WO2012045497A1 - Procédé pour déterminer une force de crémaillère pour un dispositif de braquage sur un véhicule - Google Patents

Procédé pour déterminer une force de crémaillère pour un dispositif de braquage sur un véhicule Download PDF

Info

Publication number
WO2012045497A1
WO2012045497A1 PCT/EP2011/062317 EP2011062317W WO2012045497A1 WO 2012045497 A1 WO2012045497 A1 WO 2012045497A1 EP 2011062317 W EP2011062317 W EP 2011062317W WO 2012045497 A1 WO2012045497 A1 WO 2012045497A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
force
rack force
modeled
steering
Prior art date
Application number
PCT/EP2011/062317
Other languages
German (de)
English (en)
Inventor
Jörg Strecker
Thomas Werner
Original Assignee
Zf Lenksysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Lenksysteme Gmbh filed Critical Zf Lenksysteme Gmbh
Publication of WO2012045497A1 publication Critical patent/WO2012045497A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/006Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels using a measured or estimated road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the invention relates to a method for determining a rack force for a steering device in a vehicle, wherein the rack force is generated at least partially in response to a rack force mode SI and wherein a steering angle is an input of the rack force model.
  • the invention also relates to a steering device in the vehicle.
  • the invention further relates to a control and / or regulating device of a steering device in a vehicle as well as a computer program that can run on the control and / or regulating device.
  • EPS Power steering
  • SBW Steer-by-Wire
  • EPS steering systems currently in use generate EPS engine torque on the basis of an adjacent rack-and-pinion force in order to provide the driver with the appropriate steering assistance.
  • the rack power is significantly influenced by the current cornering staff.
  • a substantial part of the current rack force corresponds to a lateral acceleration.
  • the rack-and-pinion force is not only determined by the lateral forces which occur during the passage through a curve, but also has a large number of further variables of an actual driving situation an influence on the rack-and-pinion force.
  • An example of this is the road condition (unevenness, ruts, coefficient of friction).
  • the steering torque is determined in dependence on the lateral force occurring at steered wheels.
  • the rack-and-pinion force thus determined reflects the force relationships actually applied to the front axle of the vehicle or to the rack.
  • Rack-and-pinion force contains not only the level that is actually required, but also various faults with different characteristics. These depend, for example, on the design of the axle (s) or the general structure of the axle (s)
  • Disturbances here can be understood as meaning a multiplicity of road conditions, such as unevennesses, ruts or a bank. Further disturbances can arise due to longitudinal dynamic events on the steered front axle. Examples include different lengths of drive shafts in front-wheel drive vehicles, active drive components such as an all-wheel drive or components for the variable distribution of a drive torque to the front wheels. Another and possibly disturbing influence can result from the loading of the vehicle and in particular generally due to the front axle load. In a simplifying manner, it can be stated that the rack-and-pinion force acting on the steering increases with a higher load on the front axle. Further influences on the rack and pinion force, the target steering torque has the tires of the wheels.
  • the rack force is determined in accordance with a plurality of models, wherein a driving force related component of the rack force is generated by a first model and a racking force relating to a parking operation is generated by a second model.
  • a driving force related component of the rack force is generated by a first model
  • a racking force relating to a parking operation is generated by a second model.
  • this model also the model describing the
  • the generation of the thus-modeled rack force is a function of a steering angle, for example, a steering wheel angle of the steering means or a Radlenkwinkel and a vehicle speed.
  • a steering angle for example, a steering wheel angle of the steering means or a Radlenkwinkel and a vehicle speed.
  • Rack-and-pinion force does not sufficiently correspond to the actual rack-and-pinion force. Such situations occur in particular in the case of a ⁇ -split braking, a change in the road friction coefficient, an understeering process or an oversteering process.
  • Rack power corresponds to a sufficient extent.
  • Further special situations include, for example, situations in which a crosswind occurs, the vehicle is moved on a transversely inclined roadway or the vehicle leaves the roadway. In the following, different from the "normal" driving condition
  • a steering device in a vehicle in that the steering device has means for carrying out the method according to the invention.
  • These means are implemented, for example, in the form of a computer program running in the control and / or regulating device of the steering system.
  • the control and / or regulating device is also referred to as
  • the steering angle is modified as the input variable of the rack force model and / or the modeled rack force is adapted or modified once again as a function of the present special situation. It is therefore in
  • Wheel steering angle modified. Based on a difference arising from the yaw rate, using a model, such as the vehicle-specific
  • an offset is calculated for the actual applied steering angle.
