WO2012011456A1 - Organic electroluminescence display device manufacturing method and organic electroluminescence display device - Google Patents

Organic electroluminescence display device manufacturing method and organic electroluminescence display device Download PDF

Info

Publication number
WO2012011456A1
WO2012011456A1 PCT/JP2011/066307 JP2011066307W WO2012011456A1 WO 2012011456 A1 WO2012011456 A1 WO 2012011456A1 JP 2011066307 W JP2011066307 W JP 2011066307W WO 2012011456 A1 WO2012011456 A1 WO 2012011456A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituent
groups
represented
Prior art date
Application number
PCT/JP2011/066307
Other languages
French (fr)
Japanese (ja)
Inventor
小野 善伸
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012011456A1 publication Critical patent/WO2012011456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to a method for manufacturing an organic electroluminescence display device and an organic EL display device obtained by the manufacturing method.
  • An organic electroluminescence display device (hereinafter also referred to as an organic EL display device) includes a plurality of pixels composed of organic electroluminescence elements (hereinafter also referred to as organic EL elements), and is individually provided according to an image signal. An image is displayed by creating a pixel circuit for driving each organic EL element for each pixel.
  • the organic EL element constituting the organic EL display device has a basic structure in which a light emitting layer made of an organic light emitting material is formed between an anode and a cathode as a thin film.
  • a light emitting layer made of an organic light emitting material is formed between an anode and a cathode as a thin film.
  • the organic EL element having such a basic configuration when a voltage is applied between both electrodes, holes are injected from the anode and electrons are injected from the cathode. Light emission is generated by recombination of holes and electrons in the light emitting layer.
  • a predetermined organic layer is provided in addition to the light emitting layer.
  • a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like are provided as the predetermined organic layer.
  • a vacuum deposition method and a coating method are known. Since the coating method does not require a vacuum process, the organic EL display device can be easily increased in area and manufactured at low cost.
  • an electrode and an organic layer are sequentially laminated from the anode to the cathode, which is employed in Patent Document 1 (hereinafter sometimes referred to as “sequential lamination” for convenience).
  • Sequential lamination a manufacturing method in which an electrode and an organic layer are sequentially laminated from the cathode toward the anode.
  • the electron injection layer is usually made of an unstable material in the atmosphere.
  • the electron injection layer is formed by vapor deposition of an electron injection material such as Ba, BaO, NaF, or LiF, that is, by vapor deposition in a high vacuum.
  • the electron injecting material easily reacts with moisture and oxygen and chemically changes.
  • the manufacturing method by order lamination is employ
  • Patent Document 1 when the technique of Patent Document 1 is applied as it is to a method for manufacturing an organic EL display device by reverse stacking, a cathode and an electron injection layer are formed by vacuum deposition, and then a light emitting layer is formed by a coating method. When this light emitting layer is formed in the atmosphere, the electron injection layer easily reacts with moisture and oxygen and chemically changes.
  • An object of the present invention is to provide a method for manufacturing an organic EL display device by reverse stacking and a method for manufacturing the organic EL display device obtained by the manufacturing method.
  • the inventors of the present invention are that an ionic polymer having a specific structure has an excellent electron injection property and is stable in an atmosphere at normal pressure, and is dissolved in a solvent to form a solution, and the solution is formed into a film. It has been found that a stable electron injection layer can be obtained in an atmosphere of about normal pressure. The present invention has been made based on such knowledge.
  • the present invention provides an organic light emitting display device manufacturing method and an organic EL display device that employ the following configuration.
  • the term “in the atmosphere” means all atmospheres that allow the inclusion of oxygen and moisture in a broad sense for the purpose of the present invention. More specifically, it includes an unadjusted atmospheric atmosphere at ordinary temperature and normal pressure, and an atmosphere in which temperature, pressure, and components are adjusted with oxygen and moisture contained in the atmospheric atmosphere. included.
  • As the adjustment atmosphere a process for adjusting composition components such as nitrogen, hydrogen, oxygen, carbon dioxide, etc. with respect to the air atmosphere under the condition that the production method of the present invention including “coating” can be carried out, and a composition ratio thereof.
  • the degree of cleanliness of suspended particulates and suspended microorganisms may be adjusted, and environmental conditions such as temperature, humidity, and pressure are adjusted on condition that the production method of the present invention can be carried out.
  • An atmosphere that may be used is included, and the pressure is normally a normal pressure of 1013 hPa ⁇ 100 hPa.
  • one side in the thickness direction of the substrate may be referred to as upper (or upper), and the other in the thickness direction of the substrate may be referred to as lower (or lower).
  • This notation of the vertical relationship is set for convenience of explanation, and is not necessarily applied to a process in which an organic EL element is actually manufactured and a situation in which it is used.
  • An organic electroluminescence display having a plurality of pixels each composed of an organic electroluminescence element including an anode and a cathode, a light emitting layer positioned between the electrodes, and an electron injection layer positioned between the cathode and the light emitting layer.
  • a device manufacturing method comprising: Preparing a substrate on which a plurality of cathodes corresponding to each pixel are formed; Applying a solution containing an ionic polymer on each cathode and forming an electron injection layer by forming a film; A solution containing a light emitting material is applied on the electron injection layer and formed, or after forming a layer other than the light emitting layer on the electron injection layer, the light emitting material is applied on the layer.
  • the step of forming the light emitting layer includes forming a liquid repellent pattern in a region excluding the pixels, applying a solution containing a light emitting material inside the opening of the liquid repellent pattern, and forming a plurality of light emitting layers.
  • the manufacturing method of the organic electroluminescent display apparatus as described in said [1] which is a process of forming.
  • FIG. 1 is a schematic sectional view showing an embodiment of an organic EL display device according to the present invention.
  • FIG. 2A is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 2B is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 2C is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 2D is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 2E is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 2F is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 2G is a process explanatory diagram of the first embodiment of the method of manufacturing the organic EL display device according to the present invention.
  • FIG. 2H is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention.
  • FIG. 3A is a process explanatory diagram of a second embodiment of the method for manufacturing an organic EL display device according to the present invention.
  • FIG. 3B is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3C is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3D is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3E is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3F is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3G is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3H is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3I is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3J is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 3K is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention.
  • FIG. 4 is explanatory drawing of 3rd Embodiment of the manufacturing method of the organic electroluminescent display apparatus concerning this invention.
  • Substrate 2 Pixel electrode (cathode) 31 R pixel 32 G pixel 33 B pixel 4 Electron injection layer 5 a Liquid repellent pattern 5 Liquid repellent pattern 61 R light emitting layer 62 G light emitting layer 63 B light emitting layer 7 hole transport layer 8 hole injection layer 9 anode 501 first Bank layer 502 Second bank layer
  • the method for manufacturing an organic electroluminescence display device of the present invention includes an anode and a cathode, a light emitting layer positioned between the electrodes, and an electron injection layer positioned between the cathode and the light emitting layer.
  • a method of manufacturing an organic electroluminescence display device having a plurality of pixels each made of an organic electroluminescence element the step of preparing a substrate on which a plurality of cathodes corresponding to each pixel are formed, and on each of the cathodes, Applying a solution containing an ionic polymer and forming a film to form an electron injection layer; applying a solution containing a light emitting material on the electron injection layer and forming a film; or A process for forming a light emitting layer by forming a layer other than a light emitting layer on an electron injecting layer, and then applying a solution containing a light emitting material on the layer and forming a film. And forming an anode material on the light-emitting layer, or forming a layer other than the anode on the light-emitting layer and then forming an anode material on the layer to form an anode. Forming the step.
  • the organic electroluminescence display device of the present invention can be manufactured by the method for manufacturing an organic electroluminescence display device described above.
  • an ionic polymer serving as an electron injecting material capable of forming a stable electron injecting layer in an atmosphere of about normal pressure by forming a solution dissolved in a solvent will be described.
  • the configuration of the organic EL element will be described, and subsequently, the manufacturing method of the organic EL display device and the organic EL display device obtained by the manufacturing method will be described in detail.
  • the ionic polymer is stable not only at normal pressure but also in the atmosphere, compared to Ba, BaO, NaF, LiF and the like conventionally used as electron injection materials.
  • Examples of the ionic polymer that can be used in the present invention include structural units containing one or more groups selected from the group consisting of a group represented by the following formula (1) and a group represented by the following formula (2).
  • a structural unit containing one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) examples thereof include a polymer having 15 to 100 mol%.
  • Q 1 represents a divalent organic group
  • Y 1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R a ) 3 - represents
  • M 1 is an ammonium cation which does not have or have a metal cation or a substituent
  • Z 1 is F -, Cl -, Br - , I -, OH -, R a SO 3 -, R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 -, BF 4 - or PF 6 -
  • Q 2 represents a divalent organic group
  • Y 2 represents a carbocation, ammonium cation, phosphonyl cation or sulfonyl cation or iodonium cation
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 - or PF 6 - represents, Z 2 represents an ammonium cation which does not have or have a metal cation or
  • a polymer having a group represented by the following formula (3) can be mentioned.
  • the group represented by the formula (3) may be contained in the structural unit of the ionic polymer, and is represented by the formula (1). And may be contained in the same structural unit as the structural unit containing one or more groups selected from the group consisting of the group represented by formula (2), or may be contained in another different structural unit. It may be.
  • at least one of a group represented by the formula (1), a group represented by the formula (2), and a group represented by the following formula (3) is included. Examples thereof include polymers having 15 to 100 mol% of structural units in the total structural units.
  • Q 3 represents a divalent organic group
  • Y 3 represents —CN or a group represented by any of the following formulas (4) to (12)
  • n3 represents an integer of 0 or more.
  • R ′ represents a divalent hydrocarbon group with or without a substituent
  • R ′′ represents a hydrogen atom, a monovalent with or without a substituent
  • a hydrocarbon group —COOH, —SO 3 H, —OH, —SH, —NR c 2 , —CN or —C ( ⁇ O) NR c 2 , wherein R ′ ′′ has a substituent, or Represents a trivalent hydrocarbon group not having, a3 represents an integer of 1 or more, a4 represents an integer of 0 or more, and R c is an alkyl having 1 to 30 carbon atoms with or without a substituent.
  • An aryl group having 6 to 50 carbon atoms, with or without a group or substituent may be the same or different when there are a plurality of R ′, R ′′ and R ′ ′′.
  • the ionic polymer includes a structural unit represented by the following formula (13), a structural unit represented by the formula (15), a structural unit represented by the formula (17), and a structural unit represented by the formula (20). It is preferable that 15 to 100 mol% of one or more structural units selected from the group consisting of:
  • R 1 is a monovalent group containing a group represented by the following formula (14), and Ar 1 has a (2 + n4) valence with or without a substituent other than R 1.
  • N4 represents an integer of 1 or more, and when there are a plurality of R 1 s , they may be the same or different.
  • R 2 represents a (1 + m1 + m2) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above.
  • M1 and m2 each independently represent an integer of 1 or more, and when Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 and n3 are plural, They may be the same or different.
  • R 3 is a monovalent group including a group represented by the following formula (16), and Ar 2 has (2 + n5) valence with or without a substituent other than R 3.
  • N5 represents an integer of 1 or more, and when there are a plurality of R 3 s , they may be the same or different.
  • R 4 represents a (1 + m3 + m4) valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above.
  • M3 and m4 each independently represents an integer greater than or equal to 1.
  • R 5 is a monovalent group containing a group represented by the following formula (18)
  • R 6 is a monovalent group containing a group represented by the following formula (19)
  • Ar 3 represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6
  • n6 and n7 each independently represents an integer of 1 or more
  • R 5 and When there are a plurality of R 6 s they may be the same or different.
  • R 7 represents a direct bond or a (1 + m5) -valent organic group
  • Q 1 , Y 1 , M 1 , Z 1 , n1, a1, and b1 represent the same meaning as described above
  • m5 represents Represents an integer of 1 or more, and when there are a plurality of Q 1 , Y 1 , M 1 , Z 1 , n 1 , a 1 and b 1 , they may be the same or different.
  • R 8 represents a single bond or a (1 + m6) -valent organic group
  • Y 3 and n3 represent the same meaning as described above
  • m6 represents an integer of 1 or more, provided that R 8 is a single group.
  • M6 represents 1 when bonded, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • R 9 is a monovalent group containing a group represented by the following formula (21)
  • R 10 is a monovalent group containing a group represented by the following formula (22)
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group having or not having a substituent other than R 9 and R 10
  • n8 and n9 each independently represents an integer of 1 or more
  • R 9 and When there are a plurality of R 10 s they may be the same or different.
  • R 11 represents a single bond or a (1 + m7) -valent organic group
  • Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 represent the same meaning as described above
  • m 7 represents Represents an integer of 1 or more, provided that when R 11 is a single bond, m7 represents 1, and when there are a plurality of Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 , they are the same or different. May be.
  • R 12 represents a single bond or a (1 + m8) -valent organic group
  • Y 3 and n3 represent the same meaning as described above
  • m8 represents an integer of 1 or more, provided that R 12 is a single group.
  • m8 represents 1, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • the structural unit in the ionic polymer may contain two or more groups represented by the formula (1), may contain two or more groups represented by the formula (2), Two or more groups represented by 3) may be included.
  • examples of the divalent organic group represented by Q 1 include a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, , 3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, at least one of these groups
  • Alkeni with 2 to 50 carbon atoms A divalent unsaturated hydrocarbon group having 2 to 50 carbon atoms, including or not having a substituent, including an ethylene group and an ethynylene group; a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexane Number of carbon atoms with or without a substituent, such as a xylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • an alkyleneoxy group having 1 to 50 carbon atoms; an imino group having a substituent containing a carbon atom; and a silylene group having a substituent containing a carbon atom are preferable from the viewpoint of ease of synthesis of a monomer that is a raw material for the ionic polymer (hereinafter referred to as “raw material monomer”).
  • substituents examples include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, Substituted amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, hydroxy group, carboxyl group, substituted carboxyl group, cyano group And when a plurality of the substituents are present, they may be the same or different. Of these, substituents other than amino groups, silyl groups, halogen atoms, hydroxy groups, and nitro groups contain carbon atoms.
  • C m -C n (m, n is a positive integer satisfying m ⁇ n) indicates that the organic group described together with this term has m to n carbon atoms.
  • a C m -C n alkyl group indicates that the alkyl group has m to n carbon atoms
  • a C m -C n alkyl aryl group indicates that the alkyl group has m carbon atoms of m to n.
  • n represents an aryl-C m -C n alkyl group, the alkyl group has m to n carbon atoms.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, Nonyl group, decyl group, lauryl group and the like can be mentioned.
  • the hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • fluorine atom-substituted alkyl group examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group and lauryl group.
  • the alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent.
  • the alkoxy group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples thereof include an oxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • the fluorine atom-substituted alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the alkoxy group also includes a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • Examples of the C 1 to C 12 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent.
  • the alkylthio group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, an s-butylthio group, a t-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, An octylthio group, a nonylthio group, a decylthio group, a laurylthio group, etc. are mentioned.
  • a hydrogen atom in the alkylthio group may be substituted with a fluorine atom.
  • fluorine atom-substituted alkylthio group examples include a trifluoromethylthio group.
  • An aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon, a group having a benzene ring, a group having a condensed ring, an independent benzene ring or A group in which two or more condensed rings are bonded through a single bond or a divalent organic group, for example, an alkenylene group such as a vinylene group is also included.
  • the aryl group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • aryl group examples include a phenyl group, a C 1 to C 12 alkoxyphenyl group, a C 1 to C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and 9- Anthracenyl group etc. are mentioned.
  • a hydrogen atom in the aryl group may be substituted with a fluorine atom.
  • the fluorine atom-substituted aryl group include a pentafluorophenyl group.
  • aryl groups a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group are preferable.
  • examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, and an s-butoxyphenyl group.
  • examples of the C 1 -C 12 alkylphenyl group include a methylphenyl group, an ethylphenyl group, a dimethylphenyl group, a propylphenyl group, a mesityl group, a methylethylphenyl group, an isopropylphenyl group, and a butylphenyl group.
  • the aryloxy group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferred.
  • examples of the C 1 -C 12 alkoxyphenoxy group include methoxyphenoxy group, ethoxyphenoxy group, propyloxyphenoxy group, isopropyloxyphenoxy group, butoxyphenoxy group, isobutoxyphenoxy group, s-butoxy group.
  • Phenoxy group t-butoxyphenoxy group, pentyloxyphenoxy group, hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group 3,7-dimethyloctyloxyphenoxy group, lauryloxyphenoxy group and the like.
  • examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, and a methylethylphenoxy group.
  • the arylthio group is, for example, a group in which a sulfur element is bonded to the aforementioned aryl group.
  • the arylthio group may have a substituent on the aromatic ring of the aryl group.
  • the arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms.
  • Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group is, for example, a group in which the above alkyl group is bonded to the above aryl group.
  • the arylalkyl group may have a substituent.
  • the arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkyl group examples include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, Examples thereof include a 1 -naphthyl-C 1 -C 12 alkyl group and a 2-naphthyl-C 1 -C 12 alkyl group.
  • the arylalkoxy group is, for example, a group in which the above alkoxy group is bonded to the above aryl group.
  • the arylalkoxy group may have a substituent.
  • the arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms.
  • Examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, Examples include 1 -naphthyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group.
  • the arylalkylthio group is, for example, a group in which the aforementioned alkylthio group is bonded to the aforementioned aryl group.
  • the arylalkylthio group may have a substituent.
  • the arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkylthio group examples include a phenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkoxyphenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkylphenyl-C 1 to C 12 alkylthio group, Examples thereof include a 1 -naphthyl-C 1 -C 12 alkylthio group and a 2-naphthyl-C 1 -C 12 alkylthio group.
  • the arylalkenyl group is, for example, a group in which an alkenyl group is bonded to the aforementioned aryl group.
  • the arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • arylalkenyl groups include phenyl-C 2 -C 12 alkenyl groups, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl groups, C 1 -C 12 alkylphenyl -C 2 -C 12 alkenyl groups, Examples thereof include 1-naphthyl-C 2 -C 12 alkenyl group, 2-naphthyl-C 2 -C 12 alkenyl group and the like. Among these, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group and a C 2 -C 12 alkylphenyl-C 2 -C 12 alkenyl group are preferable.
  • Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl. Group, 2-hexenyl group and 1-octenyl group.
  • the arylalkynyl group is, for example, a group in which an alkynyl group is bonded to the aforementioned aryl group.
  • the arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • arylalkynyl group for example, a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, Examples include a 1-naphthyl-C 2 -C 12 alkynyl group, a 2-naphthyl-C 2 -C 12 alkynyl group, and the like.
  • a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group and a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group are preferable.
  • the C 2 to C 12 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group. Group, 2-hexynyl group and 1-octynyl group.
  • the substituted amino group at least one hydrogen atom in the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group.
  • the amino group formed is preferred.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted amino group is usually 1 to 60 excluding the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 2 to 48 are preferred.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, s- Butylamino group, t-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group , lauryl group, a cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethyl
  • Examples of the substituted silyl group include, for example, 1 to 3 groups in which at least one hydrogen atom in the silyl group is selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. And a silyl group substituted by.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted silyl group is usually 1 to 60 without including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 3 to 48 are preferred.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyl.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the imine residue means a residue obtained by removing one hydrogen atom in this structure from an imine compound having a structure represented by at least one of the formula: HN ⁇ C ⁇ and the formula: —N ⁇ CH—.
  • imine compounds include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, and aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like. It is done.
  • the number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18.
  • Examples of the imine residue include a general formula: —CR ⁇ ⁇ N—R ⁇ or a general formula: —N ⁇ C (R ⁇ ) 2 (where R ⁇ is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl) A group, an arylalkenyl group, or an arylalkynyl group, and R ⁇ independently represents an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, provided that two R ⁇ are present.
  • Two R ⁇ are bonded to each other to form a divalent group, for example, an alkylene group having 2 to 18 carbon atoms such as an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc. As a ring may be formed.).
  • the imine residue include the following groups.
  • the amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms.
  • Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
  • the acid imide group is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide, and usually has 4 to 20 carbon atoms and preferably 4 to 18 carbon atoms.
  • Examples of the acid imide group include the following groups.
  • the monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the monovalent heterocyclic group may have a substituent.
  • the monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms.
  • the number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of such a monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, Examples include a pyrazinyl group, a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.
  • a thienyl group, a C 1 -C 12 alkyl thienyl group, a pyridyl group, and a C 1 -C 12 alkyl pyridyl group are preferable.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the substituted carboxyl group is a group in which a hydrogen atom in a carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, that is, a formula: —C ( ⁇ O) OR * (formula R * is a group represented by an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
  • the substituted oxycarbonyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms does not include the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group, or monovalent heterocyclic group may have.
  • the substituted carboxyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, an s-butoxycarbonyl group, a t-butoxycarbonyl group, and a pentyloxycarbonyl group.
  • Y 1 is, -CO 2 -, -SO 3 - , -SO 2 -, -PO 3 -, or -B (R a) 3 - represents a monovalent group such as, Y 1 Is preferably —CO 2 ⁇ , —SO 2 ⁇ , —PO 3 — from the viewpoint of the acidity of the ionic polymer, more preferably —CO 2 — , and from the viewpoint of the stability of the ionic polymer, CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 — is preferred.
  • M 1 represents a metal cation or an ammonium cation with or without a substituent.
  • the metal cation monovalent, divalent or trivalent ions are preferable, and Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Examples thereof include ions such as Sn, Ti, V, W, Y, Yb, Zn, and Zr.
  • Li + , Na + , K + , Cs + , Ag + , Mg 2+ , and Ca 2+ are preferable.
  • Examples of the substituent that the ammonium ion may have include, for example, 1 carbon atom such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, i-butyl group, and t-butyl group. Up to 10 alkyl groups.
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n1 represents an integer of 0 or more, and is preferably an integer of 0 to 8, more preferably an integer of 0 to 2, from the viewpoint of synthesis of raw material monomers.
  • a1 represents an integer of 1 or more
  • b1 represents an integer of 0 or more.
  • a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 has a monovalent metal cation or substituent.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 ——
  • M 1 is a divalent metal cation
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 is a trivalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
  • R a represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent, and these groups have Examples of the substituent which may be included include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R a is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, Carbons having 1 to 20 carbon atoms such as nonyl, decyl, lauryl, etc., carbons such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl Examples thereof include aryl groups having 6 to 30 atoms.
  • Examples of the group represented by the formula (1) include the following groups.
  • the divalent organic group represented by Q 2 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above, the raw material monomers for synthesis From the viewpoint of ease, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • the group exemplified as the example of the divalent organic group represented by Q 2 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above.
  • a substituent is mentioned. When a plurality of substituents are present, they may be the same or different.
  • Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation, or an iodonium cation.
  • the carbocation for example, -C + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • ammonium cations include: -N + R 3 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • Examples of phosphonyl cations include: -P + R 3 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • Examples of the sulfonyl cation include: -S + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • As an iodonium cation for example, -I + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation from the viewpoint of ease of synthesis of the raw material monomer and stability of the raw material monomer and the ionic polymer against air, moisture or heat. Are preferred, and ammonium cations are more preferred.
  • Z 2 represents a metal cation or an ammonium cation with or without a substituent.
  • the metal cation monovalent, divalent or trivalent ions are preferable, and Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Examples thereof include ions such as Sn, Ti, V, W, Y, Yb, Zn, and Zr.
  • Examples of the substituent that the ammonium cation may have include, for example, 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, and t-butyl group. Of the alkyl group.
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n2 represents an integer of 0 or more, preferably an integer of 0 to 6, and more preferably an integer of 0 to 2.
  • a2 represents an integer of 1 or more
  • b2 represents an integer of 0 or more.
  • a2 and b2 are selected such that the charge of the group represented by the formula (2) is zero.
  • a2 is preferably an integer of 1 to 3, more preferably 1 or 2.
  • R b represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent, and these groups have Examples of the substituent which may be included include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R b is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, Carbons having 1 to 20 carbon atoms such as nonyl, decyl, lauryl, etc., carbons such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl Examples thereof include aryl groups having 6 to 30 atoms.
  • Examples of the group represented by the formula (2) include the following groups.
  • examples of the divalent organic group represented by Q 3 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. Among these, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • the group mentioned as an example of the divalent organic group represented by Q 3 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above.
  • a substituent is mentioned. When a plurality of substituents are present, they may be the same or different.
  • the divalent organic group represented by Q 3 is preferably a group represented by — (CH 2 ) —.
  • N3 represents an integer of 0 or more, preferably an integer of 0 to 20, and more preferably an integer of 0 to 8.
  • Y 3 represents —CN or a group represented by any one of formulas (4) to (12).
  • examples of the divalent hydrocarbon group represented by R ′ include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2 -Butylene group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, A divalent saturated hydrocarbon group having 1 to 50 carbon atoms, with or without a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent; an ethenylene group, a propenylene group, 3- A butenylene group, a 2-butenylene group, a 2-pentenylene group, a 2-hexenylene group, a 2-nonenylene group, a 2-dodecenylene group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the
  • a substitution such as a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, a pentyleneoxy group, a hexyleneoxy group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Examples thereof include an alkyleneoxy group having 1 to 50 carbon atoms which may or may not have a group.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • examples of the monovalent hydrocarbon group represented by R ′′ include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and an s-butyl group.
  • T-butyl group pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc.
  • Alkyl groups having 1 to 20 carbon atoms with or without substituents phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, etc.
  • an aryl group having 6 to 30 carbon atoms which may or may not have a substituent, such as a group in which at least one hydrogen atom in the group is substituted with a substituent.
  • a substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • examples of the trivalent hydrocarbon group represented by R ′ ′′ include a methanetriyl group, an ethanetriyl group, a 1,2,3-propanetriyl group, and a 1,2,4-butanetriyl group.
  • a methanetriyl group, an ethanetriyl group, a 1,2,4-benzenetriyl group, and a 1,3,5-benzenetriyl group are preferable.
  • the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R c is preferably a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group or a 2-naphthyl group from the viewpoint of solubility of the ionic polymer.
  • a3 represents an integer of 1 or more, and an integer of 3 to 10 is preferable.
  • a4 represents an integer of 0 or more.
  • a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
  • Y 3 is —CN, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (10), from the viewpoint of ease of synthesis of the raw material monomer.
  • a group represented by the formula (11) is preferable, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (11) are more preferable, and the following groups are particularly preferable: preferable.
  • the ionic polymer used in the present invention includes a structural unit represented by the formula (13), a structural unit represented by the formula (15), a structural unit represented by the formula (17), and the formula (20). ), And more preferably an ionic polymer having 15 to 100 mol% of the structural units in all the structural units.
  • R 1 is a monovalent group containing a group represented by formula (14), and Ar 1 has a (2 + n4) -valent aromatic group with or without a substituent other than R 1. Represents a group, and n4 represents an integer of 1 or more.
  • the group represented by the formula (14) may be directly bonded to Ar 1, and includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a nonylene group, a dodecylene group, a cyclopropylene group, Substitution, such as a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent Alkylene group having 1 to 50 carbon atoms with or without a group; oxymethylene group, oxyethylene group, oxypropylene group, oxybutylene group, oxypentylene group, oxyhexylene group, oxynonylene group,
  • Ar 1 may have a substituent other than R 1 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 1 possessed by Ar 1 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer.
  • n4 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n4) -valent aromatic group represented by Ar 1 in formula (13) include a (2 + n4) -valent aromatic hydrocarbon group and a (2 + n4) -valent aromatic heterocyclic group. Or a (2 + n4) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n4) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; a group consisting of the monocyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the above are condensed; and consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aromatic ring assembly include the following rings.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • the (2 + n4) -valent aromatic group includes (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group obtained by removing (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred. More preferred is a group in which (2 + n4) hydrogen atoms have been removed from the ring formed.
  • examples of the (1 + m1 + m2) -valent organic group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m1 + m2) hydrogen atoms from an alkyl group a group obtained by removing (m1 + m2) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m1 + m2) hydrogen atoms have been removed is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • R 3 is a monovalent group containing a group represented by the formula (16)
  • Ar 2 is a (2 + n5) -valent aromatic having or not having a substituent other than R 3. Represents a group, and n5 represents an integer of 1 or more.
  • the group represented by the formula (16) may be directly bonded to Ar 2, and includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a nonylene group, a dodecylene group, a cyclopropylene group, Substitution, such as a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent Alkylene group having 1 to 50 carbon atoms with or without a group; oxymethylene group, oxyethylene group, oxypropylene group, oxybutylene group, oxypentylene group, oxyhexylene group, oxynonylene group,
  • Ar 2 may have a substituent other than R 3 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 3 in Ar 2 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer.
  • n5 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n5) -valent aromatic group represented by Ar 2 in the formula (15) include a (2 + n5) -valent aromatic hydrocarbon group and a (2 + n5) -valent aromatic heterocyclic group. Or a (2 + n5) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n5) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; a group consisting of the monocyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the above are condensed; and consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring
  • Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 12 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
  • the (2 + n5) -valent aromatic group includes (2 + n5) hydrogen atoms from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group obtained by removing (2 + n5) hydrogen atoms from the ring represented by formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and a group represented by formula 1, 37, or 41 is preferred. And more preferably a group in which (2 + n5) hydrogen atoms have been removed from the ring.
  • n3 and m4 each independently represent an integer of 1 or more.
  • examples of the (1 + m3 + m4) -valent organic group represented by R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • R 5 is a monovalent group including a group represented by Formula (18)
  • R 6 is a monovalent group including a group represented by Formula (19)
  • Ar 3 Represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6 , and n6 and n7 each independently represents an integer of 1 or more.
  • the group represented by the formula (18) and the group represented by the formula (19) may be directly bonded to Ar 3, and include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, Nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and at least one hydrogen atom in these groups
  • Ar 3 may have a substituent other than R 5 and R 6 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 5 and R 6 possessed by Ar 3 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
  • n6 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • n7 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n6 + n7) -valent aromatic group represented by Ar 3 in the formula (17) include a (2 + n6 + n7) -valent aromatic hydrocarbon group, a (2 + n6 + n7) -valent aromatic heterocyclic group, and a carbon atom. Or a (2 + n6 + n7) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n6 + n7) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from a monocyclic aromatic ring such as an imidazole ring or an oxazole ring; a condensation in which two or more rings selected from the group consisting of the monocyclic aromatic rings are condensed A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from the polycyclic aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring;
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
  • the (2 + n6 + n7) -valent aromatic group is a ring represented by the formula 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 from the viewpoint of ease of synthesis of the raw material monomer.
  • a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring is preferred, and a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring represented by formula 1, 37 or 41 is more preferred, represented by formula 1, 38 or 42
  • a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring is more preferable.
  • R 7 represents a single bond or a (1 + m5) -valent organic group, and is preferably a (1 + m5) -valent organic group.
  • examples of the (1 + m5) -valent organic group represented by R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which m5 hydrogen atoms have been removed, a group in which m5 hydrogen atoms have been removed from an aryl group, and a group in which m5 hydrogen atoms have been removed from an alkoxy group are preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m5 represents an integer of 1 or more, provided that m5 represents 1 when R 7 is a single bond.
  • R 8 represents a single bond or a (1 + m6) -valent organic group, and is preferably a (1 + m6) -valent organic group.
  • examples of the (1 + m6) -valent organic group represented by R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing m6 hydrogen atoms from an alkyl group a group obtained by removing m6 hydrogen atoms from an aryl group, and m6 hydrogen atoms from an alkoxy group.
  • a group excluding is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m6 represents an integer of 1 or more, provided that m6 represents 1 when R 8 is a single bond.
  • R 9 is a monovalent group including a group represented by Formula (21)
  • R 10 is a monovalent group including a group represented by Formula (22)
  • Ar 4 Represents a (2 + n8 + n9) -valent aromatic group having or not having a substituent other than R 9 and R 10 , and n8 and n9 each independently represents an integer of 1 or more.
  • the group represented by the formula (21) and the group represented by the formula (22) may be directly bonded to Ar 4, and include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, Nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and at least one hydrogen atom in these groups
  • Ar 4 may have a substituent other than R 9 and R 10 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • the substituent other than R 9 and R 10 possessed by Ar 4 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
  • n8 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • n9 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n8 + n9) -valent aromatic group represented by Ar 4 in the formula (20) include a (2 + n8 + n9) -valent aromatic hydrocarbon group and a (2 + n8 + n9) -valent aromatic heterocyclic group. Or a (2 + n8 + n9) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms.
  • Examples of the (2 + n8 + n9) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, A (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from a monocyclic aromatic ring such as an imidazole ring; a condensed polycyclic ring in which two or more rings selected from the group consisting of the monocyclic aromatic rings are condensed (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from the aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring, (2 + n8 +
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
  • the (2 + n8 + n9) -valent aromatic group is a ring represented by the formula 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 from the viewpoint of ease of synthesis of the raw material monomer.
  • a group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring represented by formula 1, 37 or 41 is more preferable.
  • R 11 represents a single bond or a (1 + m7) -valent organic group, and is preferably a (1 + m7) -valent organic group.
  • examples of the (1 + m7) -valent organic group represented by R 11 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing m7 hydrogen atoms from an alkyl group a group obtained by removing m7 hydrogen atoms from an aryl group, and m7 hydrogen atoms from an alkoxy group.
  • a group excluding is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m7 represents an integer of 1 or more, provided that m7 represents 1 when R 11 is a single bond.
  • R 12 represents a single bond or a (1 + m8) valent organic group, and is preferably a (1 + m8) valent organic group.
  • examples of the (1 + m8) -valent organic group represented by R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which m8 hydrogen atoms are removed from an alkyl group a group in which m8 hydrogen atoms are removed from an aryl group, and m8 hydrogen atoms from an alkoxy group.
  • a group excluding is preferred.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
  • m8 represents an integer of 1 or more, provided that m8 represents 1 when R 12 is a single bond.
  • R 13 represents a (1 + m9 + m10) valent organic group
  • R 14 represents a monovalent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1 , A1, b1, and n3 represent the same meaning as described above
  • m9 and m10 each independently represent an integer of 1 or more
  • b1 and n3 represent the same meaning as described above
  • m9 and m10 each independently represent an integer of 1 or more
  • b1 and n3 When there are a plurality of b1 and n3, they may be the same or different.
  • examples of the (1 + m9 + m10) -valent organic group represented by R 13 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, and t-butyl.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • examples of the monovalent organic group represented by R 14 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, It has a substituent such as a pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • Examples of the structural unit represented by the formula (23) include the following structural units.
  • R 13 represents a (1 + m11 + m12) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above.
  • M11 and m12 each independently represents an integer of 1 or more, and R 13 , m 11, m 12, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 When there are a plurality of each, they may be the same or different.
  • examples of the (1 + m11 + m12) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m11 + m12) hydrogen atoms from a reel group methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc.
  • a group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group a group obtained by removing (m11 + m12) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m11 + m12) hydrogen atoms have been removed is preferred.
  • Examples of the structural unit represented by the formula (24) include the following structural units.
  • the structural unit represented by the formula (13) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 15 represents a (1 + m13 + m14) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above.
  • the stands, m13, m14 and m15 represent each independently an integer of 1 or more, R 15, m13, m14, Q 1, Q 3, Y 1, M 1, Z 1, Y 3, n1, a1, b1 and When there are a plurality of n3s, they may be the same or different.
  • examples of the (1 + m13 + m14) -valent organic group represented by R 15 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m13 + m14) hydrogen atoms from a reel group methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc.
  • a group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group a group obtained by removing (m13 + m14) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m13 + m14) hydrogen atoms have been removed is preferred.
  • Examples of the structural unit represented by the formula (25) include the following structural units.
  • the structural unit represented by the formula (15) is preferably a structural unit represented by the formula (26) or a structural unit represented by the formula (27) from the viewpoint of electron transport properties of the obtained ionic polymer.
  • the structural unit represented by formula (27) is more preferred.
  • R 16 represents a (1 + m16 + m17) valent organic group
  • R 17 represents a monovalent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2 , a2, b2 and n3 represent the same as defined above, m16 and represent an integer of 1 or more, respectively m17 independently, Q 2, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2 , B2 and n3 may be the same or different when there are a plurality of each.
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m16 + m17) hydrogen atoms are removed is preferred.
  • examples of the monovalent organic group represented by R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, It has a substituent such as a pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • a group in which one hydrogen atom is removed from an alkyl group, a group in which one hydrogen atom is removed from an aryl group, and one hydrogen atom from an alkoxy group Groups other than are preferred.
  • Examples of the structural unit represented by the formula (26) include the following structural units.
  • R 16 represents a (1 + m16 + m17) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above.
  • they may be the same or different.
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m16 + m17) hydrogen atoms are removed is preferred.
  • Examples of the structural unit represented by the formula (27) include the following structural units.
  • the structural unit represented by the formula (28) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 18 represents a (1 + m18 + m19) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above.
  • M18, m19 and m20 each independently represents an integer of 1 or more, and R 18 , m18, m19, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2 and When there are a plurality of n3s, they may be the same or different.
  • examples of the (1 + m18 + m19) -valent organic group represented by R 18 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m18 + m19) hydrogen atoms from a reel group methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc.
  • a group obtained by removing (m18 + m19) hydrogen atoms from an alkyl group a group obtained by removing (m18 + m19) hydrogen atoms from an aryl group, and an alkoxy group ( A group excluding m18 + m19) hydrogen atoms is preferred.
  • Examples of the structural unit represented by the formula (28) include the following structural units.
  • R 19 represents a single bond or a (1 + m21) -valent organic group
  • R 20 represents a single bond or a (1 + m22) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m21 and m22 independently, provided that when R 19 is a single bond m21 represents 1 , R 20 is a single bond, m22 represents 1 , and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 each have the same or different It may be.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 each have the same or different It may be.
  • examples of the (1 + m21) -valent organic group represented by R 19 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m21) hydrogen atoms from an alkyl group a group obtained by removing (m21) hydrogen atoms from an aryl group, and an alkoxy group ( A group excluding m21) hydrogen atoms is preferred.
  • examples of the (1 + m22) -valent organic group represented by R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m22) hydrogen atoms from an alkyl group, a group obtained by removing (m22) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m22) hydrogen atoms are removed is preferred.
  • Examples of the structural unit represented by the formula (29) include the following structural units.
  • the structural unit represented by the formula (17) is preferably a structural unit represented by the formula (30) from the viewpoint of durability of the obtained ionic polymer.
  • R 21 represents a single bond or a (1 + m23) -valent organic group
  • R 22 represents a single bond or a (1 + m24) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m23 and m24 independently, provided that when R 21 is a single bond m23 represents 1 when R 22 is a single bond m24 represents 1, represents an integer of 1 or more, respectively m25 and m26 independently, m23, m24, R 21, R 22, Q 1, Q 3, Y 1, M 1, When there are a plurality of Z 1 , Y 3 , n1, a1, b1, and n3, they may be the same or different.
  • Z 1 , Y 3 , n1, a1, b1, and n3 they may be the same or different.
  • examples of the (1 + m23) -valent organic group represented by R 21 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m23) hydrogen atoms from an alkyl group, a group obtained by removing (m23) hydrogen atoms from an aryl group, and an alkoxy group is preferable.
  • examples of the (1 + m24) -valent organic group represented by R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m24) hydrogen atoms from an alkyl group a group obtained by removing (m24) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m24) hydrogen atoms are removed is preferred.
  • Examples of the structural unit represented by the formula (30) include the following structural units.
  • R 23 represents a single bond or a (1 + m27) -valent organic group
  • R 24 represents a single bond or a (1 + m28) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 represent the same meaning as described above
  • m 27 and m 28 each independently represent an integer of 1 or more, provided that m 27 represents 1 when R 23 is a single bond.
  • m28 represents 1, and when Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are plural, they are the same or different It may be. ]
  • examples of the (1 + m27) -valent organic group represented by R 23 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m27) hydrogen atoms from an alkyl group a group obtained by removing (m27) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m27) hydrogen atoms have been removed is preferred.
  • examples of the (1 + m28) -valent organic group represented by R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m28) hydrogen atoms from an alkyl group a group obtained by removing (m28) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m28) hydrogen atoms have been removed is preferred.
  • Examples of the structural unit represented by the formula (31) include the following structural units.
  • the structural unit represented by the formula (20) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 25 represents a single bond or a (1 + m29) -valent organic group
  • R 26 represents a single bond or a (1 + m30) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2, Y 3, n2 , a2, b2 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m29 and m30 independently, provided that when R 25 is a single bond m29 represents 1 , R 26 is a single bond, m30 represents 1, m31 and m32 each independently represents an integer of 1 or more, m29, m30, R 25 , R 26 , Q 2 , Q 3 , Y 2 , M 2 , When there are a plurality of Z 2 , Y 3 , n 2, a 2, b 2 and n 3, they may be the same or different.
  • Z 2 , Y 3 , n 2, a 2, b 2 and n 3 they may be the
  • examples of the (1 + m29) -valent organic group represented by R 25 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m29) hydrogen atoms from an alkyl group a group obtained by removing (m29) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m29) hydrogen atoms are removed is preferred.
  • examples of the (1 + m30) -valent organic group represented by R 26 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m30) hydrogen atoms from an alkyl group a group obtained by removing (m30) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m30) hydrogen atoms have been removed is preferred.
  • Examples of the structural unit represented by the formula (32) include the following structural units.
  • the ionic polymer used in the present invention may further have one or more structural units represented by the formula (33).
  • Ar 5 represents a divalent aromatic group with or without a substituent or a divalent aromatic amine residue with or without a substituent
  • X ′ represents a substituted group.
  • m33 and m34 are each independently 0 or 1
  • at least one of m33 and m34 is 1.
  • Examples of the divalent aromatic group represented by Ar 5 in formula (33) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • Examples of the divalent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, and a furan ring.
  • a divalent group obtained by removing two hydrogen atoms from a monocyclic aromatic ring such as pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, oxadiazole ring, azadiazole ring, etc .;
  • Two adjacent aromatic rings are methylene and ethylene , A carbonyl group, and a divalent group in which two hydrogen atoms are removed
  • the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
  • the number of aromatic rings to be connected is preferably 2 to 4, more preferably 2 to 3, and even more preferably 2 from the viewpoint of solubility.
  • the number of aromatic rings to be bridged is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aromatic ring assembly include the following rings.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • the divalent aromatic group represented by Ar 5 is represented by the formulas 45 to 60, 61 to 71, 77 to 80, A divalent group obtained by removing two hydrogen atoms from the ring represented by 91, 92, 93 or 96 is preferred, and the ring represented by the formula 45 to 50, 59, 60, 77, 80, 91, 92 or 96 A divalent group in which two hydrogen atoms are removed from is more preferable.
  • the above divalent aromatic group may have a substituent.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above.
  • Examples of the divalent aromatic amine residue represented by Ar 5 in formula (33) include a group represented by formula (34).
  • Ar 6 , Ar 7 , Ar 8 and Ar 9 are each independently an arylene group having or not having a substituent, or a divalent heterocyclic ring having or without a substituent.
  • Each of Ar 10 , Ar 11 and Ar 12 independently represents an aryl group with or without a substituent or a monovalent heterocyclic group with or without a substituent, and n10 and m35 represents 0 or 1 each independently.
  • Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group may have include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, Aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue , Substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryl Oxycarbonyl group,
  • the substituent is vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, small ring (cyclopropyl group) , A group having a cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.), a lactone group, a lactam group, or a group containing a structure of a siloxane derivative.
  • the carbon atom in Ar 6 and the carbon atom in Ar 8 may be directly bonded, or may be bonded through a divalent group such as —O— or —S—. .
  • the aryl group and monovalent heterocyclic group represented by Ar 10 , Ar 11 and Ar 12 are the same as the aryl group and monovalent heterocyclic group described and exemplified above as the substituent.
  • Examples of the arylene group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon, Examples thereof include a group having a benzene ring, a group having a condensed ring, a group in which two or more independent benzene rings or condensed rings are bonded through a single bond or a divalent organic group, for example, an alkenylene group such as a vinylene group. .
  • the arylene group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • the arylene group include a phenylene group, a biphenylene group, a C 1 to C 17 alkoxyphenylene group, a C 1 to C 17 alkylphenylene group, a 1-naphthylene group, a 2-naphthylene group, a 1-anthracenylene group, and a 2-anthracenylene group. Group, 9-anthracenylene group.
  • a hydrogen atom in the aryl group may be substituted with a fluorine atom.
  • the fluorine atom-substituted aryl group include a tetrafluorophenylene group.
  • a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
  • Examples of the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the divalent heterocyclic group may have a substituent.
  • the divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms.
  • the number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of such a divalent heterocyclic group include a thiophene diyl group, a C 1 -C 12 alkylthiophene diyl group, a pyrrole diyl group, a furandiyl group, a pyridinediyl group, a C 1 -C 12 alkylpyridine diyl group, and a pyridazine.
  • diyl group a pyrimidine-diyl group, a pyrazinediyl group, a triazine-diyl group, pyrrolidinediyl group, piperidine-diyl group, quinolinediyl group, and isoquinoline-diyl group, among others, a thiophene-diyl group, C 1 ⁇ C 12 alkyl thiophenediyl group, pyridinediyl More preferred are groups and C 1 -C 12 alkylpyridinediyl groups.
  • the ionic polymer containing a divalent aromatic amine residue as a structural unit may further have another structural unit.
  • other structural units include arylene groups such as a phenylene group and a fluorenediyl group. Of these ionic polymers, those containing a crosslinking group are preferred.
  • examples of the divalent aromatic amine residue represented by the formula (34) include groups obtained by removing two hydrogen atoms from the aromatic amine represented by the following formulas 101 to 110.
  • the aromatic amines represented by formulas 101 to 110 may have a substituent as long as a divalent aromatic amine residue can be generated, and as the substituent, in the description of Q 1 described above, Examples of the substituent are the same as the exemplified substituents, and when a plurality of substituents are present, they may be the same or different.
  • X ′ represents an imino group with or without a substituent, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group.
  • Examples of the substituent that the imino group, silyl group or ethenylene group may have include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, Alkyl groups having 1 to 20 carbon atoms such as pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group; phenyl group Aryl groups having 6 to 30 carbon atoms such as 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, etc., and when there are a plurality of substituents
  • X ′ is preferably an imino group, an ethenylene group or an ethynylene group.
  • m33 is preferably 1 and m34 is preferably 0.
  • the structural unit represented by the formula (33) is preferable from the viewpoint of electron acceptability of the ionic polymer.
  • Ar 13 represents a pyridinediyl group with or without a substituent, a pyrazinediyl group with or without a substituent, a pyrimidinediyl group with or without a substituent, a substituted A pyridazinediyl group with or without a group or a triazinediyl group with or without a substituent is represented.
  • Examples of the substituent that the pyridinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different. Examples of the substituent that the pyrazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different. Examples of the substituent that the pyrimidinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyridazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different. Examples of the substituent that the triazinediyl group may have include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the structural unit represented by the formula (13), the structural unit represented by the formula (15), the structural unit represented by the formula (17), and the formula (20) From the viewpoint of the light emission efficiency of the organic EL device, the total proportion of the structural units represented is more preferably 30 to 100 mol% in all the structural units contained in the ionic polymer excluding the terminal structural unit. preferable.
  • terminal structural unit (terminal group) of the ionic polymer used in the present invention examples include a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group , S-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group,
  • the ionic polymer used in the present invention is preferably a conjugated compound.
  • the ionic polymer used in the present invention is a conjugated compound when the ionic polymer has multiple bonds (for example, double bonds, triple bonds) or nitrogen atoms, oxygen atoms, etc. in the main chain. It means that the pair includes a region that is continuous with one single bond.
  • the ionic polymer is a conjugated compound, from the viewpoint of electron transport properties of the conjugated compound, ⁇ (The number of atoms on the main chain contained in a region where multiple bonds or unshared electron pairs of nitrogen atoms, oxygen atoms, etc.
  • the ionic polymer used in the present invention is preferably a polymer compound, more preferably a conjugated polymer compound.
  • the polymer compound means a compound having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more.
  • the ionic polymer used in the present invention being a conjugated polymer compound means that the ionic polymer is a conjugated compound and a polymer compound.
  • the number average molecular weight in terms of polystyrene of the ionic polymer is 1 ⁇ 10 3 ⁇ 1 ⁇ 10 8
  • 2 ⁇ 10 3 ⁇ 1 ⁇ 10 7 is more preferable
  • 3 ⁇ 10 3 to 1 ⁇ 10 7 is more preferable
  • 5 ⁇ 10 3 to 1 ⁇ 10 7 is even more preferable.
  • the weight average molecular weight in terms of polystyrene is preferably 1 ⁇ 10 3 to 5 ⁇ 10 7 , more preferably 1 ⁇ 10 3 to 1 ⁇ 10 7.
  • the number average molecular weight in terms of polystyrene is 1 ⁇ 10 3 ⁇ 5 ⁇ 10 5, more preferably 1 ⁇ 10 3 ⁇ 5 ⁇ 10 4, More preferably, it is 1 ⁇ 10 3 to 3 ⁇ 10 3 .
  • the polystyrene-equivalent number average molecular weight and weight average molecular weight of the ionic polymer used in the present invention can be determined using, for example, gel permeation chromatography (GPC).
  • the number of all structural units (ie, the degree of polymerization) contained in the ionic polymer excluding the terminal structural unit is preferably 1 or more and 20 or less. It is more preferably 10 or less and more preferably 1 or more and 5 or less.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is ⁇ 5.0 eV or more and ⁇ 2.0 eV or less. It is preferable that it is -4.5 eV or more and -2.0 eV or less.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is preferably from -6.0 eV to -3.0 eV, more preferably from -5.5 eV to -3.0 eV. Is more preferable.
  • the orbital energy of HOMO is lower than that of LUMO.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is obtained by measuring the ionization potential of the ionic polymer and using the obtained ionization potential as the orbital energy.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. .
  • a photoelectron spectrometer is used to measure the ionization potential.
  • the energy difference between HOMO and LUMO is obtained from the absorption terminal by measuring the absorption spectrum of the ionic polymer using an ultraviolet / visible / near infrared spectrophotometer.
  • the polymer used in the present invention is preferably substantially non-luminescent when used in an electroluminescent device.
  • the fact that a certain polymer is substantially non-luminous means as follows. First, an electroluminescent element A having a layer containing a certain polymer is produced. On the other hand, the electroluminescent element 2 which does not have the layer containing a polymer is produced. Although the electroluminescent element A has a layer containing a polymer, the electroluminescent element 2 is different from the electroluminescent element 2 only in that it does not have a layer containing a polymer. Next, a forward voltage of 10 V is applied to the electroluminescent element A and the electroluminescent element 2 to measure an emission spectrum.
  • the wavelength ⁇ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element 2 is obtained.
  • the emission spectrum at the wavelength ⁇ is set to 1, the emission spectrum obtained for the electroluminescent element 2 is normalized, and the normalized emission amount S 0 is calculated by integrating the wavelength.
  • the emission intensity at the wavelength ⁇ is 1, the emission spectrum obtained for the electroluminescent element A is also normalized, and the normalized emission amount S is calculated by integrating the wavelength.
  • the polymer When the value calculated by (S ⁇ S 0 ) / S 0 ⁇ 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent device 2 having no polymer-containing layer, the polymer When the increase in the normalized light emission amount of the electroluminescent element A having a layer containing is 30% or less, the polymer used is substantially non-light-emitting, and (S ⁇ S 0 ) / S The value calculated by 0 ⁇ 100 is preferably 15% or less, and more preferably 10% or less.
  • an ionic polymer consisting only of the group represented by the formula (23), a formula (23) One or more selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, wherein two hydrogen atoms are removed.
  • An ionic polymer comprising only the group represented by the formula (24); a group represented by the formula (24) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92 96, 101 to 110, an ionic polymer comprising at least one group selected from the group consisting of groups obtained by removing two hydrogen atoms; an ion comprising only the group represented by formula (25) Group represented by formula (25) and formula 4 An ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by ⁇ 50, 59, 60, 77, 80, 91, 92, 96, 101 to 110 An ionic polymer comprising only the group represented by the formula (29); the group represented by the formula (29) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110 An ionic polymer comprising at least one group selected from the group consisting of groups obtained by removing two hydrogen
  • Examples of the ionic polymer containing the group represented by the formula (1) and the group represented by the formula (3) include the following polymer compounds. Among these, in the polymer compound represented by the formula in which two types of structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100 ⁇ p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
  • An ionic polymer comprising only the group represented by the formula (27); a group represented by the formula (27) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92 96, 101 to 110, an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms; an ion comprising only the group represented by formula (28) Polymer; group represented by formula (28) and formula 4 An ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by ⁇ 50, 59, 60, 77, 80, 91, 92, 96, 101 to 110 An ionic polymer comprising only the group represented by the formula (31); the group represented by the formula (31) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110 An ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing
  • Examples of the ionic polymer containing the group represented by the formula (2) and the group represented by the formula (3) include the following polymer compounds. Among these, in the polymer compound represented by the formula in which two types of structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100 ⁇ p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
  • a method for producing the ionic polymer used in the present invention will be described.
  • a suitable method for producing the ionic polymer used in the present invention for example, a compound represented by the following general formula (36) is selected and used as one of the raw materials.
  • -A a - compound in -A a - compound is a structural unit represented by the formula (13), said -A a - compound is a structural unit represented by the formula (15), said -A a - is the formula ( 17)
  • Y 4 -A a -Y 5 (36) [In Formula (36), A a is represented by Formula (3) and one or more groups selected from the group consisting of the group represented by Formula (1) and the group represented by Formula (2). A repeating unit containing a group of at least species is represented, and Y 4 and Y 5 each independently represent a group involved in condensation polymerization. ]
  • the ionic polymer used in the present invention contains a structural unit represented by -A a- in the above formula (36) and another structural unit other than -A a- . If a compound having two substituents involved in condensation polymerization, which is another structural unit other than —A a —, is used together with the compound represented by the formula (36), the condensation polymerization is performed. Good.
  • Examples of the compound having two condensation-polymerizable substituents used to contain such other structural units include compounds represented by the formula (37).
  • the structural unit represented by -A b- is obtained by condensation polymerization of the compound represented by Formula (37).
  • the ionic polymer used in the present invention can be produced.
  • Y 6 -A b -Y 7 (37) [In the formula (37), Ab is a structural unit represented by the general formula (33) or a structural unit represented by the general formula (35), and Y 6 and Y 7 are each independently a condensation polymerization. The group involved in is shown. ]
  • Examples of the group (Y 4 , Y 5 , Y 6 and Y 7 ) involved in such condensation polymerization include a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, and a boric acid ester residue.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. Is exemplified.
  • examples of the boric acid ester residue that can be selected as a group involved in the condensation polymerization include groups represented by the following formulae.
  • the sulfonium methyl group that can be selected as a group involved in the condensation polymerization includes the following formula: -CH 2 S + Me 2 E - , or, -CH 2 S + Ph 2 E - (Wherein E represents a halogen atom, Ph represents a phenyl group, and the same shall apply hereinafter).
  • a phosphonate methyl group that can be selected as a group involved in the condensation polymerization, Following formula: -CH 2 PO (OR d ) 2 (Wherein, R d represents an alkyl group, an aryl group, or an arylalkyl group).
  • examples of the monohalogenated methyl group that can be selected as the group involved in the condensation polymerization include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
  • a group suitable as a group involved in condensation polymerization varies depending on the type of polymerization reaction.
  • a zerovalent nickel complex such as a Yamamoto coupling reaction
  • a halogen atom an alkyl sulfonate group, an aryl sulfonate group And arylalkyl sulfonate groups.
  • a nickel catalyst or palladium catalyst such as a Suzuki coupling reaction
  • an alkyl sulfonate group, a halogen atom, a borate ester residue, —B (OH) 2 and the like can be mentioned.
  • oxidative polymerization a hydrogen atom is exemplified.
  • the compound (monomer) represented by the general formula (36) or (37) having a plurality of groups involved in condensation polymerization may be used.
  • a polymerization method for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis”.
  • a known condensation polymerization reaction according to the group which participates in condensation polymerization.
  • examples of such a polymerization method include a method of polymerizing a corresponding monomer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, a method of polymerizing by a Ni (0) complex, a method of polymerizing by an oxidizing agent such as FeCl 3 , Examples thereof include a method of electrochemically oxidative polymerization and a method of decomposing an intermediate polymer having an appropriate leaving group.
  • a polymerization method using a Suzuki coupling reaction a polymerization method using a Grignard reaction, and a polymerization method using a nickel zero-valent complex are preferable because the structure of the resulting ionic polymer can be easily controlled.
  • One aspect of a preferred method for producing the ionic polymer used in the present invention is a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group as a group involved in condensation polymerization.
  • This is a method for producing an ionic polymer by condensation polymerization in the presence of a nickel zero-valent complex using a starting material monomer.
  • Examples of the raw material monomer used in such a method include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • dihalogenated compounds bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • a group involved in condensation polymerization includes a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an arylalkyl sulfonate group, —B (OH) 2 , and a boric acid ester residue.
  • the organic solvent although it varies depending on the compound and reaction used, it is generally preferable to use an organic solvent that has been sufficiently deoxygenated to suppress side reactions.
  • an organic solvent that has been sufficiently deoxygenated to suppress side reactions.
  • Such organic solvents include saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloro Halogenated saturated hydrocarbons such as pentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene, methanol, ethanol, propanol, isopropanol, butanol, alcohols such as t-butyl alcohol, carboxylic acids such as formic acid, acetic acid and propionic acid
  • organic solvents may be used alone or in combination of two or more.
  • ethers are more preferable from the viewpoint of reactivity
  • tetrahydrofuran and diethyl ether are more preferable
  • toluene and xylene are preferable from the viewpoint of reaction rate.
  • an alkali or a suitable catalyst in order to react the raw material monomers. What is necessary is just to select such an alkali or a catalyst according to the superposition
  • Such an alkali or catalyst is preferably one that is sufficiently dissolved in the solvent used in the reaction.
  • the alkali or catalyst solution is slowly added while stirring the reaction liquid under an inert atmosphere such as argon or nitrogen, or the reaction liquid is added to the alkali or catalyst solution. The method of adding slowly is illustrated.
  • the terminal group is protected with a stable group. May be.
  • the terminal group is protected with such a stable group, when the ionic polymer used in the present invention is a conjugated compound, it has a conjugated bond continuous with the conjugated structure of the main chain of the ionic polymer.
  • the structure includes, for example, a structure bonded to an aryl group or a heterocyclic group via a carbon-carbon bond. Examples of such a stable group for protecting the end group include substituents such as a monovalent aromatic compound group represented by the structural formula of Chemical Formula 10 in JP-A-9-45478.
  • an ionic polymer having no cation is polymerized in the first step, and then from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing a cation is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include a hydrolysis reaction with a metal hydroxide, an alkyl ammonium hydroxide, or the like.
  • an ionic polymer having no ions is polymerized in the first step, and ions are generated from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing this is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include quaternary ammonium chlorination reaction of amine using alkyl halide, halogen abstraction reaction with SbF 5 and the like.
  • the ionic polymer used in the present invention is excellent in charge injection and transportability, an element that emits light with high brightness can be obtained.
  • Examples of a method for forming a layer containing an ionic polymer include a method of forming a film using a solution containing an ionic polymer.
  • Solvents used for film formation from such solutions include alcohols other than water, ethers, esters, nitrile compounds, nitro compounds, alkyl halides, aryl halides, thiols, sulfides, Of the solvents such as sulfoxides, thioketones, amides, and carboxylic acids, those having a solubility parameter of 9.3 or more are preferable.
  • solvent values in parentheses represent solubility parameter values of each solvent
  • examples of the solvent include, for example, methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1-butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), Dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9 .6), bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and mixed solutions of these solvents And the like.
  • X ⁇ 2 ( ⁇ 1 is the solubility parameter of solvent 1, ⁇ 1 is the volume fraction of solvent 1, ⁇ 2 is the solubility parameter of solvent 2, and ⁇ 2 is the volume fraction of solvent 2.)
  • the film thickness of the layer containing the ionic polymer varies depending on the ionic polymer used, so the driving voltage and luminous efficiency should be selected to be appropriate, and a thickness that does not cause pinholes is required. It is. From the viewpoint of lowering the driving voltage of the element, the film thickness is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and even more preferably 2 nm to 200 nm. From the viewpoint of protecting the light emitting layer, the film thickness is preferably 5 nm to 1 ⁇ m.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC), polystyrene equivalent weight average molecular weight and number average molecular weight. As sought.
  • the sample to be measured was dissolved in tetrahydrofuran so as to have a concentration of about 0.5% by weight, and 50 ⁇ L was injected into GPC. Furthermore, tetrahydrofuran was used as the mobile phase of GPC and allowed to flow at a flow rate of 0.5 mL / min.
  • the structural analysis of the polymer was performed by 1 H-NMR analysis using a 300 MHz NMR spectrometer manufactured by Varian. In addition, the measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was substituted with a deuterium atom) so as to have a concentration of 20 mg / mL.
  • a soluble heavy solvent a solvent in which a hydrogen atom in a solvent molecule was substituted with a deuterium atom
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the polymer was determined by measuring the ionization potential of the polymer and using the obtained ionization potential as the orbital energy.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the polymer was obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy.
  • a photoelectron spectrometer manufactured by Riken Keiki Co., Ltd .: AC-2
  • the energy difference between HOMO and LUMO was determined from the absorption terminal of the polymer by measuring the absorption spectrum of the polymer using an ultraviolet / visible / near infrared spectrophotometer (Varian: Cary 5E).
  • the resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered.
  • the resulting solid (62.7 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (86.3 g), potassium carbonate (62.6 g), and 18-crown-6 (7 2 g) was dissolved in N, N-dimethylformamide (DMF) (670 mL) and the solution was transferred to a flask and stirred at 105 ° C. overnight. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour.
  • DMF N, N-dimethylformamide
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of a 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained poly [9,9-bis [3-ethoxycarbonyl-4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] was 520 mg. there were.
  • the number average molecular weight in terms of polystyrene of the polymer A was 5.2 ⁇ 10 4 .
  • the polymer A consists of a structural unit represented by the formula (A).
  • Conjugated polymer compound 1 is composed of a structural unit represented by formula (B) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 1 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • Conjugated polymer compound 2 is composed of a structural unit represented by formula (C) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 2 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (123 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared.
  • the resulting sodium salt of polymer A is referred to as conjugated polymer compound 3.
  • the conjugated polymer compound 3 is composed of a structural unit represented by the formula (D) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 3 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the conjugated polymer compound 4 is composed of a structural unit represented by the formula (E) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 4 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • reaction was allowed to react for 3.5 hours. Thereafter, parabromotoluene (0.68 g) was added thereto, and the mixture was further reacted for 2.5 hours. After the reaction, the reaction solution was cooled to room temperature, 50 mL of ethyl acetate / 50 mL of distilled water was added, and the aqueous layer was removed. Distilled water (50 mL) was added again to remove the aqueous layer, magnesium sulfate was added as a desiccant, and the insoluble matter was filtered to remove the organic solvent.
  • the number average molecular weight in terms of polystyrene of the polymer B was 2.0 ⁇ 10 3 .
  • the polymer B is represented by the formula (F).
  • the obtained polymer B cesium salt is referred to as a conjugated polymer compound 5.
  • the conjugated polymer compound 5 is represented by the formula (G) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 5 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of a 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer C was 526 mg.
  • the number average molecular weight in terms of polystyrene of the polymer C was 3.6 ⁇ 10 4 .
  • the polymer C consists of a structural unit represented by the formula (H).
  • N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine is disclosed in, for example, JP-A-2008-74917. It can be synthesized by the method described in the publication.
  • Conjugated polymer compound 6 is composed of a structural unit represented by formula (I) (“selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units).
  • the conjugated polymer compound 6 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 mL of methanol and 50 mL of a 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer D was 590 mg.
  • the number average molecular weight in terms of polystyrene of the polymer D was 2.7 ⁇ 10 4 .
  • the polymer D consists of a structural unit represented by the formula (J).
  • 3,7-dibromo-N- (4-n-butylphenyl) phenoxazine is based on the method described in Japanese Patent Application Laid-Open No. 2007-70620 or the method described in Japanese Patent Application Laid-Open No. 2004-137456. And synthesized.
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (210 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer D had completely disappeared.
  • the resulting cesium salt of polymer D is referred to as conjugated polymer compound 7.
  • the conjugated polymer compound 7 is composed of a structural unit represented by the formula (K) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 7 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.4 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 10 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 mL of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 293 mg.
  • the number average molecular weight in terms of polystyrene of the polymer E was 1.8 ⁇ 10 4 .
  • the polymer E consists of a structural unit represented by the formula (L).
  • conjugated polymer compound 8 is composed of a structural unit represented by the formula (M) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 8 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 4 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 mL of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in a mixed solvent of tetrahydrofuran / ethyl acetate (1/1 (volume ratio)) and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 343 mg.
  • the polystyrene equivalent number average molecular weight of the polymer F was 6.0 ⁇ 10 4 .
  • the polymer F consists of a structural unit represented by the formula (N).
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (130 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared.
  • the obtained cesium salt of polymer F is referred to as conjugated polymer compound 9.
  • the conjugated polymer compound 9 is composed of a structural unit represented by the formula (O) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 9 had a HOMO orbital energy of ⁇ 5.9 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the resulting precipitate was collected by filtration and redissolved in tetrahydrofuran.
  • the mixture was added dropwise to a mixture of methanol (200 mL) and 15% aqueous ammonia (100 mL), and the resulting precipitate was collected by filtration.
  • the precipitate was redissolved in tetrahydrofuran, added dropwise to a mixture of methanol (200 mL) and water (100 mL), and the resulting precipitate was collected by filtration.
  • the collected precipitate was dried under reduced pressure to obtain a polymer G (360 mg).
  • the number average molecular weight in terms of polystyrene of the polymer G was 6.0 ⁇ 10 4 .
  • the polymer G consists of a structural unit represented by the formula (P).
  • the conjugated polymer compound 10 is composed of a structural unit represented by the formula (Q) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.)
  • the conjugated polymer compound 10 had a HOMO orbital energy of ⁇ 5.7 eV and a LUMO orbital energy of ⁇ 2.9 eV.
  • the obtained precipitate was filtered off to obtain a solid (18 g). Under an inert atmosphere, the obtained solid (1 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (1.5 g), potassium carbonate (0.7 g), DMF (15 mL) were added. The mixture was mixed and stirred at 100 ° C. for 4 hours. After allowing to cool, chloroform was added to perform liquid separation and extraction, and the solution was concentrated. The concentrate was dissolved in chloroform and purified by passing through a silica gel column. The solution was concentrated to give 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene (1.0 g).
  • Phenylboronic acid (6 mg) was added to the reaction solution and refluxed for 14 hours. Subsequently, sodium diethyldithiocarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The aqueous layer was removed, the organic layer was washed with distilled water, and the solid obtained by concentration was dissolved in chloroform and purified by passing through an alumina column and a silica gel column. The eluate from the column was concentrated and dried. The yield of the obtained polymer H was 0.44 g.
  • the number average molecular weight in terms of polystyrene of the polymer H was 3.6 ⁇ 10 4 .
  • the polymer H consists of a structural unit represented by the formula (R).
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer H had completely disappeared.
  • the resulting cesium salt of polymer H is referred to as conjugated polymer compound 11.
  • the conjugated polymer compound 11 is composed of a structural unit represented by the formula (S) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 11 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered.
  • the resulting solid (16.3 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (60.3 g), potassium carbonate (48.6 g), and 18-crown-6 (2 4 g) was dissolved in N, N-dimethylformamide (DMF) (500 mL) and the solution was transferred to a flask and stirred at 110 ° C. for 15 hours. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour.
  • DMF N, N-dimethylformamide
  • the number average molecular weight in terms of polystyrene of the polymer I was 2.0 ⁇ 10 3 .
  • the polymer I is represented by the formula (T).
  • 2- (4,4,5,5-tetramethyl-1,2,3-dioxaboran-2-yl) -9,9-dioctylfluorene is, for example, The Journal of Physical Chemistry B 2000, 104, 9118. It can be synthesized by the method described in -9125.
  • the obtained polymer I cesium salt is referred to as a conjugated polymer compound 12.
  • the conjugated polymer compound 12 is represented by the formula (U) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all structural units).
  • the conjugated polymer compound 12 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the number average molecular weight in terms of polystyrene of the polymer J was 2.0 ⁇ 10 4 .
  • the polymer J consists of a structural unit represented by the formula (V).
  • the conjugated polymer compound 13 had a HOMO orbital energy of ⁇ 5.51 eV and a LUMO orbital energy of ⁇ 2.64 eV.
  • the number average molecular weight in terms of polystyrene of the polymer K was 2.3 ⁇ 10 4 .
  • the polymer K consists of a structural unit represented by the formula (X).
  • the orbital energy of HOMO of the conjugated polymer compound 14 was ⁇ 5.56 eV, and the orbital energy of LUMO was ⁇ 2.67 eV.
  • the number average molecular weight in terms of polystyrene of the polymer L was 3.4 ⁇ 10 4 .
  • the polymer L consists of a structural unit represented by the formula (Z).
  • the conjugated polymer compound 15 had a HOMO orbital energy of ⁇ 5.50 eV and a LUMO orbital energy of ⁇ 2.65 eV.
  • Example 16 Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1.
  • the composition was applied on the ITO cathode (film thickness: 45 nm) patterned on the surface of the glass substrate by spin coating in the air to obtain a coating film having a film thickness of 10 nm.
  • the substrate provided with this coating film is heated at 130 ° C. for 10 minutes under an inert atmosphere (nitrogen atmosphere) under normal pressure to evaporate the solvent, and then naturally cooled to room temperature, and the electrons containing the conjugated polymer compound 1 A substrate on which an injection layer was formed was obtained.
  • a light emitting polymer material manufactured by Summation Co., Ltd., trade name “Lumation BP361”
  • xylene a light emitting polymer material
  • a composition for forming a light-emitting layer is applied in the air by a spin coating method on the layer containing the conjugated polymer compound 1 of the substrate on which the layer containing the conjugated polymer compound 1 obtained above is formed. Coating film was obtained.
  • the substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
  • the hole injection material solution was applied in the air by a spin coating method on the light emitting layer of the substrate on which the light emitting layer obtained above was formed, to obtain a coating film having a film thickness of 60 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 15 minutes to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a hole injection layer was formed.
  • PEDOT PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name “Baytron”) manufactured by Stark Vitec Co., Ltd. was used as the hole injection material solution.
  • the substrate on which the hole injection layer obtained above was formed was inserted into a vacuum apparatus, Au was deposited on the layer by 80 nm by a vacuum deposition method, and an anode was formed, whereby the laminated structure 1 was manufactured. .
  • the laminated structure 2 obtained above was taken out from the vacuum apparatus, and sealed with sealing glass and a two-component mixed epoxy resin under an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 1.
  • Example 17 ⁇ Production of double-sided light emitting organic EL element>
  • Experimental Example 16 except for changing the film thickness of Au to 20 nm, the same operation as in Experimental Example 16 was performed to obtain a double-sided light emitting organic EL element 2.
  • a forward voltage of 15 V was applied to the double-sided light emitting organic EL element 2 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 2.
  • the above-mentioned ionic polymer used in an organic EL display device having a plurality of pixels composed of organic EL elements of the present invention is excellent in charge injecting and transporting properties, stable in an atmosphere of normal pressure, and easily And can be formed into a film by coating in an atmosphere of about normal pressure. Therefore, when the layer containing the ionic polymer is used for the electron injection layer of the organic EL element, the manufacturing cost can be reduced and the stability in the manufacturing process can be secured.
  • a manufacturing method and an organic EL display device obtained by the manufacturing method can be provided.
  • the organic EL element used for the pixel of the organic EL display device of the present invention will be described.
  • the structure of the organic EL device used in the present invention at least one of a pair of an anode and a cathode that is transparent or translucent, an electron between at least one light emitting layer and the light emitting layer and the cathode. It has an injection layer, and a low molecular and / or high molecular organic light emitting material is used for the light emitting layer, and the above-mentioned ionic polymer is used for the electron injection layer.
  • examples of the layer other than the cathode, the anode, and the light emitting layer include those provided between the cathode and the light emitting layer and those provided between the anode and the light emitting layer.
  • examples of the material provided between the cathode and the light emitting layer include an electron transport layer, a hole blocking layer and the like in addition to the electron injection layer.
  • the layer in contact with the cathode is the electron injection layer, and the other layers Is called an electron transport layer.
  • the electron injection layer is a layer having a function of improving electron injection efficiency from the cathode
  • the electron transport layer is a layer having a function of improving electron injection from the electron injection layer or the electron transport layer closer to the cathode.
  • these layers may be referred to as a hole blocking layer. Having the function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
  • Examples of what is provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • a hole injection layer When only one layer is provided between the anode and the light-emitting layer, it is a hole injection layer.
  • the layer in contact with the anode is the hole injection layer.
  • the layer is referred to as a hole transport layer.
  • the hole injection layer is a layer having a function of improving the hole injection efficiency from the cathode, and the hole transport layer improves the hole injection from the hole injection layer or the hole transport layer closer to the anode. This is a functional layer.
  • the hole injection layer or the hole transport layer has a function of blocking electron transport
  • these layers may be referred to as an electron block layer. Having the function of blocking electron transport makes it possible, for example, to manufacture an element that allows only electron current to flow and to confirm the blocking effect by reducing the current value.
  • the organic EL element used for the pixel of the organic EL display device of the present invention further includes electron transport between the cathode and the light emitting layer.
  • Organic EL device provided with a layer Organic EL device provided with a hole transport layer between the anode and the light emitting layer, Organic provided with a hole transport layer and a hole injection layer between the anode and the light emitting layer EL element etc. are mentioned.
  • the following structures a) to j) are specifically exemplified.
  • Anode / light emitting layer / electron injection layer / cathode b) Anode / hole injection layer / light emitting layer / electron injection layer / cathode c) Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / Cathode d) Anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode e) Anode / light emitting layer / electron transport layer / electron injection layer / cathode f) Anode / hole injection layer / hole transport Layer / light emitting layer / electron transport layer / electron injection layer / cathode (wherein / indicates that each layer is laminated adjacently; the same applies hereinafter).
  • the order and number of layers to be laminated, and the thickness of each layer can be appropriately set in consideration of light emission efficiency and element lifetime.
  • a transparent substrate or an opaque substrate As the substrate 1, in the case of a so-called top emission type organic EL display device, since emitted light is extracted from the opposite side of the substrate 1, either a transparent substrate or an opaque substrate can be used.
  • the opaque substrate for example, a sheet made of ceramic such as alumina, or a sheet made of a thermosetting resin, a thermoplastic resin or the like in addition to a metal sheet made of stainless steel or the like subjected to an insulation treatment such as surface oxidation. Can be mentioned.
  • the substrate 1 side since emitted light is taken out from the substrate 1 side, a transparent or translucent material is adopted as the substrate 1.
  • seat which consists of glass, quartz, resin etc. is mentioned, Especially a glass substrate is used suitably.
  • a circuit unit including a driving TFT for driving a plurality of organic EL elements formed on the substrate 1 is provided between the substrate 1 and the pixel electrode 2.
  • Cathode (pixel electrode) As a material of the cathode (pixel electrode) 2, a material having a large work function can be used. For example, beryllium, magnesium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, palladium, silver , Tin, tantalum, tungsten, iridium, platinum, gold, lead, bismuth, or other metals, or an alloy of two or more of the above metals, or graphite or a graphite intercalation compound.
  • Titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, palladium, silver, tin, tantalum, tungsten, iridium, platinum, gold, lead, bismuth Etc. are preferable.
  • ITO, ZnO, ZTO, IZTO, etc. which are conductive oxides can be used.
  • the cathode may have a laminated structure of two or more layers.
  • an electron injection layer 4 is formed in common for all pixels.
  • the electron injection layer is provided in contact with the cathode between the light emitting layer and the cathode.
  • the electron injection layer is formed from a solution using the ionic polymer described above.
  • Examples of the method for forming the electron injection layer include a method of forming a film using a solution containing the ionic polymer.
  • a solvent having a solubility parameter excluding water of 9.3 or more is preferable.
  • the solvent values in parentheses represent solubility parameter values of each solvent
  • the solvent include methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1- Butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9.6) ), Bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and a mixed solvent thereof.
  • ⁇ m ⁇ 1 ⁇ ⁇ 1 + ⁇ 2.
  • X ⁇ 2 ( ⁇ 1 is the solubility parameter of solvent 1, ⁇ 1 is the volume fraction of solvent 1, ⁇ 2 is the solubility parameter of solvent 2, and ⁇ 2 is the volume fraction of solvent 2.)
  • Examples of the film forming method from a solution include spin coating, casting, micro gravure printing, gravure printing, bar coating, roll coating, wire bar coating, dip coating, slit coating, and cap coating.
  • Examples thereof include coating methods such as a coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method.
  • the film thickness of the electron injection layer varies depending on the polymer (conjugated polymer compound) used, so the driving voltage and the light emission efficiency may be selected to be appropriate values, and the thickness that does not generate pinholes. is required.
  • the film thickness is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and even more preferably 2 nm to 200 nm.
  • the film thickness is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 1 ⁇ m, and further preferably 100 nm to 1 ⁇ m.
  • a configuration in which an electron transport layer is provided after the electron injection layer 4 is laminated is also possible.
  • the electron transport layer is not formed, and each pixel (R pixel 31, G pixel 32 and B pixel) is formed.
  • a light emitting layer (R light emitting layer 61, G light emitting layer 62 and B light emitting layer 63) is provided on the electron injection layer 4 where the pixel 33) is located.
  • an electron transport material When forming an electron transport layer, known materials can be used as an electron transport material, such as an oxadiazole derivative, anthraquinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyano Anthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Is exemplified.
  • oxadiazole derivatives benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
  • a vacuum deposition method from powder or a method by film formation from a solution or a molten state is used. Each method is exemplified by film formation from a molten state.
  • a polymer binder may be used in combination.
  • a method by film formation from a solution or a molten state that is, a method by coating is preferable.
  • the method for forming the electron transport layer from the solution include the same film formation method as the method for forming the hole transport layer from the above-described solution.
  • the film thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the liquid repellent pattern 5 is formed before the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63 are formed.
  • the liquid repellent pattern 5 is provided in a region excluding pixels, that is, a region excluding the region where the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63 are to be provided.
  • the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63 are provided in regions other than the region where the liquid repellent pattern 5 is formed.
  • the liquid repellent pattern 5 is, for example, a film formed from a predetermined reactive surfactant composition in a pattern (corresponding to the embodiment of FIG. 2). Further, for example, the liquid repellent pattern 5 can be formed by transferring a material exhibiting liquid repellency (corresponding to the embodiment of FIG. 3). The opening of the liquid repellent pattern 5 corresponds to each pixel region, and the lower electron injection layer 4 is exposed. The liquid repellent pattern 5 is more liquid repellent than the electron injection layer 4 exposed from the opening.
  • a reactive surfactant composition (hereinafter sometimes abbreviated as RSA) is a kind of photosensitive composition. When RSA is exposed, at least one physical and / or chemical property of RSA changes, resulting in a physical difference between exposed and unexposed areas. Treatment with RSA reduces the surface energy of the material being treated.
  • RSA is a photocurable composition in one embodiment.
  • RSA when exposed to light, RSA has increased solubility or dispersibility in a liquid medium, reduced adhesiveness, decreased flexibility, and decreased fluidity.
  • the RSA is also a photosoftening composition in one embodiment.
  • the RSA upon exposure, the RSA may cause a decrease in solubility or dispersibility in the liquid medium, an increase in tackiness, an increase in flexibility, and an increase in fluidity.
  • the light used for exposure may be any type of light that causes a physical change in RSA, and is selected from, for example, infrared, visible light, ultraviolet light, and combinations thereof.
  • development After removing the RSA, removing the exposed part or the unexposed part is hereinafter referred to as “development”. Development can be accomplished by any known technique. Such a technique is widely used in the field of photoresist technology. Examples of development techniques include, but are not limited to, treatment with a liquid medium, treatment with an absorbent material, treatment with an adhesive material, and the like.
  • RSA consists essentially of one or more photosensitive materials in one embodiment.
  • the RSA in one embodiment, consists essentially of a material that, when exposed to light, cures, or is less soluble, swellable, or dispersible in a liquid medium, or less sticky or absorbable.
  • RSA consists essentially of a material having a photopolymerizable group in one embodiment. Examples of such groups include, but are not limited to, olefinyl groups, acryloyl groups, methacryloyl groups, and vinyl ether groups.
  • RSA also has, in one embodiment, two or more polymerizable groups that can cause crosslinking.
  • the RSA in one embodiment, consists essentially of a material that softens upon exposure, or that increases solubility, swellability, or dispersibility in a liquid medium, or that increases tackiness or absorbency. Also, RSA, in one embodiment, consists essentially of at least one polymer whose main chain degrades when exposed to UV radiation having a wavelength in the range of 200-300 nm. Examples of polymers where such degradation occurs include, but are not limited to, polyacrylates, polymethacrylates, polyketones, polysulfones, copolymers thereof, and mixtures thereof.
  • RSA in one embodiment, consists essentially of at least one reactive material and at least one photosensitive material. When exposed to light, the photosensitive material generates active species that initiate the reaction of the reactive material. Examples of photosensitive materials include, but are not limited to, materials that generate free radicals, acids, or combinations thereof. Also, RSA, in one embodiment, the reactive material is polymerizable or crosslinkable. The polymerization or crosslinking reaction of the material is initiated or catalyzed by the active species. The photosensitive material is generally present in an amount of 0.001% to 10.0%, based on the total weight of RSA.
  • RSA in one embodiment, consists essentially of a material that cures upon exposure, or that is less soluble, swellable, or dispersible in a liquid medium, or less sticky or absorbable.
  • the reactive material is an ethylenically unsaturated compound and the photosensitive material generates free radicals.
  • Ethylenically unsaturated compounds include, but are not limited to, acrylates, methacrylates, vinyl compounds, and combinations thereof. Any known type of photosensitive material that generates free radicals can be used.
  • photosensitive materials that generate free radicals include quinones, benzophenones, benzoin ethers, aryl ketones, peroxides, biimidazoles, benzyl dimethyl ketal, hydroxylalkylphenylacetophenone, dialkoxyacetophenone, trimethyl.
  • Benzoylphosphine oxide derivatives aminoketones, benzoylcyclohexanol, methylthiophenylmorpholinoketones, morpholinophenylaminoketones, ⁇ -halogen acetophenones, oxysulfonyl ketones, sulfonyl ketones, oxysulfonyl ketones, sulfonyl ketones, benzoyl oxime esters Thioxanthrones, camphorquinones, ketocoumarins, and Michler ketones, but are not limited to these. Not.
  • the photosensitive material may be a mixture of a plurality of compounds, one of which is a compound that can obtain a free radical when activated by a sensitizer activated by light.
  • the photosensitive material is responsive to visible or ultraviolet light.
  • RSA in one embodiment, is a compound having one or more crosslinkable groups.
  • the crosslinkable group can have a moiety containing a double bond, a triple bond, a precursor capable of forming a double bond, or a heterocyclic addition polymerizable group.
  • crosslinkable group examples include, for example, a group obtained by removing one hydrogen atom from benzocyclobutene, an azide group, an epoxy group, a di (hydrocarbyl) amino group, a cyanate ester group, a hydroxy group, a glycidyl ether group, C 1 -C 10 alkylacryloyl group, C 1 -C 10 alkyl methacryloyl group, alkenyl group, alkenyloxy group, alkynyl group, maleimide group, nadiimide group, tri (C 1 -C 4 ) alkylsiloxy group, tri (C 1 -C 4 ) alkylsilyl groups and their halogenated derivatives.
  • the crosslinkable group is a vinylbenzyl group, a p-ethenylphenyl group, a perfluoroethenyl group, a perfluoroethenyloxy group, a benzo-3,4-cyclobutan-1-yl group, and Selected from the group consisting of p- (benzo-3,4-cyclobutan-1-yl) phenyl groups.
  • the reactive material is capable of proceeding polymerization initiated by acid and the photosensitive material generates acid.
  • reactive materials include, but are not limited to, epoxies.
  • photosensitive material that generates an acid include, but are not limited to, sulfonium salts such as diphenyliodonium hexafluorophosphate and iodonium salts.
  • RSA in one embodiment, consists essentially of a material that softens upon exposure, or that increases its solubility, swellability, or dispersibility in a liquid medium, or that increases its tackiness or absorbency.
  • the reactive material is a phenolic resin and the photosensitive material is diazonaphthoquinone.
  • the RSA includes a fluorinated material in one embodiment.
  • RSA also includes, in one embodiment, an unsaturated material having one or more fluoroalkyl groups. In one embodiment, these fluoroalkyl groups have 2 to 20 carbon atoms.
  • RSA is also a fluorinated acrylate, fluorinated ester, or fluorinated olefin monomer in one embodiment. Examples of commercially available materials that can be used as RSA materials include Zonyl® 8857A, a fluorinated unsaturated ester monomer available from DuPont, and Sigma-Aldrich Co. (St.
  • RSA is a fluorinated macromonomer in one embodiment.
  • the term “macromonomer” means an oligomeric material having a plurality of reactive groups present at the end of the main chain or at the end of the side chain.
  • the molecular weight of the macromonomer is greater than 1000, in some embodiments greater than 2000, and in some embodiments greater than 5000.
  • the macromonomer backbone includes ether segments and perfluoroether segments.
  • the macromonomer backbone includes alkyl segments and perfluoroalkyl segments.
  • the macromonomer backbone includes partially fluorinated alkyl segments or partially fluorinated ether segments.
  • the macromonomer has one or two terminal polymerizable groups or terminal crosslinkable groups.
  • RSA in one embodiment, includes a material having a reactive group and a second type of functional group.
  • a second type of functional group can be present to alter the physical processing or photophysical properties of RSA.
  • groups that change processing characteristics include alkylene oxide groups.
  • Examples of the group that changes the photophysical properties include a carbazole group, a triarylamino group, or an oxadiazole group.
  • the RSA upon exposure, reacts with the underlying area. The exact mechanism of this reaction depends on the material used.
  • the RSA in the unexposed areas is removed by suitable developing means. In some embodiments, RSA is removed only in unexposed areas. In some embodiments, the RSA is partially removed even in the exposed areas, leaving a thinner layer in those areas. In some embodiments, the RSA remaining in the exposed area will be less than 50 mm thick. In some embodiments, the RSA remaining in the exposed area is substantially monolayer in thickness.
  • each pixel (R pixel 31, G pixel 32 and B pixel) is formed using the liquid repellent pattern 5.
  • a light emitting layer (R light emitting layer 61, G light emitting layer 62 and B light emitting layer 63) is provided on the electron injection layer 4 where the pixel 33) is located.
  • the light emitting material for forming the light emitting layer a known light emitting material capable of emitting fluorescence or phosphorescence is used.
  • the illustrated embodiment is a case where full-color display is performed, and the emission wavelength band is formed corresponding to each of the three primary colors of light.
  • one pixel is constituted by three light emitting layers of an R light emitting layer 61 corresponding to a red light emission wavelength band, a G light emitting layer 62 corresponding to a green color, and a B light emitting layer 63 corresponding to a blue color.
  • the organic EL display device displays a full color.
  • the light emitting layer is preferably an organic light emitting layer, and is usually formed of an organic substance (low molecular compound and / or high molecular compound) that mainly emits fluorescence or phosphorescence and a dopant that assists this.
  • organic substance low molecular compound and / or high molecular compound
  • dopant that assists this.
  • the Examples of the material for forming the light emitting layer that can be used in the present invention include the following.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, and the like.
  • Metal complex materials examples include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyls.
  • Zinc complex, porphyrin zinc complex, europium complex, etc. which has Al, Zn, Be or the like as a central metal or a rare earth metal such as Tb, Eu, Dy, Ir, etc., and oxadiazole, thiadiazole, phenylpyridine, Examples include metal complexes having phenylbenzimidazole, quinoline structure, and the like.
  • Polymer material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, and the above dye bodies and metal complex light emitting materials. And the like.
  • examples of materials that emit blue (B) light include, for example, distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. Can be mentioned. Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of the material that emits green (G) light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • examples of the material that emits red (R) light include a coumarin derivative, a thiophene ring compound, and a polymer thereof, a polyparaphenylene vinylene derivative, a polythiophene derivative, and a polyfluorene derivative.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • a dopant can be added to the light emitting layer for the purpose of improving the light emission efficiency and changing the light emission wavelength.
  • dopants include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the thickness of such a light emitting layer is usually about 20 to 2000 mm.
  • Light-emitting layer deposition method As a method for forming a light-emitting layer containing an organic substance, a coating method in which a film is formed from a solution, a vacuum deposition method, a transfer method, or the like can be used. In the present invention, among these, the coating method is preferable.
  • the solvent used for film formation from a solution include the same solvents as those for dissolving the hole transport material when forming a hole transport layer from a solution described later.
  • a printing method such as spin coating, dip coating, ink jet, flexographic printing, gravure printing, slit coating or the like can be used as appropriate.
  • a vacuum deposition method can be used.
  • a coating method capable of separately coating ink among the above-described coating methods is appropriately selected.
  • a method of forming a light emitting layer only at a desired place by laser transfer or thermal transfer can be used.
  • the hole transport layer 7 and the hole injection layer 8 are laminated in this order on each of the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63.
  • hole transport layer As the hole transport material, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, a polyaniline or Examples thereof include polythiophene or a derivative thereof, polyarylamine or a derivative thereof, polypyrrole or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof. .
  • a hole transport material used for the hole transport layer 7 polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, a polyaniline or a derivative thereof
  • a polymer hole transport material such as polythiophene or a derivative thereof, polyarylamine or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof, Preferred are polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, and polysiloxane derivatives having an aromatic amine in the side chain or main chain.
  • a low-molecular hole transport material it is preferably used by being dispersed in a polymer binder.
  • the solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole transport material.
  • the solvent include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate, An ester solvent such as ethyl cellosolve acetate is exemplified.
  • film formation methods from solution include spin coating from solution, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen Coating methods such as a printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used.
  • an application method capable of separately applying the ink among the above-described application methods is appropriately selected.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the film thickness of the hole transport layer 7 differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the hole injection layer 8 can be provided between the anode and the hole transport layer or between the anode and the light emitting layer.
  • the hole injection layer 8 is formed by film formation from a solution.
  • a coating method such as an inkjet method is used.
  • the hole injection layer forming material is selectively applied onto the hole transport layer 7 by a method by application. Thereafter, drying treatment and heat treatment are performed to form the hole injection layer 8.
  • the material for forming the hole injection layer 6 includes phenylamine, starburst amine, phthalocyanine, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, amorphous carbon, polyaniline, A polythiophene derivative or the like dissolved in a polar solvent such as water or isopropyl alcohol is used.
  • a cross-linking group is added to a polymer compound and insolubilized by cross-linking; a low-molecular compound having a cross-linking group having an aromatic ring represented by aromatic bisazide is mixed as a cross-linking agent,
  • a method of insolubilizing by mixing a method of mixing a low molecular compound having a cross-linking group represented by an acrylate group having a cross-linking group as a cross-linking agent and cross-linking and insolubilizing; exposing the lower layer to ultraviolet light to cross-link, Examples include a method of insolubilizing with respect to the organic solvent used for the production of the upper layer; a method of heating and crosslinking the lower layer, and insolubilization with respect to the organic solvent used for the production of the upper layer.
  • the heating temperature is usually 100 ° C. to 300 ° C., and the time is usually 1 minute to 1 hour.
  • anode material is formed on the hole injection layer 8 in common for all pixels by vacuum deposition or the like, and the anode 9 Is formed.
  • anode material When the anode 9 is composed of a transparent electrode or a semi-transparent electrode, a metal oxide, metal sulfide or metal thin film with high electrical conductivity can be used, and a high transmittance can be suitably used. It is appropriately selected depending on the organic layer to be used. Specifically, indium oxide, zinc oxide, tin oxide, and a composite film made of conductive glass made of indium / tin / oxide (ITO), indium / zinc / oxide, etc. (NESA) Etc.), gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the production method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Further, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • the film thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity. For example, it is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm. is there.
  • a substrate 1 having a driving circuit portion (not shown) and a cathode (pixel electrode) 2 formed on the surface is prepared.
  • a plurality of cathodes (pixel electrodes) 2 are formed on the substrate 1 by vapor deposition or the like of a material selected from the cathode materials listed above corresponding to the patterns constituting the R pixel 31, G pixel 32, and B pixel 33. Form by depositing on top.
  • the cathode 2 may have a laminated structure of two or more layers.
  • an electron injection layer 4 is formed on the substrate 1 on which the cathode 2 is patterned in common to all pixels.
  • the electron injection layer is formed from a solution using the ionic polymer described above.
  • the above-described method of forming a film using a solution containing the ionic polymer is used.
  • the film thickness of the electron injection layer 4 is preferably adjusted to 1 nm to 1 ⁇ m as described above.
  • a primer layer 53 is formed on the entire surface of the electron injection layer 4 using 8857A.
  • the primer layer 53 is exposed using a mask formed in a pattern in which light is applied to a portion corresponding to the lower cathode 2.
  • the portion that has been exposed and becomes soluble in the liquid medium is removed by the liquid medium (development processing).
  • a liquid repellent pattern 5 is formed on the electron injection layer 4 as shown in FIG. 2E.
  • the opening inside 52 of the liquid repellent pattern 5 corresponds to each pixel region, and is a portion where the lower electron injection layer 4 is exposed. Since the liquid repellent pattern 5 is more lyophobic than the electron injection layer 4, the opening interior 52 is lyophilic with respect to the liquid repellent pattern 5 (hereinafter, the opening interior 52 is referred to as the lyophilic portion 52). May be noted).
  • a light emitting layer (R light emitting layer 61) is formed on the electron injection layer 4 where each pixel (R pixel 31, G pixel 32, and B pixel 33) is located using the liquid repellent pattern 5. , G light emitting layer 62 and B light emitting layer 63).
  • the light emitting material for forming the light emitting layer As the light emitting material for forming the light emitting layer, as described above, a known light emitting material capable of emitting fluorescence or phosphorescence is used.
  • the light emitting material to be used is appropriately selected from the light emitting materials described above.
  • the light emitting layer is formed by the method described above.
  • the ink supplied to the lyophilic part 52 spreads in the lyophilic part 52 but is repelled by the liquid-repellent pattern 5, so that a light emitting layer is formed only on the lyophilic part 52. It is.
  • the hole transport layer 7 and the hole injection layer 8 are laminated in this order on each of the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63.
  • the kind of material selected from the above-mentioned hole transport materials is a low molecular hole transport material
  • it is a polymer hole transport material using a method of film formation from a mixed solution with a polymer binder. In this case, a method by film formation from a solution is used.
  • the hole transport layer is formed by the method described above.
  • the ink supplied onto the light emitting layer spreads wet on the light emitting layer, but is repelled by the liquid repellent pattern 5, so that a hole transport layer is formed only on the light emitting layer.
  • a hole injection layer 8 is formed on the hole transport layer 7.
  • the hole injection layer is formed by the method described above.
  • the ink supplied on the hole transport layer wets and spreads on the hole transport layer but is repelled by the liquid repellent pattern 5, so that hole injection is performed only on the hole transport layer.
  • a layer is formed.
  • anode 9 is formed by forming a film using a kind of method selected from plating and the like. As described above, the film thickness of the anode 9 is adjusted to 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the organic EL display device according to the embodiment shown in FIG. 1 is formed.
  • ions that have electron injectability are stable in an atmosphere at normal pressure, and can be made into a solution by a solvent. It is characterized in that an electron injection layer is formed from a conductive polymer and that a light emitting layer of each color is selectively laminated using a liquid repellent pattern. According to such a characteristic configuration, all of the organic layers of the organic EL elements constituting the organic EL display device can be formed by film formation from a solution in an atmosphere of about normal pressure, thereby reducing the manufacturing process. This simplifies the manufacturing cost. In addition, since there is no limitation on the substrate size, a large screen display can be manufactured.
  • a plate-like support member 10 separate from the substrate 1 is prepared.
  • the resin layer 11 is laminated on the surface of the prepared support member 10.
  • the resin layer 11 is formed, for example, by exposing and curing a coating film of a photoresist material whose main component is a polyimide resin.
  • a mask 12 having openings of a predetermined pattern is placed on the resin layer 11.
  • the plurality of openings of the mask 12 are formed in a size and pattern that approximately match the cathode (pixel electrode) 2 formed on the substrate 1.
  • the fluorine-containing gas plasma 13 is irradiated through the mask 12.
  • CF 4 is used as the fluorine-containing gas.
  • the pattern 5 a on the support member 10 is opposed to the electron injection layer 4 on the substrate 1, and the opening of the pattern 10 is positioned on each cathode 2 on the substrate 1. Then, the substrate 1 and the support member 10 are brought into contact with each other.
  • the contact surface is heated so that the liquid repellent pattern 5a on the resin layer 11 of the support member 10 is changed to the electron injection layer of the substrate 1. Transfer on top of 4.
  • the liquid repellent pattern 5a is transferred onto the electron injection layer 4 of the substrate 1, when the support member 10 is separated, the liquid repellent pattern 5 is formed on the electron injection layer 4 of the substrate 1 as shown in FIG. 3H.
  • the organic EL display device according to the embodiment shown in FIG. 1 is formed.
  • a first bank layer 501 is formed so as to cover each pixel electrode 2, and a plurality of second banks continuous between the plurality of pixel electrodes 2 are adjacent to each other.
  • a bank layer 502 is formed.
  • the plurality of second bank layers 502 are arranged substantially parallel to each other in a direction orthogonal to the plane of FIG.
  • the first bank layer 501 is made of an organic material or an inorganic material.
  • an acrylic resin, a phenol resin, a polyimide resin, or the like is used.
  • SiOx, SiNx, etc. are used as an inorganic substance.
  • the second bank layer 502 is made of an organic material or an inorganic material.
  • an acrylic resin, a phenol resin, a polyimide resin, or the like is used.
  • SiOx, SiNx, etc. are used as an inorganic substance.
  • Banks composed of organic materials generally exhibit liquid repellency compared to banks composed of inorganic materials.
  • the second bank layer 502 preferably has liquid repellency in order to retain ink supplied to the area surrounded by the bank layer 502 and prevent overflowing to the outside.
  • the first bank layer 501 is preferably lyophilic because the supplied ink is preferably spread over the bank layer 501. Therefore, in this embodiment, the first bank layer 501 is made of an inorganic material, and the second bank layer 502 is made of an organic material.
  • the inside of the opening of the first bank layer 501 constitutes a pixel area.
  • the second bank layer 502 is larger in height than the first bank layer 501, and a plurality of second bank layers 502 are arranged substantially in parallel with each other.
  • a plurality of pixel regions defined by one bank layer 501 are arranged in a line.
  • One of RGB light emitting materials is collectively applied to the plurality of pixel regions arranged in a row. This batch application is enabled by the second bank layer 502.
  • the electron injection layer 4 is usually formed on the exposed surface (pixel region) of each pixel electrode 2 surrounded by the first bank layer 501.
  • An electron transport layer may be provided on the electron injection layer 4 in some cases.
  • the electron injection layer 4, the light emitting layer 61, the light emitting layer 62, and the light emitting layer 63 are respectively formed inside the opening of the first bank layer 501. These are formed by the method described above.
  • the hole transport layer and the hole injection layer 8 are formed on the entire surface over a plurality of pixels.
  • the hole transport layer and the hole injection layer 8 may also be selectively formed only on the inside of the opening of the first bank layer 501.
  • an anode material is formed on the hole injection layer 8 in common for all the pixels by a vacuum deposition method or the like to form the anode 9.
  • a substrate 1 having a plurality of pixel electrodes 2 formed on its surface is prepared.
  • a first bank layer 501 is formed on the surface of the substrate 1 on which the pixel electrode 2 is formed so as to surround each pixel electrode 2, and then, a plurality of continuous plurality of pixel electrodes 2 are adjacent to each other.
  • a second bank layer 502 is formed. The plurality of second bank layers 502 are arranged substantially parallel to each other in a direction orthogonal to the plane of FIG.
  • the first bank layer 501 is formed so that a part of the first bank layer 501 is open to each pixel electrode 2 and the surface of each pixel electrode 2 is exposed.
  • a plurality of second bank layers 502 that are continuous between adjacent pixel electrodes 2 surrounded by the first bank layer 501 are formed.
  • the arrangement patterns of the plurality of second bank layers 502 are substantially parallel to each other in a direction orthogonal to the plane of FIG.
  • the first bank layer 501 and the second organic bank layer 502 when an inorganic material is used, it is formed by vapor deposition.
  • a resist such as an acrylic resin or a polyimide resin is used.
  • the organic layer is formed by applying a solution in a solvent in various coating methods such as spin coating and dip coating. In the present invention, a method by coating using an organic material is preferable.
  • the constituent material of the organic layer may be any material as long as it does not dissolve in the ink solvent described later and can be easily patterned by etching or the like.
  • the first bank layer 501 is formed, for example, by depositing an inorganic material on the entire surface and patterning it using a photolithography technique.
  • the organic layer forming the second bank layer 502 is applied by ink jetting continuously between adjacent ones of the plurality of pixel electrodes 2, or is applied to one surface and then patterned using a photolithography technique or an etching technique.
  • the plasma treatment includes a preheating step, an ink repellency step for making the upper surface of the second bank layer 502 and the wall surface of the opening, the exposed surface of the pixel electrode 2 and the upper surface of the first bank layer 501 lyophilic, respectively.
  • the second bank layer 502 includes an ink repellent process for making the top surface of the second bank layer 502 and the wall surface of the opening liquid repellent, and a cooling process.
  • the base material (substrate 1 including the bank layer) is heated to a predetermined temperature, for example, about 70 to 80 ° C., and then plasma treatment using oxygen as a reactive gas at atmospheric pressure as an ink-philic step (O 2 plasma treatment).
  • plasma treatment using oxygen as a reactive gas at atmospheric pressure as an ink-philic step
  • CF 4 plasma treatment plasma treatment using CF 4 as a reactive gas
  • the substrate heated for the plasma treatment is cooled to room temperature.
  • the second bank layer 502 made of an organic substance is selectively made liquid-repellent. This imparts lyophilicity and liquid repellency to the desired portion.
  • an ink including a material to be an electron injection layer and a light emitting layer is sequentially supplied to a region surrounded by the second bank layer 502, and solidified to form an electron injection layer and a light emitting layer sequentially.
  • an ink containing a material for forming the hole transport layer and the hole injection layer is sequentially supplied to the entire surface, and the hole transport layer and the hole injection layer are sequentially formed by solidifying the ink.
  • the anode 9 is formed by forming a film using a kind of method. As described above, the film thickness of the anode 9 is adjusted to 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the organic EL display device having the structure shown in FIG. 4 is formed.
  • a bank is formed in a region excluding the pixel before the step of forming the electron injection layer.
  • the pixel is formed on the electron injection layer. Banks may be formed in the excluded region.
  • the electron injection layer is insolubilized in advance in the developer or the like. Insolubilization of the electron injection layer can be performed, for example, by polymerizing a polymerizable compound.
  • an ionic polymer that has electron injectability, is stable in the air, and can be made into a solution with a polar solvent is used. It is characterized in that an electron injection layer is formed and that a light emitting layer of each color is selectively stacked using a bank. According to such a characteristic configuration, all the organic layers of the organic EL elements constituting the organic EL display device can be formed by film formation from a solution in the atmosphere, thereby simplifying the manufacturing process, Manufacturing cost can be reduced. In addition, since there is no limitation on the substrate size, a large screen display can be manufactured.

