the second step. The method of manufacturing the ionic polymer containing this is mentioned. As a method for polymerizing an ionic polymer having no ions in the first step, the above-mentioned condensation polymerization reaction may be mentioned. Examples of the reaction in the second step include a quaternary ammonium salification reaction of an amine using an alkyl halide or a halogen abstraction reaction with SbF 5 .
 本実施形態に係るイオン性ポリマーは、電荷の注入性及び輸送性に優れる。このため、本実施形態に係るイオン性ポリマーを含む層を有する発光素子は、高輝度で発光する。 The ionic polymer according to this embodiment is excellent in charge injection and transportability. For this reason, the light emitting element which has the layer containing the ionic polymer which concerns on this embodiment light-emits with high brightness | luminance.
 イオン性ポリマーを含む層を形成する方法としては、例えば、イオン性ポリマーを含有する溶液を成膜する方法が挙げられる。 Examples of a method for forming a layer containing an ionic polymer include a method of forming a film containing a solution containing an ionic polymer.
 成膜に用いる溶液の溶媒としては、水を除くアルコール類、エーテル類、エステル類、二トリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、及びカルボン酸類等の溶媒のうち、溶解度パラメーターが9.3以上の溶媒が好ましい。溶媒(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、例えば、メタノール(12.9)、エタノール(11.2)、2-プロパノール(11.5)、1-ブタノール(9.9)、t-ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2-エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2-ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒の溶解度パラメーター(δ)は、δ=δ×φ+δ×φにより求めることができる(δは溶媒1の溶解度パラメーター、φは溶媒1の体積分率、δは溶媒2の溶解度パラメーター、φは溶媒2の体積分率である。)。 Solvents used in the film formation include alcohols other than water, ethers, esters, nitrile compounds, nitro compounds, halogenated alkyls, halogenated aryls, thiols, sulfides, sulfoxides, Of the solvents such as thioketones, amides, and carboxylic acids, a solvent having a solubility parameter of 9.3 or more is preferable. Solvents (values in parentheses represent solubility parameter values of each solvent) include, for example, methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1-butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), dimethyl sulfoxide ( 12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9.6) , Bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and mixed solvents thereof. It is. A solubility parameter (δ m ) of a mixed solvent obtained by mixing two kinds of solvents (solvent 1 and solvent 2) can be obtained by δ m = δ 1 × φ 1 + δ 2 × φ 21 Is the solubility parameter of solvent 1, φ 1 is the volume fraction of solvent 1, δ 2 is the solubility parameter of solvent 2, and φ 2 is the volume fraction of solvent 2.
 電子注入層の厚みは、用いるイオン性ポリマーによって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜選択される。電子注入層は、ピンホールが発生しない厚さを有することが必要である。素子の駆動電圧を低くする観点からは、電子注入層の厚みは、1nm~1μmであることが好ましく、2nm~500nmであることがより好ましく、2nm~200nmであることがさらに好ましい。発光層を保護する観点からは、電子注入層の厚みは、5nm~1μmであることが好ましい。 The thickness of the electron injection layer varies depending on the ionic polymer used, and is appropriately selected so that the drive voltage and the light emission efficiency become appropriate values. The electron injection layer needs to have a thickness that does not cause pinholes. From the viewpoint of lowering the driving voltage of the element, the thickness of the electron injection layer is preferably 1 nm to 1 μm, more preferably 2 nm to 500 nm, and further preferably 2 nm to 200 nm. From the viewpoint of protecting the light emitting layer, the thickness of the electron injection layer is preferably 5 nm to 1 μm.
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。陽極側から光を取り出す構成の有機EL素子の場合、発光層から放射される光を陰極において陽極側に反射するために、陰極の材料として可視光反射率の高い材料が好ましい。陰極の材料として、例えば、アルカリ金属、アルカリ土類金属、遷移金属及び周期表の13族金属を用いることができる。陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、及びこれらから選ばれる2種以上の金属を含む合金、前記金属から選ばれる1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫から選ばれる1種以上との合金、またはグラファイト若しくはグラファイト層間化合物が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、及びカルシウム-アルミニウム合金などを挙げることができる。陰極として、導電性金属酸化物及び導電性有機物などからなる透明導電性電極を用いることができる。具体的には、導電性金属酸化物として酸化インジウム、酸化亜鉛、酸化スズ、ITO、及びIZOを挙げることができ、導電性有機物としてポリアニリン若しくはその誘導体、及びポリチオフェン若しくはその誘導体などを挙げることができる。陰極は、2層以上を積層した積層体で構成されていてもよい。電子注入層が陰極として用いられる場合もある。
<Cathode>
As a material for the cathode, a material having a small work function, easy electron injection into the light emitting layer, and high electrical conductivity is preferable. In the case of an organic EL device configured to extract light from the anode side, a material having a high visible light reflectivity is preferable as the cathode material in order to reflect light emitted from the light emitting layer to the anode side at the cathode. As the material for the cathode, for example, alkali metals, alkaline earth metals, transition metals, and Group 13 metals of the periodic table can be used. Examples of cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. 1 or more selected from gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin, and an alloy containing two or more metals selected from these metals, one or more selected from the above metals Alloys with seeds or more, or graphite or graphite intercalation compounds are used. Examples of alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, and calcium-aluminum alloys. Can do. As the cathode, a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used. Specifically, examples of the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO, and examples of the conductive organic substance include polyaniline or a derivative thereof and polythiophene or a derivative thereof. . The cathode may be composed of a laminate in which two or more layers are laminated. In some cases, the electron injection layer is used as a cathode.
 陰極の厚みは、求められる特性及び工程の簡易さなどを考慮して適宜設計され、例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The thickness of the cathode is appropriately designed in consideration of required characteristics and process simplicity, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, more preferably 50 nm to 500 nm.
 陰極の作製方法としては、真空蒸着法、スパッタリング法、及び金属薄膜を熱圧着するラミネート法などを挙げることができる。 Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a lamination method in which a metal thin film is thermocompression bonded.
 以上の有機EL装置は、所定の構成要素を追加することによって、照明装置、面光源装置又は表示装置として用いることができる。 The above organic EL device can be used as a lighting device, a surface light source device, or a display device by adding predetermined components.
 (参考例A1)
 前述の図4に示す製造装置を用いて第1のフィルムを製造した。すなわち、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を基材(基材6)として用い、これを送り出しロール701に装着した。そして、成膜ロール31と成膜ロール32との間に磁場を印加すると共に、成膜ロール31と成膜ロール32それぞれに電力を供給して、成膜ロール31と成膜ロール32との間に放電してプラズマを発生させた。形成された放電領域に、成膜ガス(原料ガスとしてのヘキサメチルジシロキサン(HMDSO)と反応ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)を供給して、下記条件にてプラズマCVD法による薄膜形成を行い、第1のフィルムを得た。
(Reference Example A1)
A first film was produced using the production apparatus shown in FIG. That is, a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) is used as a base material (base material 6), and this is sent out. Mounted on a roll 701. And while applying a magnetic field between the film-forming roll 31 and the film-forming roll 32 and supplying electric power to each of the film-forming roll 31 and the film-forming roll 32, Was discharged to generate plasma. A film-forming gas (mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (which also functions as a discharge gas) as a source gas) is supplied to the formed discharge region under the following conditions A thin film was formed by a plasma CVD method to obtain a first film.
 〈成膜条件〉
原料ガスの供給量:50sccm(零度、1atmに換算したStandard Cubic Centimeter per Minute。以下同じ。)
酸素ガスの供給量:500sccm
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
<Film formation conditions>
Supply amount of source gas: 50 sccm (Standard Cubic Centimeter per Minute converted to zero and 1 atm. The same applies hereinafter)
Supply amount of oxygen gas: 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Film conveyance speed: 0.5 m / min.
 得られた第1のフィルムにおけるガスバリア層の厚みは0.3μmであった。また、得られた第1のフィルムの水蒸気透過度は、温度40℃、低湿度側の湿度0%RH、高湿度側の湿度90%RHの条件において3.1×10-4g/(m・day)であり、温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件において検出限界以下の値であった。さらに、曲率半径8mmの条件で第1のフィルムを屈曲させた後の温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件における水蒸気透過度は検出限界以下の値であり、第1のフィルムを屈曲させた場合においてもガスバリア性の低下が十分に抑制されることが確認された。 The thickness of the gas barrier layer in the obtained first film was 0.3 μm. Further, the water vapor permeability of the obtained first film was 3.1 × 10 −4 g / (m under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side, and a humidity of 90% RH on the high humidity side. 2 · day), a value below the detection limit under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side. Furthermore, the water vapor transmission rate under the conditions of a temperature of 40 ° C., a low humidity side humidity of 10% RH, and a high humidity side humidity of 100% RH after bending the first film under the condition of a curvature radius of 8 mm is below the detection limit. It was confirmed that even when the first film was bent, the decrease in gas barrier properties was sufficiently suppressed.
 第1のフィルムについて、下記条件にてXPSデプスプロファイル測定を行い、珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を得た。
エッチングイオン種:アルゴン(Ar
エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形。
About the 1st film, XPS depth profile measurement was performed on the following conditions, and the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve were obtained.
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe” manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 得られた珪素分布曲線、酸素分布曲線及び炭素分布曲線をそれぞれ図5に示す。得られた珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線に関して、原子比(原子濃度)とエッチング時間との関係とともに、原子比(原子濃度)とガスバリア層の表面からの距離(nm)との関係を併せて図6のグラフに示す。図6のグラフの横軸に記載の「距離(nm)」はエッチング時間とエッチング速度とから計算して求められた値である。 The obtained silicon distribution curve, oxygen distribution curve and carbon distribution curve are shown in FIG. Regarding the obtained silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the distance from the surface of the gas barrier layer (atomic concentration) and the relationship between the etching time and the surface ( together relationship between nm) shown in the graph of FIG. “Distance (nm)” described on the horizontal axis of the graph of FIG. 6 is a value obtained by calculation from the etching time and the etching rate.
 図5及び図6に示す結果からも明らかなように、得られた炭素分布曲線が複数の明確な極値を有していること、炭素の原子比の最大値と最小値との差が5at%以上であること、並びに、ガスバリア層の厚み方向の90%以上の領域において、珪素の原子比、酸素の原子比及び炭素の原子比が前記式(1)で示された条件を満たしていることが確認された。 As is clear from the results shown in FIGS. 5 and 6, the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at. %, And in the region of 90% or more in the thickness direction of the gas barrier layer, the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions represented by the above formula (1). It was confirmed.
 (参考例A2)
 参考例A1で得られた厚み0.3μmのガスバリア層を有する第1のフィルムを送り出しロール701に装着し、ガスバリア層の表面上に新たにガスバリア層を形成した。これ以外は参考例A1と同様にして、第1のフィルム(A)を得た。第1のフィルム(A)における基材(PENフィルム)上のガスバリア層の厚みは0.6μmであった。
(Reference Example A2)
The first film having a gas barrier layer having a thickness of 0.3 μm obtained in Reference Example A1 was mounted on a delivery roll 701, and a gas barrier layer was newly formed on the surface of the gas barrier layer. Otherwise in the same manner as in Reference Example A1, a first film (A) was obtained. The thickness of the gas barrier layer on the base material (PEN film) in the first film (A) was 0.6 μm.