  • the yaw rate difference is additionally multiplied by a speed-dependent factor.
  • a signal can be used, which signals a braking operation.
  • current release rates (measured and / or modeled) as release conditions may be a difference of these yaw rates
  • Rack force and / or the modeled rack force can be used. By means of a suitable combination of these release conditions, it is achieved that formation of the offset value takes place only when the ⁇ -splir braking is actually present,
  • Driver assistance systems are used for tracking.
  • the modeled rack-pin force thus offers the possibility of representing a driver assistance function by modifying the wheel steering angle and / or the rack-and-pinion force.
  • the modeled rack force preferably includes interfaces for these driver assistance functions.
  • the modeled rack force can be multiplied by a factor corresponding to a quotient of the modeled rack force and the actual rack force.
  • the modeled rack force can basically be multiplied by the factor thus determined. If the vehicle is on a lane with a high frictional value, then the quotient corresponds almost to the initial value 1, since the modeled rack-and-pinion force corresponds to the actual one
  • the quotient is less than 1.
  • rack force is - unless otherwise stated in the context or explicitly mentioned - always present here as a generic term for the rack itself and all equivalent forces such as the lateral force of the front axle or the lateral acceleration used the
  • both the modeled rack-pin force and the actual rack-and-pinion force each have the same sign, ie both have either a negative or a positive value, and a certain amount.
  • Other conditions may be formed by one or more of steering angle, steering angular velocity, vehicle speed, lateral acceleration (modeled, measured), and / or yaw rate (modeled, measured). In particular, it may be provided for the
  • the quotient is additionally filtered in order to prevent, for example, jumps in the generated rack force.
  • the modeled rack force In situations where understeer occurs, the modeled rack force
  • Rack power can be suitably modified with a factor, for example, to achieve a reduction of the rack force, which corresponds to a strong feedback, as is common for example in a mechanical or hydraulic steering system. But it can also be provided to increase the rack force in an understeer operation. Thus, the additional function of a steering torque recommendation could be realized.
  • Understeer can be done in particular depending on a sub-control signal.
  • it can be provided to use a current slip angle of the front axle and / or a lateral acceleration or a lateral force of the front axle and optionally to combine these with a current friction coefficient information.
  • the modeled rack force is heavily filtered under certain conditions to keep it at least near zero.
  • the conditions for activating the filter are obtained by evaluating the actual rack force and the modeled rack force both in terms of the absolute value and a relative comparison of the two quantities. Is the modeled Rack power is small and the actual rack power is large, the filter is activated. Alternatively or additionally, a compensation of the modeled rack-and-pinion force with the actual rack-and-pinion force can be provided.
  • the steering speed is used to decide whether an override operation is present or whether the compensation of an override operation should be activated. It can be provided, a
  • FIG. 1 a steering device with a control and / or regulating device for
  • FIG. 2 is a block diagram of an embodiment of the invention for
  • FIG. 3 shows a block diagram with function blocks for generating a
  • FIG. 5 shows a graphical illustration of a possible course of a rack-and-pinion force adapted by means of a filter in the case of the presence of an oversteering process according to a possible embodiment.
  • FIG. 1 shows a steering device 1 comprising a control unit 2.
  • a microprocessor 3 is arranged, which has a
  • Data line 4 for example, a bus system, is connected to a storage medium 5. Via a signal line 6, the control unit 2 with a
  • Momentensteller for example, an electric motor 7, connected, whereby a power control of the torque controller is made possible by the control unit 2.
  • the electric motor 7 acts via a gear 8 on a torsion bar 9.
  • Torsion bar 9 is a steering means 10, which is presently designed as a steering wheel, arranged, by means of which a torque on the torsion bar 9 by actuation of the steering means 10 by a driver can be applied.
  • the steering device 1 has a steering gear 1 1, for example, as
  • the steering gear 1 1 may also be formed as a ball nut gear or Kugeiumlaufgeiriebe. In the following description is - if necessary - predominantly of a
  • the steering gear 1 1 includes a pinion 12a and a rack 12b.
  • the steering gear 1 1 is connected via the pinion 12a and the rack 12b and a steering linkage 13 with the wheels 14.
  • the wheels 14 point in relation to one of the straight ahead of the vehicle
  • the steering device 1 further comprises a sensor 18 for detecting a
  • the sensor 16 is associated with the motor 7, so that by means of the sensor 16, a rotor angle of the electric motor 7 is detected.
  • the steering angle 30 can also be detected by means of the steering means 10 and the torsion bar 9 associated sensor.
  • the steering device 1 further comprises a sensor 17, Mitteis an actual rack power 31 can be determined.
  • the actual rack force 31 corresponds to a lateral acceleration or an actual cornering force which acts on the rack 12b via the wheels 14 and the steering linkage 13.
  • the actual rack force 31 is applied to the
  • Controller 2 transmitted.