Abstract

The disclosed manufacturing method involves: a step in which an electron injection layer is formed on a substrate, on which multiple negative electrodes are formed corresponding to each pixel, by coating all pixels in common with a solvent containing an ionic polymer as an electron injection material; a step in which a light-emitting layer is formed by coating the aforementioned electron injection layer with a solvent containing a light-emitting material, or, after forming on the aforementioned electron injection layer a layer other than the aforementioned light-emitting layer, by coating said other layer with a solvent containing a light-emitting material; a step in which positive electrodes are formed by forming a film of a positive electrode material on the aforementioned light-emitting layer, or, after forming a layer other than the positive electrode on the aforementioned light-emitting layer, by forming on said other layer a film of the positive electrode material.

Description

有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置Organic electroluminescence display device manufacturing method and organic electroluminescence display device
 本発明は、有機エレクトロルミネッセンスディスプレイ装置の製造方法及び該製造方法により得られる有機ELディスプレイ装置に関する。 The present invention relates to a method for manufacturing an organic electroluminescence display device and an organic EL display device obtained by the manufacturing method.
 有機エレクトロルミネッセンスディスプレイ装置(以下、有機ELディスプレイ装置と記す場合もある)は、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す場合もある)からなる複数の画素を含み、画像信号に応じて個々の有機EL素子を駆動させる画素回路を画素ごとに作り付けることにより画像を表示する。 An organic electroluminescence display device (hereinafter also referred to as an organic EL display device) includes a plurality of pixels composed of organic electroluminescence elements (hereinafter also referred to as organic EL elements), and is individually provided according to an image signal. An image is displayed by creating a pixel circuit for driving each organic EL element for each pixel.
 上記有機ELディスプレイ装置を構成する有機EL素子は、陽極と陰極との間に有機発光性材料からなる発光層を薄膜形成した基本構成を有している。かかる基本構成を有する有機EL素子において、両極間に電圧を印加すると、陽極から正孔が注入され、陰極から電子が注入される。そして、正孔と電子が発光層において再結合することによって発光が生じる。 The organic EL element constituting the organic EL display device has a basic structure in which a light emitting layer made of an organic light emitting material is formed between an anode and a cathode as a thin film. In the organic EL element having such a basic configuration, when a voltage is applied between both electrodes, holes are injected from the anode and electrons are injected from the cathode. Light emission is generated by recombination of holes and electrons in the light emitting layer.
 通常、有機EL素子は、上述の基本構成だけでは所期の特性を得ることが困難である。そのため、発光層に加えて、所定の有機層が設けられる。例えば所定の有機層として、正孔注入層、正孔輸送層、電子注入層および電子輸送層などが設けられる。 Ordinarily, it is difficult for an organic EL element to obtain desired characteristics only with the above-described basic configuration. Therefore, a predetermined organic layer is provided in addition to the light emitting layer. For example, as the predetermined organic layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like are provided.
 上記有機EL素子の陽極-陰極間の有機層の形成方法としては、真空蒸着法と塗布法が知られている。塗布法は真空プロセスが不要なので、有機ELディスプレイ装置の大面積化が容易であることと製造コストが安いことがその特徴である。 As a method for forming an organic layer between the anode and cathode of the organic EL element, a vacuum deposition method and a coating method are known. Since the coating method does not require a vacuum process, the organic EL display device can be easily increased in area and manufactured at low cost.
 上記発光層に加えて所定の有機層が設けられた複数の有機EL素子を効率的に製造することを可能にする有機ELディスプレイ装置の製造方法として、種々の方法が提案されている。その1つを要約すると、「まず、基板上に陽極をパターン形成し、その上に、全ての画素に亘って連続する連続正孔注入層及び連続プライマー層を塗布により形成する。前記連続プライマー層に、画素に対応する液体閉じ込めパターンを形成する。この液体閉じ込めパターン3種類に対して3種類(RGBの3種類)の発光層をそれぞれ形成する。その後、全ての画素に亘って連続する電子注入層及び陰極を順に形成する。」という構成の製造方法が開示されている(例えば、特許文献1参照)。 Various methods have been proposed as a method of manufacturing an organic EL display device that enables efficient manufacture of a plurality of organic EL elements provided with a predetermined organic layer in addition to the light emitting layer. To summarize one of them, “First, an anode is patterned on a substrate, and a continuous hole injection layer and a continuous primer layer continuous over all pixels are formed thereon by coating. The continuous primer layer. Then, a liquid confinement pattern corresponding to the pixel is formed, and three types (three types of RGB) of light emitting layers are respectively formed for the three types of liquid confinement patterns, and then continuous electron injection over all the pixels. A manufacturing method having a configuration in which a layer and a cathode are sequentially formed is disclosed (for example, see Patent Document 1).
 特許文献1に開示の製造方法では、基板上に形成した陽極から積層を始めて、正孔注入層を積層し、続いて、発光層を形成し、その上に電子注入層を形成し、最後に陰極を形成している。 In the manufacturing method disclosed in Patent Document 1, lamination is started from an anode formed on a substrate, a hole injection layer is laminated, a light emitting layer is subsequently formed, an electron injection layer is formed thereon, and finally A cathode is formed.
 有機ELディスプレイ装置の製造方法としては、特許文献1で採用されている、陽極から陰極へ向かって電極及び有機層を順次に積層(以下、便宜的に「順積層」と記す場合もある)していく製造方法の他に、陰極から陽極に向かって電極及び有機層を順次に積層(以下、便宜的に「逆積層」と記す場合もある)していく製造方法もある。 As a method for manufacturing an organic EL display device, an electrode and an organic layer are sequentially laminated from the anode to the cathode, which is employed in Patent Document 1 (hereinafter sometimes referred to as “sequential lamination” for convenience). In addition to the manufacturing method, there is also a manufacturing method in which an electrode and an organic layer are sequentially laminated from the cathode toward the anode (hereinafter sometimes referred to as “reverse lamination” for convenience).
 電子注入層は、通常、大気中で不安定な材料によって構成されている。特許文献1では、電子注入層は、Ba、BaO、NaF、LiFなどの電子注入材料を気相堆積することによって、すなわち、高真空中で蒸着することによって、形成されている。前記電子注入材料は水分や酸素と容易に反応し、化学変化する。特許文献1では、順積層による製造方法を採用しており、順積層による製造方法では、電子注入層、陰極を真空蒸着によって形成することができ、そのため、電子注入層を大気に触れることなく形成することができる。 The electron injection layer is usually made of an unstable material in the atmosphere. In Patent Document 1, the electron injection layer is formed by vapor deposition of an electron injection material such as Ba, BaO, NaF, or LiF, that is, by vapor deposition in a high vacuum. The electron injecting material easily reacts with moisture and oxygen and chemically changes. In patent document 1, the manufacturing method by order lamination is employ | adopted, and in the manufacturing method by order lamination, an electron injection layer and a cathode can be formed by vacuum evaporation, Therefore, an electron injection layer is formed without touching air | atmosphere. can do.
 しかしながら、特許文献1の技術をそのまま逆積層による有機ELディスプレイ装置の製造方法に適用した場合、陰極、電子注入層を真空蒸着によって形成し、その後、発光層を塗布法によって形成することになる。この発光層の形成を大気中でおこなうと、電子注入層が水分や酸素と容易に反応し、化学変化してしまう。 However, when the technique of Patent Document 1 is applied as it is to a method for manufacturing an organic EL display device by reverse stacking, a cathode and an electron injection layer are formed by vacuum deposition, and then a light emitting layer is formed by a coating method. When this light emitting layer is formed in the atmosphere, the electron injection layer easily reacts with moisture and oxygen and chemically changes.
 前記電子注入層の化学変化を防ぐには、真空雰囲気で発光層を形成する必要があるが、真空雰囲気ではインキが気化するため、現実には不可能である。 In order to prevent chemical change of the electron injection layer, it is necessary to form the light emitting layer in a vacuum atmosphere, but in reality, it is impossible because the ink is vaporized in the vacuum atmosphere.
特表2009-540573号公報Special table 2009-540573
 本発明の課題は、工程が簡易であり、逆積層による有機ELディスプレイ装置の製造方法及び該製造方法により得られる有機ELディスプレイ装置を提供することにある。 An object of the present invention is to provide a method for manufacturing an organic EL display device by reverse stacking and a method for manufacturing the organic EL display device obtained by the manufacturing method.
 本発明者らは、特定構造を有するイオン性ポリマーが優れた電子注入性を有するとともに、常圧程度の雰囲気中で安定であり、溶媒に溶解して溶液とし、該溶液を成膜することにより常圧程度の雰囲気中で安定な電子注入層を得ることができることを知るに至った。本発明は、係る知見に基づいてなされたものである。本発明は、以下の構成を採用した有機発光ディスプレイ装置の製造方法及び有機ELディスプレイ装置を提供する。 The inventors of the present invention are that an ionic polymer having a specific structure has an excellent electron injection property and is stable in an atmosphere at normal pressure, and is dissolved in a solvent to form a solution, and the solution is formed into a film. It has been found that a stable electron injection layer can be obtained in an atmosphere of about normal pressure. The present invention has been made based on such knowledge. The present invention provides an organic light emitting display device manufacturing method and an organic EL display device that employ the following configuration.
 なお、本発明でいう「大気中」とは、本発明の目的から広義には、酸素及び水分の含有を許容する全ての雰囲気を意味する。より具体的には、一般的にいう常温、常圧の未調整の大気雰囲気を含み、さらに、該大気雰囲気に対して、酸素及び水分を含んだまま、温度、圧力、成分を調整した雰囲気が含まれる。調整雰囲気としては、「塗布」を含む本発明の製造方法が実施可能であることを条件として大気雰囲気に対して窒素、水素、酸素、二酸化炭素などの組成成分を調整する処理、これらの組成割合を調整する処理がなされており、浮遊微粒子、浮遊微生物にかかる清浄度が調整されていてもよく、さらには本発明の製造方法が実施できることを条件として温度、湿度、圧力などの環境条件が調整されていてもよい雰囲気が含まれ、その圧力は通常1013hPa±100hPaの常圧である。 In the present invention, the term “in the atmosphere” means all atmospheres that allow the inclusion of oxygen and moisture in a broad sense for the purpose of the present invention. More specifically, it includes an unadjusted atmospheric atmosphere at ordinary temperature and normal pressure, and an atmosphere in which temperature, pressure, and components are adjusted with oxygen and moisture contained in the atmospheric atmosphere. included. As the adjustment atmosphere, a process for adjusting composition components such as nitrogen, hydrogen, oxygen, carbon dioxide, etc. with respect to the air atmosphere under the condition that the production method of the present invention including “coating” can be carried out, and a composition ratio thereof. The degree of cleanliness of suspended particulates and suspended microorganisms may be adjusted, and environmental conditions such as temperature, humidity, and pressure are adjusted on condition that the production method of the present invention can be carried out. An atmosphere that may be used is included, and the pressure is normally a normal pressure of 1013 hPa ± 100 hPa.
 また、以下の説明において、基板の厚み方向の一方を上方(または上)といい、基板の厚み方向の他方を下方(または下)という場合がある。この上下関係の表記は、説明の便宜上、設定したもので、必ずしも実際に有機EL素子が製造される工程および使用される状況に適用されるものではない。 In the following description, one side in the thickness direction of the substrate may be referred to as upper (or upper), and the other in the thickness direction of the substrate may be referred to as lower (or lower). This notation of the vertical relationship is set for convenience of explanation, and is not necessarily applied to a process in which an organic EL element is actually manufactured and a situation in which it is used.
[1] 陽極及び陰極と、これら電極間に位置する発光層と、前記陰極と発光層の間に位置する電子注入層を含む有機エレクトロルミネッセンス素子からなる画素を複数有してなる有機エレクトロルミネッセンスディスプレイ装置の製造方法であって、
 各画素に対応する複数の陰極が形成された基板を用意する工程と、
 前記各陰極上に、イオン性ポリマーを含む溶液を塗布し、成膜することにより電子注入層を形成する工程と、
 前記電子注入層の上に、発光材料を含む溶液を塗布し、成膜することにより、あるいは、前記電子注入層の上に発光層以外の層を形成した後、該層の上に発光材料を含む溶液を塗布し、製膜することにより、発光層を形成する工程と、
 前記発光層の上に、陽極材料を成膜することにより、あるいは、前記発光層の上に陽極以外の層を形成した後、該層の上に陽極材料を成膜することにより、陽極を形成する工程と、
を含む有機エレクトロルミネッセンスディスプレイ装置の製造方法。
[1] An organic electroluminescence display having a plurality of pixels each composed of an organic electroluminescence element including an anode and a cathode, a light emitting layer positioned between the electrodes, and an electron injection layer positioned between the cathode and the light emitting layer. A device manufacturing method comprising:
Preparing a substrate on which a plurality of cathodes corresponding to each pixel are formed;
Applying a solution containing an ionic polymer on each cathode and forming an electron injection layer by forming a film;
A solution containing a light emitting material is applied on the electron injection layer and formed, or after forming a layer other than the light emitting layer on the electron injection layer, the light emitting material is applied on the layer. A step of forming a light-emitting layer by applying a solution containing and forming a film; and
An anode is formed by depositing an anode material on the light emitting layer or by forming a layer other than the anode on the light emitting layer and then depositing an anode material on the layer. And the process of
The manufacturing method of the organic electroluminescent display apparatus containing this.
[2] 前記発光層を形成する工程は、画素を除く領域に撥液パターンを形成し、該撥液パターンの開口内部に発光材料を含む溶液を塗布し、成膜することにより複数の発光層を形成する工程である、上記[1]に記載の有機エレクトロルミネッセンスディスプレイ装置の製造方法。 [2] The step of forming the light emitting layer includes forming a liquid repellent pattern in a region excluding the pixels, applying a solution containing a light emitting material inside the opening of the liquid repellent pattern, and forming a plurality of light emitting layers. The manufacturing method of the organic electroluminescent display apparatus as described in said [1] which is a process of forming.
[3] 画素を除く領域にバンクを形成する工程を有する、上記[1]に記載の有機エレクトロルミネッセンスディスプレイ装置の製造方法。 [3] The method for manufacturing an organic electroluminescence display device according to [1], including a step of forming a bank in a region excluding pixels.
[4] [1]~[3]のいずれかに記載の有機エレクトロルミネッセンスディスプレイ装置の製造方法によって製造されうる有機エレクトロルミネッセンスディスプレイ装置。 [4] An organic electroluminescence display device that can be produced by the method for producing an organic electroluminescence display device according to any one of [1] to [3].
図1は、本発明にかかる有機ELディスプレイ装置の一実施形態を示す概略断面構成図である。FIG. 1 is a schematic sectional view showing an embodiment of an organic EL display device according to the present invention. 図2Aは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2A is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図2Bは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2B is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図2Cは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2C is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図2Dは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2D is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図2Eは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2E is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図2Fは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2F is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図2Gは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2G is a process explanatory diagram of the first embodiment of the method of manufacturing the organic EL display device according to the present invention. 図2Hは、本発明にかかる有機ELディスプレイ装置の製造方法の第1の実施形態の工程説明図である。FIG. 2H is a process explanatory diagram of the first embodiment of the manufacturing method of the organic EL display device according to the present invention. 図3Aは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3A is a process explanatory diagram of a second embodiment of the method for manufacturing an organic EL display device according to the present invention. 図3Bは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3B is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Cは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3C is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Dは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3D is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Eは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3E is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Fは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3F is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Gは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3G is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Hは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3H is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3I、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3I is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Jは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3J is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図3Kは、本発明にかかる有機ELディスプレイ装置の製造方法の第2の実施形態の工程説明図である。FIG. 3K is a process explanatory diagram of the second embodiment of the method for manufacturing the organic EL display device according to the present invention. 図4は、本発明にかかる有機ELディスプレイ装置の製造方法の第3の実施形態の説明図である。FIG. 4 is explanatory drawing of 3rd Embodiment of the manufacturing method of the organic electroluminescent display apparatus concerning this invention.
 1 基板
 2 画素電極(陰極)
 31 R画素
 32 G画素
 33 B画素
 4 電子注入層
 5a 撥液性のパターン
 5 撥液パターン
 61 R発光層
 62 G発光層
 63 B発光層
 7 正孔輸送層
 8 正孔注入層
 9 陽極
 501 第1のバンク層
 502 第2のバンク層
1 Substrate 2 Pixel electrode (cathode)
31 R pixel 32 G pixel 33 B pixel 4 Electron injection layer 5 a Liquid repellent pattern 5 Liquid repellent pattern 61 R light emitting layer 62 G light emitting layer 63 B light emitting layer 7 hole transport layer 8 hole injection layer 9 anode 501 first Bank layer 502 Second bank layer
 先に述べたように、本発明の有機エレクトロルミネッセンスディスプレイ装置の製造方法は、陽極及び陰極と、これら電極間に位置する発光層と、前記陰極と発光層の間に位置する電子注入層を含む有機エレクトロルミネッセンス素子からなる画素を複数有してなる有機エレクトロルミネッセンスディスプレイ装置の製造方法であって、各画素に対応する複数の陰極が形成された基板を用意する工程と、前記各陰極上に、イオン性ポリマーを含む溶液を塗布し、成膜することにより電子注入層を形成する工程と、前記電子注入層の上に、発光材料を含む溶液を塗布し、成膜することにより、あるいは、前記電子注入層の上に発光層以外の層を形成した後、該層の上に発光材料を含む溶液を塗布し、製膜することにより、発光層を形成する工程と、前記発光層の上に、陽極材料を成膜することにより、あるいは、前記発光層の上に陽極以外の層を形成した後、該層の上に陽極材料を成膜することにより、陽極を形成する工程とを含む。 As described above, the method for manufacturing an organic electroluminescence display device of the present invention includes an anode and a cathode, a light emitting layer positioned between the electrodes, and an electron injection layer positioned between the cathode and the light emitting layer. A method of manufacturing an organic electroluminescence display device having a plurality of pixels each made of an organic electroluminescence element, the step of preparing a substrate on which a plurality of cathodes corresponding to each pixel are formed, and on each of the cathodes, Applying a solution containing an ionic polymer and forming a film to form an electron injection layer; applying a solution containing a light emitting material on the electron injection layer and forming a film; or A process for forming a light emitting layer by forming a layer other than a light emitting layer on an electron injecting layer, and then applying a solution containing a light emitting material on the layer and forming a film. And forming an anode material on the light-emitting layer, or forming a layer other than the anode on the light-emitting layer and then forming an anode material on the layer to form an anode. Forming the step.
 本発明の有機エレクトロルミネッセンスディスプレイ装置は、上述の有機エレクトロルミネッセンスディスプレイ装置の製造方法によって製造されうる。 The organic electroluminescence display device of the present invention can be manufactured by the method for manufacturing an organic electroluminescence display device described above.
 上記構成の本発明の各要素について、以下に詳しく説明する。まず、溶媒に溶解させた溶液を成膜することにより常圧程度の雰囲気中で安定な電子注入層を形成することのできる電子注入性材料となるイオン性ポリマーについて説明する。次に、有機EL素子の構成について説明し、続いて、有機ELディスプレイ装置の製造方法及び該製造方法により得られる有機ELディスプレイ装置について、詳しく説明する。なおイオン性ポリマーは、従来電子注入材料として用いられていたBa、BaO、NaF、LiFなどに比べると、常圧に限らず大気中においても安定である。 Each element of the present invention having the above configuration will be described in detail below. First, an ionic polymer serving as an electron injecting material capable of forming a stable electron injecting layer in an atmosphere of about normal pressure by forming a solution dissolved in a solvent will be described. Next, the configuration of the organic EL element will be described, and subsequently, the manufacturing method of the organic EL display device and the organic EL display device obtained by the manufacturing method will be described in detail. Note that the ionic polymer is stable not only at normal pressure but also in the atmosphere, compared to Ba, BaO, NaF, LiF and the like conventionally used as electron injection materials.
[イオン性ポリマー]
 本発明において用い得るイオン性ポリマーとしては、例えば、下記式(1)で表される基及び下記式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を有する重合体が挙げられる。イオン性ポリマーの一形態としては、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を、全構造単位中、15~100モル%有する重合体が挙げられる。
[Ionic polymer]
Examples of the ionic polymer that can be used in the present invention include structural units containing one or more groups selected from the group consisting of a group represented by the following formula (1) and a group represented by the following formula (2). The polymer which has is mentioned. As one form of the ionic polymer, a structural unit containing one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) Examples thereof include a polymer having 15 to 100 mol%.
-(Q1n1-Y1(M1)a1(Z1)b1 (1)
[式(1)中、Q1は2価の有機基を表し、Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(R を表し、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、n1は0以上の整数を表し、a1は1以上の整数を表し、b1は0以上の整数を表し、ただし、a1及びb1は、式(1)で表される基の電荷が0となるように選択され、Raは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表し、Q1、M及びZのおのおのは複数個ある場合、同一でも異なっていてもよい。]
-(Q 1 ) n1 -Y 1 (M 1 ) a1 (Z 1 ) b1 (1)
[In formula (1), Q 1 represents a divalent organic group, and Y 1 represents —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R a ) 3 - represents, M 1 is an ammonium cation which does not have or have a metal cation or a substituent, Z 1 is F -, Cl -, Br - , I -, OH -, R a SO 3 -, R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 -, BF 4 - or PF 6 - represents, n1 represents an integer of 0 or more, a1 represents an integer of 1 or more, b1 represents an integer of 0 or more, provided that, a1 and b1 of the formula (1 charge of the group represented by) is selected to be 0, R a has an alkyl group or a substituent having from 1 to 30 carbon atoms which does not have or have a substituent or chromatic is There an aryl group having a carbon number of 6 to 50, each of Q 1, M 1 and Z 1 when a plurality, may be the same or different. ]
-(Q2n2-Y2(M2)a2(Z2)b2 (2)
[式(2)中、
 Q2は2価の有機基を表し、
 Y2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン又はスルホニルカチオン又はヨードニウムカチオンを表し、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、n2は0以上の整数を表し、a2は1以上の整数を表し、b2は0以上の整数を表し、ただし、a2及びb2は、式(2)で表される基の電荷が0となるように選択され、Rbは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表し、Q2、M2及びZ2のおのおのは複数個ある場合、同一でも異なっていてもよい。]
-(Q 2 ) n2 -Y 2 (M 2 ) a 2 (Z 2 ) b 2 (2)
[In Formula (2),
Q 2 represents a divalent organic group,
Y 2 represents a carbocation, ammonium cation, phosphonyl cation or sulfonyl cation or iodonium cation, and M 2 represents F , Cl , Br , I , OH , R b SO 3 , R b COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 - or PF 6 - represents, Z 2 represents an ammonium cation which does not have or have a metal cation or a substituent, n2 represents an integer of 0 or more, a2 represents an integer of 1 or more, b2 is Represents an integer of 0 or more, provided that a2 and b2 are selected such that the charge of the group represented by formula (2) is 0, and Rb has 1 or no carbon atoms. Charcoal with or without up to 30 alkyl groups or substituents An aryl group of atoms 6-50, each of Q 2, M 2 and Z 2 are when a plurality, may be the same or different. ]
 本発明で用いられるイオン性ポリマーの一形態としては、さらに下記式(3)で表される基を有する重合体が挙げられる。イオン性ポリマーが式(3)で表される基を有する場合、式(3)で表される基は、イオン性ポリマーの構造単位中に含まれていてもよく、式(1)で表される基及び式(2)で表される基からなる群から選ばれる一種以上の基を含む構造単位と同一の構造単位内に含まれていてもよいし、異なる他の構造単位内に含まれていてもよい。さらに、イオン性ポリマーの一形態としては、式(1)で表される基、式(2)で表される基、及び下記の式(3)で表される基のうち少なくとも1種を含む構造単位を、全構造単位中、15~100モル%有する重合体が挙げられる。 As an embodiment of the ionic polymer used in the present invention, a polymer having a group represented by the following formula (3) can be mentioned. When the ionic polymer has a group represented by the formula (3), the group represented by the formula (3) may be contained in the structural unit of the ionic polymer, and is represented by the formula (1). And may be contained in the same structural unit as the structural unit containing one or more groups selected from the group consisting of the group represented by formula (2), or may be contained in another different structural unit. It may be. Furthermore, as one form of the ionic polymer, at least one of a group represented by the formula (1), a group represented by the formula (2), and a group represented by the following formula (3) is included. Examples thereof include polymers having 15 to 100 mol% of structural units in the total structural units.
 -(Qn3-Y3  (3)
[式(3)中、
 Qは2価の有機基を表し、Y3は-CN又は下記の式(4)~(12)のいずれかで表される基を表し、n3は0以上の整数を表す。
 -O-(R’O)a3-R’’ (4)
-(Q 3 ) n3 -Y 3 (3)
[In Formula (3),
Q 3 represents a divalent organic group, Y 3 represents —CN or a group represented by any of the following formulas (4) to (12), and n3 represents an integer of 0 or more.
-O- (R'O) a3 -R '' (4)
Figure JPOXMLDOC01-appb-C000001
 -S-(R’S)a4-R’’ (6)
 -C(=O)-(R’-C(=O))a4-R’’ (7)
 -C(=S)-(R’-C(=S))a4-R’’ (8)
 -N[(R’)a4R’’ ]2 (9)
 -C(=O)O-(R’-C(=O)O)a4-R’’ (10)
 -C(=O)O-(R’O)a4-R’’ (11)
 -NHC(=O)-(R’NHC(=O))a4-R’’ (12)
(式(4)~(12)中、R’は置換基を有し又は有さない2価の炭化水素基を表し、R’’は水素原子、置換基を有し若しくは有さない1価の炭化水素基、-COOH、-SO3H、-OH、-SH、-NRc 2、-CN又は-C(=O)NRc 2を表し、R’’’は置換基を有し若しくは有さない3価の炭化水素基を表し、a3は1以上の整数を表し、a4は0以上の整数を表し、Rcは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表し、R’、R’’及びR’’’のおのおのは複数個ある場合、同一でも異なっていてもよい。)]
 イオン性ポリマーは、下記の式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を、全構造単位中、15~100モル%含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
-S- (R'S) a4 -R '' (6)
-C (= O)-(R'-C (= O)) a4 -R '' (7)
-C (= S)-(R'-C (= S)) a4 -R '' (8)
-N [(R ′) a4 R ″] 2 (9)
—C (═O) O— (R′—C (═O) O) a4 —R ″ (10)
—C (═O) O— (R′O) a4 —R ″ (11)
—NHC (═O) — (R′NHC (═O)) a4 —R ″ (12)
(In the formulas (4) to (12), R ′ represents a divalent hydrocarbon group with or without a substituent, and R ″ represents a hydrogen atom, a monovalent with or without a substituent. A hydrocarbon group, —COOH, —SO 3 H, —OH, —SH, —NR c 2 , —CN or —C (═O) NR c 2 , wherein R ′ ″ has a substituent, or Represents a trivalent hydrocarbon group not having, a3 represents an integer of 1 or more, a4 represents an integer of 0 or more, and R c is an alkyl having 1 to 30 carbon atoms with or without a substituent. An aryl group having 6 to 50 carbon atoms, with or without a group or substituent, may be the same or different when there are a plurality of R ′, R ″ and R ′ ″. ]]
The ionic polymer includes a structural unit represented by the following formula (13), a structural unit represented by the formula (15), a structural unit represented by the formula (17), and a structural unit represented by the formula (20). It is preferable that 15 to 100 mol% of one or more structural units selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000002
[式(13)中、Rは下記の式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表し、R1は複数個ある場合、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
[In formula (13), R 1 is a monovalent group containing a group represented by the following formula (14), and Ar 1 has a (2 + n4) valence with or without a substituent other than R 1. N4 represents an integer of 1 or more, and when there are a plurality of R 1 s , they may be the same or different.
Figure JPOXMLDOC01-appb-C000003
(式(14)中、R2は(1+m1+m2)価の有機基を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m1及びm2はそれぞれ独立に1以上の整数を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)]
Figure JPOXMLDOC01-appb-C000003
(In the formula (14), R 2 represents a (1 + m1 + m2) -valent organic group, and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above. M1 and m2 each independently represent an integer of 1 or more, and when Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 and n3 are plural, They may be the same or different.)]
Figure JPOXMLDOC01-appb-C000004
[式(15)中、R3は下記の式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表し、R3は複数個ある場合、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000004
[In the formula (15), R 3 is a monovalent group including a group represented by the following formula (16), and Ar 2 has (2 + n5) valence with or without a substituent other than R 3. N5 represents an integer of 1 or more, and when there are a plurality of R 3 s , they may be the same or different.
Figure JPOXMLDOC01-appb-C000005
(式(16)中、R4は(1+m3+m4)価の有機基を表し、Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m3及びm4はそれぞれ独立に1以上の整数を表す。Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)]
Figure JPOXMLDOC01-appb-C000005
(In the formula (16), R 4 represents a (1 + m3 + m4) valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above. M3 and m4 each independently represents an integer greater than or equal to 1. When there are a plurality of Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3, May be the same or different.)]
Figure JPOXMLDOC01-appb-C000006
[式(17)中、R5は下記の式(18)で表される基を含む1価の基であり、R6は下記の式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表し、R5及びR6のおのおのは複数個ある場合、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000006
[In formula (17), R 5 is a monovalent group containing a group represented by the following formula (18), and R 6 is a monovalent group containing a group represented by the following formula (19) Ar 3 represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6 , n6 and n7 each independently represents an integer of 1 or more, and R 5 and When there are a plurality of R 6 s , they may be the same or different.
-R7-[(Q1n1-Y1(M1)a1(Z1)b1m5 (18)
(式(18)中、R7は直接結合又は(1+m5)価の有機基を表し、Q1、Y、M1、Z1、n1、a1及びb1は前述と同じ意味を表し、m5は1以上の整数を表し、Q1、Y、M1、Z1、n1、a1及びb1のおのおのは複数個ある場合、同一でも異なっていてもよい。)
-R 7 -[(Q 1 ) n1 -Y 1 (M 1 ) a1 (Z 1 ) b1 ] m5 (18)
(In formula (18), R 7 represents a direct bond or a (1 + m5) -valent organic group, Q 1 , Y 1 , M 1 , Z 1 , n1, a1, and b1 represent the same meaning as described above, and m5 represents Represents an integer of 1 or more, and when there are a plurality of Q 1 , Y 1 , M 1 , Z 1 , n 1 , a 1 and b 1 , they may be the same or different.
-R8-{(Qn3-Y3m6 (19)
(式(19)中、R8は単結合又は(1+m6)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表し、Q、Y3及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)]
-R 8 -{(Q 3 ) n3 -Y 3 } m6 (19)
(In Formula (19), R 8 represents a single bond or a (1 + m6) -valent organic group, Y 3 and n3 represent the same meaning as described above, m6 represents an integer of 1 or more, provided that R 8 is a single group. M6 represents 1 when bonded, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.)]
Figure JPOXMLDOC01-appb-C000007
[式(20)中、R9は下記の式(21)で表される基を含む1価の基であり、R10は下記の式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表し、R9及びR10のおのおのは複数個ある場合、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007
[In the formula (20), R 9 is a monovalent group containing a group represented by the following formula (21), and R 10 is a monovalent group containing a group represented by the following formula (22) Ar 4 represents a (2 + n8 + n9) -valent aromatic group having or not having a substituent other than R 9 and R 10 , n8 and n9 each independently represents an integer of 1 or more, and R 9 and When there are a plurality of R 10 s , they may be the same or different.
-R11-[(Q2n2-Y2(M2)a2(Z2)b2m7 (21)
(式(21)中、R11は単結合又は(1+m7)価の有機基を表し、Q2、Y2、M2、Z2、n2、a2及びb2は前述と同じ意味を表し、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表し、Q2、Y2、M2、Z2、n2、a2及びb2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
-R 11 -[(Q 2 ) n 2 -Y 2 (M 2 ) a 2 (Z 2 ) b 2 ] m 7 (21)
(In the formula (21), R 11 represents a single bond or a (1 + m7) -valent organic group, Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 represent the same meaning as described above, and m 7 represents Represents an integer of 1 or more, provided that when R 11 is a single bond, m7 represents 1, and when there are a plurality of Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2 , they are the same or different. May be.)
-R12-[(Qn3-Y3m8 (22)
(式(22)中、R12は単結合又は(1+m8)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表し、Q、Y3及びn3、のおのおのは複数個ある場合、同一でも異なっていてもよい。)]
-R 12 -[(Q 3 ) n3 -Y 3 ] m8 (22)
(In Formula (22), R 12 represents a single bond or a (1 + m8) -valent organic group, Y 3 and n3 represent the same meaning as described above, m8 represents an integer of 1 or more, provided that R 12 is a single group. When bonded, m8 represents 1, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.)]
 前記イオン性ポリマー中の構造単位は、式(1)で表される基を2種類以上含んでいてもよく、式(2)で表される基を2種類以上含んでいてもよく、式(3)で表される基を2種類以上含んでいてもよい。 The structural unit in the ionic polymer may contain two or more groups represented by the formula (1), may contain two or more groups represented by the formula (2), Two or more groups represented by 3) may be included.
 〈式(1)で表される基〉
 式(1)中、Q1で表される2価の有機基としては、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数2~50のアルケニレン基、及び、エチニレン基を含む、置換基を有し又は有さない炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4'-ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルキレンオキシ基;炭素原子を含む置換基を有するイミノ基;炭素原子を含む置換基を有するシリレン基が挙げられる。これらの中でも、イオン性ポリマーの原料となるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
<Group represented by formula (1)>
In the formula (1), examples of the divalent organic group represented by Q 1 include a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, , 3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, at least one of these groups A divalent saturated hydrocarbon group having 1 to 50 carbon atoms, which may or may not have a substituent, such as a group in which a hydrogen atom is substituted with a substituent; ethenylene, propenylene, 3-butenylene, 2- Having a substituent such as a butenylene group, a 2-pentenylene group, a 2-hexenylene group, a 2-nonenylene group, a 2-dodecenylene group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Or Alkeni with 2 to 50 carbon atoms A divalent unsaturated hydrocarbon group having 2 to 50 carbon atoms, including or not having a substituent, including an ethylene group and an ethynylene group; a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexane Number of carbon atoms with or without a substituent, such as a xylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. 3 to 50 divalent cyclic saturated hydrocarbon groups; 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, biphenyl- An arylene group having 6 to 50 carbon atoms, which may or may not have a substituent, such as a 4,4′-diyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent; Oxy A substituent such as an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, a pentyleneoxy group, a hexyleneoxy group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. Or an alkyleneoxy group having 1 to 50 carbon atoms; an imino group having a substituent containing a carbon atom; and a silylene group having a substituent containing a carbon atom. Among these, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable from the viewpoint of ease of synthesis of a monomer that is a raw material for the ionic polymer (hereinafter referred to as “raw material monomer”).
 前記置換基としては、例えば、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基等が挙げられ、前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。これらのうち、アミノ基、シリル基、ハロゲン原子、ヒドロキシ基及びニトロ基以外の置換基は炭素原子を含む。 Examples of the substituent include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, an arylalkyl group, an arylalkoxy group, an arylalkylthio group, an arylalkenyl group, an arylalkynyl group, an amino group, Substituted amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, hydroxy group, carboxyl group, substituted carboxyl group, cyano group And when a plurality of the substituents are present, they may be the same or different. Of these, substituents other than amino groups, silyl groups, halogen atoms, hydroxy groups, and nitro groups contain carbon atoms.
 以下、置換基について説明する。なお、「C~C」(m、nはm<nを満たす正の整数である)という用語は、この用語とともに記載された有機基の炭素原子数がm~nであることを表す。例えば、C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表し、C~Cアルキルアリール基であれば、アルキル基の炭素原子数がm~nであることを表し、アリール-C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表す。 Hereinafter, the substituent will be described. The term “C m -C n ” (m, n is a positive integer satisfying m <n) indicates that the organic group described together with this term has m to n carbon atoms. . For example, a C m -C n alkyl group indicates that the alkyl group has m to n carbon atoms, and a C m -C n alkyl aryl group indicates that the alkyl group has m carbon atoms of m to n. n represents an aryl-C m -C n alkyl group, the alkyl group has m to n carbon atoms.
 アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は通常1~20であり、1~10が好ましい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。なお、C1~C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基が挙げられる。 The alkyl group may be linear or branched, and may be a cycloalkyl group. The alkyl group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, Nonyl group, decyl group, lauryl group and the like can be mentioned. The hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group. Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group and lauryl group.
 アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は通常1~20であり、1~10が好ましい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基等が挙げられる。また、該アルコキシ基には、メトキシメチルオキシ基、2-メトキシエチルオキシ基も含まれる。なお、C1~C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。 The alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent. The alkoxy group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples thereof include an oxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group. A hydrogen atom in the alkoxy group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group. The alkoxy group also includes a methoxymethyloxy group and a 2-methoxyethyloxy group. Examples of the C 1 to C 12 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, a pentyloxy group, and a hexyloxy group. Group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group.
 アルキルチオ基としては、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は通常1~20であり、1~10が好ましい。アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキルチオ基としては、トリフルオロメチルチオ基等が挙げられる。 The alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent. The alkylthio group usually has 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. Examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, an s-butylthio group, a t-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, An octylthio group, a nonylthio group, a decylthio group, a laurylthio group, etc. are mentioned. A hydrogen atom in the alkylthio group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted alkylthio group include a trifluoromethylthio group.
 アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団であり、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基、例えば、ビニレン基等のアルケニレン基を介して結合した基も含まれる。アリール基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリール基としては、例えば、フェニル基、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、ペンタフルオロフェニル基等が挙げられる。アリール基の中では、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基が好ましい。 An aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon, a group having a benzene ring, a group having a condensed ring, an independent benzene ring or A group in which two or more condensed rings are bonded through a single bond or a divalent organic group, for example, an alkenylene group such as a vinylene group is also included. The aryl group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms. Examples of the aryl group include a phenyl group, a C 1 to C 12 alkoxyphenyl group, a C 1 to C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and 9- Anthracenyl group etc. are mentioned. A hydrogen atom in the aryl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted aryl group include a pentafluorophenyl group. Among the aryl groups, a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group are preferable.
 前記アリール基のうち、C1~C12アルコキシフェニル基としては、例えば、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。 Among the aryl groups, examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, and an s-butoxyphenyl group. Group, t-butoxyphenyl group, pentyloxyphenyl group, hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, Examples include 3,7-dimethyloctyloxyphenyl group, lauryloxyphenyl group, and the like.
 前記アリール基のうち、C1~C12アルキルフェニル基としては、例えば、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。 Among the aryl groups, examples of the C 1 -C 12 alkylphenyl group include a methylphenyl group, an ethylphenyl group, a dimethylphenyl group, a propylphenyl group, a mesityl group, a methylethylphenyl group, an isopropylphenyl group, and a butylphenyl group. , Isobutylphenyl group, t-butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group and the like.
 アリールオキシ基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリールオキシ基としては、フェノキシ基、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。アリールオキシ基の中では、C1~C12アルコキシフェノキシ基及びC1~C12アルキルフェノキシ基が好ましい。 The aryloxy group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms. Examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group. Of the aryloxy groups, a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferred.
 前記アリールオキシ基のうち、C1~C12アルコキシフェノキシ基としては、例えば、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、s-ブトキシフェノキシ基、t-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。 Among the aryloxy groups, examples of the C 1 -C 12 alkoxyphenoxy group include methoxyphenoxy group, ethoxyphenoxy group, propyloxyphenoxy group, isopropyloxyphenoxy group, butoxyphenoxy group, isobutoxyphenoxy group, s-butoxy group. Phenoxy group, t-butoxyphenoxy group, pentyloxyphenoxy group, hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group 3,7-dimethyloctyloxyphenoxy group, lauryloxyphenoxy group and the like.
 前記アリールオキシ基のうち、C1~C12アルキルフェノキシ基としては、例えば、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、s-ブチルフェノキシ基、t-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。 Among the aryloxy groups, examples of the C 1 -C 12 alkylphenoxy group include a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, and a methylethylphenoxy group. , Isopropylphenoxy group, butylphenoxy group, isobutylphenoxy group, s-butylphenoxy group, t-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decyl A phenoxy group, a dodecylphenoxy group, etc. are mentioned.
 アリールチオ基は、例えば、前述のアリール基に硫黄元素が結合した基である。アリールチオ基は、前記アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が通常6~60であり、6~30であることが好ましい。アリールチオ基としては、例えば、フェニルチオ基、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられる。 The arylthio group is, for example, a group in which a sulfur element is bonded to the aforementioned aryl group. The arylthio group may have a substituent on the aromatic ring of the aryl group. The arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms. Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
 アリールアルキル基は、例えば、前述のアリール基に前述のアルキル基が結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキル基としては、例えば、フェニル-C1~C12アルキル基、C1~C12アルコキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基、1-ナフチル-C1~C12アルキル基、2-ナフチル-C1~C12アルキル基等が挙げられる。 The arylalkyl group is, for example, a group in which the above alkyl group is bonded to the above aryl group. The arylalkyl group may have a substituent. The arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms. Examples of the arylalkyl group include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, Examples thereof include a 1 -naphthyl-C 1 -C 12 alkyl group and a 2-naphthyl-C 1 -C 12 alkyl group.
 アリールアルコキシ基は、例えば、前述のアリール基に前述のアルコキシ基が結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルコキシ基としては、例えば、フェニル-C1~C12アルコキシ基、C1~C12アルコキシフェニル-C1~C12アルコキシ基、C1~C12アルキルフェニル-C1~C12アルコキシ基、1-ナフチル-C1~C12アルコキシ基、2-ナフチル-C1~C12アルコキシ基等が挙げられる。 The arylalkoxy group is, for example, a group in which the above alkoxy group is bonded to the above aryl group. The arylalkoxy group may have a substituent. The arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms. Examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, Examples include 1 -naphthyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group.
 アリールアルキルチオ基は、例えば、前述のアリール基に前述のアルキルチオ基が結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキルチオ基としては、例えば、フェニル-C1~C12アルキルチオ基、C1~C12アルコキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基、1-ナフチル-C1~C12アルキルチオ基、2-ナフチル-C1~C12アルキルチオ基等が挙げられる。 The arylalkylthio group is, for example, a group in which the aforementioned alkylthio group is bonded to the aforementioned aryl group. The arylalkylthio group may have a substituent. The arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms. Examples of the arylalkylthio group include a phenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkoxyphenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkylphenyl-C 1 to C 12 alkylthio group, Examples thereof include a 1 -naphthyl-C 1 -C 12 alkylthio group and a 2-naphthyl-C 1 -C 12 alkylthio group.
 アリールアルケニル基は、例えば、前述のアリール基にアルケニル基が結合した基である。アリールアルケニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルケニル基としては、例えば、フェニル-C2~C12アルケニル基、C1~C12アルコキシフェニル-C2~C12アルケニル基、C1~C12アルキルフェニル-C2~C12アルケニル基、1-ナフチル-C2~C12アルケニル基、2-ナフチル-C2~C12アルケニル基等が挙げられる。これらの中でも、C1~C12アルコキシフェニル-C2~C12アルケニル基、C2~C12アルキルフェニル-C2~C12アルケニル基が好ましい。なお、C2~C12アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基が挙げられる。 The arylalkenyl group is, for example, a group in which an alkenyl group is bonded to the aforementioned aryl group. The arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms. Examples of arylalkenyl groups include phenyl-C 2 -C 12 alkenyl groups, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl groups, C 1 -C 12 alkylphenyl -C 2 -C 12 alkenyl groups, Examples thereof include 1-naphthyl-C 2 -C 12 alkenyl group, 2-naphthyl-C 2 -C 12 alkenyl group and the like. Among these, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group and a C 2 -C 12 alkylphenyl-C 2 -C 12 alkenyl group are preferable. Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl. Group, 2-hexenyl group and 1-octenyl group.
 アリールアルキニル基は、例えば、前述のアリール基にアルキニル基が結合した基である。アリールアルキニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルキニル基としては、例えば、フェニル-C2~C12アルキニル基、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基、1-ナフチル-C2~C12アルキニル基、2-ナフチル-C2~C12アルキニル基等が挙げられる。これらの中でも、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基が好ましい。なお、C2~C12アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、1-オクチニル基が挙げられる。 The arylalkynyl group is, for example, a group in which an alkynyl group is bonded to the aforementioned aryl group. The arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms. As the arylalkynyl group, for example, a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, Examples include a 1-naphthyl-C 2 -C 12 alkynyl group, a 2-naphthyl-C 2 -C 12 alkynyl group, and the like. Among these, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group and a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group are preferable. Examples of the C 2 to C 12 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group. Group, 2-hexynyl group and 1-octynyl group.
 置換アミノ基としては、アミノ基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1又は2個の基によって置換されたアミノ基が好ましい。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1~60であり、2~48が好ましい。置換アミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C1~C12アルキル)アミノ基、(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基等が挙げられる。 As the substituted amino group, at least one hydrogen atom in the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. The amino group formed is preferred. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. The number of carbon atoms of the substituted amino group is usually 1 to 60 excluding the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 2 to 48 are preferred. Examples of the substituted amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, s- Butylamino group, t-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group , lauryl group, a cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, (C 1 ~ C 12 alkoxyphenyl) Amino group, di (C 1 ~ C 12 alkoxyphenyl) amino group, di (C 1 ~ C 12 alkylphenyl) amino groups, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, Pyridazinylamino group, pyrimidylamino group, pyrazinylamino group, triazinylamino group, (phenyl-C 1 -C 12 alkyl) amino group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group , (C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkyl) amino group, di (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) amino group, di (C 1 ~ C 12 alkylphenyl - C 1 -C 12 alkyl) amino group, 1-naphthyl-C 1 -C 12 alkylamino group, 2-naphthyl-C 1 -C 12 alkylamino group and the like.
 置換シリル基としては、例えば、シリル基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1~3個の基によって置換されたシリル基が挙げられる。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換シリル基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1~60であり、3~48が好ましい。なお、置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C1~C12アルキル)シリル基、(C1~C12アルコキシフェニル-C1~C12アルキル)シリル基、(C1~C12アルキルフェニル-C1~C12アルキル)シリル基、(1-ナフチル-C1~C12アルキル)シリル基、(2-ナフチル-C1~C12アルキル)シリル基、(フェニル-C1~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。 Examples of the substituted silyl group include, for example, 1 to 3 groups in which at least one hydrogen atom in the silyl group is selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. And a silyl group substituted by. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. The number of carbon atoms of the substituted silyl group is usually 1 to 60 without including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have, 3 to 48 are preferred. Examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyl. Dimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, lauryldimethylsilyl group, (phenyl-C 1 ~ C 12 alkyl) silyl group, (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) silyl group, (C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkyl) silyl group, (1- naphthyl -C 1 ~ C 12 alkyl Silyl group, (2-naphthyl -C 1 ~ C 12 alkyl) silyl group, (phenyl -C 1 ~ C 12 alkyl) dimethyl silyl group, a triphenylsilyl group, tri (p- xylyl) silyl group, tribenzylsilyl group , Diphenylmethylsilyl group, t-butyldiphenylsilyl group, dimethylphenylsilyl group and the like.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 アシル基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。 The acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms. Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
 アシルオキシ基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。 The acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
 イミン残基は、式:H-N=C<及び式:-N=CH-の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた残基を意味する。このようなイミン化合物としては、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、通常2~20であり、2~18が好ましい。イミン残基としては、例えば、一般式:-CRβ=N-Rγ又は一般式:-N=C(Rγ(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、ただし、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2~18のアルキレン基として環を形成してもよい。)で表される基が挙げられる。イミン残基としては、以下の基が挙げられる。 The imine residue means a residue obtained by removing one hydrogen atom in this structure from an imine compound having a structure represented by at least one of the formula: HN═C <and the formula: —N═CH—. To do. Examples of such imine compounds include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, and aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like. It is done. The number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18. Examples of the imine residue include a general formula: —CR β ═N—R γ or a general formula: —N═C (R γ ) 2 (where R β is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl) A group, an arylalkenyl group, or an arylalkynyl group, and R γ independently represents an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, provided that two R γ are present. Two are bonded to each other to form a divalent group, for example, an alkylene group having 2 to 18 carbon atoms such as an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc. As a ring may be formed.). Examples of the imine residue include the following groups.
Figure JPOXMLDOC01-appb-C000008
(式中、Meはメチル基を示し、以下、同様である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, Me represents a methyl group, and the same shall apply hereinafter.)
 アミド基は、炭素原子数が通常1~20であり、2~18であることが好ましい。アミド基としては、例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基等が挙げられる。 The amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms. Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
 酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基であり、炭素原子数が通常4~20であり、4~18であることが好ましい。酸イミド基としては、以下の基が挙げられる。 The acid imide group is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide, and usually has 4 to 20 carbon atoms and preferably 4 to 18 carbon atoms. Examples of the acid imide group include the following groups.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団をいう。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が通常3~60であり、3~20が好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような1価の複素環基としては、例えば、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられる。これらの中でも、チエニル基、C1~C12アルキルチエニル基、ピリジル基及びC1~C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。 The monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound. Here, the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure. , An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom. The monovalent heterocyclic group may have a substituent. The monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms. The number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent. Examples of such a monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, Examples include a pyrazinyl group, a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group. Among these, a thienyl group, a C 1 -C 12 alkyl thienyl group, a pyridyl group, and a C 1 -C 12 alkyl pyridyl group are preferable. The monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
 置換カルボキシル基とは、カルボキシル基中の水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換された基、すなわち、式:-C(=O)OR*(式中、Rはアルキル基、アリール基、アリールアルキル基又は1価の複素環基)で表される基である。置換オキシカルボニル基は、炭素原子数が通常2~60であり、2~48であることが好ましい。前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。なお、上記炭素原子数には、前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数は含まないものとする。置換カルボキシル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、s-ブトキシカルボニル基、t-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。 The substituted carboxyl group is a group in which a hydrogen atom in a carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, that is, a formula: —C (═O) OR * (formula R * is a group represented by an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group. The substituted oxycarbonyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. Note that the number of carbon atoms does not include the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group, or monovalent heterocyclic group may have. Examples of the substituted carboxyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, an s-butoxycarbonyl group, a t-butoxycarbonyl group, and a pentyloxycarbonyl group. Hexyloxycarbonyl group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyl Oxycarbonyl group, trifluoromethoxycarbonyl group, pentafluoroethoxycarbonyl group, perfluorobutoxycarbonyl group, perfluorohexyloxycal Group, perfluorooctyl group, phenoxycarbonyl group, naphthoxycarbonyl group, pyridyloxycarbonyl group and the like.
 式(1)中、Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R 等の1価の基を表し、Y1としては、イオン性ポリマーの酸性度の観点からは-CO2 -、-SO2 -、-PO3 -が好ましく、-CO2 -がより好ましく、イオン性ポリマーの安定性の観点からは、-CO2 -、-SO3 -、-SO2 -又は-PO3 -が好ましい。 In Formula (1), Y 1 is, -CO 2 -, -SO 3 - , -SO 2 -, -PO 3 -, or -B (R a) 3 - represents a monovalent group such as, Y 1 Is preferably —CO 2 , —SO 2 , —PO 3 from the viewpoint of the acidity of the ionic polymer, more preferably —CO 2 , and from the viewpoint of the stability of the ionic polymer, CO 2 , —SO 3 , —SO 2 or —PO 3 is preferred.
 式(1)中、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。これらの中でも、Li+、Na+、K+、Cs+、Ag+、Mg2+、Ca2+が好ましい。また、アンモニウムイオンが有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、t-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。 In formula (1), M 1 represents a metal cation or an ammonium cation with or without a substituent. As the metal cation, monovalent, divalent or trivalent ions are preferable, and Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Examples thereof include ions such as Sn, Ti, V, W, Y, Yb, Zn, and Zr. Among these, Li + , Na + , K + , Cs + , Ag + , Mg 2+ , and Ca 2+ are preferable. Examples of the substituent that the ammonium ion may have include, for example, 1 carbon atom such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, i-butyl group, and t-butyl group. Up to 10 alkyl groups.
 式(1)中、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。 In the formula (1), Z 1 is F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 are represented.
 式(1)中、n1は0以上の整数を表し、原料モノマーの合成の観点から、好ましくは0から8の整数であり、より好ましくは0から2の整数である。 In the formula (1), n1 represents an integer of 0 or more, and is preferably an integer of 0 to 8, more preferably an integer of 0 to 2, from the viewpoint of synthesis of raw material monomers.
 式(1)中、a1は1以上の整数を表し、b1は0以上の整数を表す。 In formula (1), a1 represents an integer of 1 or more, and b1 represents an integer of 0 or more.
 a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Yが-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R であり、Mが1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、ZがF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1=b1+1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R --であり、M1が2価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=2×a1-1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R であり、M1が3価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=3×a1-1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 -、又は-B(R であり、M1が1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、Z1がSO4 2-又はHPO4 2-である場合には、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。 a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero. For example, Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , and M 1 has a monovalent metal cation or substituent. An ammonium cation with or without Z 1 being F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , In the case of ClO 4 , SCN , CN , NO 3 , HSO 4 , H 2 PO 4 , BF 4 or PF 6 , it is selected so as to satisfy a1 = b1 + 1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 —— , M 1 is a divalent metal cation, and Z 1 is F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , HSO 4 , H 2 PO 4 , BF 4 or PF 6 , they are selected so as to satisfy b1 = 2 × a1-1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , M 1 is a trivalent metal cation, and Z 1 is F , Cl , Br , I , OH , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , In the case of HSO 4 , H 2 PO 4 , BF 4 or PF 6 , it is selected so as to satisfy b1 = 3 × a1-1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 , or —B (R a ) 3 , and M 1 has a monovalent metal cation or substituent, or In the case where it is an ammonium cation that does not exist and Z 1 is SO 4 2− or HPO 4 2−, it is selected so as to satisfy a1 = 2 × b1 + 1. In any of the above mathematical expressions representing the relationship between a1 and b1, a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
 Raは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Raとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1~20のアルキル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。 R a represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent, and these groups have Examples of the substituent which may be included include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different. R a is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, Carbons having 1 to 20 carbon atoms such as nonyl, decyl, lauryl, etc., carbons such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl Examples thereof include aryl groups having 6 to 30 atoms.
 前記式(1)で表される基としては、例えば、以下の基が挙げられる。 Examples of the group represented by the formula (1) include the following groups.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 〈式(2)で表される基〉
 式(2)中、Q2で表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられ、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
<Group represented by formula (2)>
In the formula (2), the divalent organic group represented by Q 2, include the same groups as those exemplified for the divalent organic group represented by Q 1 described above, the raw material monomers for synthesis From the viewpoint of ease, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
 前記Q2で表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 The group exemplified as the example of the divalent organic group represented by Q 2 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above. A substituent is mentioned. When a plurality of substituents are present, they may be the same or different.
 式(2)中、Y2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオン、又はヨードニウムカチオンを表す。
 カルボカチオンとしては、例えば、
-C
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 アンモニウムカチオンとしては、例えば、
-N
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 ホスホニルカチオンとしては、例えば、
-P
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 スルホニルカチオンとしては、例えば、
-S
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 ヨードニウムカチオンとしては、例えば、
-I
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 式(2)中、Y2は、原料モノマーの合成の容易さ並びに原料モノマー及びイオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、カルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオンが好ましく、アンモニウムカチオンがより好ましい。
In formula (2), Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation, or an iodonium cation.
As the carbocation, for example,
-C + R 2
(Wherein, R is the same or different and represents an alkyl group or an aryl group).
Examples of ammonium cations include:
-N + R 3
(Wherein, R is the same or different and represents an alkyl group or an aryl group).
Examples of phosphonyl cations include:
-P + R 3
(Wherein, R is the same or different and represents an alkyl group or an aryl group).
Examples of the sulfonyl cation include:
-S + R 2
(Wherein, R is the same or different and represents an alkyl group or an aryl group).
As an iodonium cation, for example,
-I + R 2
(Wherein, R is the same or different and represents an alkyl group or an aryl group).
In the formula (2), Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation from the viewpoint of ease of synthesis of the raw material monomer and stability of the raw material monomer and the ionic polymer against air, moisture or heat. Are preferred, and ammonium cations are more preferred.
 式(2)中、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。また、アンモニウムカチオンが有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。 In formula (2), Z 2 represents a metal cation or an ammonium cation with or without a substituent. As the metal cation, monovalent, divalent or trivalent ions are preferable, and Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Examples thereof include ions such as Sn, Ti, V, W, Y, Yb, Zn, and Zr. Examples of the substituent that the ammonium cation may have include, for example, 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, and t-butyl group. Of the alkyl group.
 式(2)中、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。 In the formula (2), M 2 represents F , Cl , Br , I , OH , R b SO 3 , R b COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 are represented.
 式(2)中、n2は0以上の整数を表し、好ましくは0から6の整数であり、より好ましくは0から2の整数である。 In formula (2), n2 represents an integer of 0 or more, preferably an integer of 0 to 6, and more preferably an integer of 0 to 2.
 式(2)中、a2は1以上の整数を表し、b2は、0以上の整数を表す。 In the formula (2), a2 represents an integer of 1 or more, and b2 represents an integer of 0 or more.
 a2及びb2は、式(2)で表される基の電荷が0となるように選択される。例えば、M2がF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合、Z2が1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、a2=b2+1を満たすように選択され、Z2が2価の金属イオンであれば、a2=2×b2+1を満たすように選択され、Z2が3価の金属イオンであれば、a2=3×b2+1を満たすように選択される。M2がSO4 2-、HPO4 2-である場合、Z2が1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、b2=2×a2-1を満たすように選択され、Z2が3価の金属イオンであれば、2×a2=3×b2+1の関係を満たすように選択される。a2とb2との関係を表す上記のいずれの数式においても、a2は好ましくは1から3の整数であり、より好ましくは1又は2である。 a2 and b2 are selected such that the charge of the group represented by the formula (2) is zero. For example, M 2 is F , Cl , Br , I , OH , R b SO 3 , R b COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN -, nO 3 -, HSO 4 -, H 2 PO 4 -, BF 4 - or PF 6 - if it is, if an ammonium ion Z 2 has no or have a monovalent metal ion or a substituent , A2 = b2 + 1 is selected and Z 2 is a divalent metal ion, a2 = 2 × b2 + 1 is selected and Z 2 is a trivalent metal ion, a2 = 3 Xb2 + 1 is selected to satisfy. When M 2 is SO 4 2− or HPO 4 2− , if Z 2 is a monovalent metal ion or an ammonium ion with or without a substituent, b2 = 2 × a2-1 is satisfied. If Z 2 is a trivalent metal ion, it is selected to satisfy the relationship 2 × a2 = 3 × b2 + 1. In any of the above mathematical expressions representing the relationship between a2 and b2, a2 is preferably an integer of 1 to 3, more preferably 1 or 2.
