WO2012133229A1 - Electronic device and polymer compound - Google Patents

Electronic device and polymer compound Download PDF

Info

Publication number
WO2012133229A1
WO2012133229A1 PCT/JP2012/057605 JP2012057605W WO2012133229A1 WO 2012133229 A1 WO2012133229 A1 WO 2012133229A1 JP 2012057605 W JP2012057605 W JP 2012057605W WO 2012133229 A1 WO2012133229 A1 WO 2012133229A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
same
present
different
formula
Prior art date
Application number
PCT/JP2012/057605
Other languages
French (fr)
Japanese (ja)
Inventor
田中 正信
塁 石川
健作 堀江
顕 榊原
東村 秀之
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012133229A1 publication Critical patent/WO2012133229A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to an electronic device and a polymer compound suitably used for the electronic device.
  • an electroluminescent element having a layer made of a non-conjugated polymer compound containing a substituent having a cation and two heteroatoms between a light emitting layer and an electrode is known (Patent Document 1).
  • the luminance of the electroluminescent element was not yet sufficient.
  • An object of the present invention is to provide an electronic device useful as an electroluminescent element that emits light with high luminance, and a polymer compound used in the electronic device.
  • the present inventors have found that the above object can be achieved by the following electronic device, polymer compound, etc., and have reached the present invention.
  • a layer containing a polymer compound having a structural unit containing a group represented by formula (1) and a group represented by formula (2) is provided as a charge injection layer and / or a charge transport layer.
  • the ratio that M 1 in the polymer compound is H + with respect to all M 1 in the polymer compound is greater than 0% and 50% or less.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R ⁇ ) 3 — .
  • M 1 is H +, a metal cation, or an ammonium cation which may have a substituent.
  • Z 1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R a ) 4 ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO.
  • n1 is an integer of 0 or more.
  • a1 is an integer of 1 or more.
  • b1 is an integer of 0 or more. However, a1 and b1 are selected so that the charge of the group represented by the formula (1) becomes zero.
  • R ⁇ is an alkyl group having 1 to 30 carbon atoms which may have a substituent or an aryl group having 6 to 50 carbon atoms which may have a substituent. Each R ⁇ may be the same as or different from each other.
  • R a is a monovalent organic group which may have a substituent.
  • each R a may be the same as or different from each other.
  • each Q 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • each Z 1 may be the same as or different from each other.
  • Y 2 is a cyano group or a group represented by any one of formulas (3) to (11).
  • n2 is an integer of 0 or more.
  • each Q 2 may be the same as or different from each other.
  • R ′′ represents a hydrogen atom, a monovalent hydrocarbon group which may have a substituent, a carboxyl group, a sulfo group, a hydroxyl group, a mercapto group, —NR c 2 , a cyano group or —C ( ⁇ O).
  • R ′ ′′ is a trivalent hydrocarbon group which may have a substituent.
  • a3 is an integer of 1 or more.
  • a4 is an integer of 0 or more.
  • R c is an optionally substituted alkyl group having 1 to 30 carbon atoms or an optionally substituted aryl group having 6 to 50 carbon atoms, and each R c is It may be the same or different.
  • each R ′ When a plurality of R ′ are present, each R ′ may be the same as or different from each other. When a plurality of R ′′ are present, each R ′′ may be the same as or different from each other. When a plurality of a4 are present, each a4 may be the same as or different from each other. )
  • Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above.
  • m1 and m2 are each independently an integer of 1 or more.
  • each Q 1 may be the same as or different from each other.
  • each Q 2 may be the same as or different from each other.
  • each Y 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • Z 1 may be the same as or different from each other.
  • each Y 2 may be the same as or different from each other.
  • each n1 may be the same as or different from each other.
  • each a1 may be the same as or different from each other.
  • each b1 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
  • n4 and n5 are each independently an integer of 1 or more.
  • each R 3 may be the same as or different from each other.
  • each R 4 may be the same as or different from each other.
  • ) -R 5 - ⁇ (Q 1 ) n 1 -Y 1 (M 1 ) a 1 (Z 1 ) b 1 ⁇ m 3 (15) (Where R 5 is a single bond or a (1 + m3) valent organic group.
  • each Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have the same meaning as described above.
  • m3 represents an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
  • each Q 1 may be the same as or different from each other.
  • each Y 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • each Z 1 may be the same as or different from each other.
  • each n1 may be the same as or different from each other.
  • each a1 When a plurality of a1 are present, each a1 may be the same as or different from each other. When a plurality of b1 are present, each b1 may be the same as or different from each other.
  • m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
  • each Q 2 When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
  • each Y 2 When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
  • each n2 When a plurality of n2 are present, each n2 may be the same as or different from each other.
  • the (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formula 1, 2, 4, 5, 6, 13 , 14 , 15 , 19, 21, 23, 31, 32, 33, 43,
  • the (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by formulas 1, 2, 4, 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43,
  • the ratio in which M 1 in the polymer compound is H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound.
  • High molecular compound. where R 1 is a monovalent group including a group represented by Formula (13).
  • Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
  • n3 is an integer of 1 or more. When several R ⁇ 1 > exists, each R ⁇ 1 > may mutually be same or different.
  • R 2 is a (1 + m1 + m2) valent organic group.
  • Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above.
  • m1 and m2 are each independently an integer of 1 or more.
  • each Q 1 may be the same as or different from each other.
  • each Q 2 may be the same as or different from each other.
  • each Y 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • Z 1 may be the same as or different from each other.
  • each Y 2 may be the same as or different from each other.
  • each n1 may be the same as or different from each other.
  • each a1 may be the same as or different from each other.
  • each b1 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
  • n4 and n5 are each independently an integer of 1 or more.
  • each R 3 may be the same as or different from each other.
  • each R 4 may be the same as or different from each other.
  • ) -R 5 - ⁇ (Q 1 ) n 1 -Y 1 (M 1 ) a 1 (Z 1 ) b 1 ⁇ m 3 (15) (Where R 5 is a single bond or a (1 + m3) valent organic group.
  • each Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have the same meaning as described above.
  • m3 represents an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
  • each Q 1 may be the same as or different from each other.
  • each Y 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • each Z 1 may be the same as or different from each other.
  • each n1 may be the same as or different from each other.
  • each a1 When a plurality of a1 are present, each a1 may be the same as or different from each other. When a plurality of b1 are present, each b1 may be the same as or different from each other.
  • m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
  • each Q 2 When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
  • each Y 2 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • the (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formula 1, 2, 4, 5, 6, 13 , 14 , 15 , 19, 21, 23, 31, 32, 33, 43,
  • the polymer compound according to the above [7] which is a group obtained by removing (2 + n3) hydrogen atoms from the ring represented by 46, 47 or 51.
  • the (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by the formula 1, 2, 4, 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43,
  • Y 2 is a group represented by formula (3) or formula (4).
  • R 7 is a (1 + m9) valent organic group.
  • Q 3 represents a divalent organic group.
  • Y 5 is —CO 2 R ⁇ , —SO 3 R ⁇ , —SO 2 R ⁇ , —PO 3 (R ⁇ ) 2, or —B (R ⁇ ) 2 .
  • n6 is an integer of 0 or more.
  • R ⁇ is a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted aryl group having 6 to 50 carbon atoms.
  • m9 represents an integer of 1 or more.
  • each Q 3 may be the same as or different from each other.
  • each Y 5 may be the same as or different from each other.
  • each n6 may be the same as or different from each other.
  • each R ⁇ may be the same as or different from each other.
  • the electronic device of the present invention can be an electroluminescent element that emits light with high luminance.
  • the polymer compound of the present invention has a structural unit containing a group represented by the formula (1) and a group represented by the formula (2).
  • the structural unit may contain two or more groups represented by the formula (1), may contain two or more groups represented by the formula (2), and is represented by the formula (1). And two or more groups each represented by formula (2) may be included.
  • the ratio of the total of the structural units to the total structural units contained in the polymer compound is preferably 15 to 100 mol%.
  • Q 1 is a divalent organic group.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R ⁇ ) 3 — .
  • M 1 is H +, a metal cation, or an ammonium cation which may have a substituent.
  • Z 1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R a ) 4 ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO.
  • n1 is an integer of 0 or more.
  • a1 is an integer of 1 or more.
  • b1 is an integer of 0 or more. However, a1 and b1 are selected so that the charge of the group represented by the formula (1) becomes zero.
  • R ⁇ is an alkyl group having 1 to 30 carbon atoms which may have a substituent or an aryl group having 6 to 50 carbon atoms which may have a substituent.
  • each R ⁇ When a plurality of R ⁇ are present, each R ⁇ may be the same as or different from each other.
  • R a is a monovalent organic group which may have a substituent, and when a plurality of R a are present, each R a may be the same as or different from each other.
  • Q 1 When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
  • M 1 When a plurality of M 1 are present, each M 1 may be the same as or different from each other. If the Z 1 are present, each Z 1 may be the same or different from each other.
  • each group represented by formula (1) When a plurality of groups represented by formula (1) are present in the polymer compound, each group represented by formula (1) may be the same as or different from each other.
  • Q 1 is a divalent organic group.
  • the divalent organic group represented by Q 1 include the following groups: Methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1, Having a substituent such as a 6-hexylene group, a 1,9-nonylene group, a 1,12-dodecylene group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent.
  • a divalent cyclic saturated hydrocarbon group having 3 to 50 carbon atoms which may have a substituent, such as 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, biphenyl-4,4′-diyl group, among these groups
  • An arylene group having 6 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent;
  • An arylene group having 1 to 50 atoms, and examples of the alkylene group having 1 to 50 carbon atoms which may have a substituent include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group and a hexylene group; Groups, and groups in which at least one hydrogen atom in these groups is substituted with a substituent, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5- A naphthylene group and a 2,6-naphthylene group))); An imino group having a substituent containing a carbon atom; A silylene group having a substituent containing a carbon atom.
  • the divalent organic group represented by Q 1 is a divalent chain saturated hydrocarbon. It is preferably a group, an arylene group or an alkyleneoxy group.
  • a divalent organic group represented by Q 1 a divalent chain saturated hydrocarbon group having 1 to 50 carbon atoms, a divalent chain unsaturated hydrocarbon group having 2 to 50 carbon atoms, carbon,
  • Substituents that may be contained in a divalent cyclic saturated hydrocarbon group having 3 to 50 atoms, an arylene group having 6 to 50 carbon atoms, an alkyleneoxy group having 1 to 50 carbon atoms, an imino group, and a silylene group Are, for example, alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, arylalkyl groups, arylalkoxy groups, arylalkylthio groups, arylalkenyl groups, arylalkynyl groups, amino groups, substituted amino groups, Silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group,
  • C m -C n (m, n is a positive integer satisfying m ⁇ n) means that the organic group described together with this term has m to n carbon atoms.
  • a C m to C n alkyl group represents that the alkyl group has m to n carbon atoms
  • a C m to C n alkyl aryl group represents an alkyl group contained in the alkyl aryl group.
  • the number of carbon atoms is m to n, and in the case of an aryl-C m to C n alkyl group, it means that the number of carbon atoms of the alkyl group contained in the arylalkyl group is m to n.
  • “may have a substituent” means that the hydrogen atom constituting the compound or group described immediately after it is unsubstituted or a part or all of the hydrogen atoms are substituted. Includes both cases where it is substituted.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the alkyl group usually has 1 to 20 carbon atoms (usually 3 to 20 in the case of a cycloalkyl group), and preferably 1 to 10 (3 to 20 in the case of a cycloalkyl group).
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, Nonyl group, decyl group and lauryl group can be mentioned.
  • the hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • Examples of such an alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group and lauryl group.
  • the alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent.
  • the number of carbon atoms of the alkoxy group is usually 1 to 20 (usually 3 to 20 for a cycloalkyloxy group), and preferably 1 to 10 (3 to 10 for a cycloalkyloxy group).
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples thereof include an oxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • alkoxy group fluorine atom-substituted alkoxy group
  • examples of such an alkoxy group include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • examples of the alkoxy group also include a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • Examples of the C 1 to C 12 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent.
  • the alkylthio group usually has 1 to 20 carbon atoms (usually 3 to 20 for a cycloalkylthio group), and preferably 1 to 10 (3 to 10 for a cycloalkylthio group).
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, An octylthio group, a nonylthio group, a decylthio group, a laurylthio group, etc. are mentioned.
  • a hydrogen atom in the alkylthio group may be substituted with a fluorine atom.
  • Examples of such an alkylthio group fluorine atom-substituted alkylthio group
  • the aryl group is a remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the aryl group includes a group having a benzene ring, a group having a condensed ring, a group in which two or more independent benzene rings and / or condensed rings are single-bonded, and two or more independent benzene rings and / or condensed rings.
  • a divalent organic group for example, a group bonded via an alkenylene group such as a vinylene group
  • the aryl group usually has 6 to 60 carbon atoms, and preferably 6 to 48 carbon atoms.
  • aryl group examples include a phenyl group, a C 1 to C 12 alkoxyphenyl group, a C 1 to C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and 9- Anthracenyl group etc. are mentioned.
  • a hydrogen atom in the aryl group may be substituted with a fluorine atom.
  • Examples of such an aryl group (fluorine atom-substituted aryl group) include a pentafluorophenyl group.
  • a phenyl group, a C 1 -C 12 alkoxyphenyl group and a C 1 -C 12 alkylphenyl group are preferred.
  • Examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, a sec-butoxyphenyl group, and a tert-butoxyphenyl group.
  • Examples of the C 1 -C 12 alkylphenyl group include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, tert -Butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group and dodecylphenyl group.
  • the aryloxy group usually has 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, and a C 1 -C 12 alkylphenoxy group are preferred.
  • Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, a sec-butoxyphenoxy group, a tert-butoxyphenoxy group.
  • the arylthio group is, for example, a group in which the aforementioned aryl group is bonded to a sulfur element.
  • the arylthio group may have a substituent on the aromatic ring of the aryl group.
  • the arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms.
  • Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group is, for example, a group in which the aforementioned aryl group is bonded to the aforementioned alkyl group.
  • the arylalkyl group may have a substituent.
  • the arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkyl group examples include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, naphthyl -C 1 ⁇ C 12 alkyl group and 2-naphthyl -C 1 ⁇ C 12 alkyl group.
  • the arylalkoxy group is, for example, a group in which the above aryl group is bonded to the above alkoxy group.
  • the arylalkoxy group may have a substituent.
  • the arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms.
  • Examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, Examples include 1 -naphthyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group.
  • the arylalkylthio group is, for example, a group in which the above aryl group is bonded to the above alkylthio group.
  • the arylalkylthio group may have a substituent.
  • the arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms.
  • arylalkylthio group examples include a phenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkoxyphenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkylphenyl-C 1 to C 12 alkylthio group, Examples thereof include a 1 -naphthyl-C 1 -C 12 alkylthio group and a 2-naphthyl-C 1 -C 12 alkylthio group.
  • the arylalkenyl group is, for example, a group in which the aforementioned aryl group is bonded to the alkenyl group.
  • the arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • Examples of the arylalkenyl group include a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, Examples include 1-naphthyl-C 2 -C 12 alkenyl group and 2-naphthyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group or C 2 -C 12 alkylphenyl A —C 2 -C 12 alkenyl group is preferred.
  • Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl. Group, 2-hexenyl group and 1-octenyl group.
  • the arylalkynyl group is, for example, a group in which the aforementioned aryl group is bonded to the alkynyl group.
  • the arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms.
  • Examples of the arylalkynyl group include a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, Examples include 1-naphthyl-C 2 -C 12 alkynyl group and 2-naphthyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group or C 1 -C 12 alkylphenyl A —C 2 to C 12 alkynyl group is preferred.
  • Examples of the C 2 -C 12 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group. Group, 2-hexynyl group and 1-octynyl group.
  • the substituted amino group at least one hydrogen atom in the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group.
  • the amino group formed is preferred.
  • the alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted amino group is usually 1 to 60, not including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group may have. It is preferably 2 to 48.
  • substituted amino group examples include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, sec- Butylamino group, tert-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group , lauryl group, a cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethyl
  • the substituted silyl group at least one hydrogen atom in the silyl group is substituted with 1 to 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group Silyl group formed.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted silyl group is usually 1 to 60, not including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have. 3 to 48 are preferable.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, tert-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the imine residue means a group in which one hydrogen atom in this structure is removed from an imine compound having a structure represented by at least one of the formula: H—N ⁇ C ⁇ and the formula: —N ⁇ CH—. .
  • an imine compound for example, a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine and aldimine is substituted with a substituent (for example, an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, etc.).
  • the number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18.
  • the two R ⁇ may be bonded together to form a ring as a divalent group, for example, an ethylene group And alkylene groups having 2 to 18 carbon atoms such as trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc.).
  • the imine residue include groups represented by the following formulas.
  • the amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms.
  • Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
  • the acid imide group is a group obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide.
  • the acid imide group usually has 4 to 20 carbon atoms, and preferably 4 to 18 carbon atoms.
  • Examples of the acid imide group include groups represented by the following formulas.
  • the monovalent heterocyclic group means a remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the monovalent heterocyclic group may have a substituent.
  • the monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms.
  • the number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of the monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, Examples thereof include a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group and an isoquinolyl group, among which a thienyl group, a C 1 to C 12 alkylthienyl group, a pyridyl group, a C 1 to C 12 alkylpyrid
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the monovalent aromatic heterocyclic group includes an atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a heterocyclic compound in which the heterocyclic ring itself exhibits aromaticity, and the heterocycle Directly from a compound containing an atom but not having aromaticity to a ring in which the aromatic ring is condensed (for example, phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran) to the carbon atom constituting the ring It means the remaining atomic group excluding one hydrogen atom to be bonded.
  • the substituted carboxyl group is a carboxyl group in which a hydrogen atom in the carboxyl group is substituted with one or more groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. is there. That is, the substituted carboxyl group is a group represented by the formula: —C ( ⁇ O) OR * (wherein R * is an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group). It is.
  • the substituted carboxyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. Note that the number of carbon atoms of the substituted carboxyl group does not include the number of carbon atoms of the substituent of the alkyl group, aryl group, arylalkyl group, and monovalent heterocyclic group.
  • Examples of the substituted carboxyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, a tert-butoxycarbonyl group, and a pentyloxycarbonyl group.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R ⁇ ) 3 — .
  • Y 1 is preferably —CO 2 ⁇ , —SO 2 — or —PO 3 2 ⁇ from the viewpoint of the acidity of the polymer compound, and more preferably —CO 2 — .
  • Y 1 is preferably —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 2 ⁇ from the viewpoint of the stability of the polymer compound.
  • R ⁇ is an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group having 6 to 50 carbon atoms which may have a substituent.
  • substituents that may be contained in the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 50 carbon atoms that may be included in R ⁇ include the substituents exemplified in the description regarding Q 1 described above. And the same substituents. When a plurality of substituents are present, they may be the same as or different from each other.
  • R ⁇ is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group,
  • M 1 is H +, a metal cation, or an ammonium cation which may have a substituent.
  • the metal cation include a monovalent, divalent or trivalent metal cation.
  • monovalent, divalent or trivalent metal cations include, for example, Li cation, Na cation, K cation, Rb cation, Cs cation, Be cation, Mg cation, Ca cation, Ba Cations, Ag cations, Al cations, Bi cations, Cu cations, Fe cations, Ga cations, Mn cations, Pb cations, Sn cations, Ti cations, V cations, W cations, Examples include a cation of Y, a cation of Yb, a cation of Zn and a cation of Zr, and Li + , Na + , K + , Rb + , Cs + , Ag + , Mg 2+
  • Examples of the substituent that the ammonium cation may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group and the like, having 1 to 10 carbon atoms. And an aryl group having 6 to 60 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • Z 1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R a ) 4 ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ . , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 -That's it.
  • R a is a monovalent organic group which may have a substituent.
  • the organic group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, and at least one hydrogen atom in these groups is a substituent.
  • R a examples of the substituent that the alkyl group having 1 to 10 carbon atoms or the aryl group having 6 to 30 carbon atoms that may be included in R a may include the substituents exemplified in the description of Q 1 described above. Similar substituents can be mentioned. When a plurality of R a are present, each R a may be the same as or different from each other.
  • n1 is an integer of 0 or more. From the viewpoint of the synthesis of the raw material monomer, n1 is preferably an integer of 0 to 8, and more preferably an integer of 0 to 2.
  • a1 is an integer of 1 or more
  • b1 is an integer of 0 or more.
  • a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R ⁇ ) 3 —
  • M 1 is H + or a monovalent metal cation.
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R a ) 4 ⁇ , R a SO 3 ⁇ , R a
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R ⁇ ) 3 —
  • M 1 is a divalent metal cation
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , or —PO 3 2 ⁇
  • M 1 is a trivalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R a ) 4 ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ or —B (R ⁇ ) 3 —
  • M 1 is H + or a monovalent metal cation
  • a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
  • each Q 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • each Z 1 may be the same as or different from each other.
  • Examples of the group represented by the formula (1) include groups represented by the following formulas.
  • M is H, Li, Na, K, Rb, Cs or N (CH 3 ) 4 .
  • Q 2 is a divalent organic group.
  • Y 2 is a cyano group or a group represented by any one of formulas (3) to (11).
  • n2 is an integer of 0 or more.
  • each Q 2 may be the same as or different from each other.
  • each group represented by formula (2) may be the same as or different from each other.
  • Q 2 is a divalent organic group.
  • the divalent organic group include the same groups as those exemplified for the divalent organic group represented by Q 1 described above.
  • Q 2 represents a divalent chain saturated hydrocarbon group which may have a substituent, an arylene group or a substituent which may have a substituent. It is preferably an alkyleneoxy group that may have.
  • Substituents that the divalent chain saturated hydrocarbon group, arylene group, or alkyleneoxy group that may be included in Q 2 may have the same substitution as the substituents exemplified in the above description of Q 1 Groups. When a plurality of substituents are present, they may be the same as or different from each other.
  • n2 is an integer of 0 or more, preferably an integer of 0 to 20, and more preferably an integer of 0 to 8.
  • Y 2 is a cyano group or a group represented by any one of the formulas (3) to (11).
  • R ′ is a divalent hydrocarbon group which may have a substituent.
  • Examples of the divalent hydrocarbon group which may have a substituent represented by R ′ include the following groups: Methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1, Having a substituent such as a 6-hexylene group, a 1,9-nonylene group, a 1,12-dodecylene group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent.
  • a divalent chain saturated hydrocarbon group having 1 to 50 carbon atoms; Ethenylene group, propenylene group, 3-butenylene group, 2-butenylene group, 2-pentenylene group, 2-hexenylene group, 2-nonenylene group, 2-dodecenylene group, at least one hydrogen atom in these groups is substituted
  • the number of carbon atoms which may have a substituent including an alkenylene group having 2 to 50 carbon atoms which may have a substituent and / or an ethynylene group, such as a group substituted by a group 2 to 50 divalent chain unsaturated hydrocarbon groups;
  • a divalent cyclic saturated hydrocarbon group having 3 to 50 carbon atoms which may have a substituent such as 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, biphenyl-4,4′-diyl group, among these groups
  • substituents that the valent cyclic saturated hydrocarbon group and the arylene group having 6 to 50 carbon atoms may have include the same substituents as those exemplified in the description of Q 1 described above. It is done. When a plurality of substituents are present, they may be the same as or different from each other.
  • R ′′ represents a hydrogen atom, a monovalent hydrocarbon group which may have a substituent, a carboxyl group, a sulfo group, a hydroxyl group, a mercapto group, —NR c 2 , a cyano group, or —C ( ⁇ O) NR c 2 .
  • Examples of the monovalent hydrocarbon group optionally having a substituent represented by R ′′ include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent
  • An alkyl group having 1 to 20 carbon atoms which may have a substituent, and the like, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthraceny
  • the monovalent hydrocarbon group optionally having a substituent represented by R ′′ is a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, 2 -A naphthyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent is preferred.
  • Examples of the substituent which the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 30 carbon atoms which may be included in R ′′ may have the substituents exemplified in the description of Q 1 above. Examples of the substituent are the same as those of the group. When a plurality of substituents are present, they may be the same as or different from each other.
  • Each R c may be the same as or different from each other. Examples of the substituent that the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 50 carbon atoms that may be contained in R c may include the substituents exemplified in the description of Q 1 described above. And the same substituents.
  • R c is a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, or at least one hydrogen atom in these groups is a substituent. It is preferably a substituted group.
  • R ′ ′′ is a trivalent hydrocarbon group which may have a substituent.
  • Examples of the trivalent hydrocarbon group which may have a substituent represented by R ′ ′′ include, for example, methanetriyl group, ethanetriyl group, 1,2,3-propanetriyl group, 1,2,4 -Butanetriyl group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, these An alkanetriyl group having 1 to 20 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in the group is substituted with a substituent, and 1,2,3 -Benzenetriyl group, 1,2,4-benzenetriyl group, 1,3,5-benzenetriyl group, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. Of 6 to 30 carbon atoms which may have a substituent Riiru group, and
  • the trivalent hydrocarbon group represented by R ′ ′′ is methanetriyl group, ethanetriyl group, 1,2,4-benzenetriyl group, 1,3,5- A benzenetriyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent is preferable.
  • Examples of the substituent that the alkanetriyl group having 1 to 20 carbon atoms and the arenetriyl group having 6 to 30 carbon atoms that may be contained in R ′ ′′ may have the above-described explanation regarding Q 1 Examples thereof include the same substituents as those exemplified above. When a plurality of substituents are present, they may be the same as or different from each other.
  • a3 is an integer of 1 or more, preferably an integer of 2 to 10.
  • a4 is an integer of 0 or more.
  • a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
  • each R ′ When a plurality of R ′ are present, each R ′ may be the same as or different from each other. When a plurality of R ′′ are present, each R ′′ may be the same as or different from each other. When a plurality of a4 are present, each a4 may be the same as or different from each other.
  • Y 2 is a cyano group, a group represented by the formula (3), a group represented by the formula (4), a group represented by the formula (5), or a formula from the viewpoint of ease of synthesis of the raw material monomer.
  • a group represented by (9) or a group represented by formula (10) is preferable, a group represented by formula (3), a group represented by formula (4), and a group represented by formula (5).
  • the group represented by formula (9) is more preferred, and the group represented by formula (3) or group represented by formula (4) is more preferred.
  • the ratio of M 1 in the polymer compound of the present invention to H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound. 1% or more and 50% or less. Therefore, in the polymer compound of the present invention, a group represented by the formula (1) in which M 1 is H + and a group represented by the formula (1) in which M 1 is Both groups which are metal cations or ammonium cations which may have a substituent are included. These groups may coexist in the same structural unit, or may exist in different structural units.
  • the structural unit containing the group represented by the formula (1) and the group represented by the formula (2) is composed of the structural unit represented by the formula (12) and the structural unit represented by the formula (14). It is preferably one or more structural units selected from the group. That is, the polymer compound used in the present invention preferably has one or more structural units selected from the group consisting of the structural unit represented by formula (12) and the structural unit represented by formula (14). .
  • the polymer compound used in the present invention may contain only the structural unit represented by the formula (12) as the structural unit, or may contain only the structural unit represented by the formula (14). And the combination of the structural unit represented by Formula (12) and the structural unit represented by Formula (14) may be included.
  • the polymer compound used in the present invention has one or more structural units selected from the group consisting of the structural unit represented by the formula (12) and the structural unit represented by the formula (14), these structures are used.
  • the ratio of the total of units to the total structural units contained in the polymer compound is preferably 15 to 100 mol%.
  • R 1 is a monovalent group including a group represented by Formula (13).
  • Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
  • n3 is an integer of 1 or more.
  • R 1 is a monovalent group including a group represented by Formula (13). When several R ⁇ 1 > exists, each R ⁇ 1 > may mutually be same or different.
  • R 1 may be a monovalent group composed of a group represented by Formula (13). That is, the group represented by the formula (13) may be directly bonded to Ar 1 .
  • R 1 may be a group partially including a group represented by the formula (13). That is, the group represented by the formula (13) may be bonded to Ar 1 through the following group or atom, for example: Methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group An adamantylene group, an alkylene group having 1 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent; Methyleneoxy, ethyleneoxy, propyleneoxy, butyleneoxy, pentyleneoxy, hexyleneoxy, nonyleneoxy, dodecyleneoxy, cycloprop
  • An alkyleneoxy group having 1 to 50 carbon atoms which may have a substituent that is, a divalent organic group represented by the formula: —R f —O— (wherein R f is a substituent)
  • R 1 is a group represented by the formula (13) or a formula: —B 1 — (A 1 ) n * 1 (wherein A 1 is a group represented by the formula (13)).
  • B 1 is an alkylene group having 1 to 50 carbon atoms, an alkyleneoxy group having 1 to 50 carbon atoms, an imino group which may have a substituent, a silylene group which may have a substituent, An optionally substituted ethenylene group, an ethynylene group, or a hetero atom
  • n * 1 is an integer of 1 or more, and when a plurality of A 1 are present, each A 1 is They may be the same or different.).
  • Examples of the substituent that the alkylene group having 1 to 50 carbon atoms, the alkyleneoxy group having 1 to 50 carbon atoms, the imino group, the silylene group, and the ethenylene group that may be contained in R 1 may have the above-mentioned Examples thereof include the same substituents as those exemplified in the description of Q 1 . When a plurality of substituents are present, they may be the same as or different from each other.
  • R 2 is a (1 + m1 + m2) valent organic group.
  • Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above.
  • m1 and m2 are each independently an integer of 1 or more.
  • each Q 1 may be the same as or different from each other.
  • each Q 2 may be the same as or different from each other.
  • each Y 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • each Z 1 may be the same as or different from each other.
  • each Y 2 may be the same as or different from each other.
  • each n1 may be the same as or different from each other.
  • each a1 may be the same as or different from each other.
  • each b1 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • Examples of the (1 + m1 + m2) -valent organic group represented by R 2 include the following groups: Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, lauryl Groups (m1 + m2) from an alkyl group having 1 to 20 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • Groups excluding hydrogen atoms A phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc.
  • the (1 + m1 + m2) -valent organic group represented by R 2 is (m1 + m2) from an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • a group in which m1 hydrogen atoms are removed from an aryl group having 6 to 30 carbon atoms which may have a substituent, or a carbon atom which may have a substituent A group obtained by removing (m1 + m2) hydrogen atoms from 1 to 50 alkoxy groups is preferable.
  • n1 and m2 are each independently an integer of 1 or more.
  • each Q 1 When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other. When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other. When a plurality of M 1 are present, each M 1 may be the same as or different from each other. When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other. When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other. When a plurality of n1 are present, each n1 may be the same as or different from each other.
  • each a1 may be the same as or different from each other.
  • each b1 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
  • Ar 1 may have a substituent other than R 1 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
  • the substituent other than R 1 possessed by Ar 1 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, a substituted carboxyl group or a halogen atom from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
  • n3 is an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n3) -valent aromatic group represented by Ar 1 in the formula (12) include a (2 + n3) -valent aromatic hydrocarbon group and a (2 + n3) -valent aromatic heterocyclic group, (2 + n3) -valent aromatic group consisting of only carbon atoms, or (2 + n3) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is preferable that Examples of the (2 + n3) -valent aromatic group include a monocyclic aromatic ring (for example, a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, 1 , 3,5-triazine ring, furan ring, pyrrole ring, pyrazole ring, imidazole ring, oxazole ring, az
  • (2 + n3) -valent group a structure in which two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring are connected by a single bond, an ethenylene group or an ethynylene group From the aromatic ring assembly (2 + n3) -valent group obtained by removing (2 + n3) hydrogen atoms directly bonded to the carbon atoms constituting the ring; two selected from the monocyclic aromatic ring, the condensed polycyclic aromatic ring and the aromatic ring assembly Including the above aromatic ring, two adjacent aromatic rings among the aromatic rings have a structure in which they are bridged by a divalent group such as a methylene group, an ethylene group or a carbonyl group, or by a methanetetrayl group. And (2 + n3) -valent groups obtained by removing (2 + n3) hydrogen atoms directly bonded to carbon atoms constituting the ring from the bridged polycyclic aromatic ring.
  • the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 or 3, from the viewpoint of solubility of the polymer compound. 2 is more preferable.
  • the number of linked aromatic rings is preferably 2 to 4, more preferably 2 or 3, and still more preferably 2, from the viewpoint of solubility.
  • the number of bridged aromatic rings is preferably 2 to 4, more preferably 2 or 3, from the viewpoint of solubility of the polymer compound. 2 is more preferable.
  • Examples of the monocyclic aromatic ring include rings represented by the following formulas.
  • Examples of the condensed polycyclic aromatic ring include rings represented by the following formulas.
  • Examples of the aromatic ring assembly include a ring represented by the following formula.
  • bridged polycyclic aromatic ring examples include rings represented by the following formulas.
  • the (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formulas 1 to 15, 19 to 25, 31 to 35, 43, 46. It is preferably a (2 + n3) -valent group obtained by removing (2 + n3) hydrogen atoms directly bonded to carbon atoms constituting the ring from the ring represented by ⁇ 48 or 51.
  • a hydrogen atom directly bonded to a carbon atom constituting the ring is (2 + n3 It is more preferable that the number is a (2 + n3) -valent group, and the ring is selected from the ring represented by the formula 1, 5, 6, 13, 14, 15, 21, 23, 33, 43, 46 or 47. (2 + n3) hydrogen atoms directly bonded to constituting carbon atoms were removed ( Further preferably + n3) valent group.
  • Ar 1 is preferably a group obtained by removing n3 hydrogen atoms from a divalent group represented by the following formulas 52 to 63.
  • R 3 is a monovalent group including a group represented by Formula (13) or a group represented by Formula (15).
  • R 4 is a monovalent group including a group represented by Formula (16).
  • Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
  • n4 and n5 are each independently an integer of 1 or more. When a plurality of structural units represented by the formula (14) are present in the polymer compound, each structural unit represented by the formula (14) may be the same as or different from each other.
  • R 3 is a monovalent group including a group represented by the formula (13) or a group represented by the formula (15). When a plurality of R 3 are present, they may be the same as or different from each other.
  • R 3 may be a monovalent group composed of a group represented by the formula (13) or a group represented by the formula (15). That is, the group represented by the formula (13) or the group represented by the formula (15) may be directly bonded to Ar 2 .
  • R 3 may be a group partially including a group represented by Formula (13) or a group represented by Formula (15). That is, the group represented by the formula (13) or the group represented by the formula (15) may be bonded to Ar 2 through, for example, the following groups or atoms: Methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group An adamantylene group, an alkylene group having 1 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent; Methyleneoxy, ethyleneoxy, propyleneoxy, butyleneoxy, pentyleneoxy, hexylene
  • An alkyleneoxy group having 1 to 50 carbon atoms which may have a substituent that is, a divalent organic group represented by the formula: —R g —O— (wherein R g is a substituent)
  • R 3 is a group represented by the formula (13), a group represented by the formula (15), or a formula: —B 2 — (A 2 ) n * 2 (wherein A 2 represents the formula (13) Or a group represented by formula (15).
  • B 2 has the same meaning as B 1 .
  • n * 2 is an integer of 1 or more.
  • each A 2 may be the same as or different from each other. ).
  • Examples of the substituent that may be contained in the alkylene group having 1 to 50 carbon atoms, the alkyleneoxy group having 1 to 50 carbon atoms, the imino group, the silylene group, and the ethenylene group that may be included in R 3 are as described above. Examples thereof include the same substituents as those exemplified in the description of Q 1 . When a plurality of substituents are present, they may be the same as or different from each other.
  • R 4 is a monovalent group including a group represented by Formula (16). When a plurality of R 4 are present, each R 4 may be the same as or different from each other.
  • R 4 may be a monovalent group composed of a group represented by Formula (16). That is, the group represented by the formula (16) may be directly bonded to Ar 2 .
  • R 4 may be a group partially including a group represented by the formula (16). That is, the group represented by the formula (16) may be bonded to Ar 2 through a group (same as the substituent) exemplified in the description of R 3 described above or an atom.
  • R 4 is a group represented by the formula (16) or a formula: —B 3 — (A 3 ) n * 3 (wherein A 3 is a group represented by the formula (16); 3 is the same as B 1 , n * 3 is an integer of 1 or more, and when a plurality of A 3 are present, each A 3 may be the same as or different from each other. It is a group.
  • R 5 is a single bond or a (1 + m3) -valent organic group.
  • Q 1 , Y 1 , M 1 , Z 1 , n1, a1, and b1 have the same meaning as described above.
  • m3 is an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
  • each Q 1 may be the same as or different from each other.
  • each Y 1 may be the same as or different from each other.
  • each M 1 may be the same as or different from each other.
  • each Z 1 may be the same as or different from each other.
  • each n1 may be the same as or different from each other.
  • each a1 may be the same as or different from each other.
  • each b1 may be the same as or different from each other.
  • examples of the (1 + m3) -valent organic group represented by R 5 include the following groups: Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, lauryl M3 hydrogen atoms from an alkyl group having 1 to 20 carbon atoms which may have a substituent, such as a group or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group excluding A phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups is
  • the (1 + m3) -valent organic group represented by R 5 is an m3 hydrogen atom from an optionally substituted alkyl group having 1 to 20 carbon atoms.
  • a group obtained by removing m3 hydrogen atoms from ⁇ 50 alkoxy groups is preferred.
  • m3 is an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
  • R 6 is a single bond or a (1 + m4) valent organic group.
  • Y 2 and n2 have the same meaning as described above.
  • m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
  • each Q 2 may be the same as or different from each other.
  • each Y 2 may be the same as or different from each other.
  • each n2 may be the same as or different from each other.
  • examples of the (1 + m4) -valent organic group represented by R 6 include the following groups: Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, lauryl M4 hydrogen atoms from an alkyl group having 1 to 20 carbon atoms which may have a substituent, such as a group or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group excluding A phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups
  • the (1 + m4) valent organic group represented by R 6 is m4 from an alkyl group having 1 to 20 carbon atoms which may have a substituent.
  • Examples of the substituent containing a carbon atom that the group and the silyl group may have include the same substituents as those exemplified in the description of Q 1 described above.
  • substituents that the (1 + m4) -valent organic group represented by R 6 may have, they may be the same as or different from each other.
  • m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
  • Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
  • Ar 2 may have a substituent other than R 3 and R 4 .
  • substituents include the same substituent exemplified in the description of substituents exemplified in the description with respect to Q 1. When a plurality of the substituents are present, they may be the same as or different from each other.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, a substituted carboxyl group, or a halogen atom from the viewpoint of ease of synthesis of the raw material monomer It is preferable that
  • n4 is an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • n5 is an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n4 + n5) -valent aromatic group represented by Ar 2 in the formula (14) include a (2 + n4 + n5) -valent aromatic hydrocarbon group and a (2 + n4 + n5) -valent aromatic heterocyclic group, (2 + n4 + n5) -valent aromatic group consisting of only carbon atoms, or (2 + n4 + n5) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is preferable that Examples of the (2 + n4 + n5) -valent aromatic group include monocyclic aromatic rings (eg, benzene ring, pyridine ring, 1,2-diazine ring, 1,3-diazine ring, 1,4-diazine ring, furan (2 + n4 + n5) -valent group obtained by removing (2 + n4 + n5) hydrogen atoms directly bonded to carbon
  • the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of the solubility of the polymer compound.
  • the number of linked aromatic rings is preferably 2 to 4, more preferably 2 or 3, and still more preferably 2 from the viewpoint of solubility.
  • the number of bridged aromatic rings is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of solubility of the polymer compound.
  • Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (12).
  • Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 33 exemplified in the description of the structural unit represented by formula (12).
  • Examples of the aromatic ring assembly include rings represented by formulas 34 to 42 exemplified in the description of the structural unit represented by formula (12).
  • bridged polycyclic aromatic ring examples include rings represented by Formulas 43 to 51 exemplified in the description of the structural unit represented by Formula (12).
  • the (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by formulas 1 to 5, 7 to 10, formulas 13 to 15, 19 to 19 from the viewpoint of the conductivity of the polymer compound and the ease of synthesis of the raw material monomer.
  • a group in which (2 + n4 + n5) hydrogen atoms directly bonded to the carbon atoms constituting the ring are removed from the ring represented by 25, 31 to 35, 43, 46 to 48 or 51 is preferable.
  • Ar 2 represents a hydrogen atom (n4 + n5) from the divalent groups represented by the formulas 52, 53, and 55 to 63 exemplified in the description of the structural unit represented by the formula (12). It is preferable that the group is removed.
  • the proportion of M 1 in the polymer compound of the present invention being H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound. 1% or more and 50% or less. Therefore, when the polymer compound of the present invention has one or more structural units selected from the group consisting of the structural unit represented by formula (12) and the structural unit represented by formula (14), A group in which M 1 is H + , a group in which M 1 is a metal cation, or a group that is an ammonium cation that may have a substituent. And both are included.
  • Examples of the structural unit represented by the formula (12) include structural units that may have a substituent represented by the following formula. From the viewpoint of ease of synthesis of the polymer compound and electron transport properties. Are preferably structural units represented by the formulas 52a 1 , 55a 1 , 55b 1 , 55c 1 , 56b 1 , 57b 1 , 58a 1 , 59b 1 , 60b 1 , 61a 1 , 61b 1 , 61c 1 , 63b 1. .
  • R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 and m 2 have the same meaning as described above.
  • each of the plurality is the same or different. It may be.
  • R 2 is an (m1 + m2) number of (m1 + m2) atoms directly bonded to a carbon atom constituting the ring from an optionally substituted aryl group having 6 to 30 carbon atoms.
  • a group excluding a hydrogen atom is preferred.
  • the aryl group having 6 to 30 carbon atoms which may have a substituent is a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, or these A group in which at least one hydrogen atom in the group is substituted with a substituent is preferable.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, each of the plurality may be the same as or different from each other.
  • Examples of the structural unit represented by the formula (12) include structural units that may have a substituent represented by the following formula.
  • M has the same meaning as described above.
  • Examples of the structural unit represented by the formula (14) include structural units that may have a substituent represented by the following formula. From the viewpoint of ease of synthesis of the polymer compound and electron transport properties. Are preferably structural units represented by the formulas 52a 2 , 55a 2 , 55b 2 , 55c 2 , 56b 2 , 57b 2 , 58a 2 , 59a 2 , 60b 2 , 61a 2 , 61c 2 or 63a 2 .
  • R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 , m 2 , R 5 , m 3, R 6 and m 4 are the same as described above. Meaning.
  • R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 , m 2 , R 5 , m 3, R 6 and m 4 Each of the plurality may be the same as or different from each other.
  • R 2 is an (m1 + m2) number of (m1 + m2) atoms directly bonded to a carbon atom constituting the ring from an optionally substituted aryl group having 6 to 30 carbon atoms.
  • a group excluding a hydrogen atom is preferred.
  • R 5 is an m 3 hydrogen atom directly bonded to the carbon atom constituting the ring from the aryl group having 6 to 30 carbon atoms which may have a substituent. It is preferable that it is group remove
  • R 6 is an m4 hydrogen atom directly bonded to a carbon atom constituting the ring from an optionally substituted aryl group having 6 to 30 carbon atoms. It is preferable that it is group remove
  • the aryl group having 6 to 30 carbon atoms which may have a substituent is a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, or these A group in which at least one hydrogen atom in the group is substituted with a substituent is preferable.
  • substituents examples include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
  • Examples of the structural unit represented by the formula (14) include structural units that may have a substituent represented by the following formula.
  • M has the same meaning as described above.
  • the polymer compound used in the present invention may further have a structural unit represented by the formula (17).
  • Ar 3 is a divalent aromatic group which may have a substituent or a divalent aromatic amine residue which may have a substituent
  • X ′ is a substituted group.
  • m5 and m6 are each independently 0 or 1 Provided that at least one of m5 and m6 is 1.
  • Ar 8 in the formula (24) is a divalent aromatic group which may have a substituent or a divalent aromatic amine residue which may have a substituent.
  • Examples of the divalent aromatic group represented by Ar 3 in the formula (17) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • Examples of the divalent aromatic group include a monocyclic aromatic ring (for example, a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, 1,3 , 5-triazine ring, furan ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, oxadiazole ring, azadiazole ring, etc.) and two hydrogen atoms directly bonded to the carbon atoms constituting the ring 2 divalent groups removed; 2 hydrogen atoms directly bonded to carbon atoms constituting the ring are removed from a condensed polycyclic aromatic ring having a structure in which two or
  • a ring is composed of a bridged polycyclic aromatic ring having a structure in which two aromatic rings are bridged by a divalent group such as a methylene group, an ethylene group, a carbonyl group, an imino group, or a methanetetrayl group A divalent group in which two hydrogen atoms directly bonded to the carbon atom to be removed are removed.
  • the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of the solubility of the polymer compound.
  • the number of linked aromatic rings is preferably 2 to 4, more preferably 2 or 3, and still more preferably 2 from the viewpoint of solubility.
  • the number of bridged aromatic rings is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of solubility of the polymer compound.
  • Examples of the monocyclic aromatic ring include rings represented by the following formulas.
  • Examples of the condensed polycyclic aromatic ring include rings represented by the following formulas.
  • Examples of the aromatic ring assembly include a ring represented by the following formula.
  • Examples of the Aribashi polycyclic aromatic ring include the following rings.
  • the divalent aromatic group represented by Ar 3 is represented by the formulas 52 to 67, 68 to 83, 89 to 93
  • a divalent group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from the ring represented by 104 to 106, 108 or 109 is preferably represented by the formulas 52 to 57, 66, 67, It is more preferably a divalent group obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting the ring from the ring represented by 89, 91, 93, 104, 105, 108 or 109.
  • the above divalent aromatic group may have a substituent.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above.
  • Examples of the divalent aromatic amine residue represented by Ar 3 in formula (17) include a group represented by formula (18).
  • Ar 4 , Ar 5 , Ar 6 and Ar 7 are each independently an arylene group which may have a substituent or a divalent heterocyclic ring which may have a substituent.
  • Ar 8 , Ar 9 and Ar 10 are each independently an aryl group which may have a substituent or a monovalent heterocyclic group which may have a substituent, and m7 and m8 is each independently 0 or 1.
  • Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group and monovalent heterocyclic group may have include, for example, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, Aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue , Substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryl Oxycarbony
  • substituents examples include a vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, and small ring (cyclohexane).
  • the carbon atom in Ar 4 and the carbon atom in Ar 6 may be directly bonded.
  • the carbon atom in Ar 4 and the carbon atom in Ar 6 may be bonded via a divalent group such as —O— or —S—.
  • Ar 8 , Ar 9 and Ar 10 are each independently an aryl group which may have a substituent, or a monovalent heterocyclic group which may have a substituent.
  • the aryl group include the same groups as the aryl groups exemplified in the description of Q 1 described above.
  • the monovalent heterocyclic group examples of the monovalent aromatic group include the same groups as the monovalent heterocyclic group exemplified in the above description of Q 1 .
  • substituent include the same groups as the monovalent heterocyclic group exemplified in the description of Q 1 described above.
  • Ar 4 , Ar 5 , Ar 6 and Ar 7 are an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent.
  • the arylene group include the remaining atomic groups obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting an aromatic ring from an aromatic hydrocarbon.
  • the arylene group is selected from a group having a benzene ring, a group having a condensed ring, a group in which two or more selected from an independent benzene ring and a condensed ring are single-bonded, and an independent benzene ring and condensed ring.
  • Examples include a group in which two or more are bonded via a divalent organic group (for example, an alkenylene group such as a vinylene group).
  • the arylene group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms.
  • Examples of arylene groups include phenylene groups, biphenylene groups, C 1 -C 17 alkoxyphenylene groups, C 1 -C 17 alkylphenylene groups, 1-naphthylene groups, 2-naphthylene groups, 1-anthracenylene groups, 2-anthracenylene groups. And 9-anthracenylene group.
  • a hydrogen atom in the arylene group may be substituted with a fluorine atom.
  • Examples of the corresponding arylene group include a tetrafluorophenylene group.
  • a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
  • the divalent heterocyclic group represented by Ar 4 , Ar 5 , Ar 6 and Ar 7 includes the remaining atomic group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from the heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the divalent heterocyclic group may have a substituent.
  • the divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms.
  • the number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of the divalent heterocyclic group include a thiophene diyl group, a C 1 -C 12 alkylthiophene diyl group, a pyrrole diyl group, a furandiyl group, a pyridinediyl group, a C 1 -C 12 alkylpyridine diyl group, a pyridazine diyl group, pyrimidinediyl group, pyrazinediyl group, a triazine-diyl group, pyrrolidinediyl group, piperidine-diyl group, quinolinediyl group, and include isoquinolinediyl group, among others, a thiophene-diyl group,
  • Examples of the substituent that the arylene group and the divalent heterocyclic group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
  • the divalent aromatic amine residue represented by the formula (18) is a group obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting the ring from the aromatic amine represented by the following formulas 115 to 124. Is exemplified. From the viewpoint of the stability to the hole current of the polymer compound, the divalent aromatic amine residue represented by the formula (18) is a ring formed from the aromatic amine represented by the formula 115, 116, 117, or 120. A group obtained by removing two hydrogen atoms directly bonded to the constituting carbon atom is preferred.
  • the aromatic amines represented by formulas 115 to 124 may have a substituent as long as a divalent aromatic amine residue can be generated.
  • substituents include the same substituents as those exemplified in the description of Q 1 and the group represented by the formula (2), and the group represented by the formula (2). It is preferable that When a plurality of substituents are present, they may be the same as or different from each other.
  • X ′ represents an imino group which may have a substituent, a silylene group which may have a substituent, an ethenylene group or an ethynylene group which may have a substituent.
  • substituents that the imino group, silyl group or ethenylene group may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, An alkyl group having 1 to 20 carbon atoms such as a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, a 3,7-dimethylo
  • X ′ is preferably an imino group, an ethenylene group or an ethynylene group.
  • M5 and m6 are each independently 0 or 1, and at least one of m5 and m6 is 1. From the viewpoint of electron transport properties of the polymer compound, it is preferable that m5 is 1 and m6 is 0.
  • the polymer compound of the present invention preferably contains a structural unit represented by the formula (12) and a structural unit represented by the formula (14).
  • the ratio of the total of these structural units to the total structural units (excluding the terminal structural units) contained in the polymer compound is 30 to 100 mol% from the viewpoint of the luminous efficiency of the electroluminescent device. More preferred.
  • terminal structural unit (terminal group) of the polymer compound of the present invention examples include a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert- Butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group,
  • the terminal structural units When there are a plurality of the terminal structural units, they may be the same as or different from each other.
  • the polymer compound refers to a compound having a polystyrene-equivalent weight average molecular weight of 1 ⁇ 10 3 or more.
  • the lower limit of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 ⁇ 10 3 or more, and preferably 2 ⁇ 10 3 or more. Is more preferably 3 ⁇ 10 3 or more, and particularly preferably 5 ⁇ 10 3 or more.
  • the upper limit of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 ⁇ 10 8 or less, and more preferably 1 ⁇ 10 7 or less.
  • the range of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 , more preferably 2 ⁇ 10 3 to 1 ⁇ 10 7 , and more preferably 3 ⁇ 10 3. ⁇ still more preferably from 1 ⁇ 10 7, particularly preferably 5 ⁇ 10 3 ⁇ 1 ⁇ 10 7.
  • the polymer compound preferably has a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more.
  • the upper limit of the polystyrene-equivalent number average molecular weight of the polymer compound is preferably 5 ⁇ 10 7 or less, more preferably 1 ⁇ 10 7 or less, and 5 ⁇ 10 6 or less. More preferably.
  • the range of the number average molecular weight in terms of polystyrene of the polymer compound is preferably 1 ⁇ 10 3 to 5 ⁇ 10 7 , more preferably 1 ⁇ 10 3 to 1 ⁇ 10 7 , and more preferably 1 ⁇ 10 3. More preferably, it is ⁇ 5 ⁇ 10 6 .
  • the lower limit of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 ⁇ 10 3 or more.
  • the upper limit of the polystyrene equivalent weight average molecular weight of the polymer compound is preferably 5 ⁇ 10 5 or less, more preferably 5 ⁇ 10 4 or less, and 3 ⁇ 10 3 or less. More preferably.
  • Range of weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 ⁇ 10 3 ⁇ 5 ⁇ 10 5, more preferably 1 ⁇ 10 3 ⁇ 5 ⁇ 10 4, 1 ⁇ 10 3 More preferably, it is ⁇ 3 ⁇ 10 3 .
  • the polystyrene-equivalent number average molecular weight and weight average molecular weight of the polymer compound of the present invention can be determined, for example, using gel permeation chromatography (GPC).
  • the polymer compound used in the present invention is preferably a conjugated polymer compound.
  • the polymer compound of the present invention has one unshared electron pair possessed by multiple bonds and / or atoms such as nitrogen atoms and oxygen atoms in the main chain. It means that it includes a region that is continuous across a single bond.
  • the polymer compound is a conjugated polymer compound
  • ⁇ (multiple bonds in the polymer compound and / or atoms such as nitrogen atom and oxygen atom have Calculated by the number of atoms on the main chain included in the region where the unshared electron pairs are connected across one single bond) / (number of all atoms on the main chain in the polymer compound) ⁇ ⁇ 100
  • the ratio (%) is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, particularly preferably 80% or more, and 90% or more. Particularly preferred.
  • the lower limit of the minimum unoccupied molecular orbital (LUMO) orbital energy of the polymer compound is preferably ⁇ 5.0 eV or more, and ⁇ 4 More preferable is 5 eV or more.
  • the upper limit of the LUMO orbital energy of the polymer compound is preferably ⁇ 2.0 eV or less.
  • the range of the LUMO orbital energy of the polymer compound is preferably from ⁇ 5.0 eV to ⁇ 2.0 eV, more preferably from ⁇ 4.5 eV to ⁇ 2.0 eV.
  • the lower limit of the orbital energy of the highest occupied molecular orbital (HOMO) of the polymer compound of the present invention is preferably ⁇ 6.0 eV or more, more preferably ⁇ 5.5 eV or more.
  • the upper limit of the HOMO orbital energy of the polymer compound is preferably ⁇ 3.0 eV or less.
  • the range of the orbital energy of HOMO of the polymer compound is preferably from -6.0 eV to -3.0 eV, more preferably from -5.5 eV to -3.0 eV.
  • the orbital energy of HOMO is usually lower than that of LUMO.
  • the orbital energy of the HOMO of the polymer compound can be obtained by measuring the ionization potential of the polymer compound and using the obtained ionization potential as the orbital energy.
  • the orbital energy of LUMO of a polymer compound can be obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy.
  • a photoelectron spectrometer can be used to measure the ionization potential.
  • the energy difference between HOMO and LUMO is determined from the absorption terminal by measuring the absorption spectrum of the polymer compound using an ultraviolet spectrophotometer, visible spectrophotometer, or near infrared spectrophotometer.
  • Examples of the polymer compound of the present invention include polymer compounds represented by the following formulas.
  • these structural units are randomly arranged.
  • the proportion of the right structural unit is (100-p) mol%.
  • p is preferably from 30 to 99, more preferably from 50 to 99.
  • the proportion of the structural unit on the left is p mol%
  • the proportion of the central structural unit is q mol%
  • the structural unit on the right The ratio of is (100-pq) mol%.
  • p is preferably from 1 to 50, and more preferably from 1 to 30.
  • q is preferably 1 to 50, and more preferably 1 to 30.
  • structural units other than the structural unit represented by the following formula may be further included, and in this case, it can be expressed in the same manner as below. These structural units are arranged at random.
  • n is the degree of polymerization, and any hydrogen atom in the formula may be replaced with a substituent within a synthesizable range.
  • substituents include the same groups as the substituents exemplified in the description regarding Q 1 described above.
  • a a is a divalent group including a group represented by Formula (1) and a group represented by Formula (2), and Y 3 and Y 4 are each independently And represents a group involved in condensation polymerization.
  • a aa is a divalent group including a group represented by the formula (22) and a group represented by the formula (2).
  • Y 3 and Y 4 are each independently a group involved in condensation polymerization.
  • ) -R 7 - ⁇ (Q 3 ) n6 -Y 5 ⁇ m9 (22) (In the formula (22), R 7 is a (1 + m9) valent organic group.
  • Q 3 represents a divalent organic group.
  • Y 5 is —CO 2 R ⁇ , —SO 3 R ⁇ , —SO 2 R ⁇ , —PO 3 (R ⁇ ) 2, or —B (R ⁇ ) 2 .
  • n6 is an integer of 0 or more.
  • R ⁇ is a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted aryl group having 6 to 50 carbon atoms.
  • m9 represents an integer of 1 or more.
  • each Q 3 may be the same as or different from each other.
  • each Y 5 may be the same as or different from each other.
  • each n6 may be the same as or different from each other.
  • each R ⁇ compound may be the same as or different from each other.
  • Examples of the compound having two groups involved in condensation polymerization include compounds represented by formula (19) and formula (20).
  • Y 6 -A b -Y 7 (19) (In the formula (19), Ab is a divalent aromatic group optionally having a substituent represented by Ar 3 or a divalent aromatic amine residue optionally having a substituent.
  • Y 6 and Y 7 each independently represent a group involved in condensation polymerization.
  • Y 8 -A c -Y 9 (In the formula (20), Ac is a structural unit represented by a divalent aromatic group having a group represented by the formula (2) or a divalent aromatic amine residue, and the divalent aromatic Examples of the group and the divalent aromatic amine residue include the same groups as those described above for Ar 3 , and Y 8 and Y 9 each independently represent a group involved in condensation polymerization. )
  • the compound represented by the formula (19) and / or the compound represented by the formula (20) can be polymerized to produce a polymer compound further having a structural unit represented by -A b- and / or a structural unit represented by -A c- .
  • Examples of the groups (Y 3 , Y 4 , Y 6 , Y 7 , Y 8 and Y 9 ) involved in the condensation polymerization in the formulas (21), (21 ′), (19) and (20) include, for example, hydrogen Atoms, halogen atoms, alkyl sulfonate groups, aryl sulfonate groups, aryl alkyl sulfonate groups, boric acid ester residues, sulfonium methyl groups, phosphonium methyl groups, phosphonate methyl groups, monohalogenated methyl groups, -B (OH) 2 , formyl Groups, cyano groups and vinyl groups.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the sulfonium methyl group that can be selected as a group involved in the condensation polymerization include the following formula: -CH 2 S + Me 2 E - , or, -CH 2 S + Ph 2 E - (In the formula, E represents a halogen atom. Ph represents a phenyl group, and the same shall apply hereinafter.) The group represented by these is illustrated.
  • Examples of the phosphonium methyl group that can be selected as a group involved in the condensation polymerization include the following formula: -CH 2 P + Ph 3 E - (In the formula, E has the same meaning as described above.) The group represented by these is illustrated.
  • Examples of the phosphonate methyl group that can be selected as the group involved in the condensation polymerization include the following formula: -CH 2 PO (OR j ) 2 (In the formula, R j represents an alkyl group, an aryl group, or an arylalkyl group.) The group represented by these is illustrated.
  • Examples of the monohalogenated methyl group that can be selected as the group involved in the condensation polymerization include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
  • a group suitable as a group involved in the condensation polymerization varies depending on the type of polymerization reaction.
  • a reaction using a zerovalent nickel complex such as a Yamamoto coupling reaction
  • a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group can be mentioned.
  • a reaction using a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction
  • an alkyl sulfonate group, a halogen atom, a boric acid ester residue, and —B (OH) 2 can be mentioned.
  • oxidative polymerization using an oxidizing agent or electrochemically for example, a hydrogen atom is used.
  • the compound (monomer) represented by the formula (21) having a plurality of groups involved in condensation polymerization is converted into the formula (19) or ( 20)
  • a polymerization method in which the compound is dissolved in an organic solvent and reacted at a temperature not lower than the melting point of the organic solvent and not higher than the boiling point using an alkali or an appropriate catalyst is employed. May be.
  • the polymerization method for example, “Organic Reactions”, Vol.
  • condensation polymerization reaction In producing the polymer compound of the present invention, a known condensation polymerization reaction may be employed depending on the group involved in the condensation polymerization.
  • the condensation polymerization reaction include a method of polymerizing a corresponding monomer by a Suzuki coupling reaction, a method of polymerizing a corresponding monomer by a Grignard reaction, a method of polymerizing by a Ni (0) complex, and an oxidizing agent such as FeCl 3.
  • condensation polymerization reactions a method of polymerizing by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, and a method of polymerizing a corresponding monomer by a nickel zero-valent complex are preferable because the structure of the resulting polymer compound can be easily controlled. .
  • Another preferred embodiment of the method for producing the polymer compound of the present invention is a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group as a group involved in condensation polymerization.
  • the raw material monomer used in such a method include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • a halogen atom as a group involved in condensation polymerization, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, —B (OH) 2 , And the total number (J) of moles of halogen atoms, alkyl sulfonate groups, aryl sulfonate groups, and arylalkyl sulfonate groups, which have a group selected from the group consisting of boric acid ester residues, and all the raw material monomers have, A raw material monomer in which the ratio of the total number of moles (K) of —B (OH) 2 and boric acid ester residues (K) is substantially 1 (usually, K / J is in the range of 0.7 to 1.2), Examples include a method of condensation polymerization in the presence of a nickel catalyst or a palladium catalyst.
  • An organic solvent can be used when producing the polymer compound. Generally, it is preferable to use an organic solvent that has been sufficiently deoxygenated to suppress side reactions, although it varies depending on the compound or reaction used.
  • the reaction is preferably allowed to proceed under an inert atmosphere.
  • the organic solvent it is preferable to perform a dehydration treatment in the same manner as the deoxygenation treatment. However, this is not the case in the case of reaction in a two-phase system with water such as Suzuki coupling reaction.
  • organic solvent examples include the following organic solvents: Saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane; Unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, xylene; Alcohols such as methanol, ethanol, propanol, isopropanol, butanol and tert-butyl alcohol; carboxylic acids such as formic acid, acetic acid and propionic acid; Ethers such as dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran (hereinafter referred to as “THF”), tetrahydropyran, dioxane; Amines such as trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine, pyridine; Amides such as N, N-
  • organic solvents may be used alone or in combination of two or more.
  • organic solvents ethers are preferable from the viewpoint of reactivity, and THF and diethyl ether are more preferable. From the viewpoint of reaction rate, toluene and xylene are preferred.
  • an alkali or a catalyst to the reaction solution in order to react the raw material monomers. What is necessary is just to select an alkali and a catalyst according to the superposition
  • a method of mixing the alkali and catalyst into the reaction solution a method of slowly adding an alkali or catalyst solution while stirring the reaction solution under an inert atmosphere such as argon gas or nitrogen gas, and an alkali or catalyst A method of slowly adding the reaction solution to the solution is exemplified.
  • the terminal group may be protected with a stable group. If the polymerization active group remains as it is at the terminal group, the light emission characteristics and life characteristics of the obtained electroluminescent device may be deteriorated.
  • the polymer compound of the present invention is a conjugated polymer compound and the terminal group is protected with a stable group as described above, it has a conjugated bond continuous with the conjugated structure of the main chain of the polymer compound. It is preferable.
  • the conjugated structure include a structure bonded to an aryl group or a heterocyclic group via a carbon-carbon bond.
  • the stable group for protecting the end group include a monovalent aromatic group.
  • the polymer compound containing no ions is synthesized in the first step, and the polymer compound containing ions is synthesized from the polymer compound in the second step.
  • the synthesis method will be described below.
  • a more preferred embodiment of the method includes a method of polymerizing a polymer compound having no cation in the first step and producing a polymer compound containing a cation from the polymer compound in the second step.
  • the reaction in the first step include a method of polymerizing a polymer compound having no cation by the above-described condensation polymerization reaction.
  • the reaction in the second step for example, the polymer compound obtained in the first step, metal hydroxide, metal carbonate, alkylammonium hydroxide, etc.
  • Examples thereof include a method of reacting at a temperature not lower than the melting point of the organic solvent and not higher than the boiling point, and a method of converting a cation to H + with hydrochloric acid, sulfuric acid, acetic acid or the like as necessary after the reaction.
  • the method of selecting and using the compound represented by said Formula (21 ') can be utilized suitably.
  • the ratio of M 1 in the polymer compound to H + is relative to all M 1 in the polymer compound. Therefore, it is preferably 0.1% or more and 30% or less, and more preferably 0.1% or more and 20% or less.
  • the proportion of M 1 in the polymer compound of the present invention being H + can be measured by NMR spectrum.
  • the layer containing the polymer compound of the present invention is preferably substantially non-luminescent when used in an electroluminescent device.
  • a layer containing a certain polymer compound is substantially non-luminous means as follows. First, in Example 2 below, an electroluminescent element E is produced in the same manner as in Example 2 except that the target polymer compound is used instead of the conjugated polymer compound 1. On the other hand, the electroluminescent element C1 is manufactured as described in Comparative Example 1 below.
  • the electroluminescent element E has a layer containing a polymer compound, but the electroluminescent element C1 is different from the electroluminescent element E and the electroluminescent element C1 only in that it does not have a layer containing a polymer compound.
  • a forward voltage of 10 V is applied to the electroluminescent element E and the electroluminescent element C1, and an emission spectrum is measured.
  • the wavelength ⁇ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element C1 is obtained.
  • the emission spectrum obtained for the electroluminescent element C1 is normalized by setting the emission intensity at the wavelength ⁇ to 1, and the normalized emission amount S 0 is calculated by integrating the wavelength.
  • the emission spectrum obtained for the electroluminescent element E is also normalized, and the normalized emission amount S is calculated by integrating the wavelength.
  • the value calculated by (S ⁇ S 0 ) / S 0 ⁇ 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent element C1 having no layer containing a polymer compound.
  • the layer containing the polymer compound used is usually substantially non-luminescent, and (S The value calculated by ⁇ S 0 ) / S 0 ⁇ 100 is preferably 15% or less, and more preferably 10% or less.
  • the electronic device of the present invention includes a layer containing a polymer compound having a structural unit containing a group represented by the formula (1) and a group represented by the formula (2) as a charge injection layer and / or a charge transport layer.
  • the proportion of M 1 in the polymer compound being H + is 0.1% to 50% with respect to all M 1 in the polymer compound.
  • the electronic device of the present invention usually includes a first electrode, a second electrode, and a light emitting layer or a charge separation layer in addition to the layer containing the polymer compound.
  • the light emitting layer or the charge separation layer is located between the first electrode and the second electrode.
  • the electronic device of the present invention can be used for elements such as electroluminescent elements and photoelectric conversion elements.
  • an electronic device is used for an electroluminescent element (hereinafter sometimes referred to as “electroluminescent element of the present invention”)
  • the electronic device has a light emitting layer.
  • the photoelectric conversion element of the present invention When an electronic device is used for a photoelectric conversion element (hereinafter sometimes referred to as “the photoelectric conversion element of the present invention”), the electronic device has a charge separation layer.
  • the electroluminescent element of the present invention is an electroluminescent element having a layer containing the above-described polymer compound.
  • the electroluminescent element of the present invention is used in the present invention, for example, located in the cathode, the anode, the light emitting layer located between the cathode and the anode, and between the light emitting layer and the cathode or the anode. It has a layer containing a polymer compound.
  • the electroluminescent element of the present invention can have a substrate as an optional component, and on the surface of the substrate, the cathode, the anode, the light emitting layer, the layer containing the polymer compound used in the present invention, and an optional It can be set as the structure which provided the component.
  • Examples of the layer structure of the electroluminescent device of the present invention include the following embodiments: (1) A mode in which an anode is provided on a substrate, a light emitting layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and a cathode is laminated thereon. (2) A mode in which an anode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated, and a cathode is laminated further thereon.
  • An anode is provided on the substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and A mode in which a cathode is laminated on the upper layer; (4) A mode in which a cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated thereon, and an anode is laminated thereon.
  • a cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated thereon, and a layer containing the polymer compound of the present invention is laminated thereon. Further, an aspect in which an anode is further laminated thereon
  • a layer having another function such as a protective layer, a buffer layer, a reflective layer, or a hole blocking layer may be further provided.
  • the configuration of the electroluminescent element will be described in detail later. Further, when the sealing film or the sealing substrate is covered with the electroluminescent element, a light emitting device in which the electroluminescent element is blocked from the outside air is formed.
  • the polymer compound may be mixed with a known material.
  • a known material for example, high molecular charge transport materials, low molecular charge transport materials, conductive carbon such as graphene, fullerene, and carbon nanotubes, electrically conductive compounds such as metals, alloys, metal oxides, metal sulfides, and mixtures thereof Is mentioned.
  • the charge transport material a material constituting the hole transport layer or a material constituting the electron transport layer may be used.
  • the metal, alloy, metal oxide, and metal sulfide a material constituting the anode or a material constituting the cathode may be used.
  • an organic material that does not have a light emitting function and a charge transporting function may be mixed as long as the light emitting function as the light emitting element is not impaired.
  • the electroluminescent element of the present invention may be any of an electroluminescent element of a so-called bottom emission type in which light is taken from the substrate side, a so-called top emission type in which light is taken from the side opposite to the substrate, and a double-sided light-emitting type.
  • Examples of a method for forming a layer containing the polymer compound of the present invention include a method of forming a film using a solution containing the polymer compound.
  • Examples of the solvent used for film formation from a solution include water, alcohols, ethers, esters, nitrile compounds, nitro compounds, alkyl halides, aryl halides, thiols, sulfides, and sulfoxides. , Thioketones, amides, carboxylic acids, one kind of solvent, and two or more kinds of mixed solvents selected from these.
  • the solubility parameter of the solvent is preferably 9.3 or more.
  • Examples of the solvent having a solubility parameter of 9.3 or more include water (21.0), methanol (12.9), ethanol (11 .2), 2-propanol (11.5), 1-butanol (9.9), tert-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7) N, N-dimethylformamide (11.5), dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.
  • the solubility parameter, ⁇ 1 is the volume fraction of solvent 1
  • ⁇ 2 is the solubility parameter of solvent 2
  • ⁇ 2 is the volume fraction of solvent 2.
  • Examples of the film forming method from a solution include a coating method and a printing method. Specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method.
  • a spin coating method a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method.
  • Method slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method.
  • the thickness of the layer containing the polymer compound of the present invention may be selected so that the optimum value varies depending on the polymer compound used, and the driving voltage and the light emission efficiency are moderate values, preferably 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm is more preferable, and 2 nm to 200 nm is still more preferable. From the viewpoint of protecting the light emitting layer, the thickness is preferably 5 nm to 1 ⁇ m.
  • An electroluminescent element generally has a cathode, an anode, and a light emitting layer positioned between the cathode and the anode. Furthermore, you may provide the component.
  • one or more of a hole injection layer and a hole transport layer can be provided between the anode and the light emitting layer.
  • a hole transport layer can be provided between the light emitting layer and the hole injection layer.
  • an electron injection layer and an electron transport layer can be provided between the cathode and the light emitting layer.
  • an electron transport layer can be provided between the light emitting layer and the electron injection layer.
  • the layer containing the polymer compound of the present invention can be used as a layer such as a hole injection layer, a hole transport layer, an electron injection layer, or an electron transport layer.
  • the first electrode is an anode and the second electrode is a cathode.
  • the first electrode is a cathode and the second electrode is an anode.
  • the anode is an electrode that supplies holes to layers such as a hole injection layer, a hole transport layer, and a light emitting layer.
  • the cathode is an electrode that supplies electrons to layers such as an electron injection layer, an electron transport layer, and a light emitting layer.
  • the light emitting layer is a function that receives holes from the layer adjacent to the anode side and receives electrons from the layer adjacent to the cathode side when an electric field is applied, and moves the received charges (electrons and holes) by the force of the electric field. And a layer having a function of providing a field for recombination of electrons and holes and connecting recombination to light emission.
  • the electron injection layer is a layer adjacent to the cathode and has a function of receiving electrons from the cathode, and if necessary, a function of transporting electrons, a function of blocking holes injected from the anode, and light emission. A layer having any function of supplying electrons to the layer.
  • the electron transport layer is a layer mainly having a function of transporting electrons, and if necessary, a function of receiving electrons from the cathode, a function of blocking holes injected from the anode, and supplying electrons to the light emitting layer. A layer having any of the functions.
  • the hole injection layer is a layer adjacent to the anode and is a layer having a function of receiving holes from the anode, and if necessary, a function of transporting holes, a function of supplying holes to the light emitting layer, and A layer having any function of blocking electrons injected from the cathode.
  • the hole transport layer is a layer mainly having a function of transporting holes, and if necessary, a function of receiving holes from the anode, a function of supplying holes to the light emitting layer, and electrons injected from the cathode. A layer having any of the functions of blocking the above.
  • the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer.
  • the electroluminescent element of the present invention can have the following layer configuration (a), or any of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer from the layer configuration (a). It is also possible to have a layer structure in which one or more layers are omitted.
  • the layer containing the polymer compound of the present invention may be used as one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. it can.
  • the sign “-” indicates that each layer is laminated adjacently.
  • (Hole transport layer) indicates a layer structure including one or more hole transport layers.
  • (Electron transport layer) indicates a layer structure including one or more electron transport layers. The same applies to the description of the layer structure below.
  • the electroluminescent element of the present invention can have two light emitting layers in one laminated structure.
  • the electroluminescent element can have the following layer configuration (b), or from the layer configuration (b), one of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and an electrode. It is also possible to have a layer structure in which more layers are omitted.
  • the layer containing the polymer compound of the present invention is used as a layer existing between the anode and the light emitting layer closest to the anode, or between the cathode and the light emitting layer closest to the cathode. Used as an existing layer.
  • the electroluminescent element of the present invention can have three or more light emitting layers in one laminated structure.
  • the electroluminescent device may have the following layer configuration (c), or from the layer configuration (c), among the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, and the electrode. It is also possible to have a layer structure in which one or more layers are omitted.
  • the layer containing the polymer compound of the present invention is used as a layer existing between the anode and the light emitting layer closest to the anode, or between the cathode and the light emitting layer closest to the cathode. Used as an existing layer.
  • “repeating unit A” indicates a unit of a layer configuration of electrode—hole injection layer— (hole transport layer) —light emitting layer— (electron transport layer) —electron injection layer.
  • Preferred layer configurations of the electroluminescent device of the present invention include the following layer configurations (d) to (n).
  • the layer containing the polymer compound of the present invention can be used as one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • the layer containing the polymer compound of the present invention is preferably an electron injection layer or an electron transport layer.
  • the first electrode is a cathode.
  • an insulating layer may be provided adjacent to the electrode in order to improve adhesion with the electrode and / or improve injection of charge from the electrode.
  • a thin buffer layer may be inserted at the interface of the charge transport layer or the light emitting layer for the purpose of improving the adhesion of the interface and preventing mixing.
  • the substrate constituting the electroluminescent element of the present invention may be any substrate that does not chemically change when the electrodes are formed and when the organic layer is formed.
  • the substrate for example, glass, plastic, polymer film, metal film, silicon substrate, or a substrate in which these are laminated is used.
  • a commercially available product may be used as the substrate, or a substrate manufactured by a known method may be used.
  • a circuit for driving a pixel may be provided on the substrate, or a planarization film may be provided on the drive circuit.
  • the center line average roughness (Ra) of the planarizing film preferably satisfies Ra ⁇ 10 nm.
  • Ra can be measured with reference to JIS-B0651 to JIS-B0656, JIS-B0671-1, etc. based on JIS-B0601-2001 of Japanese Industrial Standards JIS.
  • the work function of the light emitting layer side surface of the anode constituting the electroluminescent device of the present invention is a viewpoint of the ability to supply holes to organic semiconductor materials used in hole injection layers, hole transport layers, interlayers, light emitting layers, etc. Therefore, it is preferably 4.0 eV or more.
  • the material constituting the anode for example, metals, alloys, conductive compounds (for example, metal oxides, metal sulfides, etc.), and mixtures thereof can be used.
  • conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), molybdenum oxide, and gold, silver, chromium, nickel, etc. And mixtures of these conductive metal oxides and these metals.
  • the anode may have a single layer structure composed of one or more of these materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the work function of the material constituting the anode of the outermost surface layer on the light emitting layer side is more preferably 4.0 eV or more.
  • a known method can be used as a method for producing the anode.
  • a vacuum deposition method a sputtering method, an ion plating method, a plating method, and a method by film formation from a solution (a mixed solution with a polymer binder may be used).
  • the thickness of the anode is usually 10 nm to 10 ⁇ m, preferably 40 nm to 500 nm.
  • the center line average roughness (Ra) of the light emitting layer side surface of the anode preferably satisfies Ra ⁇ 10 nm, and more preferably satisfies Ra ⁇ 5 nm.
  • an electron accepting compound such as UV ozone, a silane coupling agent, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, etc.
  • Surface treatment with a solution such as a solution containing The surface treatment can improve the electrical connection with the layer in contact with the anode.
  • the anode When the anode is used as a light reflecting electrode in the electroluminescent element of the present invention, the anode includes a light reflecting layer made of a highly light reflecting metal and a high work function material layer containing a material having a work function of 4.0 eV or more. A multi-layer structure in which is combined is preferable.
  • Examples of the configuration of the anode include the following configurations.
  • (I) Ag-MoO 3 (Ii) (Ag—Pd—Cu alloy) — (ITO and / or IZO) (Iii) (Al—Nd alloy) — (ITO and / or IZO) (Iv) (Mo—Cr alloy) — (ITO and / or IZO) (V) (Ag—Pd—Cu alloy) — (ITO and / or IZO) —MoO 3
  • the thickness of the light reflection layer made of a highly light reflective metal is preferably 50 nm or more, and 80 nm. More preferably.
  • the thickness of the high work function material layer including a material having a work function of 4.0 eV or more is usually in the range of 5 nm to 500 nm.
  • examples of the material constituting the hole injection layer include the following materials: Carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorene derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, starburst amines, phthalocyanine derivatives, amino-substituted chalcones Derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole) ) Derivatives, organosilane derivatives, organosilane derivatives, organosilane derivatives, organo
  • the material may be a single component or a composition composed of a plurality of components.
  • the hole injection layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions. .
  • the material illustrated as a material which comprises a positive hole transport layer can be used as a material which comprises a positive hole injection layer.
  • a method for preparing the hole injection layer As a method for preparing the hole injection layer, a known method can be used.
  • the hole injection material used for the hole injection layer is an inorganic material
  • a vacuum deposition method, a sputtering method, an ion plating method, or the like can be used.
  • a vacuum deposition method or a transfer method can be used.
  • a method of film formation from a solution a mixed solution with a polymer binder may be used
  • the like can be used.
  • the hole injection material is a polymer organic material
  • a method of film formation from a solution can be used.
  • the hole injection material is a low molecular organic material such as a pyrazoline derivative, an arylamine derivative, a stilbene derivative, or a triphenyldiamine derivative
  • the hole injection layer can also be formed using a mixed solution in which a polymer compound binder and the low molecular organic material are dispersed.
  • the polymer compound binder to be mixed does not extremely inhibit charge transport.
  • a compound that does not strongly absorb visible light is preferred.
  • the polymer compound binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof , Polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the solvent used for film formation from a solution may be any solvent that can dissolve the hole injection material.
  • the solvent include water, chlorine-containing solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as THF, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate and ethyl.
  • An ester solvent such as cellosolve acetate is exemplified.
  • Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a micro gravure printing method, a gravure printing method, a bar coating method, a roll coating method.
  • Method wire bar coating method, dip coating method, slit coating method, cap coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method And a reverse printing method.
  • a printing method for example, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, an inkjet printing method, or the like
  • a nozzle coating method for example, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, an inkjet printing method, or the like
  • a layer lower layer
  • Solvent insolubilization methods include, for example, a method of adding a crosslinking group to a polymer compound and crosslinking to insolubilize, or mixing a low molecular compound having a crosslinking group having an aromatic ring typified by aromatic bisazide as a crosslinking agent.
  • a method of crosslinking and insolubilization a method of mixing a low molecular compound having a crosslinking group not having an aromatic ring represented by an acrylate group as a crosslinking agent, crosslinking and insolubilizing, and exposing the lower layer to ultraviolet light to crosslink And a method of insolubilizing in an organic solvent used for the production of the upper layer, and a method of insolubilizing the organic solvent used in the production of the upper layer by heating and crosslinking the lower layer.
  • the heating temperature is usually 100 ° C. to 300 ° C.
  • the time is usually 1 minute to 1 hour.
  • Other methods of laminating without dissolving the lower layer other than by cross-linking include, for example, a method using different polar solutions for the production of adjacent layers.
  • Specific examples of the method include a method in which a water-soluble polymer compound is used for the lower layer and an oil-soluble polymer compound is used for the upper layer so that the lower layer does not dissolve even when applied.
  • the thickness of the hole injection layer varies depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 10 nm to 100 nm.
  • holes transport layer examples of the material constituting the hole transport layer include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorene derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones.
  • Derivatives phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrins Compounds, polysilane compounds, poly (N-vinylcarbazole) derivatives, organic silane derivatives, and polymers containing these structures; aniline copolymers, thiophene It includes organic conductive materials such as polypyrrole; oligomers, conductive polymers and oligomers such as polythiophene.
  • the material may be a single component or a composition comprising a plurality of components.
  • the hole transport layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions. .
  • the material illustrated as a material which comprises a positive hole injection layer can be used as a material which comprises a positive hole transport layer.
  • Examples of the method for producing the hole transport layer and the like include the same methods as those for producing the hole injection layer.
  • Examples of the method by film formation from a solution include a printing method and a coating method. Specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip method, and the like. Coating method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing And reversal printing.
  • a vacuum deposition method and a transfer method are usually used.
  • Examples of the solvent used for film formation from a solution include the solvents exemplified in the film formation method of the hole injection layer.
  • the lower layer can be insolubilized by the same method as exemplified in the film formation method of the hole injection layer.
  • the thickness of the hole transport layer differs depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 100 nm.
  • the light emitting layer contains a polymer compound
  • the polymer compound include polyfluorene derivatives, polyparaphenylene vinylene derivatives, polyphenylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, polydialkylfluorenes, Conjugated polymer compounds such as polyfluorene benzothiadiazole and polyalkylthiophene can be preferably used.
  • the light emitting layer containing the polymer compound may be a polymer dye compound such as a perylene dye, a coumarin dye, or a rhodamine dye, and / or rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, or Nile Red. , Coumarin 6, quinacridone and other low molecular dye compounds may be contained.
  • a polymer dye compound such as a perylene dye, a coumarin dye, or a rhodamine dye, and / or rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, or Nile Red.
  • Coumarin 6, quinacridone and other low molecular dye compounds may be contained.
  • the light emitting layer containing the polymer compound includes naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, dyes such as polymethine, xanthene, coumarin, and cyanine, metal complexes of 8-hydroxyquinoline and derivatives thereof, A metal complex emitting phosphorescence such as aromatic amine, tetraphenylcyclopentadiene and derivatives thereof, and tetraphenylbutadiene and derivatives thereof, and tris (2-phenylpyridine) iridium may be contained.
  • the light emitting layer may be composed of a composition of a non-conjugated polymer compound and a compound selected from light emitting organic compounds such as the organic dye and the metal complex.
  • Non-conjugated polymer compounds include, for example, polyethylene, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone Examples thereof include resins, phenoxy resins, polyamides, ethyl cellulose, vinyl acetate, ABS resins, polyurethanes, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, and silicon resins.
  • the non-conjugated polymer compound is a carbazole derivative, triazole derivative, oxazole derivative, oxadiazole derivative, imidazole derivative, fluorene derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative in the side chain.
  • the low molecular compound include low molecular dye compounds such as rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, nile red, coumarin 6, carbazole, quinacridone, Naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, polymethine, xanthene, coumarin, cyanine, and indigo dyes, metal complexes of 8-hydroxyquinoline and derivatives thereof, metal complexes of phthalocyanine and derivatives thereof , Aromatic amines, tetraphenylcyclopentadiene and derivatives thereof, and tetraphenylbutadiene and derivatives thereof.
  • low molecular dye compounds such as rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, nile red, coumarin 6, carbazole, quinacridone, Naphthalene derivatives
  • the light emitting layer may contain a metal complex that emits phosphorescence.
  • a metal complex that emits phosphorescence examples include tris (2-phenylpyridine) iridium, thienylpyridine ligand-containing iridium complex, phenylquinoline ligand-containing iridium complex, and triazacyclononane skeleton-containing terbium complex.
  • the material may be a single component or a composition comprising a plurality of components.
  • the light emitting layer may have a single-layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions.
  • Examples of the method for forming the light emitting layer include the same method as that for forming the hole injection layer.
  • Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method.
  • a sublimable compound material is used as the light emitting layer material, a vacuum deposition method or a transfer method is usually used.
  • Examples of the solvent used for film formation from a solution include the solvents exemplified in the method for forming a hole injection layer.
  • the layer previously applied is dissolved in the solvent contained in the solution of the layer to be applied later.
  • the lower layer can be insolubilized in the same manner as exemplified in the method for forming the hole injection layer.
  • the thickness of the light emitting layer varies depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate values. Usually, the thickness is 5 nm to 1 ⁇ m, preferably 10 nm to 500 nm. Preferably, it is 30 nm to 200 nm.
  • Electrode transport layer As a material constituting the electron transport layer, a known material can be used in addition to the polymer compound of the present invention.
  • a known material can be used in addition to the polymer compound of the present invention.
  • triazole derivatives oxadiazole derivatives, benzoquinone and derivatives thereof, anthraquinone and derivatives thereof, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, and polyfluorene and derivatives thereof Derivatives are preferred.
  • the material may be a single component or a composition comprising a plurality of components.
  • the electron transport layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions.
  • the material illustrated as a material which comprises an electron injection layer can be used as a material which comprises an electron carrying layer.
  • the same method as that for forming the hole injection layer may be used.
  • the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating.
  • a vacuum deposition method or a transfer method is usually used.
  • Examples of the solvent used for film formation from a solution include the solvents exemplified in the film formation method of the hole injection layer.
  • the lower layer can be insolubilized by the same method as exemplified in the film formation method of the hole injection layer.
  • the thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 100 nm.
  • Electron injection layer in the electroluminescent device of the present invention, as a material constituting the electron injection layer, a known material can be used in addition to the polymer compound of the present invention.
  • a known material can be used in addition to the polymer compound of the present invention.
  • the material may be a single component or a composition comprising a plurality of components.
  • the electron injection layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions.
  • the material illustrated as a material which comprises an electron carrying layer can be used as a material which comprises an electron injection layer.
  • the same method as that for forming the hole injection layer may be used.
  • the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating.
  • a sublimable compound material is used as the material for the electron injection layer, a vacuum deposition method or a transfer method is usually used.
  • Examples of the solvent used for film formation from a solution include the solvents exemplified in the film formation method of the hole injection layer.
  • the thickness of the electron injection layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 100 nm.
  • the cathode may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or a plurality of layers having different compositions.
  • the material constituting the cathode is selected from, for example, low resistance metals such as gold, silver, copper, aluminum, chromium, tin, lead, nickel, titanium, and these low resistance metals Alloys including one or more, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), conductive metal oxides such as molybdenum oxide, and these conductive metal oxides and metals And a mixture thereof.
  • low resistance metals such as gold, silver, copper, aluminum, chromium, tin, lead, nickel, titanium, and these low resistance metals Alloys including one or more, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), conductive metal oxides such as molybdenum oxide, and these conductive metal oxides and metals And a mixture thereof.
  • the cathode When the cathode has a multilayer structure, it is preferably a two-layer structure of a first cathode layer and a cover cathode layer, or a three-layer structure of a first cathode layer, a second cathode layer, and a cover cathode layer.
  • the first cathode layer refers to the layer closest to the light emitting layer in the cathode
  • the cover cathode layer refers to the layer covering the first cathode layer in the case of the two-layer structure, and in the case of the three-layer structure.
  • a layer covering the first cathode layer and the second cathode layer A layer covering the first cathode layer and the second cathode layer.
  • the work function of the material constituting the first cathode layer is preferably 3.5 eV or less.
  • the material constituting the first cathode layer is preferably a metal having a work function of 3.5 eV or less, an oxide of the metal, a fluoride of the metal, a carbonate of the metal, or a composite oxide of the metal. Used.
  • a material for the cover cathode layer a material having low resistivity and high corrosion resistance to moisture (for example, metal, metal oxide) is preferably used.
  • Examples of the material constituting the first cathode layer include metals such as alkali metals and alkaline earth metals, alloys containing one or more of the metals, oxides of the metals, halides of the metals, and carbonates of the metals. , One or more materials selected from the group consisting of the composite oxides of metals and mixtures thereof.
  • alkali metal, alkali metal oxides, alkali metal halides, alkali metal carbonates and alkali metal composite oxides include lithium, sodium, potassium, rubidium, cesium, lithium oxide, sodium oxide, potassium oxide , Rubidium oxide, cesium oxide, lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, cesium fluoride, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, potassium molybdate, potassium titanate, Examples include potassium tungstate and cesium molybdate.
  • alkaline earth metals, alkaline earth metal oxides, alkaline earth metal halides, alkaline earth metal carbonates and alkaline earth metal composite oxides include magnesium, calcium, strontium, barium, Magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, barium molybdate, barium tungstate It is done.
  • alloys containing at least one alkali metal or alkaline earth metal include Li—Al alloys, Mg—Ag alloys, Al—Ba alloys, Mg—Ba alloys, Ba—Ag alloys, and Ca—Bi—Pb—Sn. An alloy is mentioned.
  • a composition of the material exemplified as the material constituting the first cathode layer and the material exemplified as the material constituting the electron injection layer can also be used as the material constituting the first cathode layer.
  • the material constituting the second cathode layer include the same materials as the material of the first cathode layer.
  • Examples of the material constituting the cover cathode layer include low resistance metals such as gold, silver, copper, aluminum, chromium, tin, lead, nickel, titanium, alloys containing one or more of these low resistance metals, and metal nanoparticles. , Metal nanowires, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), conductive metal oxides such as molybdenum oxide, and mixtures of these conductive metal oxides and metals , Conductive metal oxide nanoparticles, graphene, fullerene, carbon nanotubes and other conductive carbon.
  • low resistance metals such as gold, silver, copper, aluminum, chromium, tin, lead, nickel, titanium, alloys containing one or more of these low resistance metals, and metal nanoparticles.
  • Examples of the configuration when the cathode has a multilayer structure include Mg / Al, Ca / Al, Ba / Al, NaF / Al, KF / Al, RbF / Al, CsF / Al, Na 2 CO 3 / Al, K 2
  • Two-layer structure of the first cathode layer and the cover cathode layer such as CO 3 / Al, Cs 2 CO 3 / Al, and LiF / Ca / Al, NaF / Ca / Al, KF / Ca / Al, RbF / Ca
  • First cathode layer, second cathode layer and cover cathode such as / Al, CsF / Ca / Al, Ba / Al / Ag, KF / Al / Ag, KF / Ca / Ag, K 2 CO 3 / Ca / Ag
  • a three-layer structure of layers may be mentioned.
  • the symbol “/” indicates that each layer is adjacent.
  • the material constituting the second cathode layer preferably has a reducing action on the material constituting the first cathode layer.
  • the presence / absence and degree of the reducing action between the materials can be estimated from, for example, the bond dissociation energy ( ⁇ rH °) between the compounds. That is, in the case of a combination in which the bond dissociation energy is positive in the reduction reaction of the material constituting the second cathode layer to the material constituting the first cathode layer, the material constituting the second cathode layer changes the first cathode layer. It can be said that it has a reducing action on the constituent materials.
  • the bond dissociation energy can be referred to, for example, in “Electrochemical Handbook 5th Edition” (Maruzen, published in 2000) and “Thermodynamic Database MALT” (Science and Technology, published in 1992).
  • a method for producing the cathode known methods can be used, and examples thereof include a vacuum deposition method, a sputtering method, an ion plating method, and a method of film formation from a solution (a mixed solution with a polymer binder may be used).
  • a vacuum deposition method a sputtering method, an ion plating method, and a method of film formation from a solution (a mixed solution with a polymer binder may be used).
  • metals, metal oxides, fluorides, and carbonates vacuum evaporation is often used, and high-boiling metal oxides, high-boiling metal composite oxides, conductive metal oxides such as indium tin oxide (ITO)
  • ITO indium tin oxide
  • a sputtering method and an ion plating method are frequently used.
  • a co-evaporation method When forming a film using two or more kinds of metals, metal oxides, fluorides, carbonates, high boiling point metal oxides, metal composite oxides, and conductive metal oxides, a co-evaporation method, a sputtering method, An ion plating method or the like is used.
  • a method of film formation from a solution is frequently used.
  • a co-evaporation method is suitable for forming a film of a low molecular organic compound and a metal or metal oxide, fluoride, or carbonate.
  • the optimum thickness of the cathode varies depending on the material and the layer structure used, and the driving voltage, light emission efficiency, and element lifetime may be selected to be appropriate values.
  • the thickness of the first cathode layer is 0.5 nm to 20 nm.
  • the thickness of the cover cathode layer is usually 10 nm to 1 ⁇ m.
  • the thickness of Ba or Ca is preferably 2 nm to 10 nm, and the thickness of Al is 10 nm to 500 nm. Is preferred.
  • the thickness of NaF or KF is preferably 1 nm to 8 nm, and the thickness of Al is preferably 10 nm to 500 nm.
  • the visible light transmittance of the cover cathode layer is preferably 40% or more, and more preferably 50% or more.
  • This visible light transmittance is easily achieved by using a transparent conductive metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), or molybdenum oxide as the cover cathode layer material.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • molybdenum oxide molybdenum oxide
  • an antireflection layer can be provided on the cover cathode layer of the cathode.
  • the material constituting the antireflection layer preferably has a refractive index of 1.8 to 3.0. Examples of the material satisfying this refractive index include ZnS, ZnSe, and WO 3 .
  • the thickness of the antireflection layer varies depending on the material used, but is usually 10 nm to 150 nm.
  • the insulating layer is a layer having functions such as improving adhesion with the electrode, improving charge injection from the electrode, and preventing mixing with an adjacent layer.
  • Examples of the material constituting the insulating layer include metal fluorides, metal oxides, and organic insulating materials (for example, polymethyl methacrylate).
  • the thickness of the insulating layer is usually 5 nm or less.
  • Examples of the installation position of the insulating layer include a position adjacent to the cathode and a position adjacent to the anode.
  • the electroluminescent element can have a sealing member.
  • the position of the sealing member is usually on the side opposite to the substrate across the light emitting layer or the like.
  • the electroluminescent element can have arbitrary components for configuring a display device, such as a filter such as a color filter and a fluorescence conversion filter, a circuit and wiring necessary for driving a pixel, and the like.
  • the electroluminescent element of the present invention can be produced, for example, by sequentially laminating each layer constituting the electroluminescent element on a substrate.
  • an anode is provided on a substrate, a layer such as a hole injection layer and a hole transport layer is sequentially provided thereon, a light emitting layer is provided thereon, and an electron transport layer, an electron injection layer, and the like are provided thereon.
  • the electroluminescent element can be manufactured by providing the above layer and further laminating the cathode thereon.
  • a cathode is provided on a substrate, and an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, etc.
  • an electroluminescent element By laminating, an electroluminescent element can be manufactured.
  • electroluminescence is obtained by joining an anode or a substrate on the anode side laminated with each layer on the anode, and a cathode or substrate on the cathode side laminated with each layer on the cathode. An element can be manufactured.
  • a display device can be manufactured using the electroluminescent element of the present invention.
  • the display device includes an electroluminescent element as a pixel unit.
  • the arrangement mode of the pixel unit can be an arrangement normally employed in a display device such as a television, and can be an aspect in which a large number of pixels are arranged on a common substrate.
  • the pixels arranged on the substrate can be formed in a pixel region defined by the bank.
  • the electroluminescent element of the present invention can be used for a planar illumination device or a curved illumination device.
  • the photoelectric conversion element of the present invention is a photoelectric conversion element having a layer containing the polymer compound of the present invention.
  • the photoelectric conversion element of the present invention includes, for example, a cathode, an anode, a charge separation layer located between the cathode and the anode, and a charge separation layer located between the charge separation layer and the cathode or the anode. It has a layer containing a polymer compound.
  • the photoelectric conversion element of the present invention can have a substrate as an optional component, and on the surface of the substrate, the cathode, the anode, the charge separation layer, the layer containing the polymer compound of the present invention, and an optional configuration It can be set as the structure which provided the element.
  • Examples of the layer configuration of the photoelectric conversion element of the present invention include the following embodiments: (1) A mode in which an anode is provided on a substrate, a charge separation layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and a cathode is laminated thereon. (2) A mode in which an anode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated, and a cathode is laminated further thereon.
  • An anode is provided on the substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated, and a layer containing the polymer compound of the present invention is laminated thereon.
  • a mode in which a cathode is further laminated on the upper layer (4) A mode in which a cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated thereon, and an anode is further laminated thereon; (5) A mode in which a cathode is provided on a substrate, a charge separation layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and an anode is laminated thereon.
  • a cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated thereon, and a layer containing the polymer compound of the present invention is laminated thereon. And an anode is laminated on the upper layer;
  • a layer other than the layer containing the polymer compound of the present invention and the charge separation layer may be further provided.
  • the configuration of the photoelectric conversion element will be separately described in detail below.
  • the polymer compound may be mixed with a known material.
  • known materials include electron donating compounds, electron accepting compounds, metal nanoparticles, and metal oxide nanoparticles.
  • Examples of the method for forming the layer containing the polymer compound of the present invention include a method of forming a film using a solution containing the polymer compound of the present invention.
  • Examples of the solvent used for film formation from a solution include water, alcohols, ethers, esters, carboxylic acids, alkyl halides, heterocyclic aromatic compounds, thiols, sulfides, thioketones, and sulfoxides. , One kind of solvent selected from nitro compounds and nitrile compounds, and two or more kinds of mixed solvents selected from these. It is preferable that the solubility parameter of a solvent is 9.3 or more. Examples of the solvent having a solubility parameter of 9.3 or more (the values in parentheses represent the solubility parameter values of the respective solvents) and the solubility parameter values are as described above.
  • Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating.
  • Method slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method.
  • the thickness of the layer containing the polymer compound of the present invention may be selected so that the optimum value varies depending on the polymer compound used and the photoelectric conversion efficiency is an appropriate value, preferably 1 nm to 1 ⁇ m, and preferably 2 nm to 500 nm. More preferred is 2 nm to 200 nm.
  • the photoelectric conversion element of the present invention has a cathode, an anode, a charge separation layer located between the cathode and the anode, and a layer containing the polymer compound of the present invention.
  • the position of the layer containing the polymer compound of the present invention is preferably between the charge separation layer and the cathode and / or between the charge separation layer and the cathode, and between the cathode and the charge separation layer. It is more preferable.
  • the charge separation layer of the photoelectric conversion element of the present invention preferably contains an electron donating compound and an electron accepting compound.
  • the charge separation layer may contain an electron donating compound alone or in combination of two or more.
  • the charge separation layer may contain an electron accepting compound alone or in combination of two or more.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and conjugated polymer compounds.
  • Examples of the conjugated polymer compound include oligothiophene and derivatives thereof, polyfluorene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline, and Examples thereof include polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives.
  • diphenyldicyanoethylene and derivatives thereof diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60, bathocuproine Phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes.
  • the electron-accepting compound is preferably titanium oxide, carbon nanotube, fullerene, or fullerene derivative, and more preferably fullerene or fullerene derivative.
  • the thickness of the charge separation layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and still more preferably 20 nm to 200 nm.
  • Any method may be used for producing the charge separation layer.
  • a method by film formation from a solution and a vacuum deposition method can be mentioned.
  • Examples of the film forming method from a solution include spin coating, casting, micro gravure printing, gravure printing, bar coating, roll coating, wire bar coating, dip coating, slit coating, and cap coating. Coating methods such as spin coating, flexographic printing, spray coating, screen printing, flexographic printing, offset printing, inkjet printing, dispenser printing, nozzle coating, capillary coating, etc.
  • the gravure printing method, the ink jet printing method, and the dispenser printing method are preferable.
  • the photoelectric conversion element of the present invention is usually formed on a substrate.
  • This substrate may be any substrate that does not change when the electrode is formed and when the organic layer is formed.
  • Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode farther from the substrate is preferably transparent or translucent.
  • Examples of the material constituting the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film.
  • a conductive metal oxide film and a translucent metal thin film for example, indium oxide, zinc oxide, tin oxide, a composite thereof (for example, indium / tin / oxide (ITO), indium / zinc / oxide, etc.), NESA, gold, platinum, silver, and copper are included.
  • ITO indium / zinc / oxide
  • tin oxide a composite thereof (for example, indium / tin / oxide (ITO), indium / zinc / oxide, etc.), NESA, gold, platinum, silver, and copper are included.
  • ITO indium / zinc / oxide
  • tin oxide are preferable.
  • Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used.
  • a metal, a conductive polymer, or the like can be used.
  • One of the pair of electrodes is preferably a material having a low work function. Examples of the material constituting the electrode include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • an intermediate layer may be included in the photoelectric conversion element in addition to the layer containing the polymer compound and the charge separation layer used in the present invention.
  • the material constituting the intermediate layer include alkali metal halides (for example, lithium fluoride), alkali metal oxides, alkaline earth metal halides, and alkaline earth metal oxides.
  • the material constituting the intermediate layer include fine particles of inorganic semiconductor such as titanium oxide and PEDOT (poly-3,4-ethylenedioxythiophene).
  • the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by irradiating light such as sunlight from a transparent or translucent electrode to generate a photovoltaic force between the electrodes. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
  • the organic light sensor By irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and the organic light sensor can be operated. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
  • a solar cell module has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin, protective glass, or the like, and light is taken in from the opposite side of the support substrate.
  • a transparent material such as tempered glass may be used for the support substrate of the solar cell module, and a cell may be formed thereon to take in light from the transparent support substrate side.
  • a structure of the solar cell module for example, a module structure called a super straight type, a substrate type, or a potting type, and a substrate integrated module structure used in an amorphous silicon solar cell or the like are known.
  • the organic thin film solar cell of the present invention can take a structure appropriately selected from these module structures depending on the purpose of use, the place of use and the environment.
  • cells are arranged at regular intervals between support substrates that are transparent on one or both sides and have been subjected to antireflection treatment. Adjacent cells are connected by metal leads or flexible wiring. A collecting electrode is disposed on the outer edge, and the generated electric power is taken out to the outside.
  • various types of plastic materials such as ethylene vinyl acetate (EVA) may be placed between the substrate and the cell in the form of a film or a filled resin in order to protect the cell and / or improve the current collection efficiency. Good.
  • EVA ethylene vinyl acetate
  • the protective function is achieved by configuring the surface protective layer with a transparent plastic film or curing the above filling resin. It is possible to dispense with the support substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame, and the support substrate and the frame are hermetically sealed with a sealing material. If a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell in which a flexible support such as a polymer film is used for example, cells are sequentially formed while feeding a roll-shaped support, cut into a desired size, and then the peripheral portion is flexible and moisture-proof.
  • a battery body can be produced by sealing with a material.
  • a solar cell using a flexible support may have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391.
  • SCAF solar Energy Materials and Solar Cells, 48, p383-391.
  • a solar cell using a flexible support can be used by being bonded and fixed to curved glass or the like.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer compound were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC). Calculated as molecular weight.
  • GPC gel permeation chromatography
  • the sample to be measured was dissolved in THF to a concentration of about 0.5% by weight, and 50 ⁇ L was injected into GPC.
  • THF was used and allowed to flow at a flow rate of 0.5 mL / min.
  • the structural analysis of the compound and the polymer compound was performed by 1 H-NMR analysis using a 300 MHz NMR spectrometer manufactured by Varian. The measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom) so as to have a concentration of 20 mg / mL.
  • a soluble heavy solvent a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom
  • the HOMO orbital energy of the polymer compound was determined by measuring the ionization potential of the polymer compound of the present invention and using the obtained ionization potential as the orbital energy. Specifically, a sample in which a polymer compound was formed on a quartz substrate to a thickness of about 100 nm was used.
  • the orbital energy of LUMO of the polymer compound was determined by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy.
  • a photoelectron spectrometer manufactured by Riken Keiki Co., Ltd .: AC-2
  • the energy difference between HOMO and LUMO was obtained from the absorption terminal by measuring the absorption spectrum of the polymer compound of the present invention using an ultraviolet / visible / near infrared spectrophotometer (Varian: Cary 5E). Specifically, a sample in which a polymer compound was formed on a quartz substrate to a thickness of about 100 nm was used.
  • the mixture was allowed to cool, added to ice water and stirred for 1 hour to produce a solid.
  • the resulting solid was filtered off and washed with heated acetonitrile.
  • the washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered.
  • the obtained solution was dropped into a mixed solvent of methanol and 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in THF.
  • the obtained solution was added dropwise to methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in THF and purified by passing through an alumina column and a silica gel column.
  • the THF solution collected from the column was concentrated and then added dropwise to methanol, and the precipitated solid was filtered and dried.
  • the number average molecular weight in terms of polystyrene of the polymer compound A was 5.2 ⁇ 10 4 .
  • the high molecular compound A consists of a structural unit represented by the formula (A).
  • the reaction solution was added dropwise to a mixture of methanol (200 mL), water (200 mL), and 15% by weight aqueous ammonia (50 mL) to form a precipitate.
  • the resulting precipitate was collected by filtration, dried under reduced pressure, and redissolved in THF.
  • the solution was filtered through celite, and the filtrate was concentrated under reduced pressure.
  • Methanol was added dropwise to the concentrated solution, and the resulting precipitate was collected by filtration, and then dried under reduced pressure to obtain polymer compound A (970 mg).
  • the number average molecular weight in terms of polystyrene of the polymer compound A was 1.5 ⁇ 10 5 .
  • Example 1 Synthesis of cesium salt of polymer compound A (conjugated polymer compound 1)
  • Polymer compound A (200 mg) synthesized in Production Example 3 was placed in a 100 mL flask, and the gas in the flask was replaced with nitrogen gas.
  • THF (20 mL) and ethanol (20 mL) were added and the mixture was warmed to 55 ° C.
  • An aqueous solution dissolved in cesium hydroxide monohydrate (120 mg) water (2 mL) was added thereto, and the mixture was stirred at 55 ° C. for 6 hours. Then, after cooling a mixture to room temperature, the reaction solvent was depressurizingly distilled.
  • conjugated polymer compound 1 is composed of a structural unit represented by the formula (B).
  • the ratio of H + of the conjugated polymer compound 1 estimated from the integral value of 1 H NMR was 26% with respect to the total of the cesium salt of the carboxyl group and the carboxyl group.
  • the conjugated polymer compound 1 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • the solution containing the polymer compound obtained at this stage was subjected to GPC measurement according to the method described above, and the molecular weight of the polymer compound was measured.
  • the number average molecular weight in terms of polystyrene was 1.9 ⁇ 10 3 , which was in terms of polystyrene.
  • the weight average molecular weight was 3.0 ⁇ 10 3 .
  • the temperature of the reaction solution was lowered to 60 ° C. and neutralized by adding a 1M aqueous sodium hydroxide solution. After stirring at 60 ° C. for 1 hour, the solvent was distilled off from the reaction solution to obtain a white solid (2.0 g).
  • the obtained polyurethane sodium salt is referred to as “non-conjugated polymer compound 1”.
  • the non-conjugated polymer compound 1 is composed of a structural unit represented by the formula (V).
  • Example 2 Production of electroluminescent element 1 A hole injecting material solution is applied onto an ITO anode (thickness: 45 nm) patterned on the surface of a glass substrate, and holes are injected by spin coating so that the thickness is 60 nm. Layers were deposited. The glass substrate on which the hole injection layer was formed was heated in a nitrogen atmosphere at 200 ° C. for 10 minutes to insolubilize the hole injection layer, the substrate was naturally cooled to room temperature, and the substrate on which the hole injection layer was formed was Obtained.
  • ITO anode thickness: 45 nm
  • AQ-1200 a polythiophene / sulfonic acid hole injection material obtained from Plextronics, was used as the hole injection material solution.
  • a hole transporting polymer material and xylene were mixed to obtain a composition for forming a hole transporting layer containing 0.7 wt% of the hole transporting polymer material.
  • the hole transporting polymer material was synthesized by the following method. After making the gas in the flask under an inert gas atmosphere, 2,7-dibromo-9,9-di (octyl) fluorene (1.4 g), 2,7-bis (4,4,5,5-tetra Methyl-1,3,2-dioxaborolan-2-yl) -9,9-di (octyl) fluorene (6.4 g), N, N-bis (4-bromophenyl) -N ′, N′-bis ( 4-butylphenyl) -1,4-phenylenediamine (4.1 g), bis (4-bromophenyl) benzocyclobutenamine (0.6 g), tetraethylammonium hydroxide (1.7 g), palladium acetate (4.
  • the organic layer was poured into methanol to precipitate a solid, and then the filtered solid was again dissolved in toluene and passed through a silica gel and alumina column.
  • the eluted toluene solution containing the solid was recovered, and the recovered toluene solution was poured into methanol to precipitate the solid.
  • the precipitated solid was collected by filtration and vacuum dried at 50 ° C. to obtain a hole transporting polymer material.
  • the weight average molecular weight in terms of polystyrene of the hole transporting polymer material was 3.0 ⁇ 10 5 .
  • the composition for forming a hole transport layer was applied by a spin coating method to obtain a coating film having a thickness of 20 nm.
  • the substrate provided with this coating film was heated at 180 ° C. for 60 minutes in a nitrogen atmosphere to insolubilize the coating film, and then naturally cooled to room temperature to obtain a substrate on which a hole transport layer was formed.
  • the light emitting polymer material and xylene were mixed to obtain a light emitting layer forming composition containing 1.4% by weight of the light emitting polymer material.
  • the light emitting polymer material was synthesized by the following method. After making the gas in the flask under an inert gas atmosphere, 2,7-dibromo-9,9-di (octyl) fluorene (9.0 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine (1.3 g), 2,7-bis (4,4,5,5-tetramethyl-1,3 , 2-Dioxaborolan-2-yl) -9,9-di (4-hexylphenyl) fluorene (13.4 g), tetraethylammonium hydroxide (43.0 g), palladium acetate (8 mg), tri (2-methoxyphenyl) ) Phosphine (0.05 g) and toluene (200 mL) were mixed, and the mixture was heated and stirred at
  • the precipitated solid was vacuum dried at 50 ° C. to obtain a light emitting polymer material (12.5 g). According to gel permeation chromatography, the obtained light-emitting polymer material had a polystyrene-equivalent weight average molecular weight of 3.1 ⁇ 10 5 .
  • the composition for forming a light emitting layer was applied by a spin coat method to obtain a coating film having a thickness of 80 nm.
  • the substrate provided with this coating film was heated at 130 ° C. for 10 minutes in a nitrogen atmosphere to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
  • the substrate on which the layer containing the conjugated polymer compound 1 obtained above was formed was inserted into a vacuum apparatus, and an Al film was formed on the layer by vacuum vapor deposition to form a cathode, thereby forming a laminated structure. 1 was produced.
  • the laminated structure 1 obtained above was taken out from the vacuum apparatus, and sealed with sealing glass and a two-component mixed epoxy resin in a nitrogen atmosphere to obtain an electroluminescent element 1.
  • Electroluminescent element A was obtained in the same manner as in Example 2, except that non-conjugated polymer compound 1 was used instead of conjugated polymer compound 1.
  • the electroluminescent device 1 of the present invention is superior in light emission luminance and luminous efficiency as compared to the electroluminescent device A not provided with the layer containing the polymer compound of the present invention.