  • the determination of the actual rack force 31 can alternatively be done to the sensor 17 by means of an observer, wherein sizes are used which relate directly to the steering device 1, for example, an engine torque of the motor 7 or by a
  • Torque sensor 15 detected actual steering torque torSW.
  • dynamic quantities can be used to specify the determination of the actual rack force.
  • the method according to the invention initially starts from a method in which a modeled rack-and-pinion force is generated, which then alternatively or in addition to the actual rack force forR acting on the wheels 14 in the determination of a desired manual torque or a roadway feedback and thus for the control of the electric motor 7 is used.
  • the determination of the modeled rack force 42 is also carried out by the control unit 1.
  • the detected by means of the torque sensor 15 actual steering torque torSW and the detected by means of the sensor 16 steering wheel angle 30 are also to the
  • the method is preferably implemented in the form of a computer program in which the functionalities required for the determination of the modeled rack force 42 are implemented in a suitable manner.
  • FIG. 2 shows a possible embodiment of the invention
  • the block diagram shown in Figure 2 includes a Lenkwinkei 30 which is fed via a modifier 40 optionally in the form of a modified steering angle 39 a rack power model 41 as an input variable.
  • a rack power model 41 as an input variable.
  • An actual rack force 31 also becomes the rack force model 41 as
  • actual rack force 31 is also input to the modifier 40.
  • Further input variables of the rack force model 41 which are not shown in FIG are, for example, a slip angle, a vehicle speed, a
  • Vehicle lateral acceleration, a yaw rate of the vehicle, a lateral force of a steered axle of the vehicle Vehicle lateral acceleration, a yaw rate of the vehicle, a lateral force of a steered axle of the vehicle.
  • a modeled rack force 42 is generated.
  • This is optionally adapted in a function block 43 and finally, according to the invention, the rack force 44 is generated. It may be provided to also supply the actual rack force 31 to the function block 43 as an input variable.
  • Steering angle can be performed differently depending on the current special situation.
  • Rack force 42 may be performed differently depending on the underlying special situation.
  • FIG. 3 shows a possible realization of the function block 40 as well as the associated input variables which enable a modification of the steering angle in the case of the presence of ⁇ -split braking. This is done from a measured Yaw rate 32 and a modeled yaw rate 34 a yaw rate difference 51 formed. Further, from the current vehicle speed 33 becomes
  • a brake signal can be used as a release condition for the addition of the offset angle 53 to the actual steering angle 30 . Furthermore, the current yaw rates (measured and modeled), the yaw rate difference, the
  • Vehicle speed and / or the rack forces are used as a release condition in a suitable manner.
  • the partial process shown in FIG. 3 for producing a modified rack forces are used as a release condition in a suitable manner.
  • Steering angle 39 can basically also at oversteer operations, for
  • Crosswind compensation or to compensate for transversely inclined roads are used, wherein preferably the speed-dependent factor is adjusted depending on the particular situation.
  • a modification of the steering angle basically represents an interface for further driver assistance functions.
  • FIG. 4 shows a possible embodiment of the functional block 43, as it may be designed to carry out a friction value adaptation.
  • the modeled rack force 42 and the actual rack force 31 are shown as input variables in the function block 43. From the modeled
  • Rack force 42 and the actual rack force 31, a quotient 61 is formed.
  • the modeled rack force 42 is multiplied by the quotient 61 and thus the adapted rack force 44 is generated.
  • Further input variables, which - as described above - can be used in particular for activating this function and / or a meaningful one
  • the quotient 61 is additionally filtered by means of a filter 62 in a suitable manner.
  • the function block 43 may be a
  • the factor can also be designed so that an increase in the modeled rack power is achieved by a
  • Activation of this functionality can, for example, in response to a sub-control signal, but also in response to a slip angle of the front axle or the
  • the function block 43 may be formed as a filter, mitteis of which the modeled rack force 42 is heavily filtered under certain conditions, so that the modeled rack power is as close to zero value. With such a filter, the increase of the modeled rack-and-pinion force is in the opposite direction to the actual one
  • Activating the filter may result from an analysis of the actual
  • Rack force 31 and the modeled rack force 42 in terms of their absolute value and from a relative comparison of these two sizes. If the modeled rack-and-pinion force is small while the actual rack-and-pinion force is large, provision may be made to activate the filter. In addition, the current steering speed can be used for activation of the filter.
  • a curve 71 shows the
  • Another way to improve the modeled rack force can be based on a calculation of the modeled rack force with the
  • a PI controller can be used.
  • a signal for controlling an averaging for example, a signal for detecting an override operation can be used.
  • the values of the actual rack force and the modeled rack force can be used analogously to the procedure for the activation of the filter, in which case a comparison of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