 Rbは置換基を有し若しくは有さない炭素原子数1~30のアルキル基又は置換基を有し若しくは有さない炭素原子数6~50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Rbとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1~20のアルキル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。 R b represents an alkyl group having 1 to 30 carbon atoms with or without a substituent or an aryl group having 6 to 50 carbon atoms with or without a substituent, and these groups have Examples of the substituent which may be included include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different. R b is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, Carbons having 1 to 20 carbon atoms such as nonyl, decyl, lauryl, etc., carbons such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl Examples thereof include aryl groups having 6 to 30 atoms.
 前記式(2)で表される基としては、例えば、以下の基が挙げられる。 Examples of the group represented by the formula (2) include the following groups.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 〈式(3)で表される基〉
 式(3)中、Qで表される2価の有機基としては、例えば、前述のQで表される2価の有機基について例示したものと同様の基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
<Group represented by formula (3)>
In formula (3), examples of the divalent organic group represented by Q 3 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. Among these, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable from the viewpoint of ease of synthesis of the raw material monomer.
 前記Qで表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 The group mentioned as an example of the divalent organic group represented by Q 3 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above. A substituent is mentioned. When a plurality of substituents are present, they may be the same or different.
 前記Qで表される2価の有機基としては、-(CH)-で表される基であることが好ましい。 The divalent organic group represented by Q 3 is preferably a group represented by — (CH 2 ) —.
 n3は0以上の整数を表し、好ましくは0から20の整数であり、より好ましくは0から8の整数である。 N3 represents an integer of 0 or more, preferably an integer of 0 to 20, and more preferably an integer of 0 to 8.
 式(3)中、Y3は-CN又は式(4)~(12)のいずれかで表される基を表す。 In formula (3), Y 3 represents —CN or a group represented by any one of formulas (4) to (12).
 式(4)~(12)中、R’で表される2価の炭化水素基としては、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数2~50のアルケニレン基、及び、エチニレン基を含む、置換基を有し又は有さない炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルキレンオキシ基等が挙げられる。 In the formulas (4) to (12), examples of the divalent hydrocarbon group represented by R ′ include methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2 -Butylene group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, A divalent saturated hydrocarbon group having 1 to 50 carbon atoms, with or without a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent; an ethenylene group, a propenylene group, 3- A butenylene group, a 2-butenylene group, a 2-pentenylene group, a 2-hexenylene group, a 2-nonenylene group, a 2-dodecenylene group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like, 2 carbon atoms with or without substituents A divalent unsaturated hydrocarbon group having 2 to 50 carbon atoms including or not having a substituent, including 50 alkenylene group and ethynylene group; cyclopropylene group, cyclobutylene group, cyclopentylene group, Carbons having or not having a substituent such as a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A divalent cyclic saturated hydrocarbon group having 3 to 50 atoms; 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, Arylene having 6 to 50 carbon atoms, with or without a substituent, such as a biphenyl-4,4′-diyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent A substitution such as a methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, a pentyleneoxy group, a hexyleneoxy group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Examples thereof include an alkyleneoxy group having 1 to 50 carbon atoms which may or may not have a group.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 式(4)~(12)中、R’’で表される1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 In the formulas (4) to (12), examples of the monovalent hydrocarbon group represented by R ″ include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and an s-butyl group. , T-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc. Alkyl groups having 1 to 20 carbon atoms with or without substituents; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, etc. And an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent, such as a group in which at least one hydrogen atom in the group is substituted with a substituent. From the viewpoint of solubility of the ionic polymer, a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable. Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 式(5)中、R’’’で表される3価の炭化水素基としては、例えば、メタントリイル基、エタントリイル基、1,2,3-プロパントリイル基、1,2,4-ブタントリイル基、1,2,5-ペンタントリイル基、1,3,5-ペンタントリイル基、1,2,6-ヘキサントリイル基、1,3,6-ヘキサントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキルトリイル基;1,2,3-ベンゼントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メタントリイル基、エタントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 In the formula (5), examples of the trivalent hydrocarbon group represented by R ′ ″ include a methanetriyl group, an ethanetriyl group, a 1,2,3-propanetriyl group, and a 1,2,4-butanetriyl group. 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, among these groups An alkyltriyl group having 1 to 20 carbon atoms, with or without a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent; 1,2,3-benzenetriyl group; , 2,4-benzenetriyl group, 1,3,5-benzenetriyl group, and a group having or having a substituent such as a group in which at least one hydrogen atom in these groups is substituted with a substituent. And an aryl group having 6 to 30 carbon atoms. From the viewpoint of solubility of the ionic polymer, a methanetriyl group, an ethanetriyl group, a 1,2,4-benzenetriyl group, and a 1,3,5-benzenetriyl group are preferable. Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 式(4)~(12)中、Rcとしては、イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基が好ましい In formulas (4) to (12), R c is preferably a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group or a 2-naphthyl group from the viewpoint of solubility of the ionic polymer.
 式(4)及び式(5)中、a3は1以上の整数を表し、3~10の整数が好ましい。式(6)~(12)中、a4は0以上の整数を表す。式(6)においては、a4は、0~30の整数が好ましく、3~20の整数がより好ましい。式(7)~(10)においては、a4は、0~10の整数が好ましく、0~5の整数がより好ましい。式(11)においては、a4は、0~20の整数が好ましく、3~20の整数がより好ましい。式(12)においては、a4は、0~20の整数が好ましく、0~10の整数がより好ましい。 In the formulas (4) and (5), a3 represents an integer of 1 or more, and an integer of 3 to 10 is preferable. In the formulas (6) to (12), a4 represents an integer of 0 or more. In the formula (6), a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20. In the formulas (7) to (10), a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5. In the formula (11), a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20. In the formula (12), a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
 Y3としては、原料モノマーの合成の容易さの観点からは、-CN、式(4)で表される基、式(6)で表される基、式(10)で表される基、式(11)で表される基が好ましく、式(4)で表される基、式(6)で表される基、式(11)で表される基がより好ましく、以下の基が特に好ましい。 Y 3 is —CN, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (10), from the viewpoint of ease of synthesis of the raw material monomer. A group represented by the formula (11) is preferable, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (11) are more preferable, and the following groups are particularly preferable: preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 〈イオン性ポリマー中の構造単位〉
 本発明に用いられるイオン性ポリマーは、前記式(13)で表される構造単位、前記式(15)で表される構造単位、前記式(17)で表される構造単位、前記式(20)で表される構造単位を有することが好ましく、前記構造単位を全構造単位中、15~100モル%有するイオン性ポリマーであることがより好ましい。
<Structural units in ionic polymer>
The ionic polymer used in the present invention includes a structural unit represented by the formula (13), a structural unit represented by the formula (15), a structural unit represented by the formula (17), and the formula (20). ), And more preferably an ionic polymer having 15 to 100 mol% of the structural units in all the structural units.
 〈式(13)で表される構造単位〉
 式(13)中、R1は式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表す。
<Structural Unit Represented by Formula (13)>
In formula (13), R 1 is a monovalent group containing a group represented by formula (14), and Ar 1 has a (2 + n4) -valent aromatic group with or without a substituent other than R 1. Represents a group, and n4 represents an integer of 1 or more.
 式(14)で表される基は、Arに直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してArに結合していてもよい。 The group represented by the formula (14) may be directly bonded to Ar 1, and includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a nonylene group, a dodecylene group, a cyclopropylene group, Substitution, such as a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent Alkylene group having 1 to 50 carbon atoms with or without a group; oxymethylene group, oxyethylene group, oxypropylene group, oxybutylene group, oxypentylene group, oxyhexylene group, oxynonylene group, oxiddecylene Group, cyclopropyleneoxy group, cyclobutyleneoxy group, cyclopentyleneoxy group, Chlohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. An oxyalkylene group having 1 to 50 carbon atoms with or without a substituent; an imino group with or without a substituent; a silylene group with or without a substituent; with a substituent An ethynylene group; an ethynylene group; a methanetriyl group with or without a substituent; and an Ar 1 through a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
 前記ArはR1以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Ar 1 may have a substituent other than R 1 . Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 前記Ar1が有するR1以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。 The substituent other than R 1 possessed by Ar 1 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer.
 式(13)中、n4は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In the formula (13), n4 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(13)中のAr1で表される(2+n4)価の芳香族基としては、(2+n4)価の芳香族炭化水素基、(2+n4)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n4)価の芳香族基が好ましい。該(2+n4)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n4)個除いた(2+n4)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基等が挙げられる。 Examples of the (2 + n4) -valent aromatic group represented by Ar 1 in formula (13) include a (2 + n4) -valent aromatic hydrocarbon group and a (2 + n4) -valent aromatic heterocyclic group. Or a (2 + n4) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms. Examples of the (2 + n4) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; a group consisting of the monocyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the above are condensed; and consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from an aromatic ring assembly formed by linking two or more aromatic rings selected from the group by a single bond, ethenylene group or ethynylene group; Next to an aromatic ring or set of aromatic rings A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a bridged polycyclic aromatic ring having a bridge formed by bridging two matching aromatic rings with a divalent group such as a methylene group, an ethylene group, or a carbonyl group. Etc.
 単環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the monocyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 縮合多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the condensed polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 芳香環集合としては、例えば、以下の環が挙げられる。 Examples of the aromatic ring assembly include the following rings.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 有橋多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the Aribashi polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記(2+n4)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n4)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n4)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n4)個除いた基がさらに好ましい。 The (2 + n4) -valent aromatic group includes (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer. A group obtained by removing (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred. More preferred is a group in which (2 + n4) hydrogen atoms have been removed from the ring formed.
 式(14)中、R2で表される(1+m1+m2)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m1+m2)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m1+m2)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m1+m2)個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m1+m2)個の水素原子を除いた基、アリール基から(m1+m2)個の水素原子を除いた基、アルコキシ基から(m1+m2)個の水素原子を除いた基が好ましい。 In the formula (14), examples of the (1 + m1 + m2) -valent organic group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m1 + m2) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl An aryl group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent (M1 + m2) groups excluding hydrogen atoms; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyl Substitution, such as an oxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc. A group obtained by removing (m1 + m2) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a group; removing (m1 + m2) hydrogen atoms from an amino group having a substituent containing a carbon atom A group obtained by removing (m1 + m2) hydrogen atoms from a silyl group having a substituent containing a carbon atom. It is. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m1 + m2) hydrogen atoms from an alkyl group, a group obtained by removing (m1 + m2) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m1 + m2) hydrogen atoms have been removed is preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 〈式(15)で表される構造単位〉
 式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表す。
<Structural unit represented by formula (15)>
In the formula (15), R 3 is a monovalent group containing a group represented by the formula (16), and Ar 2 is a (2 + n5) -valent aromatic having or not having a substituent other than R 3. Represents a group, and n5 represents an integer of 1 or more.
 式(16)で表される基は、Ar2に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr2に結合していてもよい。 The group represented by the formula (16) may be directly bonded to Ar 2, and includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a nonylene group, a dodecylene group, a cyclopropylene group, Substitution, such as a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent Alkylene group having 1 to 50 carbon atoms with or without a group; oxymethylene group, oxyethylene group, oxypropylene group, oxybutylene group, oxypentylene group, oxyhexylene group, oxynonylene group, oxiddecylene Group, cyclopropyleneoxy group, cyclobutyleneoxy group, cyclopentyleneoxy group, Lohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. An oxyalkylene group having 1 to 50 carbon atoms with or without a substituent; an imino group with or without a substituent; a silylene group with or without a substituent; An ethynylene group; an ethynylene group; a methanetriyl group with or without a substituent; and an Ar 2 through a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
 前記Ar2はR3以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Ar 2 may have a substituent other than R 3 . Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 前記Ar2が有するR3以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。 The substituent other than R 3 in Ar 2 is preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer.
 式(15)中、n5は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In the formula (15), n5 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
 式(15)中のAr2で表される(2+n5)価の芳香族基としては、(2+n5)価の芳香族炭化水素基、(2+n5)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n5)価の芳香族基が好ましい。該(2+n5)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n5)個除いた(2+n5)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基等が挙げられる。 Examples of the (2 + n5) -valent aromatic group represented by Ar 2 in the formula (15) include a (2 + n5) -valent aromatic hydrocarbon group and a (2 + n5) -valent aromatic heterocyclic group. Or a (2 + n5) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms. Examples of the (2 + n5) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a monocyclic aromatic ring such as a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; a group consisting of the monocyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a condensed polycyclic aromatic ring in which two or more rings selected from the above are condensed; and consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from an aromatic ring assembly formed by linking two or more aromatic rings selected from the group by a single bond, ethenylene group or ethynylene group; Next to an aromatic ring or set of aromatic rings A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a bridged polycyclic aromatic ring having a bridge formed by bridging two matching aromatic rings with a divalent group such as a methylene group, an ethylene group, or a carbonyl group. Etc.
 単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~12で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 12 exemplified in the description of the structural unit represented by formula (13).
 縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
 芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
 有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
 前記(2+n5)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n5)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n5)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n5)個除いた基がさらに好ましい。 The (2 + n5) -valent aromatic group includes (2 + n5) hydrogen atoms from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer. A group obtained by removing (2 + n5) hydrogen atoms from the ring represented by formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and a group represented by formula 1, 37, or 41 is preferred. And more preferably a group in which (2 + n5) hydrogen atoms have been removed from the ring.
 式(16)中、m3及びm4はそれぞれ独立に1以上の整数を表す。 In formula (16), m3 and m4 each independently represent an integer of 1 or more.
 式(16)中、R4で表される(1+m3+m4)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m3+m4)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m3+m4)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m3+m4)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m3+m4)個の水素原子を除いた基、アリール基から(m3+m4)個の水素原子を除いた基、アルコキシ基から(m3+m4)個の水素原子を除いた基が好ましい。 In the formula (16), examples of the (1 + m3 + m4) -valent organic group represented by R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m3 + m4) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl An aryl group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent (M3 + m4) groups excluding hydrogen atoms; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyl Substitution, such as an oxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc. A group obtained by removing (m3 + m4) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a group; removing (m3 + m4) hydrogen atoms from an amino group having a substituent containing a carbon atom A group obtained by removing (m3 + m4) hydrogen atoms from a silyl group having a substituent containing a carbon atom. From the viewpoint of ease of synthesis of the raw material monomer, a group in which (m3 + m4) hydrogen atoms are removed from an alkyl group, a group in which (m3 + m4) hydrogen atoms are removed from an aryl group, and an alkoxy group (m3 + m4) Groups in which one hydrogen atom has been removed are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 〈式(17)で表される構造単位〉
 式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表す。
<Structural Unit Represented by Formula (17)>
In Formula (17), R 5 is a monovalent group including a group represented by Formula (18), R 6 is a monovalent group including a group represented by Formula (19), and Ar 3 Represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6 , and n6 and n7 each independently represents an integer of 1 or more.
 式(18)で表される基及び式(19)で表される基は、Ar3に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr3に結合していてもよい。 The group represented by the formula (18) and the group represented by the formula (19) may be directly bonded to Ar 3, and include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, Nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and at least one hydrogen atom in these groups An alkylene group having 1 to 50 carbon atoms, with or without a substituent, such as a group substituted with a substituent; an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxypentylene group, an oxy Hexylene, oxynonylene, oxide decylene, cyclopropyleneoxy, cyclobutyleneoxy, Lopentyleneoxy group, cyclohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, and at least one hydrogen atom in these groups is substituted An oxyalkylene group having 1 to 50 carbon atoms with or without a substituent, such as a group substituted with a group; an imino group with or without a substituent; a silylene with or without a substituent An ethenylene group with or without a substituent; an ethynylene group; a methanetriyl group with or without a substituent; and bonded to Ar 3 through a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom May be.
 前記Ar3はR5及びR6以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Ar 3 may have a substituent other than R 5 and R 6 . Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 前記Ar3が有するR5及びR6以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。 The substituent other than R 5 and R 6 possessed by Ar 3 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
 式(17)中、n6は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (17), n6 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
 式(17)中、n7は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (17), n7 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
 式(17)中のAr3で表される(2+n6+n7)価の芳香族基としては、(2+n6+n7)価の芳香族炭化水素基、(2+n6+n7)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n6+n7)価の芳香族基が好ましい。該(2+n6+n7)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環等の単環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基等が挙げられる。 Examples of the (2 + n6 + n7) -valent aromatic group represented by Ar 3 in the formula (17) include a (2 + n6 + n7) -valent aromatic hydrocarbon group, a (2 + n6 + n7) -valent aromatic heterocyclic group, and a carbon atom. Or a (2 + n6 + n7) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms. Examples of the (2 + n6 + n7) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from a monocyclic aromatic ring such as an imidazole ring or an oxazole ring; a condensation in which two or more rings selected from the group consisting of the monocyclic aromatic rings are condensed A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from the polycyclic aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring; (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from an aromatic ring assembly connected by a single bond, ethenylene group or ethynylene group; adjacent to the condensed polycyclic aromatic ring or the aromatic ring assembly (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from a bridged polycyclic aromatic ring having a bridge in which two aromatic rings are bridged by a divalent group such as a methylene group, an ethylene group, or a carbonyl group Etc.
 単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
 縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
 芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
 有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
 前記(2+n6+n7)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n6+n7)個除いた基が好ましく、式1、37又は41で表される環から水素原子を(2+n6+n7)個除いた基がより好ましく、式1、38又は42で表される環から水素原子を(2+n6+n7)個除いた基がさらに好ましい。 The (2 + n6 + n7) -valent aromatic group is a ring represented by the formula 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 from the viewpoint of ease of synthesis of the raw material monomer. A group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring is preferred, and a group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring represented by formula 1, 37 or 41 is more preferred, represented by formula 1, 38 or 42 A group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring is more preferable.
 式(18)中、Rは単結合又は(1+m5)価の有機基を表し、(1+m5)価の有機基であることが好ましい。 In Formula (18), R 7 represents a single bond or a (1 + m5) -valent organic group, and is preferably a (1 + m5) -valent organic group.
 式(18)中、R7で表される(1+m5)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基からm5個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基からm5個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm5個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm5個の水素原子を除いた基、アリール基からm5個の水素原子を除いた基、アルコキシ基からm5個の水素原子を除いた基が好ましい。 In the formula (18), examples of the (1 + m5) -valent organic group represented by R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which an m5 hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, M5-hydrogen from an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent, such as a 9-anthracenyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent. original Groups except for: methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group Having or having a substituent, such as a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group obtained by removing m5 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms; a group obtained by removing m5 hydrogen atoms from an amino group having a substituent containing carbon atoms; having a substituent containing carbon atoms Examples include groups in which m5 hydrogen atoms have been removed from a silyl group. From the viewpoint of ease of synthesis of raw material monomers, A group in which m5 hydrogen atoms have been removed, a group in which m5 hydrogen atoms have been removed from an aryl group, and a group in which m5 hydrogen atoms have been removed from an alkoxy group are preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 式(18)中、m5は1以上の整数を表し、ただし、R7が単結合のときm5は1を表す。 In formula (18), m5 represents an integer of 1 or more, provided that m5 represents 1 when R 7 is a single bond.
 式(19)中、Rは単結合又は(1+m6)価の有機基を表し、(1+m6)価の有機基であることが好ましい。 In Formula (19), R 8 represents a single bond or a (1 + m6) -valent organic group, and is preferably a (1 + m6) -valent organic group.
 式(19)中、R8で表される(1+m6)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基からm6個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基からm6個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm6個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基からm6個の水素原子を除いた基、アリール基からm6個の水素原子を除いた基、アルコキシ基からm6個の水素原子を除いた基が好ましい。 In the formula (19), examples of the (1 + m6) -valent organic group represented by R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which an m6 hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, M6-hydrogen from an aryl group having 6-30 carbon atoms, with or without a substituent, such as a 9-anthracenyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent original Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group Having or having a substituent, such as a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group obtained by removing m6 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms; a group obtained by removing m6 hydrogen atoms from an amino group having a substituent containing carbon atoms; having a substituent containing carbon atoms And a group obtained by removing m6 hydrogen atoms from a silyl group. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing m6 hydrogen atoms from an alkyl group, a group obtained by removing m6 hydrogen atoms from an aryl group, and m6 hydrogen atoms from an alkoxy group. A group excluding is preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 式(19)中、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表す。 In formula (19), m6 represents an integer of 1 or more, provided that m6 represents 1 when R 8 is a single bond.
 〈式(20)で表される構造単位〉
 式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表す。
<Structural Unit Represented by Formula (20)>
In Formula (20), R 9 is a monovalent group including a group represented by Formula (21), R 10 is a monovalent group including a group represented by Formula (22), and Ar 4 Represents a (2 + n8 + n9) -valent aromatic group having or not having a substituent other than R 9 and R 10 , and n8 and n9 each independently represents an integer of 1 or more.
 式(21)で表される基及び式(22)で表される基は、Ar4に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr4に結合していてもよい。 The group represented by the formula (21) and the group represented by the formula (22) may be directly bonded to Ar 4, and include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, Nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group, adamantylene group, and at least one hydrogen atom in these groups An alkylene group having 1 to 50 carbon atoms, with or without a substituent, such as a group substituted with a substituent; an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group, an oxypentylene group, an oxy Hexylene, oxynonylene, oxide decylene, cyclopropyleneoxy, cyclobutyleneoxy, Lopentyleneoxy group, cyclohexyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, and at least one hydrogen atom in these groups is substituted An oxyalkylene group having 1 to 50 carbon atoms with or without a substituent, such as a group substituted with a group; an imino group with or without a substituent; a silylene with or without a substituent An ethenylene group with or without a substituent; an ethynylene group; a methanetriyl group with or without a substituent; and bonded to Ar 4 through a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom. May be.
 前記Ar4はR9及びR10以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Ar 4 may have a substituent other than R 9 and R 10 . Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 前記Ar4が有するR9及びR10以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。 The substituent other than R 9 and R 10 possessed by Ar 4 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
 式(20)中、n8は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (20), n8 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(20)中、n9は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In formula (20), n9 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
 式(20)中のAr4で表される(2+n8+n9)価の芳香族基としては、(2+n8+n9)価の芳香族炭化水素基、(2+n8+n9)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n8+n9)価の芳香族基が好ましい。該(2+n8+n9)価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環等の単環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基等が挙げられる。 Examples of the (2 + n8 + n9) -valent aromatic group represented by Ar 4 in the formula (20) include a (2 + n8 + n9) -valent aromatic hydrocarbon group and a (2 + n8 + n9) -valent aromatic heterocyclic group. Or a (2 + n8 + n9) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms. Examples of the (2 + n8 + n9) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, A (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from a monocyclic aromatic ring such as an imidazole ring; a condensed polycyclic ring in which two or more rings selected from the group consisting of the monocyclic aromatic rings are condensed (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from the aromatic ring; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring, (2 + n8 + n9) -valent group obtained by removing (2 + n8 + n9) hydrogen atoms from an aromatic ring assembly connected by ethenylene group or ethynylene group; the condensed polycyclic aromatic ring or two aromatic rings adjacent to the aromatic ring assembly Methylene group, an ethylene group, and a divalent hydrogen atoms from a bridged polycyclic aromatic ring having a bridged crosslinked with groups (2 + n8 + n9) pieces remaining after removing (2 + n8 + n9) valent group such as a carbonyl group.
 単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (13).
 縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 27 exemplified in the description of the structural unit represented by formula (13).
 芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
 有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by Formulas 37 to 44 exemplified in the description of the structural unit represented by Formula (13).
 前記(2+n8+n9)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n8+n9)個除いた基が好ましく、式1~6、8、14、27、28、38又は42で表される環から水素原子を(2+n8+n9)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n8+n9)個除いた基がさらに好ましい。 The (2 + n8 + n9) -valent aromatic group is a ring represented by the formula 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39 or 41 from the viewpoint of ease of synthesis of the raw material monomer. Is preferably a group in which (2 + n8 + n9) hydrogen atoms are removed from, more preferably a group in which (2 + n8 + n9) hydrogen atoms are removed from the ring represented by the formulas 1 to 6, 8, 14, 27, 28, 38 or 42, A group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring represented by formula 1, 37 or 41 is more preferable.
 式(21)中、R11は単結合又は(1+m7)価の有機基を表し、(1+m7)価の有機基であることが好ましい。 In Formula (21), R 11 represents a single bond or a (1 + m7) -valent organic group, and is preferably a (1 + m7) -valent organic group.
 式(21)中、R11で表される(1+m7)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基からm7個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基からm7個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm7個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基からm7個の水素原子を除いた基、アリール基からm7個の水素原子を除いた基、アルコキシ基からm7個の水素原子を除いた基が好ましい。 In the formula (21), examples of the (1 + m7) -valent organic group represented by R 11 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which an m7 hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, M7 hydrogen from an aryl group having 6-30 carbon atoms, with or without a substituent, such as a 9-anthracenyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent original A group except for: methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group Having or having a substituent, such as a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group obtained by removing m7 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms; a group obtained by removing m7 hydrogen atoms from an amino group having a substituent containing carbon atoms; having a substituent containing carbon atoms And a group obtained by removing m7 hydrogen atoms from a silyl group. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing m7 hydrogen atoms from an alkyl group, a group obtained by removing m7 hydrogen atoms from an aryl group, and m7 hydrogen atoms from an alkoxy group. A group excluding is preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 式(21)中、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表す。 In formula (21), m7 represents an integer of 1 or more, provided that m7 represents 1 when R 11 is a single bond.
 式(22)中、R12は単結合又は(1+m8)価の有機基を表し、(1+m8)価の有機基であることが好ましい。 In Formula (22), R 12 represents a single bond or a (1 + m8) valent organic group, and is preferably a (1 + m8) valent organic group.
 式(22)中、R12で表される(1+m8)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基からm8個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基からm8個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm8個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基からm8個の水素原子を除いた基、アリール基からm8個の水素原子を除いた基、アルコキシ基からm8個の水素原子を除いた基が好ましい。 In the formula (22), examples of the (1 + m8) -valent organic group represented by R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which an m8 hydrogen atom is removed from an alkyl group having 1 to 20 carbon atoms, which may or may not have; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, M8 hydrogen from an aryl group having 6-30 carbon atoms, with or without a substituent, such as a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc. original A group except for: methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group Having or having a substituent, such as a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent A group obtained by removing m8 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms; a group obtained by removing m8 hydrogen atoms from an amino group having a substituent containing carbon atoms; having a substituent containing carbon atoms And a group obtained by removing m8 hydrogen atoms from a silyl group. Among these, from the viewpoint of easy synthesis of the raw material monomer, a group in which m8 hydrogen atoms are removed from an alkyl group, a group in which m8 hydrogen atoms are removed from an aryl group, and m8 hydrogen atoms from an alkoxy group. A group excluding is preferred.
 前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same or different.
 式(22)中、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表す。 In formula (22), m8 represents an integer of 1 or more, provided that m8 represents 1 when R 12 is a single bond.
 〈式(13)で表される構造単位の例〉
 式(13)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、下記の式(23)で表される構造単位、式(24)で表される構造単位が好ましく、式(24)で表される構造単位がより好ましい。
<Example of Structural Unit Represented by Formula (13)>
As the structural unit represented by the formula (13), from the viewpoint of the electron transport property of the obtained ionic polymer, the structural unit represented by the following formula (23) and the structural unit represented by the formula (24) Is preferable, and the structural unit represented by Formula (24) is more preferable.
Figure JPOXMLDOC01-appb-C000018
[式(23)中、R13は(1+m9+m10)価の有機基を表し、R14は1価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m9及びm10はそれぞれ独立に1以上の整数を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000018
[In the formula (23), R 13 represents a (1 + m9 + m10) valent organic group, R 14 represents a monovalent organic group, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1 , A1, b1, and n3 represent the same meaning as described above, m9 and m10 each independently represent an integer of 1 or more, and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, When there are a plurality of b1 and n3, they may be the same or different. ]
 式(23)中、R13で表される(1+m9+m10)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m9+m10)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m9+m10)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m9+m10)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m9+m10)個の水素原子を除いた基、アリール基から(m9+m10)個の水素原子を除いた基、アルコキシ基から(m9+m10)個の水素原子を除いた基が好ましい。 In the formula (23), examples of the (1 + m9 + m10) -valent organic group represented by R 13 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, and t-butyl. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m9 + m10) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl An aryl group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group in which (m9 + m10) hydrogen atoms have been removed from the group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. A group obtained by removing (m9 + m10) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent; (m9 + m10) hydrogens from an amino group having a substituent containing a carbon atom A group excluding atoms; (m9 + m10) hydrogen atoms from a silyl group having a substituent containing a carbon atom; From the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m9 + m10) hydrogen atoms from an alkyl group, a group obtained by removing (m9 + m10) hydrogen atoms from an aryl group, an alkoxy group To (m9 + m10) hydrogen atoms are preferred.
 式(23)中、R14で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から1個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。 In the formula (23), examples of the monovalent organic group represented by R 14 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, It has a substituent such as a pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Or a group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms, which is not present; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9- One hydrogen atom from an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent, such as an anthracenyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent. Excluded group Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group , A cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like, having 1 or less carbon atoms A group obtained by removing one hydrogen atom from 50 alkoxy groups; a group obtained by removing one hydrogen atom from an amino group having a substituent containing a carbon atom; one from a silyl group having a substituent containing a carbon atom From the viewpoint of ease of synthesis of the raw material monomer, one hydrogen atom is removed from the alkyl group. A group in which one hydrogen atom has been removed from an aryl group or a group in which one hydrogen atom has been removed from an alkoxy group is preferred.
 式(23)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (23) include the following structural units.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
[式(24)中、R13は(1+m11+m12)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m11及びm12はそれぞれ独立に1以上の整数を表し、R13、m11、m12、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000020
[In the formula (24), R 13 represents a (1 + m11 + m12) -valent organic group, and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above. M11 and m12 each independently represents an integer of 1 or more, and R 13 , m 11, m 12, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 When there are a plurality of each, they may be the same or different. ]
 式(24)中、R13で表される(1+m11+m12)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m11+m12)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m11+m12)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m11+m12)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m11+m12)個の水素原子を除いた基、アリール基から(m11+m12)個の水素原子を除いた基、アルコキシ基から(m11+m12)個の水素原子を除いた基が好ましい。 In the formula (24), examples of the (1 + m11 + m12) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl A group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m11 + m12) hydrogen atoms from a reel group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. A group obtained by removing (m11 + m12) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent; (m11 + m12) hydrogens from an amino group having a substituent containing a carbon atom Groups excluding atoms; (m11 + m12) silyl groups having substituents containing carbon atoms They include groups obtained by removing a hydrogen atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group, a group obtained by removing (m11 + m12) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m11 + m12) hydrogen atoms have been removed is preferred.
 式(24)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (24) include the following structural units.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(13)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(25)で表される構造単位が好ましい。 As the structural unit represented by the formula (13), the structural unit represented by the formula (25) is preferable from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000025
[式(25)中、R15は(1+m13+m14)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m13、m14及びm15はそれぞれ独立に1以上の整数を表し、R15、m13、m14、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000025
[In the formula (25), R 15 represents a (1 + m13 + m14) -valent organic group, and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 have the same meaning as described above. the stands, m13, m14 and m15 represent each independently an integer of 1 or more, R 15, m13, m14, Q 1, Q 3, Y 1, M 1, Z 1, Y 3, n1, a1, b1 and When there are a plurality of n3s, they may be the same or different. ]
 式(25)中、R15で表される(1+m13+m14)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m13+m14)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m13+m14)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m13+m14)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m13+m14)個の水素原子を除いた基、アリール基から(m13+m14)個の水素原子を除いた基、アルコキシ基から(m13+m14)個の水素原子を除いた基が好ましい。 In the formula (25), examples of the (1 + m13 + m14) -valent organic group represented by R 15 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m13 + m14) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl A group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m13 + m14) hydrogen atoms from a reel group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. A group obtained by removing (m13 + m14) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent; (m13 + m14) hydrogens from an amino group having a substituent containing a carbon atom Groups excluding atoms; (m13 + m14) silyl groups having substituents containing carbon atoms They include groups obtained by removing a hydrogen atom. Among these, from the viewpoint of easy synthesis of the raw material monomer, a group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group, a group obtained by removing (m13 + m14) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m13 + m14) hydrogen atoms have been removed is preferred.
 式(25)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (25) include the following structural units.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 〈式(15)で表される構造単位の例〉
 式(15)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(26)で表される構造単位、式(27)で表される構造単位が好ましく、式(27)で表される構造単位がより好ましい。
<Example of structural unit represented by formula (15)>
The structural unit represented by the formula (15) is preferably a structural unit represented by the formula (26) or a structural unit represented by the formula (27) from the viewpoint of electron transport properties of the obtained ionic polymer. The structural unit represented by formula (27) is more preferred.
Figure JPOXMLDOC01-appb-C000027
[式(26)中、R16は(1+m16+m17)価の有機基を表し、R17は1価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000027
[In the formula (26), R 16 represents a (1 + m16 + m17) valent organic group, R 17 represents a monovalent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2 , a2, b2 and n3 represent the same as defined above, m16 and represent an integer of 1 or more, respectively m17 independently, Q 2, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2 , B2 and n3 may be the same or different when there are a plurality of each. ]
 式(26)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。 In the formula (26), examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl A group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m16 + m17) hydrogen atoms from a reel group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy A group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group obtained by substituting at least one hydrogen atom of these groups with a substituent, etc. A group obtained by removing (m16 + m17) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent; (m16 + m17) hydrogens from an amino group having a substituent containing a carbon atom Groups excluding atoms; (m16 + m17) silyl groups having substituents containing carbon atoms They include groups obtained by removing a hydrogen atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group, a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m16 + m17) hydrogen atoms are removed is preferred.
 式(26)中、R17で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から1個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。 In the formula (26), examples of the monovalent organic group represented by R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, It has a substituent such as a pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent. Or a group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms, which is not present; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9- One hydrogen atom from an aryl group having 6 to 30 carbon atoms, which may or may not have a substituent, such as an anthracenyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent. Excluded group Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy Group, cyclododecyloxy group, norbornyloxy group, adamantyloxy group, or the number of carbon atoms having or not having a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent A group in which one hydrogen atom is removed from 1 to 50 alkoxy groups; a group in which one hydrogen atom is removed from an amino group having a substituent containing a carbon atom; a silyl group having a substituent containing a carbon atom; And groups in which one hydrogen atom is removed. Among these, from the viewpoint of easy synthesis of the raw material monomer, a group in which one hydrogen atom is removed from an alkyl group, a group in which one hydrogen atom is removed from an aryl group, and one hydrogen atom from an alkoxy group Groups other than are preferred.
 式(26)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (26) include the following structural units.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
[式(27)中、R16は(1+m16+m17)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、R16、m16、m17、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000029
[In the formula (27), R 16 represents a (1 + m16 + m17) -valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above. the stands, m16 and represent an integer of 1 or more each independently m17, R 16, m16, m17 , Q 2, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2, b2 , and n3 When there are a plurality of each, they may be the same or different. ]
 式(27)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。 In the formula (27), examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl A group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m16 + m17) hydrogen atoms from a diol group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyl An oxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, or a group in which at least one of these groups is substituted with a substituent A group obtained by removing (m16 + m17) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent, such as (m16 + m17) from an amino group having a substituent containing a carbon atom A group excluding a hydrogen atom; (m16 + m17) silyl groups having a substituent containing a carbon atom Examples include a group excluding a hydrogen atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group, a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m16 + m17) hydrogen atoms are removed is preferred.
 式(27)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (27) include the following structural units.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(15)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(28)で表される構造単位が好ましい。 As the structural unit represented by the formula (15), the structural unit represented by the formula (28) is preferable from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000033
[式(28)中、R18は(1+m18+m19)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m18、m19及びm20はそれぞれ独立に1以上の整数を表し、R18、m18、m19、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000033
[In the formula (28), R 18 represents a (1 + m18 + m19) -valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 have the same meaning as described above. M18, m19 and m20 each independently represents an integer of 1 or more, and R 18 , m18, m19, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2 and When there are a plurality of n3s, they may be the same or different. ]
 式(28)中、R18で表される(1+m18+m19)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m18+m19)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m18+m19)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m18+m19)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m18+m19)個の水素原子を除いた基、アリール基から(m18+m19)個の水素原子を除いた基、アルコキシ基から(m18+m19)個の水素原子を除いた基が好ましい。 In the formula (28), examples of the (1 + m18 + m19) -valent organic group represented by R 18 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m18 + m19) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl A group having 6 to 30 carbon atoms, with or without a substituent, such as a group, a 9-anthracenyl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m18 + m19) hydrogen atoms from a reel group; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy Groups, cyclopentyloxy groups, cyclohexyloxy groups, cyclononyloxy groups, cyclododecyloxy groups, norbornyloxy groups, adamantyloxy groups, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. A group obtained by removing (m18 + m19) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without a substituent; (m18 + m19) hydrogens from an amino group having a substituent containing a carbon atom Groups excluding atoms; (m18 + m19) silyl groups having substituents containing carbon atoms They include groups obtained by removing a hydrogen atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m18 + m19) hydrogen atoms from an alkyl group, a group obtained by removing (m18 + m19) hydrogen atoms from an aryl group, and an alkoxy group ( A group excluding m18 + m19) hydrogen atoms is preferred.
 式(28)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (28) include the following structural units.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 〈式(17)で表される構造単位の例〉
 式(17)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(29)で表される構造単位が好ましい。
<Example of Structural Unit Represented by Formula (17)>
As the structural unit represented by the formula (17), the structural unit represented by the formula (29) is preferable from the viewpoint of the electron transport property of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000035
[式(29)中、R19は単結合又は(1+m21)価の有機基を表し、R20は単結合又は(1+m22)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m21及びm22はそれぞれ独立に1以上の整数を表し、ただし、R19が単結合のときm21は1を表し、R20が単結合のときm22は1を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000035
[In Formula (29), R 19 represents a single bond or a (1 + m21) -valent organic group, R 20 represents a single bond or a (1 + m22) -valent organic group, and Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m21 and m22 independently, provided that when R 19 is a single bond m21 represents 1 , R 20 is a single bond, m22 represents 1 , and Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 each have the same or different It may be. ]
 式(29)中、R19で表される(1+m21)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m21)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m21)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m21)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m21)個の水素原子を除いた基、アリール基から(m21)個の水素原子を除いた基、アルコキシ基から(m21)個の水素原子を除いた基が好ましい。 In the formula (29), examples of the (1 + m21) -valent organic group represented by R 19 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m21) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 21) Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m21) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m21) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m21) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m21) hydrogen atoms from an alkyl group, a group obtained by removing (m21) hydrogen atoms from an aryl group, and an alkoxy group ( A group excluding m21) hydrogen atoms is preferred.
 式(29)中、R20で表される(1+m22)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m22)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m22)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m22)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m22)個の水素原子を除いた基、アリール基から(m22)個の水素原子を除いた基、アルコキシ基から(m22)個の水素原子を除いた基が好ましい。
 式(29)で表される構造単位としては、以下の構造単位が挙げられる。
In the formula (29), examples of the (1 + m22) -valent organic group represented by R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m22) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 22) Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m22) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m22) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m22) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m22) hydrogen atoms from an alkyl group, a group obtained by removing (m22) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m22) hydrogen atoms are removed is preferred.
Examples of the structural unit represented by the formula (29) include the following structural units.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
式(17)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(30)で表される構造単位が好ましい。 The structural unit represented by the formula (17) is preferably a structural unit represented by the formula (30) from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000037
[式(30)中、R21は単結合又は(1+m23)価の有機基を表し、R22は単結合又は(1+m24)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m23及びm24はそれぞれ独立に1以上の整数を表し、ただし、R21が単結合のときm23は1を表し、R22が単結合のときm24は1を表し、m25及びm26はそれぞれ独立に1以上の整数を表し、m23、m24、R21、R22、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000037
[In Formula (30), R 21 represents a single bond or a (1 + m23) -valent organic group, R 22 represents a single bond or a (1 + m24) -valent organic group, and Q 1 , Q 3 , Y 1 , M 1 , Z 1, Y 3, n1 , a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m23 and m24 independently, provided that when R 21 is a single bond m23 represents 1 when R 22 is a single bond m24 represents 1, represents an integer of 1 or more, respectively m25 and m26 independently, m23, m24, R 21, R 22, Q 1, Q 3, Y 1, M 1, When there are a plurality of Z 1 , Y 3 , n1, a1, b1, and n3, they may be the same or different. ]
 式(30)中、R21で表される(1+m23)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m23)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m23)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m23)個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m23)個の水素原子を除いた基、アリール基から(m23)個の水素原子を除いた基、アルコキシ基から(m23)個の水素原子を除いた基が好ましい。 In the formula (30), examples of the (1 + m23) -valent organic group represented by R 21 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m23) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 23) groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m23) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m23) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m23) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m23) hydrogen atoms from an alkyl group, a group obtained by removing (m23) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m23) hydrogen atoms are removed is preferable.
 式(30)中、R22で表される(1+m24)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m24)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m24)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m24)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m24)個の水素原子を除いた基、アリール基から(m24)個の水素原子を除いた基、アルコキシ基から(m24)個の水素原子を除いた基が好ましい。 In the formula (30), examples of the (1 + m24) -valent organic group represented by R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m24) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without carbon; phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 24) Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m24) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m24) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m24) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m24) hydrogen atoms from an alkyl group, a group obtained by removing (m24) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m24) hydrogen atoms are removed is preferred.
 式(30)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (30) include the following structural units.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 〈式(20)で表される構造単位の例〉
 式(20)で表される構造単位としては、得られる電子輸送性の観点からは、式(31)で表される構造単位が好ましい。
<Example of Structural Unit Represented by Formula (20)>
As the structural unit represented by the formula (20), the structural unit represented by the formula (31) is preferable from the viewpoint of the obtained electron transport property.
Figure JPOXMLDOC01-appb-C000039
[式(31)中、R23は単結合又は(1+m27)価の有機基を表し、R24は単結合又は(1+m28)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m27及びm28はそれぞれ独立に1以上の整数を表し、ただし、R23が単結合のときm27は1を表し、R24が単結合のときm28は1を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000039
[In Formula (31), R 23 represents a single bond or a (1 + m27) -valent organic group, R 24 represents a single bond or a (1 + m28) -valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 represent the same meaning as described above, and m 27 and m 28 each independently represent an integer of 1 or more, provided that m 27 represents 1 when R 23 is a single bond. , When R 24 is a single bond, m28 represents 1, and when Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are plural, they are the same or different It may be. ]
 式(31)中、R23で表される(1+m27)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m27)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m27)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m27)個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m27)個の水素原子を除いた基、アリール基から(m27)個の水素原子を除いた基、アルコキシ基から(m27)個の水素原子を除いた基が好ましい。 In the formula (31), examples of the (1 + m27) -valent organic group represented by R 23 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m27) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 27) Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m27) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m27) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m27) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m27) hydrogen atoms from an alkyl group, a group obtained by removing (m27) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m27) hydrogen atoms have been removed is preferred.
 式(31)中、R24で表される(1+m28)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m28)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m28)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m28)個の水素原子を除いた基が挙げられる。これらの中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m28)個の水素原子を除いた基、アリール基から(m28)個の水素原子を除いた基、アルコキシ基から(m28)個の水素原子を除いた基が好ましい。 In the formula (31), examples of the (1 + m28) -valent organic group represented by R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m28) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 28) Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m28) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m28) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m28) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m28) hydrogen atoms from an alkyl group, a group obtained by removing (m28) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m28) hydrogen atoms have been removed is preferred.
 式(31)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (31) include the following structural units.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式(20)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(32)で表される構造単位が好ましい。 As the structural unit represented by the formula (20), the structural unit represented by the formula (32) is preferable from the viewpoint of durability of the obtained ionic polymer.
Figure JPOXMLDOC01-appb-C000041
[式(32)中、R25は単結合又は(1+m29)価の有機基を表し、R26は単結合又は(1+m30)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m29及びm30はそれぞれ独立に1以上の整数を表し、ただし、R25が単結合のときm29は1を表し、R26が単結合のときm30は1を表し、m31及びm32はそれぞれ独立に1以上の整数を表し、m29、m30、R25、R26、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000041
[In Formula (32), R 25 represents a single bond or a (1 + m29) -valent organic group, R 26 represents a single bond or a (1 + m30) -valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2, Y 3, n2 , a2, b2 and n3 represent the same as defined above, represents an integer of 1 or more, respectively m29 and m30 independently, provided that when R 25 is a single bond m29 represents 1 , R 26 is a single bond, m30 represents 1, m31 and m32 each independently represents an integer of 1 or more, m29, m30, R 25 , R 26 , Q 2 , Q 3 , Y 2 , M 2 , When there are a plurality of Z 2 , Y 3 , n 2, a 2, b 2 and n 3, they may be the same or different. ]
 式(32)中、R25で表される(1+m29)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m29)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m29)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m29)個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m29)個の水素原子を除いた基、アリール基から(m29)個の水素原子を除いた基、アルコキシ基から(m29)個の水素原子を除いた基が好ましい。 In the formula (32), examples of the (1 + m29) -valent organic group represented by R 25 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group in which (m29) hydrogen atoms are removed from an alkyl group having 1 to 20 carbon atoms with or without: phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 29) groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m29) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m29) hydrogen atoms removed from an amino group having a substituent containing a carbon atom Group; a group obtained by removing (m29) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m29) hydrogen atoms from an alkyl group, a group obtained by removing (m29) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m29) hydrogen atoms are removed is preferred.