Abstract

This invention provides an electronic device useful as an electroluminescent element which emits light with high luminance, and provides a polymer compound used in said electronic device. In other words, this invention provides the following inventions: an electronic device which has, as a charge injection layer and / or charge transport layer, a layer containing a polymer compound having a structural unit containing both a group represented by formula (1): -(Q1)n1-Y1(M1)a1(Z1)b1, and a group represented by the formula (2): -(Q2)n2-Y2, wherein the ratio of the M1's in the polymer compound that are H+ to the total number of M1's in the polymer compound is greater than 0% and less than or equal to 50%; and the polymer compound used in said electronic device.

Description

電子デバイス及び高分子化合物Electronic devices and polymer compounds
 本発明は電子デバイス、及び、該電子デバイスに好適に用いられる高分子化合物に関する。 The present invention relates to an electronic device and a polymer compound suitably used for the electronic device.
 電界発光素子の特性を向上させるため、電界発光素子の発光層と電極との間に様々な層を挿入する検討がなされている。例えば、発光層と電極との間に、カチオンとヘテロ原子2個とを有する置換基を含む非共役高分子化合物からなる層を有する電界発光素子が知られている(特許文献1)。 In order to improve the characteristics of the electroluminescent element, various layers have been studied to be inserted between the light emitting layer and the electrode of the electroluminescent element. For example, an electroluminescent element having a layer made of a non-conjugated polymer compound containing a substituent having a cation and two heteroatoms between a light emitting layer and an electrode is known (Patent Document 1).
特表2003-530676号公報Special table 2003-530676 gazette
 しかし、上記電界発光素子の輝度は未だ十分ではなかった。 However, the luminance of the electroluminescent element was not yet sufficient.
 本発明の目的は、高輝度で発光する電界発光素子として有用な電子デバイス、及び該電子デバイスに用いられる高分子化合物を提供することにある。 An object of the present invention is to provide an electronic device useful as an electroluminescent element that emits light with high luminance, and a polymer compound used in the electronic device.
 本発明者らは、以下の電子デバイス、高分子化合物等によって上記目的を達成できることを見出し、本発明に到達した。 The present inventors have found that the above object can be achieved by the following electronic device, polymer compound, etc., and have reached the present invention.
 本発明は、以下の〔1〕~〔12〕を提供する。
〔1〕式(1)で表される基及び式(2)で表される基を含む構造単位を有する高分子化合物を含む層を電荷注入層及び/又は電荷輸送層として備え、
 前記高分子化合物中の全てのMに対する前記高分子化合物中のMがH+である割合が、0%より大きく50%以下である、
電子デバイス。
  -(Q1n1-Y1(M1a1(Z1b1  (1)
(式中、
 Q1は、2価の有機基である。
 Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -である。
 M1は、H又は金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンである。
 Z1は、F-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -である。
 n1は、0以上の整数である。a1は、1以上の整数である。b1は、0以上の整数である。但し、a1及びb1は、式(1)で表される基の電荷が0となるように選択される。
 Rαは、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。各々のRαは互いに同一でも異なっていてもよい。
 Raは、置換基を有していてもよい1価の有機基である。複数個のRaが存在する場合、各々のRaは互いに同一でも異なっていてもよい。
 複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
 複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
 複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。)
  -(Q2n2-Y2   (2)
(式中、
 Q2は、2価の有機基である。
 Y2は、シアノ基又は式(3)~(11)のいずれかで表される基である。
 n2は、0以上の整数である。
 複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。)
  -O-(R’O)a3-R’’ (3)
Figure JPOXMLDOC01-appb-C000012
  -S-(R’S)a4-R’’  (5)
  -C(=O)-(R’-C(=O))a4-R’’  (6)
  -C(=S)-(R’-C(=S))a4-R’’  (7)
  -N{(R’)a4R’’}2  (8)
  -C(=O)O-(R’-C(=O)O)a4-R’’ (9)
  -C(=O)O-(R’O)a4-R’’ (10)
  -NHC(=O)-(R’NHC(=O))a4-R’’ (11)
(式中、
 R’は置換基を有していてもよい2価の炭化水素基である。
 R’’は、水素原子、置換基を有していてもよい1価の炭化水素基、カルボキシル基、スルホ基、ヒドロキシル基、メルカプト基、-NRc 2、シアノ基又は-C(=O)NRc 2である。
 R’’’は、置換基を有していてもよい3価の炭化水素基である。
 a3は1以上の整数である。a4は、0以上の整数である。
 Rcは、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基であり、各々のRcは互いに同一でも異なっていてもよい。
 複数個のR’が存在する場合、各々のR’は互いに同一でも異なっていてもよい。
 複数個のR’’が存在する場合、各々のR’’は互いに同一でも異なっていてもよい。
 複数個のa4が存在する場合、各々のa4は互いに同一でも異なっていてもよい。)
The present invention provides the following [1] to [12].
[1] A layer containing a polymer compound having a structural unit containing a group represented by formula (1) and a group represented by formula (2) is provided as a charge injection layer and / or a charge transport layer.
The ratio that M 1 in the polymer compound is H + with respect to all M 1 in the polymer compound is greater than 0% and 50% or less.
Electronic devices.
-(Q 1 ) n1 -Y 1 (M 1 ) a1 (Z 1 ) b1 (1)
(Where
Q 1 is a divalent organic group.
Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 .
M 1 is H +, a metal cation, or an ammonium cation which may have a substituent.
Z 1 represents F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO. 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 .
n1 is an integer of 0 or more. a1 is an integer of 1 or more. b1 is an integer of 0 or more. However, a1 and b1 are selected so that the charge of the group represented by the formula (1) becomes zero.
R α is an alkyl group having 1 to 30 carbon atoms which may have a substituent or an aryl group having 6 to 50 carbon atoms which may have a substituent. Each R α may be the same as or different from each other.
R a is a monovalent organic group which may have a substituent. When a plurality of R a are present, each R a may be the same as or different from each other.
When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other. )
-(Q 2 ) n2 -Y 2 (2)
(Where
Q 2 is a divalent organic group.
Y 2 is a cyano group or a group represented by any one of formulas (3) to (11).
n2 is an integer of 0 or more.
When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. )
-O- (R'O) a3 -R '' (3)
Figure JPOXMLDOC01-appb-C000012
-S- (R'S) a4 -R '' (5)
-C (= O)-(R'-C (= O)) a4 -R '' (6)
-C (= S)-(R'-C (= S)) a4 -R '' (7)
-N {(R ′) a4 R ″} 2 (8)
—C (═O) O— (R′—C (═O) O) a4 —R ″ (9)
—C (═O) O— (R′O) a4 —R ″ (10)
—NHC (═O) — (R′NHC (═O)) a4 —R ″ (11)
(Where
R ′ is a divalent hydrocarbon group which may have a substituent.
R ″ represents a hydrogen atom, a monovalent hydrocarbon group which may have a substituent, a carboxyl group, a sulfo group, a hydroxyl group, a mercapto group, —NR c 2 , a cyano group or —C (═O). NR c 2 .
R ′ ″ is a trivalent hydrocarbon group which may have a substituent.
a3 is an integer of 1 or more. a4 is an integer of 0 or more.
R c is an optionally substituted alkyl group having 1 to 30 carbon atoms or an optionally substituted aryl group having 6 to 50 carbon atoms, and each R c is It may be the same or different.
When a plurality of R ′ are present, each R ′ may be the same as or different from each other.
When a plurality of R ″ are present, each R ″ may be the same as or different from each other.
When a plurality of a4 are present, each a4 may be the same as or different from each other. )
〔2〕前記構造単位が、式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位である、上記〔1〕に記載の電子デバイス。
Figure JPOXMLDOC01-appb-C000013
(式中、
 R1は、式(13)で表される基を含む1価の基である。
 Ar1は、R1以外の置換基を有していてもよい(2+n3)価の芳香族基である。
 n3は、1以上の整数である。
 複数個のR1が存在する場合、各々のR1は互いに同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000014
(式中、
 R2は、(1+m1+m2)価の有機基である。
 Q1、Q2、Y1、M1、Z1、Y2、n1、a1、b1及びn2は、前述と同じ意味である。
 m1及びm2は、それぞれ独立に1以上の整数である。
 複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
 複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
 複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
 複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
 複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
 複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
 複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
 複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
 複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。
 複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000015
(式中、
 R3は、式(13)で表される基又は式(15)で表される基を含む1価の基である。
 R4は、式(16)で表される基を含む1価の基である。
 Ar2は、R3及びR4以外の置換基を有していてもよい(2+n4+n5)価の芳香族基である。
 n4及びn5は、それぞれ独立に1以上の整数である。
 複数個のR3が存在する場合、各々のR3は互いに同一でも異なっていてもよい。
 複数個のR4が存在する場合、各々のR4は互いに同一でも異なっていてもよい。)
  -R5-{(Q1n1-Y1(M1a1(Z1b1m3  (15)
(式中、
 R5は、単結合又は(1+m3)価の有機基である。
 Q1、Y1、M1、Z1、n1、a1及びb1は、前述と同じ意味である。
 m3は、1以上の整数を表す。但し、R5が単結合である場合、m3は1である。
 複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
 複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
 複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
 複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
 複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
 複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
 複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。)
  -R6-{(Q2n2-Y2m4  (16)
(式中、
 R6は、単結合又は(1+m4)価の有機基である。
 Q2、Y2及びn2は前述と同じ意味である。
 m4は、1以上の整数である。但し、R6が単結合である場合、m4は1である。
 複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
 複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
 複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
[2] The above [1], wherein the structural unit is one or more structural units selected from the group consisting of the structural unit represented by the formula (12) and the structural unit represented by the formula (14). Electronic devices.
Figure JPOXMLDOC01-appb-C000013
(Where
R 1 is a monovalent group including a group represented by Formula (13).
Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
n3 is an integer of 1 or more.
When several R < 1 > exists, each R < 1 > may mutually be same or different. )
Figure JPOXMLDOC01-appb-C000014
(Where
R 2 is a (1 + m1 + m2) valent organic group.
Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above.
m1 and m2 are each independently an integer of 1 or more.
When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
When a plurality of n1 are present, each n1 may be the same as or different from each other.
When a plurality of a1 are present, each a1 may be the same as or different from each other.
When a plurality of b1 are present, each b1 may be the same as or different from each other.
When a plurality of n2 are present, each n2 may be the same as or different from each other. )
Figure JPOXMLDOC01-appb-C000015
(Where
R 3 is a monovalent group including a group represented by the formula (13) or a group represented by the formula (15).
R 4 is a monovalent group including a group represented by Formula (16).
Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
n4 and n5 are each independently an integer of 1 or more.
When a plurality of R 3 are present, each R 3 may be the same as or different from each other.
When a plurality of R 4 are present, each R 4 may be the same as or different from each other. )
-R 5 -{(Q 1 ) n 1 -Y 1 (M 1 ) a 1 (Z 1 ) b 1 } m 3 (15)
(Where
R 5 is a single bond or a (1 + m3) valent organic group.
Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have the same meaning as described above.
m3 represents an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
When a plurality of n1 are present, each n1 may be the same as or different from each other.
When a plurality of a1 are present, each a1 may be the same as or different from each other.
When a plurality of b1 are present, each b1 may be the same as or different from each other. )
-R 6 -{(Q 2 ) n2 -Y 2 } m4 (16)
(Where
R 6 is a single bond or a (1 + m4) -valent organic group.
Q 2 , Y 2 and n2 have the same meaning as described above.
m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
When a plurality of n2 are present, each n2 may be the same as or different from each other. )
〔3〕Ar1で表される(2+n3)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n3)個除いた基である上記〔2〕に記載の電子デバイス。
Figure JPOXMLDOC01-appb-C000016
〔4〕Ar2で表される(2+n4+n5)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n4+n5)個除いた基である上記〔2〕又は〔3〕に記載の電子デバイス。
Figure JPOXMLDOC01-appb-C000017
〔5〕前記高分子化合物を含む層を電子注入層及び/又は電子輸送層として備える、上記〔1〕~〔4〕のいずれか一項に記載の電子デバイス。
〔6〕電界発光素子である上記〔1〕~〔5〕のいずれか一項に記載の電子デバイス。
[3] The (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formula 1, 2, 4, 5, 6, 13 , 14 , 15 , 19, 21, 23, 31, 32, 33, 43, The electronic device according to the above [2], which is a group obtained by removing (2 + n3) hydrogen atoms from the ring represented by 46, 47 or 51.
Figure JPOXMLDOC01-appb-C000016
[4] The (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by formulas 1, 2, 4, 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43, The electronic device according to the above [2] or [3], which is a group obtained by removing (2 + n4 + n5) hydrogen atoms from the ring represented by 46, 47 or 51.
Figure JPOXMLDOC01-appb-C000017
[5] The electronic device according to any one of [1] to [4], wherein the layer containing the polymer compound is provided as an electron injection layer and / or an electron transport layer.
[6] The electronic device according to any one of [1] to [5], which is an electroluminescent element.
〔7〕式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位を有し、
 高分子化合物中のMがH+である割合が、高分子化合物中の全てのMに対して0%より大きく50%以下である、
高分子化合物。
Figure JPOXMLDOC01-appb-C000018
(式中、
 R1は、式(13)で表される基を含む1価の基である。
 Ar1は、R1以外の置換基を有していてもよい(2+n3)価の芳香族基である。
 n3は、1以上の整数である。
 複数個のR1が存在する場合、各々のR1は互いに同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000019
(式中、
 R2は、(1+m1+m2)価の有機基である。
 Q1、Q2、Y1、M1、Z1、Y2、n1、a1、b1及びn2は、前述と同じ意味である。
 m1及びm2は、それぞれ独立に1以上の整数である。
 複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
 複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
 複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
 複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
 複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
 複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
 複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
 複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
 複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。
 複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(式中、
 R3は、式(13)で表される基又は式(15)で表される基を含む1価の基である。
 R4は、式(16)で表される基を含む1価の基である。
 Ar2は、R3及びR4以外の置換基を有していてもよい(2+n4+n5)価の芳香族基である。
 n4及びn5は、それぞれ独立に1以上の整数である。
 複数個のR3が存在する場合、各々のR3は互いに同一でも異なっていてもよい。
 複数個のR4が存在する場合、各々のR4は互いに同一でも異なっていてもよい。)
  -R5-{(Q1n1-Y1(M1a1(Z1b1m3  (15)
(式中、
 R5は、単結合又は(1+m3)価の有機基である。
 Q1、Y1、M1、Z1、n1、a1及びb1は、前述と同じ意味である。
 m3は、1以上の整数を表す。但し、R5が単結合である場合、m3は1である。
 複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
 複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
 複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
 複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
 複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
 複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
 複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。)
  -R6-{(Q2n2-Y2m4  (16)
(式中、
 R6は、単結合又は(1+m4)価の有機基である。
 Q2、Y2及びn2は前述と同じ意味である。
 m4は、1以上の整数である。但し、R6が単結合である場合、m4は1である。
 複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
 複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
 複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
〔8〕Ar1で表される(2+n3)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n3)個除いた基である上記〔7〕に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000021
〔9〕Ar2で表される(2+n4+n5)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n4+n5)個除いた基である上記〔7〕又は〔8〕に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000022
〔10〕Y2が式(3)又は式(4)で表される基である、上記〔7〕~〔9〕のいずれか一項に記載の高分子化合物。
〔11〕式(21)で表され、イオンを1種以上含有する化合物を含む原料を縮合重合させる、上記〔7〕~〔10〕のいずれか一項に記載の高分子化合物の製造方法。
  Y3-Aa-Y4    (21)
(式中、
 Aaは、式(1)で表される基と、式(2)で表される基とを含む2価の基である。
 Y3及びY4は、それぞれ独立に、縮合重合に関与する基である。)
〔12〕式(21’)で表され、イオンを含有しない化合物を含む原料を縮合重合させ、得られる化合物からイオンを含有する高分子化合物を合成する、上記〔7〕~〔10〕のいずれか一項に記載の高分子化合物の製造方法。
  Y3-Aaa-Y4    (21')
(式中、
 Aaaは、式(22)で表される基と、式(2)で表される基とを含む2価の基である。
 Y3及びY4は、それぞれ独立に、縮合重合に関与する基である。)
  -R7-{(Q3n6-Y5m9    (22)
(式中、
 R7は、(1+m9)価の有機基である。
 Q3は、2価の有機基を表す。
 Y5は、-CO2χ、-SO3χ、-SO2χ、-PO3(Rχ2又は-B(Rχ2である。
 n6は、0以上の整数である。
 Rχは、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。
 m9は1以上の整数を表す。
 複数個のQ3が存在する場合、各々のQ3は互いに同一でも異なっていてもよい。
 複数個のY5が存在する場合、各々のY5は互いに同一でも異なっていてもよい。
 複数個のn6が存在する場合、各々のn6は互いに同一でも異なっていてもよい。
 複数個のRχが存在する場合、各々のRχは互いに同一でも異なっていてもよい。)
[7] having one or more structural units selected from the group consisting of the structural unit represented by formula (12) and the structural unit represented by formula (14);
The ratio in which M 1 in the polymer compound is H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound.
High molecular compound.
Figure JPOXMLDOC01-appb-C000018
(Where
R 1 is a monovalent group including a group represented by Formula (13).
Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
n3 is an integer of 1 or more.
When several R < 1 > exists, each R < 1 > may mutually be same or different. )
Figure JPOXMLDOC01-appb-C000019
(Where
R 2 is a (1 + m1 + m2) valent organic group.
Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above.
m1 and m2 are each independently an integer of 1 or more.
When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
When a plurality of n1 are present, each n1 may be the same as or different from each other.
When a plurality of a1 are present, each a1 may be the same as or different from each other.
When a plurality of b1 are present, each b1 may be the same as or different from each other.
When a plurality of n2 are present, each n2 may be the same as or different from each other. )
Figure JPOXMLDOC01-appb-C000020
(Where
R 3 is a monovalent group including a group represented by the formula (13) or a group represented by the formula (15).
R 4 is a monovalent group including a group represented by Formula (16).
Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
n4 and n5 are each independently an integer of 1 or more.
When a plurality of R 3 are present, each R 3 may be the same as or different from each other.
When a plurality of R 4 are present, each R 4 may be the same as or different from each other. )
-R 5 -{(Q 1 ) n 1 -Y 1 (M 1 ) a 1 (Z 1 ) b 1 } m 3 (15)
(Where
R 5 is a single bond or a (1 + m3) valent organic group.
Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have the same meaning as described above.
m3 represents an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
When a plurality of n1 are present, each n1 may be the same as or different from each other.
When a plurality of a1 are present, each a1 may be the same as or different from each other.
When a plurality of b1 are present, each b1 may be the same as or different from each other. )
-R 6 -{(Q 2 ) n2 -Y 2 } m4 (16)
(Where
R 6 is a single bond or a (1 + m4) -valent organic group.
Q 2 , Y 2 and n2 have the same meaning as described above.
m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
When a plurality of n2 are present, each n2 may be the same as or different from each other. )
[8] The (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formula 1, 2, 4, 5, 6, 13 , 14 , 15 , 19, 21, 23, 31, 32, 33, 43, The polymer compound according to the above [7], which is a group obtained by removing (2 + n3) hydrogen atoms from the ring represented by 46, 47 or 51.
Figure JPOXMLDOC01-appb-C000021
[9] The (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by the formula 1, 2, 4, 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43, The polymer compound according to [7] or [8] above, which is a group obtained by removing (2 + n4 + n5) hydrogen atoms from the ring represented by 46, 47 or 51.
Figure JPOXMLDOC01-appb-C000022
[10] The polymer compound according to any one of [7] to [9] above, wherein Y 2 is a group represented by formula (3) or formula (4).
[11] The method for producing a polymer compound according to any one of the above [7] to [10], wherein a raw material containing a compound represented by the formula (21) and containing one or more ions is subjected to condensation polymerization.
Y 3 -A a -Y 4 (21)
(Where
A a is a divalent group including a group represented by the formula (1) and a group represented by the formula (2).
Y 3 and Y 4 are each independently a group involved in condensation polymerization. )
[12] Any of the above [7] to [10], wherein a raw material containing a compound not containing ions represented by the formula (21 ′) is subjected to condensation polymerization to synthesize a polymer compound containing ions from the resulting compound A method for producing the polymer compound according to claim 1.
Y 3 -A aa -Y 4 (21 ')
(Where
A aa is a divalent group including a group represented by the formula (22) and a group represented by the formula (2).
Y 3 and Y 4 are each independently a group involved in condensation polymerization. )
-R 7 -{(Q 3 ) n6 -Y 5 } m9 (22)
(Where
R 7 is a (1 + m9) valent organic group.
Q 3 represents a divalent organic group.
Y 5 is —CO 2 R χ , —SO 3 R χ , —SO 2 R χ , —PO 3 (R χ ) 2, or —B (R χ ) 2 .
n6 is an integer of 0 or more.
R χ is a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted aryl group having 6 to 50 carbon atoms.
m9 represents an integer of 1 or more.
When a plurality of Q 3 are present, each Q 3 may be the same as or different from each other.
When a plurality of Y 5 are present, each Y 5 may be the same as or different from each other.
When a plurality of n6 are present, each n6 may be the same as or different from each other.
When a plurality of R χ are present, each R χ may be the same as or different from each other. )
 本発明の電子デバイスは、高輝度で発光する電界発光素子となり得る。 The electronic device of the present invention can be an electroluminescent element that emits light with high luminance.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 <高分子化合物>
 以下、本発明の高分子化合物の構造単位、特性、具体例、製造方法、M1がH+である割合及び該高分子化合物を含む層、を順次説明する。
<Polymer compound>
Hereinafter, the structural unit, characteristics, specific examples, production method, ratio in which M 1 is H + and a layer containing the polymer compound will be sequentially described.
〔1.式(1)で表される基及び式(2)で表される基を含む構造単位〕
 本発明の高分子化合物は、式(1)で表される基及び式(2)で表される基を含む構造単位を有する。該構造単位は、式(1)で表される基を2種類以上含んでいてもよく、式(2)で表される基を2種類以上含んでいてもよく、式(1)で表される基及び式(2)で表される基をそれぞれ2種類以上含んでいてもよい。該構造単位の合計が前記高分子化合物に含まれる全構造単位に占める割合は、15~100モル%であることが好ましい。
[1. Structural unit containing group represented by formula (1) and group represented by formula (2)]
The polymer compound of the present invention has a structural unit containing a group represented by the formula (1) and a group represented by the formula (2). The structural unit may contain two or more groups represented by the formula (1), may contain two or more groups represented by the formula (2), and is represented by the formula (1). And two or more groups each represented by formula (2) may be included. The ratio of the total of the structural units to the total structural units contained in the polymer compound is preferably 15 to 100 mol%.
 以下、式(1)で表される基及び式(2)で表される基を、順次説明する。 Hereinafter, the group represented by the formula (1) and the group represented by the formula (2) will be sequentially described.
〔1.1.式(1)で表される基〕
 式(1)中、Q1は、2価の有機基である。Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -である。M1はH又は金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンである。Z1は、F-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -である。n1は、0以上の整数である。a1は、1以上の整数である。b1は、0以上の整数である。但し、a1及びb1は、式(1)で表される基の電荷が0となるように選択される。Rαは、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。複数個のRαが存在する場合、各々のRαは互いに同一でも異なっていてもよい。Raは、置換基を有していてもよい1価の有機基であり、複数個のRaが存在する場合、各々のRaは互いに同一でも異なっていてもよい。複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよく、複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよく、複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。式(1)で表される基が前記高分子化合物内に複数個存在する場合には、各々の式(1)で表される基は互いに同一でも異なっていてもよい。
[1.1. Group represented by Formula (1)]
In formula (1), Q 1 is a divalent organic group. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 . M 1 is H +, a metal cation, or an ammonium cation which may have a substituent. Z 1 represents F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO. 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 . n1 is an integer of 0 or more. a1 is an integer of 1 or more. b1 is an integer of 0 or more. However, a1 and b1 are selected so that the charge of the group represented by the formula (1) becomes zero. R α is an alkyl group having 1 to 30 carbon atoms which may have a substituent or an aryl group having 6 to 50 carbon atoms which may have a substituent. When a plurality of R α are present, each R α may be the same as or different from each other. R a is a monovalent organic group which may have a substituent, and when a plurality of R a are present, each R a may be the same as or different from each other. When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other. When a plurality of M 1 are present, each M 1 may be the same as or different from each other. If the Z 1 are present, each Z 1 may be the same or different from each other. When a plurality of groups represented by formula (1) are present in the polymer compound, each group represented by formula (1) may be the same as or different from each other.
 式(1)中、Q1は、2価の有機基である。Q1で表される2価の有機基としては、例えば、以下の基が挙げられる:
 メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50の2価の鎖状飽和炭化水素基;
 置換基を有していてもよい炭素原子数2~50のアルケニレン基(例えば、エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換されている基等)及び/又はエチニレン基を含む、置換基を有していてもよい炭素原子数2~50の2価の鎖状不飽和炭化水素基;
 シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボルニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数3~50の2価の環状飽和炭化水素基;
 1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4'-ジイル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~50のアリーレン基;
 メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルキレンオキシ基、1,3-フェニレンオキシ基、1,4-フェニレンオキシ基、1,4-ナフチレンオキシ基、1,5-ナフチレンオキシ基、2,6-ナフチレンオキシ基、これらの基の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~50のアリーレンオキシ基(即ち、式:-Rd-O-で表される2価の有機基(式中、Rdは置換基を有していてもよい炭素原子数1~50のアルキレン基又は置換基を有していてもよい炭素原子数1~50のアリーレン基である。置換基を有していてもよい炭素原子数1~50のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、及びこれらの基の中の少なくとも1個の水素原子が置換基で置換されている基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基が挙げられる。));
 炭素原子を含む置換基を有するイミノ基;
 炭素原子を含む置換基を有するシリレン基。
In formula (1), Q 1 is a divalent organic group. Examples of the divalent organic group represented by Q 1 include the following groups:
Methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1, Having a substituent such as a 6-hexylene group, a 1,9-nonylene group, a 1,12-dodecylene group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent. A divalent chain saturated hydrocarbon group having 1 to 50 carbon atoms;
Alkenylene group having 2 to 50 carbon atoms which may have a substituent (for example, ethenylene group, propenylene group, 3-butenylene group, 2-butenylene group, 2-pentenylene group, 2-hexenylene group, 2-nonenylene group) A group, a 2-dodecenylene group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, etc.) and / or an ethynylene group, which may have a substituent 2 to 50 divalent chain unsaturated hydrocarbon groups;
A cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, and at least one hydrogen atom in these groups is substituted with a substituent. A divalent cyclic saturated hydrocarbon group having 3 to 50 carbon atoms which may have a substituent, such as
1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, biphenyl-4,4′-diyl group, among these groups An arylene group having 6 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent;
A methyleneoxy group, an ethyleneoxy group, a propyleneoxy group, a butyleneoxy group, a pentyleneoxy group, a hexyleneoxy group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like, An optionally substituted alkyleneoxy group having 1 to 50 carbon atoms, 1,3-phenyleneoxy group, 1,4-phenyleneoxy group, 1,4-naphthyleneoxy group, 1,5-naphthyleneoxy group, An aryleneoxy group having 6 to 50 carbon atoms which may have a substituent such as a 2,6-naphthyleneoxy group or a group in which at least one hydrogen atom of these groups is substituted with a substituent (ie, A divalent organic group represented by the formula: —R d —O— (wherein R d has an alkylene group having 1 to 50 carbon atoms which may have a substituent or a substituent. Charcoal An arylene group having 1 to 50 atoms, and examples of the alkylene group having 1 to 50 carbon atoms which may have a substituent include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group and a hexylene group; Groups, and groups in which at least one hydrogen atom in these groups is substituted with a substituent, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5- A naphthylene group and a 2,6-naphthylene group)));
An imino group having a substituent containing a carbon atom;
A silylene group having a substituent containing a carbon atom.
 高分子化合物の原料であるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、Q1で表される2価の有機基は、2価の鎖状飽和炭化水素基、アリーレン基又はアルキレンオキシ基であることが好ましい。 From the viewpoint of ease of synthesis of a monomer that is a raw material for the polymer compound (hereinafter referred to as “raw material monomer”), the divalent organic group represented by Q 1 is a divalent chain saturated hydrocarbon. It is preferably a group, an arylene group or an alkyleneoxy group.
 Q1で表される2価の有機基としての、炭素原子数1~50の2価の鎖状飽和炭化水素基、炭素原子数2~50の2価の鎖状不飽和炭化水素基、炭素原子数3~50の2価の環状飽和炭化水素基、炭素原子数6~50のアリーレン基、炭素原子数1~50のアルキレンオキシ基、イミノ基及びシリレン基に含まれてもよい置換基としては、例えば、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、置換カルボキシル基、シアノ基及びニトロ基等が挙げられる。
前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。
As a divalent organic group represented by Q 1 , a divalent chain saturated hydrocarbon group having 1 to 50 carbon atoms, a divalent chain unsaturated hydrocarbon group having 2 to 50 carbon atoms, carbon, Substituents that may be contained in a divalent cyclic saturated hydrocarbon group having 3 to 50 atoms, an arylene group having 6 to 50 carbon atoms, an alkyleneoxy group having 1 to 50 carbon atoms, an imino group, and a silylene group Are, for example, alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, arylalkyl groups, arylalkoxy groups, arylalkylthio groups, arylalkenyl groups, arylalkynyl groups, amino groups, substituted amino groups, Silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, hydroxy group, substitution Carboxyl group and a cyano group and a nitro group.
When a plurality of the substituents are present, they may be the same as or different from each other.
 以下、置換基について説明する。
 本明細書において、「Cm~Cn」(m、nはm<nを満たす正の整数である)という用語は、この用語とともに記載された有機基の炭素原子数がm~nであることを表す。例えば、Cm~Cnアルキル基であれば、アルキル基の炭素原子数がm~nであることを表し、Cm~Cnアルキルアリール基であれば、アルキルアリール基に含まれるアルキル基の炭素原子数がm~nであることを表し、アリール-Cm~Cnアルキル基であれば、アリールアルキル基に含まれるアルキル基の炭素原子数がm~nであることを表す。
Hereinafter, the substituent will be described.
In the present specification, the term “C m -C n ” (m, n is a positive integer satisfying m <n) means that the organic group described together with this term has m to n carbon atoms. Represents that. For example, a C m to C n alkyl group represents that the alkyl group has m to n carbon atoms, and a C m to C n alkyl aryl group represents an alkyl group contained in the alkyl aryl group. This means that the number of carbon atoms is m to n, and in the case of an aryl-C m to C n alkyl group, it means that the number of carbon atoms of the alkyl group contained in the arylalkyl group is m to n.
 本明細書において、「置換基を有していてもよい」とは、その直後に記載された化合物又は基を構成する水素原子が無置換の場合及び水素原子の一部又は全部が置換基によって置換されている場合の双方を含む。 In the present specification, “may have a substituent” means that the hydrogen atom constituting the compound or group described immediately after it is unsubstituted or a part or all of the hydrogen atoms are substituted. Includes both cases where it is substituted.
 アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は通常1~20(シクロアルキル基の場合は、通常3~20)であり、1~10(シクロアルキル基の場合は、3~20)であることが好ましい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基及びラウリル基が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。このようなアルキル基(フッ素原子置換アルキル基)としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。なお、C1~C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基及びラウリル基が挙げられる。 The alkyl group may be linear or branched, and may be a cycloalkyl group. The alkyl group usually has 1 to 20 carbon atoms (usually 3 to 20 in the case of a cycloalkyl group), and preferably 1 to 10 (3 to 20 in the case of a cycloalkyl group). Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, Nonyl group, decyl group and lauryl group can be mentioned. The hydrogen atom in the alkyl group may be substituted with a fluorine atom. Examples of such an alkyl group (fluorine atom-substituted alkyl group) include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group. Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group and lauryl group.
 アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は通常1~20(シクロアルキルオキシ基の場合は、通常3~20)であり、1~10(シクロアルキルオキシ基の場合は、3~10)であることが好ましい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基等が挙げられる。前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。このようなアルコキシ基(フッ素原子置換アルコキシ基)としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基等が挙げられる。アルコキシ基の例には、メトキシメチルオキシ基及び2-メトキシエチルオキシ基も含まれる。なお、C1~C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。 The alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent. The number of carbon atoms of the alkoxy group is usually 1 to 20 (usually 3 to 20 for a cycloalkyloxy group), and preferably 1 to 10 (3 to 10 for a cycloalkyloxy group). Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples thereof include an oxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a lauryloxy group. A hydrogen atom in the alkoxy group may be substituted with a fluorine atom. Examples of such an alkoxy group (fluorine atom-substituted alkoxy group) include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group. Examples of the alkoxy group also include a methoxymethyloxy group and a 2-methoxyethyloxy group. Examples of the C 1 to C 12 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group. Group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group.
 アルキルチオ基としては、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は通常1~20(シクロアルキルチオ基の場合は、通常3~20)であり、1~10(シクロアルキルチオ基の場合は、3~10)であることが好ましい。アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。このようなアルキルチオ基(フッ素原子置換アルキルチオ基)としては、例えば、トリフルオロメチルチオ基が挙げられる。 The alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent. The alkylthio group usually has 1 to 20 carbon atoms (usually 3 to 20 for a cycloalkylthio group), and preferably 1 to 10 (3 to 10 for a cycloalkylthio group). Examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, an isopropylthio group, a butylthio group, an isobutylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a cyclohexylthio group, a heptylthio group, An octylthio group, a nonylthio group, a decylthio group, a laurylthio group, etc. are mentioned. A hydrogen atom in the alkylthio group may be substituted with a fluorine atom. Examples of such an alkylthio group (fluorine atom-substituted alkylthio group) include a trifluoromethylthio group.
 アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団である。アリール基には、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環及び/又は縮合環2個以上が単結合した基、並びに、独立したベンゼン環及び/又は縮合環2個以上が2価の有機基(例えば、ビニレン基等のアルケニレン基を介して結合した基)も含まれる。アリール基は、炭素原子数が通常6~60であり、6~48であることが好ましい。アリール基としては、例えば、フェニル基、C1~C12アルコキシフェニル基、C1~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。このようなアリール基(フッ素原子置換アリール基)としては、例えば、ペンタフルオロフェニル基が挙げられる。アリール基の中では、フェニル基、C1~C12アルコキシフェニル基及びC1~C12アルキルフェニル基が好ましい。 The aryl group is a remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon. The aryl group includes a group having a benzene ring, a group having a condensed ring, a group in which two or more independent benzene rings and / or condensed rings are single-bonded, and two or more independent benzene rings and / or condensed rings. A divalent organic group (for example, a group bonded via an alkenylene group such as a vinylene group) is also included. The aryl group usually has 6 to 60 carbon atoms, and preferably 6 to 48 carbon atoms. Examples of the aryl group include a phenyl group, a C 1 to C 12 alkoxyphenyl group, a C 1 to C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and 9- Anthracenyl group etc. are mentioned. A hydrogen atom in the aryl group may be substituted with a fluorine atom. Examples of such an aryl group (fluorine atom-substituted aryl group) include a pentafluorophenyl group. Of the aryl groups, a phenyl group, a C 1 -C 12 alkoxyphenyl group and a C 1 -C 12 alkylphenyl group are preferred.
 C1~C12アルコキシフェニル基としては、例えば、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec-ブトキシフェニル基、tert-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。 Examples of the C 1 -C 12 alkoxyphenyl group include a methoxyphenyl group, an ethoxyphenyl group, a propyloxyphenyl group, an isopropyloxyphenyl group, a butoxyphenyl group, an isobutoxyphenyl group, a sec-butoxyphenyl group, and a tert-butoxyphenyl group. Group, pentyloxyphenyl group, hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7-dimethyloctyl An oxyphenyl group, a lauryloxyphenyl group, etc. are mentioned.
 C1~C12アルキルフェニル基としては、例えば、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基及びドデシルフェニル基等が挙げられる。 Examples of the C 1 -C 12 alkylphenyl group include methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group, tert -Butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group and dodecylphenyl group.
 アリールオキシ基は、炭素原子数が通常6~60であり、6~48であることが好ましい。アリールオキシ基としては、例えば、フェノキシ基、C1~C12アルコキシフェノキシ基、C1~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基及びペンタフルオロフェニルオキシ基等が挙げられる。アリールオキシ基の中では、フェノキシ基、C1~C12アルコキシフェノキシ基及びC1~C12アルキルフェノキシ基が好ましい。 The aryloxy group usually has 6 to 60 carbon atoms, preferably 6 to 48 carbon atoms. Examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group. . Of the aryloxy groups, a phenoxy group, a C 1 -C 12 alkoxyphenoxy group, and a C 1 -C 12 alkylphenoxy group are preferred.
 C1~C12アルコキシフェノキシ基としては、例えば、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、sec-ブトキシフェノキシ基、tert-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基及びラウリルオキシフェノキシ基等が挙げられる。 Examples of the C 1 -C 12 alkoxyphenoxy group include a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, a sec-butoxyphenoxy group, a tert-butoxyphenoxy group. Group, pentyloxyphenoxy group, hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3,7-dimethyloctyl Examples thereof include an oxyphenoxy group and a lauryloxyphenoxy group.
 アリールチオ基は、例えば、前述のアリール基が硫黄元素に結合した基である。アリールチオ基は、前記アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が通常6~60であり、6~30であることが好ましい。アリールチオ基としては、例えば、フェニルチオ基、C1~C12アルコキシフェニルチオ基、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基及びペンタフルオロフェニルチオ基が挙げられる。 The arylthio group is, for example, a group in which the aforementioned aryl group is bonded to a sulfur element. The arylthio group may have a substituent on the aromatic ring of the aryl group. The arylthio group usually has 6 to 60 carbon atoms, preferably 6 to 30 carbon atoms. Examples of the arylthio group include a phenylthio group, a C 1 -C 12 alkoxyphenylthio group, a C 1 -C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
 アリールアルキル基は、例えば、前述のアリール基が前述のアルキル基に結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキル基としては、例えば、フェニル-C1~C12アルキル基、C1~C12アルコキシフェニル-C1~C12アルキル基、C1~C12アルキルフェニル-C1~C12アルキル基、1-ナフチル-C1~C12アルキル基及び2-ナフチル-C1~C12アルキル基が挙げられる。 The arylalkyl group is, for example, a group in which the aforementioned aryl group is bonded to the aforementioned alkyl group. The arylalkyl group may have a substituent. The arylalkyl group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms. Examples of the arylalkyl group include a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, naphthyl -C 1 ~ C 12 alkyl group and 2-naphthyl -C 1 ~ C 12 alkyl group.
 アリールアルコキシ基は、例えば、前述のアリール基が前述のアルコキシ基に結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルコキシ基としては、例えば、フェニル-C1~C12アルコキシ基、C1~C12アルコキシフェニル-C1~C12アルコキシ基、C1~C12アルキルフェニル-C1~C12アルコキシ基、1-ナフチル-C1~C12アルコキシ基、2-ナフチル-C1~C12アルコキシ基等が挙げられる。 The arylalkoxy group is, for example, a group in which the above aryl group is bonded to the above alkoxy group. The arylalkoxy group may have a substituent. The arylalkoxy group usually has 7 to 60 carbon atoms, and preferably 7 to 30 carbon atoms. Examples of the arylalkoxy group include a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, Examples include 1 -naphthyl-C 1 -C 12 alkoxy group and 2-naphthyl-C 1 -C 12 alkoxy group.
 アリールアルキルチオ基は、例えば、前述のアリール基が前述のアルキルチオ基に結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が通常7~60であり、7~30であることが好ましい。アリールアルキルチオ基としては、例えば、フェニル-C1~C12アルキルチオ基、C1~C12アルコキシフェニル-C1~C12アルキルチオ基、C1~C12アルキルフェニル-C1~C12アルキルチオ基、1-ナフチル-C1~C12アルキルチオ基、2-ナフチル-C1~C12アルキルチオ基等が挙げられる。 The arylalkylthio group is, for example, a group in which the above aryl group is bonded to the above alkylthio group. The arylalkylthio group may have a substituent. The arylalkylthio group usually has 7 to 60 carbon atoms, preferably 7 to 30 carbon atoms. Examples of the arylalkylthio group include a phenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkoxyphenyl-C 1 to C 12 alkylthio group, a C 1 to C 12 alkylphenyl-C 1 to C 12 alkylthio group, Examples thereof include a 1 -naphthyl-C 1 -C 12 alkylthio group and a 2-naphthyl-C 1 -C 12 alkylthio group.
 アリールアルケニル基は、例えば、前述のアリール基がアルケニル基に結合した基である。アリールアルケニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルケニル基としては、例えば、フェニル-C2~C12アルケニル基、C1~C12アルコキシフェニル-C2~C12アルケニル基、C1~C12アルキルフェニル-C2~C12アルケニル基、1-ナフチル-C2~C12アルケニル基及び2-ナフチル-C2~C12アルケニル基が挙げられ、C1~C12アルコキシフェニル-C2~C12アルケニル基又はC2~C12アルキルフェニル-C2~C12アルケニル基であることが好ましい。なお、C2~C12アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基及び1-オクテニル基が挙げられる。 The arylalkenyl group is, for example, a group in which the aforementioned aryl group is bonded to the alkenyl group. The arylalkenyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms. Examples of the arylalkenyl group include a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, Examples include 1-naphthyl-C 2 -C 12 alkenyl group and 2-naphthyl-C 2 -C 12 alkenyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group or C 2 -C 12 alkylphenyl A —C 2 -C 12 alkenyl group is preferred. Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, 1-hexenyl. Group, 2-hexenyl group and 1-octenyl group.
 アリールアルキニル基は、例えば、前述のアリール基がアルキニル基に結合した基である。アリールアルキニル基は、炭素原子数が通常8~60であり、8~30であることが好ましい。アリールアルキニル基としては、例えば、フェニル-C2~C12アルキニル基、C1~C12アルコキシフェニル-C2~C12アルキニル基、C1~C12アルキルフェニル-C2~C12アルキニル基、1-ナフチル-C2~C12アルキニル基及び2-ナフチル-C2~C12アルキニル基が挙げられ、C1~C12アルコキシフェニル-C2~C12アルキニル基又はC1~C12アルキルフェニル-C2~C12アルキニル基であることが好ましい。なお、C2~C12アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基及び1-オクチニル基が挙げられる。 The arylalkynyl group is, for example, a group in which the aforementioned aryl group is bonded to the alkynyl group. The arylalkynyl group usually has 8 to 60 carbon atoms, preferably 8 to 30 carbon atoms. Examples of the arylalkynyl group include a phenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, Examples include 1-naphthyl-C 2 -C 12 alkynyl group and 2-naphthyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group or C 1 -C 12 alkylphenyl A —C 2 to C 12 alkynyl group is preferred. Examples of the C 2 -C 12 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group. Group, 2-hexynyl group and 1-octynyl group.
 置換アミノ基としては、アミノ基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1又は2個の基によって置換されたアミノ基が好ましい。該アルキル基、アリール基、アリールアルキル基及び1価の複素環基は、置換基を有していてもよい。置換アミノ基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基及び1価の複素環基が有していてもよい置換基の炭素原子数を含めないで、通常1~60であり、2~48であることが好ましい。置換アミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C1~C12アルキル)アミノ基、(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基及び2-ナフチル-C1~C12アルキルアミノ基が挙げられる。 As the substituted amino group, at least one hydrogen atom in the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. The amino group formed is preferred. The alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group may have a substituent. The number of carbon atoms of the substituted amino group is usually 1 to 60, not including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group and monovalent heterocyclic group may have. It is preferably 2 to 48. Examples of the substituted amino group include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, sec- Butylamino group, tert-butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group , lauryl group, a cyclopentylamino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, (C 1 ~ C 12 alkoxy Eniru) amino group, di (C 1 ~ C 12 alkoxyphenyl) amino group, di (C 1 ~ C 12 alkylphenyl) amino groups, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino Group, pyridazinylamino group, pyrimidylamino group, pyrazinylamino group, triazinylamino group, (phenyl-C 1 -C 12 alkyl) amino group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) Amino group, (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) amino group, di (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group, di (C 1 -C 12 alkyl) phenyl -C 1 ~ C 12 alkyl) amino groups, 1-naphthyl -C 1 ~ C 12 alkylamino groups and 2-naphthyl -C 1 ~ C 12 alkyl amino group is exemplified et al That.
 置換シリル基としては、シリル基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1~3個の基によって置換されたシリル基が挙げられる。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。置換シリル基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで、通常1~60であり、3~48であることが好ましい。置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C1~C12アルキル)シリル基、(C1~C12アルコキシフェニル-C1~C12アルキル)シリル基、(C1~C12アルキルフェニル-C1~C12アルキル)シリル基、(1-ナフチル-C1~C12アルキル)シリル基、(2-ナフチル-C1~C12アルキル)シリル基、(フェニル-C1~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基及びジメチルフェニルシリル基が挙げられる。 As the substituted silyl group, at least one hydrogen atom in the silyl group is substituted with 1 to 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group Silyl group formed. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. The number of carbon atoms of the substituted silyl group is usually 1 to 60, not including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have. 3 to 48 are preferable. Examples of the substituted silyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, tert-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group. Group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, lauryldimethylsilyl group, (phenyl-C 1- (C 12 alkyl) silyl group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) silyl group, (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) silyl group, (1-naphthyl- C 1 ~ C 12 alkyl Silyl group, (2-naphthyl -C 1 ~ C 12 alkyl) silyl group, (phenyl -C 1 ~ C 12 alkyl) dimethyl silyl group, a triphenylsilyl group, tri (p- xylyl) silyl group, tribenzylsilyl group , Diphenylmethylsilyl group, tert-butyldiphenylsilyl group and dimethylphenylsilyl group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 アシル基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基及びペンタフルオロベンゾイル基が挙げられる。 The acyl group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms. Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
 アシルオキシ基は、炭素原子数が通常2~20であり、2~18であることが好ましい。アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基及びペンタフルオロベンゾイルオキシ基が挙げられる。 The acyloxy group usually has 2 to 20 carbon atoms, and preferably 2 to 18 carbon atoms. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
 イミン残基は、式:H-N=C<及び式:-N=CH-の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた基を意味する。イミン化合物としては、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子が、置換基(例えば、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等)で置換されている化合物が挙げられる。イミン残基の炭素原子数は、通常2~20であり、2~18が好ましい。イミン残基としては、例えば、式:-CRβ=N-Rγで表される基、及び式:-N=C(Rγ2で表される基(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基であり、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基である。但し、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基として、環を形成してもよい。前記2価の基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2~18のアルキレン基が挙げられる。)が挙げられる。イミン残基としては、例えば、以下の式で表される基が挙げられる。 The imine residue means a group in which one hydrogen atom in this structure is removed from an imine compound having a structure represented by at least one of the formula: H—N═C <and the formula: —N═CH—. . As the imine compound, for example, a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine and aldimine is substituted with a substituent (for example, an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, etc.). The compound which is mentioned. The number of carbon atoms in the imine residue is usually 2-20, and preferably 2-18. Examples of the imine residue include a group represented by the formula: —CR β = N—R γ and a group represented by the formula: —N═C (R γ ) 2 (wherein R β represents a hydrogen atom , An alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, and R γ is independently an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group. , When two R γ are present, the two R γ may be bonded together to form a ring as a divalent group, for example, an ethylene group And alkylene groups having 2 to 18 carbon atoms such as trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc.). Examples of the imine residue include groups represented by the following formulas.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 アミド基は、炭素原子数が通常1~20であり、2~18であることが好ましい。アミド基としては、例えば、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基及びジペンタフルオロベンズアミド基が挙げられる。 The amide group usually has 1 to 20 carbon atoms and preferably 2 to 18 carbon atoms. Examples of the amide group include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, a dipropioamide group, a dibutyroamide group, a dibenzamide group, Examples include a ditrifluoroacetamide group and a dipentafluorobenzamide group.
 酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる基である。酸イミド基は、炭素原子数が通常4~20であり、4~18であることが好ましい。
酸イミド基としては、例えば、以下の式で表される基が挙げられる。
The acid imide group is a group obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide. The acid imide group usually has 4 to 20 carbon atoms, and preferably 4 to 18 carbon atoms.
Examples of the acid imide group include groups represented by the following formulas.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 1価の複素環基とは、複素環式化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団をいう。
 ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が通常3~60であり、3~20であることが好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。1価の複素環基としては、例えば、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基及びイソキノリル基が挙げられ、中でも、チエニル基、C1~C12アルキルチエニル基、ピリジル基、C1~C12アルキルピリジル基及びトリアジニル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。1価の芳香族複素環基は、複素環自体が芳香族性を示す複素環式化合物から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団、及び、前記ヘテロ原子を含むが芳香族性を示さない複素環に、芳香環が縮環されている化合物(例えば、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等)から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。
The monovalent heterocyclic group means a remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a heterocyclic compound.
Here, the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure. , An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom. The monovalent heterocyclic group may have a substituent. The monovalent heterocyclic group usually has 3 to 60 carbon atoms, and preferably 3 to 20 carbon atoms. The number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent. Examples of the monovalent heterocyclic group include thienyl group, C 1 -C 12 alkyl thienyl group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkyl pyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, Examples thereof include a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group and an isoquinolyl group, among which a thienyl group, a C 1 to C 12 alkylthienyl group, a pyridyl group, a C 1 to C 12 alkylpyridyl group and a triazinyl group are preferable. The monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group. The monovalent aromatic heterocyclic group includes an atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a heterocyclic compound in which the heterocyclic ring itself exhibits aromaticity, and the heterocycle Directly from a compound containing an atom but not having aromaticity to a ring in which the aromatic ring is condensed (for example, phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran) to the carbon atom constituting the ring It means the remaining atomic group excluding one hydrogen atom to be bonded.
 置換カルボキシル基とは、カルボキシル基中の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1個以上の基で置換されているカルボキシル基である。即ち、置換カルボキシル基とは、式:-C(=O)OR*で表される基(式中、R*はアルキル基、アリール基、アリールアルキル基又は1価の複素環基である。)である。置換カルボキシル基は、炭素原子数が通常2~60であり、2~48であることが好ましい。前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。なお、置換カルボキシル基の炭素原子数には、前記アルキル基、アリール基、アリールアルキル基及び1価の複素環基が有する置換基の炭素原子数は含まないものとする。置換カルボキシル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基及びピリジルオキシカルボニル基が挙げられる。 The substituted carboxyl group is a carboxyl group in which a hydrogen atom in the carboxyl group is substituted with one or more groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group. is there. That is, the substituted carboxyl group is a group represented by the formula: —C (═O) OR * (wherein R * is an alkyl group, an aryl group, an arylalkyl group, or a monovalent heterocyclic group). It is. The substituted carboxyl group usually has 2 to 60 carbon atoms, and preferably 2 to 48 carbon atoms. The alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. Note that the number of carbon atoms of the substituted carboxyl group does not include the number of carbon atoms of the substituent of the alkyl group, aryl group, arylalkyl group, and monovalent heterocyclic group. Examples of the substituted carboxyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group, a butoxycarbonyl group, an isobutoxycarbonyl group, a sec-butoxycarbonyl group, a tert-butoxycarbonyl group, and a pentyloxycarbonyl group. Hexyloxycarbonyl group, cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, dodecyl Oxycarbonyl group, trifluoromethoxycarbonyl group, pentafluoroethoxycarbonyl group, perfluorobutoxycarbonyl group, perfluorohexyl Alkoxycarbonyl group, a perfluorooctyl group, phenoxycarbonyl group, and a naphthoxycarbonyl group and pyridyloxycarbonyl group.
 式(1)中、Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -である。Y1は、高分子化合物の酸性度の観点からは-CO2 -、-SO2 -又は-PO3 2-であることが好ましく、-CO2 -であることがより好ましい。Y1は、高分子化合物の安定性の観点からは、-CO2 -、-SO3 -、-SO2 -又は-PO3 2-であることが好ましい。 In the formula (1), Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 . Y 1 is preferably —CO 2 , —SO 2 or —PO 3 2− from the viewpoint of the acidity of the polymer compound, and more preferably —CO 2 . Y 1 is preferably —CO 2 , —SO 3 , —SO 2 or —PO 3 2− from the viewpoint of the stability of the polymer compound.
 Rαは、置換基を有していてもよい炭素原子数1~30のアルキル基、又は置換基を有していてもよい炭素原子数6~50のアリール基である。Rαに含まれ得る、炭素原子数1~30のアルキル基及び炭素原子数6~50のアリール基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。Rαとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~20のアルキル基、及び、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~30のアリール基が挙げられる。複数個のRαが存在する場合、各々のRαは互いに同一でも異なっていてもよい。 R α is an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group having 6 to 50 carbon atoms which may have a substituent. Examples of the substituent that may be contained in the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 50 carbon atoms that may be included in R α include the substituents exemplified in the description regarding Q 1 described above. And the same substituents. When a plurality of substituents are present, they may be the same as or different from each other. R α is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, An alkyl having 1 to 20 carbon atoms which may have a substituent, such as a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent; A phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, and at least one hydrogen atom in these groups is substituted with a substituent. And an aryl group having 6 to 30 carbon atoms which may have a substituent, such as the above-described groups. When a plurality of R α are present, each R α may be the same as or different from each other.
 式(1)中、M1は、H又は金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンである。金属カチオンとしては、例えば1価、2価又は3価の金属カチオンが挙げられる。1価、2価又は3価の金属カチオンとしては、例えば、Liのカチオン、Naのカチオン、Kのカチオン、Rbのカチオン、Csのカチオン、Beのカチオン、Mgのカチオン、Caのカチオン、Baのカチオン、Agのカチオン、Alのカチオン、Biのカチオン、Cuのカチオン、Feのカチオン、Gaのカチオン、Mnのカチオン、Pbのカチオン、Snのカチオン、Tiのカチオン、Vのカチオン、Wのカチオン、Yのカチオン、Ybのカチオン、Znのカチオン及びZrのカチオンが挙げられ、Li+、Na+、K+、Rb+、Cs+、Ag+、Mg2+及びCa2+が好ましい。アンモニウムカチオンが有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基等の炭素原子数1~10のアルキル基、及び、フェニル基、1-ナフチル基、2-ナフチル基等の炭素原子数6~60のアリール基が挙げられる。 In formula (1), M 1 is H +, a metal cation, or an ammonium cation which may have a substituent. Examples of the metal cation include a monovalent, divalent or trivalent metal cation. Examples of monovalent, divalent or trivalent metal cations include, for example, Li cation, Na cation, K cation, Rb cation, Cs cation, Be cation, Mg cation, Ca cation, Ba Cations, Ag cations, Al cations, Bi cations, Cu cations, Fe cations, Ga cations, Mn cations, Pb cations, Sn cations, Ti cations, V cations, W cations, Examples include a cation of Y, a cation of Yb, a cation of Zn and a cation of Zr, and Li + , Na + , K + , Rb + , Cs + , Ag + , Mg 2+ and Ca 2+ are preferred. Examples of the substituent that the ammonium cation may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group and the like, having 1 to 10 carbon atoms. And an aryl group having 6 to 60 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
 式(1)中、Z1は、F-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -である。 In the formula (1), Z 1 represents F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 −. , ClO 3 , ClO 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 -That's it.
