WO2012044125A2 - 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법 - Google Patents

배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법 Download PDF

Info

Publication number
WO2012044125A2
WO2012044125A2 PCT/KR2011/007279 KR2011007279W WO2012044125A2 WO 2012044125 A2 WO2012044125 A2 WO 2012044125A2 KR 2011007279 W KR2011007279 W KR 2011007279W WO 2012044125 A2 WO2012044125 A2 WO 2012044125A2
Authority
WO
WIPO (PCT)
Prior art keywords
disconnection
battery
control module
command
variable
Prior art date
Application number
PCT/KR2011/007279
Other languages
English (en)
French (fr)
Other versions
WO2012044125A3 (ko
Inventor
강정수
조영보
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013531501A priority Critical patent/JP5843208B2/ja
Priority to BR112013007827A priority patent/BR112013007827B1/pt
Priority to CN201180047802.2A priority patent/CN103140981B/zh
Priority to EP11829631.8A priority patent/EP2634855B1/en
Publication of WO2012044125A2 publication Critical patent/WO2012044125A2/ko
Publication of WO2012044125A3 publication Critical patent/WO2012044125A3/ko
Priority to US13/851,239 priority patent/US9362741B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a variable disconnection device and a variable disconnection control method of a battery system that detects an external situation in a battery system and variably disconnects the physical connection of individual battery units according to the detected dangerous situation to switch to a stable state of low capacity and low voltage. It is about.
  • the smart grid system is an intelligent grid system that tries to increase the efficiency of power utilization through the interaction of power supply and consumption by integrating information communication technology in the process of power generation, transportation and consumption.
  • One or more large battery systems are installed in the power storage system used in the smart grid or the micro grid to control the storage and supply of power.
  • the large battery system consists of a cell that is the minimum unit of power storage and supply, a module that is a collection of a plurality of cells, a battery pack that is a collection of a plurality of modules, a system that is a collection of battery packs, and a plant that is a collection of a plurality of systems. do.
  • Such large battery systems are capable of storing and supplying high-capacity and high-voltage power as the physical connections of cells, cells, modules, battery packs, and systems increase.
  • a large battery system may adjust power capacity and voltage by increasing or decreasing a physical connection of a battery unit as described above. As a period elapses after initial installation, a large battery system may increase in size and form a high voltage. Accordingly, the stability of large battery systems is further demanded.
  • the risk is increased if it is exposed to natural disasters (earthquake, flooding, typhoon) or other accidents such as fire or short circuit.
  • a minor problem in some battery units of a battery system can affect surrounding batteries, leading to large-scale accidents such as electric shock, fire and explosion.
  • a battery system requires a technology capable of switching between states of high capacity, high voltage, low voltage, and low voltage by controlling connection and disconnection between battery units individually and locally as necessary.
  • the present invention has been made in view of the foregoing, and an object thereof is to switch to a low capacity low voltage state by variably disconnecting control of a physical connection of a battery unit in a battery system.
  • the disconnection control is a manual control by the administrator and the purpose of the automatic control of the degree of disconnection in accordance with the detected situation through a sensor for detecting an external dangerous situation.
  • variable disconnection device of the battery system of the present invention for solving the above problems, in the variable disconnection device for variably disconnecting control of the physical connection of the battery assembly unit, the variable disconnection device is provided in the connection wiring of the battery assembly unit Electrically connected or disconnected switches; A switch control module for applying an on or off signal to the switch; And a disconnection control module for controlling the switch control module according to the sensed risk level to vary the position and number of open / close switches and the disconnection interval.
  • the battery assembly unit may include: a battery cell configured to receive and store external power and supply stored power to the outside; A battery module corresponding to an assembly of a plurality of battery unit cells; A battery pack corresponding to an assembly of a plurality of battery unit modules; A battery system corresponding to an assembly of a plurality of battery packs; And a battery plant corresponding to an assembly of a plurality of battery systems, or a combination thereof.
  • variable disconnection device may further include a sensor module configured to detect a current situation in real time and transmit sensing data to the disconnection control module.
  • the sensor module is installed inside or outside the structure of the battery assembly unit or installed at a long distance to detect a dangerous situation including any one of temperature, humidity, leakage, flooding and earthquake, and detected by wire or wireless connection. Sends one dangerous situation information to disconnection control module.
  • the disconnection control module outputs a control signal of a variable disconnection or a connection to a switch control module, and the control signal includes identification information of at least one switch to open and control.
  • the disconnection control module shortens the disconnection interval of the battery assembly unit as the disconnection level determined as a dangerous situation.
  • the disconnection control module receives a manual command or an external network command of an administrator and transmits a corresponding connection command or a disconnection command to the switch control module.