 式(32)中、R26で表される(1+m30)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~20のアルキル基から(m30)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6~30のアリール基から(m30)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1~50のアルコキシ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m30)個の水素原子を除いた基が挙げられる。これらに中でも、原料モノマーの合成の容易さの観点からは、アルキル基から(m30)個の水素原子を除いた基、アリール基から(m30)個の水素原子を除いた基、アルコキシ基から(m30)個の水素原子を除いた基が好ましい。 In the formula (32), examples of the (1 + m30) -valent organic group represented by R 26 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. A substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent. A group obtained by removing (m30) hydrogen atoms from an alkyl group having 1 to 20 carbon atoms with or without; phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl From an aryl group having 6 to 30 carbon atoms with or without a substituent, such as a group, a 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent (m 30) groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy Substituents such as a group, a cyclohexyloxy group, a cyclononyloxy group, a cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like A group obtained by removing (m30) hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms with or without having; and (m30) hydrogen atoms removed from an amino group having a substituent containing carbon atoms Group; a group obtained by removing (m30) hydrogen atoms from a silyl group having a substituent containing a carbon atom. Among these, from the viewpoint of ease of synthesis of the raw material monomer, a group obtained by removing (m30) hydrogen atoms from an alkyl group, a group obtained by removing (m30) hydrogen atoms from an aryl group, and an alkoxy group ( A group in which m30) hydrogen atoms have been removed is preferred.
 式(32)で表される構造単位としては、以下の構造単位が挙げられる。 Examples of the structural unit represented by the formula (32) include the following structural units.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 〈その他の構造単位〉
 本発明に用いられるイオン性ポリマーは、さらに式(33)で表される1種以上の構造単位を有していてもよい。
<Other structural units>
The ionic polymer used in the present invention may further have one or more structural units represented by the formula (33).
Figure JPOXMLDOC01-appb-C000043
[式(33)中、Ar5は置換基を有し若しくは有さない2価の芳香族基又は置換基を有し若しくは有さない2価の芳香族アミン残基を表し、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表し、m33及びm34はそれぞれ独立に0又は1を表し、m33及びm34の少なくとも1つは1である。]
Figure JPOXMLDOC01-appb-C000043
[In formula (33), Ar 5 represents a divalent aromatic group with or without a substituent or a divalent aromatic amine residue with or without a substituent, and X ′ represents a substituted group. Represents an imino group with or without a group, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group, and m33 and m34 are each independently 0 or 1 And at least one of m33 and m34 is 1. ]
 式(33)中のAr5で表される2価の芳香族基としては、2価の芳香族炭化水素基、2価の芳香族複素環基が挙げられる。該2価の芳香族基としては、例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、アザジアゾール環等の単環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環からなる群から選ばれる二つ以上が縮合した縮合多環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を2個除いた2価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基、イミノ基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を2個除いた2価の基等が挙げられる。 Examples of the divalent aromatic group represented by Ar 5 in formula (33) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group. Examples of the divalent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, and a furan ring. A divalent group obtained by removing two hydrogen atoms from a monocyclic aromatic ring such as pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, oxadiazole ring, azadiazole ring, etc .; A divalent group obtained by removing two hydrogen atoms from a condensed polycyclic aromatic ring condensed with two or more selected from the group consisting of: a monocyclic aromatic ring and a group consisting of the condensed polycyclic aromatic ring A divalent group obtained by removing two hydrogen atoms from an aromatic ring assembly formed by linking two or more aromatic rings with a single bond, an ethenylene group or an ethynylene group; the condensed polycyclic aromatic ring or the aromatic ring assembly Two adjacent aromatic rings are methylene and ethylene , A carbonyl group, and a divalent group in which two hydrogen atoms are removed from a bridged polycyclic aromatic ring having a bridged crosslinked with divalent group such as an imino group.
 前記縮合多環式芳香環において、縮合する単環式芳香環の数は、イオン性ポリマーの溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。前記有橋多環式芳香環において、橋かけされる芳香環の数は、イオン性ポリマーの溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。 In the condensed polycyclic aromatic ring, the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer. In the aromatic ring assembly, the number of aromatic rings to be connected is preferably 2 to 4, more preferably 2 to 3, and even more preferably 2 from the viewpoint of solubility. In the bridged polycyclic aromatic ring, the number of aromatic rings to be bridged is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
 前記単環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the monocyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 前記縮合多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the condensed polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 前記芳香環集合としては、例えば、以下の環が挙げられる。 Examples of the aromatic ring assembly include the following rings.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 前記有橋多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the Aribashi polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 前記イオン性ポリマーの電子受容性及び正孔受容性のいずれか一方又は両方の観点からは、Ar5で表される2価の芳香族基は式45~60、61~71、77~80、91、92、93又は96で表される環から水素原子を2個除いた2価の基が好ましく、式45~50、59、60、77、80、91、92又は96で表される環から水素原子を2個除いた2価の基がより好ましい。 From the viewpoint of either or both of the electron accepting property and the hole accepting property of the ionic polymer, the divalent aromatic group represented by Ar 5 is represented by the formulas 45 to 60, 61 to 71, 77 to 80, A divalent group obtained by removing two hydrogen atoms from the ring represented by 91, 92, 93 or 96 is preferred, and the ring represented by the formula 45 to 50, 59, 60, 77, 80, 91, 92 or 96 A divalent group in which two hydrogen atoms are removed from is more preferable.
 上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。 The above divalent aromatic group may have a substituent. Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above.
 式(33)中のAr5で表される2価の芳香族アミン残基としては、式(34)で表される基が挙げられる。 Examples of the divalent aromatic amine residue represented by Ar 5 in formula (33) include a group represented by formula (34).
Figure JPOXMLDOC01-appb-C000048
[式(34)中、Ar6、Ar7、Ar8及びAr9は、それぞれ独立に、置換基を有し若しくは有さないアリーレン基又は置換基を有し若しくは有さない2価の複素環基を表し、Ar10、Ar11及びAr12は、それぞれ独立に、置換基を有し若しくは有さないアリール基又は置換基を有し若しくは有さない1価の複素環基を表し、n10及びm35は、それぞれ独立に、0又は1を表す。]
Figure JPOXMLDOC01-appb-C000048
[In the formula (34), Ar 6 , Ar 7 , Ar 8 and Ar 9 are each independently an arylene group having or not having a substituent, or a divalent heterocyclic ring having or without a substituent. Each of Ar 10 , Ar 11 and Ar 12 independently represents an aryl group with or without a substituent or a monovalent heterocyclic group with or without a substituent, and n10 and m35 represents 0 or 1 each independently. ]
 前記アリーレン基、アリール基、2価の複素環基、1価の複素環基が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基等が挙げられる。該置換基は、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。 Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group may have include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, Aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue , Substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryl Oxycarbonyl group, arylalkyloxycarboni Group, heteroaryloxy group, and a carboxyl group and the like. The substituent is vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, small ring (cyclopropyl group) , A group having a cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.), a lactone group, a lactam group, or a group containing a structure of a siloxane derivative.
 n10が0の場合、Ar6中の炭素原子とAr8中の炭素原子とが直接結合してもよく、-O-、-S-等の2価の基を介して結合していてもよい。 When n10 is 0, the carbon atom in Ar 6 and the carbon atom in Ar 8 may be directly bonded, or may be bonded through a divalent group such as —O— or —S—. .
 Ar10、Ar11、Ar12で表されるアリール基、1価の複素環基としては、前記で置換基として説明し例示したアリール基、1価の複素環基と同様である。 The aryl group and monovalent heterocyclic group represented by Ar 10 , Ar 11 and Ar 12 are the same as the aryl group and monovalent heterocyclic group described and exemplified above as the substituent.
 Ar6、Ar7、Ar8、Ar9で表されるアリーレン基としては、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団が挙げられ、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基、例えば、ビニレン基等のアルケニレン基を介して結合した基などが挙げられる。アリーレン基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリーレン基の具体例としては、フェニレン基、ビフェニレン基、C1~C17アルコキシフェニレン基、C1~C17アルキルフェニレン基、1-ナフチレン基、2-ナフチレン基、1-アントラセニレン基、2-アントラセニレン基、9-アントラセニレン基が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、テトラフルオロフェニレン基等が挙げられる。アリール基の中では、フェニレン基、ビフェニレン基、C1~C12アルコキシフェニレン基、C1~C12アルキルフェニレン基が好ましい。 Examples of the arylene group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon, Examples thereof include a group having a benzene ring, a group having a condensed ring, a group in which two or more independent benzene rings or condensed rings are bonded through a single bond or a divalent organic group, for example, an alkenylene group such as a vinylene group. . The arylene group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms. Specific examples of the arylene group include a phenylene group, a biphenylene group, a C 1 to C 17 alkoxyphenylene group, a C 1 to C 17 alkylphenylene group, a 1-naphthylene group, a 2-naphthylene group, a 1-anthracenylene group, and a 2-anthracenylene group. Group, 9-anthracenylene group. A hydrogen atom in the aryl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted aryl group include a tetrafluorophenylene group. Among the aryl groups, a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
 Ar6、Ar7、Ar8、Ar9で表される2価の複素環基としては、複素環式化合物から水素原子2個を除いた残りの原子団が挙げられる。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が通常4~60であり、4~20が好ましい。なお、2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような2価の複素環基としては、例えば、チオフェンジイル基、C1~C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C1~C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、イソキノリンジイル基が挙げられ、中でも、チオフェンジイル基、C1~C12アルキルチオフェンジイル基、ピリジンジイル基及びC1~C12アルキルピリジンジイル基がより好ましい。 Examples of the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms from a heterocyclic compound. Here, the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure. , An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom. The divalent heterocyclic group may have a substituent. The divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms. The number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent. Examples of such a divalent heterocyclic group include a thiophene diyl group, a C 1 -C 12 alkylthiophene diyl group, a pyrrole diyl group, a furandiyl group, a pyridinediyl group, a C 1 -C 12 alkylpyridine diyl group, and a pyridazine. diyl group, a pyrimidine-diyl group, a pyrazinediyl group, a triazine-diyl group, pyrrolidinediyl group, piperidine-diyl group, quinolinediyl group, and isoquinoline-diyl group, among others, a thiophene-diyl group, C 1 ~ C 12 alkyl thiophenediyl group, pyridinediyl More preferred are groups and C 1 -C 12 alkylpyridinediyl groups.
 構造単位として2価の芳香族アミン残基を含むイオン性ポリマーは、さらに他の構造単位を有していてもよい。他の構造単位としては、フェニレン基、フルオレンジイル基等のアリーレン基等が挙げられる。なお、これらのイオン性ポリマーの中では、架橋基を含んでいるものが好ましい。 The ionic polymer containing a divalent aromatic amine residue as a structural unit may further have another structural unit. Examples of other structural units include arylene groups such as a phenylene group and a fluorenediyl group. Of these ionic polymers, those containing a crosslinking group are preferred.
 また、式(34)で表される2価の芳香族アミン残基としては、下記式101~110で表される芳香族アミンから水素原子を2個除いた基が例示される。 Further, examples of the divalent aromatic amine residue represented by the formula (34) include groups obtained by removing two hydrogen atoms from the aromatic amine represented by the following formulas 101 to 110.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 式101~110で表される芳香族アミンは2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよく、該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 The aromatic amines represented by formulas 101 to 110 may have a substituent as long as a divalent aromatic amine residue can be generated, and as the substituent, in the description of Q 1 described above, Examples of the substituent are the same as the exemplified substituents, and when a plurality of substituents are present, they may be the same or different.
 式(33)中、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表す。イミノ基、シリル基若しくはエテニレン基が有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基等の炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。 In formula (33), X ′ represents an imino group with or without a substituent, a silylene group with or without a substituent, an ethenylene group with or without a substituent, or an ethynylene group. Examples of the substituent that the imino group, silyl group or ethenylene group may have include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, Alkyl groups having 1 to 20 carbon atoms such as pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group; phenyl group Aryl groups having 6 to 30 carbon atoms such as 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, etc., and when there are a plurality of substituents They may be the same or different.
 前記イオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、X’はイミノ基、エテニレン基、エチニレン基が好ましい。 From the viewpoint of stability of the ionic polymer against air, moisture or heat, X ′ is preferably an imino group, an ethenylene group or an ethynylene group.
 前記イオン性ポリマーの電子受容性、正孔受容性の観点からは、m33が1であり、m34が0であることが好ましい。 From the viewpoint of electron acceptability and hole acceptability of the ionic polymer, m33 is preferably 1 and m34 is preferably 0.
 式(33)で表される構造単位としては、前記イオン性ポリマーの電子受容性の観点からは、式(35)で表される構造単位が好ましい。 As the structural unit represented by the formula (33), the structural unit represented by the formula (35) is preferable from the viewpoint of electron acceptability of the ionic polymer.
Figure JPOXMLDOC01-appb-C000050
[式(35)中、Ar13は、置換基を有し若しくは有さないピリジンジイル基、置換基を有し若しくは有さないピラジンジイル基、置換基を有し若しくは有さないピリミジンジイル基、置換基を有し若しくは有さないピリダジンジイル基又は置換基を有し若しくは有さないトリアジンジイル基を表す。]
Figure JPOXMLDOC01-appb-C000050
[In the formula (35), Ar 13 represents a pyridinediyl group with or without a substituent, a pyrazinediyl group with or without a substituent, a pyrimidinediyl group with or without a substituent, a substituted A pyridazinediyl group with or without a group or a triazinediyl group with or without a substituent is represented. ]
 ピリジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 ピラジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 ピリミジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 ピリダジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
 トリアジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
Examples of the substituent that the pyridinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
Examples of the substituent that the pyrazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
Examples of the substituent that the pyrimidinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
Examples of the substituent that the pyridazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
Examples of the substituent that the triazinediyl group may have include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
 〈構造単位の割合〉
 本発明に用いられるイオン性ポリマーに含まれる式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位の合計の割合は、有機EL素子の発光効率の観点からは、末端の構造単位を除く該イオン性ポリマーに含まれる全構造単位中、30~100モル%であることがより好ましい。
<Ratio of structural units>
In the ionic polymer used in the present invention, the structural unit represented by the formula (13), the structural unit represented by the formula (15), the structural unit represented by the formula (17), and the formula (20) From the viewpoint of the light emission efficiency of the organic EL device, the total proportion of the structural units represented is more preferably 30 to 100 mol% in all the structural units contained in the ionic polymer excluding the terminal structural unit. preferable.
 〈末端の構造単位〉
 なお、本発明に用いられるイオン性ポリマーの末端の構造単位(末端基)としては、例えば、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C1~C12アルキル)アミノ基、(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C1~C12アルキル)シリル基、(C1~C12アルコキシフェニル-C1~C12アルキル)シリル基、(C1~C12アルキルフェニル-C1~C12アルキル)シリル基、(1-ナフチル-C1~C12アルキル)シリル基、(2-ナフチル-C1~C12アルキル)シリル基、(フェニル-C1~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシ基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。前記末端の構造単位が複数個存在する場合には、それらは同一でも異なっていてもよい。
<Terminal unit>
Examples of the terminal structural unit (terminal group) of the ionic polymer used in the present invention include a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group , S-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy Group, lauryloxy group, methylthio group, ethylthio group, Pyrthio group, isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, laurylthio group, methoxy Phenyl group, ethoxyphenyl group, propyloxyphenyl group, isopropyloxyphenyl group, butoxyphenyl group, isobutoxyphenyl group, s-butoxyphenyl group, t-butoxyphenyl group, pentyloxyphenyl group, hexyloxyphenyl group, cyclohexyloxy Phenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctylo Siphenyl group, lauryloxyphenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, t-butylphenyl group, Pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group, methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group , Dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, s-butylamino group, t-butylamino group, pentylamino group, hexylamino group, cyclo Hexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, Dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, (C 1 -C 12 alkoxyphenyl) amino group, di (C 1 -C 12 alkoxyphenyl) amino group, di (C 1 -C 12) Alkylphenyl) amino group, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, pyridazinylamino group, pyrimidylamino group, pyrazinylamino group, triazinylamino group, (phenyl-C 1 ~ C 12 Al ) Amino group, (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) amino group, (C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkyl) amino group, di (C 1 ~ C 12 Alkoxyphenyl-C 1 -C 12 alkyl) amino group, di (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) amino group, 1-naphthyl-C 1 -C 12 alkylamino group, 2-naphthyl- C 1 -C 12 alkylamino group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethyl Silyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, Le dimethylsilyl group, decyldimethylsilyl group, a 3,7-dimethyl silyl group, lauryl dimethyl silyl group, (phenyl -C 1 ~ C 12 alkyl) silyl group, (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) silyl group, (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) silyl group, (1-naphthyl-C 1 -C 12 alkyl) silyl group, (2-naphthyl-C 1 -C 12 alkyl) silyl group, (phenyl-C 1 -C 12 alkyl) dimethylsilyl group, triphenylsilyl group, tri (p-xylyl) silyl group, tribenzylsilyl group, diphenylmethylsilyl group, t-butyldiphenylsilyl group Dimethylphenylsilyl group, thienyl group, C 1 -C 12 alkylthienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl Examples include rupyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, triazinyl group, pyrrolidyl group, piperidyl group, quinolyl group, isoquinolyl group, hydroxy group, mercapto group, fluorine atom, chlorine atom, bromine atom and iodine atom. When a plurality of the terminal structural units are present, they may be the same or different.
 〈イオン性ポリマーの特性〉
 本発明で用いられるイオン性ポリマーは、好ましくは共役化合物である。本発明で用いられるイオン性ポリマーが共役化合物であるとは、該イオン性ポリマーが主鎖中に、多重結合(例えば、二重結合、三重結合)又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域を含むことを意味する。該イオン性ポリマーは、共役化合物である場合、共役化合物の電子輸送性の観点から、
 {(多重結合又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(主鎖上の全原子の数)}×100%で計算される比が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。
<Characteristics of ionic polymer>
The ionic polymer used in the present invention is preferably a conjugated compound. The ionic polymer used in the present invention is a conjugated compound when the ionic polymer has multiple bonds (for example, double bonds, triple bonds) or nitrogen atoms, oxygen atoms, etc. in the main chain. It means that the pair includes a region that is continuous with one single bond. When the ionic polymer is a conjugated compound, from the viewpoint of electron transport properties of the conjugated compound,
{(The number of atoms on the main chain contained in a region where multiple bonds or unshared electron pairs of nitrogen atoms, oxygen atoms, etc. are connected across a single bond) / (number of all atoms on the main chain) )} × 100% calculated ratio is preferably 50% or more, more preferably 60% or more, more preferably 70% or more, and more preferably 80% or more, More preferably, it is 90% or more.
 また、本発明で用いられるイオン性ポリマーは、好ましくは高分子化合物であり、より好ましくは共役高分子化合物である。ここで、高分子化合物とは、ポリスチレン換算の数平均分子量が1×103以上である化合物をいう。また、本発明で用いられるイオン性ポリマーが共役高分子化合物であるとは、該イオン性ポリマーが共役化合物かつ高分子化合物であることを意味する。 The ionic polymer used in the present invention is preferably a polymer compound, more preferably a conjugated polymer compound. Here, the polymer compound means a compound having a polystyrene-equivalent number average molecular weight of 1 × 10 3 or more. Moreover, the ionic polymer used in the present invention being a conjugated polymer compound means that the ionic polymer is a conjugated compound and a polymer compound.
 本発明に用いられるイオン性ポリマーの塗布による成膜性の観点から、該イオン性ポリマーのポリスチレン換算の数平均分子量が1×103~1×108であることが好ましく、2×103~1×107であることがより好ましく、3×103~1×107であることがより好ましく、5×103~1×107であることがさらに好ましい。また、イオン性ポリマーの純度の観点から、ポリスチレン換算の重量平均分子量が1×103~5×107であることが好ましく、1×103~1×107であることがより好ましく、1×103~5×106であることがさらに好ましい。また、イオン性ポリマーの溶解性の観点から、ポリスチレン換算の数平均分子量は1×103~5×10であることが好ましく、1×103~5×10であることがより好ましく、1×103~3×10であることがさらに好ましい。本発明に用いられるイオン性ポリマーのポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、求めることができる。 From the standpoint of film forming property due to coating of the ionic polymer used in the present invention, it is preferable that the number average molecular weight in terms of polystyrene of the ionic polymer is 1 × 10 3 ~ 1 × 10 8, 2 × 10 3 ~ 1 × 10 7 is more preferable, 3 × 10 3 to 1 × 10 7 is more preferable, and 5 × 10 3 to 1 × 10 7 is even more preferable. From the viewpoint of the purity of the ionic polymer, the weight average molecular weight in terms of polystyrene is preferably 1 × 10 3 to 5 × 10 7 , more preferably 1 × 10 3 to 1 × 10 7. More preferably, it is × 10 3 to 5 × 10 6 . Further, from the viewpoint of solubility of the ionic polymer, it is preferred that the number average molecular weight in terms of polystyrene is 1 × 10 3 ~ 5 × 10 5, more preferably 1 × 10 3 ~ 5 × 10 4, More preferably, it is 1 × 10 3 to 3 × 10 3 . The polystyrene-equivalent number average molecular weight and weight average molecular weight of the ionic polymer used in the present invention can be determined using, for example, gel permeation chromatography (GPC).
 本発明に用いられるイオン性ポリマーの純度の観点から、末端構造単位を除く該イオン性ポリマー中に含まれる全構造単位の数(即ち、重合度)は1以上20以下であることが好ましく、1以上10以下であることがより好ましく、1以上5以下であることがさらに好ましい。 From the viewpoint of the purity of the ionic polymer used in the present invention, the number of all structural units (ie, the degree of polymerization) contained in the ionic polymer excluding the terminal structural unit is preferably 1 or more and 20 or less. It is more preferably 10 or less and more preferably 1 or more and 5 or less.
 本発明に用いられるイオン性ポリマーの電子受容性、正孔受容性の観点からは、該イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーが、-5.0eV以上-2.0eV以下であることが好ましく、-4.5eV以上-2.0eV以下がより好ましい。また、同様の観点から、該イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーが、-6.0eV以上-3.0eV以下であることが好ましく、-5.5eV以上-3.0eV以下がより好ましい。ただし、HOMOの軌道エネルギーはLUMOの軌道エネルギーよりも低い。なお、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、イオン性ポリマーのイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求める。一方、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求める。イオン化ポテンシャルの測定には光電子分光装置を用いる。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計を用いてイオン性ポリマーの吸収スペクトルを測定し、その吸収末端より求める。 From the viewpoint of electron acceptability and hole acceptability of the ionic polymer used in the present invention, the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is −5.0 eV or more and −2.0 eV or less. It is preferable that it is -4.5 eV or more and -2.0 eV or less. From the same viewpoint, the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is preferably from -6.0 eV to -3.0 eV, more preferably from -5.5 eV to -3.0 eV. Is more preferable. However, the orbital energy of HOMO is lower than that of LUMO. The orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is obtained by measuring the ionization potential of the ionic polymer and using the obtained ionization potential as the orbital energy. On the other hand, the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. . A photoelectron spectrometer is used to measure the ionization potential. Further, the energy difference between HOMO and LUMO is obtained from the absorption terminal by measuring the absorption spectrum of the ionic polymer using an ultraviolet / visible / near infrared spectrophotometer.
 なお、本発明に用いられる重合体は、電界発光素子で用いられた場合、実質的に非発光性であることが好ましい。ここで、ある重合体が実質的に非発光性であるとは、以下のとおりの意味である。まず、ある重合体を含む層を有する電界発光素子Aを作製する。一方、重合体を含む層を有さない電界発光素子2を作製する。電界発光素子Aは重合体を含む層を有するが、電界発光素子2は重合体を含む層を有さない点でのみ、電界発光素子Aと電界発光素子2とは異なる。次に、電界発光素子A及び電界発光素子2に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子2について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子2について得られた発光スペクトルを規格化し、波長について積分して規格化発光量S0を計算する。一方、波長λにおける発光強度を1として、電界発光素子Aについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S-S0)/S0×100%で計算される値が30%以下である場合、即ち、重合体を含む層を有さない電界発光素子2の規格化発光量に比べ、重合体を含む層を有する電界発光素子Aの規格化発光量の増加分が30%以下である場合に、用いた重合体は実質的に非発光性であるものとし、(S-S0)/S0×100で計算される値が15%以下であることが好ましく、10%以下であることがより好ましい。 The polymer used in the present invention is preferably substantially non-luminescent when used in an electroluminescent device. Here, the fact that a certain polymer is substantially non-luminous means as follows. First, an electroluminescent element A having a layer containing a certain polymer is produced. On the other hand, the electroluminescent element 2 which does not have the layer containing a polymer is produced. Although the electroluminescent element A has a layer containing a polymer, the electroluminescent element 2 is different from the electroluminescent element 2 only in that it does not have a layer containing a polymer. Next, a forward voltage of 10 V is applied to the electroluminescent element A and the electroluminescent element 2 to measure an emission spectrum. The wavelength λ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element 2 is obtained. The emission spectrum at the wavelength λ is set to 1, the emission spectrum obtained for the electroluminescent element 2 is normalized, and the normalized emission amount S 0 is calculated by integrating the wavelength. On the other hand, assuming that the emission intensity at the wavelength λ is 1, the emission spectrum obtained for the electroluminescent element A is also normalized, and the normalized emission amount S is calculated by integrating the wavelength. When the value calculated by (S−S 0 ) / S 0 × 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent device 2 having no polymer-containing layer, the polymer When the increase in the normalized light emission amount of the electroluminescent element A having a layer containing is 30% or less, the polymer used is substantially non-light-emitting, and (S−S 0 ) / S The value calculated by 0 × 100 is preferably 15% or less, and more preferably 10% or less.
 前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(23)で表される基のみからなるイオン性ポリマー、式(23)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(24)で表される基のみからなるイオン性ポリマー;式(24)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(25)で表される基のみからなるイオン性ポリマー;式(25)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(29)で表される基のみからなるイオン性ポリマー;式(29)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(30)で表される基のみからなるイオン性ポリマー;式(30)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。 As the ionic polymer containing the group represented by the formula (1) and the group represented by the formula (3), an ionic polymer consisting only of the group represented by the formula (23), a formula (23) One or more selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, wherein two hydrogen atoms are removed. An ionic polymer comprising only the group represented by the formula (24); a group represented by the formula (24) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92 96, 101 to 110, an ionic polymer comprising at least one group selected from the group consisting of groups obtained by removing two hydrogen atoms; an ion comprising only the group represented by formula (25) Group represented by formula (25) and formula 4 An ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by ˜50, 59, 60, 77, 80, 91, 92, 96, 101 to 110 An ionic polymer comprising only the group represented by the formula (29); the group represented by the formula (29) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110 An ionic polymer comprising at least one group selected from the group consisting of groups obtained by removing two hydrogen atoms from the group represented; an ionic polymer comprising only a group represented by formula (30); formula (30) And one selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed. Examples include ionic polymers consisting of the above groups That.
 前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。 Examples of the ionic polymer containing the group represented by the formula (1) and the group represented by the formula (3) include the following polymer compounds. Among these, in the polymer compound represented by the formula in which two types of structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100− p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(式中、pは15~100の数を表す。)
Figure JPOXMLDOC01-appb-C000058
(In the formula, p represents a number of 15 to 100.)
 前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(26)で表される基のみからなるイオン性ポリマー;式(26)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(27)で表される基のみからなるイオン性ポリマー;式(27)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(28)で表される基のみからなるイオン性ポリマー;式(28)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(31)で表される基のみからなるイオン性ポリマー;式(31)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー;式(32)で表される基のみからなるイオン性ポリマー;式(32)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。 As the ionic polymer containing the group represented by the formula (2) and the group represented by the formula (3), an ionic polymer consisting only of the group represented by the formula (26); One or more selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, wherein two hydrogen atoms are removed. An ionic polymer comprising only the group represented by the formula (27); a group represented by the formula (27) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92 96, 101 to 110, an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms; an ion comprising only the group represented by formula (28) Polymer; group represented by formula (28) and formula 4 An ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by ˜50, 59, 60, 77, 80, 91, 92, 96, 101 to 110 An ionic polymer comprising only the group represented by the formula (31); the group represented by the formula (31) and the formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110 An ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the group represented; an ionic polymer comprising only the group represented by formula (32); formula (32) And one selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, in which two hydrogen atoms are removed. Examples include ionic polymers consisting of the above groups That.
 前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。 Examples of the ionic polymer containing the group represented by the formula (2) and the group represented by the formula (3) include the following polymer compounds. Among these, in the polymer compound represented by the formula in which two types of structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol% and the proportion of the structural unit on the right is (100− p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(式中、pは15~100の数を表す。)
Figure JPOXMLDOC01-appb-C000062
(In the formula, p represents a number of 15 to 100.)
 〈イオン性ポリマーの製造方法〉
 次に、本発明に用いられるイオン性ポリマーを製造する方法について説明する。本発明に用いられるイオン性ポリマーを製造するための好適な方法としては、例えば、下記一般式(36)で表される化合物を原料の1つとして選択して用い、中でも、該一般式(36)中の-Aa-が式(13)で表される構造単位である化合物、該-Aa-が式(15)で表される構造単位である化合物、該-Aa-が式(17)で表される構造単位である化合物及び該-Aa-が式(20)で表される構造単位である化合物の少なくとも1種を必須の原料として含有させて、これを縮合重合させる方法を挙げることができる。
 Y4-Aa-Y5  (36)
[式(36)中、Aaは式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位を表し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。]
<Method for producing ionic polymer>
Next, a method for producing the ionic polymer used in the present invention will be described. As a suitable method for producing the ionic polymer used in the present invention, for example, a compound represented by the following general formula (36) is selected and used as one of the raw materials. ) in -A a - compound is a structural unit represented by the formula (13), said -A a - compound is a structural unit represented by the formula (15), said -A a - is the formula ( 17) A method in which at least one of a compound which is a structural unit represented by formula (17) and a compound in which -A a -is a structural unit represented by formula (20) is contained as an essential raw material, and this is subjected to condensation polymerization Can be mentioned.
Y 4 -A a -Y 5 (36)
[In Formula (36), A a is represented by Formula (3) and one or more groups selected from the group consisting of the group represented by Formula (1) and the group represented by Formula (2). A repeating unit containing a group of at least species is represented, and Y 4 and Y 5 each independently represent a group involved in condensation polymerization. ]
 また、本発明に用いられるイオン性ポリマー中に上記式(36)中の-Aa-で表される構造単位とともに、前記-Aa-以外の他の構造単位を含有させる場合には、前記-Aa-以外の他の構造単位となる、2個の縮合重合に関与する置換基を有する化合物を用い、これを前記式(36)で表される化合物とともに共存させて縮合重合させればよい。 In the case where the ionic polymer used in the present invention contains a structural unit represented by -A a- in the above formula (36) and another structural unit other than -A a- , If a compound having two substituents involved in condensation polymerization, which is another structural unit other than —A a —, is used together with the compound represented by the formula (36), the condensation polymerization is performed. Good.
 このような他の構造単位を含有させるために用いられる2個の縮合重合可能な置換基を有する化合物としては、式(37)で表される化合物が例示される。このようにして、前記Y4-Aa-Y5で表される化合物に加えて、式(37)で表される化合物を縮合重合させることで、-Ab-で表される構造単位を更に有する本発明に用いられるイオン性ポリマーを製造することができる。
 Y6-Ab-Y7  (37)
[式(37)中、Abは前記一般式(33)で表される構造単位又は一般式(35)で表される構造単位であり、Y6及びY7は、それぞれ独立に、縮合重合に関与する基を示す。]
Examples of the compound having two condensation-polymerizable substituents used to contain such other structural units include compounds represented by the formula (37). Thus, in addition to the compound represented by Y 4 -A a -Y 5 , the structural unit represented by -A b- is obtained by condensation polymerization of the compound represented by Formula (37). Furthermore, the ionic polymer used in the present invention can be produced.
Y 6 -A b -Y 7 (37)
[In the formula (37), Ab is a structural unit represented by the general formula (33) or a structural unit represented by the general formula (35), and Y 6 and Y 7 are each independently a condensation polymerization. The group involved in is shown. ]
 このような縮合重合に関与する基(Y4、Y5、Y6及びY7)としては、例えば、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、-B(OH)2、ホルミル基、シアノ基、ビニル基等が挙げられる。 Examples of the group (Y 4 , Y 5 , Y 6 and Y 7 ) involved in such condensation polymerization include a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, and a boric acid ester residue. Group, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, monohalogenated methyl group, —B (OH) 2 , formyl group, cyano group, vinyl group and the like.
 このような縮合重合に関与する基として選択され得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom that can be selected as a group involved in such condensation polymerization include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 また、前記縮合重合に関与する基として選択され得るアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p-トルエンスルホネート基が例示される。 Examples of the alkyl sulfonate group that can be selected as the group involved in the condensation polymerization include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group. Examples of the aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. Is exemplified.
 前記縮合重合に関与する基として選択され得るアリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。 Examples of the arylalkyl sulfonate group that can be selected as a group involved in the condensation polymerization include a benzyl sulfonate group.
 また、前記縮合重合に関与する基として選択され得るホウ酸エステル残基としては、下記式で表される基が例示される。 Further, examples of the boric acid ester residue that can be selected as a group involved in the condensation polymerization include groups represented by the following formulae.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 さらに、前記縮合重合に関与する基として選択され得るスルホニウムメチル基としては、下記式:
 -CH2+Me2-、又は、-CH2+Ph2-
(式中、Eはハロゲン原子を示す。Phはフェニル基を示し、以下、同じである。)で表される基が例示される。
Furthermore, the sulfonium methyl group that can be selected as a group involved in the condensation polymerization includes the following formula:
-CH 2 S + Me 2 E - , or, -CH 2 S + Ph 2 E -
(Wherein E represents a halogen atom, Ph represents a phenyl group, and the same shall apply hereinafter).
 また、前記縮合重合に関与する基として選択され得るホスホニウムメチル基としては、
下記式:
 -CH2+Ph3-
(式中、Eはハロゲン原子を示す。)で表される基が例示される。
In addition, as a phosphonium methyl group that can be selected as a group involved in the condensation polymerization,
Following formula:
-CH 2 P + Ph 3 E -
(Wherein E represents a halogen atom).
 また、前記縮合重合に関与する基として選択され得るホスホネートメチル基としては、
下記式:
 -CH2PO(ORd2
 (式中、Rdはアルキル基、アリール基、又はアリールアルキル基を示す。)で表される基が例示される。
In addition, as a phosphonate methyl group that can be selected as a group involved in the condensation polymerization,
Following formula:
-CH 2 PO (OR d ) 2
(Wherein, R d represents an alkyl group, an aryl group, or an arylalkyl group).
 さらに、前記縮合重合に関与する基として選択され得るモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。 Furthermore, examples of the monohalogenated methyl group that can be selected as the group involved in the condensation polymerization include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
 さらに、縮合重合に関与する基として好適な基は、重合反応の種類によって異なるが、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基が挙げられる。また、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、-B(OH)2等が挙げられ、酸化剤又は電気化学的に酸化重合する場合には、水素原子が挙げられる。 Further, a group suitable as a group involved in condensation polymerization varies depending on the type of polymerization reaction. For example, when a zerovalent nickel complex such as a Yamamoto coupling reaction is used, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group And arylalkyl sulfonate groups. In the case of using a nickel catalyst or palladium catalyst such as a Suzuki coupling reaction, an alkyl sulfonate group, a halogen atom, a borate ester residue, —B (OH) 2 and the like can be mentioned. In the case of oxidative polymerization, a hydrogen atom is exemplified.
 本発明に用いられるイオン性ポリマーを製造する際には、例えば、縮合重合に関与する基を複数有する前記一般式(36)又は(37)で表される化合物(モノマー)を、必要に応じて有機溶媒に溶解し、アルカリや適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。このような重合方法としては、例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270-490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、“オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407-411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の公知の方法を採用することができる。 When producing the ionic polymer used in the present invention, for example, if necessary, the compound (monomer) represented by the general formula (36) or (37) having a plurality of groups involved in condensation polymerization may be used. You may employ | adopt the polymerization method which melt | dissolves in an organic solvent, and makes it react at the temperature below the melting | fusing point of an organic solvent below a boiling point using an alkali and a suitable catalyst. As such a polymerization method, for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis”. Syntheses ”, Collective Volume 6 (Collective Volume VI), 407-411, John Wiley & Sons, Inc., 1988, Chemical Review (Vol. 95, 2457). 1995), Journal of Organometallic Chemistry, Vol. 576, 147 (1999), Kuromorekyura Chemistry Macromolecular Symposium (Macromol.Chem., Macromol.Symp.), Vol. 12, it is possible to employ a known method described in page 229 (1987).
 また、本発明に用いられるイオン性ポリマーを製造する際には、縮合重合に関与する基に応じて、既知の縮合重合反応を採用してもよい。このような重合方法としては、該当するモノマーを、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、適当な脱離基を有する中間体高分子の分解による方法等が挙げられる。このような重合反応の中でも、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、得られるイオン性ポリマーの構造制御がし易いので好ましい。 Moreover, when manufacturing the ionic polymer used for this invention, you may employ | adopt a known condensation polymerization reaction according to the group which participates in condensation polymerization. Examples of such a polymerization method include a method of polymerizing a corresponding monomer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, a method of polymerizing by a Ni (0) complex, a method of polymerizing by an oxidizing agent such as FeCl 3 , Examples thereof include a method of electrochemically oxidative polymerization and a method of decomposing an intermediate polymer having an appropriate leaving group. Among such polymerization reactions, a polymerization method using a Suzuki coupling reaction, a polymerization method using a Grignard reaction, and a polymerization method using a nickel zero-valent complex are preferable because the structure of the resulting ionic polymer can be easily controlled.
 本発明に用いられるイオン性ポリマーの好ましい製造方法の1つの態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群から選択される基を有する原料モノマーを用いて、ニッケルゼロ価錯体の存在下で縮合重合して、イオン性ポリマーを製造する方法である。このような方法に使用する原料モノマーとしては、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン-アルキルスルホネート化合物、ハロゲン-アリールスルホネート化合物、ハロゲン-アリールアルキルスルホネート化合物、アルキルスルホネート-アリールスルホネート化合物、アルキルスルホネート-アリールアルキルスルホネート化合物及びアリールスルホネート-アリールアルキルスルホネート化合物が挙げられる。 One aspect of a preferred method for producing the ionic polymer used in the present invention is a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group as a group involved in condensation polymerization. This is a method for producing an ionic polymer by condensation polymerization in the presence of a nickel zero-valent complex using a starting material monomer. Examples of the raw material monomer used in such a method include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates. Compounds, halogen-aryl alkyl sulfonate compounds, alkyl sulfonate-aryl sulfonate compounds, alkyl sulfonate-aryl alkyl sulfonate compounds and aryl sulfonate-aryl alkyl sulfonate compounds.
 前記イオン性ポリマーの好ましい製造方法の他の態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、-B(OH)2、及びホウ酸エステル残基からなる群から選ばれる基を有し、全原料モノマーが有する、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、-B(OH)2及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常 K/J は0.7~1.2の範囲)である原料モノマーを用いて、ニッケル触媒又はパラジウム触媒の存在下で縮合重合して、イオン性ポリマーを製造する方法である。 In another aspect of the preferred method for producing the ionic polymer, a group involved in condensation polymerization includes a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an arylalkyl sulfonate group, —B (OH) 2 , and a boric acid ester residue. The total number of moles of halogen atoms, alkyl sulfonate groups, aryl sulfonate groups and arylalkyl sulfonate groups (J), and -B (OH) 2 and Using raw material monomers in which the ratio of the total number of moles of boric acid ester residues (K) is substantially 1 (usually K / J is in the range of 0.7 to 1.2), the nickel catalyst or palladium catalyst It is a method for producing an ionic polymer by condensation polymerization in the presence.
 前記有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために十分に脱酸素処理を施した有機溶媒を用いることが好ましい。イオン性ポリマーを製造する際には、このような有機溶媒を用いて不活性雰囲気下で反応を進行させることが好ましい。また、前記有機溶媒においては、前記脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応の場合にはその限りではない。 As the organic solvent, although it varies depending on the compound and reaction used, it is generally preferable to use an organic solvent that has been sufficiently deoxygenated to suppress side reactions. When manufacturing an ionic polymer, it is preferable to advance reaction in inert atmosphere using such an organic solvent. In the organic solvent, it is preferable to perform a dehydration process in the same manner as the deoxygenation process. However, this is not the case in the case of reaction in a two-phase system with water such as Suzuki coupling reaction.
 このような有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類、トリメチルアミン、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ピリジン等のアミン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルモルホリンオキシド等のアミド類が例示される。これらの有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。また、このような有機溶媒の中でも、反応性の観点からはエーテル類がより好ましく、テトラヒドロフラン、ジエチルエーテルが更に好ましく、反応速度の観点からはトルエン、キシレンが好ましい。 Such organic solvents include saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloro Halogenated saturated hydrocarbons such as pentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene, methanol, ethanol, propanol, isopropanol, butanol, alcohols such as t-butyl alcohol, carboxylic acids such as formic acid, acetic acid and propionic acid, dimethyl ether, diethyl ether, methyl-t-butyl ether, Ethers such as lahydrofuran, tetrahydropyran, dioxane, trimethylamine, triethylamine, amines such as N, N, N ′, N′-tetramethylethylenediamine, pyridine, N, N-dimethylformamide, N, N-dimethylacetamide, N And amides such as N-diethylacetamide and N-methylmorpholine oxide. These organic solvents may be used alone or in combination of two or more. Among these organic solvents, ethers are more preferable from the viewpoint of reactivity, tetrahydrofuran and diethyl ether are more preferable, and toluene and xylene are preferable from the viewpoint of reaction rate.
 前記イオン性ポリマーを製造する際においては、原料モノマーを反応させるために、アルカリや適当な触媒を添加することが好ましい。このようなアルカリ又は触媒は、採用する重合方法等に応じて選択すればよい。このようなアルカリ又は触媒としては、反応に用いる溶媒に十分に溶解するものが好ましい。また、前記アルカリ又は触媒を混合する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加するか、アルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。 In producing the ionic polymer, it is preferable to add an alkali or a suitable catalyst in order to react the raw material monomers. What is necessary is just to select such an alkali or a catalyst according to the superposition | polymerization method etc. to employ | adopt. Such an alkali or catalyst is preferably one that is sufficiently dissolved in the solvent used in the reaction. Further, as a method of mixing the alkali or catalyst, the alkali or catalyst solution is slowly added while stirring the reaction liquid under an inert atmosphere such as argon or nitrogen, or the reaction liquid is added to the alkali or catalyst solution. The method of adding slowly is illustrated.
 本発明に用いられるイオン性ポリマーにおいては、末端基に重合活性基がそのまま残っていると得られる発光素子の発光特性や寿命特性が低下する可能性があるため、末端基が安定な基で保護されていてもよい。このように安定な基で末端基が保護されている場合、本発明に用いられるイオン性ポリマーが共役化合物であるときには、該イオン性ポリマーの主鎖の共役構造と連続した共役結合を有していることが好ましく、その構造としては、例えば、炭素-炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。このような末端基を保護する安定な基としては、特開平9-45478号公報において化10の構造式で示される1価の芳香族化合物基等の置換基が挙げられる。 In the ionic polymer used in the present invention, if the polymerization active group remains as it is in the terminal group, the light emitting characteristics and life characteristics of the resulting light emitting device may be deteriorated. Therefore, the terminal group is protected with a stable group. May be. When the terminal group is protected with such a stable group, when the ionic polymer used in the present invention is a conjugated compound, it has a conjugated bond continuous with the conjugated structure of the main chain of the ionic polymer. Preferably, the structure includes, for example, a structure bonded to an aryl group or a heterocyclic group via a carbon-carbon bond. Examples of such a stable group for protecting the end group include substituents such as a monovalent aromatic compound group represented by the structural formula of Chemical Formula 10 in JP-A-9-45478.
 式(1)で表される構造単位を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でカチオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからカチオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のカチオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、金属水酸化物、アルキルアンモニウムヒドロキシド等による加水分解反応等が挙げられる。 As another preferable method for producing the ionic polymer containing the structural unit represented by the formula (1), an ionic polymer having no cation is polymerized in the first step, and then from the ionic polymer in the second step. The method of manufacturing the ionic polymer containing a cation is mentioned. As the method for polymerizing the ionic polymer having no cation in the first step, the above-mentioned condensation polymerization reaction may be mentioned. Examples of the reaction in the second step include a hydrolysis reaction with a metal hydroxide, an alkyl ammonium hydroxide, or the like.
 式(2)で表される基を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でイオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからイオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のイオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、ハロゲン化アルキルを用いたアミンの4級アンモニウム塩化反応、SbF5によるハロゲン引き抜き反応等が挙げられる。 As another preferred method for producing an ionic polymer containing a group represented by the formula (2), an ionic polymer having no ions is polymerized in the first step, and ions are generated from the ionic polymer in the second step. The method of manufacturing the ionic polymer containing this is mentioned. As a method for polymerizing an ionic polymer having no ions in the first step, the above-mentioned condensation polymerization reaction may be mentioned. Examples of the reaction in the second step include quaternary ammonium chlorination reaction of amine using alkyl halide, halogen abstraction reaction with SbF 5 and the like.
 本発明に用いられるイオン性ポリマーは電荷の注入性や輸送性に優れるため、高輝度で発光する素子が得られる。 Since the ionic polymer used in the present invention is excellent in charge injection and transportability, an element that emits light with high brightness can be obtained.
 イオン性ポリマーを含む層を形成する方法としては、例えば、イオン性ポリマーを含有する溶液を用いて成膜する方法が挙げられる。 Examples of a method for forming a layer containing an ionic polymer include a method of forming a film using a solution containing an ionic polymer.
 このような溶液からの成膜に用いる溶媒としては、水を除くアルコール類、エーテル類、エステル類、ニトリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、カルボン酸類等の溶媒のうち、溶解度パラメーターが9.3以上の溶媒が好ましい。該溶媒の例(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、例えば、メタノール(12.9)、エタノール(11.2)、2-プロパノール(11.5)、1-ブタノール(9.9)、t-ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2-エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2-ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。ここで、2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒について説明すると、該混合溶媒の溶解度パラメーター(δm)は、δm1×φ12×φ2により求めることとする(δ1は溶媒1の溶解度パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解度パラメーター、φ2は溶媒2の体積分率である。) Solvents used for film formation from such solutions include alcohols other than water, ethers, esters, nitrile compounds, nitro compounds, alkyl halides, aryl halides, thiols, sulfides, Of the solvents such as sulfoxides, thioketones, amides, and carboxylic acids, those having a solubility parameter of 9.3 or more are preferable. Examples of the solvent (values in parentheses represent solubility parameter values of each solvent) include, for example, methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1-butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), Dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9 .6), bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and mixed solutions of these solvents And the like. Here, a mixed solvent obtained by mixing two kinds of solvents (solvent 1 and solvent 2) will be described. The solubility parameter (δ m ) of the mixed solvent is δ m = δ 1 × φ 1 + δ 2.21 is the solubility parameter of solvent 1, φ 1 is the volume fraction of solvent 1, δ 2 is the solubility parameter of solvent 2, and φ 2 is the volume fraction of solvent 2.)
 イオン性ポリマーを含む層の膜厚としては、用いるイオン性ポリマーによって最適値が異なるため、駆動電圧と発光効率が適度な値となるように選択すればよく、ピンホールが発生しない厚さが必要である。素子の駆動電圧を低くする観点からは、該膜厚は、1nm~1μmであることが好ましく、2nm~500nmであることがより好ましく、2nm~200nmであることがさらに好ましい。発光層を保護する観点からは、該膜厚は、5nm~1μmであることが好ましい。 The film thickness of the layer containing the ionic polymer varies depending on the ionic polymer used, so the driving voltage and luminous efficiency should be selected to be appropriate, and a thickness that does not cause pinholes is required. It is. From the viewpoint of lowering the driving voltage of the element, the film thickness is preferably 1 nm to 1 μm, more preferably 2 nm to 500 nm, and even more preferably 2 nm to 200 nm. From the viewpoint of protecting the light emitting layer, the film thickness is preferably 5 nm to 1 μm.
 上述した、本発明に用いるイオン性ポリマーの内、より好ましい数種の具体例について、それらの合成例および合成されたイオン性ポリマーを使用して作製された有機EL素子を実験例として以下に示す。以下に示す実験例は、本発明をより具体的に説明するものであるが、本発明は以下の実験例に限定されるものではない。 Among the above-described ionic polymers used in the present invention, some preferred examples are shown as experimental examples of synthetic examples and organic EL devices produced using the synthesized ionic polymers. . The experimental examples shown below will explain the present invention more specifically, but the present invention is not limited to the following experimental examples.
 重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製:HLC-8220GPC)を用いて、ポリスチレン換算の重量平均分子量及び数平均分子量として求めた。また、測定する試料は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに50μL注入した。更に、GPCの移動相としてはテトラヒドロフランを用い、0.5mL/分の流速で流した。重合体の構造分析はVarian社製300MHzNMRスペクトロメータ-を用いた、H-NMR解析によって行った。また、測定は、20mg/mLの濃度になるように試料を可溶な重溶媒(溶媒分子中の水素原子が重水素原子で置換された溶媒)に溶解させて行った。重合体の最高占有分子軌道(HOMO)の軌道エネルギーは、重合体のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求めた。一方、重合体の最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求めた。イオン化ポテンシャルの測定には光電子分光装置(理研計器株式会社製:AC-2)を用いた。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計(Varian社製:Cary5E)を用いて重合体の吸収スペクトルを測定し、その吸収末端より求めた。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC), polystyrene equivalent weight average molecular weight and number average molecular weight. As sought. The sample to be measured was dissolved in tetrahydrofuran so as to have a concentration of about 0.5% by weight, and 50 μL was injected into GPC. Furthermore, tetrahydrofuran was used as the mobile phase of GPC and allowed to flow at a flow rate of 0.5 mL / min. The structural analysis of the polymer was performed by 1 H-NMR analysis using a 300 MHz NMR spectrometer manufactured by Varian. In addition, the measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was substituted with a deuterium atom) so as to have a concentration of 20 mg / mL. The orbital energy of the highest occupied molecular orbital (HOMO) of the polymer was determined by measuring the ionization potential of the polymer and using the obtained ionization potential as the orbital energy. On the other hand, the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the polymer was obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. . For measurement of the ionization potential, a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-2) was used. The energy difference between HOMO and LUMO was determined from the absorption terminal of the polymer by measuring the absorption spectrum of the polymer using an ultraviolet / visible / near infrared spectrophotometer (Varian: Cary 5E).
[参考例1]
 2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)の合成
 2,7-ジブロモ-9-フルオレノン(52.5g)、サリチル酸エチル(154.8g)、及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び18-クラウン-6(7.2g)をN、N-ジメチルホルムアミド(DMF)(670 mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)(51.2g)を得た。
[Reference Example 1]
Synthesis of 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (compound A) 2,7-dibromo -9-Fluorenone (52.5 g), ethyl salicylate (154.8 g), and mercaptoacetic acid (1.4 g) were placed in a 300 mL flask and purged with nitrogen. Thereto was added methanesulfonic acid (630 mL) and the mixture was stirred at 75 ° C. overnight. The mixture was allowed to cool, added to ice water and stirred for 1 hour. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered. The resulting solid (62.7 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (86.3 g), potassium carbonate (62.6 g), and 18-crown-6 (7 2 g) was dissolved in N, N-dimethylformamide (DMF) (670 mL) and the solution was transferred to a flask and stirred at 105 ° C. overnight. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Chloroform (300 mL) was added to the reaction solution, liquid separation extraction was performed, and the solution was concentrated to give 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2 -Methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound A) (51.2 g) was obtained.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
[参考例2]
 2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)の合成
 窒素雰囲気下、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、ジオキサン(400mL)を混合し、110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。反応混合物をメタノールで3回洗浄した。沈殿物をトルエンに溶解させ、溶液に活性炭を加えて攪拌した。その後、ろ過を行い、ろ液を減圧濃縮することで、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)(11.7g)を得た。
[Reference Example 2]
2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis [3-ethoxycarbonyl-4- [2- [2- ( Synthesis of 2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound B) Compound A (15 g), bis (pinacolato) diboron (8.9 g), [1,1′-bis (diphenylphos) under nitrogen atmosphere Fino) ferrocene] dichloropalladium (II) dichloromethane complex (0.8 g), 1,1′-bis (diphenylphosphino) ferrocene (0.5 g), potassium acetate (9.4 g), dioxane (400 mL) were mixed. , Heated to 110 ° C. and heated to reflux for 10 hours. The reaction liquid was filtered after standing_to_cool and the filtrate was concentrate | evaporated under reduced pressure. The reaction mixture was washed 3 times with methanol. The precipitate was dissolved in toluene, and activated carbon was added to the solution and stirred. Thereafter, filtration is performed, and the filtrate is concentrated under reduced pressure to give 2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis. [3-Ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound B) (11.7 g) was obtained.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
[参考例3]
 ポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A)の合成
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名「Aliquat336(登録商標)」)(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4-t-ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mLに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mLに溶解させた。こうして得られた溶液をメタノール200mLに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9-ビス[3-エトキシカルボニル-4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A)の収量は520mgであった。
 重合体Aのポリスチレン換算の数平均分子量は5.2×104であった。重合体Aは、式(A)で表される構造単位からなる。
[Reference Example 3]
Synthesis of poly [9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (Polymer A) Compound A under an inert atmosphere (0.55 g), Compound B (0.61 g), triphenylphosphine palladium (0.01 g), methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name “Aliquat 336 (registered trademark)”) (0.20 g), and Toluene (10 mL) was mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 8 hours. 4-t-butylphenylboronic acid (0.01 g) was added to the reaction solution, and the mixture was refluxed for 6 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 2 hours. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of a 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran. The solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained poly [9,9-bis [3-ethoxycarbonyl-4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (polymer A) was 520 mg. there were.
The number average molecular weight in terms of polystyrene of the polymer A was 5.2 × 10 4 . The polymer A consists of a structural unit represented by the formula (A).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
[実験例1]
 重合体Aセシウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのセシウム塩を共役高分子化合物1と呼ぶ。共役高分子化合物1は式(B)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物1のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。
[Experimental Example 1]
Synthesis of Polymer A Cesium Salt Polymer A (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (20 mL) and ethanol (20 mL) were added and the mixture was warmed to 55 ° C. An aqueous solution in which cesium hydroxide (200 mg) was dissolved in water (2 mL) was added thereto, and the mixture was stirred at 55 ° C. for 6 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared. The obtained cesium salt of polymer A is referred to as conjugated polymer compound 1. Conjugated polymer compound 1 is composed of a structural unit represented by formula (B) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.) The conjugated polymer compound 1 had an orbital energy of HOMO of −5.5 eV and an orbital energy of LUMO of −2.7 eV.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
[実験例2]
 重合体Aカリウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化カリウム(400mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール50mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(131mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのカリウム塩を共役高分子化合物2と呼ぶ。共役高分子化合物2は式(C)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物2のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。
[Experiment 2]
Synthesis of Polymer A Potassium Salt Polymer A (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (20 mL) and methanol (10 mL) were mixed, an aqueous solution in which potassium hydroxide (400 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hr. 50 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (131 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared. The obtained potassium salt of polymer A is referred to as conjugated polymer compound 2. Conjugated polymer compound 2 is composed of a structural unit represented by formula (C) ("selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.) The conjugated polymer compound 2 had an orbital energy of HOMO of −5.5 eV and an orbital energy of LUMO of −2.7 eV.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
[実験例3]
 重合体Aナトリウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化ナトリウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(123mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのナトリウム塩を共役高分子化合物3と呼ぶ。共役高分子化合物3は式(D)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物3のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experiment 3]
Synthesis of Polymer A Sodium Salt Polymer A (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (20 mL) and methanol (10 mL) were mixed, an aqueous solution in which sodium hydroxide (260 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hr. 30 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (123 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared. The resulting sodium salt of polymer A is referred to as conjugated polymer compound 3. The conjugated polymer compound 3 is composed of a structural unit represented by the formula (D) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.) The conjugated polymer compound 3 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
[実験例4]
 重合体Aアンモニウム塩の合成
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(15mL)を混合し、混合溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。反応溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが90%消失していることを確認した。得られた重合体Aのアンモニウム塩を共役高分子化合物4と呼ぶ。共役高分子化合物4は式(E)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、90モル%である。)。共役高分子化合物4のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental Example 4]
Synthesis of Polymer A Ammonium Salt Polymer A (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (20 mL) and methanol (15 mL) were mixed, an aqueous solution in which tetramethylammonium hydroxide (50 mg) was dissolved in water (1 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 6 hours. An aqueous solution in which tetramethylammonium hydroxide (50 mg) was dissolved in water (1 mL) was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that 90% of the signal derived from the ethyl group at the ethyl ester site in the polymer A disappeared. The resulting ammonium salt of polymer A is referred to as conjugated polymer compound 4. The conjugated polymer compound 4 is composed of a structural unit represented by the formula (E) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) "is 90 mol%.) The conjugated polymer compound 4 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