 Raは置換基を有していてもよい1価の有機基である。該有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、炭素原子数1~10のアルキル基、及び、フェニル基、1-ナフチル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、炭素原子数6~30のアリール基が挙げられる。Raに含まれ得る炭素原子数1~10のアルキル基又は炭素原子数6~30のアリール基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。複数個のRaが存在する場合、各々のRaは互いに同一でも異なっていてもよい。 R a is a monovalent organic group which may have a substituent. Examples of the organic group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, and at least one hydrogen atom in these groups is a substituent. An alkyl group having 1 to 10 carbon atoms, a phenyl group, a 1-naphthyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, such as a group substituted with And aryl groups having 6 to 30 carbon atoms. Examples of the substituent that the alkyl group having 1 to 10 carbon atoms or the aryl group having 6 to 30 carbon atoms that may be included in R a may include the substituents exemplified in the description of Q 1 described above. Similar substituents can be mentioned. When a plurality of R a are present, each R a may be the same as or different from each other.
 式(1)中、n1は0以上の整数である。原料モノマーの合成の観点から、n1は好ましくは0から8の整数であり、より好ましくは0から2の整数である。 In the formula (1), n1 is an integer of 0 or more. From the viewpoint of the synthesis of the raw material monomer, n1 is preferably an integer of 0 to 8, and more preferably an integer of 0 to 2.
 式(1)中、a1は1以上の整数であり、b1は0以上の整数である。 In formula (1), a1 is an integer of 1 or more, and b1 is an integer of 0 or more.
 a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -であり、M1がH又は1価の金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンであり、Z1がF-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1及びb1は、a1=b1+1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -であり、M1が2価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1及びb1は、b1=2×a1-1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、又は-PO3 2-であり、M1が3価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1及びb1は、b1=3×a1-1を満たすように選択される。Y1が-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -であり、M1がH+又は1価の金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンであり、Z1がSO4 2-又はHPO4 2-である場合には、a1及びb1は、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。 a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero. For example, Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 , and M 1 is H + or a monovalent metal cation. Or an ammonium cation which may have a substituent, and Z 1 is F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a When it is COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , HSO 4 , H 2 PO 4 , BF 4 or PF 6 a1 and b1 are selected to satisfy a1 = b1 + 1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 , M 1 is a divalent metal cation, and Z 1 is F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , HSO 4 , H 2 PO 4 , BF 4 or PF 6 , a1 and b1 are selected to satisfy b1 = 2 × a1-1. Y 1 is —CO 2 , —SO 3 , —SO 2 , or —PO 3 2− , M 1 is a trivalent metal cation, Z 1 is F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO 4 , SCN , CN , NO 3 , In the case of HSO 4 , H 2 PO 4 , BF 4 or PF 6 , a1 and b1 are selected so as to satisfy b1 = 3 × a1-1. Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 , and M 1 is H + or a monovalent metal cation, When it is an ammonium cation which may have a substituent and Z 1 is SO 4 2− or HPO 4 2− , a1 and b1 are selected so as to satisfy a1 = 2 × b1 + 1. In any of the above mathematical expressions representing the relationship between a1 and b1, a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
 即ち、複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。 That is, when a plurality of Q 1 are present, each Q 1 may be the same as or different from each other. When a plurality of M 1 are present, each M 1 may be the same as or different from each other. When a plurality of n2 are present, each n2 may be the same as or different from each other. When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
 前記式(1)で表される基としては、例えば、以下の式で表される基が挙げられる。以下の式中、Mは、H、Li、Na、K、Rb、Cs又はN(CH34である。 Examples of the group represented by the formula (1) include groups represented by the following formulas. In the following formulae, M is H, Li, Na, K, Rb, Cs or N (CH 3 ) 4 .
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
〔1.2.式(2)で表される基〕
 式(2)中、Q2は、2価の有機基である。Y2はシアノ基又は式(3)~(11)のいずれかで表される基である。n2は0以上の整数である。複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。式(2)で表される基が前記高分子化合物内に複数個存在する場合には、各々の式(2)で表される基は互いに同一でも異なっていてもよい。
[1.2. Group represented by Formula (2)]
In formula (2), Q 2 is a divalent organic group. Y 2 is a cyano group or a group represented by any one of formulas (3) to (11). n2 is an integer of 0 or more. When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. When a plurality of groups represented by formula (2) are present in the polymer compound, each group represented by formula (2) may be the same as or different from each other.
 式(2)中、Q2は、2価の有機基である。2価の有機基としては例えば、前述のQ1で表される2価の有機基について例示したものと同様の基が挙げられる。原料モノマーの合成の容易さの観点からは、Q2は、置換基を有していてもよい2価の鎖状飽和炭化水素基、置換基を有していてもよいアリーレン基又は置換基を有していてもよいアルキレンオキシ基であることが好ましい。 In formula (2), Q 2 is a divalent organic group. Examples of the divalent organic group include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. From the viewpoint of ease of synthesis of the raw material monomer, Q 2 represents a divalent chain saturated hydrocarbon group which may have a substituent, an arylene group or a substituent which may have a substituent. It is preferably an alkyleneoxy group that may have.
 Q2に含まれ得る2価の鎖状飽和炭化水素基、アリーレン基又はアルキレンオキシ基が有していてもよい置換基についても、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Substituents that the divalent chain saturated hydrocarbon group, arylene group, or alkyleneoxy group that may be included in Q 2 may have the same substitution as the substituents exemplified in the above description of Q 1 Groups. When a plurality of substituents are present, they may be the same as or different from each other.
 式(2)中、n2は、0以上の整数であり、好ましくは0から20の整数であり、より好ましくは0から8の整数である。 In the formula (2), n2 is an integer of 0 or more, preferably an integer of 0 to 20, and more preferably an integer of 0 to 8.
 式(2)中、Y2は、シアノ基又は式(3)~(11)のいずれかで表される基である。 In the formula (2), Y 2 is a cyano group or a group represented by any one of the formulas (3) to (11).
 式(3)~(11)中、R’は、置換基を有していてもよい2価の炭化水素基である。 In the formulas (3) to (11), R ′ is a divalent hydrocarbon group which may have a substituent.
 R’で表される置換基を有していてもよい2価の炭化水素基としては、例えば、以下の基が挙げられる:
 メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50の2価の鎖状飽和炭化水素基;
 エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数2~50のアルケニレン基、及び/又は、エチニレン基を含む、置換基を有していてもよい炭素原子数2~50の2価の鎖状不飽和炭化水素基;
 シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボルニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数3~50の2価の環状飽和炭化水素基;
 1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~50のアリーレン基。
Examples of the divalent hydrocarbon group which may have a substituent represented by R ′ include the following groups:
Methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1, Having a substituent such as a 6-hexylene group, a 1,9-nonylene group, a 1,12-dodecylene group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent. A divalent chain saturated hydrocarbon group having 1 to 50 carbon atoms;
Ethenylene group, propenylene group, 3-butenylene group, 2-butenylene group, 2-pentenylene group, 2-hexenylene group, 2-nonenylene group, 2-dodecenylene group, at least one hydrogen atom in these groups is substituted The number of carbon atoms which may have a substituent, including an alkenylene group having 2 to 50 carbon atoms which may have a substituent and / or an ethynylene group, such as a group substituted by a group 2 to 50 divalent chain unsaturated hydrocarbon groups;
A cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclononylene group, a cyclododecylene group, a norbornylene group, an adamantylene group, and at least one hydrogen atom in these groups is substituted with a substituent. A divalent cyclic saturated hydrocarbon group having 3 to 50 carbon atoms which may have a substituent, such as
1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, biphenyl-4,4′-diyl group, among these groups An arylene group having 6 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent.
 R’に含まれ得る、炭素原子数1~50の2価の鎖状飽和炭化水素基、炭素原子数2~50の2価の鎖状不飽和炭化水素基、炭素原子数3~50の2価の環状飽和炭化水素基、及び、炭素原子数6~50のアリーレン基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Divalent chain saturated hydrocarbon group having 1 to 50 carbon atoms, divalent chain unsaturated hydrocarbon group having 2 to 50 carbon atoms, 2 having 3 to 50 carbon atoms, which can be contained in R ′ Examples of the substituent that the valent cyclic saturated hydrocarbon group and the arylene group having 6 to 50 carbon atoms may have include the same substituents as those exemplified in the description of Q 1 described above. It is done. When a plurality of substituents are present, they may be the same as or different from each other.
 式(3)及び(5)~(11)中、R’’は、水素原子、置換基を有していてもよい1価の炭化水素基、カルボキシル基、スルホ基、ヒドロキシル基、メルカプト基、-NRc 2、シアノ基又は-C(=O)NRc 2である。 In formulas (3) and (5) to (11), R ″ represents a hydrogen atom, a monovalent hydrocarbon group which may have a substituent, a carboxyl group, a sulfo group, a hydroxyl group, a mercapto group, —NR c 2 , a cyano group, or —C (═O) NR c 2 .
 R’’で表される置換基を有していてもよい1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~20のアルキル基、及び、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~30のアリール基が挙げられる。 Examples of the monovalent hydrocarbon group optionally having a substituent represented by R ″ include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom of these groups is substituted with a substituent An alkyl group having 1 to 20 carbon atoms which may have a substituent, and the like, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl Groups, and aryl groups having 6 to 30 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent.
 高分子化合物の溶解性の観点からは、R’’で表される置換基を有していてもよい1価の炭化水素基は、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基、又は、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基であることが好ましい。 From the viewpoint of solubility of the polymer compound, the monovalent hydrocarbon group optionally having a substituent represented by R ″ is a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, 2 -A naphthyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent is preferred.
 R’’に含まれ得る、炭素原子数1~20のアルキル基及び炭素原子数6~30のアリール基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Examples of the substituent which the alkyl group having 1 to 20 carbon atoms and the aryl group having 6 to 30 carbon atoms which may be included in R ″ may have the substituents exemplified in the description of Q 1 above. Examples of the substituent are the same as those of the group. When a plurality of substituents are present, they may be the same as or different from each other.
 R’’で表される-NRc 2及び-C(=O)NRc 2中のRcは、置換基を有していてもよい炭素原子数1~30のアルキル基、又は置換基を有していてもよい炭素原子数6~50のアリール基である。各々のRcは互いに同じでも異なっていてもよい。Rcに含まれ得る、炭素原子数1~30のアルキル基及び炭素原子数6~50のアリール基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。Rcは、高分子化合物の溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基又はこれらの基の中の少なくとも1個の水素原子が置換基で置換されている基であることが好ましい。 R c of -NR c 2 and -C (= O) in NR c 2 represented by R '' is 1 carbon atoms which may have a substituent group to 30 alkyl group, or a substituent An aryl group having 6 to 50 carbon atoms which may be present. Each R c may be the same as or different from each other. Examples of the substituent that the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 50 carbon atoms that may be contained in R c may include the substituents exemplified in the description of Q 1 described above. And the same substituents. From the viewpoint of solubility of the polymer compound, R c is a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, or at least one hydrogen atom in these groups is a substituent. It is preferably a substituted group.
 式(4)中、R’’’は、置換基を有していてもよい3価の炭化水素基である。 In formula (4), R ′ ″ is a trivalent hydrocarbon group which may have a substituent.
 R’’’で表される置換基を有していてもよい3価の炭化水素基としては、例えば、メタントリイル基、エタントリイル基、1,2,3-プロパントリイル基、1,2,4-ブタントリイル基、1,2,5-ペンタントリイル基、1,3,5-ペンタントリイル基、1,2,6-ヘキサントリイル基、1,3,6-ヘキサントリイル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~20のアルカントリイル基、及び、1,2,3-ベンゼントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~30のアレーントリイル基が挙げられる。 Examples of the trivalent hydrocarbon group which may have a substituent represented by R ′ ″ include, for example, methanetriyl group, ethanetriyl group, 1,2,3-propanetriyl group, 1,2,4 -Butanetriyl group, 1,2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, these An alkanetriyl group having 1 to 20 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in the group is substituted with a substituent, and 1,2,3 -Benzenetriyl group, 1,2,4-benzenetriyl group, 1,3,5-benzenetriyl group, groups in which at least one hydrogen atom in these groups is substituted with a substituent, etc. Of 6 to 30 carbon atoms which may have a substituent Riiru group, and the like.
 高分子化合物の溶解性の観点からは、R’’’で表される3価の炭化水素基は、メタントリイル基、エタントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基又はこれらの基の中の少なくとも1個の水素原子が置換基で置換されている基であることが好ましい。 From the viewpoint of the solubility of the polymer compound, the trivalent hydrocarbon group represented by R ′ ″ is methanetriyl group, ethanetriyl group, 1,2,4-benzenetriyl group, 1,3,5- A benzenetriyl group or a group in which at least one hydrogen atom in these groups is substituted with a substituent is preferable.
 R’’’に含まれ得る、炭素原子数1~20のアルカントリイル基及び炭素原子数6~30のアレーントリイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Examples of the substituent that the alkanetriyl group having 1 to 20 carbon atoms and the arenetriyl group having 6 to 30 carbon atoms that may be contained in R ′ ″ may have the above-described explanation regarding Q 1 Examples thereof include the same substituents as those exemplified above. When a plurality of substituents are present, they may be the same as or different from each other.
 式(3)及び式(4)中、a3は、1以上の整数であり、2~10の整数が好ましい。 In the formulas (3) and (4), a3 is an integer of 1 or more, preferably an integer of 2 to 10.
 式(5)~(11)中、a4は、0以上の整数である。式(5)においては、a4は、0~30の整数であることが好ましく、3~20の整数であることがより好ましい。式(6)~(9)においては、a4は、0~10の整数であることが好ましく、0~5の整数であることがより好ましい。式(10)においては、a4は、0~20の整数であることが好ましく、3~20の整数であることがより好ましい。式(11)においては、a4は、0~20の整数であることが好ましく、0~10の整数であることがより好ましい。 In the formulas (5) to (11), a4 is an integer of 0 or more. In the formula (5), a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20. In the formulas (6) to (9), a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5. In the formula (10), a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20. In the formula (11), a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
 複数個のR’が存在する場合、各々のR’は互いに同一でも異なっていてもよい。複数個のR’’が存在する場合、各々のR’’は互いに同一でも異なっていてもよい。a4が複数個存在する場合には、各々のa4は互いに同一でも異なっていてもよい。 When a plurality of R ′ are present, each R ′ may be the same as or different from each other. When a plurality of R ″ are present, each R ″ may be the same as or different from each other. When a plurality of a4 are present, each a4 may be the same as or different from each other.
 Y2は、原料モノマーの合成の容易さの観点からは、シアノ基、式(3)で表される基、式(4)で表される基、式(5)で表される基、式(9)で表される基又は式(10)で表される基であることが好ましく、式(3)で表される基、式(4)で表される基、式(5)で表される基又は式(9)で表される基であることがより好ましく、式(3)で表される基又は式(4)で表される基であることが更に好ましい。 Y 2 is a cyano group, a group represented by the formula (3), a group represented by the formula (4), a group represented by the formula (5), or a formula from the viewpoint of ease of synthesis of the raw material monomer. A group represented by (9) or a group represented by formula (10) is preferable, a group represented by formula (3), a group represented by formula (4), and a group represented by formula (5). The group represented by formula (9) is more preferred, and the group represented by formula (3) or group represented by formula (4) is more preferred.
〔1.3.M1について〕
 後述するように、本発明の高分子化合物中のMがH+である割合は、前記高分子化合物中の全てのMに対して0%より大きく50%以下であり、好ましくは0.1%以上50%以下である。よって、本発明の高分子化合物中には、式(1)で表される基であってMがH+である基、及び、式(1)で表される基であってMが金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンである基の両者が含まれていることになる。これらの基は、同じ構造単位中に並存していてもよいし、それぞれが異なる構造単位中に存在していてもよい。
[1.3. For M 1]
As will be described later, the ratio of M 1 in the polymer compound of the present invention to H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound. 1% or more and 50% or less. Therefore, in the polymer compound of the present invention, a group represented by the formula (1) in which M 1 is H + and a group represented by the formula (1) in which M 1 is Both groups which are metal cations or ammonium cations which may have a substituent are included. These groups may coexist in the same structural unit, or may exist in different structural units.
〔2.式(12)で表される構造単位及び式(14)で表される構造単位〕
 前述した式(1)で表される基及び式(2)で表される基を含む構造単位は、式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位であることが好ましい。即ち、本発明で用いられる高分子化合物は、式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位を有することが好ましい。
[2. Structural unit represented by formula (12) and structural unit represented by formula (14)]
The structural unit containing the group represented by the formula (1) and the group represented by the formula (2) is composed of the structural unit represented by the formula (12) and the structural unit represented by the formula (14). It is preferably one or more structural units selected from the group. That is, the polymer compound used in the present invention preferably has one or more structural units selected from the group consisting of the structural unit represented by formula (12) and the structural unit represented by formula (14). .
 本発明で用いられる高分子化合物は、構造単位として、式(12)で表される構造単位のみを含んでいてもよいし、式(14)で表される構造単位のみを含んでいてもよいし、式(12)で表される構造単位と式(14)で表される構造単位との組み合わせを含んでいてもよい。本発明で用いられる高分子化合物は、式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位を有する場合、これらの構造単位の合計が前記高分子化合物に含まれる全構造単位に占める割合は、15~100モル%であることが好ましい。 The polymer compound used in the present invention may contain only the structural unit represented by the formula (12) as the structural unit, or may contain only the structural unit represented by the formula (14). And the combination of the structural unit represented by Formula (12) and the structural unit represented by Formula (14) may be included. When the polymer compound used in the present invention has one or more structural units selected from the group consisting of the structural unit represented by the formula (12) and the structural unit represented by the formula (14), these structures are used. The ratio of the total of units to the total structural units contained in the polymer compound is preferably 15 to 100 mol%.
〔2.1.式(12)で表される構造単位〕
 式(12)中、R1は、式(13)で表される基を含む1価の基である。Ar1は、R1以外の置換基を有していてもよい(2+n3)価の芳香族基である。n3は、1以上の整数である。式(12)で表される構造単位が前記高分子化合物内に複数個存在する場合には、各々の式(12)で表される構造単位は互いに同一でも異なっていてもよい。
[2.1. Structural unit represented by formula (12)]
In Formula (12), R 1 is a monovalent group including a group represented by Formula (13). Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 . n3 is an integer of 1 or more. When a plurality of structural units represented by the formula (12) are present in the polymer compound, each structural unit represented by the formula (12) may be the same as or different from each other.
 以下、R1、式(13)、Ar1及びn3の順に説明する。 Hereinafter, R 1 , Formula (13), Ar 1 and n3 will be described in this order.
〔2.1.1.R1の説明〕
 R1は、式(13)で表される基を含む1価の基である。複数個のR1が存在する場合、各々のR1は互いに同一でも異なっていてもよい。
[2.1.1. Description of R 1]
R 1 is a monovalent group including a group represented by Formula (13). When several R < 1 > exists, each R < 1 > may mutually be same or different.
 R1は、式(13)で表される基からなる1価の基であってもよい。即ち、式(13)で表される基がAr1に直接結合していてもよい。 R 1 may be a monovalent group composed of a group represented by Formula (13). That is, the group represented by the formula (13) may be directly bonded to Ar 1 .
 一方、R1は、式(13)で表される基を一部に含む基であってもよい。即ち、式(13)で表される基が例えば、以下の基又は原子を介してAr1に結合していてもよい:
 メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボルニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルキレン基;
 メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、ノニレンオキシ基、ドデシレンオキシ基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボルニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルキレンオキシ基(即ち、式:-Rf-O-で表される2価の有機基(式中、Rfは置換基を有していてもよい炭素原子数1~50のアルキレン基である。置換基を有していてもよい炭素原子数1~50のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボルニレン基、アダマンチレン基、及び、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基が挙げられる。));
 置換基を有していてもよいイミノ基;
 置換基を有していてもよいシリレン基;
 置換基を有していてもよいエテニレン基;
 エチニレン基;
 酸素原子、窒素原子、硫黄原子等のヘテロ原子。
On the other hand, R 1 may be a group partially including a group represented by the formula (13). That is, the group represented by the formula (13) may be bonded to Ar 1 through the following group or atom, for example:
Methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group An adamantylene group, an alkylene group having 1 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent;
Methyleneoxy, ethyleneoxy, propyleneoxy, butyleneoxy, pentyleneoxy, hexyleneoxy, nonyleneoxy, dodecyleneoxy, cyclopropyleneoxy, cyclobutyleneoxy, cyclopentyleneoxy, cyclohexene Xyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. An alkyleneoxy group having 1 to 50 carbon atoms which may have a substituent (that is, a divalent organic group represented by the formula: —R f —O— (wherein R f is a substituent) An alkylene group having 1 to 50 carbon atoms which may have an alkylene group having 1 to 50 carbon atoms which may have a substituent. For example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group. , Cyclododecylene group, norbornylene group, adamantylene group, and a group in which at least one hydrogen atom in these groups is substituted with a substituent));
An imino group optionally having a substituent;
A silylene group optionally having a substituent;
An ethenylene group optionally having a substituent;
An ethynylene group;
Hetero atoms such as oxygen, nitrogen and sulfur atoms.
 例えば、R1は、式(13)で表される基、又は、式:-B1-(A1n*1(式中、A1は式(13)で表される基である。B1は、上記炭素原子数1~50のアルキレン基、炭素原子数1~50のアルキレンオキシ基、置換基を有していてもよいイミノ基、置換基を有していてもよいシリレン基、置換基を有していてもよいエテニレン基、エチニレン基、又は、ヘテロ原子である。n*1は、1以上の整数である。複数個のA1が存在する場合、各々のA1は互いに同一でも異なっていてもよい。)で表される基である。 For example, R 1 is a group represented by the formula (13) or a formula: —B 1 — (A 1 ) n * 1 (wherein A 1 is a group represented by the formula (13)). B 1 is an alkylene group having 1 to 50 carbon atoms, an alkyleneoxy group having 1 to 50 carbon atoms, an imino group which may have a substituent, a silylene group which may have a substituent, An optionally substituted ethenylene group, an ethynylene group, or a hetero atom, n * 1 is an integer of 1 or more, and when a plurality of A 1 are present, each A 1 is They may be the same or different.).
 R1に含まれ得る、炭素原子数1~50のアルキレン基、炭素原子数1~50のアルキレンオキシ基、イミノ基、シリレン基及びエテニレン基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Examples of the substituent that the alkylene group having 1 to 50 carbon atoms, the alkyleneoxy group having 1 to 50 carbon atoms, the imino group, the silylene group, and the ethenylene group that may be contained in R 1 may have the above-mentioned Examples thereof include the same substituents as those exemplified in the description of Q 1 . When a plurality of substituents are present, they may be the same as or different from each other.
〔2.1.2.式(13)で表される基の説明〕
 式(13)中、R2は、(1+m1+m2)価の有機基である。Q1、Q2、Y1、M1、Z1、Y2、n1、a1、b1及びn2は前述と同じ意味である。m1及びm2はそれぞれ独立に1以上の整数である。複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。
[2.1.2. Description of group represented by formula (13)]
In formula (13), R 2 is a (1 + m1 + m2) valent organic group. Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above. m1 and m2 are each independently an integer of 1 or more. When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other. When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other. When a plurality of M 1 are present, each M 1 may be the same as or different from each other. When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other. When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other. When a plurality of n1 are present, each n1 may be the same as or different from each other. When a plurality of a1 are present, each a1 may be the same as or different from each other. When a plurality of b1 are present, each b1 may be the same as or different from each other. When a plurality of n2 are present, each n2 may be the same as or different from each other.
 R2で表される(1+m1+m2)価の有機基としては、例えば、以下の基が挙げられる:
 メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~20のアルキル基から(m1+m2)個の水素原子を除いた基;
 フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~30のアリール基から(m1+m2)個の水素原子を除いた基;
 メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボルニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m1+m2)個の水素原子を除いた基;
 炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m1+m2)個の水素原子を除いた基。
Examples of the (1 + m1 + m2) -valent organic group represented by R 2 include the following groups:
Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, lauryl Groups (m1 + m2) from an alkyl group having 1 to 20 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent. Groups excluding hydrogen atoms;
A phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing (m1 + m2) hydrogen atoms from an aryl group having 6 to 30 carbon atoms which may have a substituent;
Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group , A cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a carbon which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent A group in which (m1 + m2) hydrogen atoms are removed from an alkoxy group having 1 to 50 atoms;
A group obtained by removing (m1 + m2) hydrogen atoms from an amino group having a substituent containing a carbon atom; a group obtained by removing (m1 + m2) hydrogen atoms from a silyl group having a substituent containing a carbon atom.
 原料モノマーの合成の容易さの観点からは、R2で表される(1+m1+m2)価の有機基は、置換基を有していてもよい炭素原子数1~20のアルキル基から(m1+m2)個の水素原子を除いた基、置換基を有していてもよい炭素原子数6~30のアリール基からm1個の水素原子を除いた基、又は置換基を有していてもよい炭素原子数1~50のアルコキシ基から(m1+m2)個の水素原子を除いた基であることが好ましい。 From the viewpoint of ease of synthesis of the raw material monomer, the (1 + m1 + m2) -valent organic group represented by R 2 is (m1 + m2) from an alkyl group having 1 to 20 carbon atoms which may have a substituent. A group in which m1 hydrogen atoms are removed from an aryl group having 6 to 30 carbon atoms which may have a substituent, or a carbon atom which may have a substituent A group obtained by removing (m1 + m2) hydrogen atoms from 1 to 50 alkoxy groups is preferable.
 R2に含まれ得る、炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基、及び炭素原子数1~50のアルコキシ基が有していてもよい置換基、並びに、アミノ基及びシリル基が有していてもよい、炭素原子を含む置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 A substituent that the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the alkoxy group having 1 to 50 carbon atoms which may be contained in R 2 , and amino Examples of the substituent containing a carbon atom that the group and the silyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
 式(13)中、m1及びm2はそれぞれ独立に1以上の整数である。 In formula (13), m1 and m2 are each independently an integer of 1 or more.
 複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。 When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other. When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other. When a plurality of M 1 are present, each M 1 may be the same as or different from each other. When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other. When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other. When a plurality of n1 are present, each n1 may be the same as or different from each other. When a plurality of a1 are present, each a1 may be the same as or different from each other. When a plurality of b1 are present, each b1 may be the same as or different from each other. When a plurality of n2 are present, each n2 may be the same as or different from each other.
〔2.1.3.Ar1及びn3の説明〕
 前記Ar1はR1以外の置換基を有していてもよい(2+n3)価の芳香族基である。
[2.1.3. Description of Ar 1 and n3]
Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
 Ar1はR1以外の置換基を有していてもよい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Ar 1 may have a substituent other than R 1 . Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
 前記Ar1が有するR1以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基、置換カルボキシル基又はハロゲン原子であることが好ましい。 The substituent other than R 1 possessed by Ar 1 is an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, a substituted carboxyl group or a halogen atom from the viewpoint of ease of synthesis of the raw material monomer. Is preferred.
 式(12)中、n3は1以上の整数であり、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In the formula (12), n3 is an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(12)中のAr1で表される(2+n3)価の芳香族基としては、例えば、(2+n3)価の芳香族炭化水素基、(2+n3)価の芳香族複素環基が挙げられ、炭素原子のみからなる(2+n3)価の芳香族基、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n3)価の芳香族基であることが好ましい。該(2+n3)価の芳香族基としては、例えば、単環式芳香環(例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等)から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基;二つ以上の該単環式芳香環が縮合している構造を有する縮合多環式芳香環から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環が、単結合、エテニレン基又はエチニレン基で連結されている構造を有する芳香環集合から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基;該単環式芳香環、該縮合多環式芳香環及び該芳香環集合から選ばれる2つ以上の芳香環を含み、該芳香環のうち隣り合う2つの芳香環が、メチレン基、エチレン基、カルボニル基等の2価の基で、又はメタンテトライル基で橋かけされている構造を有する有橋多環式芳香環から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基等が挙げられる。 Examples of the (2 + n3) -valent aromatic group represented by Ar 1 in the formula (12) include a (2 + n3) -valent aromatic hydrocarbon group and a (2 + n3) -valent aromatic heterocyclic group, (2 + n3) -valent aromatic group consisting of only carbon atoms, or (2 + n3) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is preferable that Examples of the (2 + n3) -valent aromatic group include a monocyclic aromatic ring (for example, a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, 1 , 3,5-triazine ring, furan ring, pyrrole ring, pyrazole ring, imidazole ring, oxazole ring, azadiazole ring, etc.), (2 + n3) hydrogen atoms directly bonded to carbon atoms constituting the ring are removed (2 + n3) ) A valent group; (2 + n3) hydrogen atoms directly bonded to the carbon atoms constituting the ring were removed from the condensed polycyclic aromatic ring having a structure in which two or more monocyclic aromatic rings are condensed. (2 + n3) -valent group; a structure in which two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring are connected by a single bond, an ethenylene group or an ethynylene group From the aromatic ring assembly (2 + n3) -valent group obtained by removing (2 + n3) hydrogen atoms directly bonded to the carbon atoms constituting the ring; two selected from the monocyclic aromatic ring, the condensed polycyclic aromatic ring and the aromatic ring assembly Including the above aromatic ring, two adjacent aromatic rings among the aromatic rings have a structure in which they are bridged by a divalent group such as a methylene group, an ethylene group or a carbonyl group, or by a methanetetrayl group. And (2 + n3) -valent groups obtained by removing (2 + n3) hydrogen atoms directly bonded to carbon atoms constituting the ring from the bridged polycyclic aromatic ring.
 前記縮合多環式芳香環において、縮合する単環式芳香環の数は、高分子化合物の溶解性の観点からは、2~4であることが好ましく、2又は3であることがより好ましく、2であることが更に好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2~4であることが好ましく、2又は3であることがより好ましく、2であることが更に好ましい。前記有橋多環式芳香環において、橋かけされている芳香環の数は、高分子化合物の溶解性の観点からは、2~4であることが好ましく、2又は3であることがより好ましく、2であることが更に好ましい。 In the condensed polycyclic aromatic ring, the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 or 3, from the viewpoint of solubility of the polymer compound. 2 is more preferable. In the aromatic ring assembly, the number of linked aromatic rings is preferably 2 to 4, more preferably 2 or 3, and still more preferably 2, from the viewpoint of solubility. In the bridged polycyclic aromatic ring, the number of bridged aromatic rings is preferably 2 to 4, more preferably 2 or 3, from the viewpoint of solubility of the polymer compound. 2 is more preferable.
 前記単環式芳香環としては、例えば、以下の式で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by the following formulas.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記縮合多環式芳香環としては、例えば、以下の式で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by the following formulas.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 前記芳香環集合としては、例えば、以下の式で表される環が挙げられる。 Examples of the aromatic ring assembly include a ring represented by the following formula.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 前記有橋多環式芳香環としては、例えば、以下の式で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by the following formulas.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 高分子化合物の導電性及び原料モノマーの合成の容易さの観点から、Ar1で表される(2+n3)価の芳香族基は、式1~15、19~25、31~35、43、46~48又は51で表される環から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基であることが好ましく、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基であることがより好ましく、式1、5、6、13、14、15、21、23、33、43、46又は47で表される環から、環を構成する炭素原子に直接結合する水素原子を(2+n3)個除いた(2+n3)価の基であることが更に好ましい。 From the viewpoint of the conductivity of the polymer compound and the ease of synthesis of the raw material monomer, the (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formulas 1 to 15, 19 to 25, 31 to 35, 43, 46. It is preferably a (2 + n3) -valent group obtained by removing (2 + n3) hydrogen atoms directly bonded to carbon atoms constituting the ring from the ring represented by ˜48 or 51. , 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43, 46, 47 or 51, a hydrogen atom directly bonded to a carbon atom constituting the ring is (2 + n3 It is more preferable that the number is a (2 + n3) -valent group, and the ring is selected from the ring represented by the formula 1, 5, 6, 13, 14, 15, 21, 23, 33, 43, 46 or 47. (2 + n3) hydrogen atoms directly bonded to constituting carbon atoms were removed ( Further preferably + n3) valent group.
 Ar1は、以下の式52~63で表される2価の基から水素原子をn3個除いた基であることが好ましい。 Ar 1 is preferably a group obtained by removing n3 hydrogen atoms from a divalent group represented by the following formulas 52 to 63.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
〔2.2.式(14)で表される構造単位〕
 式(14)中、R3は前記式(13)で表される基又は式(15)で表される基を含む1価の基である。R4は式(16)で表される基を含む1価の基である。Ar2はR3及びR4以外の置換基を有していてもよい(2+n4+n5)価の芳香族基である。n4及びn5はそれぞれ独立に1以上の整数である。式(14)で表される構造単位が前記高分子化合物内に複数個存在する場合には、各々の式(14)で表される構造単位は互いに同一でも異なっていてもよい。
[2.2. Structural unit represented by formula (14)]
In Formula (14), R 3 is a monovalent group including a group represented by Formula (13) or a group represented by Formula (15). R 4 is a monovalent group including a group represented by Formula (16). Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 . n4 and n5 are each independently an integer of 1 or more. When a plurality of structural units represented by the formula (14) are present in the polymer compound, each structural unit represented by the formula (14) may be the same as or different from each other.
〔2.1.1.R3の説明〕
 R3は前記式(13)で表される基又は式(15)で表される基を含む1価の基である。R3が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。
[2.1.1. Description of R 3]
R 3 is a monovalent group including a group represented by the formula (13) or a group represented by the formula (15). When a plurality of R 3 are present, they may be the same as or different from each other.
 R3は、式(13)で表される基又は式(15)で表される基からなる1価の基であってもよい。即ち、式(13)で表される基又は式(15)で表される基がAr2に直接結合していてもよい。 R 3 may be a monovalent group composed of a group represented by the formula (13) or a group represented by the formula (15). That is, the group represented by the formula (13) or the group represented by the formula (15) may be directly bonded to Ar 2 .
 一方、R3は、式(13)で表される基又は式(15)で表される基を一部に含む基であってもよい。即ち、式(13)で表される基又は式(15)で表される基が、例えば、以下の基又は原子を介してAr2に結合していてもよい:
 メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボルニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルキレン基;
 メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、ノニレンオキシ基、ドデシレンオキシ基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボルニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルキレンオキシ基(即ち、式:-Rg-O-で表される2価の有機基(式中、Rgは置換基を有していてもよい炭素原子数1~50のアルキレン基である。置換基を有していてもよい炭素原子数1~50のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボルニレン基、アダマンチレン基、及び、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基が挙げられる。));
 置換基を有していてもよいイミノ基;
 置換基を有していてもよいシリレン基;
 置換基を有していてもよいエテニレン基;
 エチニレン基;
 酸素原子、窒素原子、硫黄原子等のヘテロ原子。
On the other hand, R 3 may be a group partially including a group represented by Formula (13) or a group represented by Formula (15). That is, the group represented by the formula (13) or the group represented by the formula (15) may be bonded to Ar 2 through, for example, the following groups or atoms:
Methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group, cyclododecylene group, norbornylene group An adamantylene group, an alkylene group having 1 to 50 carbon atoms which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent;
Methyleneoxy, ethyleneoxy, propyleneoxy, butyleneoxy, pentyleneoxy, hexyleneoxy, nonyleneoxy, dodecyleneoxy, cyclopropyleneoxy, cyclobutyleneoxy, cyclopentyleneoxy, cyclohexene Xyleneoxy group, cyclononyleneoxy group, cyclododecyleneoxy group, norbornyleneoxy group, adamantyleneoxy group, groups in which at least one hydrogen atom of these groups is substituted with a substituent, etc. An alkyleneoxy group having 1 to 50 carbon atoms which may have a substituent (that is, a divalent organic group represented by the formula: —R g —O— (wherein R g is a substituent) An alkylene group having 1 to 50 carbon atoms which may have an alkylene group having 1 to 50 carbon atoms which may have a substituent. For example, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cyclononylene group. , Cyclododecylene group, norbornylene group, adamantylene group, and a group in which at least one hydrogen atom in these groups is substituted with a substituent));
An imino group optionally having a substituent;
A silylene group optionally having a substituent;
An ethenylene group optionally having a substituent;
An ethynylene group;
Hetero atoms such as oxygen, nitrogen and sulfur atoms.
 例えば、R3は式(13)で表される基、式(15)で表される基、又は、式:-B2-(A2n*2(式中、A2は式(13)で表される基又は式(15)で表される基である。
2はB1と同じ意味である。n*2は1以上の整数である。複数個のA2が存在する場合、各々のA2は互いに同一でも異なっていてもよい。)で表される基である。
For example, R 3 is a group represented by the formula (13), a group represented by the formula (15), or a formula: —B 2 — (A 2 ) n * 2 (wherein A 2 represents the formula (13) Or a group represented by formula (15).
B 2 has the same meaning as B 1 . n * 2 is an integer of 1 or more. When a plurality of A 2 are present, each A 2 may be the same as or different from each other. ).
 R3に含まれ得る、炭素原子数1~50のアルキレン基、炭素原子数1~50のアルキレンオキシ基、イミノ基、シリレン基及びエテニレン基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Examples of the substituent that may be contained in the alkylene group having 1 to 50 carbon atoms, the alkyleneoxy group having 1 to 50 carbon atoms, the imino group, the silylene group, and the ethenylene group that may be included in R 3 are as described above. Examples thereof include the same substituents as those exemplified in the description of Q 1 . When a plurality of substituents are present, they may be the same as or different from each other.
〔2.1.2.R4の説明〕
 R4は式(16)で表される基を含む1価の基である。複数個のR4が存在する場合、各々のR4は互いに同一でも異なっていてもよい。
[2.1.2. Description of R 4]
R 4 is a monovalent group including a group represented by Formula (16). When a plurality of R 4 are present, each R 4 may be the same as or different from each other.
 R4は、式(16)で表される基からなる1価の基であってもよい。即ち、式(16)で表される基がAr2に直接結合していてもよい。 R 4 may be a monovalent group composed of a group represented by Formula (16). That is, the group represented by the formula (16) may be directly bonded to Ar 2 .
 一方、R4は、式(16)で表される基を一部に含む基であってもよい。即ち、式(16)で表される基が、前述のR3に関する説明中で例示した基(置換基も同様)又は原子を介してAr2に結合していてもよい。 On the other hand, R 4 may be a group partially including a group represented by the formula (16). That is, the group represented by the formula (16) may be bonded to Ar 2 through a group (same as the substituent) exemplified in the description of R 3 described above or an atom.
 例えば、R4は式(16)で表される基、又は、式:-B3-(A3n*3(式中、A3は式(16)で表される基であり、B3はB1と同じ意味であり、n*3は1以上の整数であり、複数個のA3が存在する場合、各々のA3は互いに同一でも異なっていてもよい。)で表される基である。 For example, R 4 is a group represented by the formula (16) or a formula: —B 3 — (A 3 ) n * 3 (wherein A 3 is a group represented by the formula (16); 3 is the same as B 1 , n * 3 is an integer of 1 or more, and when a plurality of A 3 are present, each A 3 may be the same as or different from each other. It is a group.
〔2.3.式(15)で表される基の説明〕
 式(15)中、R5は、単結合、又は、(1+m3)価の有機基である。Q1、Y1、M1、Z1、n1、a1及びb1は前述と同じ意味である。m3は1以上の整数である。但し、R5が単結合である場合、m3は1である。複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。
[2.3. Description of group represented by formula (15)]
In Formula (15), R 5 is a single bond or a (1 + m3) -valent organic group. Q 1 , Y 1 , M 1 , Z 1 , n1, a1, and b1 have the same meaning as described above. m3 is an integer of 1 or more. However, when R 5 is a single bond, m3 is 1. When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other. When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other. When a plurality of M 1 are present, each M 1 may be the same as or different from each other. When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other. When a plurality of n1 are present, each n1 may be the same as or different from each other. When a plurality of a1 are present, each a1 may be the same as or different from each other. When a plurality of b1 are present, each b1 may be the same as or different from each other.
 式(15)中、R5で表される(1+m3)価の有機基としては、例えば、以下の基が挙げられる:
 メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~20のアルキル基からm3個の水素原子を除いた基;
 フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~30のアリール基からm3個の水素原子を除いた基;
 メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボルニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm3個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm3個の水素原子を除いた基;
 炭素原子を含む置換基を有するシリル基からm3個の水素原子を除いた基。
In formula (15), examples of the (1 + m3) -valent organic group represented by R 5 include the following groups:
Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, lauryl M3 hydrogen atoms from an alkyl group having 1 to 20 carbon atoms which may have a substituent, such as a group or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group excluding
A phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group obtained by removing m3 hydrogen atoms from an aryl group having 6 to 30 carbon atoms which may have a substituent;
Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group , A cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a carbon which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent A group in which m3 hydrogen atoms have been removed from an alkoxy group having 1 to 50 atoms; a group in which m3 hydrogen atoms have been removed from an amino group having a substituent containing a carbon atom;
A group obtained by removing m3 hydrogen atoms from a silyl group having a substituent containing a carbon atom.
 原料モノマーの合成の容易さの観点からは、R5で表される(1+m3)価の有機基は、置換基を有していてもよい炭素原子数1~20のアルキル基からm3個の水素原子を除いた基、置換基を有していてもよい炭素原子数6~30のアリール基からm3個の水素原子を除いた基、又は、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm3個の水素原子を除いた基であることが好ましい。 From the viewpoint of ease of synthesis of the raw material monomer, the (1 + m3) -valent organic group represented by R 5 is an m3 hydrogen atom from an optionally substituted alkyl group having 1 to 20 carbon atoms. A group excluding atoms, a group obtained by removing m3 hydrogen atoms from an aryl group having 6 to 30 carbon atoms which may have a substituent, or a carbon atom having 1 substituent which may have a substituent A group obtained by removing m3 hydrogen atoms from ˜50 alkoxy groups is preferred.
 R5に含まれ得る、炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基、及び炭素原子数1~50のアルコキシ基が有していてもよい置換基、並びに、アミノ基及びシリル基が有していてもよい、炭素原子を含む置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 A substituent that the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the alkoxy group having 1 to 50 carbon atoms which may be contained in R 5 , and amino Examples of the substituent containing a carbon atom that the group and the silyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
 式(15)中、m3は1以上の整数である。但し、R5が単結合である場合、m3は1である。 In formula (15), m3 is an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
〔2.4.式(16)で表される基の説明〕
 式(16)中、R6は、単結合又は(1+m4)価の有機基である。Y2及びn2は前述と同じ意味である。m4は1以上の整数である。但し、R6が単結合である場合、m4は1である。複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。
[2.4. Description of group represented by formula (16)]
In Formula (16), R 6 is a single bond or a (1 + m4) valent organic group. Y 2 and n2 have the same meaning as described above. m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1. When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other. When a plurality of n2 are present, each n2 may be the same as or different from each other.
 式(16)中、R6で表される(1+m4)価の有機基としては、例えば、以下の基が挙げられる:
 メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~20のアルキル基からm4個の水素原子を除いた基;
 フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数6~30のアリール基からm4個の水素原子を除いた基;
 メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボルニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子が置換基で置換されている基等の、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm4個の水素原子を除いた基;
 炭素原子を含む置換基を有するアミノ基からm4個の水素原子を除いた基;
 炭素原子を含む置換基を有するシリル基からm4個の水素原子を除いた基。
In the formula (16), examples of the (1 + m4) -valent organic group represented by R 6 include the following groups:
Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, lauryl M4 hydrogen atoms from an alkyl group having 1 to 20 carbon atoms which may have a substituent, such as a group or a group in which at least one hydrogen atom in these groups is substituted with a substituent A group excluding
A phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a group in which at least one hydrogen atom of these groups is substituted with a substituent, etc. A group in which an m4 hydrogen atom is removed from an aryl group having 6 to 30 carbon atoms which may have a substituent;
Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group , A cyclododecyloxy group, a norbornyloxy group, an adamantyloxy group, a carbon which may have a substituent, such as a group in which at least one hydrogen atom in these groups is substituted with a substituent A group obtained by removing m4 hydrogen atoms from an alkoxy group having 1 to 50 atoms;
A group in which m4 hydrogen atoms have been removed from an amino group having a substituent containing a carbon atom;
A group obtained by removing m4 hydrogen atoms from a silyl group having a substituent containing a carbon atom.
 原料モノマーの合成の容易さの観点からは、R6で表される(1+m4)価の有機基としては、置換基を有していてもよい炭素原子数1~20のアルキル基からm4個の水素原子を除いた基、置換基を有していてもよい炭素原子数6~30のアリール基からm4個の水素原子を除いた基、置換基を有していてもよい炭素原子数1~50のアルコキシ基からm4個の水素原子を除いた基が好ましい。 From the viewpoint of ease of synthesis of the raw material monomer, the (1 + m4) valent organic group represented by R 6 is m4 from an alkyl group having 1 to 20 carbon atoms which may have a substituent. A group excluding a hydrogen atom, a group having 6 to 30 carbon atoms which may have a substituent, a group having m4 hydrogen atoms removed from an aryl group having 1 to 30 carbon atoms, and a group having 1 to 1 carbon atoms which may have a substituent Groups in which m4 hydrogen atoms have been removed from 50 alkoxy groups are preferred.
 R6に含まれ得る、炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基、及び炭素原子数1~50のアルコキシ基が有していてもよい置換基、並びに、アミノ基及びシリル基が有していてもよい、炭素原子を含む置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。R6で表される(1+m4)価の有機基が有していてもよい置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 A substituent that the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the alkoxy group having 1 to 50 carbon atoms that may be contained in R 6 ; Examples of the substituent containing a carbon atom that the group and the silyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When there are a plurality of substituents that the (1 + m4) -valent organic group represented by R 6 may have, they may be the same as or different from each other.
 式(16)中、m4は1以上の整数である。但し、R6が単結合である場合、m4は1である。 In formula (16), m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
〔2.5.Ar2の説明〕
 式(14)中、Ar2はR3及びR4以外の置換基を有していてもよい(2+n4+n5)価の芳香族基である。
[2.5. Description of Ar 2 ]
In Formula (14), Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
 前記Ar2は、R3及びR4以外の置換基を有していてもよい。前記置換基としては、前述のQ1に関する説明中で例示した置換基に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Ar 2 may have a substituent other than R 3 and R 4 . Examples of the substituent include the same substituent exemplified in the description of substituents exemplified in the description with respect to Q 1. When a plurality of the substituents are present, they may be the same as or different from each other.
 前記Ar2が有するR3及びR4以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基、置換カルボキシル基又はハロゲン原子であることが好ましい。 As the substituent other than R 3 and R 4 possessed by Ar 2 , an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, a substituted carboxyl group, or a halogen atom from the viewpoint of ease of synthesis of the raw material monomer It is preferable that
 式(14)中、n4は1以上の整数であり、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In the formula (14), n4 is an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
 式(14)中、n5は1以上の整数であり、好ましくは1から4の整数であり、より好ましくは1から3の整数である。 In the formula (14), n5 is an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
 式(14)中のAr2で表される(2+n4+n5)価の芳香族基としては、例えば、(2+n4+n5)価の芳香族炭化水素基及び(2+n4+n5)価の芳香族複素環基が挙げられ、炭素原子のみからなる(2+n4+n5)価の芳香族基、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n4+n5)価の芳香族基であることが好ましい。該(2+n4+n5)価の芳香族基としては、例えば、単環式芳香環(例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環等)から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた(2+n4+n5)価の基;二つ以上の該単環式芳香環が縮合している構造を有する縮合多環式芳香環から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた(2+n4+n5)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環が、単結合、エテニレン基又はエチニレン基で連結されている芳香環集合から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた(2+n4+n5)価の基;該単環式芳香環、該縮合多環式芳香環及び該芳香環集合から選ばれる2つ以上の芳香環を含み、該芳香環のうち隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で、又はメタンテトライル基で橋かけした架橋を有する有橋多環式芳香環から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた(2+n4+n5)価の基等が挙げられる。 Examples of the (2 + n4 + n5) -valent aromatic group represented by Ar 2 in the formula (14) include a (2 + n4 + n5) -valent aromatic hydrocarbon group and a (2 + n4 + n5) -valent aromatic heterocyclic group, (2 + n4 + n5) -valent aromatic group consisting of only carbon atoms, or (2 + n4 + n5) -valent aromatic group consisting of carbon atoms and one or more atoms selected from the group consisting of hydrogen atoms, nitrogen atoms and oxygen atoms It is preferable that Examples of the (2 + n4 + n5) -valent aromatic group include monocyclic aromatic rings (eg, benzene ring, pyridine ring, 1,2-diazine ring, 1,3-diazine ring, 1,4-diazine ring, furan (2 + n4 + n5) -valent group obtained by removing (2 + n4 + n5) hydrogen atoms directly bonded to carbon atoms constituting the ring from a ring, pyrrole ring, pyrazole ring, imidazole ring, etc .; two or more monocyclic aromatic rings A (2 + n4 + n5) -valent group in which (2 + n4 + n5) hydrogen atoms directly bonded to carbon atoms constituting the ring are removed from a condensed polycyclic aromatic ring having a structure in which the monocyclic aromatic ring and the monocyclic aromatic ring A hydrogen atom in which two or more aromatic rings selected from the group consisting of condensed polycyclic aromatic rings are directly bonded to carbon atoms constituting the ring from an aromatic ring assembly in which a single bond, ethenylene group or ethynylene group is connected. A (2 + n4 + n5) -valent group in which (2 + n4 + n5) are removed; including two or more aromatic rings selected from the monocyclic aromatic ring, the condensed polycyclic aromatic ring, and the aromatic ring assembly, Carbon atoms constituting a ring from a bridged polycyclic aromatic ring having a bridge in which two adjacent aromatic rings are bridged by a divalent group such as a methylene group, an ethylene group, a carbonyl group or the like, or a methanetetrayl group And (2 + n4 + n5) -valent groups obtained by removing (2 + n4 + n5) hydrogen atoms directly bonded to.
 前記縮合多環式芳香環において、縮合する単環式芳香環の数は、高分子化合物の溶解性の観点からは、2~4が好ましく、2又は3がより好ましく、2が更に好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2~4が好ましく、2又は3がより好ましく、2が更に好ましい。前記有橋多環式芳香環において、橋かけされている芳香環の数は、高分子化合物の溶解性の観点からは、2~4が好ましく、2又は3がより好ましく、2が更に好ましい。 In the condensed polycyclic aromatic ring, the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of the solubility of the polymer compound. In the aromatic ring assembly, the number of linked aromatic rings is preferably 2 to 4, more preferably 2 or 3, and still more preferably 2 from the viewpoint of solubility. In the bridged polycyclic aromatic ring, the number of bridged aromatic rings is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of solubility of the polymer compound.
 単環式芳香環としては、例えば、式(12)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by Formulas 1 to 5 and Formulas 7 to 10 exemplified in the description of the structural unit represented by Formula (12).
 縮合多環式芳香環としては、例えば、式(12)で表される構造単位に関する説明中で例示した式13~33で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by formulas 13 to 33 exemplified in the description of the structural unit represented by formula (12).
 芳香環集合としては、例えば、式(12)で表される構造単位に関する説明中で例示した式34~42で表される環が挙げられる。 Examples of the aromatic ring assembly include rings represented by formulas 34 to 42 exemplified in the description of the structural unit represented by formula (12).
 有橋多環式芳香環としては、例えば、式(12)で表される構造単位に関する説明中で例示した式43~51で表される環が挙げられる。 Examples of the bridged polycyclic aromatic ring include rings represented by Formulas 43 to 51 exemplified in the description of the structural unit represented by Formula (12).
 Ar2で表される(2+n4+n5)価の芳香族基は、高分子化合物の導電性及び原料モノマーの合成の容易さの観点から、式1~5、7~10、式13~15、19~25、31~35、43、46~48又は51で表される環から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた基が好ましく、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた基がより好ましく、式1、13、14、15、21、23、33、43、46又は47で表される環から、環を構成する炭素原子に直接結合する水素原子を(2+n4+n5)個除いた基が更に好ましい。 The (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by formulas 1 to 5, 7 to 10, formulas 13 to 15, 19 to 19 from the viewpoint of the conductivity of the polymer compound and the ease of synthesis of the raw material monomer. A group in which (2 + n4 + n5) hydrogen atoms directly bonded to the carbon atoms constituting the ring are removed from the ring represented by 25, 31 to 35, 43, 46 to 48 or 51 is preferable. From the ring represented by 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43, 46, 47 or 51, a hydrogen atom directly bonded to the carbon atom constituting the ring ( (2 + n4 + n5) groups are more preferable, and a hydrogen atom directly bonded to a carbon atom constituting the ring from the ring represented by the formula 1, 13, 14, 15, 21, 23, 33, 43, 46, or 47 A group in which (2 + n4 + n5) is removed is more preferable.
 式(14)中、Ar2は、式(12)で表される構造単位に関する説明中で例示した、式52、53、55~63で表される2価の基から水素原子を(n4+n5)個除いた基であることが好ましい。 In the formula (14), Ar 2 represents a hydrogen atom (n4 + n5) from the divalent groups represented by the formulas 52, 53, and 55 to 63 exemplified in the description of the structural unit represented by the formula (12). It is preferable that the group is removed.
〔2.3.M1について〕
 後述するように、本発明の高分子化合物中のM1がH+である割合は、前記高分子化合物中の全てのM1に対して0%より大きく50%以下であり、好ましくは0.1%以上50%以下である。よって、本発明の高分子化合物が式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる一種以上の構造単位を有する場合には、該一種以上の構造単位のうち共通の、或いは別々の構造単位に、M1がH+である基と、M1が金属カチオンである基、又は、置換基を有していてもよいアンモニウムカチオンである基との両方が含まれているものとする。
[2.3. For M 1]
As will be described later, the proportion of M 1 in the polymer compound of the present invention being H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound. 1% or more and 50% or less. Therefore, when the polymer compound of the present invention has one or more structural units selected from the group consisting of the structural unit represented by formula (12) and the structural unit represented by formula (14), A group in which M 1 is H + , a group in which M 1 is a metal cation, or a group that is an ammonium cation that may have a substituent. And both are included.
〔2.4.各構造単位の例〕
〔2.4.1.式(12)で表される構造単位の例〕
 式(12)で表される構造単位としては、例えば、以下の式で表される置換基を有していてもよい構造単位が挙げられ、高分子化合物の合成の容易さと電子輸送性の観点からは、式52a1、55a1、55b1、55c1、56b1、57b1、58a1、59b1、60b1、61a1、61b1、61c1、63b1で表される構造単位が好ましい。以下の式中、R2、Q1、n1、Y1、M1、Z1、a1、m1、Q2、n2、Y2及びm2は前述と同じ意味である。R2、Q1、n1、Y1、M1、Z1、a1、m1、Q2、n2、Y2及びm2の各々が複数個存在する場合には、複数個のそれぞれは互いに同一でも異なっていてもよい。
[2.4. Example of each structural unit)
[2.4.1. Example of structural unit represented by formula (12)]
Examples of the structural unit represented by the formula (12) include structural units that may have a substituent represented by the following formula. From the viewpoint of ease of synthesis of the polymer compound and electron transport properties. Are preferably structural units represented by the formulas 52a 1 , 55a 1 , 55b 1 , 55c 1 , 56b 1 , 57b 1 , 58a 1 , 59b 1 , 60b 1 , 61a 1 , 61b 1 , 61c 1 , 63b 1. . In the following formulas, R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 and m 2 have the same meaning as described above. When there are a plurality of each of R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 and m 2 , each of the plurality is the same or different. It may be.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式中、R2は合成の容易さの観点から、置換基を有していてもよい炭素原子数6~30のアリール基から、環を構成する炭素原子に直接結合する(m1+m2)個の水素原子を除いた基であることが好ましい。