L'invention vise à générer une force de crémaillère (44) particulièrement précise pour un dispositif de braquage sur un véhicule, la force de crémaillère (44) étant générée au moins en partie en fonction d'un modèle de force de crémaillère (41) et un angle de braquage (30) étant une grandeur d'entrée du modèle de force de crémaillère (41). A cet effet, selon l'invention, au moins lorsque l'on est en présence d'une situation particulière, un angle de braquage modifié (39) est amené au modèle de force de crémaillère (41) comme grandeur d'entrée et/ou la force de crémaillère (42) modélisée générée au moyen du modèle de force de crémaillère (41) est adaptée.
PCT/EP2011/062317 2010-10-07 2011-07-19 Procédé pour déterminer une force de crémaillère pour un dispositif de braquage sur un véhicule WO2012045497A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010042135.9 2010-10-07
DE102010042135.9A DE102010042135B4 (de) 2010-10-07 2010-10-07 Verfahren zur Bestimmung einer Zahnstangenkraft für eine Lenkvorrichtung in einem Fahrzeug

Publications (1)

Publication Number Publication Date
WO2012045497A1 true WO2012045497A1 (fr) 2012-04-12

Family

ID=44545677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062317 WO2012045497A1 (fr) 2010-10-07 2011-07-19 Procédé pour déterminer une force de crémaillère pour un dispositif de braquage sur un véhicule

Country Status (2)