 第1のフィルム(A)を送り出しロール701に装着し、ガスバリア層の表面上に新たにガスバリア層を形成した。これ以外は参考例A1と同様にして、第1のフィルム(B)を得た。 The first film (A) was mounted on a delivery roll 701, and a gas barrier layer was newly formed on the surface of the gas barrier layer. Otherwise in the same manner as in Reference Example A1, a first film (B) was obtained.
 第1のフィルム(B)におけるガスバリア層の厚みは0.9μmであった。第1のフィルム(B)の水蒸気透過度は、温度40℃、低湿度側の湿度0%RH、高湿度側の湿度90%RHの条件において6.9×10-4g/(m・day)であり、温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件において検出限界以下の値であった。さらに、曲率半径8mmの条件で第1のフィルム(B)を屈曲させた後の温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件における水蒸気透過度は検出限界以下の値であり、第1のフィルム(B)を屈曲させた場合においてもガスバリア性の低下が十分に抑制されることが確認された。 The thickness of the gas barrier layer in the first film (B) was 0.9 μm. The first film (B) has a water vapor transmission rate of 6.9 × 10 −4 g / (m 2 · m at a temperature of 40 ° C., a humidity of 0% RH on the low humidity side and a humidity of 90% RH on the high humidity side. day), a value below the detection limit under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side. Furthermore, the water vapor transmission rate is detected under conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side after the first film (B) is bent under the condition of a curvature radius of 8 mm. It was a value below the limit, and it was confirmed that even when the first film (B) was bent, the gas barrier property was sufficiently suppressed.
 第1のフィルム(B)について、珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を参考例A1における方法と同様の方法により作成した。得られた結果を図7に示す。珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線に関して、原子比(原子濃度)とエッチング時間の関係とともに、原子比(原子濃度)とガスバリア層の表面からの距離(nm)との関係を併せて図8のグラフに示す。図8のグラフの横軸に記載の「距離(nm)」はエッチング時間とエッチング速度とから計算して求められた値である。 For the first film (B), a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve were prepared by the same method as in Reference Example A1. The obtained results are shown in FIG. Regarding the silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen carbon distribution curve, the relationship between the atomic ratio (atomic concentration) and the etching time, as well as the atomic ratio (atomic concentration) and the distance (nm) from the surface of the gas barrier layer. The relationship is also shown in the graph of FIG. “Distance (nm)” described on the horizontal axis of the graph of FIG. 8 is a value obtained by calculation from the etching time and the etching rate.
 図7及び図8に示す結果からも明らかなように、得られた炭素分布曲線が複数の明確な極値を有していること、炭素の原子比の最大値と最小値との差が5at%以上であること、並びに、ガスバリア層の厚み方向の90%以上の領域において、珪素の原子比、酸素の原子比及び炭素の原子比が前記式(1)で示された条件を満たしていることが確認された。 As is apparent from the results shown in FIGS. 7 and 8, the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at. %, And in the region of 90% or more in the thickness direction of the gas barrier layer, the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions represented by the above formula (1). It was confirmed.
 (参考例A3)
 原料ガスの供給量を100sccmとした以外は参考例A1と同様にして第1のフィルムを得た。
(Reference Example A3)
A first film was obtained in the same manner as in Reference Example A1, except that the supply amount of the source gas was changed to 100 sccm.
 第1のフィルムにおけるガスバリア層の厚みは0.6μmであった。第1のフィルムの水蒸気透過度は、温度40℃、低湿度側の湿度0%RH、高湿度側の湿度90%RHの条件において3.2×10-4g/(m・day)であり、温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件において検出限界以下の値であった。さらに、曲率半径8mmの条件で第1のフィルムを屈曲させた後の温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件における水蒸気透過度は検出限界以下の値であり、第1のフィルムを屈曲させた場合においてもガスバリア性の低下が十分に抑制されることが確認された。 The thickness of the gas barrier layer in the first film was 0.6 μm. The water vapor permeability of the first film is 3.2 × 10 −4 g / (m 2 · day) under the conditions of a temperature of 40 ° C., a humidity of 0% RH on the low humidity side, and a humidity of 90% RH on the high humidity side. Yes, the value was below the detection limit under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side. Furthermore, the water vapor transmission rate under the conditions of a temperature of 40 ° C., a low humidity side humidity of 10% RH, and a high humidity side humidity of 100% RH after bending the first film under the condition of a curvature radius of 8 mm is below the detection limit. It was confirmed that even when the first film was bent, the decrease in gas barrier properties was sufficiently suppressed.
 第1のフィルムについて、珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を参考例A1における方法と同様の方法により作成した。得られた珪素分布曲線、酸素分布曲線及び炭素分布曲線を図9に示す。得られた珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線に関して、原子比(原子濃度)とエッチング時間の関係とともに、原子比(原子濃度)とガスバリア層の表面からの距離(nm)との関係を併せて図10のグラフに示す。図10のグラフの横軸に記載の「距離(nm)」はエッチング時間とエッチング速度とから計算して求められた値である。 For the first film, a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve were prepared by the same method as in Reference Example A1. The obtained silicon distribution curve, oxygen distribution curve and carbon distribution curve are shown in FIG. Regarding the obtained silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the distance from the surface of the gas barrier layer (nm) as well as the relationship between the atomic ratio (atomic concentration) and etching time. 10 is shown in the graph of FIG. “Distance (nm)” described on the horizontal axis of the graph of FIG. 10 is a value obtained by calculation from the etching time and the etching rate.
 図9及び図10に示す結果からも明らかなように、得られた炭素分布曲線が複数の明確な極値を有していること、炭素の原子比の最大値と最小値との差が5at%以上であること、並びに、ガスバリア層の厚み方向の90%以上の領域において、珪素の原子比、酸素の原子比及び炭素の原子比が前記式(1)で示された条件を満たしていることが確認された。 As is apparent from the results shown in FIGS. 9 and 10, the obtained carbon distribution curve has a plurality of distinct extreme values, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at. %, And in the region of 90% or more in the thickness direction of the gas barrier layer, the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the conditions represented by the above formula (1). It was confirmed.
 (参考比較例A1)
 2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム株式会社製、商品名「テオネックスQ65FA」)の表面上に、シリコンターゲットを用い、酸素含有ガス雰囲気中において、反応スパッタ法により酸化ケイ素からなるガスバリア層を形成して、比較のための第1のフィルムを得た。
(Reference Comparative Example A1)
On the surface of a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, Inc., trade name “Teonex Q65FA”), using a silicon target, in an oxygen-containing gas atmosphere, A gas barrier layer made of silicon oxide was formed by reactive sputtering to obtain a first film for comparison.
 第1のフィルムにおけるガスバリア層の厚みは100nmであった。また、第1のフィルムの水蒸気透過速度は、温度40℃、低湿度側の湿度10%RH、高湿度側の湿度100%RHの条件において1.3g/(m・day)であり、そのガスバリア性は不十分であった。 The thickness of the gas barrier layer in the first film was 100 nm. The water vapor transmission rate of the first film is 1.3 g / (m 2 · day) under the conditions of a temperature of 40 ° C., a humidity of 10% RH on the low humidity side, and a humidity of 100% RH on the high humidity side. The gas barrier property was insufficient.
 第1のフィルムについて、珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を参考例A1における方法と同様の方法により作成した。得られた珪素分布曲線、酸素分布曲線及び炭素分布曲線を図11に示す。得られた珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線に関して、原子比(原子濃度)とエッチング時間の関係とともに、原子比(原子濃度)とガスバリア層の表面からの距離(nm)との関係を併せて図12のグラフに示す。図12のグラフの横軸に記載の「距離(nm)」はエッチング時間とエッチング速度とから計算して求められた値である。図11及び図12に示す結果からも明らかなように、得られた炭素分布曲線は極値を有していないことが確認された。 For the first film, a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve were prepared by the same method as in Reference Example A1. The obtained silicon distribution curve, oxygen distribution curve and carbon distribution curve are shown in FIG. Regarding the obtained silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the distance from the surface of the gas barrier layer (nm) as well as the relationship between the atomic ratio (atomic concentration) and etching time. ) the relationship conjunction with shown in the graph of FIG. 12. “Distance (nm)” described on the horizontal axis of the graph of FIG. 12 is a value obtained by calculation from the etching time and the etching rate. As is clear from the results shown in FIGS. 11 and 12, it was confirmed that the obtained carbon distribution curve has no extreme value.
 以上説明したように、本発明に係る有機EL装置において利用されるガスバリア層を有する第1のフィルムは、十分なガスバリア性を有しており、しかも屈曲された場合においてもガスバリア性の低下を十分に抑制することが可能である。 As described above, the first film having the gas barrier layer used in the organic EL device according to the present invention has a sufficient gas barrier property, and even when bent, the gas barrier property is sufficiently lowered. It is possible to suppress it.
 次に、イオン性ポリマーを作製するとともに、作製したイオン性ポリマーを用いて有機EL素子を作製した。 Next, an ionic polymer was produced, and an organic EL device was produced using the produced ionic polymer.
 重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製:HLC-8220GPC)を用いて、ポリスチレン換算の重量平均分子量及び数平均分子量として求めた。測定する試料は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに50μL注入した。GPCの移動相にはテトラヒドロフランを用い、0.5mL/分の流速で流した。重合体の構造分析は、Varian社製300MHzNMRスペクトロメータ-を用いて、H-NMR解析によって行った。測定は、20mg/mLの濃度になるように試料を可溶な重溶媒(溶媒分子中の水素原子が重水素原子で置換された溶媒)に溶解させて行った。重合体の最高占有分子軌道(HOMO)の軌道エネルギーは、重合体のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルをHOMO軌道エネルギーとすることにより求めた。一方、重合体の最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和をLUMO軌道エネルギーとすることにより求めた。イオン化ポテンシャルの測定には光電子分光装置(理研計器株式会社製:AC-2)を用いた。HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計(Varian社製:Cary5E)を用いて重合体の吸収スペクトルを測定し、その吸収末端より求めた。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC), polystyrene equivalent weight average molecular weight and number average molecular weight. As sought. The sample to be measured was dissolved in tetrahydrofuran so as to have a concentration of about 0.5% by weight, and 50 μL was injected into GPC. Tetrahydrofuran was used for the mobile phase of GPC and flowed at a flow rate of 0.5 mL / min. The structural analysis of the polymer was performed by 1 H-NMR analysis using a 300 MHz NMR spectrometer manufactured by Varian. The measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom) so as to have a concentration of 20 mg / mL. The orbital energy of the highest occupied molecular orbital (HOMO) of the polymer was determined by measuring the ionization potential of the polymer and using the obtained ionization potential as the HOMO orbital energy. On the other hand, the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the polymer was obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the LUMO orbital energy. . For measurement of the ionization potential, a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-2) was used. The energy difference between HOMO and LUMO was determined from the absorption terminal by measuring the absorption spectrum of the polymer using an ultraviolet / visible / near infrared spectrophotometer (Varian: Cary 5E).