 置換基を有していてもよい炭素原子数6~30のアリール基は、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基又はこれらの基の中の少なくとも1個の水素原子が置換基で置換されている基であることが好ましい。
In the above formula, from the viewpoint of ease of synthesis, R 2 is an (m1 + m2) number of (m1 + m2) atoms directly bonded to a carbon atom constituting the ring from an optionally substituted aryl group having 6 to 30 carbon atoms. A group excluding a hydrogen atom is preferred.
The aryl group having 6 to 30 carbon atoms which may have a substituent is a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, or these A group in which at least one hydrogen atom in the group is substituted with a substituent is preferable.
 前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、複数個の各々は互いに同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, each of the plurality may be the same as or different from each other.
 式(12)で表される構造単位としては、以下の式で表される置換基を有していてもよい構造単位が挙げられる。以下の式中、Mは、前述と同じ意味である。 Examples of the structural unit represented by the formula (12) include structural units that may have a substituent represented by the following formula. In the following formulas, M has the same meaning as described above.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
〔2.4.2.式(14)で表される構造単位の例〕
 式(14)で表される構造単位としては、例えば、以下の式で表される置換基を有していてもよい構造単位が挙げられ、高分子化合物の合成の容易さと電子輸送性の観点からは、式52a2、55a2、55b2、55c2、56b2、57b2、58a2、59a2、60b2、61a2、61c2又は63a2で表される構造単位が好ましい。以下の式中、R2、Q1、n1、Y1、M1、Z、a1、m1、Q2、n2、Y2、m2、R5、m3、R6及びm4は、前述と同じ意味である。R2、Q1、n1、Y1、M1、Z1、a1、m1、Q2、n2、Y2、m2、R5、m3、R6及びm4の各々が複数個存在する場合には、複数個のそれぞれは互いに同一でも異なっていもよい。
[2.4.2. Example of structural unit represented by formula (14)]
Examples of the structural unit represented by the formula (14) include structural units that may have a substituent represented by the following formula. From the viewpoint of ease of synthesis of the polymer compound and electron transport properties. Are preferably structural units represented by the formulas 52a 2 , 55a 2 , 55b 2 , 55c 2 , 56b 2 , 57b 2 , 58a 2 , 59a 2 , 60b 2 , 61a 2 , 61c 2 or 63a 2 . In the following formulas, R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 , m 2 , R 5 , m 3, R 6 and m 4 are the same as described above. Meaning. When there are a plurality of each of R 2 , Q 1 , n 1, Y 1 , M 1 , Z 1 , a 1, m 1, Q 2 , n 2, Y 2 , m 2 , R 5 , m 3, R 6 and m 4 Each of the plurality may be the same as or different from each other.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 上記式中、R2は合成の容易さの観点から、置換基を有していてもよい炭素原子数6~30のアリール基から、環を構成する炭素原子に直接結合する(m1+m2)個の水素原子を除いた基であることが好ましい。
 上記式中、R5は合成の容易さの観点から、置換基を有していてもよい炭素原子数6~30のアリール基から、環を構成する炭素原子に直接結合するm3個の水素原子を除いた基であることが好ましい。
 上記式中、R6は合成の容易さの観点から、置換基を有していてもよい炭素原子数6~30のアリール基から、環を構成する炭素原子に直接結合するm4個の水素原子を除いた基であることが好ましい。置換基を有していてもよい炭素原子数6~30のアリール基は、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基又はこれらの基の中の少なくとも1個の水素原子が置換基で置換されている基であることが好ましい。
In the above formula, from the viewpoint of ease of synthesis, R 2 is an (m1 + m2) number of (m1 + m2) atoms directly bonded to a carbon atom constituting the ring from an optionally substituted aryl group having 6 to 30 carbon atoms. A group excluding a hydrogen atom is preferred.
In the above formula, from the viewpoint of ease of synthesis, R 5 is an m 3 hydrogen atom directly bonded to the carbon atom constituting the ring from the aryl group having 6 to 30 carbon atoms which may have a substituent. It is preferable that it is group remove | excluding.
In the above formula, from the viewpoint of ease of synthesis, R 6 is an m4 hydrogen atom directly bonded to a carbon atom constituting the ring from an optionally substituted aryl group having 6 to 30 carbon atoms. It is preferable that it is group remove | excluding. The aryl group having 6 to 30 carbon atoms which may have a substituent is a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, or these A group in which at least one hydrogen atom in the group is substituted with a substituent is preferable.
 前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
 式(14)で表される構造単位としては、以下の式で表される置換基を有していてもよい構造単位が挙げられる。以下の式中、Mは、前述と同じ意味である。 Examples of the structural unit represented by the formula (14) include structural units that may have a substituent represented by the following formula. In the following formulas, M has the same meaning as described above.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
〔3.その他の構造単位〕
 本発明で用いられる高分子化合物は、更に式(17)で表される構造単位を有していてもよい。
[3. Other structural units)
The polymer compound used in the present invention may further have a structural unit represented by the formula (17).
Figure JPOXMLDOC01-appb-C000049
(式(17)中、Ar3は置換基を有していてもよい2価の芳香族基又は置換基を有していてもよい2価の芳香族アミン残基であり、X’は置換基を有していてもよいイミノ基、置換基を有していてもよいシリレン基、置換基を有していてもよいエテニレン基又はエチニレン基であり、m5及びm6はそれぞれ独立に0又は1である。但し、m5及びm6の少なくとも1つは1である。)
Figure JPOXMLDOC01-appb-C000049
(In formula (17), Ar 3 is a divalent aromatic group which may have a substituent or a divalent aromatic amine residue which may have a substituent, and X ′ is a substituted group. An imino group which may have a group, a silylene group which may have a substituent, an ethenylene group or an ethynylene group which may have a substituent, and m5 and m6 are each independently 0 or 1 Provided that at least one of m5 and m6 is 1.)
 式(24)中のAr8は、置換基を有していてもよい2価の芳香族基又は置換基を有していてもよい2価の芳香族アミン残基である。 Ar 8 in the formula (24) is a divalent aromatic group which may have a substituent or a divalent aromatic amine residue which may have a substituent.
 式(17)中のAr3で表される2価の芳香族基としては、例えば、2価の芳香族炭化水素基、2価の芳香族複素環基が挙げられる。該2価の芳香族基としては、例えば、単環式芳香環(例えば、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、アザジアゾール環等)から、環を構成する炭素原子に直接結合する水素原子を2個除いた2価の基;二つ以上の単環式芳香環が縮合している構造を有する縮合多環式芳香環から、環を構成する炭素原子に直接結合する水素原子を2個除いた2価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結されている芳香環集合から、環を構成する炭素原子に直接結合する水素原子を2個除いた2価の基;該単環式芳香環、該縮合多環式芳香環及び該芳香環集合から選ばれる2つの芳香環を含み、該芳香環のうち隣り合う2つの芳香環が、メチレン基、エチレン基、カルボニル基、イミノ基等の2価の基で、又はメタンテトライル基で橋かけされている構造を有する有橋多環式芳香環から、環を構成する炭素原子に直接結合する水素原子を2個除いた2価の基等が挙げられる。 Examples of the divalent aromatic group represented by Ar 3 in the formula (17) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group. Examples of the divalent aromatic group include a monocyclic aromatic ring (for example, a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, 1,3 , 5-triazine ring, furan ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, oxadiazole ring, azadiazole ring, etc.) and two hydrogen atoms directly bonded to the carbon atoms constituting the ring 2 divalent groups removed; 2 hydrogen atoms directly bonded to carbon atoms constituting the ring are removed from a condensed polycyclic aromatic ring having a structure in which two or more monocyclic aromatic rings are condensed. A valent group; two or more aromatic rings selected from the group consisting of the monocyclic aromatic ring and the condensed polycyclic aromatic ring, from an aromatic ring assembly connected by a single bond, an ethenylene group or an ethynylene group, Directly attached to the carbon atoms constituting the ring A divalent group in which two hydrogen atoms are removed; two aromatic rings selected from the monocyclic aromatic ring, the condensed polycyclic aromatic ring, and the aromatic ring assembly, and two adjacent aromatic rings A ring is composed of a bridged polycyclic aromatic ring having a structure in which two aromatic rings are bridged by a divalent group such as a methylene group, an ethylene group, a carbonyl group, an imino group, or a methanetetrayl group A divalent group in which two hydrogen atoms directly bonded to the carbon atom to be removed are removed.
 前記縮合多環式芳香環において、縮合する単環式芳香環の数は、高分子化合物の溶解性の観点からは、2~4が好ましく、2又は3がより好ましく、2が更に好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2~4が好ましく、2又は3がより好ましく、2が更に好ましい。前記有橋多環式芳香環において、橋かけされる芳香環の数は、高分子化合物の溶解性の観点からは、2~4が好ましく、2又は3がより好ましく、2が更に好ましい。 In the condensed polycyclic aromatic ring, the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of the solubility of the polymer compound. In the aromatic ring assembly, the number of linked aromatic rings is preferably 2 to 4, more preferably 2 or 3, and still more preferably 2 from the viewpoint of solubility. In the bridged polycyclic aromatic ring, the number of bridged aromatic rings is preferably 2 to 4, more preferably 2 or 3, and even more preferably 2 from the viewpoint of solubility of the polymer compound.
 前記単環式芳香環としては、例えば、以下の式で表される環が挙げられる。 Examples of the monocyclic aromatic ring include rings represented by the following formulas.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 前記縮合多環式芳香環としては、例えば、以下の式で表される環が挙げられる。 Examples of the condensed polycyclic aromatic ring include rings represented by the following formulas.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 前記芳香環集合としては、例えば、以下の式で表される環が挙げられる。 Examples of the aromatic ring assembly include a ring represented by the following formula.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 前記有橋多環式芳香環としては、例えば、以下の環が挙げられる。 Examples of the Aribashi polycyclic aromatic ring include the following rings.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 高分子化合物の電子受容性及び正孔受容性のいずれか一方又は両方の観点からは、Ar3で表される2価の芳香族基は、式52~67、68~83、89~93、104~106、108又は109で表される環から、環を構成する炭素原子に直接結合する水素原子を2個除いた2価の基であることが好ましく、式52~57、66、67、89、91、93、104、105、108又は109で表される環から、環を構成する炭素原子に直接結合する水素原子を2個除いた2価の基であることがより好ましい。 From one or both of the electron accepting property and hole accepting property of the polymer compound, the divalent aromatic group represented by Ar 3 is represented by the formulas 52 to 67, 68 to 83, 89 to 93, A divalent group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from the ring represented by 104 to 106, 108 or 109 is preferably represented by the formulas 52 to 57, 66, 67, It is more preferably a divalent group obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting the ring from the ring represented by 89, 91, 93, 104, 105, 108 or 109.
 上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。 The above divalent aromatic group may have a substituent. Examples of the substituent include the same substituents as those exemplified in the description of Q 1 described above.
 式(17)中のAr3で表される2価の芳香族アミン残基としては、例えば、式(18)で表される基が挙げられる。 Examples of the divalent aromatic amine residue represented by Ar 3 in formula (17) include a group represented by formula (18).
Figure JPOXMLDOC01-appb-C000054
(式(18)中、Ar4、Ar5、Ar6及びAr7は、それぞれ独立に、置換基を有していてもよいアリーレン基又は置換基を有していてもよい2価の複素環基であり、Ar8、Ar9及びAr10は、それぞれ独立に、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基であり、m7及びm8は、それぞれ独立に、0又は1である。)
Figure JPOXMLDOC01-appb-C000054
(In the formula (18), Ar 4 , Ar 5 , Ar 6 and Ar 7 are each independently an arylene group which may have a substituent or a divalent heterocyclic ring which may have a substituent. Ar 8 , Ar 9 and Ar 10 are each independently an aryl group which may have a substituent or a monovalent heterocyclic group which may have a substituent, and m7 and m8 is each independently 0 or 1.)
 前記アリーレン基、アリール基、2価の複素環基及び1価の複素環基が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基が挙げられる。該置換基は、例えば、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。 Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group and monovalent heterocyclic group may have include, for example, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, Aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, acyl group, acyloxy group, amide group, acid imide group, imine residue , Substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, cyano group, nitro group, monovalent heterocyclic group, heteroaryloxy group, heteroarylthio group, alkyloxycarbonyl group, aryl Oxycarbonyl group, arylalkyloxycarbo Group, include heteroaryl aryloxycarbonyl group and a carboxyl group. Examples of the substituent include a vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, and small ring (cyclohexane). A propyl group, a cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.), a lactone group, a lactam group, or a cross-linking group such as a group containing a structure of a siloxane derivative.
 m7が0の場合、Ar4中の炭素原子とAr6中の炭素原子とが直接結合してもよい。Ar4中の炭素原子とAr6中の炭素原子とが、-O-、-S-等の2価の基を介して結合していてもよい。 When m7 is 0, the carbon atom in Ar 4 and the carbon atom in Ar 6 may be directly bonded. The carbon atom in Ar 4 and the carbon atom in Ar 6 may be bonded via a divalent group such as —O— or —S—.
 Ar8、Ar9及びAr10は、それぞれ独立に、置換基を有していてもよいアリール基、又は置換基を有していてもよい1価の複素環基である。アリール基としては、前述のQ1に関する説明中で例示したアリール基と同様の基が挙げられる。1価の複素環基としては、1価の芳香族基としては、前述のQ1に関する説明中で例示した1価の複素環基と同様の基が挙げられる。当該置換基としては、前述のQ1に関する説明中で例示した1価の複素環基と同様の基が挙げられる。 Ar 8 , Ar 9 and Ar 10 are each independently an aryl group which may have a substituent, or a monovalent heterocyclic group which may have a substituent. Examples of the aryl group include the same groups as the aryl groups exemplified in the description of Q 1 described above. As the monovalent heterocyclic group, examples of the monovalent aromatic group include the same groups as the monovalent heterocyclic group exemplified in the above description of Q 1 . Examples of the substituent include the same groups as the monovalent heterocyclic group exemplified in the description of Q 1 described above.
 Ar4、Ar5、Ar6及びAr7は、置換基を有していてもよいアリーレン基、又は置換基を有していてもよい2価の複素環基である。アリーレン基としては、芳香族炭化水素から芳香環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団が挙げられる。アリーレン基としては、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環及び縮合環から選ばれる2個以上が単結合している基、並びに、独立したベンゼン環及び縮合環から選ばれる2個以上が2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基等が挙げられる。アリーレン基は、炭素原子数が通常6~60であり、7~48であることが好ましい。アリーレン基の例としては、フェニレン基、ビフェニレン基、C1~C17アルコキシフェニレン基、C1~C17アルキルフェニレン基、1-ナフチレン基、2-ナフチレン基、1-アントラセニレン基、2-アントラセニレン基及び9-アントラセニレン基が挙げられる。前記アリーレン基中の水素原子はフッ素原子で置換されていてもよい。該当するアリーレン基(フッ素原子置換アリール基)としては、例えば、テトラフルオロフェニレン基が挙げられる。アリーレン基の中では、フェニレン基、ビフェニレン基、C1~C12アルコキシフェニレン基及びC1~C12アルキルフェニレン基が好ましい。 Ar 4 , Ar 5 , Ar 6 and Ar 7 are an arylene group which may have a substituent or a divalent heterocyclic group which may have a substituent. Examples of the arylene group include the remaining atomic groups obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting an aromatic ring from an aromatic hydrocarbon. The arylene group is selected from a group having a benzene ring, a group having a condensed ring, a group in which two or more selected from an independent benzene ring and a condensed ring are single-bonded, and an independent benzene ring and condensed ring. Examples include a group in which two or more are bonded via a divalent organic group (for example, an alkenylene group such as a vinylene group). The arylene group usually has 6 to 60 carbon atoms, and preferably 7 to 48 carbon atoms. Examples of arylene groups include phenylene groups, biphenylene groups, C 1 -C 17 alkoxyphenylene groups, C 1 -C 17 alkylphenylene groups, 1-naphthylene groups, 2-naphthylene groups, 1-anthracenylene groups, 2-anthracenylene groups. And 9-anthracenylene group. A hydrogen atom in the arylene group may be substituted with a fluorine atom. Examples of the corresponding arylene group (fluorine atom-substituted aryl group) include a tetrafluorophenylene group. Among the arylene groups, a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
 Ar4、Ar5、Ar6及びAr7で表される2価の複素環基としては、複素環式化合物から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団が挙げられる。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が通常4~60であり、4~20であることが好ましい。なお、2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。2価の複素環基としては、例えば、チオフェンジイル基、C1~C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C1~C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、及びイソキノリンジイル基が挙げられ、中でも、チオフェンジイル基、C1~C12アルキルチオフェンジイル基、ピリジンジイル基及びC1~C12アルキルピリジンジイル基がより好ましい。 The divalent heterocyclic group represented by Ar 4 , Ar 5 , Ar 6 and Ar 7 includes the remaining atomic group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from the heterocyclic compound. Is mentioned. Here, the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure. , An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom. The divalent heterocyclic group may have a substituent. The divalent heterocyclic group usually has 4 to 60 carbon atoms, and preferably 4 to 20 carbon atoms. The number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent. Examples of the divalent heterocyclic group include a thiophene diyl group, a C 1 -C 12 alkylthiophene diyl group, a pyrrole diyl group, a furandiyl group, a pyridinediyl group, a C 1 -C 12 alkylpyridine diyl group, a pyridazine diyl group, pyrimidinediyl group, pyrazinediyl group, a triazine-diyl group, pyrrolidinediyl group, piperidine-diyl group, quinolinediyl group, and include isoquinolinediyl group, among others, a thiophene-diyl group, C 1 ~ C 12 alkyl thiophenediyl group, and pyridinediyl group More preferred are C 1 -C 12 alkylpyridinediyl groups.
 アリーレン基及び2価の複素環基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 Examples of the substituent that the arylene group and the divalent heterocyclic group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of the substituents are present, they may be the same as or different from each other.
 式(18)で表される2価の芳香族アミン残基としては、下記式115~124で表される芳香族アミンから環を構成する炭素原子に直接結合する水素原子を2個除いた基が例示される。高分子化合物の正孔電流に対する安定性の観点から、式(18)で表される2価の芳香族アミン残基は、式115、116、117又は120で表される芳香族アミンから環を構成する炭素原子に直接結合する水素原子を2個除いた基あることが好ましい。 The divalent aromatic amine residue represented by the formula (18) is a group obtained by removing two hydrogen atoms directly bonded to carbon atoms constituting the ring from the aromatic amine represented by the following formulas 115 to 124. Is exemplified. From the viewpoint of the stability to the hole current of the polymer compound, the divalent aromatic amine residue represented by the formula (18) is a ring formed from the aromatic amine represented by the formula 115, 116, 117, or 120. A group obtained by removing two hydrogen atoms directly bonded to the constituting carbon atom is preferred.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 式115~124で表される芳香族アミンは2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよい。前記置換基としては、例えば、前述のQ1に関する説明中で例示した置換基と同様の置換基及び前記式(2)で表される基が挙げられ、前記式(2)で表される基であることが好ましい。置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 The aromatic amines represented by formulas 115 to 124 may have a substituent as long as a divalent aromatic amine residue can be generated. Examples of the substituent include the same substituents as those exemplified in the description of Q 1 and the group represented by the formula (2), and the group represented by the formula (2). It is preferable that When a plurality of substituents are present, they may be the same as or different from each other.
 式(17)中、X’は置換基を有していてもよいイミノ基、置換基を有していてもよいシリレン基、置換基を有していてもよいエテニレン基又はエチニレン基である。イミノ基、シリル基若しくはエテニレン基が有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基等の炭素原子数1~20のアルキル基、及び、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。 In formula (17), X ′ represents an imino group which may have a substituent, a silylene group which may have a substituent, an ethenylene group or an ethynylene group which may have a substituent. Examples of the substituent that the imino group, silyl group or ethenylene group may have include, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, An alkyl group having 1 to 20 carbon atoms such as a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, a 3,7-dimethyloctyl group, a lauryl group; Examples thereof include aryl groups having 6 to 30 carbon atoms such as phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group and 9-anthracenyl group.
 イミノ基、シリレン基及びエテニレン基中に、置換基が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 When a plurality of substituents are present in the imino group, the silylene group, and the ethenylene group, they may be the same or different from each other.
 高分子化合物の空気、湿気又は熱に対する安定性の観点からは、X’はイミノ基、エテニレン基又はエチニレン基であることが好ましい。 From the viewpoint of stability of the polymer compound against air, moisture or heat, X ′ is preferably an imino group, an ethenylene group or an ethynylene group.
 m5及びm6はそれぞれ独立に0又は1であり、m5及びm6の少なくとも1つは1である。高分子化合物の電子輸送性の観点からは、m5が1であり、m6が0であることが好ましい。 M5 and m6 are each independently 0 or 1, and at least one of m5 and m6 is 1. From the viewpoint of electron transport properties of the polymer compound, it is preferable that m5 is 1 and m6 is 0.
〔4.構造単位の含有割合〕
 本発明の高分子化合物には、式(12)で表される構造単位及び式(14)で表される構造単位が含まれることが好ましい。これらの構造単位の合計が高分子化合物に含まれる全構造単位(但し末端の構造単位を除く)に占める割合は、電界発光素子の発光効率の観点からは、30~100モル%であることがより好ましい。
[4. Content ratio of structural units)
The polymer compound of the present invention preferably contains a structural unit represented by the formula (12) and a structural unit represented by the formula (14). The ratio of the total of these structural units to the total structural units (excluding the terminal structural units) contained in the polymer compound is 30 to 100 mol% from the viewpoint of the luminous efficiency of the electroluminescent device. More preferred.
〔5.末端の構造単位〕
 なお、本発明の高分子化合物の末端の構造単位(末端基)としては、例えば、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、sec-ブトキシフェニル基、tert-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、tert-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルコキシフェニル)アミノ基、ジ(C1~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C1~C12アルキル)アミノ基、(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルコキシフェニル-C1~C12アルキル)アミノ基、ジ(C1~C12アルキルフェニル-C1~C12アルキル)アミノ基、1-ナフチル-C1~C12アルキルアミノ基、2-ナフチル-C1~C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、tert-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C1~C12アルキル)シリル基、(C1~C12アルコキシフェニル-C1~C12アルキル)シリル基、(C1~C12アルキルフェニル-C1~C12アルキル)シリル基、(1-ナフチル-C1~C12アルキル)シリル基、(2-ナフチル-C1~C12アルキル)シリル基、(フェニル-C1~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C1~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシル基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
[5. (Terminal structural unit)
Examples of the terminal structural unit (terminal group) of the polymer compound of the present invention include a hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert- Butyl group, pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group , Lauryloxy group, methylthio group, ethylthio Group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, laurylthio group Methoxyphenyl group, ethoxyphenyl group, propyloxyphenyl group, isopropyloxyphenyl group, butoxyphenyl group, isobutoxyphenyl group, sec-butoxyphenyl group, tert-butoxyphenyl group, pentyloxyphenyl group, hexyloxyphenyl group, Cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group 3,7-dimethyloctyloxyphenyl group, lauryloxyphenyl group, methylphenyl group, ethylphenyl group, dimethylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, butylphenyl group, isobutylphenyl group Tert-butylphenyl group, pentylphenyl group, isoamylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, dodecylphenyl group, methylamino group, dimethylamino group, ethylamino group , Diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, tert-butylamino group Pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, nonylamino group, decylamino group, 3,7-dimethyloctylamino group, laurylamino group, cyclopentylamino group, Dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, ditrifluoromethylamino group, phenylamino group, diphenylamino group, (C 1 -C 12 alkoxyphenyl) amino group, di (C 1 -C 12 alkoxyphenyl) amino group, di (C 1 ~ C 12 alkylphenyl) amino groups, 1-naphthylamino group, 2-naphthylamino group, pentafluorophenylamino group, pyridylamino group, pyridazinylamino group, pyrimidylamino group, pyrazinylamino group, tri Jiniruamino group, (phenyl -C 1 ~ C 12 alkyl) amino group, (C 1 ~ C 12 alkoxyphenyl -C 1 ~ C 12 alkyl) amino group, (C 1 ~ C 12 alkylphenyl -C 1 ~ C 12 alkyl ) Amino group, di (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) amino group, di (C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl) amino group, 1-naphthyl-C 1 -C 12 alkylamino group, 2-naphthyl-C 1 -C 12 alkylamino group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, tert-butyl Dimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethyl Silyl group, 2-ethylhexyl-dimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, a 3,7-dimethyl silyl group, lauryl dimethyl silyl group, (phenyl -C 1 ~ C 12 alkyl) silyl group, (C 1 to C 12 alkoxyphenyl-C 1 to C 12 alkyl) silyl group, (C 1 to C 12 alkylphenyl-C 1 to C 12 alkyl) silyl group, (1-naphthyl-C 1 to C 12 alkyl) silyl group (2-naphthyl-C 1 -C 12 alkyl) silyl group, (phenyl-C 1 -C 12 alkyl) dimethylsilyl group, triphenylsilyl group, tri (p-xylyl) silyl group, tribenzylsilyl group, diphenyl Methylsilyl group, tert-butyldiphenylsilyl group, dimethylphenylsilyl group, thienyl group, C 1 -C 12 alkylthieni Group, pyrrolyl group, furyl group, pyridyl group, C 1 -C 12 alkylpyridyl group, pyridazinyl group, pyrimidyl group, pyrazinyl group, triazinyl group, pyrrolidyl group, piperidyl group, quinolyl group, isoquinolyl group, hydroxyl group, mercapto group , Fluorine atom, chlorine atom, bromine atom and iodine atom.
 前記末端の構造単位が複数個存在する場合には、それらは互いに同一でも異なっていてもよい。 When there are a plurality of the terminal structural units, they may be the same as or different from each other.
〔6.高分子化合物の特性〕
 以下、本発明の高分子化合物の特性について説明する。
[6. Characteristics of polymer compounds)
Hereinafter, the characteristics of the polymer compound of the present invention will be described.
〔6.1.分子量〕
 高分子化合物とは、ポリスチレン換算の重量平均分子量が1×103以上である化合物をいう。
[6.1. (Molecular weight)
The polymer compound refers to a compound having a polystyrene-equivalent weight average molecular weight of 1 × 10 3 or more.
 本発明の高分子化合物の塗布による成膜性の観点から、前記高分子化合物のポリスチレン換算の重量平均分子量の下限は、1×103以上であることが好ましく、2×103以上であることがより好ましく、3×103以上であることが更に好ましく、5×103以上であることが特に好ましい。同様の観点から、前記高分子化合物のポリスチレン換算の重量平均分子量の上限は、1×108以下であることが好ましく、1×107以下であることがより好ましい。前記高分子化合物のポリスチレン換算の重量平均分子量の範囲は、1×103~1×108であることが好ましく、2×103~1×107であることがより好ましく、3×103~1×107であることが更に好ましく、5×103~1×107であることが特に好ましい。 From the viewpoint of film formability by application of the polymer compound of the present invention, the lower limit of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 or more, and preferably 2 × 10 3 or more. Is more preferably 3 × 10 3 or more, and particularly preferably 5 × 10 3 or more. From the same viewpoint, the upper limit of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 8 or less, and more preferably 1 × 10 7 or less. The range of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 to 1 × 10 8 , more preferably 2 × 10 3 to 1 × 10 7 , and more preferably 3 × 10 3. ~ still more preferably from 1 × 10 7, particularly preferably 5 × 10 3 ~ 1 × 10 7.
 本発明の高分子化合物の純度の観点から、前記高分子化合物のポリスチレン換算の数平均分子量が1×103以上であることが好ましい。同様の観点から、前記高分子化合物のポリスチレン換算の数平均分子量の上限は、5×107以下であることが好ましく、1×107以下であることがより好ましく、5×106以下であることが更に好ましい。前記高分子化合物のポリスチレン換算の数平均分子量の範囲は、1×103~5×107であることが好ましく、1×103~1×107であることがより好ましく、1×103~5×106であることが更に好ましい。 From the viewpoint of the purity of the polymer compound of the present invention, the polymer compound preferably has a polystyrene-equivalent number average molecular weight of 1 × 10 3 or more. From the same viewpoint, the upper limit of the polystyrene-equivalent number average molecular weight of the polymer compound is preferably 5 × 10 7 or less, more preferably 1 × 10 7 or less, and 5 × 10 6 or less. More preferably. The range of the number average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 to 5 × 10 7 , more preferably 1 × 10 3 to 1 × 10 7 , and more preferably 1 × 10 3. More preferably, it is ˜5 × 10 6 .
 本発明の高分子化合物の溶解性の観点から、前記高分子化合物のポリスチレン換算の重量平均分子量の下限は、1×103以上であることが好ましい。同様の観点から、前記高分子化合物のポリスチレン換算の重量平均分子量の上限は、5×105以下であることが好ましく、5×104以下であることがより好ましく、3×103以下であることが更に好ましい。前記高分子化合物のポリスチレン換算の重量平均分子量の範囲は、1×103~5×105であることが好ましく、1×103~5×104であることがより好ましく、1×103~3×103であることが更に好ましい。 From the viewpoint of solubility of the polymer compound of the present invention, the lower limit of the weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 or more. From the same viewpoint, the upper limit of the polystyrene equivalent weight average molecular weight of the polymer compound is preferably 5 × 10 5 or less, more preferably 5 × 10 4 or less, and 3 × 10 3 or less. More preferably. Range of weight average molecular weight in terms of polystyrene of the polymer compound is preferably 1 × 10 3 ~ 5 × 10 5, more preferably 1 × 10 3 ~ 5 × 10 4, 1 × 10 3 More preferably, it is ˜3 × 10 3 .
 本発明の高分子化合物のポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、それぞれ求めることができる。 The polystyrene-equivalent number average molecular weight and weight average molecular weight of the polymer compound of the present invention can be determined, for example, using gel permeation chromatography (GPC).
〔6.2.共役高分子化合物としての特性〕
 本発明で用いられる高分子化合物は、好ましくは共役高分子化合物である。本発明の高分子化合物が共役高分子化合物であるとは、該高分子化合物が主鎖中に、多重結合、及び/又は、窒素原子、酸素原子等の原子が有する非共有電子対が1つの単結合を挟んで連なっている領域を含むことを意味する。該高分子化合物が共役高分子化合物である場合、共役高分子化合物の電子輸送性の観点から、{(高分子化合物中の、多重結合、及び/又は、窒素原子、酸素原子等の原子が有する非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(高分子化合物中の主鎖上の全原子の数)}×100で計算される比(%)が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましく、90%以上であることがとりわけ好ましい。
[6.2. Characteristics as a conjugated polymer compound)
The polymer compound used in the present invention is preferably a conjugated polymer compound. When the polymer compound of the present invention is a conjugated polymer compound, the polymer compound has one unshared electron pair possessed by multiple bonds and / or atoms such as nitrogen atoms and oxygen atoms in the main chain. It means that it includes a region that is continuous across a single bond. In the case where the polymer compound is a conjugated polymer compound, from the viewpoint of electron transport properties of the conjugated polymer compound, {(multiple bonds in the polymer compound and / or atoms such as nitrogen atom and oxygen atom have Calculated by the number of atoms on the main chain included in the region where the unshared electron pairs are connected across one single bond) / (number of all atoms on the main chain in the polymer compound)} × 100 The ratio (%) is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, particularly preferably 80% or more, and 90% or more. Particularly preferred.
〔6.3.軌道エネルギー〕
 本発明の高分子化合物の電子受容性及び正孔受容性の観点からは、前記高分子化合物の最低非占有分子軌道(LUMO)の軌道エネルギーの下限は、-5.0eV以上が好ましく、-4.5eV以上がより好ましい。同様の観点から、前記高分子化合物のLUMOの軌道エネルギーの上限は、-2.0eV以下が好ましい。前記高分子化合物のLUMOの軌道エネルギーの範囲は、-5.0eV以上-2.0eV以下が好ましく、-4.5eV以上-2.0eV以下がより好ましい。
[6.3. Orbital energy)
From the viewpoint of electron acceptability and hole acceptability of the polymer compound of the present invention, the lower limit of the minimum unoccupied molecular orbital (LUMO) orbital energy of the polymer compound is preferably −5.0 eV or more, and −4 More preferable is 5 eV or more. From the same viewpoint, the upper limit of the LUMO orbital energy of the polymer compound is preferably −2.0 eV or less. The range of the LUMO orbital energy of the polymer compound is preferably from −5.0 eV to −2.0 eV, more preferably from −4.5 eV to −2.0 eV.
 同様の観点から、本発明の高分子化合物の最高占有分子軌道(HOMO)の軌道エネルギーの下限は、-6.0eV以上が好ましく、-5.5eV以上がより好ましい。同様の観点から、前記高分子化合物のHOMOの軌道エネルギーの上限は、-3.0eV以下が好ましい。前記高分子化合物のHOMOの軌道エネルギーの範囲は、-6.0eV以上-3.0eV以下が好ましく、-5.5eV以上-3.0eV以下がより好ましい。
HOMOの軌道エネルギーは、通常はLUMOの軌道エネルギーよりも低い。
From the same viewpoint, the lower limit of the orbital energy of the highest occupied molecular orbital (HOMO) of the polymer compound of the present invention is preferably −6.0 eV or more, more preferably −5.5 eV or more. From the same viewpoint, the upper limit of the HOMO orbital energy of the polymer compound is preferably −3.0 eV or less. The range of the orbital energy of HOMO of the polymer compound is preferably from -6.0 eV to -3.0 eV, more preferably from -5.5 eV to -3.0 eV.
The orbital energy of HOMO is usually lower than that of LUMO.
 高分子化合物のHOMOの軌道エネルギーは、高分子化合物のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求めることができる。高分子化合物のLUMOの軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求めることができる。イオン化ポテンシャルの測定には、光電子分光装置を用いることができる。HOMOとLUMOのエネルギー差は、紫外分光光度計、可視分光光度計又は近赤外分光光度計を用いて高分子化合物の吸収スペクトルを測定し、その吸収末端より求める。 The orbital energy of the HOMO of the polymer compound can be obtained by measuring the ionization potential of the polymer compound and using the obtained ionization potential as the orbital energy. The orbital energy of LUMO of a polymer compound can be obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. A photoelectron spectrometer can be used to measure the ionization potential. The energy difference between HOMO and LUMO is determined from the absorption terminal by measuring the absorption spectrum of the polymer compound using an ultraviolet spectrophotometer, visible spectrophotometer, or near infrared spectrophotometer.
〔7.高分子化合物の具体例〕
 本発明の高分子化合物としては、例えば、以下の式で表される高分子化合物が挙げられる。本明細書において、複数の構造がスラッシュ「/」で区切られている式で表される構造単位を有する高分子化合物では、これらの構造単位はランダムに配列している。2種の構造がスラッシュ「/」で区切られている場合、右側の構造単位の割合が(100-p)モル%である。pは30~99であることが好ましく、50~99であることがより好ましい。3種の構造がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、中央の構造単位の割合がqモル%、右側の構造単位の割合が(100-p-q)モル%である。pは1~50であることが好ましく、1~30であることがより好ましい。qは1~50であることが好ましく、1~30であることがより好ましい。なお、以下の式で表される構造単位以外の構造単位が更に含まれていてもよく、この場合においても、以下と同様に書き表すことができる。これらの構造単位はランダムに配列している。なお、以下の式中、Mは、前述と同じ意味であり、nは重合度であり、式中の任意の水素原子は、合成可能な範囲内で置換基に置き換えられていてもよい。前記置換基としては、前述のQに関する説明中で例示した置換基と同様の基が挙げられる。
[7. Specific examples of polymer compounds]
Examples of the polymer compound of the present invention include polymer compounds represented by the following formulas. In the present specification, in a polymer compound having a structural unit represented by a formula in which a plurality of structures are separated by a slash “/”, these structural units are randomly arranged. When the two structures are separated by a slash “/”, the proportion of the right structural unit is (100-p) mol%. p is preferably from 30 to 99, more preferably from 50 to 99. In the polymer compound represented by the formula in which three types of structures are separated by a slash “/”, the proportion of the structural unit on the left is p mol%, the proportion of the central structural unit is q mol%, and the structural unit on the right The ratio of is (100-pq) mol%. p is preferably from 1 to 50, and more preferably from 1 to 30. q is preferably 1 to 50, and more preferably 1 to 30. In addition, structural units other than the structural unit represented by the following formula may be further included, and in this case, it can be expressed in the same manner as below. These structural units are arranged at random. In the following formulae, M has the same meaning as described above, n is the degree of polymerization, and any hydrogen atom in the formula may be replaced with a substituent within a synthesizable range. Examples of the substituent include the same groups as the substituents exemplified in the description regarding Q 1 described above.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
〔7.高分子化合物の製造方法〕
 本発明の高分子化合物を製造する方法について以下説明する。本発明の高分子化合物の製造方法の好適な態様としては、イオンを含有する化合物を原料として用い、これを縮合重合させる方法、及び、第一工程でイオンを含有しない化合物を原料として用い、これを縮合重合させて高分子化合物を合成し、第二工程で該高分子化合物からイオンを含有する高分子化合物を合成する方法を挙げることができる。
[7. Method for producing polymer compound)
The method for producing the polymer compound of the present invention will be described below. As a preferred embodiment of the method for producing the polymer compound of the present invention, a compound containing ions is used as a raw material, and this is subjected to condensation polymerization, and a compound containing no ions in the first step is used as a raw material. A method of synthesizing a polymer compound by synthesizing a polymer compound and synthesizing a polymer compound containing ions from the polymer compound in the second step can be mentioned.
 例えば、前記原料として下記式(21)で表される化合物を選択して用いる方法を挙げることができる。 For example, a method of selecting and using a compound represented by the following formula (21) as the raw material can be mentioned.
  Y3-Aa-Y4    (21)
(式(21)中、Aaは式(1)で表される基と、式(2)で表される基とを含む2価の基であり、Y3及びY4は、それぞれ独立に、縮合重合に関与する基を示す。)
Y 3 -A a -Y 4 (21)
(In Formula (21), A a is a divalent group including a group represented by Formula (1) and a group represented by Formula (2), and Y 3 and Y 4 are each independently And represents a group involved in condensation polymerization.)
 また、例えば、前記原料として下記式(21’)で表される化合物を選択して用いる方法を挙げることができる。 Further, for example, a method of selecting and using a compound represented by the following formula (21 ′) as the raw material can be mentioned.
  Y3-Aaa-Y4    (21’)
(式(21’)中、
 Aaaは、式(22)で表される基と、式(2)で表される基とを含む2価の基である。
 Y3及びY4は、それぞれ独立に、縮合重合に関与する基である。)
  -R7-{(Q3n6-Y5m9    (22)
(式(22)中、
 R7は、(1+m9)価の有機基である。
 Q3は、2価の有機基を表す。
 Y5は、-CO2χ、-SO3χ、-SO2χ、-PO3(Rχ2又は-B(Rχ2である。
 n6は、0以上の整数である。
 Rχは、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。
 m9は1以上の整数を表す。
 複数個のQ3が存在する場合、各々のQ3は互いに同一でも異なっていてもよい。
 複数個のY5が存在する場合、各々のY5は互いに同一でも異なっていてもよい。
 複数個のn6が存在する場合、各々のn6は互いに同一でも異なっていてもよい。
 複数個のRχが存在する場合、各々のRχ複は互いに同一でも異なっていてもよい。)
Y 3 -A aa -Y 4 (21 ')
(In the formula (21 ′),
A aa is a divalent group including a group represented by the formula (22) and a group represented by the formula (2).
Y 3 and Y 4 are each independently a group involved in condensation polymerization. )
-R 7 -{(Q 3 ) n6 -Y 5 } m9 (22)
(In the formula (22),
R 7 is a (1 + m9) valent organic group.
Q 3 represents a divalent organic group.
Y 5 is —CO 2 R χ , —SO 3 R χ , —SO 2 R χ , —PO 3 (R χ ) 2, or —B (R χ ) 2 .
n6 is an integer of 0 or more.
R χ is a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted aryl group having 6 to 50 carbon atoms.
m9 represents an integer of 1 or more.
When a plurality of Q 3 are present, each Q 3 may be the same as or different from each other.
When a plurality of Y 5 are present, each Y 5 may be the same as or different from each other.
When a plurality of n6 are present, each n6 may be the same as or different from each other.
When there are a plurality of , each compound may be the same as or different from each other. )
 本発明の高分子化合物中に、上記式(21)中の-Aa-で表される構造単位とともに、前記-Aa-以外の他の構造単位を含有させる場合には、前記-Aa-以外の他の構造単位となる、縮合重合に関与する基を2個有する化合物を用い、これを前記式(21)で表される化合物とともに共存させて縮合重合させればよい。なお、式(21)で表される化合物の代わりに、前記式(21’)で表される化合物を用いてもよい。 In the polymer compound of the present invention, -A a in the above formula (21) - together with a structural unit represented by the -A a - In case of containing other structural units other than the above -A a A compound having two groups involved in condensation polymerization, which is a structural unit other than-, may be used together with the compound represented by the above formula (21) for condensation polymerization. In addition, you may use the compound represented by the said Formula (21 ') instead of the compound represented by Formula (21).
 縮合重合に関与する基を2個有する化合物としては、式(19)及び式(20)で表される化合物が例示される。 Examples of the compound having two groups involved in condensation polymerization include compounds represented by formula (19) and formula (20).
  Y6-Ab-Y7    (19)
(式(19)中、Abは前記Ar3で表される置換基を有していてもよい2価の芳香族基又は置換基を有していてもよい2価の芳香族アミン残基で表される構造単位であり、Y6及びY7は、それぞれ独立に、縮合重合に関与する基を示す。)
Y 6 -A b -Y 7 (19)
(In the formula (19), Ab is a divalent aromatic group optionally having a substituent represented by Ar 3 or a divalent aromatic amine residue optionally having a substituent. Y 6 and Y 7 each independently represent a group involved in condensation polymerization.)
  Y8-A-Y9    (20)
(式(20)中、Aは式(2)で表される基を有する2価の芳香族基又は2価の芳香族アミン残基で表される構造単位であり、前記2価の芳香族基及び2価の芳香族アミン残基としては前述のAr3で挙げられた基と同様の基が挙げられ、Y8及びY9は、それぞれ独立に、縮合重合に関与する基を示す。)
Y 8 -A c -Y 9 (20)
(In the formula (20), Ac is a structural unit represented by a divalent aromatic group having a group represented by the formula (2) or a divalent aromatic amine residue, and the divalent aromatic Examples of the group and the divalent aromatic amine residue include the same groups as those described above for Ar 3 , and Y 8 and Y 9 each independently represent a group involved in condensation polymerization. )
 このようにして、式(21)(前記Y3-Aa-Y4)で表される化合物に加えて、式(19)で表される化合物及び/又は式(20)で表される化合物を縮合重合させることで、-Ab-で表される構造単位及び/又は-A-で表される構造単位を更に有する高分子化合物を製造することができる。なお、式(21)で表される化合物の代わりに、前記式(21’)で表される化合物を用いてもよい。 Thus, in addition to the compound represented by the formula (21) (Y 3 -A a -Y 4 ), the compound represented by the formula (19) and / or the compound represented by the formula (20) Can be polymerized to produce a polymer compound further having a structural unit represented by -A b- and / or a structural unit represented by -A c- . In addition, you may use the compound represented by the said Formula (21 ') instead of the compound represented by Formula (21).
 式(21)、(21’)、(19)及び(20)中の縮合重合に関与する基(Y3、Y4、Y6、Y7、Y8及びY9)としては、例えば、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、-B(OH)2、ホルミル基、シアノ基及びビニル基が挙げられる。 Examples of the groups (Y 3 , Y 4 , Y 6 , Y 7 , Y 8 and Y 9 ) involved in the condensation polymerization in the formulas (21), (21 ′), (19) and (20) include, for example, hydrogen Atoms, halogen atoms, alkyl sulfonate groups, aryl sulfonate groups, aryl alkyl sulfonate groups, boric acid ester residues, sulfonium methyl groups, phosphonium methyl groups, phosphonate methyl groups, monohalogenated methyl groups, -B (OH) 2 , formyl Groups, cyano groups and vinyl groups.
 前記縮合重合に関与する基として選択され得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom that can be selected as a group involved in the condensation polymerization include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記縮合重合に関与する基として選択され得るアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示される。 Examples of the alkyl sulfonate group that can be selected as a group involved in the condensation polymerization include a methane sulfonate group, an ethane sulfonate group, and a trifluoromethane sulfonate group.
 前記縮合重合に関与する基として選択され得るアリールスルホネート基としては、ベンゼンスルホネート基及びp-トルエンスルホネート基が例示される。 Examples of the aryl sulfonate group that can be selected as a group involved in the condensation polymerization include a benzene sulfonate group and a p-toluene sulfonate group.
 前記縮合重合に関与する基として選択され得るアリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。 Examples of the arylalkyl sulfonate group that can be selected as a group involved in the condensation polymerization include a benzyl sulfonate group.
 前記縮合重合に関与する基として選択され得るホウ酸エステル残基としては、下記式で表される基が例示される。 Examples of the boric acid ester residue that can be selected as a group involved in the condensation polymerization include groups represented by the following formulae.
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 前記縮合重合に関与する基として選択され得るスルホニウムメチル基としては、下記式:
  -CH2+Me2-、又は、-CH2+Ph2-
(式中、Eはハロゲン原子を示す。Phはフェニル基を示し、以下、同じである。)
で表される基が例示される。
Examples of the sulfonium methyl group that can be selected as a group involved in the condensation polymerization include the following formula:
-CH 2 S + Me 2 E - , or, -CH 2 S + Ph 2 E -
(In the formula, E represents a halogen atom. Ph represents a phenyl group, and the same shall apply hereinafter.)
The group represented by these is illustrated.
 前記縮合重合に関与する基として選択され得るホスホニウムメチル基としては、下記式:
  -CH2+Ph3-
(式中、Eは、前述と同じ意味である。)
で表される基が例示される。
Examples of the phosphonium methyl group that can be selected as a group involved in the condensation polymerization include the following formula:
-CH 2 P + Ph 3 E -
(In the formula, E has the same meaning as described above.)
The group represented by these is illustrated.
 前記縮合重合に関与する基として選択され得るホスホネートメチル基としては、下記式:
  -CH2PO(ORj2
(式中、Rjは、アルキル基、アリール基、又はアリールアルキル基を示す。)
で表される基が例示される。
Examples of the phosphonate methyl group that can be selected as the group involved in the condensation polymerization include the following formula:
-CH 2 PO (OR j ) 2
(In the formula, R j represents an alkyl group, an aryl group, or an arylalkyl group.)
The group represented by these is illustrated.
 前記縮合重合に関与する基として選択され得るモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基及びヨウ化メチル基が例示される。 Examples of the monohalogenated methyl group that can be selected as the group involved in the condensation polymerization include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
 前記縮合重合に関与する基として好適な基は、重合反応の種類によって異なる。Yamamotoカップリング反応等の0価ニッケル錯体を用いる反応の場合には、例えば、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基が挙げられる。Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる反応の場合には、例えば、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基及び-B(OH)2が挙げられる。酸化剤又は電気化学的に酸化重合の場合には、例えば、水素原子が挙げられる。 A group suitable as a group involved in the condensation polymerization varies depending on the type of polymerization reaction. In the case of a reaction using a zerovalent nickel complex such as a Yamamoto coupling reaction, for example, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group can be mentioned. In the case of a reaction using a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction, for example, an alkyl sulfonate group, a halogen atom, a boric acid ester residue, and —B (OH) 2 can be mentioned. In the case of oxidative polymerization using an oxidizing agent or electrochemically, for example, a hydrogen atom is used.
 本発明の高分子化合物を製造する際には、例えば、縮合重合に関与する基を複数有する前記式(21)で表される化合物(モノマー)を、必要に応じて前記式(19)又は(20)で表される化合物(モノマー)と共に、更に必要な場合には有機溶媒に溶解し、アルカリ又は適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。重合方法としては、例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270-490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年に記載の方法、“オルガニック シンセシーズ(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407-411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年に記載の方法、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)に記載の方法、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)に記載の方法、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の方法が挙げられる。なお、式(21)で表される化合物の代わりに、前記式(21’)で表される化合物を用いてもよい。 When the polymer compound of the present invention is produced, for example, the compound (monomer) represented by the formula (21) having a plurality of groups involved in condensation polymerization is converted into the formula (19) or ( 20) In addition to the compound (monomer) represented by 20), if necessary, a polymerization method in which the compound is dissolved in an organic solvent and reacted at a temperature not lower than the melting point of the organic solvent and not higher than the boiling point using an alkali or an appropriate catalyst is employed. May be. As the polymerization method, for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis” (Organic Syntheses) ", Collective Volume 6 (Collective Volume VI), pages 407-411, John Wiley & Sons, Inc., 1988, Method, Chemical Review (Chem. Rev.), Vol. 95, 2457 (1995), Journal of Organometallic Chem., 576. The method according to p. 147 (1999), Macromolecular Chemistry Macromolecular Symposium (Macromol.Chem., Macromol.Symp.), Vol. 12, include a method described in page 229 (1987). In addition, instead of the compound represented by the formula (21), the compound represented by the formula (21 ′) may be used.
 本発明の高分子化合物を製造する際には、縮合重合に関与する基に応じて、既知の縮合重合反応を採用してもよい。縮合重合反応としては、例えば、Suzukiカップリング反応により該当するモノマーを重合する方法、Grignard反応により該当するモノマーを重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により該当するモノマーを重合する方法、該当するモノマーを電気化学的に酸化重合する方法、及び、適当な脱離基を有する中間体高分子の分解による方法が挙げられる。縮合重合反応の中でも、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により該当するモノマーを重合する方法が、得られる高分子化合物の構造制御がし易いので好ましい。 In producing the polymer compound of the present invention, a known condensation polymerization reaction may be employed depending on the group involved in the condensation polymerization. Examples of the condensation polymerization reaction include a method of polymerizing a corresponding monomer by a Suzuki coupling reaction, a method of polymerizing a corresponding monomer by a Grignard reaction, a method of polymerizing by a Ni (0) complex, and an oxidizing agent such as FeCl 3. A method of polymerizing the monomer to be polymerized, a method of electrochemically oxidizing the corresponding monomer, and a method of decomposing an intermediate polymer having an appropriate leaving group. Among condensation polymerization reactions, a method of polymerizing by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, and a method of polymerizing a corresponding monomer by a nickel zero-valent complex are preferable because the structure of the resulting polymer compound can be easily controlled. .
 本発明の高分子化合物の製造方法の別の好適な態様としては、縮合重合に関与する基としての、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群から選択される基を有する原料モノマーを用いて、ニッケルゼロ価錯体の存在下で縮合重合して、高分子化合物を製造する方法が挙げられる。
このような方法に使用する原料モノマーとしては、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン-アルキルスルホネート化合物、ハロゲン-アリールスルホネート化合物、ハロゲン-アリールアルキルスルホネート化合物、アルキルスルホネート-アリールスルホネート化合物、アルキルスルホネート-アリールアルキルスルホネート化合物及びアリールスルホネート-アリールアルキルスルホネート化合物が挙げられる。
Another preferred embodiment of the method for producing the polymer compound of the present invention is a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an aryl alkyl sulfonate group as a group involved in condensation polymerization. And a method of producing a polymer compound by condensation polymerization in the presence of a nickel zero-valent complex using a raw material monomer containing
Examples of the raw material monomer used in such a method include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates. Compounds, halogen-aryl alkyl sulfonate compounds, alkyl sulfonate-aryl sulfonate compounds, alkyl sulfonate-aryl alkyl sulfonate compounds and aryl sulfonate-aryl alkyl sulfonate compounds.
 本発明の高分子化合物の製造方法の更に別の好適な態様としては、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、-B(OH)2、及びホウ酸エステル残基からなる群から選ばれる基を有し、かつ、全原料モノマーが有する、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、-B(OH)2及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常、K/Jは0.7~1.2の範囲)である原料モノマーを、ニッケル触媒又はパラジウム触媒の存在下で縮合重合する方法が挙げられる。 In another preferred embodiment of the method for producing the polymer compound of the present invention, as a group involved in condensation polymerization, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, —B (OH) 2 , And the total number (J) of moles of halogen atoms, alkyl sulfonate groups, aryl sulfonate groups, and arylalkyl sulfonate groups, which have a group selected from the group consisting of boric acid ester residues, and all the raw material monomers have, A raw material monomer in which the ratio of the total number of moles (K) of —B (OH) 2 and boric acid ester residues (K) is substantially 1 (usually, K / J is in the range of 0.7 to 1.2), Examples include a method of condensation polymerization in the presence of a nickel catalyst or a palladium catalyst.
 高分子化合物を製造する際には、有機溶媒を用いることができる。用いる化合物又は反応によっても異なるが、一般に副反応を抑制するために十分に脱酸素処理を施した有機溶媒を用いることが好ましい。有機溶媒を用いて高分子化合物を製造する場合には、不活性雰囲気下で反応を進行させることが好ましい。前記有機溶媒においては、前記脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応の場合にはその限りではない。 An organic solvent can be used when producing the polymer compound. Generally, it is preferable to use an organic solvent that has been sufficiently deoxygenated to suppress side reactions, although it varies depending on the compound or reaction used. When producing a polymer compound using an organic solvent, the reaction is preferably allowed to proceed under an inert atmosphere. In the organic solvent, it is preferable to perform a dehydration treatment in the same manner as the deoxygenation treatment. However, this is not the case in the case of reaction in a two-phase system with water such as Suzuki coupling reaction.
 有機溶媒としては、例えば以下の有機溶媒が挙げられる:
 ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素;
 ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素;
 メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類;
 ジメチルエーテル、ジエチルエーテル、メチル-tert-ブチルエーテル、テトラヒドロフラン(以下、「THF」と言う。)、テトラヒドロピラン、ジオキサン等のエーテル類;
 トリメチルアミン、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ピリジン等のアミン類;
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルモルホリンオキシド等のアミド類。
Examples of the organic solvent include the following organic solvents:
Saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane;
Unsaturated hydrocarbons such as benzene, toluene, ethylbenzene, xylene;
Alcohols such as methanol, ethanol, propanol, isopropanol, butanol and tert-butyl alcohol; carboxylic acids such as formic acid, acetic acid and propionic acid;
Ethers such as dimethyl ether, diethyl ether, methyl-tert-butyl ether, tetrahydrofuran (hereinafter referred to as “THF”), tetrahydropyran, dioxane;
Amines such as trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine, pyridine;
Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and N-methylmorpholine oxide.
 これらの有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。有機溶媒の中で、反応性の観点からはエーテル類が好ましく、THF及びジエチルエーテルがより好ましい。反応速度の観点からはトルエン及びキシレンが好ましい。 These organic solvents may be used alone or in combination of two or more. Among organic solvents, ethers are preferable from the viewpoint of reactivity, and THF and diethyl ether are more preferable. From the viewpoint of reaction rate, toluene and xylene are preferred.
 前記高分子化合物を製造する際、原料モノマーを反応させるために、アルカリ又は触媒を反応液に添加することが好ましい。アルカリ及び触媒は、採用する重合方法等に応じて選択すればよい。アルカリ及び触媒は、反応に用いる溶媒に十分に溶解することが好ましい。前記アルカリ及び触媒を反応液に混合する方法としては、アルゴンガス、窒素ガス等の不活性雰囲気下で反応液を攪拌しながら、ゆっくりとアルカリ又は触媒の溶液を添加する方法、及び、アルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。 In producing the polymer compound, it is preferable to add an alkali or a catalyst to the reaction solution in order to react the raw material monomers. What is necessary is just to select an alkali and a catalyst according to the superposition | polymerization method etc. to employ | adopt. It is preferable that the alkali and the catalyst are sufficiently dissolved in the solvent used for the reaction. As a method of mixing the alkali and catalyst into the reaction solution, a method of slowly adding an alkali or catalyst solution while stirring the reaction solution under an inert atmosphere such as argon gas or nitrogen gas, and an alkali or catalyst A method of slowly adding the reaction solution to the solution is exemplified.
 本発明の高分子化合物においては、末端基が安定な基で保護されていてもよい。末端基に重合活性基がそのまま残っていると、得られる電界発光素子の発光特性及び寿命特性が低下する可能性がある。本発明の高分子化合物が共役高分子化合物であり、かつ、上記のように安定な基で末端基が保護されている場合、該高分子化合物の主鎖の共役構造と連続した共役結合を有していることが好ましい。その共役構造としては、例えば、炭素-炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。末端基を保護する安定な基としては、1価の芳香族基等が挙げられる。 In the polymer compound of the present invention, the terminal group may be protected with a stable group. If the polymerization active group remains as it is at the terminal group, the light emission characteristics and life characteristics of the obtained electroluminescent device may be deteriorated. When the polymer compound of the present invention is a conjugated polymer compound and the terminal group is protected with a stable group as described above, it has a conjugated bond continuous with the conjugated structure of the main chain of the polymer compound. It is preferable. Examples of the conjugated structure include a structure bonded to an aryl group or a heterocyclic group via a carbon-carbon bond. Examples of the stable group for protecting the end group include a monovalent aromatic group.
 本発明の高分子化合物を製造するための好適な方法として前述した、第一工程でイオンを含有しない高分子化合物を合成し、第二工程で該高分子化合物からイオンを含有する高分子化合物を合成する方法について以下説明する。 As a preferred method for producing the polymer compound of the present invention, the polymer compound containing no ions is synthesized in the first step, and the polymer compound containing ions is synthesized from the polymer compound in the second step. The synthesis method will be described below.
 該方法のより好適な態様としては、第一工程でカチオンを有さない高分子化合物を重合し、第二工程で該高分子化合物からカチオンを含有する高分子化合物を製造する方法が挙げられる。第一工程の反応としては、例えば、前述の縮合重合反応でカチオンを有さない高分子化合物を重合する方法が挙げられる。第二工程の反応としては、例えば、第一工程で得られた高分子化合物と、金属水酸化物、金属炭酸塩、アルキルアンモニウムヒドロキシド等を、必要に応じて水又は有機溶媒に溶解し、有機溶媒の融点以上沸点以下の温度で反応させる方法、及び、該反応の後に更に必要に応じて、塩酸、硫酸、酢酸等によってカチオンをHへ変換する方法が挙げられる。なお、前記式(21’)で表される化合物を選択して用いる方法が好適に利用可能である。 A more preferred embodiment of the method includes a method of polymerizing a polymer compound having no cation in the first step and producing a polymer compound containing a cation from the polymer compound in the second step. Examples of the reaction in the first step include a method of polymerizing a polymer compound having no cation by the above-described condensation polymerization reaction. As the reaction in the second step, for example, the polymer compound obtained in the first step, metal hydroxide, metal carbonate, alkylammonium hydroxide, etc. are dissolved in water or an organic solvent as necessary, Examples thereof include a method of reacting at a temperature not lower than the melting point of the organic solvent and not higher than the boiling point, and a method of converting a cation to H + with hydrochloric acid, sulfuric acid, acetic acid or the like as necessary after the reaction. In addition, the method of selecting and using the compound represented by said Formula (21 ') can be utilized suitably.
〔8.高分子化合物のM1がH+である割合〕
 本発明の高分子化合物は、前記高分子化合物の耐熱性と溶解性の観点から、前記高分子化合物中のM1がH+である割合は、前記高分子化合物中の全てのMに対して、0.1%以上30%以下であることが好ましく、0.1%以上20%以下であることがより好ましい。
[8. Ratio in which M 1 of polymer compound is H + ]
In the polymer compound of the present invention, from the viewpoint of heat resistance and solubility of the polymer compound, the ratio of M 1 in the polymer compound to H + is relative to all M 1 in the polymer compound. Therefore, it is preferably 0.1% or more and 30% or less, and more preferably 0.1% or more and 20% or less.
 本発明の高分子化合物中のM1がH+である割合は、NMRスペクトルにより測定することができる。 The proportion of M 1 in the polymer compound of the present invention being H + can be measured by NMR spectrum.