Country Link
DE (1) DE102010042135B4 (fr)
WO (1) WO2012045497A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109955898A (zh) * 2017-12-14 2019-07-02 大众汽车有限公司 确定齿条力的方法和系统、运行辅助方法及运行辅助装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011052881B4 (de) 2011-08-22 2018-05-17 Robert Bosch Automotive Steering Gmbh Verfahren zur Bestimmung einer Zahnstangenkraft für eine Lenkvorrichtung in einem Fahrzeug, Lenkvorrichtung und Steuer- und/oder Regeleinrichtung für eine Lenkvorrichtung
DE102014205321A1 (de) 2014-03-21 2015-09-24 Volkswagen Aktiengesellschaft Lenkvorrichtung und Verfahren zur Schätzung einer Zahnstangenkraft
DE102015204642A1 (de) * 2015-03-13 2016-09-15 Volkswagen Aktiengesellschaft Lenksystem und Verfahren zur Rückmeldung an einen Anwender eines motorisch unterstützten Lenksystems für ein Fahrzeug
DE102015218991B4 (de) 2015-10-01 2023-10-19 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Ermitteln eines Verschleißzustandes eines Lenksystems
KR102286847B1 (ko) 2017-04-12 2021-08-05 현대자동차주식회사 조향토크 추정 장치 및 방법
US10752287B2 (en) 2017-10-03 2020-08-25 Toyota Jidosha Kabushiki Kaisha Steer-by-wire system
EP3501944B1 (fr) 2017-12-20 2020-08-05 Aptiv Technologies Limited Procédé et dispositif pour estimer un couple de direction
DE102019134568A1 (de) * 2019-12-16 2021-06-17 Zf Automotive Germany Gmbh Verfahren zum Betreiben einer Hilfskraftlenkung eines Fahrzeugs, Hilfskraftlenkung sowie Fahrzeug
DE102021214450B3 (de) 2021-12-15 2022-09-22 Volkswagen Aktiengesellschaft Steer-by-Wire-Lenksystem und Verfahren zum Betreiben eines Steer-by-Wire-Lenksystems
DE102021214451B3 (de) 2021-12-15 2022-11-10 Volkswagen Aktiengesellschaft Steer-by-Wire-Lenksystem und Verfahren zum Betreiben eines Steer-by-Wire-Lenksystems
DE102022205552A1 (de) 2022-05-31 2023-11-30 Zf Automotive Germany Gmbh Verfahren zur Erzeugung einer haptischen Rückmeldekraft an einer Lenkwunscheingabevorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805383A1 (de) * 1997-02-12 1998-08-13 Koyo Seiko Co Kraftfahrzeug-Lenkvorrichtung
DE19751125A1 (de) * 1997-03-22 1998-09-24 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betrieb eines Lenksystems für ein Kraftfahrzeug
EP1514765A2 (fr) * 2003-09-12 2005-03-16 Toyoda Koki Kabushiki Kaisha Dispositif de direction pour véhicule
DE102005036708A1 (de) * 2005-02-16 2006-08-31 Daimlerchrysler Ag Stabilisierungsvorrichtung und Verfahren zur Fahrstabilisierung eines Fahrzeugs anhand eines Seitenkraftbeiwerts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821045B1 (fr) * 2001-02-21 2003-05-16 Peugeot Citroen Automobiles Sa Ensemble de direction assistee electrique pour vehicule automobile et procede de commande associe
GB2400358A (en) * 2003-04-09 2004-10-13 Trw Ltd Steering rack disturbance force rejection
US20080294355A1 (en) * 2004-03-23 2008-11-27 Thomas Berthold Tire Lateral Force Determination in Electrical Steering Systems
DE102004060030A1 (de) * 2004-12-14 2006-06-29 Daimlerchrysler Ag Verfahren zum Zurückstellen eines Lenkrades in seine Ausgangsstellung und zur Bestimmung des Rückstellmomentes
DE102006019790A1 (de) * 2006-04-28 2007-10-31 Zf Lenksysteme Gmbh Verfahren zur Lenkungsregelung
DE102006036751A1 (de) * 2006-08-05 2008-02-07 Zf Lenksysteme Gmbh Verfahren zur Regelung oder Steuerung zumindest einer Fahrzustandsgröße eines Fahrzeugs
DE102008042666B4 (de) * 2008-10-08 2011-03-17 Ford Global Technologies, LLC, Dearborn Verfahren zur Kompensation von Störgrößen, welche auf ein Fahrzeug mit einer hilfskraftunterstützten Lenkung wirken
DE102009000244A1 (de) * 2009-01-15 2010-07-22 Zf Lenksysteme Gmbh Aktiver Rücklauf in einem Lenksystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805383A1 (de) * 1997-02-12 1998-08-13 Koyo Seiko Co Kraftfahrzeug-Lenkvorrichtung
DE19751125A1 (de) * 1997-03-22 1998-09-24 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betrieb eines Lenksystems für ein Kraftfahrzeug
EP1514765A2 (fr) * 2003-09-12 2005-03-16 Toyoda Koki Kabushiki Kaisha Dispositif de direction pour véhicule
DE102005036708A1 (de) * 2005-02-16 2006-08-31 Daimlerchrysler Ag Stabilisierungsvorrichtung und Verfahren zur Fahrstabilisierung eines Fahrzeugs anhand eines Seitenkraftbeiwerts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109955898A (zh) * 2017-12-14 2019-07-02 大众汽车有限公司 确定齿条力的方法和系统、运行辅助方法及运行辅助装置
CN109955898B (zh) * 2017-12-14 2022-04-22 大众汽车有限公司 确定齿条力的方法和系统、运行辅助方法及运行辅助装置