[参考例1]
 2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)の合成
 2,7-ジブロモ-9-フルオレノン(52.5g)、サリチル酸エチル(154.8g)、及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、フラスコ内を窒素で置換した。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び18-クラウン-6(7.2g)をN、N-ジメチルホルムアミド(DMF)(670mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)(51.2g)を得た。
[Reference Example 1]
Synthesis of 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (compound A) 2,7-dibromo -9-fluorenone (52.5 g), ethyl salicylate (154.8 g), and mercaptoacetic acid (1.4 g) were placed in a 300 mL flask, and the atmosphere in the flask was replaced with nitrogen. Thereto was added methanesulfonic acid (630 mL) and the mixture was stirred at 75 ° C. overnight. The mixture was allowed to cool, added to ice water and stirred for 1 hour. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered. The resulting solid (62.7 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (86.3 g), potassium carbonate (62.6 g), and 18-crown-6 (7 2 g) was dissolved in N, N-dimethylformamide (DMF) (670 mL) and the solution was transferred to a flask and stirred at 105 ° C. overnight. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Chloroform (300 mL) was added to the reaction solution, liquid separation extraction was performed, and the solution was concentrated to give 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2 -Methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound A) (51.2 g) was obtained.
Figure JPOXMLDOC01-appb-C000064
   化合物A
Figure JPOXMLDOC01-appb-C000064
Compound A
[参考例2]
 2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)の合成
 窒素雰囲気下、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、ジオキサン(400mL)を混合し、該混合物を110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。減圧濃縮した反応混合物をメタノールで3回洗浄し、沈殿物を得た。沈殿物をトルエンに溶解させ、この溶液に活性炭を加えて攪拌した。その後、ろ過を行い、ろ液を減圧濃縮することで、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)(11.7g)を得た。
[Reference Example 2]
2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis [3-ethoxycarbonyl-4- [2- [2- ( Synthesis of 2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound B) Compound A (15 g), bis (pinacolato) diboron (8.9 g), [1,1′-bis (diphenylphos) under nitrogen atmosphere Fino) ferrocene] dichloropalladium (II) dichloromethane complex (0.8 g), 1,1′-bis (diphenylphosphino) ferrocene (0.5 g), potassium acetate (9.4 g), dioxane (400 mL) were mixed. The mixture was heated to 110 ° C. and heated to reflux for 10 hours. The reaction liquid was filtered after standing_to_cool and the filtrate was concentrate | evaporated under reduced pressure. The reaction mixture concentrated under reduced pressure was washed with methanol three times to obtain a precipitate. The precipitate was dissolved in toluene, and activated carbon was added to this solution and stirred. Thereafter, filtration is performed, and the filtrate is concentrated under reduced pressure to give 2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis. [3-Ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound B) (11.7 g) was obtained.
Figure JPOXMLDOC01-appb-C000065
   化合物B
Figure JPOXMLDOC01-appb-C000065
Compound B
[参考例3]
 ポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A)の合成
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4-t-ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を反応液に加え、2時間撹拌した。得られた混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させた後、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、及び3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、沈殿をテトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9-ビス[3-エトキシカルボニル-4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A(BSAFEGP))の収量は520mgであった。
[Reference Example 3]
Synthesis of poly [9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (Polymer A) Compound A under an inert atmosphere (0.55 g), Compound B (0.61 g), triphenylphosphine palladium (0.01 g), methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g), and toluene ( 10 mL) and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 8 hours. 4-t-butylphenylboronic acid (0.01 g) was added to the reaction solution, and the mixture was refluxed for 6 hours. Next, an aqueous sodium diethyldithiacarbamate solution (10 mL, concentration: 0.05 g / mL) was added to the reaction solution, and the mixture was stirred for 2 hours. The obtained mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered and dried under reduced pressure for 2 hours, and then dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered, and the precipitate was dissolved in 20 ml of tetrahydrofuran. The solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. Yield of the obtained poly [9,9-bis [3-ethoxycarbonyl-4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (polymer A (BSAFEGGP)) Was 520 mg.
 重合体Aのポリスチレン換算の数平均分子量は5.2×10であった。重合体Aは、式(A)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer A was 5.2 × 10 4 . The polymer A consists of a structural unit represented by the formula (A).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
[実験例1]
 重合体Aセシウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(20mL)、及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのセシウム塩を共役高分子化合物1と呼ぶ。共役高分子化合物1は式(B)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)及び(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物1のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。
[Experimental Example 1]
Synthesis of Polymer A Cesium Salt Polymer A (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (20 mL) and ethanol (20 mL) were added and the mixture was warmed to 55 ° C. An aqueous solution in which cesium hydroxide (200 mg) was dissolved in water (2 mL) was added thereto, and the mixture was stirred at 55 ° C. for 6 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared. The obtained cesium salt of polymer A is referred to as conjugated polymer compound 1. Conjugated polymer compound 1 is composed of a structural unit represented by formula (B) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17) and ( The ratio of the structural unit represented by 20) "is 100 mol%.) The conjugated polymer compound 1 had an orbital energy of HOMO of −5.5 eV and an orbital energy of LUMO of −2.7 eV.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
[実験例2]
 重合体Aカリウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化カリウム(400mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール50mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(131mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのカリウム塩を共役高分子化合物2と呼ぶ。共役高分子化合物2は式(C)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物2のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。
[Experiment 2]
Synthesis of Polymer A Potassium Salt Polymer A (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (20 mL) and methanol (10 mL) were mixed, an aqueous solution in which potassium hydroxide (400 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hour. 50 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (131 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared. The obtained potassium salt of polymer A is referred to as conjugated polymer compound 2. Conjugated polymer compound 2 is composed of a structural unit represented by formula (C) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 100 mol%.) The conjugated polymer compound 2 had an orbital energy of HOMO of −5.5 eV and an orbital energy of LUMO of −2.7 eV.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
[実験例3]
 重合体Aナトリウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化ナトリウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(123mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのナトリウム塩を共役高分子化合物3と呼ぶ。共役高分子化合物3は式(D)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物3のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experiment 3]
Synthesis of Polymer A Sodium Salt Polymer A (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (20 mL) and methanol (10 mL) were mixed, an aqueous solution in which sodium hydroxide (260 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hr. 30 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (123 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared. The resulting sodium salt of polymer A is referred to as conjugated polymer compound 3. Conjugated polymer compound 3 is composed of a structural unit represented by formula (D) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 100 mol%.) The conjugated polymer compound 3 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
[実験例4]
 重合体Aアンモニウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(15mL)を混合し、混合溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。反応溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが90%消失していることを確認した。得られた重合体Aのアンモニウム塩を共役高分子化合物4と呼ぶ。共役高分子化合物4は式(E)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、90モル%である。)。共役高分子化合物4のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental Example 4]
Synthesis of Polymer A Ammonium Salt Polymer A (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (20 mL) and methanol (15 mL) were mixed, an aqueous solution in which tetramethylammonium hydroxide (50 mg) was dissolved in water (1 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 6 hours. An aqueous solution in which tetramethylammonium hydroxide (50 mg) was dissolved in water (1 mL) was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that 90% of the signal derived from the ethyl group at the ethyl ester site in the polymer A disappeared. The resulting ammonium salt of polymer A is referred to as conjugated polymer compound 4. The conjugated polymer compound 4 is composed of a structural unit represented by the formula (E) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 90 mol%.) The conjugated polymer compound 4 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
[参考例4]
 2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)の合成
 不活性雰囲気下、化合物A(0.52g)、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチルフルオレン(1.29g)、トリフェニルホスフィンパラジウム(0.0087g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、トルエン(10mL)、及び2M炭酸ナトリウム水溶液(10mL)を混合し、80℃に加熱した。反応液を3.5時間反応させた。その後、そこに、パラブロモトルエン(0.68g)を加えて、更に2.5時間反応させた。反応後、反応液を室温まで冷却し、酢酸エチル50ml/蒸留水50mlを加えて水層を除去した。再び蒸留水50mlを加えて水層を除去した後、乾燥剤として硫酸マグネシウムを有機溶媒層に加えた。不溶物をろ過して、有機溶媒を除去し、残渣を得た。得られた残渣を再びTHF10mLに溶かして、飽和ジエチルジチオカルバミン酸ナトリウム水2mLを添加して、30分間撹拌した後、有機溶媒を除去した。アルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1、v/v)を通して精製を行い、析出した沈殿をろ過して12時間減圧乾燥させたところ、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)が524mg得られた。
[Reference Example 4]
2,7-bis [7- (4-methylphenyl) -9,9-dioctylfluoren-2-yl] -9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxy) Synthesis of ethoxy) ethoxy] ethoxy] phenyl] -fluorene (Polymer B) Compound A (0.52 g), 2,7-bis (1,3,2-dioxaborolan-2-yl) -9 under inert atmosphere , 9-dioctylfluorene (1.29 g), triphenylphosphine palladium (0.0087 g), methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g), toluene (10 mL), and 2M aqueous sodium carbonate solution (10 mL) was mixed and heated to 80 ° C. The reaction was allowed to react for 3.5 hours. Thereafter, parabromotoluene (0.68 g) was added thereto, and the mixture was further reacted for 2.5 hours. After the reaction, the reaction solution was cooled to room temperature, 50 ml of ethyl acetate / 50 ml of distilled water were added, and the aqueous layer was removed. After adding 50 ml of distilled water again to remove the aqueous layer, magnesium sulfate was added as a desiccant to the organic solvent layer. Insoluble matter was filtered to remove the organic solvent to obtain a residue. The obtained residue was dissolved again in 10 mL of THF, 2 mL of saturated aqueous sodium diethyldithiocarbamate was added and stirred for 30 minutes, and then the organic solvent was removed. Purification was performed through an alumina column (developing solvent hexane: ethyl acetate = 1: 1, v / v), and the deposited precipitate was filtered and dried under reduced pressure for 12 hours. As a result, 2,7-bis [7- (4-methyl Phenyl) -9,9-dioctylfluoren-2-yl] -9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (heavy 524 mg of union B) was obtained.
 重合体Bのポリスチレン換算の数平均分子量は、2.0×10であった。なお、重合体Bは、式(F)で表される。 The number average molecular weight in terms of polystyrene of the polymer B was 2.0 × 10 3 . The polymer B is represented by the formula (F).