[参考例4]
 2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)の合成
 不活性雰囲気下、化合物A(0.52g)、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチルフルオレン(1.29g)、トリフェニルホスフィンパラジウム(0.0087g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名「Aliquat336(登録商標)」)(0.20g)、トルエン(10mL)、及び2M炭酸ナトリウム水溶液(10mL)を混合し、80℃に加熱した。反応液を3.5時間反応させた。その後、そこに、パラブロモトルエン(0.68g)を加えて、更に2.5時間反応させた。反応後、反応液を室温まで冷却し、酢酸エチル50mL/蒸留水50mLを加えて水層を除去した。再び蒸留水50mLを加えて水層を除去した後、乾燥剤として硫酸マグネシウムを加えて、不溶物をろ過して、有機溶媒を除去した。その後、得られた残渣を再びTHF10mLに溶かして、飽和ジエチルジチオカルバミン酸ナトリウム水2mLを添加して、30分間撹拌した後、有機溶媒を除去した。アルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1、v/v)を通して精製を行い、析出した沈殿をろ過して12時間減圧乾燥させたところ、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)が524mg得られた。
[Reference Example 4]
2,7-bis [7- (4-methylphenyl) -9,9-dioctylfluoren-2-yl] -9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxy) Synthesis of ethoxy) ethoxy] ethoxy] phenyl] -fluorene (Polymer B) Compound A (0.52 g), 2,7-bis (1,3,2-dioxaborolan-2-yl) -9 under inert atmosphere , 9-dioctylfluorene (1.29 g), triphenylphosphine palladium (0.0087 g), methyltrioctylammonium chloride (manufactured by Aldrich, trade name “Aliquat 336 (registered trademark)”) (0.20 g), toluene (10 mL) And 2M aqueous sodium carbonate (10 mL) were mixed and heated to 80 ° C. The reaction was allowed to react for 3.5 hours. Thereafter, parabromotoluene (0.68 g) was added thereto, and the mixture was further reacted for 2.5 hours. After the reaction, the reaction solution was cooled to room temperature, 50 mL of ethyl acetate / 50 mL of distilled water was added, and the aqueous layer was removed. Distilled water (50 mL) was added again to remove the aqueous layer, magnesium sulfate was added as a desiccant, and the insoluble matter was filtered to remove the organic solvent. Thereafter, the obtained residue was dissolved again in 10 mL of THF, 2 mL of saturated aqueous sodium diethyldithiocarbamate was added and stirred for 30 minutes, and then the organic solvent was removed. Purification was performed through an alumina column (developing solvent hexane: ethyl acetate = 1: 1, v / v), and the deposited precipitate was filtrated and dried under reduced pressure for 12 hours. As a result, 2,7-bis [7- (4-methyl Phenyl) -9,9-dioctylfluoren-2-yl] -9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (heavy 524 mg of union B) was obtained.
 重合体Bのポリスチレン換算の数平均分子量は、2.0×10であった。なお、重合体Bは、式(F)で表される。 The number average molecular weight in terms of polystyrene of the polymer B was 2.0 × 10 3 . The polymer B is represented by the formula (F).
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[実験例5]
重合体Bセシウム塩の合成
 重合体B(262mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(10mL)、及びメタノール(15mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(341mg)を水(1mL)に溶かした水溶液を添加し、55℃で5時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(250mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Bセシウム塩を共役高分子化合物5と呼ぶ。共役高分子化合物5は、式(G)で表される(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物5のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.6eVであった。
[Experimental Example 5]
Synthesis of Polymer B Cesium Salt Polymer B (262 mg) was placed in a 100 mL flask and purged with argon. Tetrahydrofuran (10 mL) and methanol (15 mL) were added thereto, and the mixture was heated to 55 ° C. The aqueous solution which melt | dissolved cesium hydroxide (341 mg) in water (1 mL) was added there, and it stirred at 55 degreeC for 5 hours. After the resulting mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (250 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site had completely disappeared. The obtained polymer B cesium salt is referred to as a conjugated polymer compound 5. The conjugated polymer compound 5 is represented by the formula (G) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all structural units). "Ratio of structural units containing the above groups and one or more groups represented by formula (3)" and "in formulas (13), (15), (17), (20) in all structural units" The “ratio of structural units represented” is 33.3 mol% rounded off to the second decimal place.) The conjugated polymer compound 5 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.6 eV.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
[参考例5]
重合体Cの合成
 不活性雰囲気下、化合物A(0.40g)、化合物B(0.49g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(35mg)、トリフェニルホスフィンパラジウム(8mg)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名「Aliquat336(登録商標)」)(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液にフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mLに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mLに溶解させた。こうして得られた溶液をメタノール200mLに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Cの収量は526mgであった。
[Reference Example 5]
Synthesis of Polymer C Compound A (0.40 g), Compound B (0.49 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-) under an inert atmosphere Butyl-2,6-dimethylphenyl) 1,4-phenylenediamine (35 mg), triphenylphosphine palladium (8 mg), methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name “Aliquat 336 (registered trademark)”) (0.20 g ) And toluene (10 mL), and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 8 hours. Phenylboronic acid (0.01 g) was added to the reaction solution and refluxed for 6 hours. Subsequently, sodium diethyldithiocarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of a 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran. The solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer C was 526 mg.
 重合体Cのポリスチレン換算の数平均分子量は3.6×104であった。重合体Cは、式(H)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer C was 3.6 × 10 4 . The polymer C consists of a structural unit represented by the formula (H).
 なお、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミンは、例えば特開2008-74917号公報に記載されている方法で合成することができる。 N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine is disclosed in, for example, JP-A-2008-74917. It can be synthesized by the method described in the publication.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
[実験例6]
 重合体Cセシウム塩の合成
 重合体C(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(20mL)を添加し混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体C内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Cのセシウム塩を共役高分子化合物6と呼ぶ。共役高分子化合物6は式(I)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、95モル%である。)。共役高分子化合物6のHOMOの軌道エネルギーは-5.3eV、LUMOの軌道エネルギーは-2.6eVであった。
[Experimental Example 6]
Synthesis of Polymer C Cesium Salt Polymer C (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (20 mL) and methanol (20 mL) were added and mixed. An aqueous solution in which cesium hydroxide (200 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hour. 30 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer C had completely disappeared. The obtained cesium salt of polymer C is referred to as conjugated polymer compound 6. Conjugated polymer compound 6 is composed of a structural unit represented by formula (I) (“selected from the group consisting of a group represented by formula (1) and a group represented by formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) "is 95 mol%.) The conjugated polymer compound 6 had a HOMO orbital energy of −5.3 eV and a LUMO orbital energy of −2.6 eV.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
[参考例6]
重合体Dの合成
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.67g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(0.038g)、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジン 0.009g、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名「Aliquat336(登録商標)」)(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、2時間還流させた。反応液にフェニルボロン酸(0.004g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mLに溶解させた。得られた溶液をメタノール120mL、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mLに溶解させた。こうして得られた溶液をメタノール200mLに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Dの収量は590mgであった。
[Reference Example 6]
Synthesis of Polymer D Compound A (0.55 g), Compound B (0.67 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-) under an inert atmosphere Butyl-2,6-dimethylphenyl) 1,4-phenylenediamine (0.038 g), 3,7-dibromo-N- (4-n-butylphenyl) phenoxazine 0.009 g, triphenylphosphine palladium (0. 01 g), methyl trioctyl ammonium chloride (manufactured by Aldrich, trade name “Aliquat 336 (registered trademark)”) (0.20 g), and toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 2 hours. Phenylboronic acid (0.004 g) was added to the reaction solution and refluxed for 6 hours. Subsequently, sodium diethyldithiocarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 mL of methanol and 50 mL of a 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran. The solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer D was 590 mg.
 重合体Dのポリスチレン換算の数平均分子量は2.7×104であった。重合体Dは、式(J)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer D was 2.7 × 10 4 . The polymer D consists of a structural unit represented by the formula (J).
 なお、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジンは、特開2007-70620号に記載の方法に基づいて、あるいは特開2004-137456号公報に記載の方法を参考にして、合成した。 3,7-dibromo-N- (4-n-butylphenyl) phenoxazine is based on the method described in Japanese Patent Application Laid-Open No. 2007-70620 or the method described in Japanese Patent Application Laid-Open No. 2004-137456. And synthesized.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
[実験例7]
 重合体Dセシウム塩の合成
 重合体D(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(10mL)を混合した。混合溶液に、水酸化セシウム(360mg)を水(2mL)に溶解させた水溶液を添加し、65℃で3時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(210mg)を得た。NMRスペクトルにより、重合体D内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Dのセシウム塩を共役高分子化合物7と呼ぶ。共役高分子化合物7は式(K)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、90モル%である。)。共役高分子化合物7のHOMOの軌道エネルギーは-5.3eV、LUMOの軌道エネルギーは-2.4eVであった。
[Experimental Example 7]
Synthesis of Polymer D Cesium Salt Polymer D (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (15 mL) and methanol (10 mL) were mixed. An aqueous solution in which cesium hydroxide (360 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 3 hours. 10 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (210 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer D had completely disappeared. The resulting cesium salt of polymer D is referred to as conjugated polymer compound 7. The conjugated polymer compound 7 is composed of a structural unit represented by the formula (K) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) "is 90 mol%.) The conjugated polymer compound 7 had a HOMO orbital energy of −5.3 eV and a LUMO orbital energy of −2.4 eV.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
[参考例7]
重合体Eの合成
 不活性雰囲気下、化合物A(0.37g)、化合物B(0.82g)、1,3-ジブロモベンゼン(0.09g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名「Aliquat336(登録商標)」)(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、7時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、10時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mLに溶解させた。得られた溶液をメタノール120mL、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mLに溶解させた。こうして得られた溶液をメタノール200mLに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は293mgであった。
[Reference Example 7]
Synthesis of Polymer E In an inert atmosphere, Compound A (0.37 g), Compound B (0.82 g), 1,3-dibromobenzene (0.09 g), triphenylphosphine palladium (0.01 g), methyltri Octylammonium chloride (manufactured by Aldrich, trade name “Aliquat 336 (registered trademark)”) (0.20 g) and toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, a 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 7 hours. Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 10 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 mL of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran. The solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer E was 293 mg.
 重合体Eのポリスチレン換算の数平均分子量は1.8×104であった。重合体Eは、式(L)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer E was 1.8 × 10 4 . The polymer E consists of a structural unit represented by the formula (L).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
[実験例8]
 重合体Eセシウム塩の合成
 重合体E(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(170mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Eのセシウム塩を共役高分子化合物8と呼ぶ。共役高分子化合物8は式(M)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、75モル%である。)。共役高分子化合物8のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.6eVであった。
[Experimental Example 8]
Synthesis of Polymer E Cesium Salt Polymer E (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (10 mL) and methanol (5 mL) were mixed. An aqueous solution in which cesium hydroxide (200 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 2 hours. 10 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (170 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared. The resulting cesium salt of polymer E is referred to as conjugated polymer compound 8. The conjugated polymer compound 8 is composed of a structural unit represented by the formula (M) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) "is 75 mol%.) The conjugated polymer compound 8 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.6 eV.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
[参考例8]
重合体Fの合成
 不活性雰囲気下、化合物B(1.01g)、1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン(0.30g)、トリフェニルホスフィンパラジウム(0.02g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名「Aliquat336(登録商標)」)(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、4時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、4時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mLに溶解させた。得られた溶液をメタノール120mL、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mLに溶解させた。こうして得られた溶液をメタノール200mLに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフラン/酢酸エチル(1/1(体積比))の混合溶媒に溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は343mgであった。
[Reference Example 8]
Synthesis of Polymer F Under an inert atmosphere, Compound B (1.01 g), 1,4-dibromo-2,3,5,6-tetrafluorobenzene (0.30 g), triphenylphosphine palladium (0.02 g) , Methyltrioctylammonium chloride (manufactured by Aldrich, trade name “Aliquat 336 (registered trademark)”) (0.20 g), and toluene (10 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 4 hours. Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 4 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran. The obtained solution was dropped into a mixed solvent of 120 mL of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 mL of tetrahydrofuran. The solution thus obtained was dropped into 200 mL of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in a mixed solvent of tetrahydrofuran / ethyl acetate (1/1 (volume ratio)) and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried. The yield of the obtained polymer E was 343 mg.
 重合体Fのポリスチレン換算の数平均分子量は6.0×104であった。重合体Fは、式(N)で表される構造単位からなる。 The polystyrene equivalent number average molecular weight of the polymer F was 6.0 × 10 4 . The polymer F consists of a structural unit represented by the formula (N).
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
[実験例9]
 重合体Fセシウム塩の合成
 重合体F(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(130mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Fのセシウム塩を共役高分子化合物9と呼ぶ。共役高分子化合物9は式(O)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、75モル%である。)。共役高分子化合物9のHOMOの軌道エネルギーは-5.9eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental Example 9]
Synthesis of Polymer F Cesium Salt Polymer F (150 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (10 mL) and methanol (5 mL) were mixed. An aqueous solution in which cesium hydroxide (260 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 2 hours. 10 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (130 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared. The obtained cesium salt of polymer F is referred to as conjugated polymer compound 9. The conjugated polymer compound 9 is composed of a structural unit represented by the formula (O) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) "is 75 mol%.) The conjugated polymer compound 9 had a HOMO orbital energy of −5.9 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
[参考例9]
 不活性雰囲気下、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(11.0g)、トリエチレングリコール(30.0g)、水酸化カリウム(3.3g)を混合し、100℃で18時間過熱攪拌した。放冷後、反応溶液を水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。濃縮した溶液を、クーゲルロワー蒸留(10mmTorr、180℃)することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(6.1g)を得た。
[Reference Example 9]
Under an inert atmosphere, 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (11.0 g), triethylene glycol (30.0 g) and potassium hydroxide (3.3 g) were mixed, The mixture was stirred with heating at 100 ° C. for 18 hours. After allowing to cool, the reaction solution was added to water (100 mL), liquid separation extraction was performed with chloroform, and the solution was concentrated. The concentrated solution was subjected to Kugelrohr distillation (10 mm Torr, 180 ° C.) to give 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy). Ethanol (6.1 g) was obtained.
[参考例10]
 不活性雰囲気下、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(8.0g)、水酸化ナトリウム(1.4g)、蒸留水(2mL)、テトラヒドロフラン(2mL)を混合し、氷冷した。混合溶液に、p-トシルクロリド(5.5g)のテトラヒドロフラン(6.4mL)溶液を30分かけて滴下し、滴下後反応溶液を室温に上げて15時間攪拌した。反応溶液に蒸留水(50mL)を加え、6M硫酸で反応溶液を中和した後、クロロホルムで分液抽出を行った。溶液を濃縮することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(11.8g)を得た。
[Reference Example 10]
Under an inert atmosphere, 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) ethanol (8.0 g), sodium hydroxide (1. 4 g), distilled water (2 mL) and tetrahydrofuran (2 mL) were mixed and ice-cooled. To the mixed solution, a solution of p-tosyl chloride (5.5 g) in tetrahydrofuran (6.4 mL) was added dropwise over 30 minutes. After the addition, the reaction solution was raised to room temperature and stirred for 15 hours. Distilled water (50 mL) was added to the reaction solution, and the reaction solution was neutralized with 6M sulfuric acid, followed by liquid separation extraction with chloroform. The solution was concentrated to give 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) p-toluenesulfonate (11.8 g). It was.
[参考例11]
 2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)の合成
 2,7-ジブロモ-9-フルオレノン(127.2g)、サリチル酸エチル(375.2g)、及びメルカプト酢酸(3.5g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(1420mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別し固体(167.8g)を得た。得られた固体(5g)、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(10.4g)、炭酸カリウム(5.3g)、及び18-クラウン-6(0.6g)をN、N-ジメチルホルムアミド(DMF)(100mL)に溶解させ、溶液をフラスコへ移して105℃で4時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮した。濃縮物を酢酸エチルに溶解させ、アルミナのカラムに通液し、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)(4.5g)を得た。
[Reference Example 11]
2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy)- Synthesis of Ethoxy) Ethoxy] phenyl] -fluorene (Compound C) 2,7-Dibromo-9-fluorenone (127.2 g), ethyl salicylate (375.2 g), and mercaptoacetic acid (3.5 g) were placed in a 300 mL flask. And replaced with nitrogen. Thereto was added methanesulfonic acid (1420 mL) and the mixture was stirred at 75 ° C. overnight. The mixture was allowed to cool, added to ice water and stirred for 1 hour. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered to obtain a solid (167.8 g). The resulting solid (5 g), 2- (2- (2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) p-toluenesulfonate (10.4 g), Potassium carbonate (5.3 g) and 18-crown-6 (0.6 g) were dissolved in N, N-dimethylformamide (DMF) (100 mL), and the solution was transferred to a flask and stirred at 105 ° C. for 4 hours. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Chloroform (300 mL) was added to the reaction solution, liquid separation extraction was performed, and the solution was concentrated. The concentrate was dissolved in ethyl acetate, passed through an alumina column, and the solution was concentrated to give 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- (2- (2- ( 2- (2- (2- (2-methoxyethoxy) -ethoxy) -ethoxy) -ethoxy) -ethoxy) ethoxy] phenyl] -fluorene (compound C) (4.5 g) was obtained.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
[参考例12]
 重合体Gの合成
 不活性雰囲気下、化合物C(1.0g)、4-t-ブチルフェニルブロミド(0.9mg)、2,2‘-ビピリジン(0.3g)、脱水テトラヒドロフラン(50mL)を200mLフラスコに入れ混合した。混合物を55℃に昇温した後、ビス(1,5-シクロオクタジエン)ニッケル(0.6g)を添加し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、1N希塩酸(200mL)の混合液に滴下した。生じた沈殿物をろ過により収集した後、テトラヒドロフランに再溶解させた。メタノール(200mL)、15%アンモニア水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。沈殿物をテトラヒドロフランに再溶解させ、メタノール(200mL)、水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。収集した沈殿物を減圧乾燥することで重合体G(360mg)を得た。
[Reference Example 12]
Synthesis of Polymer G In an inert atmosphere, 200 mL of Compound C (1.0 g), 4-t-butylphenyl bromide (0.9 mg), 2,2′-bipyridine (0.3 g), dehydrated tetrahydrofuran (50 mL) Mix in a flask. The temperature of the mixture was raised to 55 ° C., bis (1,5-cyclooctadiene) nickel (0.6 g) was added, and the mixture was stirred at 55 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solution was added dropwise to a mixture of methanol (200 mL) and 1N dilute hydrochloric acid (200 mL). The resulting precipitate was collected by filtration and redissolved in tetrahydrofuran. The mixture was added dropwise to a mixture of methanol (200 mL) and 15% aqueous ammonia (100 mL), and the resulting precipitate was collected by filtration. The precipitate was redissolved in tetrahydrofuran, added dropwise to a mixture of methanol (200 mL) and water (100 mL), and the resulting precipitate was collected by filtration. The collected precipitate was dried under reduced pressure to obtain a polymer G (360 mg).
 重合体Gのポリスチレン換算の数平均分子量は6.0×104であった。重合体Gは、式(P)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer G was 6.0 × 10 4 . The polymer G consists of a structural unit represented by the formula (P).
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
[実験例10]
 重合体Gセシウム塩の合成
 重合体G(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(170mg)を水(2mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(95mg)を得た。NMRスペクトルにより、重合体G内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Gのセシウム塩を共役高分子化合物10と呼ぶ。共役高分子化合物10は式(Q)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物10のHOMOの軌道エネルギーは-5.7eV、LUMOの軌道エネルギーは-2.9eVであった。
[Experimental Example 10]
Synthesis of Polymer G Cesium Salt Polymer G (150 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (15 mL) and methanol (5 mL) were mixed. An aqueous solution in which cesium hydroxide (170 mg) was dissolved in water (2 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 6 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (95 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer G had completely disappeared. The obtained cesium salt of polymer G is referred to as conjugated polymer compound 10. The conjugated polymer compound 10 is composed of a structural unit represented by the formula (Q) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) is 100 mol%.) The conjugated polymer compound 10 had a HOMO orbital energy of −5.7 eV and a LUMO orbital energy of −2.9 eV.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
[参考例13]
1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼンの合成
不活性雰囲気下、3,5-ジブロモサリチル酸(20g)、エタノール(17mL)、濃硫酸(1.5mL)、トルエン(7mL)を混合し、130℃で20時間過熱攪拌した。放冷後、反応溶液を氷水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。得られた固体を、イソプロパノールに溶解し、溶液を蒸留水に滴下した。得られた析出物をろ別することにより、固体(18g)を得た。不活性雰囲気下、得られた固体(1g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(1.5g)、炭酸カリウム(0.7g)、DMF(15mL)を混合し、100℃で4時間過熱攪拌した。放冷後、クロロホルムを加えて分液抽出し、溶液を濃縮した。濃縮物をクロロホルムに溶解させ、シリカゲルカラムに通液することにより精製した。溶液を濃縮することにより、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(1.0g)を得た。
[Reference Example 13]
Synthesis of 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene Under an inert atmosphere, 3,5-dibromosalicylic acid (20 g), ethanol (17 mL ), Concentrated sulfuric acid (1.5 mL) and toluene (7 mL) were mixed, and the mixture was stirred with heating at 130 ° C. for 20 hours. After allowing to cool, the reaction solution was added to ice water (100 mL), liquid separation extraction was performed with chloroform, and the solution was concentrated. The obtained solid was dissolved in isopropanol, and the solution was added dropwise to distilled water. The obtained precipitate was filtered off to obtain a solid (18 g). Under an inert atmosphere, the obtained solid (1 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (1.5 g), potassium carbonate (0.7 g), DMF (15 mL) were added. The mixture was mixed and stirred at 100 ° C. for 4 hours. After allowing to cool, chloroform was added to perform liquid separation and extraction, and the solution was concentrated. The concentrate was dissolved in chloroform and purified by passing through a silica gel column. The solution was concentrated to give 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene (1.0 g).
[参考例14]
重合体Hの合成
 不活性雰囲気下、化合物A(0.2g)、化合物B(0.5g)、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(0.1g)、トリフェニルホスフィンパラジウム(30mg)、テトラブチルアンモニウムブロミド(4mg)、及びトルエン(19mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(5mL)を滴下し、5時間還流させた。反応液にフェニルボロン酸(6mg)を加え、14時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。水層を除去して有機層を蒸留水で洗浄し、濃縮して得られた固体をクロロホルムに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムからの溶出液を濃縮して乾燥させた。得られた重合体Hの収量は0.44gであった。
[Reference Example 14]
Synthesis of Polymer H Under an inert atmosphere, Compound A (0.2 g), Compound B (0.5 g), 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ) Ethoxy] ethoxy] benzene (0.1 g), triphenylphosphine palladium (30 mg), tetrabutylammonium bromide (4 mg), and toluene (19 mL) were mixed and heated to 105 ° C. To this reaction solution, 2M aqueous sodium carbonate solution (5 mL) was added dropwise and refluxed for 5 hours. Phenylboronic acid (6 mg) was added to the reaction solution and refluxed for 14 hours. Subsequently, sodium diethyldithiocarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The aqueous layer was removed, the organic layer was washed with distilled water, and the solid obtained by concentration was dissolved in chloroform and purified by passing through an alumina column and a silica gel column. The eluate from the column was concentrated and dried. The yield of the obtained polymer H was 0.44 g.
 重合体Hのポリスチレン換算の数平均分子量は3.6×104であった。重合体Hは、式(R)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer H was 3.6 × 10 4 . The polymer H consists of a structural unit represented by the formula (R).
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
[実験例11]
 重合体Hセシウム塩の合成
 重合体H(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(14mL)、及びメタノール(7mL)を添加し混合した。混合溶液に、水酸化セシウム(90mg)を水(1mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール5mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、重合体H内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Hのセシウム塩を共役高分子化合物11と呼ぶ。共役高分子化合物11は式(S)で表される構造単位からなる(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、100モル%である。)。共役高分子化合物11のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental Example 11]
Synthesis of Polymer H Cesium Salt Polymer H (200 mg) was placed in a 100 mL flask and purged with nitrogen. Tetrahydrofuran (14 mL) and methanol (7 mL) were added and mixed. An aqueous solution in which cesium hydroxide (90 mg) was dissolved in water (1 mL) was added to the mixed solution, and the mixture was stirred at 65 ° C. for 1 hour. 5 mL of methanol was added to the reaction solution, and the mixture was further stirred at 65 ° C. for 4 hours. After the mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer H had completely disappeared. The resulting cesium salt of polymer H is referred to as conjugated polymer compound 11. The conjugated polymer compound 11 is composed of a structural unit represented by the formula (S) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all structural units). The ratio of structural units containing one or more groups and one or more groups represented by formula (3) "and" the formulas (13), (15), (17), ( The ratio of the structural unit represented by 20) "is 100 mol%.) The conjugated polymer compound 11 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
[参考例15]
 2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン (化合物D)の合成
 2,7-ジブロモ-9-フルオレノン(34.1g)、2,3-ジヒドロキシ安息香酸メチル(101.3g)、及びメルカプト酢酸(1.4g)を500mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(350mL)を添加し、混合物を90℃で19時間撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(16.3g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(60.3g)、炭酸カリウム(48.6g)、及び18-クラウン-6(2.4g)をN、N-ジメチルホルムアミド(DMF)(500mL)に溶解させ、溶液をフラスコへ移して110℃で15時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液に酢酸エチル(300mL)を加えて分液抽出を行い、溶液を濃縮し、クロロホルム/メタノール(50/1(体積比))の混合溶媒に溶解させ、シリカゲルカラムを通すことにより精製した。カラムに通液した溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン (化合物D)(20.5g)を得た。
[Reference Example 15]
Synthesis of 2,7-dibromo-9,9-bis [3,4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] -5-methoxycarbonylphenyl] fluorene (Compound D) -Dibromo-9-fluorenone (34.1 g), methyl 2,3-dihydroxybenzoate (101.3 g), and mercaptoacetic acid (1.4 g) were placed in a 500 mL flask and purged with nitrogen. Thereto was added methanesulfonic acid (350 mL), and the mixture was stirred at 90 ° C. for 19 hours. The mixture was allowed to cool, added to ice water and stirred for 1 hour. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered. The resulting solid (16.3 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (60.3 g), potassium carbonate (48.6 g), and 18-crown-6 (2 4 g) was dissolved in N, N-dimethylformamide (DMF) (500 mL) and the solution was transferred to a flask and stirred at 110 ° C. for 15 hours. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Separation extraction was performed by adding ethyl acetate (300 mL) to the reaction solution, the solution was concentrated, dissolved in a mixed solvent of chloroform / methanol (50/1 (volume ratio)), and purified by passing through a silica gel column. By concentrating the solution passed through the column, 2,7-dibromo-9,9-bis [3,4-bis [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] -5-methoxycarbonyl was obtained. Phenyl] fluorene (Compound D) (20.5 g) was obtained.
[参考例16]
 2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[5-メトキシカルボニル-3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)の合成
 不活性雰囲気下、化合物D(0.70g)、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレン (0.62g) 、トリフェニルホスフィンパラジウム(0.019g)、ジオキサン(40mL)、水(6mL)及び炭酸カリウム水溶液(1.38g)を混合し、80℃に加熱した。反応液を1時間反応させた。反応後、飽和ジエチルジチオカルバミン酸ナトリウム水5mLを添加して、30分間撹拌した後、有機溶媒を除去した。得られた固体をアルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1(体積比))を通して精製を行い、溶液を濃縮することで、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)を660mg得た。
[Reference Example 16]
2,7-bis [7- (4-methylphenyl) -9,9-dioctylfluoren-2-yl] -9,9-bis [5-methoxycarbonyl-3,4-bis [2- [2- ( Synthesis of 2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Polymer I) Compound D (0.70 g), 2- (4,4,5,5-tetramethyl-1,2 under inert atmosphere , 3-Dioxaboran-2-yl) -9,9-dioctylfluorene (0.62 g), triphenylphosphine palladium (0.019 g), dioxane (40 mL), water (6 mL) and aqueous potassium carbonate solution (1.38 g) Were mixed and heated to 80 ° C. The reaction was allowed to react for 1 hour. After the reaction, 5 mL of saturated aqueous sodium diethyldithiocarbamate was added and stirred for 30 minutes, and then the organic solvent was removed. The obtained solid was purified through an alumina column (developing solvent hexane: ethyl acetate = 1: 1 (volume ratio)), and the solution was concentrated to obtain 2,7-bis [7- (4-methylphenyl)- 9,9-Dioctylfluoren-2-yl] -9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Polymer I) 660 mg of was obtained.
 重合体Iのポリスチレン換算の数平均分子量は、2.0×10であった。重合体Iは、式(T)で表される。なお、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレンは、例えば、The Journal of Physical Chemistry B 2000, 104, 9118-9125に記載されている方法で合成することができる。 The number average molecular weight in terms of polystyrene of the polymer I was 2.0 × 10 3 . The polymer I is represented by the formula (T). In addition, 2- (4,4,5,5-tetramethyl-1,2,3-dioxaboran-2-yl) -9,9-dioctylfluorene is, for example, The Journal of Physical Chemistry B 2000, 104, 9118. It can be synthesized by the method described in -9125.
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 [実験例12]
重合体Iセシウム塩の合成
 重合体I(236mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(20mL)、及びメタノール(10mL)を添加し、混合物を65℃に昇温した。そこに、水酸化セシウム(240mg)を水(2mL)に溶かした水溶液を添加し、65℃で7時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Iセシウム塩を共役高分子化合物12と呼ぶ。共役高分子化合物12は、式(U)で表される(「全構造単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む構造単位の割合」及び「全構造単位中の、式(13)、(15)、(17)、(20)で表される構造単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物12のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
[Experimental example 12]
Synthesis of Polymer I Cesium Salt Polymer I (236 mg) was placed in a 100 mL flask and purged with argon. Tetrahydrofuran (20 mL) and methanol (10 mL) were added thereto, and the mixture was heated to 65 ° C. Thereto was added an aqueous solution in which cesium hydroxide (240 mg) was dissolved in water (2 mL), and the mixture was stirred at 65 ° C. for 7 hours. After the resulting mixture was cooled to room temperature, the reaction solvent was distilled off under reduced pressure. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site had completely disappeared. The obtained polymer I cesium salt is referred to as a conjugated polymer compound 12. The conjugated polymer compound 12 is represented by the formula (U) (“one type selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all structural units). "Ratio of structural units containing the above groups and one or more groups represented by formula (3)" and "in formulas (13), (15), (17), (20) in all structural units" The “ratio of structural units represented” is 33.3 mol% rounded off to the second decimal place.) The conjugated polymer compound 12 had a HOMO orbital energy of −5.6 eV and a LUMO orbital energy of −2.8 eV.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
[参考例17]
化合物Eの合成
 窒素雰囲気下、2,7-ジブロモ-9-フルオレノン(92.0g、272mmol)、及びジエチルエーテル(3.7L)を混合して0℃に冷却し、1mol/Lヨウ化メチルマグネシウム-ジエチルエーテル溶液(0.5L、545mmol)を滴下して3時間撹拌した。反応混合物に塩化アンモニウム水溶液を加えて水層を除去し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物E(92.81g、262mmol、収率96%)を得た。
[Reference Example 17]
Synthesis of Compound E Under a nitrogen atmosphere, 2,7-dibromo-9-fluorenone (92.0 g, 272 mmol) and diethyl ether (3.7 L) were mixed, cooled to 0 ° C., and 1 mol / L methylmagnesium iodide. -Diethyl ether solution (0.5 L, 545 mmol) was added dropwise and stirred for 3 hours. An aqueous ammonium chloride solution was added to the reaction mixture to remove the aqueous layer, and the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography to obtain compound E (92.81 g, 262 mmol, yield 96%).
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
[参考例18]
化合物Fの合成
 窒素雰囲気下、化合物E(83.0g、234mmol)、p-トルエンスルホン酸一水和物(4.49g、23.6mmol)、及びクロロホルム(2.5L)を1時間還流し、反応混合物に塩化アンモニウム水溶液を加えて水層を除去した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮し、化合物F(73.6g、219mmol、収率93%)を得た。
[Reference Example 18]
Synthesis of Compound F Under a nitrogen atmosphere, Compound E (83.0 g, 234 mmol), p-toluenesulfonic acid monohydrate (4.49 g, 23.6 mmol), and chloroform (2.5 L) were refluxed for 1 hour. An aqueous ammonium chloride solution was added to the reaction mixture, and the aqueous layer was removed. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain Compound F (73.6 g, 219 mmol, 93% yield).
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
[参考例19]
化合物Gの合成
 窒素雰囲気下、化合物F(70.0g、208mmol)、サリチル酸エチル(104g、625mmol)、メルカプト酢酸(4.20g、45.6mmol)、及びメタンスルホン酸(1214g)を70℃で8時間撹拌し、反応混合物を氷水に滴下して析出した固体をろ過で回収し、メタノールで洗浄した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物G(52.14g、104mmol、収率50%)を得た。
[Reference Example 19]
Synthesis of Compound G Under nitrogen atmosphere, compound F (70.0 g, 208 mmol), ethyl salicylate (104 g, 625 mmol), mercaptoacetic acid (4.20 g, 45.6 mmol), and methanesulfonic acid (1214 g) were added at 70 ° C. for 8 hours. The reaction mixture was added dropwise to ice water and the precipitated solid was collected by filtration and washed with methanol. The crude product was purified by silica gel column chromatography to obtain compound G (52.14 g, 104 mmol, yield 50%).
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
[参考例20]
化合物Hの合成
 窒素雰囲気下、化合物G(41.2g、82.0mmol)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(75.8g、238mmol)、ジメチルホルムアミド(214g)、炭酸カリウム(54.4g、394mmol)、及び18-クラウン-6(4.68g、18mmol)を105℃で2時間撹拌し、反応混合物を水に加え酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物H(40.2g、62.0mmol、収率76%)を得た。
[Reference Example 20]
Synthesis of Compound H Compound G (41.2 g, 82.0 mmol), 2- [2- (2-methoxyethoxy) ethoxy] -ethyl-p-toluenesulfonate (75.8 g, 238 mmol), dimethylformamide under nitrogen atmosphere (214 g), potassium carbonate (54.4 g, 394 mmol), and 18-crown-6 (4.68 g, 18 mmol) were stirred at 105 ° C. for 2 hours, and the reaction mixture was added to water and extracted with ethyl acetate. The crude product obtained by drying the organic layer with anhydrous sodium sulfate and concentrating under reduced pressure was purified by silica gel column chromatography to obtain compound H (40.2 g, 62.0 mmol, yield 76%).
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.37(3H),1.84(3H),3.36(3H),3.53(2H),3.58-3.79(6H),3.73(2H),4.12(2H),4.34(2H),6.80(1H),6.90(1H),7.28(2H),7.48(2H),7.58(2H),7.70(1H).
1 H NMR (400 MHz, CDCl 3 , rt)
δ (ppm) 1.37 (3H), 1.84 (3H), 3.36 (3H), 3.53 (2H), 3.58-3.79 (6H), 3.73 (2H), 4.12 (2H), 4.34 (2H), 6.80 (1H), 6.90 (1H), 7.28 (2H), 7.48 (2H), 7.58 (2H), 7 .70 (1H).
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
[参考例21]
化合物Iの合成
 窒素雰囲気下、化合物H(28.4g、43.8mmol)、ビス(ピナコラト)ジボロン(24.30g、95.7mol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(0.35g、0.4mmol)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.24g、0.4mmol)、酢酸カリウム(25.60g、260mmol)、及び1,4-ジオキサン(480mL)を120℃で17時間撹拌し、反応混合物をろ過して酢酸エチルで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、次いで再結晶で精製して化合物I(18.22g、24.5mmol、収率56%)を得た。
[Reference Example 21]
Synthesis of Compound I Compound H (28.4 g, 43.8 mmol), bis (pinacolato) diboron (24.30 g, 95.7 mol), [1,1′-bis (diphenylphosphino) ferrocene] palladium under nitrogen atmosphere (II) Dichloride dichloromethane adduct (0.35 g, 0.4 mmol), 1,1′-bis (diphenylphosphino) ferrocene (0.24 g, 0.4 mmol), potassium acetate (25.60 g, 260 mmol), And 1,4-dioxane (480 mL) were stirred at 120 ° C. for 17 hours and the reaction mixture was filtered and washed with ethyl acetate. The filtrate was concentrated under reduced pressure, purified by silica gel column chromatography, and then purified by recrystallization to obtain compound I (18.22 g, 24.5 mmol, yield 56%).
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.30-1.47(27H),1.88(3H),3.35(3H),3.53(2H),3.60-3.69(4H),3.73(2H),3.84(2H),4.10(2H),4.34(2H),6.74(1H),6.87(1H),7.58(2H),7.72-7.89(5H).
1 H NMR (400 MHz, CDCl 3 , rt)
δ (ppm) 1.30-1.47 (27H), 1.88 (3H), 3.35 (3H), 3.53 (2H), 3.60-3.69 (4H), 3.73 (2H), 3.84 (2H), 4.10 (2H), 4.34 (2H), 6.74 (1H), 6.87 (1H), 7.58 (2H), 7.72- 7.89 (5H).
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
[参考例22]
重合体Jの合成
 アルゴン雰囲気下、化合物H(0.47g)、化合物I(0.48g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.6mg)、テトラブチルアンモニウムブロミド(6mg)、トルエン(6mL)、2mol/L炭酸ナトリウム水溶液(2mL)を105℃で6時間撹拌し、次いでフェニルボロン酸(35mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.65g)と水(13mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し析出物をろ過で回収して乾燥した。固体をクロロホルムに溶解させ、アルミナ、及びシリカゲルクロマトグラフィーにより精製し、溶出液をメタノールに滴下し析出物をろ過で回収して乾燥し、重合体J(0.57g)を得た。
[Reference Example 22]
Synthesis of Polymer J Compound H (0.47 g), Compound I (0.48 g), dichlorobis (triphenylphosphine) palladium (0.6 mg), tetrabutylammonium bromide (6 mg), toluene (6 mL) under an argon atmosphere A 2 mol / L aqueous sodium carbonate solution (2 mL) was stirred at 105 ° C. for 6 hours, and then phenylboronic acid (35 mg) was added and stirred at 105 ° C. for 14 hours. Sodium diethyldithiocarbamate trihydrate (0.65 g) and water (13 mL) were added to the reaction mixture, and the mixture was stirred at 80 ° C. for 2 hours. The mixture was added dropwise to methanol, and the precipitate was collected by filtration and dried. The solid was dissolved in chloroform and purified by alumina and silica gel chromatography. The eluate was added dropwise to methanol, and the precipitate was collected by filtration and dried to obtain polymer J (0.57 g).
 重合体Jのポリスチレン換算の数平均分子量は2.0×104であった。重合体Jは、式(V)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer J was 2.0 × 10 4 . The polymer J consists of a structural unit represented by the formula (V).
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
[実験例13]
重合体Jセシウム塩の合成
 アルゴン雰囲気下、重合体J(0.20g)、THF(18mL)、メタノール(9mL)、水酸化セシウム一水和物(97mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(52mL)を加え65℃で6時間撹拌した。反応混合物を濃縮して乾燥し、固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し固体をろ過で回収して乾燥し、重合体Jセシウム塩(0.20g)を得た。得られた重合体Jセシウム塩を共役高分子化合物13と呼ぶ。共役高分子化合物13は、式(W)で表される構造単位からなる。
[Experimental Example 13]
Synthesis of Polymer J Cesium Salt Under argon atmosphere, Polymer J (0.20 g), THF (18 mL), methanol (9 mL), cesium hydroxide monohydrate (97 mg), and water (1 mL) were added at 65 ° C. Stir for 2 hours, then add methanol (52 mL) and stir at 65 ° C. for 6 hours. The reaction mixture was concentrated and dried, methanol was added to the solid and filtered, the filtrate was added dropwise to isopropanol, and the solid was collected by filtration and dried to obtain a polymer J cesium salt (0.20 g). The obtained polymer J cesium salt is referred to as a conjugated polymer compound 13. The conjugated polymer compound 13 is composed of a structural unit represented by the formula (W).
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 共役高分子化合物13のHOMOの軌道エネルギーは-5.51eV、LUMOの軌道エネルギーは-2.64eVであった。 The conjugated polymer compound 13 had a HOMO orbital energy of −5.51 eV and a LUMO orbital energy of −2.64 eV.
[参考例23]
化合物Jの合成
 窒素気流下、2,7-ジブロモ-9,9-ビス(3,4-ジヒドロキシ)-フルオレン(138.4g)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(408.6g)、炭酸カリウム(358.5g)及びアセトニトリル(2.5L)を混合し、3時間加熱還流した。放冷後、反応混合物をろ別し、ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し化合物J(109.4)を得た。
[Reference Example 23]
Synthesis of Compound J 2,7-Dibromo-9,9-bis (3,4-dihydroxy) -fluorene (138.4 g), 2- [2- (2-methoxyethoxy) ethoxy] -ethyl- under a nitrogen stream p-Toluenesulfonate (408.6 g), potassium carbonate (358.5 g) and acetonitrile (2.5 L) were mixed and heated to reflux for 3 hours. After allowing to cool, the reaction mixture was filtered off, the filtrate was concentrated under reduced pressure, and purified by silica gel column chromatography to obtain compound J (109.4).
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
[参考例24]
化合物Kの合成
 窒素雰囲気下、化合物J(101.2g)、ビス(ピナコラト)ジボロン(53.1g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(3.7g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(5.4g)、酢酸カリウム(90.6g)及びジオキサン(900mL)を混合し、110℃に加熱し、8時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製して化合物K(51.4g)を得た。
[Reference Example 24]
Synthesis of Compound K Compound J (101.2 g), bis (pinacolato) diboron (53.1 g), [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (3) under nitrogen atmosphere 0.7 g), 1,1′-bis (diphenylphosphino) ferrocene (5.4 g), potassium acetate (90.6 g) and dioxane (900 mL) were mixed, heated to 110 ° C., and heated to reflux for 8 hours. . After allowing to cool, the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography to obtain compound K (51.4 g).
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
[参考例25]
重合体Kの合成
 化合物K(0.715g)、化合物J(0.426g)、aliquot336(6.60mg)、ビス(トリフェニルホスフィン)ジクロロパラジウム(0.460mg)、2mol/L炭酸ナトリウム水溶液(10mL)、トルエン(20mL)を加えて、105℃で5時間撹拌し、次いでフェニルボロン酸(32mg)を加え105℃で6時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.72g)と水(14mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し析出物をろ過で回収して乾燥した。固体をクロロホルムに溶解させ、アルミナ、及びシリカゲルクロマトグラフィーにより精製し、溶出液を濃縮し乾燥させた。濃縮物をトルエンに溶解させて、メタノールに滴下し析出物をろ過で回収して乾燥し、重合体K(0.55g)を得た。
[Reference Example 25]
Synthesis of Polymer K Compound K (0.715 g), Compound J (0.426 g), aliquot 336 (6.60 mg), bis (triphenylphosphine) dichloropalladium (0.460 mg), 2 mol / L aqueous sodium carbonate solution (10 mL) ), Toluene (20 mL) was added, and the mixture was stirred at 105 ° C. for 5 hours, and then phenylboronic acid (32 mg) was added and stirred at 105 ° C. for 6 hours. Sodium diethyldithiocarbamate trihydrate (0.72 g) and water (14 mL) were added to the reaction mixture, and the mixture was stirred at 80 ° C. for 2 hours. The mixture was added dropwise to methanol, and the precipitate was collected by filtration and dried. The solid was dissolved in chloroform and purified by alumina and silica gel chromatography, and the eluate was concentrated and dried. The concentrate was dissolved in toluene, added dropwise to methanol, and the precipitate was collected by filtration and dried to obtain polymer K (0.55 g).
 重合体Kのポリスチレン換算の数平均分子量は2.3×104であった。重合体Kは、式(X)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer K was 2.3 × 10 4 . The polymer K consists of a structural unit represented by the formula (X).
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
[実験例14]
重合体Kセシウム塩の合成
 アルゴン雰囲気下、重合体K(0.15g)、THF(20mL)、メタノール(10mL)、水酸化セシウム一水和物(103mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(20mL)を加え65℃で2時間撹拌した。反応混合物を濃縮して乾燥し、固体にメタノールを加えてろ過した。得られたろ液を濃縮して乾燥し、得られた固体を水で洗浄した後、乾燥させることで、重合体Kのセシウム塩(0.14g)を得た。得られた重合体Kのセシウム塩を共役高分子化合物14と呼ぶ。共役高分子化合物14は、式(Y)で表される構造単位からなる。
[Experimental Example 14]
Synthesis of Polymer K Cesium Salt Under argon atmosphere, polymer K (0.15 g), THF (20 mL), methanol (10 mL), cesium hydroxide monohydrate (103 mg), and water (1 mL) were added at 65 ° C. Stir for 2 hours, then add methanol (20 mL) and stir at 65 ° C. for 2 hours. The reaction mixture was concentrated and dried, and methanol was added to the solid and filtered. The obtained filtrate was concentrated and dried, and the obtained solid was washed with water and dried to obtain a cesium salt of polymer K (0.14 g). The obtained cesium salt of polymer K is referred to as conjugated polymer compound 14. The conjugated polymer compound 14 is composed of a structural unit represented by the formula (Y).
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 共役高分子化合物14のHOMOの軌道エネルギーは-5.56eV、LUMOの軌道エネルギーは-2.67eVであった。 The orbital energy of HOMO of the conjugated polymer compound 14 was −5.56 eV, and the orbital energy of LUMO was −2.67 eV.
[参考例26]
化合物Lの合成
 窒素雰囲気下、5-ブロモ-2-ヒドロキシ安息香酸(92.85g)、エタノール(1140mL)、及び濃硫酸(45mL)を48時間還流し、減圧濃縮した後に酢酸エチル(1000mL)を加え、水及び10重量%炭酸ナトリウム水溶液で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物L(95.38g、収率91%)を得た。
[Reference Example 26]
Synthesis of Compound L Under a nitrogen atmosphere, 5-bromo-2-hydroxybenzoic acid (92.85 g), ethanol (1140 mL), and concentrated sulfuric acid (45 mL) were refluxed for 48 hours and concentrated under reduced pressure, and then ethyl acetate (1000 mL) was added. In addition, the organic layer was washed with water and a 10 wt% aqueous sodium carbonate solution. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting crude product was purified by silica gel column chromatography to obtain compound L (95.38 g, yield 91%).
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
[参考例27]
化合物Mの合成
 窒素雰囲気下、化合物L(95.0g)、ビス(ピナコラト)ジボロン(108.5g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(3.3g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(2.2g)、酢酸カリウム(117.2g)、及び1,4-ジオキサン(1.3L)を105℃で22時間撹拌し、反応混合物をろ過してジオキサン及びトルエンで洗浄した。ろ液を減圧濃縮して酢酸エチルを加え、飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物M(90.1g、308mmol)を得た。
[Reference Example 27]
Synthesis of Compound M Dichloromethane adduct of Compound L (95.0 g), bis (pinacolato) diboron (108.5 g), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride under nitrogen atmosphere (3.3 g), 1,1′-bis (diphenylphosphino) ferrocene (2.2 g), potassium acetate (117.2 g), and 1,4-dioxane (1.3 L) were stirred at 105 ° C. for 22 hours. The reaction mixture was filtered and washed with dioxane and toluene. The filtrate was concentrated under reduced pressure, ethyl acetate was added, washed with saturated brine, the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography to obtain compound M (90.1 g, 308 mmol).
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
[参考例28]
化合物Nの合成
 窒素雰囲気下、1,5-ジヒドロキシナフタレン(15.0g)、トリエチルアミン(28.5g)、及びクロロホルム(150mL)を混合して0℃に冷却し、トリフルオロメタンスルホン酸無水物(68.7g)を滴下して1時間撹拌した。反応混合物に水、及びクロロホルムを加えて水層を除去し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮し、得られた固体を再結晶で精製し、化合物N(31.46g)を得た。下記式中、Tfはトリフルオロメチルスルホニル基を示す。
[Reference Example 28]
Synthesis of Compound N Under a nitrogen atmosphere, 1,5-dihydroxynaphthalene (15.0 g), triethylamine (28.5 g), and chloroform (150 mL) were mixed and cooled to 0 ° C., and trifluoromethanesulfonic anhydride (68 0.7 g) was added dropwise and stirred for 1 hour. Water and chloroform were added to the reaction mixture to remove the aqueous layer, and the organic layer was washed with water. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting solid was purified by recrystallization to obtain Compound N (31.46 g). In the following formula, Tf represents a trifluoromethylsulfonyl group.
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
[参考例29]
化合物Oの合成
 窒素雰囲気下、化合物N(16.90g)、化合物M(23.30g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(4.60g)、リン酸カリウム(42.30g)、及び1,2-ジメトキシエタン(340mL)を80℃で14時間撹拌し、反応混合物をろ過してクロロホルム及びメタノールで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、化合物O(8.85g)を得た。
[Reference Example 29]
Synthesis of Compound O Under a nitrogen atmosphere, compound N (16.90 g), compound M (23.30 g), tetrakis (triphenylphosphine) palladium (0) (4.60 g), potassium phosphate (42.30 g), and 1,2-Dimethoxyethane (340 mL) was stirred at 80 ° C. for 14 hours, the reaction mixture was filtered and washed with chloroform and methanol. The filtrate was concentrated under reduced pressure and purified by silica gel column chromatography to obtain compound O (8.85 g).
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
[参考例30]
化合物Pの合成
 窒素雰囲気下、化合物O(8.80g)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(12.52g)、ジメチルホルムアミド(380mL)、炭酸カリウム(13.32g)、及び18-クラウン-6(1.02g)を100℃で23時間撹拌し、反応混合物を水に加え酢酸エチルで抽出した。有機層を塩化ナトリウム水溶液で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物P(7.38g)を得た。
[Reference Example 30]
Synthesis of Compound P Compound O (8.80 g), 2- [2- (2-methoxyethoxy) ethoxy] -ethyl-p-toluenesulfonate (12.52 g), dimethylformamide (380 mL), potassium carbonate under nitrogen atmosphere (13.32 g) and 18-crown-6 (1.02 g) were stirred at 100 ° C. for 23 hours, and the reaction mixture was added to water and extracted with ethyl acetate. The organic layer was washed with an aqueous sodium chloride solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, and the resulting crude product was purified by silica gel column chromatography to obtain compound P (7.38 g).
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
[参考例31]
化合物Qの合成
 窒素雰囲気下、化合物P(5.53g)、ビス(ピナコラト)ジボロン(11.25g)、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I)二量体(0.15g、シグマアルドリッチ社製)、4,4’-ジ-tert-ブチル-2,2’-ジピリジル(0.12g、シグマアルドリッチ社製)、及び1,4-ジオキサン(300mL)を110℃で19時間撹拌し、反応混合物を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、次いで再結晶で精製して化合物Q(5.81g)を得た。
[Reference Example 31]
Synthesis of Compound Q Compound P (5.53 g), bis (pinacolato) diboron (11.25 g), (1,5-cyclooctadiene) (methoxy) iridium (I) dimer (0.15 g) under nitrogen atmosphere , Sigma-Aldrich), 4,4′-di-tert-butyl-2,2′-dipyridyl (0.12 g, Sigma-Aldrich), and 1,4-dioxane (300 mL) at 110 ° C. for 19 hours. Stir and concentrate the reaction mixture in vacuo. The crude product was purified by silica gel column chromatography and then purified by recrystallization to obtain compound Q (5.81 g).
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.27-1.41(30H),3.39(6H),3.57(4H),3.66-3.75(8H),3.83(4H),3.99(4H),4.27-4.42(8H),7.13(2H),7.60(2H),7.76(2H),7.93(2H),8.30(2H).
1 H NMR (400 MHz, CDCl 3 , rt)
δ (ppm) 1.27-1.41 (30H), 3.39 (6H), 3.57 (4H), 3.66-3.75 (8H), 3.83 (4H), 3.99 (4H), 4.27-4.42 (8H), 7.13 (2H), 7.60 (2H), 7.76 (2H), 7.93 (2H), 8.30 (2H).
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
[参考例32]
重合体Lの合成
 アルゴン雰囲気下、化合物J(0.53g)、化合物Q(0.43g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.3mg)、Aliquat336(5mg、シグマアルドリッチ社製)、トルエン(12mL)、2mol/L炭酸ナトリウム水溶液(1mL)を105℃で9時間撹拌し、次いでフェニルボロン酸(23mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.40g)と水(8mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し析出物をろ過で回収して乾燥した。固体をクロロホルムに溶解させ、アルミナ、及びシリカゲルクロマトグラフィーにより精製し、溶出液をメタノールに滴下し析出物をろ過で回収して乾燥し、重合体L(0.56g)を得た。
[Reference Example 32]
Synthesis of Polymer L In an argon atmosphere, Compound J (0.53 g), Compound Q (0.43 g), dichlorobis (triphenylphosphine) palladium (0.3 mg), Aliquat 336 (5 mg, manufactured by Sigma-Aldrich), toluene ( 12 mL), a 2 mol / L aqueous sodium carbonate solution (1 mL) was stirred at 105 ° C. for 9 hours, and then phenylboronic acid (23 mg) was added and stirred at 105 ° C. for 14 hours. Sodium diethyldithiocarbamate trihydrate (0.40 g) and water (8 mL) were added to the reaction mixture, and the mixture was stirred at 80 ° C. for 2 hours. The mixture was added dropwise to methanol, and the precipitate was collected by filtration and dried. The solid was dissolved in chloroform and purified by alumina and silica gel chromatography. The eluate was added dropwise to methanol, and the precipitate was collected by filtration and dried to obtain polymer L (0.56 g).
 重合体Lのポリスチレン換算の数平均分子量は3.4×104であった。重合体Lは、式(Z)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer L was 3.4 × 10 4 . The polymer L consists of a structural unit represented by the formula (Z).
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
[実験例15]
重合体Lセシウム塩の合成
 アルゴン雰囲気下、重合体L(0.25g)、THF(13mL)、メタノール(6mL)、水酸化セシウム一水和物(69mg)、及び水(1mL)を65℃で6時間撹拌し、反応混合物を濃縮してイソプロパノールに滴下し、固体をろ過で回収して乾燥した。固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し固体をろ過で回収して乾燥し、重合体Lセシウム塩(0.19g)を得た。得られた重合体Lセシウム塩を共役高分子化合物15と呼ぶ。共役高分子化合物15は、式(AA)で表される構造単位からなる。
[Experimental Example 15]
Synthesis of Polymer L Cesium Salt Under argon atmosphere, polymer L (0.25 g), THF (13 mL), methanol (6 mL), cesium hydroxide monohydrate (69 mg), and water (1 mL) at 65 ° C. After stirring for 6 hours, the reaction mixture was concentrated and added dropwise to isopropanol, and the solid was collected by filtration and dried. Methanol was added to the solid and filtered, the filtrate was added dropwise to isopropanol, and the solid was collected by filtration and dried to obtain a polymer L cesium salt (0.19 g). The obtained polymer L cesium salt is referred to as a conjugated polymer compound 15. The conjugated polymer compound 15 is composed of a structural unit represented by the formula (AA).
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 共役高分子化合物15のHOMOの軌道エネルギーは-5.50eV、LUMOの軌道エネルギーは-2.65eVであった。 The conjugated polymer compound 15 had a HOMO orbital energy of −5.50 eV and a LUMO orbital energy of −2.65 eV.
[実験例16]
 メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。ガラス基板表面に成膜パターニングされたITO陰極(膜厚:45nm)上に、前記組成物を大気中でスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を常圧の不活性雰囲気下(窒素雰囲気下)、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。
[Experimental Example 16]
Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1. The composition was applied on the ITO cathode (film thickness: 45 nm) patterned on the surface of the glass substrate by spin coating in the air to obtain a coating film having a film thickness of 10 nm. The substrate provided with this coating film is heated at 130 ° C. for 10 minutes under an inert atmosphere (nitrogen atmosphere) under normal pressure to evaporate the solvent, and then naturally cooled to room temperature, and the electrons containing the conjugated polymer compound 1 A substrate on which an injection layer was formed was obtained.
 次に、発光高分子材料(サメイション(株)製、商品名「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。上記で得た共役高分子化合物1を含む層が形成された基板の共役高分子化合物1を含む層の上に、発光層形成用組成物を大気中でスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。 Next, a light emitting polymer material (manufactured by Summation Co., Ltd., trade name “Lumation BP361”) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material. A composition for forming a light-emitting layer is applied in the air by a spin coating method on the layer containing the conjugated polymer compound 1 of the substrate on which the layer containing the conjugated polymer compound 1 obtained above is formed. Coating film was obtained. The substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
 次に、上記で得た発光層が形成された基板の発光層の上に、正孔注入材料溶液を大気中でスピンコート法により塗布し、膜厚60nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、正孔注入層が形成された基板を得た。ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名「Baytron」)を用いた。 Next, the hole injection material solution was applied in the air by a spin coating method on the light emitting layer of the substrate on which the light emitting layer obtained above was formed, to obtain a coating film having a film thickness of 60 nm. The substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 15 minutes to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a hole injection layer was formed. It was. Here, PEDOT: PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, product name “Baytron”) manufactured by Stark Vitec Co., Ltd. was used as the hole injection material solution.
 上記で得た正孔注入層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAuを80nm成膜し、陽極を形成させて、積層構造体1を製造した。 The substrate on which the hole injection layer obtained above was formed was inserted into a vacuum apparatus, Au was deposited on the layer by 80 nm by a vacuum deposition method, and an anode was formed, whereby the laminated structure 1 was manufactured. .
 上記で得た積層構造体2を真空装置より取り出し、不活性雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子1を得た。 The laminated structure 2 obtained above was taken out from the vacuum apparatus, and sealed with sealing glass and a two-component mixed epoxy resin under an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 1.
 上記で得られた有機EL素子1に10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。 A forward voltage of 10 V was applied to the organic EL device 1 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000107
[実験例17]
 〈両面発光型の有機EL素子の作製〉
 実験例16において、Auの膜厚を20nmとした以外は、実験例16と同様に操作し、両面発光型の有機EL素子2を得た。
 上記で得られた両面発光型の有機EL素子2に15Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表2に示す。
[Experimental Example 17]
<Production of double-sided light emitting organic EL element>
In Experimental Example 16, except for changing the film thickness of Au to 20 nm, the same operation as in Experimental Example 16 was performed to obtain a double-sided light emitting organic EL element 2.
A forward voltage of 15 V was applied to the double-sided light emitting organic EL element 2 obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000108
 表1および2で示すように、大気中において塗布プロセスでイオン性ポリマーを成膜し、電子注入層を形成した逆積層の有機EL素子が、発光することを確認した。
Figure JPOXMLDOC01-appb-T000108
As shown in Tables 1 and 2, it was confirmed that the reverse stacked organic EL element in which an ionic polymer was formed in the atmosphere by an application process and an electron injection layer was formed emitted light.
 本発明の、有機EL素子からなる複数の画素を有する有機ELディスプレイ装置に用いられる上述のイオン性ポリマーは、電荷の注入性や輸送性に優れ、常圧程度の雰囲気中で安定であり、容易に溶液とすることができ、常圧程度の雰囲気中で塗布により成膜化することができる。したがって、該イオン性ポリマーを含む層を有機EL素子の電子注入層に用いた場合、製造コストの低減が可能であって、製造プロセスにおける安定性を確保することが可能な、有機ELディスプレイ装置の製造方法および該製造方法によって得られる有機ELディスプレイ装置を提供することができる。 The above-mentioned ionic polymer used in an organic EL display device having a plurality of pixels composed of organic EL elements of the present invention is excellent in charge injecting and transporting properties, stable in an atmosphere of normal pressure, and easily And can be formed into a film by coating in an atmosphere of about normal pressure. Therefore, when the layer containing the ionic polymer is used for the electron injection layer of the organic EL element, the manufacturing cost can be reduced and the stability in the manufacturing process can be secured. A manufacturing method and an organic EL display device obtained by the manufacturing method can be provided.
[有機EL素子の構成]
 まず、本発明の有機ELディスプレイ装置の画素に用いる有機EL素子について説明する。本発明に用いる有機EL素子の構造としては、少なくとも一方が透明又は半透明である一対の陽極及び陰極からなる電極間に、少なくとも1つの発光層と、該発光層と前記陰極との間に電子注入層を有するものであり、発光層には低分子及び/又は高分子の有機発光材料が用いられ、電子注入層には、上述のイオン性ポリマーが用いられる。
[Configuration of organic EL element]
First, the organic EL element used for the pixel of the organic EL display device of the present invention will be described. As the structure of the organic EL device used in the present invention, at least one of a pair of an anode and a cathode that is transparent or translucent, an electron between at least one light emitting layer and the light emitting layer and the cathode. It has an injection layer, and a low molecular and / or high molecular organic light emitting material is used for the light emitting layer, and the above-mentioned ionic polymer is used for the electron injection layer.
 有機EL素子において、陰極、陽極、発光層以外の層としては、陰極と発光層の間に設けるもの、陽極と発光層の間に設けるものが挙げられる。
 陰極と発光層の間に設けるものとしては、上記電子注入層の他に、電子輸送層、正孔ブロック層等が挙げられる。
 例えば陰極と発光層の間に一層のみ設けた場合は電子注入層であり、陰極と発光層の間に二層以上設けた場合は陰極に接している層を電子注入層とし、それ以外の層は電子輸送層と称する。
In the organic EL element, examples of the layer other than the cathode, the anode, and the light emitting layer include those provided between the cathode and the light emitting layer and those provided between the anode and the light emitting layer.
Examples of the material provided between the cathode and the light emitting layer include an electron transport layer, a hole blocking layer and the like in addition to the electron injection layer.
For example, when only one layer is provided between the cathode and the light emitting layer, it is an electron injection layer, and when two or more layers are provided between the cathode and the light emitting layer, the layer in contact with the cathode is the electron injection layer, and the other layers Is called an electron transport layer.
 電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、電子輸送層は、電子注入層又は陰極により近い電子輸送層からの電子注入を改善する機能を有する層である。 The electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer is a layer having a function of improving electron injection from the electron injection layer or the electron transport layer closer to the cathode.
 また、電子注入層、若しくは電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。
 正孔の輸送を堰き止める機能を有することは、例えば、ホール電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
When the electron injection layer or the electron transport layer has a function of blocking hole transport, these layers may be referred to as a hole blocking layer.
Having the function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
 陽極と発光層の間に設けるものとしては、正孔注入層、正孔輸送層、電子ブロック層等が挙げられる。
 陽極と発光層の間に一層のみ設けた場合は正孔注入層であり、陽極と発光層の間に二層以上設けた場合は陽極に接している層を正孔注入層とし、それ以外の層は正孔輸送層と称する。正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層であり、正孔輸送層とは、正孔注入層又は陽極により近い正孔輸送層からの正孔注入を改善する機能を有する層である。また、正孔注入層、又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称することがある。
 電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。
Examples of what is provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
When only one layer is provided between the anode and the light-emitting layer, it is a hole injection layer. When two or more layers are provided between the anode and the light-emitting layer, the layer in contact with the anode is the hole injection layer. The layer is referred to as a hole transport layer. The hole injection layer is a layer having a function of improving the hole injection efficiency from the cathode, and the hole transport layer improves the hole injection from the hole injection layer or the hole transport layer closer to the anode. This is a functional layer. In addition, when the hole injection layer or the hole transport layer has a function of blocking electron transport, these layers may be referred to as an electron block layer.
Having the function of blocking electron transport makes it possible, for example, to manufacture an element that allows only electron current to flow and to confirm the blocking effect by reducing the current value.
 また、本発明の有機ELディスプレイ装置の画素に用いる有機EL素子としては、陰極と発光層の間に電子注入層を設けた構造に加えて、さらに、陰極と発光層との間に、電子輸送層を設けた有機EL素子、陽極と発光層との間に、正孔輸送層を設けた有機EL素子、陽極と発光層との間に、正孔輸送層と正孔注入層を設けた有機EL素子等が挙げられる。
 例えば、具体的には、以下のa)~j)の構造が例示される。
a)陽極/発光層/電子注入層/陰極
b)陽極/正孔注入層/発光層/電子注入層/陰極
c)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
e)陽極/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
In addition to the structure in which an electron injection layer is provided between the cathode and the light emitting layer, the organic EL element used for the pixel of the organic EL display device of the present invention further includes electron transport between the cathode and the light emitting layer. Organic EL device provided with a layer, Organic EL device provided with a hole transport layer between the anode and the light emitting layer, Organic provided with a hole transport layer and a hole injection layer between the anode and the light emitting layer EL element etc. are mentioned.