〔9.高分子化合物を含む層〕
 本発明の高分子化合物を含む層は、電界発光素子において用いられる場合、実質的に非発光性であることが好ましい。ここで、ある高分子化合物を含む層が実質的に非発光性であるとは、以下のとおりの意味である。まず、下記の実施例2において、共役高分子化合物1の代わりに、対象となる高分子化合物を用いる以外は実施例2と同様にして、電界発光素子Eを作製する。一方、下記の比較例1に記載のとおりにして電界発光素子C1を作製する。電界発光素子Eは高分子化合物を含む層を有するが、電界発光素子C1は高分子化合物を含む層を有さない点でのみ、電界発光素子Eと電界発光素子C1とは異なる。次に、電界発光素子E及び電界発光素子C1に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子C1について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子C1について得られた発光スペクトルを規格化し、波長について積分して規格化発光量S0を計算する。一方、波長λにおける発光強度を1として、電界発光素子Eについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S-S0)/S0×100%で計算される値が30%以下である場合、即ち、高分子化合物を含む層を有さない電界発光素子C1の規格化発光量に比べ、高分子化合物を含む層を有する電界発光素子Eの規格化発光量の増加分が30%以下である場合に、用いた高分子化合物を含む層は通常、実質的に非発光性であり、(S-S0)/S0×100で計算される値が15%以下であることが好ましく、10%以下であることがより好ましい。
[9. Layer containing polymer compound)
The layer containing the polymer compound of the present invention is preferably substantially non-luminescent when used in an electroluminescent device. Here, the fact that a layer containing a certain polymer compound is substantially non-luminous means as follows. First, in Example 2 below, an electroluminescent element E is produced in the same manner as in Example 2 except that the target polymer compound is used instead of the conjugated polymer compound 1. On the other hand, the electroluminescent element C1 is manufactured as described in Comparative Example 1 below. The electroluminescent element E has a layer containing a polymer compound, but the electroluminescent element C1 is different from the electroluminescent element E and the electroluminescent element C1 only in that it does not have a layer containing a polymer compound. Next, a forward voltage of 10 V is applied to the electroluminescent element E and the electroluminescent element C1, and an emission spectrum is measured. The wavelength λ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element C1 is obtained. The emission spectrum obtained for the electroluminescent element C1 is normalized by setting the emission intensity at the wavelength λ to 1, and the normalized emission amount S 0 is calculated by integrating the wavelength. On the other hand, assuming that the emission intensity at the wavelength λ is 1, the emission spectrum obtained for the electroluminescent element E is also normalized, and the normalized emission amount S is calculated by integrating the wavelength. When the value calculated by (S−S 0 ) / S 0 × 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent element C1 having no layer containing a polymer compound. When the increase in the normalized light emission amount of the electroluminescent element E having a layer containing a molecular compound is 30% or less, the layer containing the polymer compound used is usually substantially non-luminescent, and (S The value calculated by −S 0 ) / S 0 × 100 is preferably 15% or less, and more preferably 10% or less.
 <電子デバイス>
 次に、本発明の電子デバイスについて説明する。
<Electronic device>
Next, the electronic device of the present invention will be described.
 本発明の電子デバイスは、式(1)で表される基及び式(2)で表される基を含む構造単位を有する高分子化合物を含む層を電荷注入層及び/又は電荷輸送層として備え、前記高分子化合物中のMがH+である割合が、前記高分子化合物中の全てのMに対して0.1%~50%である。本発明の電子デバイスは、通常は、前記高分子化合物を含む層のほかに、第1の電極と、第2の電極と、発光層又は電荷分離層とを含む。発光層又は電荷分離層は、第1の電極と第2の電極との間に位置する。 The electronic device of the present invention includes a layer containing a polymer compound having a structural unit containing a group represented by the formula (1) and a group represented by the formula (2) as a charge injection layer and / or a charge transport layer. The proportion of M 1 in the polymer compound being H + is 0.1% to 50% with respect to all M 1 in the polymer compound. The electronic device of the present invention usually includes a first electrode, a second electrode, and a light emitting layer or a charge separation layer in addition to the layer containing the polymer compound. The light emitting layer or the charge separation layer is located between the first electrode and the second electrode.
 本発明の電子デバイスは、電界発光素子、光電変換素子等の素子に用いることができる。電子デバイスを電界発光素子に用いる場合(以下、「本発明の電界発光素子」と言うことがある。)、該電子デバイスは発光層を有している。電子デバイスを光電変換素子に用いる場合(以下、「本発明の光電変換素子」と言うことがある。)、該電子デバイスは電荷分離層を有している。 The electronic device of the present invention can be used for elements such as electroluminescent elements and photoelectric conversion elements. When an electronic device is used for an electroluminescent element (hereinafter sometimes referred to as “electroluminescent element of the present invention”), the electronic device has a light emitting layer. When an electronic device is used for a photoelectric conversion element (hereinafter sometimes referred to as “the photoelectric conversion element of the present invention”), the electronic device has a charge separation layer.
 <電界発光素子>
 本発明の電界発光素子について以下説明する。本発明の電界発光素子は、上述の高分子化合物を含む層を有する電界発光素子である。
<Electroluminescent device>
The electroluminescent element of the present invention will be described below. The electroluminescent element of the present invention is an electroluminescent element having a layer containing the above-described polymer compound.
 本発明の電界発光素子は、例えば、陰極、陽極、前記陰極と前記陽極との間に位置する発光層、及び前記発光層と前記陰極又は前記陽極との間に位置し、本発明で用いられる高分子化合物を含む層を有する。本発明の電界発光素子は、任意の構成要素として基板を有することができ、かかる基板の面上に、前記陰極、陽極、発光層、本発明で用いられる高分子化合物を含む層、及び任意の構成要素を設けた構成とすることができる。 The electroluminescent element of the present invention is used in the present invention, for example, located in the cathode, the anode, the light emitting layer located between the cathode and the anode, and between the light emitting layer and the cathode or the anode. It has a layer containing a polymer compound. The electroluminescent element of the present invention can have a substrate as an optional component, and on the surface of the substrate, the cathode, the anode, the light emitting layer, the layer containing the polymer compound used in the present invention, and an optional It can be set as the structure which provided the component.
 本発明の電界発光素子の層構成としては、以下の各態様が挙げられる:
(1)基板上に陽極が設けられ、その上層に発光層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陰極が積層される態様;
(2)基板上に陽極が設けられ、その上層に本発明の高分子化合物を含む層が積層され、発光層が積層され、更にその上層に陰極が積層される態様;
(3)基板上に陽極が設けられ、その上層に本発明の高分子化合物を含む層が積層され、発光層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陰極が積層される態様;
(4)陰極を基板上に設け、その上層に本発明の高分子化合物を含む層が積層され、その上層に発光層が積層され、更にその上層に陽極が積層される態様;
(5)陰極を基板上に設け、その上層に発光層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陽極が積層される態様;
(6)陰極を基板上に設け、その上層に本発明の高分子化合物を含む層が積層され、その上層に発光層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陽極が積層される態様
Examples of the layer structure of the electroluminescent device of the present invention include the following embodiments:
(1) A mode in which an anode is provided on a substrate, a light emitting layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and a cathode is laminated thereon.
(2) A mode in which an anode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated, and a cathode is laminated further thereon.
(3) An anode is provided on the substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and A mode in which a cathode is laminated on the upper layer;
(4) A mode in which a cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated thereon, and an anode is laminated thereon.
(5) A mode in which a cathode is provided on a substrate, a light emitting layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and an anode is laminated thereon.
(6) A cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a light emitting layer is laminated thereon, and a layer containing the polymer compound of the present invention is laminated thereon. Further, an aspect in which an anode is further laminated thereon
 前記態様(1)~(6)のそれぞれにおいて、更に、保護層、バッファー層、反射層、正孔ブロック層等の他の機能を有する層を設けてもよい。なお、電界発光素子の構成については、下記にて別途詳述する。更に封止膜、或いは、封止基板が電界発光素子に覆い被せられると、電界発光素子が外気と遮断された発光装置が形成される。 In each of the above aspects (1) to (6), a layer having another function such as a protective layer, a buffer layer, a reflective layer, or a hole blocking layer may be further provided. The configuration of the electroluminescent element will be described in detail later. Further, when the sealing film or the sealing substrate is covered with the electroluminescent element, a light emitting device in which the electroluminescent element is blocked from the outside air is formed.
〔1.本発明の高分子化合物を含む層〕
 本発明の高分子化合物を含む層において、前記高分子化合物は、公知の材料と混合されていてもよい。例えば、高分子の電荷輸送材料、低分子の電荷輸送材料、グラフェン、フラーレン、カーボンナノチューブ等の導電性炭素、金属、合金、金属酸化物、金属硫化物等の電気伝導性化合物、及びこれらの混合物が挙げられる。電荷輸送材料としては、正孔輸送層を構成する材料又は電子輸送層を構成する材料を用いてもよい。金属、合金、金属酸化物、金属硫化物としては、陽極を構成する材料又は陰極を構成する材料を用いてもよい。更に、発光素子としての発光機能を損なわない範囲で、発光機能及び電荷輸送機能を有していない有機材料が混合されていてもよい。
[1. Layer containing the polymer compound of the present invention]
In the layer containing the polymer compound of the present invention, the polymer compound may be mixed with a known material. For example, high molecular charge transport materials, low molecular charge transport materials, conductive carbon such as graphene, fullerene, and carbon nanotubes, electrically conductive compounds such as metals, alloys, metal oxides, metal sulfides, and mixtures thereof Is mentioned. As the charge transport material, a material constituting the hole transport layer or a material constituting the electron transport layer may be used. As the metal, alloy, metal oxide, and metal sulfide, a material constituting the anode or a material constituting the cathode may be used. Furthermore, an organic material that does not have a light emitting function and a charge transporting function may be mixed as long as the light emitting function as the light emitting element is not impaired.
 本発明の電界発光素子は基板側から採光する所謂ボトムエミッションタイプ、基板と反対側から採光する所謂トップエミッションタイプ、及び両面採光型のタイプのうちいずれのタイプの電界発光素子であってもよい。 The electroluminescent element of the present invention may be any of an electroluminescent element of a so-called bottom emission type in which light is taken from the substrate side, a so-called top emission type in which light is taken from the side opposite to the substrate, and a double-sided light-emitting type.
 本発明の高分子化合物を含む層を形成する方法としては、例えば、前記高分子化合物を含有する溶液を用いて成膜する方法が挙げられる。 Examples of a method for forming a layer containing the polymer compound of the present invention include a method of forming a film using a solution containing the polymer compound.
 溶液からの成膜に用いる溶媒としては、例えば、水、アルコール類、エーテル類、エステル類、ニトリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、カルボン酸類から選ばれる一種の溶媒、並びにこれらから選ばれる二種以上の混合溶媒が挙げられる。溶媒の溶解パラメーターは、9.3以上であることが好ましい。溶解パラメーターが9.3以上である溶媒(各括弧内の値は、各溶媒の溶解パラメーターの値を表す)の例としては、水(21.0)、メタノール(12.9)、エタノール(11.2)、2-プロパノール(11.5)、1-ブタノール(9.9)、tert-ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2-エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2-ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。(溶解パラメータの値は溶剤ハンドブック 第14刷 (株)講談社 参照)。 Examples of the solvent used for film formation from a solution include water, alcohols, ethers, esters, nitrile compounds, nitro compounds, alkyl halides, aryl halides, thiols, sulfides, and sulfoxides. , Thioketones, amides, carboxylic acids, one kind of solvent, and two or more kinds of mixed solvents selected from these. The solubility parameter of the solvent is preferably 9.3 or more. Examples of the solvent having a solubility parameter of 9.3 or more (values in parentheses represent the solubility parameter values of each solvent) include water (21.0), methanol (12.9), ethanol (11 .2), 2-propanol (11.5), 1-butanol (9.9), tert-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7) N, N-dimethylformamide (11.5), dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9. 7), dichloromethane (9.6), chlorobenzene (9.6), bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), disulfur Carbon (10.0), and include mixed solvents of these solvents. (Refer to Solvent Handbook, 14th printing, Kodansha Co., Ltd., for the solubility parameter values).
 2種の溶媒(溶媒1、溶媒2とする)の混合溶媒の溶解パラメーター(δm)は、δm=δ1×φ1+δ2×φ2により求めることができる(δ1は溶媒1の溶解パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解パラメーター、φ2は溶媒2の体積分率である。)。 The solubility parameter (δ m ) of a mixed solvent of two kinds of solvents (referred to as solvent 1 and solvent 2) can be obtained by δ m = δ 1 × φ 1 + δ 2 × φ 21 is the value of solvent 1). The solubility parameter, φ 1 is the volume fraction of solvent 1, δ 2 is the solubility parameter of solvent 2, and φ 2 is the volume fraction of solvent 2.)
 溶液からの成膜方法としては、例えば、塗布法及び印刷法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、マイクログラビア印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法及び反転印刷法が挙げられる。 Examples of the film forming method from a solution include a coating method and a printing method. Specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method.
 本発明の高分子化合物を含む層の厚さは、用いる高分子化合物によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、1nm~1μmが好ましく、2nm~500nmがより好ましく、2nm~200nmが更に好ましい。発光層を保護する観点からは、該厚さは、5nm~1μmが好ましい。 The thickness of the layer containing the polymer compound of the present invention may be selected so that the optimum value varies depending on the polymer compound used, and the driving voltage and the light emission efficiency are moderate values, preferably 1 nm to 1 μm, preferably 2 nm to 500 nm is more preferable, and 2 nm to 200 nm is still more preferable. From the viewpoint of protecting the light emitting layer, the thickness is preferably 5 nm to 1 μm.
〔2.電界発光素子の層構成〕
 電界発光素子は、一般に、陰極、陽極、及び、陰極と陽極との間に位置する発光層を有する。更に構成要素を備えていてもよい。
[2. Layer structure of electroluminescent element]
An electroluminescent element generally has a cathode, an anode, and a light emitting layer positioned between the cathode and the anode. Furthermore, you may provide the component.
 例えば、陽極と発光層との間には正孔注入層及び正孔輸送層のうちの1層以上を有することができる。正孔注入層が存在する場合は、発光層と正孔注入層との間に、正孔輸送層を有することができる。 For example, one or more of a hole injection layer and a hole transport layer can be provided between the anode and the light emitting layer. When the hole injection layer is present, a hole transport layer can be provided between the light emitting layer and the hole injection layer.
 一方、陰極と発光層との間には、電子注入層及び電子輸送層のうちの1層以上を有することができる。電子注入層が存在する場合は、発光層と電子注入層との間に電子輸送層を有することができる。 Meanwhile, one or more of an electron injection layer and an electron transport layer can be provided between the cathode and the light emitting layer. When an electron injection layer is present, an electron transport layer can be provided between the light emitting layer and the electron injection layer.
 本発明の高分子化合物を含む層は、正孔注入層、正孔輸送層、電子注入層、電子輸送層等の層として用いることができる。前記高分子化合物を含む層を正孔注入層及び正孔輸送層から選ばれる1層又は2層として用いる場合、第1の電極は陽極であり、第2の電極は陰極である。前記高分子化合物を含む層を電子注入層及び電子輸送層から選ばれる1層又は2層として用いる場合、第1の電極は陰極であり、第2の電極は陽極である。 The layer containing the polymer compound of the present invention can be used as a layer such as a hole injection layer, a hole transport layer, an electron injection layer, or an electron transport layer. When the layer containing the polymer compound is used as one or two layers selected from a hole injection layer and a hole transport layer, the first electrode is an anode and the second electrode is a cathode. When the layer containing the polymer compound is used as one or two layers selected from an electron injection layer and an electron transport layer, the first electrode is a cathode and the second electrode is an anode.
 陽極は、正孔注入層、正孔輸送層、発光層等の層に正孔を供給する電極である。陰極は、電子注入層、電子輸送層、発光層等の層に電子を供給する電極である。 The anode is an electrode that supplies holes to layers such as a hole injection layer, a hole transport layer, and a light emitting layer. The cathode is an electrode that supplies electrons to layers such as an electron injection layer, an electron transport layer, and a light emitting layer.
 発光層とは、電界を印加した際に、陽極側に隣接する層より正孔を受け取り陰極側に隣接する層より電子を受け取る機能、受け取った電荷(電子と正孔)を電界の力で移動させる機能、及び、電子と正孔の再結合の場を提供し再結合を発光につなげる機能を有する層をいう。 The light emitting layer is a function that receives holes from the layer adjacent to the anode side and receives electrons from the layer adjacent to the cathode side when an electric field is applied, and moves the received charges (electrons and holes) by the force of the electric field. And a layer having a function of providing a field for recombination of electrons and holes and connecting recombination to light emission.
 電子注入層とは、陰極に隣接する層であり、陰極から電子を受け取る機能を有する層であり、必要に応じて、電子を輸送する機能、陽極から注入された正孔を障壁する機能及び発光層へ電子を供給する機能のいずれかを有する層をいう。電子輸送層とは、主に電子を輸送する機能を有する層であり、必要に応じて、陰極から電子を受け取る機能、陽極から注入された正孔を障壁する機能及び発光層へ電子を供給する機能のいずれかを有する層をいう。 The electron injection layer is a layer adjacent to the cathode and has a function of receiving electrons from the cathode, and if necessary, a function of transporting electrons, a function of blocking holes injected from the anode, and light emission. A layer having any function of supplying electrons to the layer. The electron transport layer is a layer mainly having a function of transporting electrons, and if necessary, a function of receiving electrons from the cathode, a function of blocking holes injected from the anode, and supplying electrons to the light emitting layer. A layer having any of the functions.
 正孔注入層とは、陽極に隣接する層であり、陽極から正孔を受け取る機能を有する層であり、必要に応じて、正孔を輸送する機能、発光層へ正孔を供給する機能及び陰極から注入された電子を障壁する機能のいずれかを有する層をいう。正孔輸送層とは、主に正孔を輸送する機能を有する層であり、必要に応じて、陽極から正孔を受け取る機能、発光層へ正孔を供給する機能及び陰極から注入された電子を障壁する機能のいずれかを有する層をいう。 The hole injection layer is a layer adjacent to the anode and is a layer having a function of receiving holes from the anode, and if necessary, a function of transporting holes, a function of supplying holes to the light emitting layer, and A layer having any function of blocking electrons injected from the cathode. The hole transport layer is a layer mainly having a function of transporting holes, and if necessary, a function of receiving holes from the anode, a function of supplying holes to the light emitting layer, and electrons injected from the cathode. A layer having any of the functions of blocking the above.
 なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶことがある。電子注入層と正孔注入層を総称して電荷注入層と呼ぶことがある。 Note that the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer. The electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer.
 即ち、本発明の電界発光素子は下記の層構成(a)を有することができ、又は、層構成(a)から、正孔注入層、正孔輸送層、電子輸送層及び電子注入層のいずれか1層以上を省略した層構成を有することもできる。層構成(a)において、本発明の高分子化合物を含む層は、正孔注入層、正孔輸送層、電子注入層及び電子輸送層からなる群から選ばれる1つ以上の層として用いることができる。 That is, the electroluminescent element of the present invention can have the following layer configuration (a), or any of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer from the layer configuration (a). It is also possible to have a layer structure in which one or more layers are omitted. In the layer structure (a), the layer containing the polymer compound of the present invention may be used as one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. it can.
 (a)陽極-正孔注入層-(正孔輸送層)-発光層-(電子輸送層)-電子注入層-陰極 (A) Anode-hole injection layer- (hole transport layer) -emission layer- (electron transport layer) -electron injection layer-cathode
 符号「-」は各層が隣接して積層されていることを示す。「(正孔輸送層)」は、正孔輸送層を1層以上含む層構成を示す。「(電子輸送層)」は、電子輸送層を1層以上含む層構成を示す。以下の層構成の説明においても同様である。 The sign “-” indicates that each layer is laminated adjacently. “(Hole transport layer)” indicates a layer structure including one or more hole transport layers. “(Electron transport layer)” indicates a layer structure including one or more electron transport layers. The same applies to the description of the layer structure below.
 本発明の電界発光素子は、1つの積層構造中に2層の発光層を有することができる。この場合、電界発光素子は下記の層構成(b)を有することができ、又は、層構成(b)から、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電極の1層以上を省略した層構成を有することもできる。層構成(b)において、本発明の高分子化合物を含む層は、陽極と陽極に最も近い発光層との間に存在する層として用いられるか、陰極と陰極に最も近い発光層との間に存在する層として用いられる。 The electroluminescent element of the present invention can have two light emitting layers in one laminated structure. In this case, the electroluminescent element can have the following layer configuration (b), or from the layer configuration (b), one of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and an electrode. It is also possible to have a layer structure in which more layers are omitted. In the layer structure (b), the layer containing the polymer compound of the present invention is used as a layer existing between the anode and the light emitting layer closest to the anode, or between the cathode and the light emitting layer closest to the cathode. Used as an existing layer.
 (b)陽極-正孔注入層-(正孔輸送層)-発光層-(電子輸送層)-電子注入層-電極-正孔注入層-(正孔輸送層)-発光層-(電子輸送層)-電子注入層-陰極 (B) Anode-hole injection layer- (hole transport layer) -emission layer- (electron transport layer) -electron injection layer-electrode-hole injection layer- (hole transport layer) -emission layer- (electron transport) Layer)-electron injection layer-cathode
 本発明の電界発光素子は、1つの積層構造中に3層以上の発光層を有することができる。この場合、電界発光素子は下記の層構成(c)を有することができ、又は、層構成(c)から、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び電極のうち1層以上を省略した層構成を有することもできる。層構成(c)において、本発明の高分子化合物を含む層は、陽極と陽極に最も近い発光層との間に存在する層として用いられるか、陰極と陰極に最も近い発光層との間に存在する層として用いられる。 The electroluminescent element of the present invention can have three or more light emitting layers in one laminated structure. In this case, the electroluminescent device may have the following layer configuration (c), or from the layer configuration (c), among the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, and the electrode. It is also possible to have a layer structure in which one or more layers are omitted. In the layer structure (c), the layer containing the polymer compound of the present invention is used as a layer existing between the anode and the light emitting layer closest to the anode, or between the cathode and the light emitting layer closest to the cathode. Used as an existing layer.
 (c)陽極-正孔注入層-(正孔輸送層)-発光層-(電子輸送層)-電子注入層-繰返し単位A-繰返し単位A・・・-陰極 (C) Anode-hole injection layer- (hole transport layer) -emission layer- (electron transport layer) -electron injection layer-repeat unit A-repeat unit A ...- cathode
 ここで、「繰返し単位A」は、電極-正孔注入層-(正孔輸送層)-発光層-(電子輸送層)-電子注入層の層構成の単位を示す。 Here, “repeating unit A” indicates a unit of a layer configuration of electrode—hole injection layer— (hole transport layer) —light emitting layer— (electron transport layer) —electron injection layer.
 本発明の電界発光素子の好ましい層構成としては、下記の層構成(d)~(n)が挙げられる。下記層構成において、本発明の高分子化合物を含む層は、正孔注入層、正孔輸送層、電子注入層及び電子輸送層からなる群から選ばれる1つ以上の層として用いることができる。 Preferred layer configurations of the electroluminescent device of the present invention include the following layer configurations (d) to (n). In the following layer configuration, the layer containing the polymer compound of the present invention can be used as one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
(d)陽極-正孔注入層-発光層-陰極
(e)陽極-発光層-電子注入層-陰極
(f)陽極-正孔注入層-発光層-電子注入層-陰極
(g)陽極-正孔注入層-正孔輸送層-発光層-陰極
(k)陽極-正孔注入層-正孔輸送層-発光層-電子注入層-陰極
(l)陽極-発光層-電子輸送層-電子注入層-陰極
(m)陽極-正孔注入層-発光層-電子輸送層-電子注入層-陰極
(n)陽極-正孔注入層-正孔輸送層-発光層-電子輸送層-電子注入層-陰極
(D) Anode-hole injection layer-light emitting layer-cathode (e) Anode-light emitting layer-electron injection layer-cathode (f) Anode-hole injection layer-light emitting layer-electron injection layer-cathode (g) anode- Hole injection layer-hole transport layer-light emitting layer-cathode (k) anode-hole injection layer-hole transport layer-light emitting layer-electron injection layer-cathode (l) anode-light emitting layer-electron transport layer-electrons Injection layer-cathode (m) anode-hole injection layer-emission layer-electron transport layer-electron injection layer-cathode (n) anode-hole injection layer-hole transport layer-emission layer-electron transport layer-electron injection Layer-cathode
 本発明の高分子化合物を含む層は、電子注入層又は電子輸送層であることが好ましい。
前記高分子化合物を含む層が、電子注入層又は電子輸送層である場合、第1の電極は陰極である。
The layer containing the polymer compound of the present invention is preferably an electron injection layer or an electron transport layer.
When the layer containing the polymer compound is an electron injection layer or an electron transport layer, the first electrode is a cathode.
 本発明の電界発光素子は、電極との密着性向上のために、及び/又は、電極からの電荷の注入の改善のために、電極に隣接して絶縁層を設けてもよい。界面の密着性向上、混合の防止等の目的のために、電荷輸送層又は発光層の界面に、薄いバッファー層を挿入してもよい。積層する層の順番、積層する層の数、及び各層の厚さは、発光効率及び素子寿命を勘案して定めることができる。 In the electroluminescent device of the present invention, an insulating layer may be provided adjacent to the electrode in order to improve adhesion with the electrode and / or improve injection of charge from the electrode. A thin buffer layer may be inserted at the interface of the charge transport layer or the light emitting layer for the purpose of improving the adhesion of the interface and preventing mixing. The order of the layers to be stacked, the number of layers to be stacked, and the thickness of each layer can be determined in consideration of light emission efficiency and element lifetime.
〔3.電界発光素子を構成する各層〕
 次に、本発明の電界発光素子を構成する各層の材料及び形成方法について、より詳説する。
[3. Each layer constituting the electroluminescent element]
Next, the material and forming method of each layer constituting the electroluminescent element of the present invention will be described in more detail.
〔3.1.基板〕
 本発明の電界発光素子を構成する基板は、電極を形成する際及び有機層を形成する際に化学的に変化しない基板であればよい。基板としては、例えば、ガラス、プラスチック、高分子フィルム、金属フィルム、シリコン基板、これらを積層した基板が用いられる。前記基板は、市販品を利用してもよく、又は公知の方法により製造された基板を利用してもよい。
[3.1. substrate〕
The substrate constituting the electroluminescent element of the present invention may be any substrate that does not chemically change when the electrodes are formed and when the organic layer is formed. As the substrate, for example, glass, plastic, polymer film, metal film, silicon substrate, or a substrate in which these are laminated is used. A commercially available product may be used as the substrate, or a substrate manufactured by a known method may be used.
 本発明の電界発光素子がディスプレイ装置の画素を構成する際には、当該基板上に画素駆動用の回路が設けられていてもよいし、当該駆動回路上に平坦化膜が設けられていてもよい。平坦化膜の中心線平均粗さ(Ra)は、Ra<10nmを満たしていることが好ましい。 When the electroluminescent element of the present invention constitutes a pixel of a display device, a circuit for driving a pixel may be provided on the substrate, or a planarization film may be provided on the drive circuit. Good. The center line average roughness (Ra) of the planarizing film preferably satisfies Ra <10 nm.
 Raは、日本工業規格JISのJIS-B0601-2001に基づいて、JIS-B0651からJIS-B0656及びJIS-B0671-1等を参考に計測できる。 Ra can be measured with reference to JIS-B0651 to JIS-B0656, JIS-B0671-1, etc. based on JIS-B0601-2001 of Japanese Industrial Standards JIS.
〔3.2.陽極〕
 本発明の電界発光素子を構成する陽極の発光層側表面の仕事関数は、正孔注入層、正孔輸送層、インターレイヤー、発光層等で用いられる有機半導体材料への正孔供給性の観点から、4.0eV以上であることが好ましい。
[3.2. anode〕
The work function of the light emitting layer side surface of the anode constituting the electroluminescent device of the present invention is a viewpoint of the ability to supply holes to organic semiconductor materials used in hole injection layers, hole transport layers, interlayers, light emitting layers, etc. Therefore, it is preferably 4.0 eV or more.
 陽極を構成する材料としては、例えば、金属、合金、導電性化合物(例えば、金属酸化物、金属硫化物等)、及びこれらの混合物等を用いることができる。具体的には、例えば、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化モリブデン等の導電性金属酸化物、及び、金、銀、クロム、ニッケル等の金属、及び、これらの導電性金属酸化物とこれらの金属との混合物が挙げられる。 As the material constituting the anode, for example, metals, alloys, conductive compounds (for example, metal oxides, metal sulfides, etc.), and mixtures thereof can be used. Specifically, for example, conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), molybdenum oxide, and gold, silver, chromium, nickel, etc. And mixtures of these conductive metal oxides and these metals.
 前記陽極は、これら材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。多層構造である場合は、発光層側の最表面層の陽極を構成する材料の仕事関数が、4.0eV以上であることがより好ましい。 The anode may have a single layer structure composed of one or more of these materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. In the case of a multilayer structure, the work function of the material constituting the anode of the outermost surface layer on the light emitting layer side is more preferably 4.0 eV or more.
 陽極の作製方法としては公知の方法が利用できる。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、及び、溶液からの成膜による方法(高分子バインダーとの混合溶液を用いてもよい)が挙げられる。 A known method can be used as a method for producing the anode. For example, a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a method by film formation from a solution (a mixed solution with a polymer binder may be used).
 陽極の厚さは、通常10nm~10μmであり、好ましくは40nm~500nmである。 The thickness of the anode is usually 10 nm to 10 μm, preferably 40 nm to 500 nm.
 短絡等の電気的接続の不良を防止する観点から、陽極の発光層側表面の中心線平均粗さ(Ra)はRa<10nmを満たすことが好ましく、Ra<5nmを満たすことがより好ましい。 From the viewpoint of preventing poor electrical connection such as a short circuit, the center line average roughness (Ra) of the light emitting layer side surface of the anode preferably satisfies Ra <10 nm, and more preferably satisfies Ra <5 nm.
 陽極は、上記方法にて作製された後に、UVオゾン、シランカップリング剤、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン等の電子受容性化合物を含む溶液等の液による表面処理を施されてもよい。表面処理によって該陽極に接する層との電気的接続が改善され得る。 After the anode is prepared by the above method, an electron accepting compound such as UV ozone, a silane coupling agent, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, etc. Surface treatment with a solution such as a solution containing The surface treatment can improve the electrical connection with the layer in contact with the anode.
 本発明の電界発光素子において陽極を光反射電極として用いる場合には、かかる陽極が、高光反射性金属からなる光反射層と4.0eV以上の仕事関数を有する材料を含む高仕事関数材料層とを組み合わせた多層構造であるが好ましい。 When the anode is used as a light reflecting electrode in the electroluminescent element of the present invention, the anode includes a light reflecting layer made of a highly light reflecting metal and a high work function material layer containing a material having a work function of 4.0 eV or more. A multi-layer structure in which is combined is preferable.
 陽極の構成としては、以下の構成が例示される。
(i)   Ag-MoO3
(ii) (Ag-Pd-Cu合金)-(ITO及び/又はIZO)
(iii)(Al-Nd合金)-(ITO及び/又はIZO)
(iv) (Mo-Cr合金)-(ITO及び/又はIZO)
(v)  (Ag-Pd-Cu合金)-(ITO及び/又はIZO)-MoO3
Examples of the configuration of the anode include the following configurations.
(I) Ag-MoO 3
(Ii) (Ag—Pd—Cu alloy) — (ITO and / or IZO)
(Iii) (Al—Nd alloy) — (ITO and / or IZO)
(Iv) (Mo—Cr alloy) — (ITO and / or IZO)
(V) (Ag—Pd—Cu alloy) — (ITO and / or IZO) —MoO 3
 十分な光反射率を得る為に、高光反射性金属(例えば、Al、Ag、Al合金、Ag合金、Cr合金等)からなる光反射層の厚さは、50nm以上であることが好ましく、80nm以上であることがより好ましい。4.0eV以上の仕事関数を有する材料(例えば、ITO、IZO、MoO3等)を含む高仕事関数材料層の厚さは通常、5nm~500nmの範囲である。 In order to obtain a sufficient light reflectivity, the thickness of the light reflection layer made of a highly light reflective metal (for example, Al, Ag, Al alloy, Ag alloy, Cr alloy, etc.) is preferably 50 nm or more, and 80 nm. More preferably. The thickness of the high work function material layer including a material having a work function of 4.0 eV or more (for example, ITO, IZO, MoO 3, etc.) is usually in the range of 5 nm to 500 nm.
〔3.3.正孔注入層〕
 正孔注入層を構成する材料としては、本発明の高分子化合物のほか、例えば、以下の材料が挙げられる:
 カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレン誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、スターバースト型アミン、フタロシアニン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、有機シラン誘導体、及びこれらを含む重合体;
 酸化バナジウム、酸化タンタル、酸化タングステン、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の導電性金属酸化物;
 ポリアニリン、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子及びオリゴマー;
 ポリ(3,4-エチレンジオキシチオフェン)・ポリスチレンスルホン酸、ポリピロール等の有機導電性材料及びこれらを含む重合体;
 アモルファスカーボン;
 テトラシアノキノジメタン誘導体(例えば、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン)、1,4-ナフトキノン誘導体、ジフェノキノン誘導体、ポリニトロ化合物等のアクセプター性有機化合物;
 オクタデシルトリメトキシシラン等のシランカップリング剤。
[3.3. (Hole injection layer)
In addition to the polymer compound of the present invention, examples of the material constituting the hole injection layer include the following materials:
Carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorene derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, starburst amines, phthalocyanine derivatives, amino-substituted chalcones Derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole) ) Derivatives, organosilane derivatives, and polymers containing them;
Conductive metal oxides such as vanadium oxide, tantalum oxide, tungsten oxide, molybdenum oxide, ruthenium oxide, aluminum oxide;
Conductive polymers and oligomers such as polyaniline, aniline-based copolymer, thiophene oligomer, polythiophene;
Organic conductive materials such as poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid, polypyrrole, and polymers containing them;
Amorphous carbon;
Acceptors such as tetracyanoquinodimethane derivatives (for example, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane), 1,4-naphthoquinone derivatives, diphenoquinone derivatives, polynitro compounds, etc. Organic compounds;
Silane coupling agents such as octadecyltrimethoxysilane.
 前記材料は、単一の成分であっても、或いは複数の成分からなる組成物であってもよい。前記正孔注入層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成の複数層からなる又は異種組成の複数層からなる多層構造であってもよい。正孔輸送層を構成する材料として例示する材料を、正孔注入層を構成する材料として用いることができる。 The material may be a single component or a composition composed of a plurality of components. The hole injection layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions. . The material illustrated as a material which comprises a positive hole transport layer can be used as a material which comprises a positive hole injection layer.
 正孔注入層の作製方法としては、公知の方法が利用できる。正孔注入層に用いられる正孔注入材料が無機材料の場合は、真空蒸着法、スパッタリング法、イオンプレーティング法等の方法が利用でき、低分子有機材料の場合は、真空蒸着法、転写法(例えば、レーザー転写、熱転写等)、溶液からの成膜による方法(高分子バインダーとの混合溶液を用いてもよい)等が利用できる。正孔注入材料が高分子有機材料の場合は、溶液からの成膜による方法が利用できる。 As a method for preparing the hole injection layer, a known method can be used. When the hole injection material used for the hole injection layer is an inorganic material, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be used. For a low molecular organic material, a vacuum deposition method or a transfer method can be used. (For example, laser transfer, thermal transfer, etc.), a method of film formation from a solution (a mixed solution with a polymer binder may be used), and the like can be used. When the hole injection material is a polymer organic material, a method of film formation from a solution can be used.
 正孔注入材料が、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体等の低分子有機材料である場合には、真空蒸着法を用いて正孔注入層を形成することが好ましい。 When the hole injection material is a low molecular organic material such as a pyrazoline derivative, an arylamine derivative, a stilbene derivative, or a triphenyldiamine derivative, it is preferable to form the hole injection layer using a vacuum deposition method.
 高分子化合物バインダーと前記低分子有機材料を分散させた混合溶液を用いて正孔注入層を成膜することもできる。 The hole injection layer can also be formed using a mixed solution in which a polymer compound binder and the low molecular organic material are dispersed.
 混合する高分子化合物バインダーは、電荷輸送を極度に阻害しないことが好ましい。可視光に対する吸収が強くない化合物が好適である。この高分子化合物バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、並びにポリシロキサンが例示される。 It is preferable that the polymer compound binder to be mixed does not extremely inhibit charge transport. A compound that does not strongly absorb visible light is preferred. Examples of the polymer compound binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof , Polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
 溶液からの成膜に用いる溶媒としては、正孔注入材料を溶解させることができる溶媒であればよい。該溶媒として、水、クロロホルム、塩化メチレン、ジクロロエタン等の含塩素溶媒、THF等のエーテル溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、アセトン、メチルエチルケトン等のケトン溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル溶媒が例示される。 The solvent used for film formation from a solution may be any solvent that can dissolve the hole injection material. Examples of the solvent include water, chlorine-containing solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as THF, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate and ethyl. An ester solvent such as cellosolve acetate is exemplified.
 溶液からの成膜方法としては、例えば、印刷法及び塗布法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、マイクログラビア印刷法、グラビア印刷法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法及び反転印刷法が挙げられる。パターン形成が容易であるという点で、印刷法(例えば、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等)又はノズルコート法によることが好ましい。 Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a micro gravure printing method, a gravure printing method, a bar coating method, a roll coating method. Method, wire bar coating method, dip coating method, slit coating method, cap coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method And a reverse printing method. In terms of easy pattern formation, it is preferable to use a printing method (for example, a gravure printing method, a screen printing method, a flexographic printing method, an offset printing method, a reverse printing method, an inkjet printing method, or the like) or a nozzle coating method.
 正孔注入層に続いて、正孔輸送層、発光層等の有機層を形成する際に、正孔注入層と該有機層との両方を塗布法によって形成する場合には、先に塗布した層(下層)が後から塗布する層の溶液に含まれる溶媒に溶解して積層構造を作製できなくなることがある。この場合には、下層を溶媒不溶化する方法を用いることができる。溶媒不溶化する方法としては、例えば、高分子化合物に架橋基を付け、架橋させて不溶化する方法、芳香族ビスアジドに代表される芳香環を有する架橋基を持った低分子化合物を架橋剤として混合し、架橋させて不溶化する方法、アクリレート基に代表される芳香環を有しない架橋基を持った低分子化合物を架橋剤として混合し、架橋させて不溶化する方法、下層を紫外光に感光させて架橋させ、上層の製造に用いる有機溶媒に対して不溶化する方法、及び、下層を加熱して架橋させ、上層の製造に用いる有機溶媒に対して不溶化する方法が挙げられる。下層を加熱する場合の加熱の温度は通常100℃~300℃であり、時間は通常1分~1時間である。 When forming both the hole injection layer and the organic layer by a coating method when forming an organic layer such as a hole transport layer and a light-emitting layer following the hole injection layer, it was applied first. A layer (lower layer) may be dissolved in a solvent contained in a solution of a layer to be applied later, making it impossible to produce a laminated structure. In this case, a method of insolubilizing the lower layer can be used. Solvent insolubilization methods include, for example, a method of adding a crosslinking group to a polymer compound and crosslinking to insolubilize, or mixing a low molecular compound having a crosslinking group having an aromatic ring typified by aromatic bisazide as a crosslinking agent. , A method of crosslinking and insolubilization, a method of mixing a low molecular compound having a crosslinking group not having an aromatic ring represented by an acrylate group as a crosslinking agent, crosslinking and insolubilizing, and exposing the lower layer to ultraviolet light to crosslink And a method of insolubilizing in an organic solvent used for the production of the upper layer, and a method of insolubilizing the organic solvent used in the production of the upper layer by heating and crosslinking the lower layer. When the lower layer is heated, the heating temperature is usually 100 ° C. to 300 ° C., and the time is usually 1 minute to 1 hour.
 架橋以外で下層を溶解させずに積層するその他の方法として、例えば、隣り合った層の製造に異なる極性の溶液を用いる方法が挙げられる。該方法として、具体的には例えば、下層に水溶性の高分子化合物を用い、上層に油溶性の高分子化合物を用いて、塗布しても下層が溶解しないようにする方法が挙げられる。 Other methods of laminating without dissolving the lower layer other than by cross-linking include, for example, a method using different polar solutions for the production of adjacent layers. Specific examples of the method include a method in which a water-soluble polymer compound is used for the lower layer and an oil-soluble polymer compound is used for the upper layer so that the lower layer does not dissolve even when applied.
 正孔注入層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは10nm~100nmである。 The thickness of the hole injection layer varies depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 μm, preferably 2 nm to 500 nm. More preferably, it is 10 nm to 100 nm.
〔3.4.正孔輸送層〕
 本発明の電界発光素子において、正孔輸送層を構成する材料としては、例えば、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレン誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、有機シラン誘導体、及びこれらの構造を含む重合体;アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子及びオリゴマー;ポリピロール等の有機導電性材料が挙げられる。
[3.4. Hole transport layer)
In the electroluminescent device of the present invention, examples of the material constituting the hole transport layer include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorene derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolones. Derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrins Compounds, polysilane compounds, poly (N-vinylcarbazole) derivatives, organic silane derivatives, and polymers containing these structures; aniline copolymers, thiophene It includes organic conductive materials such as polypyrrole; oligomers, conductive polymers and oligomers such as polythiophene.
 前記材料は単一の成分であっても、或いは複数の成分からなる組成物であってもよい。
 前記正孔輸送層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成の複数層からなる又は異種組成の複数層からなる多層構造であってもよい。
 正孔注入層を構成する材料として例示する材料を、正孔輸送層を構成する材料として用いることができる。
The material may be a single component or a composition comprising a plurality of components.
The hole transport layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions. .
The material illustrated as a material which comprises a positive hole injection layer can be used as a material which comprises a positive hole transport layer.
 正孔輸送層及の作製方法としては、正孔注入層の作製と同様の方法が挙げられる。溶液からの成膜による方法としては、例えば、印刷法及び塗布法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、マイクログラビア印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法及び反転印刷法が挙げられる。正孔輸送層の材料として昇華性化合物材料を用いる場合には、通常は、真空蒸着法及び転写法が用いられる。 Examples of the method for producing the hole transport layer and the like include the same methods as those for producing the hole injection layer. Examples of the method by film formation from a solution include a printing method and a coating method. Specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip method, and the like. Coating method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing And reversal printing. When a sublimable compound material is used as the material for the hole transport layer, a vacuum deposition method and a transfer method are usually used.
 溶液からの成膜に用いる溶媒としては、例えば、正孔注入層の成膜方法で例示した溶媒が挙げられる。 Examples of the solvent used for film formation from a solution include the solvents exemplified in the film formation method of the hole injection layer.
 正孔輸送層に続いて、発光層等の有機層を塗布法にて形成する際に、先に塗布した層(下層)が後から塗布する層の溶液に含まれる溶媒に溶解する場合は、正孔注入層の成膜方法での例示と同様の方法で下層を溶媒不溶化することができる。 When an organic layer such as a light-emitting layer is formed by a coating method following the hole transport layer, if the previously applied layer (lower layer) is dissolved in the solvent contained in the solution of the layer to be applied later, The lower layer can be insolubilized by the same method as exemplified in the film formation method of the hole injection layer.
 正孔輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~100nmである。 The thickness of the hole transport layer differs depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 μm, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 100 nm.
〔3.5.発光層〕
 本発明の電界発光素子において、発光層が高分子化合物を含む場合、該高分子化合物としては、ポリフルオレン誘導体、ポリパラフェニレンビニレン誘導体、ポリフェニレン誘導体、ポリパラフェニレン誘導体、ポリチオフェン誘導体、ポリジアルキルフルオレン、ポリフルオレンベンゾチアジアゾール、ポリアルキルチオフェン等の共役高分子化合物を好適に用いることができる。
[3.5. (Light emitting layer)
In the electroluminescent device of the present invention, when the light emitting layer contains a polymer compound, examples of the polymer compound include polyfluorene derivatives, polyparaphenylene vinylene derivatives, polyphenylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, polydialkylfluorenes, Conjugated polymer compounds such as polyfluorene benzothiadiazole and polyalkylthiophene can be preferably used.
 前記高分子化合物を含む発光層は、ペリレン系色素、クマリン系色素、ローダミン系色素等の高分子系色素化合物、及び/又は、ルブレン、ペリレン、9,10-ジフェニルアントラセン、テトラフェニルブタジエン、ナイルレッド、クマリン6、キナクリドン等の低分子色素化合物を含有してもよい。前記高分子化合物を含む発光層は、ナフタレン誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系等の色素類、8-ヒドロキシキノリン及びその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン及びその誘導体、並びに、テトラフェニルブタジエン及びその誘導体、トリス(2-フェニルピリジン)イリジウム等の燐光を発光する金属錯体を含有してもよい。 The light emitting layer containing the polymer compound may be a polymer dye compound such as a perylene dye, a coumarin dye, or a rhodamine dye, and / or rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, or Nile Red. , Coumarin 6, quinacridone and other low molecular dye compounds may be contained. The light emitting layer containing the polymer compound includes naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, dyes such as polymethine, xanthene, coumarin, and cyanine, metal complexes of 8-hydroxyquinoline and derivatives thereof, A metal complex emitting phosphorescence such as aromatic amine, tetraphenylcyclopentadiene and derivatives thereof, and tetraphenylbutadiene and derivatives thereof, and tris (2-phenylpyridine) iridium may be contained.
 発光層は、非共役高分子化合物と、前記有機色素及び前記金属錯体等の発光性有機化合物から選ばれる化合物との組成物から構成されてもよい。非共役高分子化合物としては、例えば、ポリエチレン、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、及び、シリコン樹脂が挙げられる。前記の非共役高分子化合物は側鎖にカルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレン誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン化合物、ポルフィリン化合物、及び有機シラン誘導体からなる群から選ばれる1つ以上の誘導体若しくは化合物の構造を有していてもよい。 The light emitting layer may be composed of a composition of a non-conjugated polymer compound and a compound selected from light emitting organic compounds such as the organic dye and the metal complex. Non-conjugated polymer compounds include, for example, polyethylene, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone Examples thereof include resins, phenoxy resins, polyamides, ethyl cellulose, vinyl acetate, ABS resins, polyurethanes, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, and silicon resins. The non-conjugated polymer compound is a carbazole derivative, triazole derivative, oxazole derivative, oxadiazole derivative, imidazole derivative, fluorene derivative, polyarylalkane derivative, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative in the side chain. Selected from the group consisting of amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, and organosilane derivatives It may have the structure of one or more derivatives or compounds.
 発光層が低分子化合物を含む場合、該低分子化合物としては、例えば、ルブレン、ペリレン、9,10-ジフェニルアントラセン、テトラフェニルブタジエン、ナイルレッド、クマリン6、カルバゾール、キナクリドン等の低分子色素化合物、ナフタレン誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系、インジゴ系等の色素類、8-ヒドロキシキノリン及びその誘導体の金属錯体、フタロシアニン及びその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン及びその誘導体、並びにテトラフェニルブタジエン及びその誘導体が挙げられる。 When the light emitting layer contains a low molecular compound, examples of the low molecular compound include low molecular dye compounds such as rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, nile red, coumarin 6, carbazole, quinacridone, Naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, polymethine, xanthene, coumarin, cyanine, and indigo dyes, metal complexes of 8-hydroxyquinoline and derivatives thereof, metal complexes of phthalocyanine and derivatives thereof , Aromatic amines, tetraphenylcyclopentadiene and derivatives thereof, and tetraphenylbutadiene and derivatives thereof.
 発光層は燐光を発光する金属錯体を含んでいてもよい。燐光を発光する金属錯体としては、例えば、トリス(2-フェニルピリジン)イリジウム、チエニルピリジン配位子含有イリジウム錯体、フェニルキノリン配位子含有イリジウム錯体及びトリアザシクロノナン骨格含有テルビウム錯体が挙げられる。 The light emitting layer may contain a metal complex that emits phosphorescence. Examples of the phosphorescent-emitting metal complex include tris (2-phenylpyridine) iridium, thienylpyridine ligand-containing iridium complex, phenylquinoline ligand-containing iridium complex, and triazacyclononane skeleton-containing terbium complex.
 前記材料は単一の成分であっても、或いは複数の成分からなる組成物であってもよい。
 前記発光層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成の複数層からなる又は異種組成の複数層からなる多層構造であってもよい。
The material may be a single component or a composition comprising a plurality of components.
The light emitting layer may have a single-layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions.
 発光層の成膜方法としては、正孔注入層の成膜と同様の方法が挙げられる。溶液からの成膜方法としては、例えば、印刷法及び塗布法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、マイクログラビア印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法及び反転印刷法が挙げられる。発光層の材料として昇華性化合物材料を用いる場合には、通常は、真空蒸着法又は転写法が用いられる。 Examples of the method for forming the light emitting layer include the same method as that for forming the hole injection layer. Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method. When a sublimable compound material is used as the light emitting layer material, a vacuum deposition method or a transfer method is usually used.
 溶液からの成膜に用いる溶媒としては、正孔注入層の成膜方法で例示した溶媒が挙げられる。 Examples of the solvent used for film formation from a solution include the solvents exemplified in the method for forming a hole injection layer.
 発光層に続いて、電子輸送層等の有機層を塗布法にて形成する際に、先に塗布した層(下層)が後から塗布する層の溶液に含まれる溶媒に溶解する場合は、正孔注入層の成膜方法での例示と同様の方法で下層を溶媒不溶化することができる。 When an organic layer such as an electron transport layer is formed by a coating method subsequent to the light emitting layer, the layer previously applied (lower layer) is dissolved in the solvent contained in the solution of the layer to be applied later. The lower layer can be insolubilized in the same manner as exemplified in the method for forming the hole injection layer.
 発光層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、5nm~1μmであり、好ましくは10nm~500nmであり、更に好ましくは30nm~200nmである。 The thickness of the light emitting layer varies depending on the material used, and may be selected so that the driving voltage and the light emission efficiency are appropriate values. Usually, the thickness is 5 nm to 1 μm, preferably 10 nm to 500 nm. Preferably, it is 30 nm to 200 nm.
〔3.6.電子輸送層〕
 本発明の電界発光素子において、電子輸送層を構成する材料としては、本発明の高分子化合物のほか、公知の材料が使用できる。例えば、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレン誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、芳香環(例えば、ナフタレン、ペリレン等)テトラカルボン酸無水物、フタロシアニン誘導体、金属錯体(例えば、8-キノリノール誘導体の金属錯体、メタルフタロシアニン配位子とする金属錯体、ベンゾオキサゾール配位子とする金属錯体、ベンゾチアゾールを配位子とする金属錯体)、有機シラン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びにポリフルオレン及びその誘導体が挙げられる。これらのうち、トリアゾール誘導体、オキサジアゾール誘導体、ベンゾキノン及びその誘導体、アントラキノン及びその誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、並びに、ポリフルオレン及びその誘導体が好ましい。
[3.6. (Electron transport layer)
In the electroluminescent device of the present invention, as a material constituting the electron transport layer, a known material can be used in addition to the polymer compound of the present invention. For example, triazole derivative, oxazole derivative, oxadiazole derivative, imidazole derivative, fluorene derivative, benzoquinone and its derivative, naphthoquinone and its derivative, anthraquinone and its derivative, tetracyanoanthraquinodimethane and its derivative, fluorenone derivative, diphenyldicyanoethylene And its derivatives, diphenoquinone derivatives, anthraquinodimethane derivatives, anthrone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic rings (eg naphthalene, perylene, etc.) tetracarboxylic anhydride Products, phthalocyanine derivatives, metal complexes (eg, metal complexes of 8-quinolinol derivatives, metal complexes with metal phthalocyanine ligands, benzo Metal complexes with xazole ligands, metal complexes with benzothiazole ligands), organosilane derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, and polyfluorene And derivatives thereof. Among these, triazole derivatives, oxadiazole derivatives, benzoquinone and derivatives thereof, anthraquinone and derivatives thereof, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, and polyfluorene and derivatives thereof Derivatives are preferred.
 前記材料は単一の成分であっても、或いは複数の成分からなる組成物であってもよい。
 前記電子輸送層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成の複数層からなる又は異種組成の複数層からなる多層構造であってもよい。
 電子注入層を構成する材料として例示する材料を、電子輸送層を構成する材料として用いることができる。
The material may be a single component or a composition comprising a plurality of components.
The electron transport layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions.
The material illustrated as a material which comprises an electron injection layer can be used as a material which comprises an electron carrying layer.
 電子輸送層の成膜方法としては、正孔注入層の成膜と同様の方法が挙げられる。溶液からの成膜方法としては、例えば、印刷法及び塗布法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、マイクログラビア印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法及び反転印刷法が挙げられる。電子輸送層として昇華性化合物材料を用いる場合には、通常は、真空蒸着法又は転写法等が用いられる。 As a method for forming the electron transport layer, the same method as that for forming the hole injection layer may be used. Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method. When a sublimable compound material is used for the electron transport layer, a vacuum deposition method or a transfer method is usually used.
 溶液からの成膜に用いる溶媒としては、例えば、正孔注入層の成膜方法で例示した溶媒が挙げられる。 Examples of the solvent used for film formation from a solution include the solvents exemplified in the film formation method of the hole injection layer.
 電子輸送層に続いて、電子注入層等の有機層を塗布法にて形成する際に、先に塗布した層(下層)が後から塗布する層の溶液に含まれる溶媒に溶解する場合は、正孔注入層の成膜方法での例示と同様の方法で下層を溶媒不溶化することができる。 When an organic layer such as an electron injection layer is formed by a coating method following the electron transport layer, when the previously applied layer (lower layer) is dissolved in the solvent contained in the solution of the layer to be applied later, The lower layer can be insolubilized by the same method as exemplified in the film formation method of the hole injection layer.
 電子輸送層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~100nmである。 The thickness of the electron transport layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 μm, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 100 nm.
〔3.7.電子注入層〕
 本発明の電界発光素子において、電子注入層を構成する材料としては、本発明の高分子化合物のほか、公知の材料が使用できる。例えば、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレン誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、芳香環(ナフタレン、ペリレン等)テトラカルボン酸無水物、フタロシアニン誘導体、各種金属錯体(例えば、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールを配位子とする金属錯体、ベンゾチアゾールを配位子とする金属錯体等)、有機シラン誘導体が挙げられる。
[3.7. Electron injection layer
In the electroluminescent device of the present invention, as a material constituting the electron injection layer, a known material can be used in addition to the polymer compound of the present invention. For example, triazole derivative, oxazole derivative, oxadiazole derivative, imidazole derivative, fluorene derivative, benzoquinone and its derivative, naphthoquinone and its derivative, anthraquinone and its derivative, tetracyanoanthraquinodimethane and its derivative, fluorenone derivative, diphenyldicyanoethylene And derivatives thereof, diphenoquinone derivatives, anthraquinodimethane derivatives, anthrone derivatives, thiopyrandioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic rings (naphthalene, perylene, etc.) tetracarboxylic acid anhydrides, Phthalocyanine derivatives, various metal complexes (for example, metal complexes of 8-quinolinol derivatives, metal phthalocyanine, benzoxazole) Metal complexes, metal complexes of benzothiazole as a ligand) and organic silane derivatives.
 前記材料は単一の成分であっても、或いは複数の成分からなる組成物であってもよい。
 前記電子注入層は、前記材料の1種又は2種以上からなる単層構造であってもよいし、同一組成の複数層からなる又は異種組成の複数層からなる多層構造であってもよい。
 電子輸送層を構成する材料として例示する材料を、電子注入層を構成する材料として用いることができる。
The material may be a single component or a composition comprising a plurality of components.
The electron injection layer may have a single layer structure composed of one or more of the materials, or may have a multilayer structure composed of a plurality of layers having the same composition or a plurality of layers having different compositions.
The material illustrated as a material which comprises an electron carrying layer can be used as a material which comprises an electron injection layer.
 電子注入層の成膜方法としては、正孔注入層の成膜と同様の方法が挙げられる。溶液からの成膜方法としては、例えば、印刷法及び塗布法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、マイクログラビア印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法及び反転印刷法が挙げられる。電子注入層の材料として昇華性化合物材料を用いる場合には、通常は、真空蒸着法又は転写法が用いられる。 As a method for forming the electron injection layer, the same method as that for forming the hole injection layer may be used. Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method. When a sublimable compound material is used as the material for the electron injection layer, a vacuum deposition method or a transfer method is usually used.
 溶液からの成膜に用いる溶媒としては、例えば、正孔注入層の成膜方法で例示した溶媒が挙げられる。 Examples of the solvent used for film formation from a solution include the solvents exemplified in the film formation method of the hole injection layer.
 電子注入層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~100nmである。 The thickness of the electron injection layer varies depending on the material used, and may be selected so that the drive voltage and the light emission efficiency are appropriate. Usually, the thickness is 1 nm to 1 μm, preferably 2 nm to 500 nm. More preferably, it is 5 nm to 100 nm.
〔3.8.陰極〕
 陰極は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成の複数層からなる又は異種組成の複数層からなる多層構造であってもよい。
[3.8. cathode〕
The cathode may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or a plurality of layers having different compositions.
 陰極が単層構造である場合、陰極を構成する材料としては、例えば、金、銀、銅、アルミニウム、クロム、スズ、鉛、ニッケル、チタン等の低抵抗金属、これらの低抵抗金属から選ばれる一種以上を含む合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化モリブデン等の導電性金属酸化物、及び、これらの導電性金属酸化物と金属との混合物が挙げられる。 When the cathode has a single layer structure, the material constituting the cathode is selected from, for example, low resistance metals such as gold, silver, copper, aluminum, chromium, tin, lead, nickel, titanium, and these low resistance metals Alloys including one or more, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), conductive metal oxides such as molybdenum oxide, and these conductive metal oxides and metals And a mixture thereof.