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[実験例5]
重合体Bセシウム塩の合成
 重合体B(262mg)を100mLフラスコに入れ、フラスコ内をアルゴン置換した。そこに、テトラヒドロフラン(10mL)、及びメタノール(15mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(341mg)を水(1mL)に溶かした水溶液を添加し、55℃で5時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(250mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Bセシウム塩を共役高分子化合物5と呼ぶ。共役高分子化合物5は、式(G)で表される(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物5のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.6eVであった。
[Experimental Example 5]
Synthesis of Polymer B Cesium Salt Polymer B (262 mg) was placed in a 100 mL flask, and the inside of the flask was purged with argon. Tetrahydrofuran (10 mL) and methanol (15 mL) were added thereto, and the mixture was heated to 55 ° C. The aqueous solution which melt | dissolved cesium hydroxide (341 mg) in water (1 mL) was added there, and it stirred at 55 degreeC for 5 hours. After the resulting mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (250 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site had completely disappeared. The obtained polymer B cesium salt is referred to as a conjugated polymer compound 5. The conjugated polymer compound 5 is represented by the formula (G) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all structural units). “Ratio of structural units containing the above groups and one or more groups represented by formula (3)” and “Formulas (13), (15), (17), and (20) in all structural units” The ratio of the structural unit represented by “is rounded off to the second decimal place and is 33.3 mol%.) The conjugated polymer compound 5 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.6 eV.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
[参考例5]
重合体Cの合成
 不活性雰囲気下、化合物A(0.40g)、化合物B(0.49g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(35mg)、トリフェニルホスフィンパラジウム(8mg)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液にフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、及び3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Cの収量は526mgであった。
[Reference Example 5]
Synthesis of Polymer C Compound A (0.40 g), Compound B (0.49 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-) under an inert atmosphere Butyl-2,6-dimethylphenyl) 1,4-phenylenediamine (35 mg), triphenylphosphine palladium (8 mg), methyltrioctylammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g), And toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 8 hours. Phenylboronic acid (0.01 g) was added to the reaction solution and refluxed for 6 hours. Then, a sodium diethyldithiacarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran. The solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer C was 526 mg.
 重合体Cのポリスチレン換算の数平均分子量は3.6×10であった。重合体Cは、式(H)で表される構造単位からなる。N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミンは、例えば特開2008-74017号公報に記載されている方法で合成することができる。 The number average molecular weight in terms of polystyrene of the polymer C was 3.6 × 10 4 . The polymer C consists of a structural unit represented by the formula (H). N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine is disclosed in, for example, JP-A-2008-74017. It can be synthesized by the method described.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
[実験例6]
 重合体Cセシウム塩の合成
 重合体C(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(20mL)を添加し混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体C内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Cのセシウム塩を共役高分子化合物6と呼ぶ。共役高分子化合物6は式(I)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、95モル%である。)。共役高分子化合物6のHOMOの軌道エネルギーは-5.3eV、LUMOの軌道エネルギーは-2.6eVであった。
[Experimental Example 6]
Synthesis of Polymer C Cesium Salt Polymer C (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (20 mL) and methanol (20 mL) were added and mixed. An aqueous solution in which cesium hydroxide (200 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hour. 30 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer C had completely disappeared. The obtained cesium salt of polymer C is referred to as conjugated polymer compound 6. Conjugated polymer compound 6 is composed of a structural unit represented by formula (I) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 95 mol%.) The conjugated polymer compound 6 had a HOMO orbital energy of −5.3 eV and a LUMO orbital energy of −2.6 eV.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
[参考例6]
重合体Dの合成
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.67g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(0.038g)、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジン0.009g、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、2時間還流させた。反応液にフェニルボロン酸(0.004g)を加え、6時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、及び3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Dの収量は590mgであった。
[Reference Example 6]
Synthesis of Polymer D Compound A (0.55 g), Compound B (0.67 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-) under an inert atmosphere Butyl-2,6-dimethylphenyl) 1,4-phenylenediamine (0.038 g), 3,7-dibromo-N- (4-n-butylphenyl) phenoxazine 0.009 g, triphenylphosphine palladium (0. 01 g), methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g), and toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 2 hours. Phenylboronic acid (0.004 g) was added to the reaction solution and refluxed for 6 hours. Then, a sodium diethyldithiacarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran. The solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer D was 590 mg.
 重合体Dのポリスチレン換算の数平均分子量は2.7×10であった。重合体Dは、式(J)で表される構造単位からなる。3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジンは、JP2004137456に記載の方法で合成した。 The number average molecular weight in terms of polystyrene of the polymer D was 2.7 × 10 4 . The polymer D consists of a structural unit represented by the formula (J). 3,7-Dibromo-N- (4-n-butylphenyl) phenoxazine was synthesized by the method described in JP2004137456.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
[実験例7]
 重合体Dセシウム塩の合成
 重合体D(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(10mL)を混合した。混合溶液に、水酸化セシウム(360mg)を水(2mL)に溶解させた水溶液を添加し、65℃で3時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(210mg)を得た。NMRスペクトルにより、重合体D内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Dのセシウム塩を共役高分子化合物7と呼ぶ。共役高分子化合物7は式(K)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、90モル%である。)。共役高分子化合物7のHOMOの軌道エネルギーは-5.3eV、LUMOの軌道エネルギーは-2.4eVであった。
[Experimental Example 7]
Synthesis of Polymer D Cesium Salt Polymer D (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (15 mL) and methanol (10 mL) were mixed. An aqueous solution in which cesium hydroxide (360 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 3 hours. 10 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (210 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer D had completely disappeared. The resulting cesium salt of polymer D is referred to as conjugated polymer compound 7. The conjugated polymer compound 7 is composed of a structural unit represented by the formula (K) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 90 mol%.) The conjugated polymer compound 7 had a HOMO orbital energy of −5.3 eV and a LUMO orbital energy of −2.4 eV.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
[参考例7]
重合体Eの合成
 不活性雰囲気下、化合物A(0.37g)、化合物B(0.82g)、1,3-ジブロモベンゼン(0.09g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、7時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、10時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、及び3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は293mgであった。
[Reference Example 7]
Synthesis of Polymer E In an inert atmosphere, Compound A (0.37 g), Compound B (0.82 g), 1,3-dibromobenzene (0.09 g), triphenylphosphine palladium (0.01 g), methyltri Octyl ammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g) and toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 7 hours. Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 10 hours. Next, an aqueous sodium diethyldithiacarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran. The solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer E was 293 mg.
 重合体Eのポリスチレン換算の数平均分子量は1.8×10であった。重合体Eは、式(L)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer E was 1.8 × 10 4 . The polymer E consists of a structural unit represented by the formula (L).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
[実験例8]
 重合体Eセシウム塩の合成
 重合体E(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(170mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Eのセシウム塩を共役高分子化合物8と呼ぶ。共役高分子化合物8は式(M)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、75モル%である。)。共役高分子化合物8のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.6eVであった。
[Experimental Example 8]
Synthesis of Polymer E Cesium Salt Polymer E (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (10 mL) and methanol (5 mL) were mixed. An aqueous solution in which cesium hydroxide (200 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 2 hours. 10 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (170 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared. The resulting cesium salt of polymer E is referred to as conjugated polymer compound 8. The conjugated polymer compound 8 is composed of a structural unit represented by the formula (M) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 75 mol%.) The conjugated polymer compound 8 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.6 eV.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
[参考例8]
重合体Fの合成
 不活性雰囲気下、化合物B(1.01g)、1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン(0.30g)、トリフェニルホスフィンパラジウム(0.02g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、4時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、4時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、及び3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフラン/酢酸エチル(1/1(体積比))の混合溶媒に溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は343mgであった。
[Reference Example 8]
Synthesis of Polymer F Under an inert atmosphere, Compound B (1.01 g), 1,4-dibromo-2,3,5,6-tetrafluorobenzene (0.30 g), triphenylphosphine palladium (0.02 g) , Methyltrioctylammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g), and toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 4 hours. Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 4 hours. Next, an aqueous sodium diethyldithiacarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 ml of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran. The solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in a mixed solvent of tetrahydrofuran / ethyl acetate (1/1 (volume ratio)) and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer E was 343 mg.
 重合体Fのポリスチレン換算の数平均分子量は6.0×10であった。重合体Fは、式(N)で表される構造単位からなる。 The polystyrene equivalent number average molecular weight of the polymer F was 6.0 × 10 4 . The polymer F consists of a structural unit represented by the formula (N).
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
[実験例9]
 重合体Fセシウム塩の合成
 重合体F(150mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(130mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Fのセシウム塩を共役高分子化合物9と呼ぶ。共役高分子化合物9は式(O)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、75モル%である。)。共役高分子化合物9のHOMOの軌道エネルギーは-5.9eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental Example 9]
Synthesis of Polymer F Cesium Salt Polymer F (150 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (10 mL) and methanol (5 mL) were mixed. An aqueous solution in which cesium hydroxide (260 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 2 hours. 10 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (130 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared. The resulting cesium salt of polymer F is referred to as conjugated polymer compound 9. The conjugated polymer compound 9 is composed of a structural unit represented by the formula (O) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 75 mol%.) The conjugated polymer compound 9 had a HOMO orbital energy of −5.9 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
[参考例9]
 不活性雰囲気下、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(11.0g)、トリエチレングリコール(30.0g)、水酸化カリウム(3.3g)を混合し、100℃で18時間加熱攪拌した。放冷後、反応溶液を水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。濃縮した溶液を、クーゲルロワー蒸留(10mmTorr、180℃)することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(6.1g)を得た。
[Reference Example 9]
Under an inert atmosphere, 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (11.0 g), triethylene glycol (30.0 g), and potassium hydroxide (3.3 g) were mixed. The mixture was heated and stirred at 100 ° C. for 18 hours. After allowing to cool, the reaction solution was added to water (100 mL), liquid separation extraction was performed with chloroform, and the solution was concentrated. The concentrated solution was subjected to Kugelrohr distillation (10 mm Torr, 180 ° C.) to give 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy). Ethanol (6.1 g) was obtained.
[参考例10]
 不活性雰囲気下、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(8.0g)、水酸化ナトリウム(1.4g)、蒸留水(2mL)、及びテトラヒドロフラン(2mL)を混合し、氷冷した。混合溶液に、p-トシルクロリド(5.5g)のテトラヒドロフラン(6.4mL)溶液を30分かけて滴下し、滴下後反応溶液を室温に上げて15時間攪拌した。反応溶液に蒸留水(50mL)を加え、6M硫酸で反応溶液を中和した後、クロロホルムで分液抽出を行った。溶液を濃縮することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(11.8g)を得た。
[Reference Example 10]
Under an inert atmosphere, 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) ethanol (8.0 g), sodium hydroxide (1. 4 g), distilled water (2 mL), and tetrahydrofuran (2 mL) were mixed and ice-cooled. To the mixed solution, a solution of p-tosyl chloride (5.5 g) in tetrahydrofuran (6.4 mL) was added dropwise over 30 minutes. After the addition, the reaction solution was raised to room temperature and stirred for 15 hours. Distilled water (50 mL) was added to the reaction solution, and the reaction solution was neutralized with 6M sulfuric acid, followed by liquid separation extraction with chloroform. The solution was concentrated to give 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) p-toluenesulfonate (11.8 g). It was.