Also Published As

Publication number Publication date
DE102010042135B4 (de) 2015-10-22
DE102010042135A1 (de) 2012-04-12

Similar Documents

Publication Publication Date Title
DE102010042135B4 (de) Verfahren zur Bestimmung einer Zahnstangenkraft für eine Lenkvorrichtung in einem Fahrzeug
EP2590850B1 (fr) Méthode pour déterminer la force sur le pignon de la direction d'un véhicule
DE112004002252B4 (de) Verfahren zum Unterstützen eines Fahrzeugbedieners beim Stabilisieren eines Fahrzeugs
EP2393701B1 (fr) Détermination d'un couple de direction de consigne dans un dispositif de direction
DE102011055339B4 (de) Verfahren zum bestimmen einer zahnstangenkraft für eine lenkvorrichtung und lenkvorrichtung
DE102005034650B4 (de) Steuerungssystem, das eine aktive Hinterradlenkung für ein Fahrzeug bewirkt, unter Anwendung einer Schätzung von Fahrzeugdynamikparametern
DE102016215793B4 (de) Fahrzeug sowie Verfahren zum Lenken des Fahrzeugs
DE102017121873B4 (de) Vorrichtung zur Steuerung von Fahrzeugverhalten
DE112007000094B4 (de) Fahrzeuglenksteuerungsvorrichtung
DE102007008342A1 (de) Verfahren zur Stabilisierung eines Fahrzeugverbundes
DE102007020169A1 (de) Verfahren und Vorrichtung zum Ermitteln eines optimalen Lenkwinkels in Untersteuersituationen eines Fahrzeugs
DE102006035338B4 (de) Fahrzeug mit einer Lenkeinheit
WO2011154257A1 (fr) Détermination d'une sensation de point milieu pour systèmes de direction assistée électrique
EP2208659A1 (fr) Retour actif dans un système de direction
DE102014205321A1 (de) Lenkvorrichtung und Verfahren zur Schätzung einer Zahnstangenkraft
EP1588927B1 (fr) Véhicule automobile avec direction active des roues arrières
DE102020213553B4 (de) Lenksystem und Verfahren zum Betreiben eines Lenksystems
EP3833593A1 (fr) Sensibilité directionnelle optimisée en termes de force de crémaillère d'une direction de véhicule automobile à commande par câble électrique
DE102011079859A1 (de) Betriebsverfahren eines Fahrzeug-Lenksystems
EP1687193B1 (fr) Procede et dispositif de reglage de la dynamique d'un vehicule
DE102012219539B4 (de) Verfahren und Vorrichtung zur Steuerung einer dynamisch geregelten, elektrisch servounterstützten Lenkvorrichtung für Fahrzeuge
WO2021224230A1 (fr) Assistance de direction variable en fonction des mouvements de crémaillère
DE10329278A1 (de) Stabilisierungsvorrichtung, damit ausgestattetes Fahrzeug und Stabilisierungsverfahren
DE102019103090B4 (de) Verfahren zum Bestimmen eines Vorgabewertes für einen Servomotor eines Fahrzeug-Lenksystems
DE102009037750B4 (de) Fahrzeuglenkung und Verfahren zum Betrieb einer solchen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11735868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11735868

Country of ref document: EP

Kind code of ref document: A1