 陰極が多層構造である場合、第1陰極層とカバー陰極層の2層構造、又は第1陰極層、第2陰極層及びカバー陰極層の3層構造であることが好ましい。ここで、第1陰極層は、陰極の中で最も発光層側にある層をいい、カバー陰極層は、2層構造の場合は第1陰極層を覆う層をいい、3層構造の場合は第1陰極層と第2陰極層を覆う層をいう。電子供給能の観点からは、第1陰極層を構成する材料の仕事関数が3.5eV以下であることが好ましい。第1陰極層を構成する材料としては、仕事関数が3.5eV以下の金属、該金属の酸化物、該金属のフッ化物、該金属の炭酸塩、又は該金属の複合酸化物が、好適に用いられる。カバー陰極層の材料としては、抵抗率が低く、水分への耐腐食性が高い材料(例えば、金属、金属酸化物)が好適に用いられる。 When the cathode has a multilayer structure, it is preferably a two-layer structure of a first cathode layer and a cover cathode layer, or a three-layer structure of a first cathode layer, a second cathode layer, and a cover cathode layer. Here, the first cathode layer refers to the layer closest to the light emitting layer in the cathode, and the cover cathode layer refers to the layer covering the first cathode layer in the case of the two-layer structure, and in the case of the three-layer structure. A layer covering the first cathode layer and the second cathode layer. From the viewpoint of the electron supply capability, the work function of the material constituting the first cathode layer is preferably 3.5 eV or less. The material constituting the first cathode layer is preferably a metal having a work function of 3.5 eV or less, an oxide of the metal, a fluoride of the metal, a carbonate of the metal, or a composite oxide of the metal. Used. As a material for the cover cathode layer, a material having low resistivity and high corrosion resistance to moisture (for example, metal, metal oxide) is preferably used.
 第1陰極層を構成する材料としては、例えば、アルカリ金属、アルカリ土類金属等の金属、前記金属を1種類以上含む合金、前記金属の酸化物、前記金属のハロゲン化物、前記金属の炭酸塩、前記金属の複合酸化物、及びこれらの混合物からなる群より選択される1つ以上の材料が挙げられる。アルカリ金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ金属の炭酸塩及びアルカリ金属の複合酸化物の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウム、酸化セシウム、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、モリブデン酸カリウム、チタン酸カリウム、タングステン酸カリウム及びモリブデン酸セシウムが挙げられる。アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、アルカリ土類金属の炭酸塩及びアルカリ土類金属の複合酸化物の例としては、マグネシウム、カルシウム、ストロンチウム、バリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸化バリウム、モリブデン酸バリウム、タングステン酸バリウムが挙げられる。アルカリ金属又はアルカリ土類金属を1種類以上含む合金の例としては、Li-Al合金、Mg-Ag合金、Al-Ba合金、Mg-Ba合金、Ba-Ag合金及びCa-Bi-Pb-Sn合金が挙げられる。第1陰極層を構成する材料として例示した材料と電子注入層を構成する材料として例示した材料との組成物も、第1陰極層を構成する材料として使用できる。第2陰極層を構成する材料としては、第1陰極層の材料と同様の材料が例示される。 Examples of the material constituting the first cathode layer include metals such as alkali metals and alkaline earth metals, alloys containing one or more of the metals, oxides of the metals, halides of the metals, and carbonates of the metals. , One or more materials selected from the group consisting of the composite oxides of metals and mixtures thereof. Examples of alkali metal, alkali metal oxides, alkali metal halides, alkali metal carbonates and alkali metal composite oxides include lithium, sodium, potassium, rubidium, cesium, lithium oxide, sodium oxide, potassium oxide , Rubidium oxide, cesium oxide, lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, cesium fluoride, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, potassium molybdate, potassium titanate, Examples include potassium tungstate and cesium molybdate. Examples of alkaline earth metals, alkaline earth metal oxides, alkaline earth metal halides, alkaline earth metal carbonates and alkaline earth metal composite oxides include magnesium, calcium, strontium, barium, Magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, barium molybdate, barium tungstate It is done. Examples of alloys containing at least one alkali metal or alkaline earth metal include Li—Al alloys, Mg—Ag alloys, Al—Ba alloys, Mg—Ba alloys, Ba—Ag alloys, and Ca—Bi—Pb—Sn. An alloy is mentioned. A composition of the material exemplified as the material constituting the first cathode layer and the material exemplified as the material constituting the electron injection layer can also be used as the material constituting the first cathode layer. Examples of the material constituting the second cathode layer include the same materials as the material of the first cathode layer.
 カバー陰極層を構成する材料の例としては、金、銀、銅、アルミニウム、クロム、スズ、鉛、ニッケル、チタン等の低抵抗金属、これらの低抵抗金属を1種類以上含む合金、金属ナノ粒子、金属ナノワイヤー、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化モリブデン等の導電性金属酸化物、これらの導電性金属酸化物と金属との混合物、導電性金属酸化物のナノ粒子、グラフェン、フラーレン、カーボンナノチューブ等の導電性炭素が挙げられる。 Examples of the material constituting the cover cathode layer include low resistance metals such as gold, silver, copper, aluminum, chromium, tin, lead, nickel, titanium, alloys containing one or more of these low resistance metals, and metal nanoparticles. , Metal nanowires, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), conductive metal oxides such as molybdenum oxide, and mixtures of these conductive metal oxides and metals , Conductive metal oxide nanoparticles, graphene, fullerene, carbon nanotubes and other conductive carbon.
 陰極が多層構造である場合の構成例としては、Mg/Al、Ca/Al、Ba/Al、NaF/Al、KF/Al、RbF/Al、CsF/Al、Na2CO3/Al、K2CO3/Al、Cs2CO3/Al等の、第1陰極層とカバー陰極層の2層構造、及び、LiF/Ca/Al、NaF/Ca/Al、KF/Ca/Al、RbF/Ca/Al、CsF/Ca/Al、Ba/Al/Ag、KF/Al/Ag、KF/Ca/Ag、K2CO3/Ca/Ag等の、第1陰極層、第2陰極層及びカバー陰極層の3層構造が挙げられる。ここで、符号「/」は各層が隣接していることを示す。なお、第2陰極層を構成する材料が第1陰極層を構成する材料に対して還元作用を有することが好ましい。ここで、材料間の還元作用の有無及び程度は、例えば、化合物間の結合解離エネルギー(ΔrH°)から見積もることができる。即ち、第2陰極層を構成する材料による、第1陰極層を構成する材料に対する還元反応において、結合解離エネルギーが正である組み合わせの場合、第2陰極層を構成する材料が第1陰極層を構成する材料に対して還元作用を有すると言える。結合解離エネルギーは、例えば「電気化学便覧第5版」(丸善、2000年発行)、「熱力学データベースMALT」(科学技術社、1992年発行)で参照できる。 Examples of the configuration when the cathode has a multilayer structure include Mg / Al, Ca / Al, Ba / Al, NaF / Al, KF / Al, RbF / Al, CsF / Al, Na 2 CO 3 / Al, K 2 Two-layer structure of the first cathode layer and the cover cathode layer, such as CO 3 / Al, Cs 2 CO 3 / Al, and LiF / Ca / Al, NaF / Ca / Al, KF / Ca / Al, RbF / Ca First cathode layer, second cathode layer and cover cathode such as / Al, CsF / Ca / Al, Ba / Al / Ag, KF / Al / Ag, KF / Ca / Ag, K 2 CO 3 / Ca / Ag A three-layer structure of layers may be mentioned. Here, the symbol “/” indicates that each layer is adjacent. Note that the material constituting the second cathode layer preferably has a reducing action on the material constituting the first cathode layer. Here, the presence / absence and degree of the reducing action between the materials can be estimated from, for example, the bond dissociation energy (ΔrH °) between the compounds. That is, in the case of a combination in which the bond dissociation energy is positive in the reduction reaction of the material constituting the second cathode layer to the material constituting the first cathode layer, the material constituting the second cathode layer changes the first cathode layer. It can be said that it has a reducing action on the constituent materials. The bond dissociation energy can be referred to, for example, in “Electrochemical Handbook 5th Edition” (Maruzen, published in 2000) and “Thermodynamic Database MALT” (Science and Technology, published in 1992).
 陰極の作製方法としては公知の方法が利用でき、真空蒸着法、スパッタリング法、イオンプレーティング法、溶液からの成膜による方法(高分子バインダーとの混合溶液を用いてもよい)が例示される。金属、金属酸化物、フッ化物、炭酸塩を用いる場合は真空蒸着法が多用され、高沸点の金属酸化物、高沸点の金属複合酸化物、酸化インジウムスズ(ITO)等の導電性金属酸化物を用いる場合は、スパッタリング法、イオンプレーティング法が多用される。金属、金属酸化物、フッ化物、炭酸塩、高沸点の金属酸化物、金属複合酸化物、導電性金属酸化物を2種以上併用して成膜する場合には、共蒸着法、スパッタリング法、イオンプレーティング法等が用いられる。金属ナノ粒子、金属ナノワイヤー、導電性金属酸化物ナノ粒子の場合には、溶液からの成膜による方法が多用される。特に、低分子有機化合物と金属又は金属酸化物、フッ化物、炭酸塩との組成物を成膜する場合には共蒸着法が適する。 As a method for producing the cathode, known methods can be used, and examples thereof include a vacuum deposition method, a sputtering method, an ion plating method, and a method of film formation from a solution (a mixed solution with a polymer binder may be used). . When using metals, metal oxides, fluorides, and carbonates, vacuum evaporation is often used, and high-boiling metal oxides, high-boiling metal composite oxides, conductive metal oxides such as indium tin oxide (ITO) In the case of using the sputtering method, a sputtering method and an ion plating method are frequently used. When forming a film using two or more kinds of metals, metal oxides, fluorides, carbonates, high boiling point metal oxides, metal composite oxides, and conductive metal oxides, a co-evaporation method, a sputtering method, An ion plating method or the like is used. In the case of metal nanoparticles, metal nanowires, and conductive metal oxide nanoparticles, a method of film formation from a solution is frequently used. In particular, a co-evaporation method is suitable for forming a film of a low molecular organic compound and a metal or metal oxide, fluoride, or carbonate.
 陰極の厚さは、用いる材料及び層構造によって最適値が異なり、駆動電圧、発光効率及び素子寿命が適度な値となるように選択すればよい。通常、第1陰極層の厚さは、0.5nm~20nmである。カバー陰極層の厚さは、通常、10nm~1μmである。例えば、第1陰極層にBa又はCaを、カバー陰極層にAlを、それぞれ用いる場合、Ba又はCaの厚さは2nm~10nmであることが好ましく、Alの厚さは10nm~500nmであることが好ましい。例えば、第1陰極層にNaF又はKFを、カバー陰極層にAlを、それぞれ用いる場合、NaF又はKFの厚さは1nm~8nm、Alの厚さは10nm~500nmであることが好ましい。 The optimum thickness of the cathode varies depending on the material and the layer structure used, and the driving voltage, light emission efficiency, and element lifetime may be selected to be appropriate values. Usually, the thickness of the first cathode layer is 0.5 nm to 20 nm. The thickness of the cover cathode layer is usually 10 nm to 1 μm. For example, when Ba or Ca is used for the first cathode layer and Al is used for the cover cathode layer, the thickness of Ba or Ca is preferably 2 nm to 10 nm, and the thickness of Al is 10 nm to 500 nm. Is preferred. For example, when NaF or KF is used for the first cathode layer and Al is used for the cover cathode layer, the thickness of NaF or KF is preferably 1 nm to 8 nm, and the thickness of Al is preferably 10 nm to 500 nm.
 本発明の電界発光素子において、陰極を光透過性電極として用いる場合には、カバー陰極層の可視光透過率が40%以上であることが好ましく、50%以上であることがより好ましい。この可視光透過率は、カバー陰極層材料として、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化モリブデン等の透明導電性金属酸化物を用いることで容易に達成される。或いは、金、銀、銅、アルミニウム、クロム、スズ、鉛等の低抵抗金属及びこれらを含む合金を用いたカバー陰極層の厚さを30nm以下にすることでも、容易に達成される。 In the electroluminescent device of the present invention, when the cathode is used as the light transmissive electrode, the visible light transmittance of the cover cathode layer is preferably 40% or more, and more preferably 50% or more. This visible light transmittance is easily achieved by using a transparent conductive metal oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), or molybdenum oxide as the cover cathode layer material. Alternatively, it can be easily achieved by setting the thickness of the cover cathode layer using a low resistance metal such as gold, silver, copper, aluminum, chromium, tin, lead and the like and an alloy containing these metals to 30 nm or less.
 陰極側からの光透過率を向上させることを目的として、陰極のカバー陰極層上に反射防止層を設けることもできる。反射防止層を構成する材料の屈折率は、1.8~3.0であることが好ましく、この屈折率を満たす材料としては、例えば、ZnS、ZnSe及びWO3が挙げられる。反射防止層の厚さは、用いる材料によって異なるが、通常10nm~150nmである。 For the purpose of improving the light transmittance from the cathode side, an antireflection layer can be provided on the cover cathode layer of the cathode. The material constituting the antireflection layer preferably has a refractive index of 1.8 to 3.0. Examples of the material satisfying this refractive index include ZnS, ZnSe, and WO 3 . The thickness of the antireflection layer varies depending on the material used, but is usually 10 nm to 150 nm.
〔3.9.絶縁層〕
 絶縁層は、電極との密着性向上、電極からの電荷注入改善、隣接層との混合防止等の機能を有する層である。絶縁層を構成する材料としては、例えば、金属フッ化物、金属酸化物及び有機絶縁材料(例えば、ポリメチルメタクリレート等)が挙げられる。絶縁層の厚さは、通常は5nm以下である。絶縁層(例えば、厚さ5nm以下の絶縁層)の設置位置としては、及び陰極に隣接する位置、及び陽極に隣接する位置が挙げられる。
[3.9. Insulating layer
The insulating layer is a layer having functions such as improving adhesion with the electrode, improving charge injection from the electrode, and preventing mixing with an adjacent layer. Examples of the material constituting the insulating layer include metal fluorides, metal oxides, and organic insulating materials (for example, polymethyl methacrylate). The thickness of the insulating layer is usually 5 nm or less. Examples of the installation position of the insulating layer (for example, an insulating layer having a thickness of 5 nm or less) include a position adjacent to the cathode and a position adjacent to the anode.
〔3.10.その他の構成要素〕
 電界発光素子は、封止部材を有することができる。封止部材の位置は、通常は、発光層等を挟んで基板と反対側である。電界発光素子は、カラーフィルター、蛍光変換フィルター等のフィルター、画素の駆動に必要な回路及び配線等の、ディスプレイ装置を構成するための任意の構成要素を有することができる。
[3.10. Other components
The electroluminescent element can have a sealing member. The position of the sealing member is usually on the side opposite to the substrate across the light emitting layer or the like. The electroluminescent element can have arbitrary components for configuring a display device, such as a filter such as a color filter and a fluorescence conversion filter, a circuit and wiring necessary for driving a pixel, and the like.
〔4.電界発光素子の製造方法〕
 本発明の電界発光素子は、例えば、電界発光素子を構成する各層を、基板上に順次積層することにより製造することができる。一例を挙げると、基板上に陽極を設け、その上に正孔注入層、正孔輸送層等の層を順次設け、その上に発光層を設け、その上に電子輸送層、電子注入層等の層を設け、更にその上に、陰極を積層することにより、電界発光素子を製造することができる。他の例を挙げると、基板上に陰極を設け、その上に電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層等の層を順次設け、更にその上に、陽極を積層することにより、電界発光素子を製造することができる。更に他の例を挙げると、陽極又は陽極上に各層を積層した陽極側基材と、陰極又は陰極上に各層を積層させた陰極側基材とを、対向させて接合することにより、電界発光素子を製造することができる。
[4. Method for manufacturing electroluminescent element]
The electroluminescent element of the present invention can be produced, for example, by sequentially laminating each layer constituting the electroluminescent element on a substrate. For example, an anode is provided on a substrate, a layer such as a hole injection layer and a hole transport layer is sequentially provided thereon, a light emitting layer is provided thereon, and an electron transport layer, an electron injection layer, and the like are provided thereon. The electroluminescent element can be manufactured by providing the above layer and further laminating the cathode thereon. As another example, a cathode is provided on a substrate, and an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, etc. are sequentially provided thereon, and further, an anode is provided thereon. By laminating, an electroluminescent element can be manufactured. To give another example, electroluminescence is obtained by joining an anode or a substrate on the anode side laminated with each layer on the anode, and a cathode or substrate on the cathode side laminated with each layer on the cathode. An element can be manufactured.
〔5.電界発光素子の応用〕
 本発明の電界発光素子を用いて、ディスプレイ装置を製造することができる。該ディスプレイ装置は、電界発光素子を1画素単位として備える。画素単位の配列の態様は、テレビ等のディスプレイ装置で通常採られる配列とすることができ、多数の画素が共通の基板上に配列された態様とすることができる。本発明のディスプレイ装置において、基板上に配列される画素は、バンクで規定される画素領域内に形成することができる。
[5. Application of electroluminescent device)
A display device can be manufactured using the electroluminescent element of the present invention. The display device includes an electroluminescent element as a pixel unit. The arrangement mode of the pixel unit can be an arrangement normally employed in a display device such as a television, and can be an aspect in which a large number of pixels are arranged on a common substrate. In the display device of the present invention, the pixels arranged on the substrate can be formed in a pixel region defined by the bank.
 本発明の電界発光素子は平面状の照明装置又は曲面状の照明装置に用いることができる。 The electroluminescent element of the present invention can be used for a planar illumination device or a curved illumination device.
 <光電変換素子>
 本発明の光電変換素子について以下説明する。本発明の光電変換素子は、本発明の高分子化合物を含む層を有する光電変換素子である。
<Photoelectric conversion element>
The photoelectric conversion element of the present invention will be described below. The photoelectric conversion element of the present invention is a photoelectric conversion element having a layer containing the polymer compound of the present invention.
 本発明の光電変換素子は、例えば、陰極、陽極、前記陰極と前記陽極との間に位置する電荷分離層、及び前記電荷分離層と前記陰極又は前記陽極との間に位置する、本発明の高分子化合物を含む層を有する。本発明の光電変換素子は、任意の構成要素として基板を有することができ、かかる基板の面上に、前記陰極、陽極、電荷分離層、本発明の高分子化合物を含む層、及び任意の構成要素を設けた構成とすることができる。 The photoelectric conversion element of the present invention includes, for example, a cathode, an anode, a charge separation layer located between the cathode and the anode, and a charge separation layer located between the charge separation layer and the cathode or the anode. It has a layer containing a polymer compound. The photoelectric conversion element of the present invention can have a substrate as an optional component, and on the surface of the substrate, the cathode, the anode, the charge separation layer, the layer containing the polymer compound of the present invention, and an optional configuration It can be set as the structure which provided the element.
 本発明の光電変換素子の層構成としては、以下の各態様が挙げられる:
(1)基板上に陽極が設けられ、その上層に電荷分離層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陰極が積層される態様;
(2)基板上に陽極が設けられ、その上層に本発明の高分子化合物を含む層が積層され、電荷分離層が積層され、更にその上層に陰極が積層される態様;
(3)基板上に陽極が設けられ、その上層に本発明の高分子化合物を含む層が積層され、電荷分離層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陰極が積層される態様;
(4)陰極を基板上に設け、その上層に本発明の高分子化合物を含む層が積層され、その上層に電荷分離層が積層され、更にその上層に陽極が積層される態様;
(5)陰極を基板上に設け、その上層に電荷分離層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陽極が積層される態様;
(6)陰極を基板上に設け、その上層に本発明の高分子化合物を含む層が積層され、その上層に電荷分離層が積層され、その上層に本発明の高分子化合物を含む層が積層され、更にその上層に陽極が積層される態様;
Examples of the layer configuration of the photoelectric conversion element of the present invention include the following embodiments:
(1) A mode in which an anode is provided on a substrate, a charge separation layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and a cathode is laminated thereon.
(2) A mode in which an anode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated, and a cathode is laminated further thereon.
(3) An anode is provided on the substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated, and a layer containing the polymer compound of the present invention is laminated thereon. A mode in which a cathode is further laminated on the upper layer;
(4) A mode in which a cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated thereon, and an anode is further laminated thereon;
(5) A mode in which a cathode is provided on a substrate, a charge separation layer is laminated thereon, a layer containing the polymer compound of the present invention is laminated thereon, and an anode is laminated thereon.
(6) A cathode is provided on a substrate, a layer containing the polymer compound of the present invention is laminated thereon, a charge separation layer is laminated thereon, and a layer containing the polymer compound of the present invention is laminated thereon. And an anode is laminated on the upper layer;
 前記態様(1)~(6)のそれぞれにおいて、更に、本発明の高分子化合物を含む層及び電荷分離層以外の層を設けてもよい。なお、光電変換素子の構成については、下記にて別途詳述する。 In each of the above aspects (1) to (6), a layer other than the layer containing the polymer compound of the present invention and the charge separation layer may be further provided. The configuration of the photoelectric conversion element will be separately described in detail below.
〔1.本発明の高分子化合物を含む層(本発明の有機薄膜)〕
 本発明の高分子化合物を含む層において、前記高分子化合物は公知の材料と混合されていてもよい。公知の材料としては、例えば、電子供与性化合物、電子受容性化合物、金属ナノ粒子及び金属酸化物ナノ粒子が挙げられる。
[1. Layer containing the polymer compound of the present invention (organic thin film of the present invention)]
In the layer containing the polymer compound of the present invention, the polymer compound may be mixed with a known material. Examples of known materials include electron donating compounds, electron accepting compounds, metal nanoparticles, and metal oxide nanoparticles.
 本発明の高分子化合物を含む層を形成する方法としては、例えば、本発明の高分子化合物を含有する溶液を用いて成膜する方法が挙げられる。 Examples of the method for forming the layer containing the polymer compound of the present invention include a method of forming a film using a solution containing the polymer compound of the present invention.
 溶液からの成膜に用いる溶媒としては、例えば、水、アルコール類、エーテル類、エステル類、カルボン酸類、ハロゲン化アルキル類、複素環芳香族化合物類、チオール類、スルフィド類、チオケトン類、スルホキシド類、ニトロ化合物類及びニトリル化合物類から選ばれる一種の溶媒、及びこれらから選ばれる二種以上の混合溶媒が挙げられる。溶媒の溶解パラメーターは9.3以上であることが好ましい。溶解パラメーターが9.3以上である溶媒(各括弧内の値は、各溶媒の溶解パラメーターの値を表す)の例及び溶解パラメーターの値は、前述したとおりである。 Examples of the solvent used for film formation from a solution include water, alcohols, ethers, esters, carboxylic acids, alkyl halides, heterocyclic aromatic compounds, thiols, sulfides, thioketones, and sulfoxides. , One kind of solvent selected from nitro compounds and nitrile compounds, and two or more kinds of mixed solvents selected from these. It is preferable that the solubility parameter of a solvent is 9.3 or more. Examples of the solvent having a solubility parameter of 9.3 or more (the values in parentheses represent the solubility parameter values of the respective solvents) and the solubility parameter values are as described above.
 2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒の溶解パラメーター(δm)は、δm=δ1×φ1+δ2×φ2により求めることができる(δ1は溶媒1の溶解パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解パラメーター、φ2は溶媒2の体積分率である。)。 A solubility parameter (δ m ) of a mixed solvent obtained by mixing two kinds of solvents (solvent 1 and solvent 2) can be obtained by δ m = δ 1 × φ 1 + δ 2 × φ 21 Is the solubility parameter of solvent 1, φ 1 is the volume fraction of solvent 1, δ 2 is the solubility parameter of solvent 2, and φ 2 is the volume fraction of solvent 2.
 溶液からの成膜方法としては、例えば、印刷法及び塗布法を挙げることができ、具体的には例えば、スピンコート法、キャスティング法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、キャピラリーコート法、ノズルコート法、マイクログラビア印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法及び反転印刷法が挙げられる。 Examples of the film forming method from a solution include a printing method and a coating method, and specifically, for example, a spin coating method, a casting method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating. Method, slit coating method, cap coating method, spray coating method, capillary coating method, nozzle coating method, micro gravure printing method, gravure printing method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method And a reverse printing method.
 本発明の高分子化合物を含む層の厚さは、用いる高分子化合物によって最適値が異なり、光電変換効率が適度な値となるように選択すればよく、1nm~1μmが好ましく、2nm~500nmがより好ましく、2nm~200nmが更に好ましい。 The thickness of the layer containing the polymer compound of the present invention may be selected so that the optimum value varies depending on the polymer compound used and the photoelectric conversion efficiency is an appropriate value, preferably 1 nm to 1 μm, and preferably 2 nm to 500 nm. More preferred is 2 nm to 200 nm.
〔2.光電変換素子の層構成〕
 本発明の光電変換素子は、陰極、陽極、陰極と陽極との間に位置する電荷分離層、及び、本発明の高分子化合物を含む層を有する。本発明の高分子化合物を含む層の位置は、電荷分離層と陰極との間、及び/又は、電荷分離層と陰極との間であることが好ましく、陰極と電荷分離層との間であることがより好ましい。
[2. Layer structure of photoelectric conversion element]
The photoelectric conversion element of the present invention has a cathode, an anode, a charge separation layer located between the cathode and the anode, and a layer containing the polymer compound of the present invention. The position of the layer containing the polymer compound of the present invention is preferably between the charge separation layer and the cathode and / or between the charge separation layer and the cathode, and between the cathode and the charge separation layer. It is more preferable.
〔3.光電変換素子を構成する各層〕
〔3.1.電荷分離層〕
 本発明の光電変換素子の電荷分離層には、電子供与性化合物と電子受容性化合物とが含まれていることが好ましい。
[3. Each layer constituting the photoelectric conversion element]
[3.1. (Charge separation layer)
The charge separation layer of the photoelectric conversion element of the present invention preferably contains an electron donating compound and an electron accepting compound.
 前記電荷分離層は、電子供与性化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。前記電荷分離層は、電子受容性化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。なお、前記電子供与性化合物及び前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。 The charge separation layer may contain an electron donating compound alone or in combination of two or more. The charge separation layer may contain an electron accepting compound alone or in combination of two or more. The electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
 前記電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体及び共役高分子化合物が挙げられる。前記共役高分子化合物としては、例えば、オリゴチオフェン及びその誘導体、ポリフルオレン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、並びに、ポリチエニレンビニレン及びその誘導体が挙げられる。 Examples of the electron donating compound include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and conjugated polymer compounds. Examples of the conjugated polymer compound include oligothiophene and derivatives thereof, polyfluorene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline, and Examples thereof include polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
 前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタン等の金属酸化物、並びに、カーボンナノチューブが挙げられる。電子受容性化合物としては、好ましくは酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、より好ましくはフラーレン又はフラーレン誘導体である。 Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives. , diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60, bathocuproine Phenanthrene derivatives such as titanium oxide, metal oxides such as titanium oxide, and carbon nanotubes. The electron-accepting compound is preferably titanium oxide, carbon nanotube, fullerene, or fullerene derivative, and more preferably fullerene or fullerene derivative.
 電荷分離層の厚さは、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、更に好ましくは20nm~200nmである。 The thickness of the charge separation layer is usually 1 nm to 100 μm, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and still more preferably 20 nm to 200 nm.
 前記電荷分離層の作製方法は、如何なる方法でもよい。例えば、溶液からの成膜による方法及び真空蒸着法が挙げられる。 Any method may be used for producing the charge separation layer. For example, a method by film formation from a solution and a vacuum deposition method can be mentioned.
 溶液からの成膜方法としては、例えば、スピンコート法、キャスティング法、マイクログラビア印刷法、グラビア印刷法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スリットコート法、キャップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。 Examples of the film forming method from a solution include spin coating, casting, micro gravure printing, gravure printing, bar coating, roll coating, wire bar coating, dip coating, slit coating, and cap coating. Coating methods such as spin coating, flexographic printing, spray coating, screen printing, flexographic printing, offset printing, inkjet printing, dispenser printing, nozzle coating, capillary coating, etc. The gravure printing method, the ink jet printing method, and the dispenser printing method are preferable.
〔3.2.基板〕
 本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成する際及び有機物の層を形成する際に変化しない基板であればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム及びシリコンが挙げられる。不透明な基板を用いる場合には、反対の電極(即ち、基板から遠いほうの電極)が透明又は半透明であることが好ましい。
[3.2. substrate〕
The photoelectric conversion element of the present invention is usually formed on a substrate. This substrate may be any substrate that does not change when the electrode is formed and when the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. When an opaque substrate is used, the opposite electrode (that is, the electrode farther from the substrate) is preferably transparent or translucent.
〔3.3.電極〕
 前記の透明又は半透明の電極を構成する材料としては、例えば、導電性の金属酸化物膜、及び半透明の金属薄膜が挙げられる。具体的には、例えば、酸化インジウム、酸化亜鉛、酸化スズ、それらの複合体(例えば、インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等)、NESA、金、白金、銀及び銅が挙げられる。これらのうち、ITO、インジウム・亜鉛・オキサイド及び酸化スズが好ましい。
[3.3. electrode〕
Examples of the material constituting the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, for example, indium oxide, zinc oxide, tin oxide, a composite thereof (for example, indium / tin / oxide (ITO), indium / zinc / oxide, etc.), NESA, gold, platinum, silver, and copper are included. Can be mentioned. Of these, ITO, indium / zinc / oxide, and tin oxide are preferable.
 電極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。 Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
 電極を構成する材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の、有機の透明導電膜を用いてもよい。電極を構成する材料としては、金属、導電性高分子等も用いることができる。一対の電極のうち一方の電極は仕事関数の小さい材料であることが好ましい。電極を構成する材料としては例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属;それらの金属からなる群から選ばれる2つ以上の金属の合金;それらの金属から選ばれる1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1つ以上との合金;グラファイト;グラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金及びカルシウム-アルミニウム合金が挙げられる。 As the material constituting the electrode, an organic transparent conductive film such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used. As a material constituting the electrode, a metal, a conductive polymer, or the like can be used. One of the pair of electrodes is preferably a material having a low work function. Examples of the material constituting the electrode include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. An alloy of two or more metals selected from the group consisting of those metals; one or more metals selected from those metals; and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and Alloys with one or more selected from the group consisting of tin; graphite; graphite intercalation compounds. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
〔3.4.中間層〕
 本発明の光電変換素子の光電変換効率を向上させるための手段として、本発明で用いられる高分子化合物を含む層及び電荷分離層以外に、中間層を光電変換素子に含めてもよい。中間層を構成する材料としては、例えば、アルカリ金属のハロゲン化物(例えば、フッ化リチウム)、アルカリ金属の酸化物、アルカリ土類金属のハロゲン化物及びアルカリ土類金属の酸化物が挙げられる。中間層を構成する材料としては、例えば、酸化チタン等無機半導体の微粒子、及びPEDOT(ポリ-3,4-エチレンジオキシチオフェン)も挙げられる。
[3.4. (Middle layer)
As a means for improving the photoelectric conversion efficiency of the photoelectric conversion element of the present invention, an intermediate layer may be included in the photoelectric conversion element in addition to the layer containing the polymer compound and the charge separation layer used in the present invention. Examples of the material constituting the intermediate layer include alkali metal halides (for example, lithium fluoride), alkali metal oxides, alkaline earth metal halides, and alkaline earth metal oxides. Examples of the material constituting the intermediate layer include fine particles of inorganic semiconductor such as titanium oxide and PEDOT (poly-3,4-ethylenedioxythiophene).
〔4.光電変換素子の用途〕
 本発明の光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
[4. Use of photoelectric conversion element)
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by irradiating light such as sunlight from a transparent or translucent electrode to generate a photovoltaic force between the electrodes. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
 電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。
有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
By irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes or in a state where no voltage is applied, a photocurrent flows and the organic light sensor can be operated.
It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
〔5.太陽電池モジュール〕
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には、金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂、保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとる。一方、太陽電池モジュールの支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造としてもよい。太陽電池モジュールの構造として、具体的には、例えば、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、及びアモルファスシリコン太陽電池等で用いられる基板一体型モジュール構造が知られている。本発明の有機薄膜太陽電池は、使用目的、使用場所及び環境に応じて、適宜これらのモジュール構造から選択される構造をとり得る。
[5. (Solar cell module)
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. In general, a solar cell module has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin, protective glass, or the like, and light is taken in from the opposite side of the support substrate. On the other hand, a transparent material such as tempered glass may be used for the support substrate of the solar cell module, and a cell may be formed thereon to take in light from the transparent support substrate side. Specifically, as a structure of the solar cell module, for example, a module structure called a super straight type, a substrate type, or a potting type, and a substrate integrated module structure used in an amorphous silicon solar cell or the like are known. The organic thin film solar cell of the present invention can take a structure appropriately selected from these module structures depending on the purpose of use, the place of use and the environment.
 代表的なスーパーストレートタイプ及びサブストレートタイプのモジュール構造では、片側又は両側が透明で反射防止処理を施された支持基板の間に、一定間隔にセルが配置されている。隣り合うセル同士は、金属リード又はフレキシブル配線等によって接続されている。外縁部には、集電電極が配置されており、発生した電力を外部に取り出される構造となっている。セルの保護及び/又は集電効率向上のため、目的に応じ、エチレンビニルアセテート(EVA)等様々な種類のプラスチック材料を、フィルム又は充填樹脂の形で、基板とセルの間に位置させてもよい。外部からの衝撃が少ない場所等、表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成すること、又は上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板を省略することが可能である。内部の密封のため及びモジュールの剛性を確保するため、支持基板の周囲を金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。セルそのもの、支持基板、充填材料及び封止材料に、可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。 In typical super straight type and substrate type module structures, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and have been subjected to antireflection treatment. Adjacent cells are connected by metal leads or flexible wiring. A collecting electrode is disposed on the outer edge, and the generated electric power is taken out to the outside. Depending on the purpose, various types of plastic materials such as ethylene vinyl acetate (EVA) may be placed between the substrate and the cell in the form of a film or a filled resin in order to protect the cell and / or improve the current collection efficiency. Good. When used in places where it is not necessary to cover the surface with a hard material, such as a place where there is little impact from the outside, the protective function is achieved by configuring the surface protective layer with a transparent plastic film or curing the above filling resin. It is possible to dispense with the support substrate on one side. In order to seal the inside and to secure the rigidity of the module, the periphery of the support substrate is fixed in a sandwich shape with a metal frame, and the support substrate and the frame are hermetically sealed with a sealing material. If a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
 ポリマーフィルム等のフレキシブル支持体が用いられている太陽電池の場合、例えば、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより、電池本体を作製できる。
 フレキシブル支持体を用いる太陽電池は、Solar Energy Materials and Solar Cells,48,p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。フレキシブル支持体が用いられている太陽電池は、曲面ガラス等に接着固定して使用することもできる。
In the case of a solar cell in which a flexible support such as a polymer film is used, for example, cells are sequentially formed while feeding a roll-shaped support, cut into a desired size, and then the peripheral portion is flexible and moisture-proof. A battery body can be produced by sealing with a material.
A solar cell using a flexible support may have a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391. A solar cell using a flexible support can be used by being bonded and fixed to curved glass or the like.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 高分子化合物の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製:HLC-8220GPC)を用いて、ポリスチレン換算の重量平均分子量及び数平均分子量として求めた。測定する試料は、約0.5重量%の濃度になるようにTHFに溶解させ、GPCに50μL注入した。GPCの移動相としてはTHFを用い、0.5mL/分の流速で流した。 The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer compound were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC). Calculated as molecular weight. The sample to be measured was dissolved in THF to a concentration of about 0.5% by weight, and 50 μL was injected into GPC. As the mobile phase of GPC, THF was used and allowed to flow at a flow rate of 0.5 mL / min.
 化合物及び高分子化合物の構造分析は、Varian社製300MHzNMRスペクトロメータ-を用いる1H-NMR解析によって行った。測定は、20mg/mLの濃度になるように試料を可溶な重溶媒(溶媒分子中の水素原子が重水素原子で置換された溶媒)に溶解させて行った。 The structural analysis of the compound and the polymer compound was performed by 1 H-NMR analysis using a 300 MHz NMR spectrometer manufactured by Varian. The measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom) so as to have a concentration of 20 mg / mL.
 高分子化合物のHOMOの軌道エネルギーは、該本発明の高分子化合物のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求めた。具体的には、石英基板上に高分子化合物を膜厚100nm程度に成膜した試料を用いた。 The HOMO orbital energy of the polymer compound was determined by measuring the ionization potential of the polymer compound of the present invention and using the obtained ionization potential as the orbital energy. Specifically, a sample in which a polymer compound was formed on a quartz substrate to a thickness of about 100 nm was used.
 高分子化合物のLUMOの軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求めた。イオン化ポテンシャルの測定には光電子分光装置(理研計器株式会社製:AC-2)を用いた。HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計(Varian社製:Cary5E)を用いて本発明の高分子化合物の吸収スペクトルを測定し、その吸収末端より求めた。具体的には、石英基板上に高分子化合物を膜厚100nm程度に成膜した試料を用いた。 The orbital energy of LUMO of the polymer compound was determined by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. For measurement of the ionization potential, a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-2) was used. The energy difference between HOMO and LUMO was obtained from the absorption terminal by measuring the absorption spectrum of the polymer compound of the present invention using an ultraviolet / visible / near infrared spectrophotometer (Varian: Cary 5E). Specifically, a sample in which a polymer compound was formed on a quartz substrate to a thickness of about 100 nm was used.
[製造例1]
2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)の合成
 2,7-ジブロモ-9-フルオレノン(52.5g)、サリチル酸エチル(154.8g)及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、該フラスコ内の気体を窒素ガスで置換した。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌したところ固体が生じた。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2-[2-(2-メトキシエトキシ)エトキシ]エチルp-トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び、1,4,7,10,13,16-ヘキサオキサシクロオクタデカン(「18-クラウン-6」と呼ばれることもある。)(7.2g)をN、N-ジメチルホルムアミド(670mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。その後、反応液にクロロホルムを加えて分液抽出を行い、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)(51.2g)を得た。
[Production Example 1]
Synthesis of 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (compound A) 2,7-dibromo -9-fluorenone (52.5 g), ethyl salicylate (154.8 g) and mercaptoacetic acid (1.4 g) were placed in a 300 mL flask, and the gas in the flask was replaced with nitrogen gas. Thereto was added methanesulfonic acid (630 mL) and the mixture was stirred at 75 ° C. overnight. The mixture was allowed to cool, added to ice water and stirred for 1 hour to produce a solid. The resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered. The resulting solid (62.7 g), 2- [2- (2-methoxyethoxy) ethoxy] ethyl p-toluenesulfonate (86.3 g), potassium carbonate (62.6 g), and 1,4,7, 10,13,16-hexaoxacyclooctadecane (sometimes referred to as “18-crown-6”) (7.2 g) was dissolved in N, N-dimethylformamide (670 mL) and the solution was transferred to a flask. Stir at 105 ° C. overnight. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour. Thereafter, chloroform is added to the reaction solution, liquid separation extraction is performed, and the solution is concentrated, whereby 2,7-dibromo-9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2- Methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound A) (51.2 g) was obtained.
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
[製造例2]
2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)の合成
 フラスコ内の気体を窒素ガス雰囲気下とした後、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、及び、ジオキサン(400mL)を混合し、110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。反応混合物をメタノールで3回洗浄した。沈殿物をトルエンに溶解させ、溶液に活性炭を加えて攪拌した。その後、ろ過し、ろ液を減圧濃縮することで、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)(11.7g)を得た。
[Production Example 2]
2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis [3-ethoxycarbonyl-4- [2- [2- ( Synthesis of 2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound B) After the gas in the flask was placed in a nitrogen gas atmosphere, Compound A (15 g), bis (pinacolato) diboron (8.9 g), [ 1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane complex (0.8 g), 1,1′-bis (diphenylphosphino) ferrocene (0.5 g), potassium acetate (9.4 g) ) And dioxane (400 mL), heated to 110 ° C., and heated to reflux for 10 hours. The reaction liquid was filtered after standing_to_cool and the filtrate was concentrate | evaporated under reduced pressure. The reaction mixture was washed 3 times with methanol. The precipitate was dissolved in toluene, and activated carbon was added to the solution and stirred. Thereafter, the mixture was filtered and the filtrate was concentrated under reduced pressure to give 2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,9-bis [ 3-Ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene (Compound B) (11.7 g) was obtained.
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
[製造例3]
鈴木カップリングによるポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](高分子化合物A)の合成
 フラスコ内の気体を不活性ガス雰囲気下とした後、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(シグマアルドリッチ社製、商品名Aliquat336(登録商標))(0.20g)、及び、トルエン(10mL)を混合し、105℃に加熱した。反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4-tert-ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチアカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、THFに溶解させた。得られた溶液をメタノール、3重量%酢酸水溶液の混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、THFに溶解させた。得られた溶液をメタノールに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をTHFに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。
カラムから回収したTHF溶液を濃縮した後、メタノールに滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](高分子化合物A)の収量は520mgであった。
[Production Example 3]
Synthesis of poly [9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (polymer compound A) by Suzuki coupling In flask Into an inert gas atmosphere, Compound A (0.55 g), Compound B (0.61 g), Triphenylphosphine palladium (0.01 g), Methyltrioctylammonium chloride (manufactured by Sigma-Aldrich, product) Name Aliquat 336®) (0.20 g) and toluene (10 mL) were mixed and heated to 105 ° C. To the reaction solution, 2M aqueous sodium carbonate solution (6 mL) was added dropwise and refluxed for 8 hours. 4-tert-butylphenylboronic acid (0.01 g) was added to the reaction solution, and the mixture was refluxed for 6 hours. Then, a sodium diethyldithiacarbamate aqueous solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 2 hours. The mixed solution was dropped into methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in THF. The obtained solution was dropped into a mixed solvent of methanol and 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in THF. The obtained solution was added dropwise to methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid. The obtained solid was dissolved in THF and purified by passing through an alumina column and a silica gel column.
The THF solution collected from the column was concentrated and then added dropwise to methanol, and the precipitated solid was filtered and dried. The yield of the obtained poly [9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (polymer compound A) was 520 mg. there were.
 高分子化合物Aのポリスチレン換算の数平均分子量は5.2×104であった。高分子化合物Aは、式(A)で表される構造単位からなる。 The number average molecular weight in terms of polystyrene of the polymer compound A was 5.2 × 10 4 . The high molecular compound A consists of a structural unit represented by the formula (A).
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
[製造例4]
山本重合によるポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](高分子化合物A)の合成
 フラスコ内の気体を不活性ガス雰囲気下とした後、化合物A(1.31g)、2,2’-ビピリジン(0.48g)、ビス(1,5-シクロオクタジエン)ニッケル(0.84g)、及び、THF(150mL)を混合し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、水(200mL)、15重量%アンモニア水(50mL)の混合液に滴下したところ沈殿物が生じた。生じた沈殿物をろ過により収集し、減圧乾燥をした後、THFに再溶解させた。溶液をセライトでろ過した後、ろ液を減圧濃縮した。濃縮した溶液にメタノールを滴下し、生じた沈殿物をろ過により収集した後、減圧乾燥することで、高分子化合物A(970mg)を得た。高分子化合物Aのポリスチレン換算の数平均分子量は1.5×105であった。
[Production Example 4]
Synthesis of poly [9,9-bis [3-ethoxycarbonyl-4- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] phenyl] -fluorene] (polymer compound A) by Yamamoto polymerization After bringing the gas under an inert gas atmosphere, Compound A (1.31 g), 2,2′-bipyridine (0.48 g), bis (1,5-cyclooctadiene) nickel (0.84 g), and THF (150 mL) was mixed and stirred at 55 ° C. for 5 hours. After the mixture was cooled to room temperature, the reaction solution was added dropwise to a mixture of methanol (200 mL), water (200 mL), and 15% by weight aqueous ammonia (50 mL) to form a precipitate. The resulting precipitate was collected by filtration, dried under reduced pressure, and redissolved in THF. The solution was filtered through celite, and the filtrate was concentrated under reduced pressure. Methanol was added dropwise to the concentrated solution, and the resulting precipitate was collected by filtration, and then dried under reduced pressure to obtain polymer compound A (970 mg). The number average molecular weight in terms of polystyrene of the polymer compound A was 1.5 × 10 5 .
[実施例1]
高分子化合物Aのセシウム塩(共役高分子化合物1)の合成
 製造例3で合成した高分子化合物A(200mg)を100mLフラスコに入れ、該フラスコ内の気体を窒素ガスで置換した。THF(20mL)及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム・1水和物(120mg)水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。その後、混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。得られた高分子化合物Aのセシウム塩を「共役高分子化合物1」と呼ぶ。共役高分子化合物1は、式(B)で表される構造単位からなる。
[Example 1]
Synthesis of cesium salt of polymer compound A (conjugated polymer compound 1) Polymer compound A (200 mg) synthesized in Production Example 3 was placed in a 100 mL flask, and the gas in the flask was replaced with nitrogen gas. THF (20 mL) and ethanol (20 mL) were added and the mixture was warmed to 55 ° C. An aqueous solution dissolved in cesium hydroxide monohydrate (120 mg) water (2 mL) was added thereto, and the mixture was stirred at 55 ° C. for 6 hours. Then, after cooling a mixture to room temperature, the reaction solvent was depressurizingly distilled. The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (150 mg). The obtained cesium salt of polymer compound A is referred to as “conjugated polymer compound 1”. The conjugated polymer compound 1 is composed of a structural unit represented by the formula (B).
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 NMRスペクトルにより、共役高分子化合物1においては、高分子化合物A内のエチルエステル部位のエチル基由来のシグナルが完全に消失し、カルボキシル基由来のシグナルが生じていることを確認した。1H NMRの積分値から見積もられた共役高分子化合物1が有するH+の割合は、カルボキシル基のセシウム塩とカルボキシル基との合計に対して、26%であった。共役高分子化合物1のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。 From the NMR spectrum, in the conjugated polymer compound 1, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer compound A completely disappeared and the signal derived from the carboxyl group was generated. The ratio of H + of the conjugated polymer compound 1 estimated from the integral value of 1 H NMR was 26% with respect to the total of the cesium salt of the carboxyl group and the carboxyl group. The conjugated polymer compound 1 had an orbital energy of HOMO of −5.5 eV and an orbital energy of LUMO of −2.7 eV.
[参考例1]
ポリウレタンナトリウム塩(非共役高分子化合物1)の合成
 100mLフラスコ内の気体を不活性ガス雰囲気下とした後、1,3-ブタンジオール(1.0g)、ジブチルスズジラウレート(7.5mg)、及び、ジメチルオールプロピオン酸(0.5g)を100mLフラスコに入れ、N、N-ジメチルホルムアミド(50mL)を添加し、90℃で30分間撹拌した。イソホロンジイソシアネート(3.3g)を加え、90℃で3時間加熱した。この段階で得られた高分子化合物を含む溶液について、前記方法に従ってGPC測定を行い、高分子化合物の分子量を測定したところ、ポリスチレン換算の数平均分子量は1.9×103であり、ポリスチレン換算の重量平均分子量は3.0×103であった。その後、反応液を60℃まで温度を下げ、1M水酸化ナトリウム水溶液を加えて中和した。60℃で1時間撹拌した後、反応液から溶媒を留去することで白色の固体(2.0g)を得た。得られたポリウレタンナトリウム塩を「非共役高分子化合物1」と呼ぶ。なお、非共役高分子化合物1は、式(V)で表される構造単位からなる。
[Reference Example 1]
Synthesis of polyurethane sodium salt (non-conjugated polymer compound 1) After the gas in the 100 mL flask was put under an inert gas atmosphere, 1,3-butanediol (1.0 g), dibutyltin dilaurate (7.5 mg), and Dimethylolpropionic acid (0.5 g) was placed in a 100 mL flask, N, N-dimethylformamide (50 mL) was added, and the mixture was stirred at 90 ° C. for 30 min. Isophorone diisocyanate (3.3 g) was added and heated at 90 ° C. for 3 hours. The solution containing the polymer compound obtained at this stage was subjected to GPC measurement according to the method described above, and the molecular weight of the polymer compound was measured. The number average molecular weight in terms of polystyrene was 1.9 × 10 3 , which was in terms of polystyrene. The weight average molecular weight was 3.0 × 10 3 . Thereafter, the temperature of the reaction solution was lowered to 60 ° C. and neutralized by adding a 1M aqueous sodium hydroxide solution. After stirring at 60 ° C. for 1 hour, the solvent was distilled off from the reaction solution to obtain a white solid (2.0 g). The obtained polyurethane sodium salt is referred to as “non-conjugated polymer compound 1”. The non-conjugated polymer compound 1 is composed of a structural unit represented by the formula (V).
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
[実施例2]
電界発光素子1の作製
 ガラス基板表面に成膜パターニングされたITO陽極(厚さ:45nm)上に、正孔注入材料溶液を塗布し、スピンコート法によって厚さが60nmになるように正孔注入層を成膜した。正孔注入層が成膜されたガラス基板を窒素雰囲気下、200℃で10分加熱して正孔注入層を不溶化させ、基板を室温まで自然冷却させ、正孔注入層が形成された基板を得た。
[Example 2]
Production of electroluminescent element 1 A hole injecting material solution is applied onto an ITO anode (thickness: 45 nm) patterned on the surface of a glass substrate, and holes are injected by spin coating so that the thickness is 60 nm. Layers were deposited. The glass substrate on which the hole injection layer was formed was heated in a nitrogen atmosphere at 200 ° C. for 10 minutes to insolubilize the hole injection layer, the substrate was naturally cooled to room temperature, and the substrate on which the hole injection layer was formed was Obtained.
 ここで正孔注入材料溶液には、Plextronics社から入手した、ポリチオフェン・スルホン酸系の正孔注入材料であるAQ-1200を用いた。 Here, AQ-1200, a polythiophene / sulfonic acid hole injection material obtained from Plextronics, was used as the hole injection material solution.
 次に、正孔輸送性高分子材料とキシレンとを混合し、0.7重量%の正孔輸送性高分子材料を含む正孔輸送層形成用組成物を得た。 Next, a hole transporting polymer material and xylene were mixed to obtain a composition for forming a hole transporting layer containing 0.7 wt% of the hole transporting polymer material.
 ここで、正孔輸送性高分子材料は、以下の方法で合成した。
 フラスコ内の気体を不活性ガス雰囲気下とした後、2,7-ジブロモ-9,9-ジ(オクチル)フルオレン(1.4g)、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ジ(オクチル)フルオレン(6.4g)、N,N-ビス(4-ブロモフェニル)-N’,N'-ビス(4-ブチルフェニル)-1,4-フェニレンジアミン(4.1g)、ビス(4-ブロモフェニル)ベンゾシクロブテンアミン(0.6g)、テトラエチルアンモニウムヒドロキシド(1.7g)、酢酸パラジウム(4.5mg)、トリ(2-メトキシフェニル)ホスフィン(0.03g)、及び、トルエン(100mL)を混合し、混合物を、100℃で2時間加熱攪拌した。次いで、フェニルボロン酸(0.06g)を添加し、得られた混合物を10時間撹拌した。放冷後、水層を除去し、ジエチルジチオカルバミン酸ナトリウム水溶液を添加し攪拌した後、水層を除去し、有機層を水、3重量%酢酸水で洗浄した。有機層をメタノールに注いで固体を沈殿させた後、濾取した固体を再度トルエンに溶解させ、シリカゲル及びアルミナのカラムに通液した。固体を含む溶出トルエン溶液を回収し、回収した前記トルエン溶液をメタノールに注いで固体を沈殿させた。沈殿した固体を濾取後50℃で真空乾燥し、正孔輸送性高分子材料を得た。正孔輸送性高分子材料のポリスチレン換算の重量平均分子量は3.0×105であった。
Here, the hole transporting polymer material was synthesized by the following method.
After making the gas in the flask under an inert gas atmosphere, 2,7-dibromo-9,9-di (octyl) fluorene (1.4 g), 2,7-bis (4,4,5,5-tetra Methyl-1,3,2-dioxaborolan-2-yl) -9,9-di (octyl) fluorene (6.4 g), N, N-bis (4-bromophenyl) -N ′, N′-bis ( 4-butylphenyl) -1,4-phenylenediamine (4.1 g), bis (4-bromophenyl) benzocyclobutenamine (0.6 g), tetraethylammonium hydroxide (1.7 g), palladium acetate (4. 5 mg), tri (2-methoxyphenyl) phosphine (0.03 g), and toluene (100 mL) were mixed, and the mixture was heated and stirred at 100 ° C. for 2 hours. Phenylboronic acid (0.06 g) was then added and the resulting mixture was stirred for 10 hours. After allowing to cool, the aqueous layer was removed, an aqueous sodium diethyldithiocarbamate solution was added and stirred, the aqueous layer was removed, and the organic layer was washed with water and 3% by weight acetic acid. The organic layer was poured into methanol to precipitate a solid, and then the filtered solid was again dissolved in toluene and passed through a silica gel and alumina column. The eluted toluene solution containing the solid was recovered, and the recovered toluene solution was poured into methanol to precipitate the solid. The precipitated solid was collected by filtration and vacuum dried at 50 ° C. to obtain a hole transporting polymer material. The weight average molecular weight in terms of polystyrene of the hole transporting polymer material was 3.0 × 10 5 .
 上記で得た正孔注入層が形成された基板の正孔注入層の上に、正孔輸送層形成用組成物をスピンコート法により塗布し、厚さ20nmの塗膜を得た。この塗膜を設けた基板を窒素雰囲気下、180℃で60分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔輸送層が形成された基板を得た。 On the hole injection layer of the substrate on which the hole injection layer obtained above was formed, the composition for forming a hole transport layer was applied by a spin coating method to obtain a coating film having a thickness of 20 nm. The substrate provided with this coating film was heated at 180 ° C. for 60 minutes in a nitrogen atmosphere to insolubilize the coating film, and then naturally cooled to room temperature to obtain a substrate on which a hole transport layer was formed.
 次に、発光高分子材料とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。 Next, the light emitting polymer material and xylene were mixed to obtain a light emitting layer forming composition containing 1.4% by weight of the light emitting polymer material.
 ここで、発光高分子材料は、以下の方法で合成した。
 フラスコ内の気体を不活性ガス雰囲気下とした後、2,7-ジブロモ-9,9-ジ(オクチル)フルオレン(9.0g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-tert-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(1.3g)、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ジ(4-ヘキシルフェニル)フルオレン(13.4g)、テトラエチルアンモニウムヒドロキシド(43.0g)、酢酸パラジウム(8mg)、トリ(2-メトキシフェニル)ホスフィン(0.05g)、及び、トルエン(200mL)を混合し、混合物を、90℃で8時間加熱攪拌した。次いで、フェニルボロン酸(0.22g)を添加し、得られた混合物を14時間撹拌した。放冷後、水層を除去し、ジエチルジチオカルバミン酸ナトリウム水溶液を添加し撹拌した後、水層を除去し、有機層を水、3重量%酢酸水で洗浄した。有機層をメタノールに注いで固体を沈殿させた後、濾取した固体を再度トルエンに溶解させ、シリカゲル及びアルミナのカラムに通液した。固体を含む溶出トルエン溶液を回収し、回収した前記トルエン溶液をメタノールに注いで固体を沈殿させた。沈殿した固体を50℃で真空乾燥し、発光高分子材料(12.5g)を得た。ゲルパーミエーションクロマトグラフィーによれば、得られた発光高分子材料のポリスチレン換算の重量平均分子量は3.1×105であった。
Here, the light emitting polymer material was synthesized by the following method.
After making the gas in the flask under an inert gas atmosphere, 2,7-dibromo-9,9-di (octyl) fluorene (9.0 g), N, N′-bis (4-bromophenyl) -N, N′-bis (4-tert-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine (1.3 g), 2,7-bis (4,4,5,5-tetramethyl-1,3 , 2-Dioxaborolan-2-yl) -9,9-di (4-hexylphenyl) fluorene (13.4 g), tetraethylammonium hydroxide (43.0 g), palladium acetate (8 mg), tri (2-methoxyphenyl) ) Phosphine (0.05 g) and toluene (200 mL) were mixed, and the mixture was heated and stirred at 90 ° C. for 8 hours. Phenylboronic acid (0.22 g) was then added and the resulting mixture was stirred for 14 hours. After allowing to cool, the aqueous layer was removed, an aqueous sodium diethyldithiocarbamate solution was added and stirred, the aqueous layer was removed, and the organic layer was washed with water and 3 wt% aqueous acetic acid. The organic layer was poured into methanol to precipitate a solid, and then the collected solid was dissolved again in toluene and passed through a silica gel and alumina column. The eluted toluene solution containing the solid was recovered, and the recovered toluene solution was poured into methanol to precipitate the solid. The precipitated solid was vacuum dried at 50 ° C. to obtain a light emitting polymer material (12.5 g). According to gel permeation chromatography, the obtained light-emitting polymer material had a polystyrene-equivalent weight average molecular weight of 3.1 × 10 5 .
 上記で得た正孔輸送層が形成された基板の正孔輸送層の上に、発光層形成用組成物をスピンコート法により塗布し、厚さ80nmの塗膜を得た。この塗膜を設けた基板を窒素雰囲気下、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。 On the hole transport layer of the substrate on which the hole transport layer obtained above was formed, the composition for forming a light emitting layer was applied by a spin coat method to obtain a coating film having a thickness of 80 nm. The substrate provided with this coating film was heated at 130 ° C. for 10 minutes in a nitrogen atmosphere to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
 メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む溶液を得た。上記で得た発光層が形成された基板の発光層の上に、前記溶液をスピンコート法により塗布し、厚さ10nmの塗膜を得た。この塗膜を設けた基板を窒素雰囲気下、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む層が形成された基板を得た。 Methanol and conjugated polymer compound 1 were mixed to obtain a solution containing 0.2% by weight of conjugated polymer compound 1. On the light emitting layer of the board | substrate with which the light emitting layer obtained above was formed, the said solution was apply | coated by the spin coat method, and the coating film with a thickness of 10 nm was obtained. The substrate provided with this coating film was heated at 130 ° C. for 10 minutes in a nitrogen atmosphere to evaporate the solvent, and then naturally cooled to room temperature to obtain a substrate on which a layer containing the conjugated polymer compound 1 was formed.
 上記で得た共役高分子化合物1を含む層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAlを80nm成膜し、陰極を形成させて、積層構造体1を製造した。 The substrate on which the layer containing the conjugated polymer compound 1 obtained above was formed was inserted into a vacuum apparatus, and an Al film was formed on the layer by vacuum vapor deposition to form a cathode, thereby forming a laminated structure. 1 was produced.
 上記で得た積層構造体1を真空装置より取り出し、窒素雰囲気下で、封止ガラスと2液混合型エポキシ樹脂にて封止し、電界発光素子1を得た。 The laminated structure 1 obtained above was taken out from the vacuum apparatus, and sealed with sealing glass and a two-component mixed epoxy resin in a nitrogen atmosphere to obtain an electroluminescent element 1.
[比較例1]
電界発光素子Aの作製
 実施例2において、共役高分子化合物1の代わりに非共役高分子化合物1を用いた以外は、実施例2と同様に操作し、電界発光素子Aを得た。
[Comparative Example 1]
Production of Electroluminescent Element A Electroluminescent element A was obtained in the same manner as in Example 2, except that non-conjugated polymer compound 1 was used instead of conjugated polymer compound 1.
[測定]
 上記で得られた電界発光素子1及びAに10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。
[Measurement]
A forward voltage of 10 V was applied to the electroluminescent elements 1 and A obtained above, and the light emission luminance and the light emission efficiency were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000121
 表1から明らかなように、本発明の電界発光素子1は、本発明の高分子化合物を含む層を備えていない電界発光素子Aに比べ、発光輝度及び発光効率が優れる。 As is apparent from Table 1, the electroluminescent device 1 of the present invention is superior in light emission luminance and luminous efficiency as compared to the electroluminescent device A not provided with the layer containing the polymer compound of the present invention.