[参考例11]
 2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)の合成
 2,7-ジブロモ-9-フルオレノン(127.2g)、サリチル酸エチル(375.2g)、及びメルカプト酢酸(3.5g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(1420mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別し固体(167.8g)を得た。得られた固体(5g)、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(10.4g)、炭酸カリウム(5.3g)、及び18-クラウン-6(0.6g)をN、N-ジメチルホルムアミド(DMF)(100 mL)に溶解させ、溶液をフラスコへ移して105℃で4時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮した。濃縮物を酢酸エチルに溶解させ、アルミナのカラムに通液し、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)(4.5g)を得た。
[Reference Example 11]
2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy)- Synthesis of Ethoxy) Ethoxy] phenyl] -fluorene (Compound C) 2,7-dibromo-9-fluorenone (127.2 g), ethyl salicylate (375.2 g), and mercaptoacetic acid (3.5 g) were placed in a 300 mL flask. And replaced with nitrogen. Thereto was added methanesulfonic acid (1420 mL) and the mixture was stirred at 75 ° C. overnight. The mixture was allowed to cool, added to ice water and stirred for 1 hour. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered to obtain a solid (167.8 g). The resulting solid (5 g), 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) p-toluenesulfonate (10.4 g), Potassium carbonate (5.3 g) and 18-crown-6 (0.6 g) were dissolved in N, N-dimethylformamide (DMF) (100 mL), and the solution was transferred to a flask and stirred at 105 ° C. for 4 hours. . The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Chloroform (300 mL) was added to the reaction solution, liquid separation extraction was performed, and the solution was concentrated. The concentrate was dissolved in ethyl acetate, passed through an alumina column, and the solution was concentrated to give 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- (2- (2- ( 2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) ethoxy] phenyl] -fluorene (compound C) (4.5 g) was obtained.
Figure JPOXMLDOC01-appb-C000081
   化合物C
Figure JPOXMLDOC01-appb-C000081
Compound C
[参考例12]
 重合体Gの合成
 不活性雰囲気下、化合物C(1.0g)、4-t-ブチルフェニルブロミド(0.9mg)、2,2‘-ビピリジン(0.3g)、脱水テトラヒドロフラン(50mL)を200mLフラスコに入れ混合した。混合物を55℃に昇温した後、ビス(1,5-シクロオクタジエン)ニッケル(0.6g)を添加し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、1N希塩酸(200mL)の混合液に滴下した。生じた沈殿物をろ過により収集した後、テトラヒドロフランに再溶解させた。メタノール(200mL)、15%アンモニア水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。沈殿物をテトラヒドロフランに再溶解させ、メタノール(200mL)、水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。収集した沈殿物を減圧乾燥することで重合体G(360mg)を得た。重合体Gのポリスチレン換算の数平均分子量は6.0×10であった。重合体Gは、式(P)で表される構造単位からなる。
[Reference Example 12]
Synthesis of Polymer G In an inert atmosphere, 200 mL of Compound C (1.0 g), 4-t-butylphenyl bromide (0.9 mg), 2,2′-bipyridine (0.3 g), dehydrated tetrahydrofuran (50 mL) Mix in flask. The temperature of the mixture was raised to 55 ° C., bis (1,5-cyclooctadiene) nickel (0.6 g) was added, and the mixture was stirred at 55 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solution was added dropwise to a mixture of methanol (200 mL) and 1N dilute hydrochloric acid (200 mL). The resulting precipitate was collected by filtration and redissolved in tetrahydrofuran. The solution was added dropwise to a mixture of methanol (200 mL) and 15% aqueous ammonia (100 mL), and the resulting precipitate was collected by filtration. The precipitate was redissolved in tetrahydrofuran, added dropwise to a mixture of methanol (200 mL) and water (100 mL), and the resulting precipitate was collected by filtration. The collected precipitate was dried under reduced pressure to obtain a polymer G (360 mg). The number average molecular weight in terms of polystyrene of the polymer G was 6.0 × 10 4 . The polymer G consists of a structural unit represented by the formula (P).
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
[実験例10]
 重合体Gセシウム塩の合成
 重合体G(150mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(170mg)を水(2mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(95)mg)を得た。NMRスペクトルにより、重合体G内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Gのセシウム塩を共役高分子化合物10と呼ぶ。共役高分子化合物10は式(Q)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物10のHOMOの軌道エネルギーは-5.7eV、LUMOの軌道エネルギーは-2.9eVであった。
[Experimental Example 10]
Synthesis of Polymer G Cesium Salt Polymer G (150 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (15 mL) and methanol (5 mL) were mixed. An aqueous solution in which cesium hydroxide (170 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 6 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (95 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer G had completely disappeared. The obtained cesium salt of polymer G is referred to as conjugated polymer compound 10. Conjugated polymer compound 10 is composed of a structural unit represented by formula (Q) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 100 mol%.) The conjugated polymer compound 10 had a HOMO orbital energy of −5.7 eV and a LUMO orbital energy of −2.9 eV.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
[参考例13]
 1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼンの合成
 不活性雰囲気下、3,5-ジブロモサリチル酸(20g)、エタノール(17mL)、濃硫酸(1.5mL)、トルエン(7mL)を混合し、130℃で20時間加熱攪拌した。放冷後、反応溶液を氷水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。得られた固体を、イソプロパノールに溶解し、溶液を蒸留水に滴下した。得られた析出物をろ別することにより、固体(18g)を得た。不活性雰囲気下、得られた固体(1g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(1.5g)、炭酸カリウム(0.7g)、DMF(15mL)を混合し、100℃で4時間加熱攪拌した。放冷後、クロロホルムを加えて分液抽出し、溶液を濃縮した。濃縮物をクロロホルムに溶解させ、シリカゲルカラムに通液することにより精製した。溶液を濃縮することにより、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(1.0g)を得た。
[Reference Example 13]
Synthesis of 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene 3,5-dibromosalicylic acid (20 g), ethanol (17 mL) under inert atmosphere ), Concentrated sulfuric acid (1.5 mL) and toluene (7 mL) were mixed, and the mixture was stirred with heating at 130 ° C. for 20 hours. After allowing to cool, the reaction solution was added to ice water (100 mL), liquid separation extraction was performed with chloroform, and the solution was concentrated. The obtained solid was dissolved in isopropanol, and the solution was added dropwise to distilled water. The obtained precipitate was filtered off to obtain a solid (18 g). Under an inert atmosphere, the obtained solid (1 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (1.5 g), potassium carbonate (0.7 g), DMF (15 mL) were added. The mixture was mixed and stirred at 100 ° C. for 4 hours. After allowing to cool, chloroform was added to perform liquid separation and extraction, and the solution was concentrated. The concentrate was dissolved in chloroform and purified by passing through a silica gel column. The solution was concentrated to give 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene (1.0 g).
[参考例14]
重合体Hの合成
 不活性雰囲気下、化合物A(0.2g)、化合物B(0.5g)、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(0.1g)、トリフェニルホスフィンパラジウム(30mg)、テトラブチルアンモニウムブロミド(4mg)、及びトルエン(19mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(5mL)を滴下し、5時間還流させた。反応液にフェニルボロン酸(6mg)を加え、14時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。水層を除去して有機層を蒸留水で洗浄し、濃縮して得られた固体をクロロホルムに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムからの溶出液を濃縮して乾燥させた。得られた重合体Hの収量は0.44gであった。
[Reference Example 14]
Synthesis of Polymer H Compound A (0.2 g), Compound B (0.5 g), 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) under an inert atmosphere ) Ethoxy] ethoxy] benzene (0.1 g), triphenylphosphine palladium (30 mg), tetrabutylammonium bromide (4 mg), and toluene (19 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (5 mL) was added dropwise and refluxed for 5 hours. Phenylboronic acid (6 mg) was added to the reaction solution and refluxed for 14 hours. Then, a sodium diethyldithiacarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The aqueous layer was removed, the organic layer was washed with distilled water, and the solid obtained by concentration was dissolved in chloroform and purified by passing through an alumina column and a silica gel column. The eluate from the column was concentrated and dried. The yield of the obtained polymer H was 0.44 g.
 重合体Hのポリスチレン換算の数平均分子量は3.6×10であった。重合体Hは、式(R)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer H was 3.6 × 10 4 . The polymer H consists of a structural unit represented by the formula (R).
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
[実験例11]
 重合体Hセシウム塩の合成
 重合体H(200mg)を100mLフラスコに入れ、フラスコ内を窒素置換した。テトラヒドロフラン(14mL)、及びメタノール(7mL)を添加し混合した。混合溶液に、水酸化セシウム(90mg)を水(1mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール5mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、重合体H内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Hのセシウム塩を共役高分子化合物11と呼ぶ。共役高分子化合物11は式(S)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物11のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental Example 11]
Synthesis of Polymer H Cesium Salt Polymer H (200 mg) was placed in a 100 mL flask, and the atmosphere in the flask was replaced with nitrogen. Tetrahydrofuran (14 mL) and methanol (7 mL) were added and mixed. An aqueous solution in which cesium hydroxide (90 mg) was dissolved in water (1 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hour. 5 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer H had completely disappeared. The resulting cesium salt of polymer H is referred to as conjugated polymer compound 11. The conjugated polymer compound 11 is composed of a structural unit represented by the formula (S) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of the structural unit comprising one or more groups selected from the above and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), and (The ratio of the structural unit represented by (20) is 100 mol%.) The conjugated polymer compound 11 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
[参考例15]
 2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン(化合物D)の合成
 2,7-ジブロモ-9-フルオレノン(34.1g)、2,3-ジヒドロキシ安息香酸メチル(101.3g)、及びメルカプト酢酸(1.4g)を500mLフラスコに入れ、フラスコ内を窒素置換した。そこに、メタンスルホン酸(350mL)を添加し、混合物を90℃で19時間撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(16.3g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(60.3g)、炭酸カリウム(48.6g)、及び18-クラウン-6(2.4g)をN、N-ジメチルホルムアミド(DMF)(500mL)に溶解させ、溶液をフラスコへ移して110℃で15時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液に酢酸エチル(300mL)を加えて分液抽出を行い、溶液を濃縮し、クロロホルム/メタノール(50/1(体積比))の混合溶媒に溶解させ、シリカゲルカラムを通すことにより精製した。カラムに通液した溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン (化合物D)(20.5g)を得た。
[Reference Example 15]
Synthesis of 2,7-dibromo-9,9-bis [3,4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] -5-methoxycarbonylphenyl] fluorene (Compound D) -Dibromo-9-fluorenone (34.1 g), methyl 2,3-dihydroxybenzoate (101.3 g) and mercaptoacetic acid (1.4 g) were placed in a 500 mL flask, and the atmosphere in the flask was replaced with nitrogen. Thereto was added methanesulfonic acid (350 mL), and the mixture was stirred at 90 ° C. for 19 hours. The mixture was allowed to cool, added to ice water and stirred for 1 hour. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered. The resulting solid (16.3 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (60.3 g), potassium carbonate (48.6 g), and 18-crown-6 (2 4 g) was dissolved in N, N-dimethylformamide (DMF) (500 mL) and the solution was transferred to a flask and stirred at 110 ° C. for 15 hours. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Separation extraction was performed by adding ethyl acetate (300 mL) to the reaction solution, the solution was concentrated, dissolved in a mixed solvent of chloroform / methanol (50/1 (volume ratio)), and purified by passing through a silica gel column. By concentrating the solution passed through the column, 2,7-dibromo-9,9-bis [3,4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] -5-methoxycarbonyl Phenyl] fluorene (Compound D) (20.5 g) was obtained.