For example, the following structures a) to j) are specifically exemplified.
a) Anode / light emitting layer / electron injection layer / cathode b) Anode / hole injection layer / light emitting layer / electron injection layer / cathode c) Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / Cathode d) Anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode e) Anode / light emitting layer / electron transport layer / electron injection layer / cathode f) Anode / hole injection layer / hole transport Layer / light emitting layer / electron transport layer / electron injection layer / cathode (wherein / indicates that each layer is laminated adjacently; the same applies hereinafter).
 積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘案して適宜設定することができる。 The order and number of layers to be laminated, and the thickness of each layer can be appropriately set in consideration of light emission efficiency and element lifetime.
[有機ELディスプレイ装置の構成(一実施形態)]
 次に、本発明に係る有機ELディスプレイ装置の一実施形態の概略構成を図1を参照しつつ説明する。
[Configuration of Organic EL Display Device (One Embodiment)]
Next, a schematic configuration of an embodiment of the organic EL display device according to the present invention will be described with reference to FIG.
(基板)
 基板1としては、いわゆるトップエミッション型の有機ELディスプレイ装置の場合、基板1の対向側から発光光を取り出すので、透明基板及び不透明基板のいずれも用いることができる。不透明基板としては、例えば、アルミナ等のセラミックからなるシート、やステンレススチール等からなる金属シートに表面酸化などの絶縁処理を施したものの他に、熱硬化性樹脂、熱可塑性樹脂などからなるシートが挙げられる。
(substrate)
As the substrate 1, in the case of a so-called top emission type organic EL display device, since emitted light is extracted from the opposite side of the substrate 1, either a transparent substrate or an opaque substrate can be used. As the opaque substrate, for example, a sheet made of ceramic such as alumina, or a sheet made of a thermosetting resin, a thermoplastic resin or the like in addition to a metal sheet made of stainless steel or the like subjected to an insulation treatment such as surface oxidation. Can be mentioned.
 また、いわゆるボトムエミッション型の有機ELディスプレイ装置の場合には、基板1側から発光光を取り出すので、基板1としては、透明あるいは半透明のものが採用される。例えば、ガラス、石英、樹脂等からなるシートが挙げられ、特にガラス基板が好適に用いられる。 Further, in the case of a so-called bottom emission type organic EL display device, since emitted light is taken out from the substrate 1 side, a transparent or translucent material is adopted as the substrate 1. For example, the sheet | seat which consists of glass, quartz, resin etc. is mentioned, Especially a glass substrate is used suitably.
 なお、基板1と画素電極2との間には、基板1上に形成された複数の有機EL素子を駆動するための駆動用TFTなどを含む回路部(不図示)が設けられている。 Note that a circuit unit (not shown) including a driving TFT for driving a plurality of organic EL elements formed on the substrate 1 is provided between the substrate 1 and the pixel electrode 2.
(陰極(画素電極))
 陰極(画素電極)2の材料としては、仕事関数の大きな材料も利用可能である。例えばベリリウム、マグネシウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、パラジウム、銀、スズ、タンタル、タングステン、イリジウム、白金、金、鉛、ビスマスなどの金属、又は上記金属のうち2つ以上の合金、又はグラファイト若しくはグラファイト層間化合物等が用いられる。金属の中では酸化しにくい材料が好ましく、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、パラジウム、銀、スズ、タンタル、タングステン、イリジウム、白金、金、鉛、ビスマスなどが好ましい。また導電性酸化物であるITO、ZnO、ZTO、IZTOなどが利用可能である。陰極を2層以上の積層構造としてもよい。
(Cathode (pixel electrode))
As a material of the cathode (pixel electrode) 2, a material having a large work function can be used. For example, beryllium, magnesium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, palladium, silver , Tin, tantalum, tungsten, iridium, platinum, gold, lead, bismuth, or other metals, or an alloy of two or more of the above metals, or graphite or a graphite intercalation compound. Among metals, materials that are difficult to oxidize are preferable. Titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, palladium, silver, tin, tantalum, tungsten, iridium, platinum, gold, lead, bismuth Etc. are preferable. Moreover, ITO, ZnO, ZTO, IZTO, etc. which are conductive oxides can be used. The cathode may have a laminated structure of two or more layers.
(電子注入層)
 前記陰極2がパターン形成された基板1上には、全画素に共通して電子注入層4が形成されている。
 電子注入層は発光層と陰極との間において陰極に接して設けられる。
 本発明においては、電子注入層は、上述したイオン性ポリマーを用いて、溶液から成膜する。
(Electron injection layer)
On the substrate 1 on which the cathode 2 is patterned, an electron injection layer 4 is formed in common for all pixels.
The electron injection layer is provided in contact with the cathode between the light emitting layer and the cathode.
In the present invention, the electron injection layer is formed from a solution using the ionic polymer described above.
 電子注入層を形成する方法としては、例えば、前記イオン性ポリマーを含有する溶液を用いて成膜する方法が挙げられる。 Examples of the method for forming the electron injection layer include a method of forming a film using a solution containing the ionic polymer.
 このような溶液からの成膜に用いる溶媒としては、水を除く溶解度パラメーターが9.3以上の溶媒が好ましい。該溶媒の例(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、メタノール(12.9)、エタノール(11.2)、2-プロパノール(11.5)、1-ブタノール(9.9)、t-ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2-エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2-ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。ここで、2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒について説明すると、該混合溶媒の溶解度パラメーター(δm)は、δm1×φ12×φ2により求めることとする(δ1は溶媒1の溶解度パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解度パラメーター、φ2は溶媒2の体積分率である。) As a solvent used for film formation from such a solution, a solvent having a solubility parameter excluding water of 9.3 or more is preferable. Examples of the solvent (values in parentheses represent solubility parameter values of each solvent) include methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1- Butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9.6) ), Bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and a mixed solvent thereof. It is. Here, a mixed solvent obtained by mixing two kinds of solvents (solvent 1 and solvent 2) will be described. The solubility parameter (δ m ) of the mixed solvent is δ m = δ 1 × φ 1 + δ 2.21 is the solubility parameter of solvent 1, φ 1 is the volume fraction of solvent 1, δ 2 is the solubility parameter of solvent 2, and φ 2 is the volume fraction of solvent 2.)
 溶液からの成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビア印刷法、グラビア印刷法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ノズルコート法等の塗布法が挙げられる。 Examples of the film forming method from a solution include spin coating, casting, micro gravure printing, gravure printing, bar coating, roll coating, wire bar coating, dip coating, slit coating, and cap coating. Examples thereof include coating methods such as a coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, and a nozzle coating method.
 電子注入層の膜厚としては、用いる重合体(共役高分子化合物)によって最適値が異なるため、駆動電圧と発光効率が適度な値となるように選択すればよく、ピンホールが発生しない厚さが必要である。素子の駆動電圧を低くする観点からは、該膜厚は、1nm~1μmであることが好ましく、2nm~500nmであることがより好ましく、2nm~200nmであることがさらに好ましい。発光層を保護する観点からは、該膜厚は、10nm~1μmであることが好ましく、50nm~1μmであることがさらに好ましく、100nm~1μmであることがさらに好ましい。 The film thickness of the electron injection layer varies depending on the polymer (conjugated polymer compound) used, so the driving voltage and the light emission efficiency may be selected to be appropriate values, and the thickness that does not generate pinholes. is required. From the viewpoint of lowering the driving voltage of the element, the film thickness is preferably 1 nm to 1 μm, more preferably 2 nm to 500 nm, and even more preferably 2 nm to 200 nm. From the viewpoint of protecting the light emitting layer, the film thickness is preferably 10 nm to 1 μm, more preferably 50 nm to 1 μm, and further preferably 100 nm to 1 μm.
 前記電子注入層4が積層された後に、電子輸送層を設ける構成も可能であるが、本実施の形態では、電子輸送層は形成されずに、各画素(R画素31,G画素32及びB画素33)が位置する電子注入層4上に発光層(R発光層61,G発光層62及びB発光層63)が設けられている。 A configuration in which an electron transport layer is provided after the electron injection layer 4 is laminated is also possible. However, in this embodiment, the electron transport layer is not formed, and each pixel (R pixel 31, G pixel 32 and B pixel) is formed. A light emitting layer (R light emitting layer 61, G light emitting layer 62 and B light emitting layer 63) is provided on the electron injection layer 4 where the pixel 33) is located.
(電子輸送材料)
 電子輸送層を形成する場合、電子輸送材料としては公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体等が例示される。
(Electron transport material)
When forming an electron transport layer, known materials can be used as an electron transport material, such as an oxadiazole derivative, anthraquinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyano Anthraquinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Is exemplified.
 これらのうち、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。 Of these, oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
 電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、又は溶液若しくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液又は溶融状態からの成膜による方法がそれぞれ例示される。溶液又は溶融状態からの成膜時には、高分子バインダーを併用してもよい。本発明では、これらの中でも、溶液若しくは溶融状態からの成膜による方法、すなわち塗布による方法が好ましい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔輸送層を成膜する方法と同様の成膜法が挙げられる。 There are no particular restrictions on the method of forming the electron transport layer, but in the case of a low molecular electron transport material, a vacuum deposition method from powder or a method by film formation from a solution or a molten state is used. Each method is exemplified by film formation from a molten state. When forming a film from a solution or a molten state, a polymer binder may be used in combination. In the present invention, among these, a method by film formation from a solution or a molten state, that is, a method by coating is preferable. Examples of the method for forming the electron transport layer from the solution include the same film formation method as the method for forming the hole transport layer from the above-described solution.
 電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
(撥液パターン)
 上記R発光層61,G発光層62及びB発光層63を形成する前に撥液パターン5を形成する。撥液パターン5は、画素を除く領域、すなわち上記R発光層61,G発光層62及びB発光層63をが設けられるべき領域を除く領域に、設けられる。換言すると、上記R発光層61,G発光層62及びB発光層63は、撥液パターン5が形成された領域を除く領域に設けられる。撥液パターン5は、たとえば所定の反応性界面活性組成物をパターンに成膜したものである(図2の態様に対応)。また例えば撥液性を示す材料を転写することによって、撥液パターン5を形成することもできる(図3の態様に対応)。撥液パターン5の開口部は各画素領域に対応し、下層の電子注入層4が露出している。撥液パターン5は、その開口部から露出する電子注入層4よりも撥液性を示す。
(Liquid repellent pattern)
The liquid repellent pattern 5 is formed before the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63 are formed. The liquid repellent pattern 5 is provided in a region excluding pixels, that is, a region excluding the region where the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63 are to be provided. In other words, the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63 are provided in regions other than the region where the liquid repellent pattern 5 is formed. The liquid repellent pattern 5 is, for example, a film formed from a predetermined reactive surfactant composition in a pattern (corresponding to the embodiment of FIG. 2). Further, for example, the liquid repellent pattern 5 can be formed by transferring a material exhibiting liquid repellency (corresponding to the embodiment of FIG. 3). The opening of the liquid repellent pattern 5 corresponds to each pixel region, and the lower electron injection layer 4 is exposed. The liquid repellent pattern 5 is more liquid repellent than the electron injection layer 4 exposed from the opening.
(反応性界面活性組成物)
 反応性界面活性組成物(以下、RSAと略記する場合もある)は、感光性組成物の一種である。RSAを露光すると、RSAの少なくとも1つの物理的性質および/または化学的性質が変化し、露光した領域と露光していない領域とで物理的な差が生じる。RSAで処理すると、処理される材料の表面エネルギーが低下する。
(Reactive surfactant composition)
A reactive surfactant composition (hereinafter sometimes abbreviated as RSA) is a kind of photosensitive composition. When RSA is exposed, at least one physical and / or chemical property of RSA changes, resulting in a physical difference between exposed and unexposed areas. Treatment with RSA reduces the surface energy of the material being treated.
 RSAは、1つの実施形態では、光硬化性組成物である。この場合、露光すると、RSAは、液体媒体に対する可溶性または分散性の増加、粘着性の低下、柔軟性の低下、流動性の低下が生じる。 RSA is a photocurable composition in one embodiment. In this case, when exposed to light, RSA has increased solubility or dispersibility in a liquid medium, reduced adhesiveness, decreased flexibility, and decreased fluidity.
 また、RSAは、1つの実施形態では、光軟化性組成物である。この場合、露光すると、RSAは、液体媒体に対する可溶性または分散性の低下、粘着性の増加、柔軟性の増加、流動性の増加が生じうる。 RSA is also a photosoftening composition in one embodiment. In this case, upon exposure, the RSA may cause a decrease in solubility or dispersibility in the liquid medium, an increase in tackiness, an increase in flexibility, and an increase in fluidity.
 露光に使用される光は、RSAの物理的変化を生じさせるあらゆる種類の光であってよく、たとえば赤外線、可視光線、紫外線、およびそれらの組み合わせから選択される。 The light used for exposure may be any type of light that causes a physical change in RSA, and is selected from, for example, infrared, visible light, ultraviolet light, and combinations thereof.
 RSAを露光した後に、露光した部位、または露光していない部位を除去することを、以下「現像」と呼ぶ。現像はあらゆる周知の技術によって行うことができる。このような技術は、フォトレジスト技術分野において広範に使用されている。現像技術の例としては、液体媒体による処理、吸収材料による処理、粘着性材料による処理などが挙げられるが、これらに限定されるものではない。 After removing the RSA, removing the exposed part or the unexposed part is hereinafter referred to as “development”. Development can be accomplished by any known technique. Such a technique is widely used in the field of photoresist technology. Examples of development techniques include, but are not limited to, treatment with a liquid medium, treatment with an absorbent material, treatment with an adhesive material, and the like.
 RSAは、1つの実施形態では、1つまたは複数の感光性材料から実質的になる。また、RSAは、1つの実施形態では、露光すると、硬化する、あるいは液体媒体に対する可溶性、膨潤性、または分散性が低下する、あるいは粘着性または吸収性が低下する材料から実質的になる。また、RSAは、1つの実施形態では、光重合性基を有する材料から実質的になる。このような基の例としては、オレフィニル基、アクリロイル基、メタクリロイル基、およびビニルエーテル基が挙げられるが、これらに限定されるものではない。また、RSAは、1つの実施形態では、架橋を生じさせることができる2つ以上の重合性基を有する。また、RSAは、1つの実施形態では、露光すると、軟化する、あるいは液体媒体に対する可溶性、膨潤性、または分散性が増加する、あるいは粘着性または吸収性が増加する材料から実質的になる。また、RSAは、1つの実施形態では、200~300nmの範囲内の波長を有するUV線に露光すると主鎖が分解する少なくとも1つのポリマーから実質的になる。このような分解が生じるポリマーの例としては、ポリアクリレート、ポリメタクリレート、ポリケトン、ポリスルホン、それらのコポリマー、およびそれらの混合物が挙げられるが、これらに限定されるものではない。 RSA consists essentially of one or more photosensitive materials in one embodiment. Also, the RSA, in one embodiment, consists essentially of a material that, when exposed to light, cures, or is less soluble, swellable, or dispersible in a liquid medium, or less sticky or absorbable. Also, RSA consists essentially of a material having a photopolymerizable group in one embodiment. Examples of such groups include, but are not limited to, olefinyl groups, acryloyl groups, methacryloyl groups, and vinyl ether groups. RSA also has, in one embodiment, two or more polymerizable groups that can cause crosslinking. Also, the RSA, in one embodiment, consists essentially of a material that softens upon exposure, or that increases solubility, swellability, or dispersibility in a liquid medium, or that increases tackiness or absorbency. Also, RSA, in one embodiment, consists essentially of at least one polymer whose main chain degrades when exposed to UV radiation having a wavelength in the range of 200-300 nm. Examples of polymers where such degradation occurs include, but are not limited to, polyacrylates, polymethacrylates, polyketones, polysulfones, copolymers thereof, and mixtures thereof.
 RSAは、1つの実施形態では、少なくとも1つの反応性材料と少なくとも1つの感光性材料とから実質的になる。この感光性材料は、露光すると、反応性材料の反応を開始する活性種を生成する。感光性材料の例としては、フリーラジカル、酸、またはそれらの組み合わせを生成する材料が挙げられるが、これらに限定されるものではない。また、RSAは、1つの実施形態では、反応性材料は重合性または架橋性である。材料の重合または架橋反応は、活性種によって開始または触媒される。感光性材料は、RSAの全重量を基準にして、一般に0.001%~10.0%の量で存在する。 RSA, in one embodiment, consists essentially of at least one reactive material and at least one photosensitive material. When exposed to light, the photosensitive material generates active species that initiate the reaction of the reactive material. Examples of photosensitive materials include, but are not limited to, materials that generate free radicals, acids, or combinations thereof. Also, RSA, in one embodiment, the reactive material is polymerizable or crosslinkable. The polymerization or crosslinking reaction of the material is initiated or catalyzed by the active species. The photosensitive material is generally present in an amount of 0.001% to 10.0%, based on the total weight of RSA.
 RSAは、1つの実施形態では、露光すると、硬化する、あるいは液体媒体に対する可溶性、膨潤性、または分散性が低下する、あるいは粘着性または吸収性が低下する材料から実質的になる。また、RSAは、1つの実施形態では、反応性材料がエチレン性不飽和化合物であり、感光性材料がフリーラジカルを生成する。エチレン性不飽和化合物としては、アクリレート、メタクリレート、ビニル化合物、およびそれらの組み合わせが挙げられるが、これらに限定されるものではない。フリーラジカルを生成するあらゆる周知の種類の感光性材料を使用することができる。フリーラジカルを生成する感光性材料の例としては、キノン類、ベンゾフェノン類、ベンゾインエーテル類、アリールケトン類、過酸化物、ビイミダゾール類、ベンジルジメチルケタール、ヒドロキシルアルキルフェニルアセトフォン、ジアルコキシアセトフェノン、トリメチルベンゾイルホスフィンオキシド誘導体、アミノケトン類、ベンゾイルシクロヘキサノール、メチルチオフェニルモルホリノケトン類、モルホリノフェニルアミノケトン類、αハロゲンアセトフェノン類、オキシスルホニルケトン類、スルホニルケトン類、オキシスルホニルケトン類、スルホニルケトン類、ベンゾイルオキシムエステル類、チオキサントロン類、カンファーキノン類、ケトクマリン類、およびミヒラーケトンが挙げられるが、これらに限定されるものではない。あるいは、感光性材料は、複数の化合物の混合物であって、その1つが、光によって活性化する増感剤によって活性化するとフリーラジカルが得られる化合物であってもよい。1つの実施形態においては、感光性材料は、可視光線または紫外線に対して反応する。 RSA, in one embodiment, consists essentially of a material that cures upon exposure, or that is less soluble, swellable, or dispersible in a liquid medium, or less sticky or absorbable. Also, RSA, in one embodiment, the reactive material is an ethylenically unsaturated compound and the photosensitive material generates free radicals. Ethylenically unsaturated compounds include, but are not limited to, acrylates, methacrylates, vinyl compounds, and combinations thereof. Any known type of photosensitive material that generates free radicals can be used. Examples of photosensitive materials that generate free radicals include quinones, benzophenones, benzoin ethers, aryl ketones, peroxides, biimidazoles, benzyl dimethyl ketal, hydroxylalkylphenylacetophenone, dialkoxyacetophenone, trimethyl. Benzoylphosphine oxide derivatives, aminoketones, benzoylcyclohexanol, methylthiophenylmorpholinoketones, morpholinophenylaminoketones, α-halogen acetophenones, oxysulfonyl ketones, sulfonyl ketones, oxysulfonyl ketones, sulfonyl ketones, benzoyl oxime esters Thioxanthrones, camphorquinones, ketocoumarins, and Michler ketones, but are not limited to these. Not. Alternatively, the photosensitive material may be a mixture of a plurality of compounds, one of which is a compound that can obtain a free radical when activated by a sensitizer activated by light. In one embodiment, the photosensitive material is responsive to visible or ultraviolet light.
 RSAは、1つの実施形態では、1つまたは複数の架橋性基を有する化合物である。架橋性基は、二重結合、三重結合、二重結合を形成可能な前駆体、または複素環式付加重合性基を含有する部分を有することができる。架橋性基の例の一部としては、例えば、ベンゾシクロブテンから水素原子を1つ除いた基、アジ基、エポキシ基、ジ(ヒドロカルビル)アミノ基、シアネートエステル基、ヒドロキシ基、グリシジルエーテル基、C~C10アルキルアクリロイル基、C~C10アルキルメタクリロイル基、アルケニル基、アルケニルオキシ基、アルキニル基、マレイミド基、ナジイミド基、トリ(C~C)アルキルシロキシ基、トリ(C~C)アルキルシリル基、およびそれらのハロゲン化誘導体が挙げられる。1つの実施形態においては、架橋性基は、ビニルベンジル基、p-エテニルフェニル基、パーフルオロエテニル基、パーフルオロエテニルオキシ基、ベンゾ-3,4-シクロブタン-1-イル基、およびp-(ベンゾ-3,4-シクロブタン-1-イル)フェニル基からなる群より選択される。 RSA, in one embodiment, is a compound having one or more crosslinkable groups. The crosslinkable group can have a moiety containing a double bond, a triple bond, a precursor capable of forming a double bond, or a heterocyclic addition polymerizable group. Examples of the crosslinkable group include, for example, a group obtained by removing one hydrogen atom from benzocyclobutene, an azide group, an epoxy group, a di (hydrocarbyl) amino group, a cyanate ester group, a hydroxy group, a glycidyl ether group, C 1 -C 10 alkylacryloyl group, C 1 -C 10 alkyl methacryloyl group, alkenyl group, alkenyloxy group, alkynyl group, maleimide group, nadiimide group, tri (C 1 -C 4 ) alkylsiloxy group, tri (C 1 -C 4 ) alkylsilyl groups and their halogenated derivatives. In one embodiment, the crosslinkable group is a vinylbenzyl group, a p-ethenylphenyl group, a perfluoroethenyl group, a perfluoroethenyloxy group, a benzo-3,4-cyclobutan-1-yl group, and Selected from the group consisting of p- (benzo-3,4-cyclobutan-1-yl) phenyl groups.
 1つの実施形態においては、反応性材料は、酸によって開始された重合を進行させることができ、感光性材料は酸を生成する。このような反応性材料の例としてはエポキシが挙げられるが、これに限定されるものではない。酸を生成する感光性材料の例としては、ジフェニルヨードニウムヘキサフルオロホスフェートなどのスルホニウム塩およびヨードニウム塩が挙げられるが、これらに限定されるものではない。 In one embodiment, the reactive material is capable of proceeding polymerization initiated by acid and the photosensitive material generates acid. Examples of such reactive materials include, but are not limited to, epoxies. Examples of the photosensitive material that generates an acid include, but are not limited to, sulfonium salts such as diphenyliodonium hexafluorophosphate and iodonium salts.
 RSAは、1つの実施形態では、露光すると、軟化する、あるいは液体媒体に対する可溶性、膨潤性、または分散性が増加する、あるいは粘着性または吸収性が増加する材料から実質的になる。1つの実施形態においては、反応性材料がフェノール樹脂であり、感光性材料がジアゾナフトキノンである。 RSA, in one embodiment, consists essentially of a material that softens upon exposure, or that increases its solubility, swellability, or dispersibility in a liquid medium, or that increases its tackiness or absorbency. In one embodiment, the reactive material is a phenolic resin and the photosensitive material is diazonaphthoquinone.
 当該技術分野において周知である他の感光性系も同様に使用することができる。 Other photosensitive systems well known in the art can be used as well.
 RSAは、1つの実施形態では、フッ素化材料を含む。また、RSAは、1つの実施形態では、1つまたは複数のフルオロアルキル基を有する不飽和材料を含む。1つの実施形態においては、これらのフルオロアルキル基は2~20個の炭素原子を有する。また、RSAは、1つの実施形態では、フッ素化アクリレート、フッ素化エステル、またはフッ素化オレフィンモノマーである。RSA材料として使用可能な市販材料の例としては、デュポン社より入手可能なフッ素化不飽和エステルモノマーであるゾニル(Zonyl)(登録商標)8857A、およびシグマ-アルドリッチ・カンパニー(Sigma-Aldrich Co.)(ミズーリ州セントルイス(St.Louis,MO))より入手可能なアクリル酸3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-ヘンエイコサフルオロドデシル(H2C=CHCO2CH2CH2(CF29CF3)が挙げられるが、これらに限定されるものではない。 The RSA includes a fluorinated material in one embodiment. RSA also includes, in one embodiment, an unsaturated material having one or more fluoroalkyl groups. In one embodiment, these fluoroalkyl groups have 2 to 20 carbon atoms. RSA is also a fluorinated acrylate, fluorinated ester, or fluorinated olefin monomer in one embodiment. Examples of commercially available materials that can be used as RSA materials include Zonyl® 8857A, a fluorinated unsaturated ester monomer available from DuPont, and Sigma-Aldrich Co. (St. Louis, Mo.) available acrylic acid 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, 11,11,12,12,12-heneicosafluorododecyl (H 2 C═CHCO 2 CH 2 CH 2 (CF 2 ) 9 CF 3 ) may be mentioned, but is not limited thereto.
 RSAは、1つの実施形態では、フッ素化マクロモノマーである。ここでいう用語「マクロモノマー」は、主鎖の末端または側鎖の末端に存在する複数の反応性基を有するオリゴマー材料を意味する。ある実施形態においては、マクロモノマーの分子量が、1000を超え、ある実施形態においては2000を超え、ある実施形態においては5000を超える。ある実施形態においては、マクロモノマーの主鎖が、エーテルセグメントおよびパーフルオロエーテルセグメントを含む。ある実施形態においては、マクロモノマーの主鎖が、アルキルセグメントおよびパーフルオロアルキルセグメントを含む。ある実施形態においては、マクロモノマーの主鎖が、部分フッ素化アルキルセグメントまたは部分フッ素化エーテルセグメントを含む。ある実施形態においては、マクロモノマーが、1つまたは2つの末端重合性基または末端架橋性基を有する。 RSA is a fluorinated macromonomer in one embodiment. As used herein, the term “macromonomer” means an oligomeric material having a plurality of reactive groups present at the end of the main chain or at the end of the side chain. In some embodiments, the molecular weight of the macromonomer is greater than 1000, in some embodiments greater than 2000, and in some embodiments greater than 5000. In some embodiments, the macromonomer backbone includes ether segments and perfluoroether segments. In some embodiments, the macromonomer backbone includes alkyl segments and perfluoroalkyl segments. In some embodiments, the macromonomer backbone includes partially fluorinated alkyl segments or partially fluorinated ether segments. In some embodiments, the macromonomer has one or two terminal polymerizable groups or terminal crosslinkable groups.
 RSAは、1つの実施形態では、反応性基と第2の種類の官能基とを有する材料を含む。第2の種類の官能基は、RSAの物理的加工特性または光物理的性質を変更するために存在することができる。加工特性を変更する基の例としては、アルキレンオキシド基などが挙げられる。光物理的性質を変更する基の例としては、カルバゾール基、トリアリールアミノ基、またはオキサジアゾール基などが挙げられる。 RSA, in one embodiment, includes a material having a reactive group and a second type of functional group. A second type of functional group can be present to alter the physical processing or photophysical properties of RSA. Examples of groups that change processing characteristics include alkylene oxide groups. Examples of the group that changes the photophysical properties include a carbazole group, a triarylamino group, or an oxadiazole group.
 1つの実施形態においては、露光すると、RSAは下にある領域と反応する。この反応の厳密な機構は、使用される材料に依存する。露光した後、好適な現像手段によって未露光領域のRSAが除去される。ある実施形態においては、RSAは未露光領域でのみ除去される。ある実施形態においては、RSAは、露光領域においても部分的に除去され、それらの領域内ではより薄い層が残留する。ある実施形態においては、露光領域において残留するRSAは50Å未満の厚さとなる。ある実施形態においては、露光領域中に残留するRSAは、厚さが実質的に単層である。 In one embodiment, upon exposure, the RSA reacts with the underlying area. The exact mechanism of this reaction depends on the material used. After exposure, the RSA in the unexposed areas is removed by suitable developing means. In some embodiments, RSA is removed only in unexposed areas. In some embodiments, the RSA is partially removed even in the exposed areas, leaving a thinner layer in those areas. In some embodiments, the RSA remaining in the exposed area will be less than 50 mm thick. In some embodiments, the RSA remaining in the exposed area is substantially monolayer in thickness.
(発光層)
 上述のように、前記電子注入層4が積層された後に、上記RSAを用いた撥液パターン5が形成され、この撥液パターン5を利用して各画素(R画素31,G画素32及びB画素33)が位置する電子注入層4上に発光層(R発光層61,G発光層62及びB発光層63)が設けられている。発光層を形成するための発光材料としては、蛍光あるいは燐光を発光することが可能な公知の発光材料が用いられる。図示の実施形態は、フルカラー表示を行う場合であり、その発光波長帯域が光の三原色にそれぞれ対応して形成される。すなわち、発光波長帯域が赤色に対応したR発光層61、緑色に対応したG発光層62、青色に対応したB発光層63の三つの発光層により、1画素が構成され、これらが所定の強度で発光することにより、有機ELディスプレイ装置が全体としてフルカラー表示する。
(Light emitting layer)
As described above, after the electron injection layer 4 is laminated, the liquid repellent pattern 5 using the RSA is formed, and each pixel (R pixel 31, G pixel 32 and B pixel) is formed using the liquid repellent pattern 5. A light emitting layer (R light emitting layer 61, G light emitting layer 62 and B light emitting layer 63) is provided on the electron injection layer 4 where the pixel 33) is located. As the light emitting material for forming the light emitting layer, a known light emitting material capable of emitting fluorescence or phosphorescence is used. The illustrated embodiment is a case where full-color display is performed, and the emission wavelength band is formed corresponding to each of the three primary colors of light. That is, one pixel is constituted by three light emitting layers of an R light emitting layer 61 corresponding to a red light emission wavelength band, a G light emitting layer 62 corresponding to a green color, and a B light emitting layer 63 corresponding to a blue color. As a whole, the organic EL display device displays a full color.
(発光層を構成する材料)
 発光層は、本発明においては有機発光層であることが好ましく、通常、主として蛍光またはりん光を発光する有機物(低分子化合物及び/又は高分子化合物)と、これを補助するドーパントとから形成される。本発明において用いることができる発光層を形成する材料としては、例えば以下のものが挙げられる。
(Material constituting the light emitting layer)
In the present invention, the light emitting layer is preferably an organic light emitting layer, and is usually formed of an organic substance (low molecular compound and / or high molecular compound) that mainly emits fluorescence or phosphorescence and a dopant that assists this. The Examples of the material for forming the light emitting layer that can be used in the present invention include the following.
 (色素系材料)
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマーなどが挙げられる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, and the like.
 (金属錯体系材料)
 金属錯体系材料としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体など、中心金属に、Al、Zn、BeなどまたはTb、Eu、Dy、Irなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する金属錯体などを挙げることができる。
(Metal complex materials)
Examples of the metal complex material include metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyls. Zinc complex, porphyrin zinc complex, europium complex, etc., which has Al, Zn, Be or the like as a central metal or a rare earth metal such as Tb, Eu, Dy, Ir, etc., and oxadiazole, thiadiazole, phenylpyridine, Examples include metal complexes having phenylbenzimidazole, quinoline structure, and the like.
 (高分子系材料)
 高分子系材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化したものなどが挙げられる。
(Polymer material)
Examples of polymer materials include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, and the above dye bodies and metal complex light emitting materials. And the like.
 上記発光性材料のうち、青(B)色に発光する材料としては、例えば、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。 Among the above light emitting materials, examples of materials that emit blue (B) light include, for example, distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. Can be mentioned. Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
 また、緑(G)色に発光する材料としては、例えば、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。 In addition, examples of the material that emits green (G) light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
 また、赤(R)色に発光する材料としては、例えば、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることが出来る。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。 Further, examples of the material that emits red (R) light include a coumarin derivative, a thiophene ring compound, and a polymer thereof, a polyparaphenylene vinylene derivative, a polythiophene derivative, and a polyfluorene derivative. Among these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
 (ドーパント材料)
 発光層中に発光効率の向上や発光波長を変化させるなどの目的で、ドーパントを添加することができる。このようなドーパントとしては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約20~2000Åである。
(Dopant material)
A dopant can be added to the light emitting layer for the purpose of improving the light emission efficiency and changing the light emission wavelength. Examples of such dopants include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. The thickness of such a light emitting layer is usually about 20 to 2000 mm.
(発光層の成膜方法)
 有機物を含む発光層の成膜方法としては、溶液から成膜する塗布法、真空蒸着法、転写法などを用いることができる。本発明では、これらの中でも、塗布法が好ましい。溶液からの成膜に用いる溶媒の具体例としては、後述の溶液から正孔輸送層を成膜する際に正孔輸送材料を溶解させる溶媒と同様の溶媒が挙げられる。
(Light-emitting layer deposition method)
As a method for forming a light-emitting layer containing an organic substance, a coating method in which a film is formed from a solution, a vacuum deposition method, a transfer method, or the like can be used. In the present invention, among these, the coating method is preferable. Specific examples of the solvent used for film formation from a solution include the same solvents as those for dissolving the hole transport material when forming a hole transport layer from a solution described later.
 塗布法としては、スピンコート、ディップコート、インクジェット、フレキソ印刷、グラビア印刷、スリットコートなどの印刷法を適宜用いることができる。また、昇華性の低分子化合物の場合は、真空蒸着法を用いることができる。なお本実施形態では3種類の発光層を形成するため、上述の塗布法のうちで、インキの塗り分けが可能な塗布法が適宜選択される。さらには、レーザーによる転写や熱転写により、所望のところのみに発光層を形成する方法も用いることができる。 As the coating method, a printing method such as spin coating, dip coating, ink jet, flexographic printing, gravure printing, slit coating or the like can be used as appropriate. In the case of a sublimable low-molecular compound, a vacuum deposition method can be used. In the present embodiment, since three types of light emitting layers are formed, a coating method capable of separately coating ink among the above-described coating methods is appropriately selected. Furthermore, a method of forming a light emitting layer only at a desired place by laser transfer or thermal transfer can be used.
 上記R発光層61,G発光層62及びB発光層63の各層の上には正孔輸送層7及び正孔注入層8がこの順に積層されている。 The hole transport layer 7 and the hole injection layer 8 are laminated in this order on each of the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63.
(正孔輸送層)
 正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などが例示される。
(Hole transport layer)
As the hole transport material, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, a polyaniline or Examples thereof include polythiophene or a derivative thereof, polyarylamine or a derivative thereof, polypyrrole or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof. .
 これらの中で、正孔輸送層7に用いる正孔輸送材料として、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。 Among these, as a hole transport material used for the hole transport layer 7, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, a polyaniline or a derivative thereof A polymer hole transport material such as polythiophene or a derivative thereof, polyarylamine or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof, Preferred are polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, and polysiloxane derivatives having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
 正孔輸送層7の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。 Although there is no restriction | limiting in the film-forming method of the positive hole transport layer 7, The method by the film-forming from a mixed solution with a polymer binder is illustrated with a low molecular hole transport material. In the case of a polymer hole transport material, a method of film formation from a solution is exemplified.
 溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。 The solvent used for film formation from a solution is not particularly limited as long as it can dissolve a hole transport material. Examples of the solvent include chlorine solvents such as chloroform, methylene chloride, and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate, butyl acetate, An ester solvent such as ethyl cellosolve acetate is exemplified.
 溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。なお本インキを塗り分ける場合には、上述の塗布法のうちで、インキの塗り分けが可能な塗布法が適宜選択される。 Examples of film formation methods from solution include spin coating from solution, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen Coating methods such as a printing method, a flexographic printing method, an offset printing method, and an inkjet printing method can be used. In addition, when separately applying the present ink, an application method capable of separately applying the ink among the above-described application methods is appropriately selected.
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。 As the polymer binder to be mixed, those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used. Examples of the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
 正孔輸送層7の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the hole transport layer 7 differs depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. However, at least a thickness that does not cause pinholes is required. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
(正孔注入層)
 正孔注入層8は、陽極と正孔輸送層との間、または陽極と発光層との間に設けることができる。正孔注入層8の形成工程では、正孔注入層8を溶液からの成膜により形成する。溶液からの成膜としては、例えば、インクジェット法などの塗布による方法を用いる。塗布による方法により、正孔注入層形成材料を前記正孔輸送層7上に選択的に塗布する。その後、乾燥処理および熱処理を行い、正孔注入層8を形成する。正孔注入層6の形成材料としては、前述のように、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等を水やイソプロピルアルコールなどの極性溶媒に溶解させたものを用いる。
(Hole injection layer)
The hole injection layer 8 can be provided between the anode and the hole transport layer or between the anode and the light emitting layer. In the step of forming the hole injection layer 8, the hole injection layer 8 is formed by film formation from a solution. As the film formation from the solution, for example, a coating method such as an inkjet method is used. The hole injection layer forming material is selectively applied onto the hole transport layer 7 by a method by application. Thereafter, drying treatment and heat treatment are performed to form the hole injection layer 8. As described above, the material for forming the hole injection layer 6 includes phenylamine, starburst amine, phthalocyanine, vanadium oxide, molybdenum oxide, ruthenium oxide, aluminum oxide, amorphous carbon, polyaniline, A polythiophene derivative or the like dissolved in a polar solvent such as water or isopropyl alcohol is used.
 なお、上述の構成において、電子注入層に続いて、発光層、正孔輸送層、正孔注入層などの有機層を順に形成する場合、特に、隣接する両方の層を塗布法によって形成する場合には、先に塗布した層が後から塗布する層の溶液に含まれる溶媒に溶解して積層構造を作製できなくなることがある。この場合には、下層を溶媒不溶化する方法を用いることができる。溶媒不溶化する方法としては、高分子化合物に架橋基を付け、架橋させて不溶化する方法;芳香族ビスアジドに代表される芳香環を有する架橋基を持った低分子化合物を架橋剤として混合し、架橋させて不溶化する方法;アクリレート基に代表される芳香環を有しない架橋基を持った低分子化合物を架橋剤として混合し、架橋させて不溶化する方法;下層を紫外光に感光させて架橋させ、上層の製造に用いる有機溶媒に対して不溶化する方法;下層を加熱して架橋させ、上層の製造に用いる有機溶媒に対して不溶化する方法等が挙げられる。下層を加熱する場合の加熱の温度は通常100℃~300℃であり、時間は通常1分~1時間である。 In the above-described configuration, when an organic layer such as a light-emitting layer, a hole transport layer, and a hole injection layer is sequentially formed following the electron injection layer, particularly when both adjacent layers are formed by a coating method. In some cases, the previously applied layer is dissolved in a solvent contained in the solution of the layer to be applied later, making it impossible to produce a laminated structure. In this case, a method of insolubilizing the lower layer can be used. As a method for insolubilizing a solvent, a cross-linking group is added to a polymer compound and insolubilized by cross-linking; a low-molecular compound having a cross-linking group having an aromatic ring represented by aromatic bisazide is mixed as a cross-linking agent, A method of insolubilizing by mixing; a method of mixing a low molecular compound having a cross-linking group represented by an acrylate group having a cross-linking group as a cross-linking agent and cross-linking and insolubilizing; exposing the lower layer to ultraviolet light to cross-link, Examples include a method of insolubilizing with respect to the organic solvent used for the production of the upper layer; a method of heating and crosslinking the lower layer, and insolubilization with respect to the organic solvent used for the production of the upper layer. When the lower layer is heated, the heating temperature is usually 100 ° C. to 300 ° C., and the time is usually 1 minute to 1 hour.
 また、架橋以外で下層を溶解させずに積層するその他の方法として、隣り合った層の製造に異なる極性の溶液を用いる方法があり、たとえば、下層に水溶性の高分子化合物を用い、上層に油溶性の高分子化合物を用いて、塗布しても下層が溶解しないようにする方法等がある。 In addition, as another method of laminating without dissolving the lower layer other than cross-linking, there is a method of using solutions of different polarities in the production of adjacent layers. For example, a water-soluble polymer compound is used for the lower layer and the upper layer is used. There is a method of using an oil-soluble polymer compound so that the lower layer does not dissolve even when applied.
(陽極)
 上述のように、各画素に正孔注入層8を形成した後、本実施形態では正孔注入層8の上に全画素に共通に陽極材料を真空蒸着法等により成膜して、陽極9が形成される。
(anode)
As described above, after the hole injection layer 8 is formed in each pixel, in this embodiment, an anode material is formed on the hole injection layer 8 in common for all pixels by vacuum deposition or the like, and the anode 9 Is formed.
(陽極材料)
 陽極9を透明電極、または、半透明電極から構成する場合は、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜を用いることができ、透過率が高いものが好適に利用でき、用いる有機層により適宜、選択して用いる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
(Anode material)
When the anode 9 is composed of a transparent electrode or a semi-transparent electrode, a metal oxide, metal sulfide or metal thin film with high electrical conductivity can be used, and a high transmittance can be suitably used. It is appropriately selected depending on the organic layer to be used. Specifically, indium oxide, zinc oxide, tin oxide, and a composite film made of conductive glass made of indium / tin / oxide (ITO), indium / zinc / oxide, etc. (NESA) Etc.), gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. Examples of the production method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like. Further, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
 陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The film thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity. For example, it is 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm. is there.
[有機ELディスプレイ装置の製造方法(第1の実施形態)]
 次に、本発明に係る有機ELディスプレイ装置の製造方法の第1の実施形態を図2A~図2Hを参照して説明する。
[Method for Manufacturing Organic EL Display Device (First Embodiment)]
Next, a first embodiment of a method for manufacturing an organic EL display device according to the present invention will be described with reference to FIGS. 2A to 2H.
(基板の準備)
 図2Aに示すように、表面に不図示の駆動回路部と陰極(画素電極)2が形成された基板1を準備する。
(Preparation of substrate)
As shown in FIG. 2A, a substrate 1 having a driving circuit portion (not shown) and a cathode (pixel electrode) 2 formed on the surface is prepared.
 複数の陰極(画素電極)2は、R画素31、G画素32、B画素33を構成するパターンに対応して、先に列挙した陰極材料から選択した一種の材料を蒸着などにより、基板1の上に堆積することにより形成する。なお、陰極2を2層以上の積層構造とする場合もある。 A plurality of cathodes (pixel electrodes) 2 are formed on the substrate 1 by vapor deposition or the like of a material selected from the cathode materials listed above corresponding to the patterns constituting the R pixel 31, G pixel 32, and B pixel 33. Form by depositing on top. The cathode 2 may have a laminated structure of two or more layers.
(電子注入層の形成)
 次に、図2Bに示すように、前記陰極2がパターン形成された基板1上に、全画素に共通して電子注入層4を形成する。本発明においては、電子注入層は、上述したイオン性ポリマーを用いて、溶液から成膜する。
(Formation of electron injection layer)
Next, as shown in FIG. 2B, an electron injection layer 4 is formed on the substrate 1 on which the cathode 2 is patterned in common to all pixels. In the present invention, the electron injection layer is formed from a solution using the ionic polymer described above.
 電子注入層4を形成する方法としては、例えば、前記イオン性ポリマーを含有する溶液を用いて成膜する前述の方法を用いる。 As a method for forming the electron injection layer 4, for example, the above-described method of forming a film using a solution containing the ionic polymer is used.
 電子注入層4の膜厚としては、先に述べたように、好ましくは、1nm~1μmに調整する。 The film thickness of the electron injection layer 4 is preferably adjusted to 1 nm to 1 μm as described above.
(撥液パターンの形成)
 次に、図2Cに示すように、先に述べた反応性界面活性組成物(RSA)から選ばれた一種、例えば、デュポン社製のフッ素化不飽和エステルモノマーであるゾニル(Zonyl)(登録商標)8857Aを用いて、前記電子注入層4の全面にプライマ層53を形成する。
(Formation of liquid repellent pattern)
Next, as shown in FIG. 2C, one kind selected from the reactive surfactant composition (RSA) described above, for example, Zonyl (registered trademark) which is a fluorinated unsaturated ester monomer manufactured by DuPont. ) A primer layer 53 is formed on the entire surface of the electron injection layer 4 using 8857A.
 次に、図2Dに示すように、下層の陰極2に対応する部分に光が照射されるパターンに成形されたマスクを用いて、前記プライマ層53を露光する。 Next, as shown in FIG. 2D, the primer layer 53 is exposed using a mask formed in a pattern in which light is applied to a portion corresponding to the lower cathode 2.
 露光されて液体媒体に可溶となった部分を液体媒体により除去する(現像処理)。 The portion that has been exposed and becomes soluble in the liquid medium is removed by the liquid medium (development processing).
 上記現像処理により、図2Eに示すように、電子注入層4の上に撥液パターン5が形成される。撥液パターン5の開口内部52は各画素領域に対応し、下層の電子注入層4が露出している部分である。撥液パターン5は電子注入層4よりも撥液性を示すため、開口内部52は、撥液パターン5に対して親液性を有している(以下、開口内部52を親液部52と記す場合もある)。 As a result of the development process, a liquid repellent pattern 5 is formed on the electron injection layer 4 as shown in FIG. 2E. The opening inside 52 of the liquid repellent pattern 5 corresponds to each pixel region, and is a portion where the lower electron injection layer 4 is exposed. Since the liquid repellent pattern 5 is more lyophobic than the electron injection layer 4, the opening interior 52 is lyophilic with respect to the liquid repellent pattern 5 (hereinafter, the opening interior 52 is referred to as the lyophilic portion 52). May be noted).
(発光層の形成)
 次に、図2Fに示すように、上記撥液パターン5を利用して各画素(R画素31,G画素32及びB画素33)が位置する電子注入層4上に発光層(R発光層61,G発光層62及びB発光層63)を形成する。
(Formation of light emitting layer)
Next, as shown in FIG. 2F, a light emitting layer (R light emitting layer 61) is formed on the electron injection layer 4 where each pixel (R pixel 31, G pixel 32, and B pixel 33) is located using the liquid repellent pattern 5. , G light emitting layer 62 and B light emitting layer 63).
 発光層を形成するための発光材料としては、先に述べたように、蛍光あるいは燐光を発光することが可能な公知の発光材料を用いる。用いる発光材料は、先の述べた発光材料から適宜に選択する。発光層は上述の方法によって形成される。なお塗布法によって形成される場合、親液部52に供給されたインキは親液部52中を濡れ広がるが、撥液パターン5には弾かれるため、親液部52上にのみ発光層が形成される。 As the light emitting material for forming the light emitting layer, as described above, a known light emitting material capable of emitting fluorescence or phosphorescence is used. The light emitting material to be used is appropriately selected from the light emitting materials described above. The light emitting layer is formed by the method described above. In addition, when formed by the coating method, the ink supplied to the lyophilic part 52 spreads in the lyophilic part 52 but is repelled by the liquid-repellent pattern 5, so that a light emitting layer is formed only on the lyophilic part 52. It is.
(正孔輸送層及び正孔注入層の形成)
 次に、図2Gに示すように、上記R発光層61,G発光層62及びB発光層63の各層の上に、正孔輸送層7及び正孔注入層8をこの順に積層する。
(Formation of hole transport layer and hole injection layer)
Next, as shown in FIG. 2G, the hole transport layer 7 and the hole injection layer 8 are laminated in this order on each of the R light emitting layer 61, the G light emitting layer 62, and the B light emitting layer 63.
(正孔輸送層の形成)
 先に述べた正孔輸送材料から選択した一種の材料が低分子正孔輸送材料である場合は、高分子バインダーとの混合溶液からの成膜による方法を用い、高分子正孔輸送材料である場合は、溶液からの成膜による方法を用いる。正孔輸送層は上述の方法によって形成される。なお塗布法によって形成される場合、発光層上に供給されたインキは発光層上を濡れ広がるが、撥液パターン5には弾かれるため、発光層上にのみ正孔輸送層が形成される。
(Formation of hole transport layer)
When the kind of material selected from the above-mentioned hole transport materials is a low molecular hole transport material, it is a polymer hole transport material using a method of film formation from a mixed solution with a polymer binder. In this case, a method by film formation from a solution is used. The hole transport layer is formed by the method described above. When formed by a coating method, the ink supplied onto the light emitting layer spreads wet on the light emitting layer, but is repelled by the liquid repellent pattern 5, so that a hole transport layer is formed only on the light emitting layer.
(正孔注入層の形成)
 前記正孔輸送層7の上に正孔注入層8を形成する。正孔注入層は上述の方法によって形成される。なお塗布法によって形成される場合、正孔輸送層上に供給されたインキは正孔輸送層上を濡れ広がるが、撥液パターン5には弾かれるため、正孔輸送層上にのみ正孔注入層が形成される。
(Formation of hole injection layer)
A hole injection layer 8 is formed on the hole transport layer 7. The hole injection layer is formed by the method described above. In addition, when formed by the coating method, the ink supplied on the hole transport layer wets and spreads on the hole transport layer but is repelled by the liquid repellent pattern 5, so that hole injection is performed only on the hole transport layer. A layer is formed.
(陽極の作成)
 次に、図2Hに示すように、前記正孔注入層8の上に全画素に共通に、先の述べた陽極材料から選択した一種の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等から選択した一種の方法を用いて成膜して、陽極9を形成する。陽極9の膜厚としては、先に述べたように、10nm~10μmに、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmに調整する。
(Create anode)
Next, as shown in FIG. 2H, a kind of material selected from the above-described anode material is commonly used on the hole injection layer 8 in common for all pixels, by vacuum deposition, sputtering, ion plating, or the like. The anode 9 is formed by forming a film using a kind of method selected from plating and the like. As described above, the film thickness of the anode 9 is adjusted to 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 以上により、図1に示した一実施形態の有機ELディスプレイ装置が形成される。 Thus, the organic EL display device according to the embodiment shown in FIG. 1 is formed.
 以上に詳述したように、有機ELディスプレイ装置の製造方法の第1の実施形態では、電子注入性を有し、かつ常圧程度の雰囲気中で安定で、溶媒により溶液とすることのできるイオン性ポリマーから電子注入層を形成する点と、撥液パターンを用いて各色の発光層を選択的に積層する点とに特徴がある。斯かる特徴構成によれば、有機ELディスプレイ装置を構成する有機EL素子の有機層の形成を全て常圧程度の雰囲気中にて溶液からの成膜により行うことができ、それにより、製造プロセスが簡略化され、製造コストを低減することができる。また、基板サイズの制限がなくなるので、大画面ディスプレイの製造が可能となる。 As described in detail above, in the first embodiment of the method for manufacturing an organic EL display device, ions that have electron injectability, are stable in an atmosphere at normal pressure, and can be made into a solution by a solvent. It is characterized in that an electron injection layer is formed from a conductive polymer and that a light emitting layer of each color is selectively laminated using a liquid repellent pattern. According to such a characteristic configuration, all of the organic layers of the organic EL elements constituting the organic EL display device can be formed by film formation from a solution in an atmosphere of about normal pressure, thereby reducing the manufacturing process. This simplifies the manufacturing cost. In addition, since there is no limitation on the substrate size, a large screen display can be manufactured.
[有機ELディスプレイ装置の製造方法(第2の実施形態)]
 次に、本発明に係る有機ELディスプレイ装置の製造方法の第2の実施形態を図3A~図3Kを参照しつつ説明する。
[Method for Manufacturing Organic EL Display Device (Second Embodiment)]
Next, a second embodiment of the method for manufacturing an organic EL display device according to the present invention will be described with reference to FIGS. 3A to 3K.
 基板の準備(図3A)から電子注入層の形成(図3B)までの工程は、前述の実施の形態と同じなので、説明を省略する。
(撥液パターンの形成)
 次に、図3Cに示すように、前記基板1とは別体の板状の支持部材10を用意する。用意した支持部材10の表面に樹脂層11を積層する。この樹脂層11は、例えば、ポリイミド系樹脂を主成分とするフォトレジスト材料の塗膜を露光して硬化することにより形成する。
Since the steps from the substrate preparation (FIG. 3A) to the formation of the electron injection layer (FIG. 3B) are the same as those in the above-described embodiment, the description thereof is omitted.
(Formation of liquid repellent pattern)
Next, as shown in FIG. 3C, a plate-like support member 10 separate from the substrate 1 is prepared. The resin layer 11 is laminated on the surface of the prepared support member 10. The resin layer 11 is formed, for example, by exposing and curing a coating film of a photoresist material whose main component is a polyimide resin.
 次に、図3Dに示すように、前記樹脂層11の上に所定のパターンの開口部を有するマスク12を設置する。該マスク12の複数の開口部は、前記基板1上に形成した陰極(画素電極)2に概略一致する大きさ及びパターンに形成されている。次に、マスク12を介してフッ素含有ガスプラズマ13を照射する。前記フッ素含有ガスとしては例えばCFを用いる。 Next, as shown in FIG. 3D, a mask 12 having openings of a predetermined pattern is placed on the resin layer 11. The plurality of openings of the mask 12 are formed in a size and pattern that approximately match the cathode (pixel electrode) 2 formed on the substrate 1. Next, the fluorine-containing gas plasma 13 is irradiated through the mask 12. For example, CF 4 is used as the fluorine-containing gas.
 前記フッ素含有ガスプラズマ13を照射後、マスク12を除去する。その結果、図3Eに示すように、前記樹脂層11の上に撥液性のパターン5aが形成される。 After the irradiation with the fluorine-containing gas plasma 13, the mask 12 is removed. As a result, as shown in FIG. 3E, a liquid repellent pattern 5 a is formed on the resin layer 11.
 次に、図3Fに示すように、基板1上の電子注入層4に対して支持部材10上のパターン5aを対向させ、基板1上の各陰極2の上にパターン10の開口部が位置するように位置決めして、基板1と支持部材10を当接させる。 Next, as shown in FIG. 3F, the pattern 5 a on the support member 10 is opposed to the electron injection layer 4 on the substrate 1, and the opening of the pattern 10 is positioned on each cathode 2 on the substrate 1. Then, the substrate 1 and the support member 10 are brought into contact with each other.
 基板1と支持部材10を当接させた後、図3Gに示すように、当接面を加熱して支持部材10の樹脂層11上の撥液性のパターン5aを、基板1の電子注入層4の上に転写する。 After the substrate 1 and the support member 10 are brought into contact with each other, as shown in FIG. 3G, the contact surface is heated so that the liquid repellent pattern 5a on the resin layer 11 of the support member 10 is changed to the electron injection layer of the substrate 1. Transfer on top of 4.
 撥液性のパターン5aを基板1の電子注入層4上に転写した後、支持部材10を離間すると、図3Hに示すように、基板1の電子注入層4上に撥液パターン5が形成される。
 発光層の形成(図3I)、正孔輸送層及び正孔注入層の形成(図3J)並びに陽極の作成(図3K)は、前述の実施形態と同様なので、説明を省略する。
 以上により、図1に示した一実施形態の有機ELディスプレイ装置が形成される。
After the liquid repellent pattern 5a is transferred onto the electron injection layer 4 of the substrate 1, when the support member 10 is separated, the liquid repellent pattern 5 is formed on the electron injection layer 4 of the substrate 1 as shown in FIG. 3H. The
Since the formation of the light emitting layer (FIG. 3I), the formation of the hole transport layer and the hole injection layer (FIG. 3J), and the creation of the anode (FIG. 3K) are the same as those in the above-described embodiment, description thereof is omitted.
Thus, the organic EL display device according to the embodiment shown in FIG. 1 is formed.
[有機ELディスプレイ装置の構成(他の一実施形態)]
 次に、本発明に係る有機ELディスプレイ装置の他の一実施形態の概略構成を図4を参照しつつ説明する。本形態では、前述の実施形態の撥液パターン5にかえて、バンクを形成する。なお各部材を構成する材料および各部材の製法は前述の実施の形態と同じなので説明を省略する場合がある。
[Configuration of Organic EL Display Device (Another Embodiment)]
Next, a schematic configuration of another embodiment of the organic EL display device according to the present invention will be described with reference to FIG. In this embodiment, a bank is formed in place of the liquid repellent pattern 5 of the above-described embodiment. In addition, since the material which comprises each member, and the manufacturing method of each member are the same as the above-mentioned embodiment, description may be abbreviate | omitted.
 画素電極2が形成された基板1の表面には、各画素電極2を覆うように第1のバンク層501が形成されるとともに、複数の画素電極2の隣接間に連続した複数の第2のバンク層502が形成されている。前記複数の第2のバンク層502は、図4の平面に直交する方向に互いにほぼ平行に配列される。 On the surface of the substrate 1 on which the pixel electrode 2 is formed, a first bank layer 501 is formed so as to cover each pixel electrode 2, and a plurality of second banks continuous between the plurality of pixel electrodes 2 are adjacent to each other. A bank layer 502 is formed. The plurality of second bank layers 502 are arranged substantially parallel to each other in a direction orthogonal to the plane of FIG.
 前記第1のバンク層501は有機物または無機物によって構成される。有機物としてはアクリル樹脂、フェノール樹脂、およびポリイミド樹脂などが用いられる。また、無機物としてはSiOxやSiNxなどが用いられる。 The first bank layer 501 is made of an organic material or an inorganic material. As the organic substance, an acrylic resin, a phenol resin, a polyimide resin, or the like is used. Moreover, SiOx, SiNx, etc. are used as an inorganic substance.
 前記第2のバンク層502は有機物または無機物によって構成される。有機物としてはアクリル樹脂、フェノール樹脂、およびポリイミド樹脂などが用いられる。また、無機物としてはSiOxやSiNxなどが用いられる。 The second bank layer 502 is made of an organic material or an inorganic material. As the organic substance, an acrylic resin, a phenol resin, a polyimide resin, or the like is used. Moreover, SiOx, SiNx, etc. are used as an inorganic substance.
 有機物によって構成されるバンクは、一般に無機物によって構成されるバンクに比べて撥液性を示す。第2のバンク層502は、当該バンク層502に囲まれた領域に供給されるインキを保持し、外に溢れ出ることを防ぐために、撥液性を示すことが好ましい。他方第1のバンク層501は、供給されたインキが当該バンク層501上を濡れ広がることが好ましいため、親液性を示すことが好ましい。そのため本形態では、第1のバンク層501は無機物によって構成され、第2のバンク層502は有機物によって構成される。 Banks composed of organic materials generally exhibit liquid repellency compared to banks composed of inorganic materials. The second bank layer 502 preferably has liquid repellency in order to retain ink supplied to the area surrounded by the bank layer 502 and prevent overflowing to the outside. On the other hand, the first bank layer 501 is preferably lyophilic because the supplied ink is preferably spread over the bank layer 501. Therefore, in this embodiment, the first bank layer 501 is made of an inorganic material, and the second bank layer 502 is made of an organic material.
 前記第1のバンク層501の開口内部が、画素領域を構成する。第2のバンク層502は、第1のバンク層501に対して高さ寸法が大きく、複数形成された第2のバンク層502は、互いにほぼ並行に配置されており、隣接間には、第1のバンク層501により画成された複数の画素領域が一列に配置される。この一列に配置された複数の画素領域に、RGBのいずれかの発光材料が一括して塗布される。この一括塗布が第2のバンク層502によって可能となっている。 The inside of the opening of the first bank layer 501 constitutes a pixel area. The second bank layer 502 is larger in height than the first bank layer 501, and a plurality of second bank layers 502 are arranged substantially in parallel with each other. A plurality of pixel regions defined by one bank layer 501 are arranged in a line. One of RGB light emitting materials is collectively applied to the plurality of pixel regions arranged in a row. This batch application is enabled by the second bank layer 502.
 前記第1のバンク層501によって囲まれた各画素電極2の露出表面(画素領域)上には、通常、電子注入層4が形成される。電子注入層4の上に電子輸送層を設ける場合もある。 The electron injection layer 4 is usually formed on the exposed surface (pixel region) of each pixel electrode 2 surrounded by the first bank layer 501. An electron transport layer may be provided on the electron injection layer 4 in some cases.
 電子注入層4、発光層61、発光層62、発光層63は、それぞれ前記第1のバンク層501の開口内部上に形成される。これらは前述の方法によって形成される。 The electron injection layer 4, the light emitting layer 61, the light emitting layer 62, and the light emitting layer 63 are respectively formed inside the opening of the first bank layer 501. These are formed by the method described above.
 正孔輸送層、正孔注入層8は、図4に示す実施形態では、複数の画素に亘って、全面に形成されている。なお正孔輸送層および正孔注入層8も、前記第1のバンク層501の開口内部上のみに、選択的に形成してもよい。 In the embodiment shown in FIG. 4, the hole transport layer and the hole injection layer 8 are formed on the entire surface over a plurality of pixels. The hole transport layer and the hole injection layer 8 may also be selectively formed only on the inside of the opening of the first bank layer 501.
 正孔注入層8を形成した後、正孔注入層8の上に全画素に共通に陽極材料を真空蒸着法等により成膜して、陽極9が形成される。 After forming the hole injection layer 8, an anode material is formed on the hole injection layer 8 in common for all the pixels by a vacuum deposition method or the like to form the anode 9.
[有機ELディスプレイ装置の製造方法(第3の実施形態)]
 次に、図4に示した構成の有機ELディスプレイ装置の製造方法の一実施形態(第3の実施形態)を図4を参照して説明する。
[Method for Manufacturing Organic EL Display Device (Third Embodiment)]
Next, an embodiment (third embodiment) of a method for manufacturing the organic EL display device having the configuration shown in FIG. 4 will be described with reference to FIG.
 まず、複数の画素電極2をその表面上に形成した基板1を用意する。 First, a substrate 1 having a plurality of pixel electrodes 2 formed on its surface is prepared.
 次に、画素電極2が形成された基板1の表面に、各画素電極2を囲むように第1のバンク層501を形成し、続いて、複数の画素電極2の隣接間に連続した複数の第2のバンク層502を形成する。前記複数の第2のバンク層502は、図4の平面に直交する方向に互いにほぼ平行に配列する。 Next, a first bank layer 501 is formed on the surface of the substrate 1 on which the pixel electrode 2 is formed so as to surround each pixel electrode 2, and then, a plurality of continuous plurality of pixel electrodes 2 are adjacent to each other. A second bank layer 502 is formed. The plurality of second bank layers 502 are arranged substantially parallel to each other in a direction orthogonal to the plane of FIG.
 前記第1のバンク層501は、各画素電極2に対して一部が開口して、各画素電極2の表面を露出するように形成する。次いで、第1のバンク層501により周囲を囲まれた複数の画素電極2の隣接間に連続した複数の第2のバンク層502を形成する。前記複数の第2のバンク層502の配置パターンは、図4の平面に直交する方向に互いにほぼ平行である。 The first bank layer 501 is formed so that a part of the first bank layer 501 is open to each pixel electrode 2 and the surface of each pixel electrode 2 is exposed. Next, a plurality of second bank layers 502 that are continuous between adjacent pixel electrodes 2 surrounded by the first bank layer 501 are formed. The arrangement patterns of the plurality of second bank layers 502 are substantially parallel to each other in a direction orthogonal to the plane of FIG.
 第1のバンク層501、第2の有機バンク層502の形成方法としては、無機材料を使用する場合は、蒸着法により形成し、有機材料を使用する場合、例えばアクリル樹脂やポリイミド樹脂などのレジストを溶媒に溶解したものを、スピンコート法、ディップコート法などの各種塗布法により塗布して有機質層を形成する。本発明では、有機材料を用いた塗布による方法が好ましい。なお、該有機質層の構成材料は、後述するインクの溶媒に溶解せず、しかもエッチングなどによってパターニングし易いものであればどのようなものでもよい。 As a method for forming the first bank layer 501 and the second organic bank layer 502, when an inorganic material is used, it is formed by vapor deposition. When an organic material is used, a resist such as an acrylic resin or a polyimide resin is used. The organic layer is formed by applying a solution in a solvent in various coating methods such as spin coating and dip coating. In the present invention, a method by coating using an organic material is preferable. The constituent material of the organic layer may be any material as long as it does not dissolve in the ink solvent described later and can be easily patterned by etching or the like.
 第1のバンク層501はたとえば無機材料を全面に成膜し、これをフォトリソグラフィ技術を用いてパターニングすることによって形成される。 The first bank layer 501 is formed, for example, by depositing an inorganic material on the entire surface and patterning it using a photolithography technique.
 第2のバンク層502を形成する有機質層は、複数の画素電極2の隣接間に連続してインクジェットにより塗布するか、一面に塗布した後にフォトリソグラフィ技術、エッチング技術を用いてパターニングする。 The organic layer forming the second bank layer 502 is applied by ink jetting continuously between adjacent ones of the plurality of pixel electrodes 2, or is applied to one surface and then patterned using a photolithography technique or an etching technique.
 次いで、バンク層の表面に、親液性を示す領域と、撥液性を示す領域とを形成する。本実施形態においては、プラズマ処理によって各領域を形成する場合を説明する。そのプラズマ処理は、予備加熱工程と、第2のバンク層502上面および開口部の壁面ならびに画素電極2の露出面および第1のバンク層501の上面をそれぞれ親液性にする親インク化工程と、第2のバンク層502の上面および開口部の壁面を撥液性にする撥インク化工程と、冷却工程とによって構成される。 Next, a region showing lyophilicity and a region showing liquid repellency are formed on the surface of the bank layer. In this embodiment, the case where each region is formed by plasma processing will be described. The plasma treatment includes a preheating step, an ink repellency step for making the upper surface of the second bank layer 502 and the wall surface of the opening, the exposed surface of the pixel electrode 2 and the upper surface of the first bank layer 501 lyophilic, respectively. The second bank layer 502 includes an ink repellent process for making the top surface of the second bank layer 502 and the wall surface of the opening liquid repellent, and a cooling process.
 具体的には、基材(バンク層などを含む基板1)を所定温度、例えば70~80℃程度に加熱し、次いで親インク化工程として大気圧下で酸素を反応ガスとするプラズマ処理(Oプラズマ処理)を行う。次いで、撥インク化工程として大気圧下で4フッ化メタンを反応ガスとするプラズマ処理(CFプラズマ処理)を行い、その後、プラズマ処理のために加熱された基材を室温まで冷却する。なお4フッ化メタンを反応ガスとするプラズマ処理では、有機物からなる第2のバンク層502が選択的に撥液化される。これによって親液性および撥液性が上述の所望部分に付与される。 Specifically, the base material (substrate 1 including the bank layer) is heated to a predetermined temperature, for example, about 70 to 80 ° C., and then plasma treatment using oxygen as a reactive gas at atmospheric pressure as an ink-philic step (O 2 plasma treatment). Next, as an ink repellent process, plasma treatment using CF 4 as a reactive gas (CF 4 plasma treatment) is performed under atmospheric pressure, and then the substrate heated for the plasma treatment is cooled to room temperature. Note that in the plasma treatment using tetrafluoromethane as a reaction gas, the second bank layer 502 made of an organic substance is selectively made liquid-repellent. This imparts lyophilicity and liquid repellency to the desired portion.
 次いで、電子注入層、発光層となる材料を含むインキを順次第2のバンク層502に囲まれた領域に供給し、これを固化することによって、電子注入層、発光層を順次形成する。 Next, an ink including a material to be an electron injection layer and a light emitting layer is sequentially supplied to a region surrounded by the second bank layer 502, and solidified to form an electron injection layer and a light emitting layer sequentially.
 つぎに、正孔輸送層、正孔注入層となる材料を含むインキを順次全面に供給し、これを固化することによって、正孔輸送層、正孔注入層を順次形成する。 Next, an ink containing a material for forming the hole transport layer and the hole injection layer is sequentially supplied to the entire surface, and the hole transport layer and the hole injection layer are sequentially formed by solidifying the ink.
 次に、前記正孔注入層8の上に全画素に共通に、先の述べた陽極材料から選択した一種の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等から選択した一種の方法を用いて成膜して、陽極9を形成する。陽極9の膜厚としては、先に述べたように、10nm~10μmに、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmに調整する。 Next, a kind of material selected from the above-mentioned anode material was selected on the hole injection layer 8 in common for all pixels from the vacuum deposition method, the sputtering method, the ion plating method, the plating method, and the like. The anode 9 is formed by forming a film using a kind of method. As described above, the film thickness of the anode 9 is adjusted to 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 以上により、図4に示した構造の有機ELディスプレイ装置が形成される。
 なお本実施形態では、電子注入層を形成する工程の前に、画素を除く領域にバンクを形成するが、他の実施形態では、電子注入層を形成した後に、この電子注入層上において画素を除く領域にバンクを形成してもよい。この場合、バンクを形成する際に電子注入層が現像液などに溶解することを防ぐために、電子注入層を予め現像液等に不溶化しておくことが好ましい。電子注入層の不溶化は、たとえば重合性化合物を重合することによって行うことができる。
Thus, the organic EL display device having the structure shown in FIG. 4 is formed.
In this embodiment, a bank is formed in a region excluding the pixel before the step of forming the electron injection layer. In other embodiments, after forming the electron injection layer, the pixel is formed on the electron injection layer. Banks may be formed in the excluded region. In this case, in order to prevent the electron injection layer from dissolving in the developer or the like when forming the bank, it is preferable that the electron injection layer is insolubilized in advance in the developer or the like. Insolubilization of the electron injection layer can be performed, for example, by polymerizing a polymerizable compound.
 以上に詳述したように、有機ELディスプレイ装置の製造方法の第3の実施形態では、電子注入性を有し、かつ大気中で安定で、極性溶媒により溶液とすることのできるイオン性ポリマーから電子注入層を形成する点と、バンクを用いて各色の発光層を選択的に積層する点とに特徴がある。斯かる特徴構成によれば、有機ELディスプレイ装置を構成する有機EL素子の有機層の形成を全て大気中にて溶液からの成膜により行うことができ、それにより、製造プロセスが簡略化され、製造コストを低減することができる。また、基板サイズの制限がなくなるので、大画面ディスプレイの製造が可能となる。 As described in detail above, in the third embodiment of the method for manufacturing an organic EL display device, an ionic polymer that has electron injectability, is stable in the air, and can be made into a solution with a polar solvent is used. It is characterized in that an electron injection layer is formed and that a light emitting layer of each color is selectively stacked using a bank. According to such a characteristic configuration, all the organic layers of the organic EL elements constituting the organic EL display device can be formed by film formation from a solution in the atmosphere, thereby simplifying the manufacturing process, Manufacturing cost can be reduced. In addition, since there is no limitation on the substrate size, a large screen display can be manufactured.