Claims (12)

  1.  式(1)で表される基及び式(2)で表される基を含む構造単位を有する高分子化合物を含む層を電荷注入層及び/又は電荷輸送層として備え、
     前記高分子化合物中の全てのMに対する前記高分子化合物中のMがH+である割合が、0%より大きく50%以下である、
    電子デバイス。
      -(Q1n1-Y1(M1a1(Z1b1  (1)
    (式中、
     Q1は、2価の有機基である。
     Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -である。
     M1は、H又は金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンである。
     Z1は、F-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -である。
     n1は、0以上の整数である。a1は、1以上の整数である。b1は、0以上の整数である。但し、a1及びb1は、式(1)で表される基の電荷が0となるように選択される。
     Rαは、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。各々のRαは互いに同一でも異なっていてもよい。
     Raは、置換基を有していてもよい1価の有機基である。複数個のRaが存在する場合、各々のRaは互いに同一でも異なっていてもよい。
     複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
     複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
     複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。)
      -(Q2n2-Y2   (2)
    (式中、
     Q2は、2価の有機基である。
     Y2は、シアノ基又は式(3)~(11)のいずれかで表される基である。
     n2は、0以上の整数である。
     複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。)
      -O-(R’O)a3-R’’ (3)
    Figure JPOXMLDOC01-appb-C000001
      -S-(R’S)a4-R’’  (5)
      -C(=O)-(R’-C(=O))a4-R’’  (6)
      -C(=S)-(R’-C(=S))a4-R’’  (7)
      -N{(R’)a4R’’}2  (8)
      -C(=O)O-(R’-C(=O)O)a4-R’’ (9)
      -C(=O)O-(R’O)a4-R’’ (10)
      -NHC(=O)-(R’NHC(=O))a4-R’’ (11)
    (式中、
     R’は置換基を有していてもよい2価の炭化水素基である。
     R’’は、水素原子、置換基を有していてもよい1価の炭化水素基、カルボキシル基、スルホ基、ヒドロキシル基、メルカプト基、-NRc 2、シアノ基又は-C(=O)NRc 2である。
     R’’’は、置換基を有していてもよい3価の炭化水素基である。
     a3は1以上の整数である。a4は、0以上の整数である。
     Rcは、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基であり、各々のRcは互いに同一でも異なっていてもよい。
     複数個のR’が存在する場合、各々のR’は互いに同一でも異なっていてもよい。
     複数個のR’’が存在する場合、各々のR’’は互いに同一でも異なっていてもよい。
     複数個のa4が存在する場合、各々のa4は互いに同一でも異なっていてもよい。)
    A layer containing a polymer compound having a structural unit containing a group represented by formula (1) and a group represented by formula (2) as a charge injection layer and / or a charge transport layer;
    The ratio that M 1 in the polymer compound is H + with respect to all M 1 in the polymer compound is greater than 0% and 50% or less.
    Electronic devices.
    -(Q 1 ) n1 -Y 1 (M 1 ) a1 (Z 1 ) b1 (1)
    (Where
    Q 1 is a divalent organic group.
    Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 .
    M 1 is H +, a metal cation, or an ammonium cation which may have a substituent.
    Z 1 represents F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO. 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 .
    n1 is an integer of 0 or more. a1 is an integer of 1 or more. b1 is an integer of 0 or more. However, a1 and b1 are selected so that the charge of the group represented by the formula (1) becomes zero.
    R α is an alkyl group having 1 to 30 carbon atoms which may have a substituent or an aryl group having 6 to 50 carbon atoms which may have a substituent. Each R α may be the same as or different from each other.
    R a is a monovalent organic group which may have a substituent. When a plurality of R a are present, each R a may be the same as or different from each other.
    When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
    When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
    When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other. )
    -(Q 2 ) n2 -Y 2 (2)
    (Where
    Q 2 is a divalent organic group.
    Y 2 is a cyano group or a group represented by any one of formulas (3) to (11).
    n2 is an integer of 0 or more.
    When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other. )
    -O- (R'O) a3 -R '' (3)
    Figure JPOXMLDOC01-appb-C000001
    -S- (R'S) a4 -R '' (5)
    -C (= O)-(R'-C (= O)) a4 -R '' (6)
    -C (= S)-(R'-C (= S)) a4 -R '' (7)
    -N {(R ′) a4 R ″} 2 (8)
    —C (═O) O— (R′—C (═O) O) a4 —R ″ (9)
    —C (═O) O— (R′O) a4 —R ″ (10)
    —NHC (═O) — (R′NHC (═O)) a4 —R ″ (11)
    (Where
    R ′ is a divalent hydrocarbon group which may have a substituent.
    R ″ represents a hydrogen atom, a monovalent hydrocarbon group which may have a substituent, a carboxyl group, a sulfo group, a hydroxyl group, a mercapto group, —NR c 2 , a cyano group or —C (═O). NR c 2 .
    R ′ ″ is a trivalent hydrocarbon group which may have a substituent.
    a3 is an integer of 1 or more. a4 is an integer of 0 or more.
    R c is an optionally substituted alkyl group having 1 to 30 carbon atoms or an optionally substituted aryl group having 6 to 50 carbon atoms, and each R c is It may be the same or different.
    When a plurality of R ′ are present, each R ′ may be the same as or different from each other.
    When a plurality of R ″ are present, each R ″ may be the same as or different from each other.
    When a plurality of a4 are present, each a4 may be the same as or different from each other. )
  2.  前記構造単位が、式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位である、請求項1に記載の電子デバイス。
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     R1は、式(13)で表される基を含む1価の基である。
     Ar1は、R1以外の置換基を有していてもよい(2+n3)価の芳香族基である。
     n3は、1以上の整数である。
     複数個のR1が存在する場合、各々のR1は互いに同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     R2は、(1+m1+m2)価の有機基である。
     Q1、Q2、Y1、M1、Z1、Y2、n1、a1、b1及びn2は、前述と同じ意味である。
     m1及びm2は、それぞれ独立に1以上の整数である。
     複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
     複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
     複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
     複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
     複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
     複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
     複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
     複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
     複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。
     複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     R3は、式(13)で表される基又は式(15)で表される基を含む1価の基である。
     R4は、式(16)で表される基を含む1価の基である。
     Ar2は、R3及びR4以外の置換基を有していてもよい(2+n4+n5)価の芳香族基である。
     n4及びn5は、それぞれ独立に1以上の整数である。
     複数個のR3が存在する場合、各々のR3は互いに同一でも異なっていてもよい。
     複数個のR4が存在する場合、各々のR4は互いに同一でも異なっていてもよい。)
      -R5-{(Q1n1-Y1(M1a1(Z1b1m3  (15)
    (式中、
     R5は、単結合又は(1+m3)価の有機基である。
     Q1、Y1、M1、Z1、n1、a1及びb1は、前述と同じ意味である。
     m3は、1以上の整数を表す。但し、R5が単結合である場合、m3は1である。
     複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
     複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
     複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
     複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
     複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
     複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
     複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。)
      -R6-{(Q2n2-Y2m4  (16)
    (式中、
     R6は、単結合又は(1+m4)価の有機基である。
     Q2、Y2及びn2は前述と同じ意味である。
     m4は、1以上の整数である。但し、R6が単結合である場合、m4は1である。
     複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
     複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
     複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
    The electronic device according to claim 1, wherein the structural unit is one or more structural units selected from the group consisting of a structural unit represented by formula (12) and a structural unit represented by formula (14).
    Figure JPOXMLDOC01-appb-C000002
    (Where
    R 1 is a monovalent group including a group represented by Formula (13).
    Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
    n3 is an integer of 1 or more.
    When several R < 1 > exists, each R < 1 > may mutually be same or different. )
    Figure JPOXMLDOC01-appb-C000003
    (Where
    R 2 is a (1 + m1 + m2) valent organic group.
    Q 1 , Q 2 , Y 1 , M 1 , Z 1 , Y 2 , n1, a1, b1, and n2 have the same meaning as described above.
    m1 and m2 are each independently an integer of 1 or more.
    When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
    When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
    When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
    When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
    When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
    When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
    When a plurality of n1 are present, each n1 may be the same as or different from each other.
    When a plurality of a1 are present, each a1 may be the same as or different from each other.
    When a plurality of b1 are present, each b1 may be the same as or different from each other.
    When a plurality of n2 are present, each n2 may be the same as or different from each other. )
    Figure JPOXMLDOC01-appb-C000004
    (Where
    R 3 is a monovalent group including a group represented by the formula (13) or a group represented by the formula (15).
    R 4 is a monovalent group including a group represented by Formula (16).
    Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
    n4 and n5 are each independently an integer of 1 or more.
    When a plurality of R 3 are present, each R 3 may be the same as or different from each other.
    When a plurality of R 4 are present, each R 4 may be the same as or different from each other. )
    -R 5 -{(Q 1 ) n 1 -Y 1 (M 1 ) a 1 (Z 1 ) b 1 } m 3 (15)
    (Where
    R 5 is a single bond or a (1 + m3) valent organic group.
    Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have the same meaning as described above.
    m3 represents an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
    When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
    When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
    When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
    When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
    When a plurality of n1 are present, each n1 may be the same as or different from each other.
    When a plurality of a1 are present, each a1 may be the same as or different from each other.
    When a plurality of b1 are present, each b1 may be the same as or different from each other. )
    -R 6 -{(Q 2 ) n2 -Y 2 } m4 (16)
    (Where
    R 6 is a single bond or a (1 + m4) -valent organic group.
    Q 2 , Y 2 and n2 have the same meaning as described above.
    m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
    When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
    When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
    When a plurality of n2 are present, each n2 may be the same as or different from each other. )
  3.  Ar1で表される(2+n3)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n3)個除いた基である請求項2に記載の電子デバイス。
    Figure JPOXMLDOC01-appb-C000005
    The (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formula 1, 2, 4, 5, 6, 13 , 14 , 15 , 19, 21, 23, 31, 32, 33, 43, 46, 47. The electronic device according to claim 2, wherein the electronic device is a group obtained by removing (2 + n3) hydrogen atoms from the ring represented by 51.
    Figure JPOXMLDOC01-appb-C000005
  4.  Ar2で表される(2+n4+n5)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n4+n5)個除いた基である請求項2に記載の電子デバイス。
    Figure JPOXMLDOC01-appb-C000006
    The (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by the formula 1, 2, 4, 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43, 46, 47. The electronic device according to claim 2, wherein the electronic device is a group obtained by removing (2 + n4 + n5) hydrogen atoms from the ring represented by 51.
    Figure JPOXMLDOC01-appb-C000006
  5.  前記高分子化合物を含む層を電子注入層及び/又は電子輸送層として備える、請求項1に記載の電子デバイス。 The electronic device according to claim 1, comprising a layer containing the polymer compound as an electron injection layer and / or an electron transport layer.
  6.  電界発光素子である請求項1に記載の電子デバイス。 The electronic device according to claim 1, which is an electroluminescent element.
  7.  式(12)で表される構造単位及び式(14)で表される構造単位からなる群から選ばれる1種以上の構造単位を有し、
     高分子化合物中のMがH+である割合が、高分子化合物中の全てのMに対して0%より大きく50%以下である、
    高分子化合物。
    Figure JPOXMLDOC01-appb-C000007
    (式中、
     R1は、式(13)で表される基を含む1価の基である。
     Ar1は、R1以外の置換基を有していてもよい(2+n3)価の芳香族基である。
     n3は、1以上の整数である。
     複数個のR1が存在する場合、各々のR1は互いに同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、
     R2は、(1+m1+m2)価の有機基である。
     Q1は、2価の有機基である。
     Q2は、2価の有機基である。
     Y1は、-CO2 -、-SO3 -、-SO2 -、-PO3 2-又は-B(Rα3 -である。
     M1は、H又は金属カチオンであるか、置換基を有していてもよいアンモニウムカチオンである。
     Z1は、F-、Cl-、Br-、I-、OH-、B(Ra4 -、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -である。
     Y2は、シアノ基又は式(3)~(11)のいずれかで表される基である。
     n1は、0以上の整数である。a1は、1以上の整数である。b1は、0以上の整数である。但し、a1及びb1は、式(1)で表される基の電荷が0となるように選択される。
     Rαは、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。各々のRαは互いに同一でも異なっていてもよい。
     Raは、置換基を有していてもよい1価の有機基である。複数個のRaが存在する場合、各々のRaは互いに同一でも異なっていてもよい。
     n2は、0以上の整数である。
     m1及びm2は、それぞれ独立に1以上の整数である。
     複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
     複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
     複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
     複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
     複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
     複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
     複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
     複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
     複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。
     複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、
     R3は、式(13)で表される基又は式(15)で表される基を含む1価の基である。
     R4は、式(16)で表される基を含む1価の基である。
     Ar2は、R3及びR4以外の置換基を有していてもよい(2+n4+n5)価の芳香族基である。
     n4及びn5は、それぞれ独立に1以上の整数である。
     複数個のR3が存在する場合、各々のR3は互いに同一でも異なっていてもよい。
     複数個のR4が存在する場合、各々のR4は互いに同一でも異なっていてもよい。)
      -R5-{(Q1n1-Y1(M1a1(Z1b1m3  (15)
    (式中、
     R5は、単結合又は(1+m3)価の有機基である。
     Q1、Y1、M1、Z1、n1、a1及びb1は、前述と同じ意味である。
     m3は、1以上の整数を表す。但し、R5が単結合である場合、m3は1である。
     複数個のQ1が存在する場合、各々のQ1は互いに同一でも異なっていてもよい。
     複数個のY1が存在する場合、各々のY1は互いに同一でも異なっていてもよい。
     複数個のM1が存在する場合、各々のM1は互いに同一でも異なっていてもよい。
     複数個のZ1が存在する場合、各々のZ1は互いに同一でも異なっていてもよい。
     複数個のn1が存在する場合、各々のn1は互いに同一でも異なっていてもよい。
     複数個のa1が存在する場合、各々のa1は互いに同一でも異なっていてもよい。
     複数個のb1が存在する場合、各々のb1は互いに同一でも異なっていてもよい。)
      -R6-{(Q2n2-Y2m4  (16)
    (式中、
     R6は、単結合又は(1+m4)価の有機基である。
     Q2、Y2及びn2は前述と同じ意味である。
     m4は、1以上の整数である。但し、R6が単結合である場合、m4は1である。
     複数個のQ2が存在する場合、各々のQ2は互いに同一でも異なっていてもよい。
     複数個のY2が存在する場合、各々のY2は互いに同一でも異なっていてもよい。
     複数個のn2が存在する場合、各々のn2は互いに同一でも異なっていてもよい。)
    Having one or more structural units selected from the group consisting of the structural unit represented by formula (12) and the structural unit represented by formula (14),
    The ratio in which M 1 in the polymer compound is H + is greater than 0% and 50% or less with respect to all M 1 in the polymer compound.
    High molecular compound.
    Figure JPOXMLDOC01-appb-C000007
    (Where
    R 1 is a monovalent group including a group represented by Formula (13).
    Ar 1 is a (2 + n3) -valent aromatic group that may have a substituent other than R 1 .
    n3 is an integer of 1 or more.
    When several R < 1 > exists, each R < 1 > may mutually be same or different. )
    Figure JPOXMLDOC01-appb-C000008
    (Where
    R 2 is a (1 + m1 + m2) valent organic group.
    Q 1 is a divalent organic group.
    Q 2 is a divalent organic group.
    Y 1 is —CO 2 , —SO 3 , —SO 2 , —PO 3 2− or —B (R α ) 3 .
    M 1 is H +, a metal cation, or an ammonium cation which may have a substituent.
    Z 1 represents F , Cl , Br , I , OH , B (R a ) 4 , R a SO 3 , R a COO , ClO , ClO 2 , ClO 3 , ClO. 4 , SCN , CN , NO 3 , SO 4 2− , HSO 4 , PO 4 3− , HPO 4 2− , H 2 PO 4 , BF 4 or PF 6 .
    Y 2 is a cyano group or a group represented by any one of formulas (3) to (11).
    n1 is an integer of 0 or more. a1 is an integer of 1 or more. b1 is an integer of 0 or more. However, a1 and b1 are selected so that the charge of the group represented by the formula (1) becomes zero.
    R α is an alkyl group having 1 to 30 carbon atoms which may have a substituent or an aryl group having 6 to 50 carbon atoms which may have a substituent. Each R α may be the same as or different from each other.
    R a is a monovalent organic group which may have a substituent. When a plurality of R a are present, each R a may be the same as or different from each other.
    n2 is an integer of 0 or more.
    m1 and m2 are each independently an integer of 1 or more.
    When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
    When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
    When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
    When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
    When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
    When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
    When a plurality of n1 are present, each n1 may be the same as or different from each other.
    When a plurality of a1 are present, each a1 may be the same as or different from each other.
    When a plurality of b1 are present, each b1 may be the same as or different from each other.
    When a plurality of n2 are present, each n2 may be the same as or different from each other. )
    Figure JPOXMLDOC01-appb-C000009
    (Where
    R 3 is a monovalent group including a group represented by the formula (13) or a group represented by the formula (15).
    R 4 is a monovalent group including a group represented by Formula (16).
    Ar 2 is a (2 + n4 + n5) -valent aromatic group that may have a substituent other than R 3 and R 4 .
    n4 and n5 are each independently an integer of 1 or more.
    When a plurality of R 3 are present, each R 3 may be the same as or different from each other.
    When a plurality of R 4 are present, each R 4 may be the same as or different from each other. )
    -R 5 -{(Q 1 ) n 1 -Y 1 (M 1 ) a 1 (Z 1 ) b 1 } m 3 (15)
    (Where
    R 5 is a single bond or a (1 + m3) valent organic group.
    Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 have the same meaning as described above.
    m3 represents an integer of 1 or more. However, when R 5 is a single bond, m3 is 1.
    When a plurality of Q 1 are present, each Q 1 may be the same as or different from each other.
    When a plurality of Y 1 are present, each Y 1 may be the same as or different from each other.
    When a plurality of M 1 are present, each M 1 may be the same as or different from each other.
    When a plurality of Z 1 are present, each Z 1 may be the same as or different from each other.
    When a plurality of n1 are present, each n1 may be the same as or different from each other.
    When a plurality of a1 are present, each a1 may be the same as or different from each other.
    When a plurality of b1 are present, each b1 may be the same as or different from each other. )
    -R 6 -{(Q 2 ) n2 -Y 2 } m4 (16)
    (Where
    R 6 is a single bond or a (1 + m4) -valent organic group.
    Q 2 , Y 2 and n2 have the same meaning as described above.
    m4 is an integer of 1 or more. However, when R 6 is a single bond, m4 is 1.
    When a plurality of Q 2 are present, each Q 2 may be the same as or different from each other.
    When a plurality of Y 2 are present, each Y 2 may be the same as or different from each other.
    When a plurality of n2 are present, each n2 may be the same as or different from each other. )
  8.  Ar1で表される(2+n3)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n3)個除いた基である請求項7に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000010
    The (2 + n3) -valent aromatic group represented by Ar 1 is represented by the formula 1, 2, 4, 5, 6, 13 , 14 , 15 , 19, 21, 23, 31, 32, 33, 43, 46, 47. The polymer compound according to claim 7, which is a group obtained by removing (2 + n3) hydrogen atoms from the ring represented by 51.
    Figure JPOXMLDOC01-appb-C000010
  9.  Ar2で表される(2+n4+n5)価の芳香族基が、式1、2、4、5、6、13、14、15、19、21、23、31、32、33、43、46、47又は51で表される環から水素原子を(2+n4+n5)個除いた基である請求項7に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000011
    The (2 + n4 + n5) -valent aromatic group represented by Ar 2 is represented by the formula 1, 2, 4, 5, 6, 13, 14, 15, 19, 21, 23, 31, 32, 33, 43, 46, 47. The polymer compound according to claim 7, which is a group obtained by removing (2 + n4 + n5) hydrogen atoms from the ring represented by 51.
    Figure JPOXMLDOC01-appb-C000011
  10.  Y2が式(3)又は式(4)で表される基である、請求項7に記載の高分子化合物。 The high molecular compound of Claim 7 whose Y < 2 > is group represented by Formula (3) or Formula (4).
  11.  式(21)で表され、イオンを1種以上含有する化合物を含む原料を縮合重合させる、請求項7に記載の高分子化合物の製造方法。
      Y3-Aa-Y4    (21)
    (式中、
     Aaは、式(1)で表される基と、式(2)で表される基とを含む2価の基である。
     Y3及びY4は、それぞれ独立に、縮合重合に関与する基である。)
    The method for producing a polymer compound according to claim 7, wherein a raw material containing a compound represented by the formula (21) and containing one or more ions is subjected to condensation polymerization.
    Y 3 -A a -Y 4 (21)
    (Where
    A a is a divalent group including a group represented by the formula (1) and a group represented by the formula (2).
    Y 3 and Y 4 are each independently a group involved in condensation polymerization. )
  12.  式(21’)で表され、イオンを含有しない化合物を含む原料を縮合重合させ、得られる化合物からイオンを含有する高分子化合物を合成する、請求項7に記載の高分子化合物の製造方法。
      Y3-Aaa-Y4    (21')
    (式中、
     Aaaは、式(22)で表される基と、式(2)で表される基とを含む2価の基である。
     Y3及びY4は、それぞれ独立に、縮合重合に関与する基である。)
      -R7-{(Q3n6-Y5m9    (22)
    (式中、
     R7は、(1+m9)価の有機基である。
     Q3は、2価の有機基を表す。
     Y5は、-CO2χ、-SO3χ、-SO2χ、-PO3(Rχ2又は-B(Rχ2である。
     n6は、0以上の整数である。
     Rχは、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基又は置換基を有していてもよい炭素原子数6~50のアリール基である。
     m9は1以上の整数を表す。
     複数個のQ3が存在する場合、各々のQ3は互いに同一でも異なっていてもよい。
     複数個のY5が存在する場合、各々のY5は互いに同一でも異なっていてもよい。
     複数個のn6が存在する場合、各々のn6は互いに同一でも異なっていてもよい。
     複数個のRχが存在する場合、各々のRχは互いに同一でも異なっていてもよい。)
    The method for producing a polymer compound according to claim 7, wherein a raw material containing a compound represented by the formula (21 ') and containing no ions is subjected to condensation polymerization, and a polymer compound containing ions is synthesized from the obtained compound.
    Y 3 -A aa -Y 4 (21 ')
    (Where
    A aa is a divalent group including a group represented by the formula (22) and a group represented by the formula (2).
    Y 3 and Y 4 are each independently a group involved in condensation polymerization. )
    -R 7 -{(Q 3 ) n6 -Y 5 } m9 (22)
    (Where
    R 7 is a (1 + m9) valent organic group.
    Q 3 represents a divalent organic group.
    Y 5 is —CO 2 R χ , —SO 3 R χ , —SO 2 R χ , —PO 3 (R χ ) 2, or —B (R χ ) 2 .
    n6 is an integer of 0 or more.
    R χ is a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted aryl group having 6 to 50 carbon atoms.
    m9 represents an integer of 1 or more.
    When a plurality of Q 3 are present, each Q 3 may be the same as or different from each other.
    When a plurality of Y 5 are present, each Y 5 may be the same as or different from each other.
    When a plurality of n6 are present, each n6 may be the same as or different from each other.
    When a plurality of R χ are present, each R χ may be the same as or different from each other. )
PCT/JP2012/057605 2011-03-28 2012-03-23 Electronic device and polymer compound WO2012133229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011071197 2011-03-28
JP2011-071197 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133229A1 true WO2012133229A1 (en) 2012-10-04