[参考例16]
 2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[5-メトキシカルボニル-3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)の合成
 不活性雰囲気下、化合物D(0.70g)、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレン(0.62g)、トリフェニルホスフィンパラジウム(0.019g)、ジオキサン(40mL)、水(6mL)及び炭酸カリウム水溶液(1.38g)を混合し、80℃に加熱した。反応液を1時間反応させた。反応後、飽和ジエチルジチオカルバミン酸ナトリウム水5mLを添加して、30分間撹拌した後、有機溶媒を除去した。得られた固体をアルミナカラム(展開溶媒ヘキサン:酢酸エチル=1:1(体積比))を通して精製を行い、溶液を濃縮することで、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)を660mg得た。
[Reference Example 16]
2,7-bis [7- (4-methylphenyl) -9,9-dioctylfluoren-2-yl] -9,9-bis [5-methoxycarbonyl-3,4-bis [2- [2- ( Synthesis of 2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Polymer I) Compound D (0.70 g), 2- (4,4,5,5-tetramethyl-1,2 under inert atmosphere , 3-Dioxaboran-2-yl) -9,9-dioctylfluorene (0.62 g), triphenylphosphine palladium (0.019 g), dioxane (40 mL), water (6 mL) and aqueous potassium carbonate (1.38 g) Were mixed and heated to 80 ° C. The reaction was allowed to react for 1 hour. After the reaction, 5 mL of saturated aqueous sodium diethyldithiocarbamate was added and stirred for 30 minutes, and then the organic solvent was removed. The obtained solid is purified through an alumina column (developing solvent hexane: ethyl acetate = 1: 1 (volume ratio)), and the solution is concentrated to give 2,7-bis [7- (4-methylphenyl)- 9,9-Dioctylfluoren-2-yl] -9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Polymer I) 660 mg of was obtained.
 重合体Iのポリスチレン換算の数平均分子量は、2.0×10であった。重合体Iは、式(T)で表される。2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレンは、例えば特開2008-74017号公報に記載されている方法で合成することができる。 The number average molecular weight in terms of polystyrene of the polymer I was 2.0 × 10 3 . The polymer I is represented by the formula (T). 2- (4,4,5,5-tetramethyl-1,2,3-dioxaboran-2-yl) -9,9-dioctylfluorene is obtained by a method described in, for example, JP-A-2008-74017. Can be synthesized.
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 [実験例12]
重合体Iセシウム塩の合成
 重合体I(236mg)を100mLフラスコに入れ、フラスコ内をアルゴン置換した。そこに、テトラヒドロフラン(20mL)、及びメタノール(10mL)を添加し、混合物を65℃に昇温した。そこに、水酸化セシウム(240mg)を水(2mL)に溶かした水溶液を添加し、65℃で7時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Iセシウム塩を共役高分子化合物12と呼ぶ。共役高分子化合物12は、式(U)で表される(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群より選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、及び(20)で表される構造単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物12のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental example 12]
Synthesis of Polymer I Cesium Salt Polymer I (236 mg) was placed in a 100 mL flask, and the flask was purged with argon. Tetrahydrofuran (20 mL) and methanol (10 mL) were added thereto, and the mixture was heated to 65 ° C. Thereto was added an aqueous solution in which cesium hydroxide (240 mg) was dissolved in water (2 mL), and the mixture was stirred at 65 ° C. for 7 hours. After the resulting mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site had completely disappeared. The obtained polymer I cesium salt is referred to as a conjugated polymer compound 12. The conjugated polymer compound 12 is represented by the formula (U) (“one type selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). “Ratio of structural units containing the above groups and one or more groups represented by formula (3)” and “Formulas (13), (15), (17), and (20) in all structural units” The ratio of the structural unit represented by “is rounded off to the second decimal place and is 33.3 mol%.) The conjugated polymer compound 12 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 [実験例13]
 <有機EL素子の作製>
 ガラス基板表面に成膜パターニングされたITO陽極(膜厚:45nm)上に、正孔注入材料溶液を塗布し、スピンコート法によって膜厚が60nmになるように正孔注入層を成膜した。正孔注入層が成膜されたガラス基板を不活性雰囲気下(窒素雰囲気下)、200℃で10分加熱して正孔注入層を不溶化させ、基板を室温まで自然冷却させ、正孔注入層が形成された基板を得た。
[Experimental Example 13]
<Production of organic EL element>
A hole injection material solution was applied onto an ITO anode (film thickness: 45 nm) patterned on the surface of a glass substrate, and a hole injection layer was formed to a film thickness of 60 nm by spin coating. The glass substrate on which the hole injection layer is formed is heated in an inert atmosphere (nitrogen atmosphere) at 200 ° C. for 10 minutes to insolubilize the hole injection layer, and the substrate is naturally cooled to room temperature. A substrate on which was formed was obtained.
 ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4-エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名:「Baytron」)を用いた。 Here, PEDOT: PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name: “Baytron”) manufactured by Stark Vitec Co., Ltd. was used as the hole injection material solution.
 次に、正孔輸送性高分子材料とキシレンとを混合し、0.7重量%の正孔輸送性高分子材料を含む正孔輸送層形成用組成物を得た。 Next, a hole transporting polymer material and xylene were mixed to obtain a composition for forming a hole transporting layer containing 0.7 wt% of the hole transporting polymer material.
 ここで、正孔輸送性高分子材料は、以下の方法で合成した。
 還流冷却器及びオーバーヘッドスターラを装備した1リットルの三つ口丸底フラスコに、2,7-ビス(1,3,2-ジオキシボロール)-9,9-ジ(1-オクチル)フルオレン(3.863g、7.283mmol)、N,N-ジ(p-ブロモフェニル)-N-(4-(ブタン-2-イル)フェニル)アミン(3.177g、6.919mmol)及びジ(4-ブロモフェニル)ベンゾシクロブタンアミン(156.3mg、0.364mmol)を添加した。次いで、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(2.29g)、続いてトルエン50mLを添加した。PdCl(PPh(4.9mg)を添加した後、混合物を、105℃の油浴中で15分間撹拌した。炭酸ナトリウム水溶液(2.0M、14mL)を添加し、得られた混合物を105℃の油浴中、16.5時間撹拌した。次いで、フェニルボロン酸(0.5g)を添加し、得られた混合物を7時間撹拌した。水層を除去し、有機層を水50mLで洗浄した。有機層を反応フラスコに戻し、ジエチルジチオカルバミン酸ナトリウム0.75g及び水50mLを添加した。得られた混合物を85℃の油浴中、16時間撹拌した。水層を除去し、有機層を100mLの水で3回洗浄し、次いでシリカゲル及び塩基性アルミナのカラムに通した。溶離剤としてトルエンを用い、溶出してきたポリマーを含むトルエン溶液を回収した。次いで、回収した前記トルエン溶液をメタノールに注いでポリマーを沈殿させた。沈殿したポリマーを再度トルエンに溶解させ、得られたトルエン溶液をメタノールに注いでポリマーを再び沈殿させた。沈殿したポリマーを60℃で真空乾燥し、正孔輸送性高分子材料4.2gを得た。ゲルパーミエーションクロマトグラフィーによれば、得られた正孔輸送性高分子材料のポリスチレン換算の重量平均分子量は1.24×10であり、分子量分布指数(Mw/Mn)は2.8であった。
Here, the hole transporting polymer material was synthesized by the following method.
To a 1 liter three-necked round bottom flask equipped with a reflux condenser and an overhead stirrer was added 2,7-bis (1,3,2-dioxyborol) -9,9-di (1-octyl) fluorene (3.863 g). 7.283 mmol), N, N-di (p-bromophenyl) -N- (4- (butan-2-yl) phenyl) amine (3.177 g, 6.919 mmol) and di (4-bromophenyl) Benzocyclobutanamine (156.3 mg, 0.364 mmol) was added. Subsequently, methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (2.29 g) was added, followed by 50 mL of toluene. After adding PdCl 2 (PPh 3 ) 2 (4.9 mg), the mixture was stirred in an oil bath at 105 ° C. for 15 minutes. Aqueous sodium carbonate (2.0 M, 14 mL) was added and the resulting mixture was stirred in an oil bath at 105 ° C. for 16.5 hours. Phenylboronic acid (0.5 g) was then added and the resulting mixture was stirred for 7 hours. The aqueous layer was removed and the organic layer was washed with 50 mL of water. The organic layer was returned to the reaction flask and 0.75 g of sodium diethyldithiocarbamate and 50 mL of water were added. The resulting mixture was stirred in an 85 ° C. oil bath for 16 hours. The aqueous layer was removed and the organic layer was washed 3 times with 100 mL of water and then passed through a column of silica gel and basic alumina. Using toluene as an eluent, a toluene solution containing the eluted polymer was recovered. Next, the recovered toluene solution was poured into methanol to precipitate a polymer. The precipitated polymer was dissolved again in toluene, and the obtained toluene solution was poured into methanol to precipitate the polymer again. The precipitated polymer was vacuum-dried at 60 ° C. to obtain 4.2 g of a hole transporting polymer material. According to gel permeation chromatography, the obtained hole transporting polymer material had a polystyrene equivalent weight average molecular weight of 1.24 × 10 5 and a molecular weight distribution index (Mw / Mn) of 2.8. It was.
 上記で得た正孔注入層が形成された基板の正孔注入層の上に、正孔輸送層形成用組成物をスピンコート法により塗布し、膜厚20nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、190℃で20分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔輸送層が形成された基板を得た。 On the hole injection layer of the substrate on which the hole injection layer obtained above was formed, the composition for forming a hole transport layer was applied by a spin coating method to obtain a coating film having a thickness of 20 nm. The substrate provided with this coating film was heated at 190 ° C. for 20 minutes in an inert atmosphere (in a nitrogen atmosphere) to insolubilize the coating film, and then naturally cooled to room temperature to form a substrate on which the hole transport layer was formed. Obtained.
 次に、発光高分子材料(サメイション(株)製「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。上記で得た正孔輸送層が形成された基板の正孔輸送層の上に、発光層形成用組成物をスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。 Next, a light emitting polymer material (“Lumation BP361” manufactured by Summation Co., Ltd.) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material. On the hole transport layer of the board | substrate with which the hole transport layer obtained above was formed, the composition for light emitting layer formation was apply | coated by the spin coat method, and the coating film with a film thickness of 80 nm was obtained. The substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
 メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。上記で得た発光層が形成された基板の発光層の上に、前記組成物をスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を常圧の不活性雰囲気下(窒素雰囲気下)、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。 Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1. On the light emitting layer of the board | substrate with which the light emitting layer obtained above was formed, the said composition was apply | coated by the spin coat method, and the coating film with a film thickness of 10 nm was obtained. The substrate provided with this coating film is heated at 130 ° C. for 10 minutes under an inert atmosphere (nitrogen atmosphere) under normal pressure to evaporate the solvent, and then naturally cooled to room temperature, and the electrons containing the conjugated polymer compound 1 A substrate on which an injection layer was formed was obtained.
 上記で得た共役高分子化合物1を含む層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAlを80nm成膜し、陰極を形成させて、積層構造体1を製造した。 The substrate on which the layer containing the conjugated polymer compound 1 obtained above was formed was inserted into a vacuum apparatus, and an Al film was formed on the layer by vacuum vapor deposition to form a cathode, thereby forming a laminated structure. 1 was produced.