Claims (4)

  1.  陽極及び陰極と、これら電極間に位置する発光層と、前記陰極と発光層の間に位置する電子注入層を含む有機エレクトロルミネッセンス素子からなる画素を複数有してなる有機エレクトロルミネッセンスディスプレイ装置の製造方法であって、
     各画素に対応する複数の陰極が形成された基板を用意する工程と、
     前記各陰極上に、イオン性ポリマーを含む溶液を塗布し、成膜することにより電子注入層を形成する工程と、
     前記電子注入層の上に、発光材料を含む溶液を塗布し、成膜することにより、あるいは、前記電子注入層の上に発光層以外の層を形成した後、該層の上に発光材料を含む溶液を塗布し、製膜することにより、発光層を形成する工程と、
     前記発光層の上に、陽極材料を成膜することにより、あるいは、前記発光層の上に陽極以外の層を形成した後、該層の上に陽極材料を成膜することにより、陽極を形成する工程と、
    を含む有機エレクトロルミネッセンスディスプレイ装置の製造方法。
    Manufacture of an organic electroluminescence display device having a plurality of pixels comprising an organic electroluminescence element including an anode and a cathode, a light emitting layer located between the electrodes, and an electron injection layer located between the cathode and the light emitting layer A method,
    Preparing a substrate on which a plurality of cathodes corresponding to each pixel are formed;
    Applying a solution containing an ionic polymer on each of the cathodes, and forming a film to form an electron injection layer;
    A solution containing a light emitting material is applied on the electron injection layer and formed, or after forming a layer other than the light emitting layer on the electron injection layer, the light emitting material is applied on the layer. A step of forming a light emitting layer by applying a solution containing the solution and forming a film;
    An anode is formed by depositing an anode material on the light emitting layer, or by forming a layer other than the anode on the light emitting layer and then depositing an anode material on the layer. And a process of
    The manufacturing method of the organic electroluminescent display apparatus containing this.
  2.  前記発光層を形成する工程は、画素を除く領域に撥液パターンを形成し、該撥液パターンの開口内部に発光材料を含む溶液を塗布し、成膜することにより複数の発光層を形成する工程である、請求項1に記載の有機エレクトロルミネッセンスディスプレイ装置の製造方法。 In the step of forming the light emitting layer, a liquid repellent pattern is formed in a region excluding pixels, a solution containing a light emitting material is applied inside the opening of the liquid repellent pattern, and a plurality of light emitting layers are formed by forming a film. The manufacturing method of the organic electroluminescent display apparatus of Claim 1 which is a process.
  3.  画素を除く領域にバンクを形成する工程を有する、請求項1に記載の有機エレクトロルミネッセンスディスプレイ装置の製造方法。 The method for manufacturing an organic electroluminescence display device according to claim 1, further comprising a step of forming a bank in a region excluding the pixels.
  4.  請求項1の製造方法によって製造されうる有機エレクトロルミネッセンスディスプレイ装置。 An organic electroluminescence display device that can be manufactured by the manufacturing method according to claim 1.
PCT/JP2011/066307 2010-07-21 2011-07-19 Organic electroluminescence display device manufacturing method and organic electroluminescence display device WO2012011456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-164077 2010-07-21
JP2010164077 2010-07-21