Family

ID=46930951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057605 WO2012133229A1 (en) 2011-03-28 2012-03-23 Electronic device and polymer compound

Country Status (3)

Country Link
JP (1) JP2012216811A (en)
TW (1) TW201245267A (en)
WO (1) WO2012133229A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545755A (en) * 2015-12-18 2017-06-28 Cambridge Display Tech Ltd Charge transfer salt, electronic device and method of forming the same
WO2019211623A1 (en) 2018-05-04 2019-11-07 Cambridge Display Technology Ltd Device
WO2020157516A1 (en) 2019-01-31 2020-08-06 Sumitomo Chemical Co., Ltd Light-emitting composition
WO2021001663A1 (en) 2019-07-03 2021-01-07 Sumitomo Chemical Co., Ltd Light-emitting composition
WO2021064416A1 (en) 2019-10-04 2021-04-08 Sumitomo Chemical Co., Ltd Process of forming a conjugated polymer
WO2021069902A1 (en) 2019-10-08 2021-04-15 Sumitomo Chemical Co., Ltd Light-emitting composition
WO2021191229A1 (en) 2020-03-24 2021-09-30 Cambridge Display Technology Limited Light emitting marker and assay
WO2021198311A1 (en) 2020-03-31 2021-10-07 Cambridge Display Technology Limited Light-emitting marker
WO2021198372A1 (en) 2020-03-31 2021-10-07 Cambridge Display Technology Limited Method of detecting an analyte
GB202201234D0 (en) 2022-01-31 2022-03-16 Sumitomo Chemical Co Light-emitting nanoparticles
WO2022096611A2 (en) 2020-11-04 2022-05-12 Cambridge Display Technology Limited Nanoparticle
WO2022189648A1 (en) 2021-03-11 2022-09-15 Cambridge Display Technology Ltd. Polymer
WO2022207697A1 (en) 2021-03-30 2022-10-06 Cambridge Display Technology Ltd. Polymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177595A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Quinoxalinyl-containing polymer and preparation method thereof and organic solar energy cell device
US10164193B2 (en) * 2014-04-16 2018-12-25 Cambridge Display Technology Limited Organic light-emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239279A (en) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd Layered structure
JP2010261102A (en) * 2009-04-10 2010-11-18 Sumitomo Chemical Co Ltd Metal complex and composition containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386215B1 (en) * 2006-06-07 2014-04-17 삼성디스플레이 주식회사 Compositions of conducting polymers and the organic opto-electronic device employing the same
EP2049582B1 (en) * 2006-07-21 2019-02-27 Nissan Chemical Corporation Sulfonation of conducting polymers and oled, photovoltaic, and esd devices
JP5281800B2 (en) * 2007-02-01 2013-09-04 住友化学株式会社 Block copolymer and composition, liquid composition, light-emitting thin film, and polymer light-emitting device using the same
JP2010040512A (en) * 2008-07-10 2010-02-18 Sumitomo Chemical Co Ltd Organic electroluminescent device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239279A (en) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd Layered structure
JP2010261102A (en) * 2009-04-10 2010-11-18 Sumitomo Chemical Co Ltd Metal complex and composition containing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349084B2 (en) 2015-12-18 2022-05-31 Cambridge Display Technology Limited Charge transfer salts and uses thereof
US11730055B2 (en) 2015-12-18 2023-08-15 Cambridge Display Technology Limited Dopant, charge transfer salt and organic electronic device
GB2545755A (en) * 2015-12-18 2017-06-28 Cambridge Display Tech Ltd Charge transfer salt, electronic device and method of forming the same
WO2019211623A1 (en) 2018-05-04 2019-11-07 Cambridge Display Technology Ltd Device
WO2020157516A1 (en) 2019-01-31 2020-08-06 Sumitomo Chemical Co., Ltd Light-emitting composition
WO2021001663A1 (en) 2019-07-03 2021-01-07 Sumitomo Chemical Co., Ltd Light-emitting composition
WO2021064416A1 (en) 2019-10-04 2021-04-08 Sumitomo Chemical Co., Ltd Process of forming a conjugated polymer
GB2588100A (en) * 2019-10-04 2021-04-21 Sumitomo Chemical Co Process of forming a conjugated polymer
GB2588100B (en) * 2019-10-04 2022-09-07 Sumitomo Chemical Co Process of forming a conjugated polymer
WO2021069902A1 (en) 2019-10-08 2021-04-15 Sumitomo Chemical Co., Ltd Light-emitting composition
WO2021191229A1 (en) 2020-03-24 2021-09-30 Cambridge Display Technology Limited Light emitting marker and assay
WO2021198311A1 (en) 2020-03-31 2021-10-07 Cambridge Display Technology Limited Light-emitting marker
WO2021198372A1 (en) 2020-03-31 2021-10-07 Cambridge Display Technology Limited Method of detecting an analyte
DE112021005792T5 (en) 2020-11-04 2023-09-21 Sumitomo Chemical Co., Ltd. Nanoparticles
WO2022096611A2 (en) 2020-11-04 2022-05-12 Cambridge Display Technology Limited Nanoparticle
WO2022189648A1 (en) 2021-03-11 2022-09-15 Cambridge Display Technology Ltd. Polymer
WO2022207697A1 (en) 2021-03-30 2022-10-06 Cambridge Display Technology Ltd. Polymer
WO2023144394A1 (en) 2022-01-31 2023-08-03 Sumitomo Chemical Co., Ltd Light-emitting nanoparticles
GB2615133A (en) 2022-01-31 2023-08-02 Sumitomo Chemical Co Light-emitting nanoparticles
GB202201234D0 (en) 2022-01-31 2022-03-16 Sumitomo Chemical Co Light-emitting nanoparticles

Also Published As

Publication number Publication date
TW201245267A (en) 2012-11-16
JP2012216811A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5752381B2 (en) Laminated structure, polymer, electroluminescent device and photoelectric conversion device
JP6046361B2 (en) Electronic devices, polymer compounds
JP5790819B2 (en) Conjugated polymer compounds
US9306170B2 (en) Electronic device and polymer compound
WO2012133229A1 (en) Electronic device and polymer compound
JP5653122B2 (en) Organic electroluminescence device and method for producing the same
WO2012133462A1 (en) Electronic device, polymer compound
EP2692796B1 (en) Composition
JP2012084306A (en) Organic el device
JP5982747B2 (en) Organic EL device
JP5428034B2 (en) Electronic device and polymer compound having bipyridinium skeleton useful for the same
WO2012128334A1 (en) Organic el element
WO2012114936A1 (en) Method for producing organic electroluminescent element
WO2012070575A1 (en) Light emitting device and method for producing light emitting device
JP2012044160A (en) Method for manufacturing organic electroluminescent display device and organic electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763458

Country of ref document: EP

Kind code of ref document: A1