 上記で得た積層構造体1を真空装置より取り出し、不活性雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子1を得た。 The laminated structure 1 obtained above was taken out from the vacuum apparatus and sealed with sealing glass and a two-component mixed epoxy resin in an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 1.
[実験例14]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物2を用いたこと以外は、実験例13と同様に操作し、有機EL素子2を得た。
[Experimental Example 14]
An organic EL device 2 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 2 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例15]
 実験例13において、メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得る代わりにメタノール、水及び共役高分子化合物3を混合し(メタノール/水の体積比=20/1)、0.2重量%の共役高分子化合物3を含む組成物を用いたこと以外は、実験例13と同様に操作し、有機EL素子3を得た。
[Experimental Example 15]
In Experimental Example 13, methanol and conjugated polymer compound 1 were mixed, and instead of obtaining a composition containing 0.2% by weight of conjugated polymer compound 1, methanol, water and conjugated polymer compound 3 were mixed (methanol). / Water volume ratio = 20/1), except that a composition containing 0.2% by weight of the conjugated polymer compound 3 was used, the same operation as in Experimental Example 13 was performed to obtain an organic EL device 3.
[実験例16]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物4を用いたこと以外は、実験例13と同様に操作し、有機EL素子4を得た。
[Experimental Example 16]
An organic EL device 4 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 4 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例17]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物5を用いたこと以外は、実験例13と同様に操作し、有機EL素子5を得た。
[Experimental Example 17]
An organic EL device 5 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 5 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例18]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物6を用いたこと以外は、実験例13と同様に操作し、有機EL素子6を得た。
[Experiment 18]
An organic EL device 6 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 6 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例19]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物7を用いたこと以外は、実験例13と同様に操作し、有機EL素子7を得た。
[Experimental Example 19]
An organic EL device 7 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 7 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例20]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物8を用いたこと以外は、実験例13と同様に操作し、有機EL素子8を得た。
[Experiment 20]
An organic EL device 8 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 8 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例21]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物9を用いたこと以外は、実験例13と同様に操作し、有機EL素子9を得た。
[Experiment 21]
An organic EL device 9 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 9 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例22]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物10を用いたこと以外は、実験例13と同様に操作し、有機EL素子10を得た。
[Experimental example 22]
An organic EL device 10 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 10 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例23]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物11を用いたこと以外は、実験例13と同様に操作し、有機EL素子11を得た。
[Experimental example 23]
An organic EL device 11 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 11 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例24]
 実験例13において、共役高分子化合物1の代わりに共役高分子化合物12を用いたこと以外は、実験例13と同様に操作し、有機EL素子12を得た。
[Experimental example 24]
An organic EL device 12 was obtained in the same manner as in Experimental Example 13 except that the conjugated polymer compound 12 was used instead of the conjugated polymer compound 1 in Experimental Example 13.
[実験例25]
 実験例13において、メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得る代わりにメタノール、共役高分子化合物1、及びAlドープZnOナノ粒子(アルドリッチ製)を混合した組成物を用いたこと以外は、実験例13と同様に操作し、有機EL素子13を得た。
[Experiment 25]
In Experimental Example 13, instead of mixing methanol and conjugated polymer compound 1 to obtain a composition containing 0.2% by weight of conjugated polymer compound 1, methanol, conjugated polymer compound 1, and Al-doped ZnO nanoparticles Except having used the composition which mixed (product made from Aldrich), it operated similarly to Experimental example 13 and the organic EL element 13 was obtained.
[実験例26]
 実験例13において、メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得る代わりにメタノール、共役高分子化合物1、及び低分子化合物(アルドリッチ製、3,5-ビス(4-t-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール)を混合し、0.2重量%の共役高分子化合物1および0.2重量%の該低分子化合物を含む組成物を得たこと以外は、実験例13と同様に操作し、有機EL素子14を得た。
[Experiment 26]
In Experimental Example 13, instead of mixing methanol and conjugated polymer compound 1 to obtain a composition containing 0.2% by weight of conjugated polymer compound 1, methanol, conjugated polymer compound 1, and low molecular compound (Aldrich) 3,5-bis (4-t-butylphenyl) -4-phenyl-4H-1,2,4-triazole), 0.2% by weight of conjugated polymer compound 1 and 0.2% by weight An organic EL device 14 was obtained in the same manner as in Experimental Example 13 except that a composition containing 1% of the low molecular weight compound was obtained.
[実験例27]
 実験例13において、Alの代わりにAgを用いたこと以外は、実験例13と同様に操作し、有機EL素子15を得た。
[Experiment 27]
In Experimental Example 13, an organic EL element 15 was obtained in the same manner as in Experimental Example 13 except that Ag was used instead of Al.
[実験例28]
 実験例13において、Alの代わりにAuを用いたこと以外は、実験例13と同様に操作し、電界発光素子16を得た。
[Experiment 28]
In the experimental example 13, the operation was performed in the same manner as in the experimental example 13 except that Au was used instead of Al to obtain the electroluminescent element 16.
[測定]
 上記で得られた有機EL素子1~16に10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。
[Measurement]
A forward voltage of 10 V was applied to the organic EL elements 1 to 16 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000088
[実験例29]
 メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。ガラス基板表面に成膜パターニングされたITO陰極(膜厚:45nm)上に、前記組成物を大気中でスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。
[Experimental example 29]
Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1. The composition was applied by spin coating in the air on an ITO cathode (film thickness: 45 nm) patterned on the surface of a glass substrate to obtain a coating film having a film thickness of 10 nm. The substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 10 minutes to evaporate the solvent, and then naturally cooled to room temperature. A formed substrate was obtained.
 次に、発光高分子材料(サメイション(株)製「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。上記で得た共役高分子化合物1を含む層が形成された基板の共役高分子化合物1を含む層の上に、発光層形成用組成物を大気中でスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。 Next, a light emitting polymer material (“Lumation BP361” manufactured by Summation Co., Ltd.) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material. A composition for forming a light-emitting layer is applied in the air by a spin coating method on the layer containing the conjugated polymer compound 1 of the substrate on which the layer containing the conjugated polymer compound 1 obtained above is formed. Coating film was obtained. The substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
 次に、上記で得た発光層が形成された基板の発光層の上に、正孔注入材料溶液を大気中でスピンコート法により塗布し、膜厚60nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、正孔注入層が形成された基板を得た。ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名:「Baytron」)を用いた。 Next, the hole injection material solution was applied in the air by a spin coating method on the light emitting layer of the substrate on which the light emitting layer obtained above was formed, to obtain a coating film having a film thickness of 60 nm. The substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 15 minutes to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a hole injection layer was formed. It was. Here, PEDOT: PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid, product name: “Baytron”) manufactured by Starck Vitec Co., Ltd. was used as the hole injection material solution.
 上記で得た正孔注入層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAuを80nm成膜し、陽極を形成させて、積層構造体1を製造した。 The substrate on which the hole injection layer formed above was formed was inserted into a vacuum apparatus, Au was deposited on the layer by 80 nm by a vacuum deposition method, and an anode was formed, whereby the laminated structure 1 was manufactured. .
 上記で得た積層構造体2を真空装置より取り出し、不活性雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子17を得た。 The laminated structure 2 obtained above was taken out from the vacuum apparatus and sealed with sealing glass and a two-component mixed epoxy resin in an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 17.
 上記で得られた有機EL素子17に10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。 A forward voltage of 10 V was applied to the organic EL element 17 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000089
[実験例30]
 <両面発光型の有機EL素子の作製>
 実験例29において、Auの膜厚を20nmとしたこと以外は、実験例29と同様に操作し、両面発光型の有機EL素子18を得た。
[Experiment 30]
<Production of Double-sided Light Emitting Organic EL Device>
In Experimental Example 29, except that the film thickness of Au was 20 nm, the same operation as in Experimental Example 29 was performed to obtain a double-sided light emitting organic EL element 18.
 上記で得られた両面発光型の有機EL素子18に15Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表3に示す。 A forward voltage of 15 V was applied to the double-sided light emitting organic EL element 18 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000090
 表2及び3に示すように、大気中において塗布プロセスでイオン性ポリマーを成膜し、電子注入層を形成した逆積層の有機EL素子が、発光することを確認した。 As shown in Tables 2 and 3, it was confirmed that the reverse stacked organic EL device in which an ionic polymer was formed in the atmosphere by an application process and an electron injection layer was formed emitted light.
1 第2のフィルム
2 有機EL素子
3 保護層
4 接着層
5 ガスバリア層
6 第1のフィルムの基材
7 第2のフィルムの基材
8 第2のガスバリア層
11 第1のフィルム
13 有機EL装置
500、510、520 巻き出しロール
511、512 第1貼り合せロール
513、523 搬送ロール
521、522 第2貼り合せロール
530 巻き取りロール
820 付加的フィルム
610、620 接着層塗布装置
611、621 接着層硬化装置
701 送り出しロール
21,22,23,24 搬送ロール
31,32 一対の成膜ロール
41 ガス供給管
51 プラズマ発生用電源
61,62 磁場発生装置
702 巻き取りロール
DESCRIPTION OF SYMBOLS 1 2nd film 2 Organic EL element 3 Protective layer 4 Adhesive layer 5 Gas barrier layer 6 First film substrate 7 Second film substrate 8 Second gas barrier layer 11 First film 13 Organic EL device 500 , 510, 520 Unwinding roll 511, 512 First laminating roll 513, 523 Conveying roll 521, 522 Second laminating roll 530 Winding roll 820 Additional film 610, 620 Adhesive layer coating device 611, 621 Adhesive layer curing device 701 Sending rolls 21, 22, 23, 24 Conveying rolls 31, 32 A pair of film forming rolls 41 Gas supply pipe 51 Plasma generating power supply 61, 62 Magnetic field generator 702 Winding roll

Claims (9)

  1.  第1のフィルムと、
     前記第1のフィルム上に設けられた有機EL素子と、
    を備え、
     前記有機EL素子は、一対の電極、前記電極間に配置された発光層、及び前記電極間に配置された電子注入層を有しており、
     前記電子注入層は、イオン性ポリマーを含み、
     前記第1のフィルムは、珪素原子、酸素原子及び炭素原子を含有するガスバリア層を有しており、
     珪素原子、酸素原子及び炭素原子の合計量に対する、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率と、前記ガスバリア層の厚み方向における前記ガスバリア層の一方の表面からの距離と、の関係をそれぞれ表す珪素分布曲線、酸素分布曲線及び炭素分布曲線が、下記条件:
    (i)前記ガスバリア層の厚み方向の90%以上の領域において、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率のうちで、珪素原子の数の比率が2番目に大きい値である、
    (ii)前記炭素分布曲線が少なくとも1つの極値を有する、及び
    (iii)前記炭素分布曲線における炭素原子の数の比率比の最大値と最小値との差が5原子%以上である、
    を満たす、有機EL装置。
    A first film;
    An organic EL element provided on the first film;
    With
    The organic EL element has a pair of electrodes, a light emitting layer disposed between the electrodes, and an electron injection layer disposed between the electrodes,
    The electron injection layer includes an ionic polymer;
    The first film has a gas barrier layer containing silicon atoms, oxygen atoms and carbon atoms,
    From the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms and the ratio of the number of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms, and from one surface of the gas barrier layer in the thickness direction of the gas barrier layer The silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve respectively representing the relationship between the distances of
    (I) In the region of 90% or more in the thickness direction of the gas barrier layer, the ratio of the number of silicon atoms is the second among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms. Is a large value,
    (Ii) the carbon distribution curve has at least one extreme value; and (iii) the difference between the maximum value and the minimum value of the ratio ratio of the number of carbon atoms in the carbon distribution curve is 5 atomic% or more.