Publications (1)

Publication Number Publication Date
WO2012011456A1 true WO2012011456A1 (en) 2012-01-26

Family

ID=45496878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066307 WO2012011456A1 (en) 2010-07-21 2011-07-19 Organic electroluminescence display device manufacturing method and organic electroluminescence display device

Country Status (3)

Country Link
JP (1) JP2012043782A (en)
TW (1) TW201220574A (en)
WO (1) WO2012011456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093756A1 (en) * 2021-11-25 2023-06-01 纳晶科技股份有限公司 Light-emitting apparatus and manufacturing method therefor, and electronic device comprising light-emitting apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996434B1 (en) * 2012-11-30 2019-07-05 삼성디스플레이 주식회사 Method for manufacturing organic light emitting display apparatus
WO2017082173A1 (en) * 2015-11-13 2017-05-18 住友化学株式会社 Method for manufacturing organic el device, and organic el device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113239A1 (en) * 2008-03-13 2009-09-17 パナソニック株式会社 Organic el display panel and manufacturing method thereof
JP2009239279A (en) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd Layered structure
JP2010033971A (en) * 2008-07-30 2010-02-12 Sumitomo Chemical Co Ltd Organic electroluminescent element and its manufacturing method
JP2010040201A (en) * 2008-07-31 2010-02-18 Sumitomo Chemical Co Ltd Manufacturing method of organic electroluminescent element, and organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239279A (en) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd Layered structure
WO2009113239A1 (en) * 2008-03-13 2009-09-17 パナソニック株式会社 Organic el display panel and manufacturing method thereof
JP2010033971A (en) * 2008-07-30 2010-02-12 Sumitomo Chemical Co Ltd Organic electroluminescent element and its manufacturing method
JP2010040201A (en) * 2008-07-31 2010-02-18 Sumitomo Chemical Co Ltd Manufacturing method of organic electroluminescent element, and organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093756A1 (en) * 2021-11-25 2023-06-01 纳晶科技股份有限公司 Light-emitting apparatus and manufacturing method therefor, and electronic device comprising light-emitting apparatus

Also Published As

Publication number Publication date
JP2012043782A (en) 2012-03-01
TW201220574A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5653122B2 (en) Organic electroluminescence device and method for producing the same
JP5752381B2 (en) Laminated structure, polymer, electroluminescent device and photoelectric conversion device
JP5862086B2 (en) Manufacturing method of organic EL element
JP5898424B2 (en) Manufacturing method of organic light emitting device
WO2012133465A1 (en) Electronic device, polymer compound, organic compound, and method of producing polymer compound
WO2012133381A1 (en) Electronic device, polymer compound
WO2012133462A1 (en) Electronic device, polymer compound
JP5863307B2 (en) Method for manufacturing organic electroluminescence element
WO2012046736A1 (en) Organic el device, and method for producing same
JP5982747B2 (en) Organic EL device
WO2012132149A1 (en) Composition
WO2012011456A1 (en) Organic electroluminescence display device manufacturing method and organic electroluminescence display device
JP5899635B2 (en) Organic EL device
KR101902034B1 (en) Method for producing organic electroluminescent element
WO2012011471A1 (en) Organic electroluminescence display device manufacturing method and organic electroluminescence display device
WO2012070575A1 (en) Light emitting device and method for producing light emitting device
JP5750247B2 (en) Organic thin film transistor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809626

Country of ref document: EP

Kind code of ref document: A1