    An organic EL device that satisfies the requirements.
  2.  前記第1のフィルムと貼合され、前記第1のフィルムともに前記有機EL素子を封止する第2のフィルムを更に備え、
     前記第2のフィルムと前記第1のフィルムとの間に前記有機EL素子が配置される、請求項1に記載の有機EL装置。
    A second film that is bonded to the first film and seals the organic EL element together with the first film;
    The organic EL device according to claim 1, wherein the organic EL element is disposed between the second film and the first film.
  3.  一対の電極、前記電極間に配置される発光層、及び前記電極間に配置され、イオン性ポリマーを含む電子注入層を有する有機EL素子を形成する工程と、
     珪素原子、酸素原子及び炭素原子を含有するガスバリア層を有する第1のフィルムを形成する工程と、
     前記第1のフィルムと第2のフィルムとの間に前記有機EL素子が配置されるように、前記第1のフィルムと前記第2のフィルムとを貼合する工程と、を含み、
     珪素原子、酸素原子及び炭素原子の合計量に対する、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率と、前記ガスバリア層の厚み方向における前記ガスバリア層の一方の表面からの距離と、の関係をそれぞれ表す珪素分布曲線、酸素分布曲線及び炭素分布曲線が、下記条件:
    (i)前記ガスバリア層の厚み方向の90%以上の領域において、珪素原子の数の比率、酸素原子の数の比率及び炭素原子の数の比率のうちで、珪素原子の数の比率が2番目に大きい値である、
    (ii)前記炭素分布曲線が少なくとも1つの極値を有する、及び
    (iii)前記炭素分布曲線における炭素原子の数の比率比の最大値と最小値との差が5原子%以上である、
    を満たす、有機EL装置を製造する方法。
    Forming a pair of electrodes, a light emitting layer disposed between the electrodes, and an organic EL element disposed between the electrodes and including an electron injection layer containing an ionic polymer;
    Forming a first film having a gas barrier layer containing silicon atoms, oxygen atoms and carbon atoms;
    Bonding the first film and the second film so that the organic EL element is disposed between the first film and the second film,
    From the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms and the ratio of the number of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms, and from one surface of the gas barrier layer in the thickness direction of the gas barrier layer The silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve respectively representing the relationship between the distances of
    (I) In the region of 90% or more in the thickness direction of the gas barrier layer, the ratio of the number of silicon atoms is the second among the ratio of the number of silicon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms. Is a large value,
    (Ii) the carbon distribution curve has at least one extreme value; and (iii) the difference between the maximum value and the minimum value of the ratio ratio of the number of carbon atoms in the carbon distribution curve is 5 atomic% or more.
    A method for manufacturing an organic EL device that satisfies the above requirements.
  4.  前記貼合する工程において、前記第1のフィルムと前記第2のフィルムとの間に前記有機EL素子が配置されるように、前記第1のフィルム、前記第2のフィルム及び前記有機EL素子を重ねた状態で、これを二つのロール間を通過させることにより前記第1のフィルムと前記第2のフィルムとを貼合する、請求項3に記載の方法。 In the bonding step, the first film, the second film, and the organic EL element are arranged so that the organic EL element is disposed between the first film and the second film. The method according to claim 3, wherein the first film and the second film are bonded together by passing the film between two rolls in a stacked state.
  5.  前記第1のフィルムと前記第2のフィルムとを大気雰囲気下で貼合する、請求項3又は4記載の方法。 The method according to claim 3 or 4, wherein the first film and the second film are bonded together in an air atmosphere.
  6.  前記有機EL素子を形成する工程において、前記第1のフィルム及び前記第2のフィルムのいずれか一方のフィルムの上に前記有機EL素子を形成し、
     前記有機EL素子を形成する工程の後、有機EL素子が形成されたフィルムを前記有機EL素子とともにロール状に巻き取り、巻き取られた前記フィルム及び前記有機EL素子を保管する工程を更に含む、請求項3~5のいずれか一項に記載の方法。
    In the step of forming the organic EL element, the organic EL element is formed on one of the first film and the second film,
    After the step of forming the organic EL element, the method further includes a step of winding the film on which the organic EL element is formed in a roll together with the organic EL element, and storing the wound film and the organic EL element. The method according to any one of claims 3 to 5.
  7.  巻き取られた前記フィルム及び前記有機EL素子を大気雰囲気下で保管する、請求項6に記載の方法。 The method according to claim 6, wherein the wound film and the organic EL element are stored in an air atmosphere.
  8.  前記貼合する工程の後、貼合された前記第1のフィルム及び前記第2のフィルムを前記有機EL素子とともにロール状に巻き取り、巻き取られた前記第1のフィルム、前記第2のフィルム及び前記有機EL素子を保管する工程を更に含む、請求項3~7のいずれか一項に記載の方法。 After the step of pasting, the first film and the second film that have been pasted together are wound into a roll together with the organic EL element, and the first film and the second film that have been wound up. The method according to any one of claims 3 to 7, further comprising the step of storing the organic EL device.
  9.  巻き取られた前記第1のフィルム、前記第2のフィルム及び前記有機EL素子を大気雰囲気下で保管する、請求項8に記載の方法。 The method according to claim 8, wherein the wound first film, the second film, and the organic EL element are stored in an air atmosphere.
PCT/JP2011/072882 2010-10-08 2011-10-04 Organic el device, and method for producing same WO2012046736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-228321 2010-10-08
JP2010228321A JP2012084306A (en) 2010-10-08 2010-10-08 Organic el device

Publications (1)

Publication Number Publication Date
WO2012046736A1 true WO2012046736A1 (en) 2012-04-12

Family

ID=45927731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072882 WO2012046736A1 (en) 2010-10-08 2011-10-04 Organic el device, and method for producing same

Country Status (3)

Country Link
JP (1) JP2012084306A (en)
TW (1) TW201228842A (en)
WO (1) WO2012046736A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133465A1 (en) * 2011-03-28 2012-10-04 住友化学株式会社 Electronic device, polymer compound, organic compound, and method of producing polymer compound
US20160005997A1 (en) * 2013-03-08 2016-01-07 Konica Minolta, Inc. Organic electroluminescent element and method of manufacturing organic electroluminescent element
CN111032339A (en) * 2017-08-25 2020-04-17 住友化学株式会社 Laminated film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9540526B2 (en) * 2012-10-19 2017-01-10 Konica Minolta, Inc. Gas barrier film and method for manufacturing gas barrier film
WO2014103756A1 (en) * 2012-12-25 2014-07-03 コニカミノルタ株式会社 Gas-barrier film
WO2015029732A1 (en) * 2013-08-27 2015-03-05 コニカミノルタ株式会社 Gas barrier film and process for manufacturing gas barrier film
JP6409258B2 (en) * 2013-09-03 2018-10-24 Jnc株式会社 Gas barrier film laminate and electronic component using the same
WO2015098672A1 (en) * 2013-12-26 2015-07-02 住友化学株式会社 Laminated film and flexible electronic device
TWI747382B (en) * 2020-07-15 2021-11-21 友達光電股份有限公司 Light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323273A (en) * 1999-05-07 2000-11-24 Dainippon Printing Co Ltd Electroluminescent element
WO2007034647A1 (en) * 2005-09-20 2007-03-29 Konica Minolta Holdings, Inc. Process for producing organic electroluminescent element and organic electroluminescent display device
JP2009239279A (en) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd Layered structure
WO2010103967A1 (en) * 2009-03-13 2010-09-16 コニカミノルタホールディングス株式会社 Organic electronic element and method for manufacturing same
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033233A1 (en) * 2004-09-21 2006-03-30 Konica Minolta Holdings, Inc. Transparent gas barrier film
JP4882508B2 (en) * 2006-05-23 2012-02-22 凸版印刷株式会社 Method for manufacturing organic electroluminescence device
JPWO2008032526A1 (en) * 2006-09-15 2010-01-21 コニカミノルタホールディングス株式会社 Method for producing flexible sealing film and organic electroluminescence device using the same
JP5251071B2 (en) * 2007-10-22 2013-07-31 凸版印刷株式会社 Barrier film and method for producing the same
JP5470944B2 (en) * 2009-03-19 2014-04-16 住友化学株式会社 Aromatic compound and electronic device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323273A (en) * 1999-05-07 2000-11-24 Dainippon Printing Co Ltd Electroluminescent element
WO2007034647A1 (en) * 2005-09-20 2007-03-29 Konica Minolta Holdings, Inc. Process for producing organic electroluminescent element and organic electroluminescent display device
JP2009239279A (en) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd Layered structure
WO2010103967A1 (en) * 2009-03-13 2010-09-16 コニカミノルタホールディングス株式会社 Organic electronic element and method for manufacturing same
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133465A1 (en) * 2011-03-28 2012-10-04 住友化学株式会社 Electronic device, polymer compound, organic compound, and method of producing polymer compound
US9306169B2 (en) 2011-03-28 2016-04-05 Sumitomo Chemical Company, Limited Electronic device, polymer compound, organic compound, and method of producing polymer compound
US20160005997A1 (en) * 2013-03-08 2016-01-07 Konica Minolta, Inc. Organic electroluminescent element and method of manufacturing organic electroluminescent element
CN111032339A (en) * 2017-08-25 2020-04-17 住友化学株式会社 Laminated film
CN111032339B (en) * 2017-08-25 2021-12-24 住友化学株式会社 Laminated film

Also Published As

Publication number Publication date
TW201228842A (en) 2012-07-16
JP2012084306A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5653122B2 (en) Organic electroluminescence device and method for producing the same
US9455408B2 (en) Layered structure, polymer, electroluminescent device, and photoelectric conversion device
WO2012046736A1 (en) Organic el device, and method for producing same
US9276237B2 (en) Method for producing organic EL element
US9306170B2 (en) Electronic device and polymer compound
WO2012133229A1 (en) Electronic device and polymer compound
WO2012133462A1 (en) Electronic device, polymer compound
JP5863307B2 (en) Method for manufacturing organic electroluminescence element
US8927978B2 (en) Organic EL element
US9006008B2 (en) Method for manufacturing organic electroluminescent element
WO2012128334A1 (en) Organic el element
WO2012011456A1 (en) Organic electroluminescence display device manufacturing method and organic electroluminescence display device
WO2012070575A1 (en) Light emitting device and method for producing light emitting device
WO2012011471A1 (en) Organic electroluminescence display device manufacturing method and organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830668

Country of ref document: EP

Kind code of ref document: A1