  • the disconnection control module is connected to an input / output interface connected to a screen output means and a data input means, and receives a manual input of a related party inputted from the data input means through the input / output interface and receives a corresponding connection command and a disconnection command. Transmitting to the switch control module; And a function of being connected to a communication means and receiving a connection command and a disconnection command from the central control station through the communication means in a wired or wireless manner and transmitting the received command to the switch control module.
  • the disconnection control module may include a disconnection command for disconnecting the battery cell in order to prevent an electric shock accident when a flooding condition is detected; A disconnection command for disconnecting a part of the parallel connection, in order to alternately connect to a sequentially disconnected battery configuration module when a dangerous situation is detected but there is no problem in power supply;
  • the disconnection command When the operator enters the maintenance mode to the battery system for the maintenance of the battery configuration module, the disconnection command to disconnect in the voltage unit below the operator safety limit by the administrator's manual command; A disconnection command for automatically disconnecting the sensor at a voltage unit below an operator safety limit when receiving detection data of the door opening from the sensor module in association with the door of the battery system structure;
  • a disconnection command for arbitrarily disconnecting the parallel connection may be issued to be used as a spare battery in the battery system.
  • variable disconnection device including the variable disconnection device and the battery assembly unit controls the variable disconnection for any combination of the battery assembly unit and the battery assembly unit.
  • variable disconnection control method for performing a variable disconnection device for the variable disconnection control of the physical connection of the battery assembly unit performs the following steps In (S11) the sensor module of the variable disconnection device detects a current situation and transmits to the disconnection control module; (S12) determining, by the disconnection control module, the disconnection level after receiving the sensing data of the current situation from the sensor module to determine a dangerous situation; (S13) when the determined disconnection level applies disconnection of the previously connected switch control module, transmitting the disconnection command to the switch control module; (S14) the switch control module receiving the disconnection command to switch the physical connection of the corresponding switch to the disconnection; (S15) after the step S12, when the determined disconnection level releases disconnection of the previously disconnected switch control module, the disconnection control module transmitting a connection command to the switch control module; And (S16) the switch control module receives the connection command to switch the physical connection of
  • the present invention it is possible to stabilize the low-capacity and low-voltage state by detecting an electric shock, explosion risk situation such as flooding, fire, and the like for the large battery system and variably disconnecting and controlling the physical connection of the battery unit.
  • the operator can work in a safe state of low capacity and low voltage through disconnection and connection control.
  • FIG. 1 and 2 are conceptual diagrams of situational variable disconnection of a battery system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a battery assembly unit according to an embodiment of the present invention.
  • FIG 4 is an exemplary view of a battery system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a variable disconnection apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a disconnection control module according to an embodiment of the present invention.
  • FIG. 7 is a conceptual view illustrating a sensor module according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a variable disconnection control method according to an embodiment of the present invention.
  • FIG. 1 and 2 illustrate a technical concept of a situation-specific variable disconnection device of a battery system according to an exemplary embodiment of the present invention.
  • the minimum unit of the power storage and supply subject is the battery cell 101.
  • units of battery cells 101 may be connected in series or in parallel to each other to supply a large amount of high voltage power.
  • variable disconnection device when an emergency situation such as earthquake, flooding, fire, etc. occurs in a large battery system, if it is determined that the situation is dangerous, it is a variable battery cell to prevent accidents such as electric shock or explosion Disconnect the connection between the 101 to switch to the state of low capacitance low voltage.
  • the variable disconnection device may be disconnected by variably adjusting the disconnection interval of the battery cell 101 when necessary, such as when maintenance of a large battery system is required, when applying a rest period to some battery units, and the like.
  • the "situation C” disconnects the parallel connection between the grouped battery cells 101 and the battery system. Stabilize.
  • the "situation C” after the total 8 battery cells 101 are completely disconnected and disconnected in parallel, 4 upper battery cells 101 are used and the lower 4 battery cells 101 disconnected are reserved. It can be left as a battery and used as a new power source after a disconnected parallel connection is restored.
  • FIG. 3 is a conceptual diagram hierarchically illustrating a battery assembly unit 100 according to an exemplary embodiment of the present invention.
  • the battery assembly unit 100 is divided into battery units constituting the inside thereof, and the minimum unit is the battery cell 101.
  • the battery cell is a unit cell including a positive electrode, a negative electrode, and a separator, and is a minimum unit of power storage and supply.
  • the plurality of battery cells 101 are connected to each other to form an aggregate, the plurality of battery cells 101 become a unit of the battery module 102.
  • the battery pack 103 is formed.
  • the battery system 104 becomes. Individual battery assembly units and any combination thereof constitute the battery assembly.
  • This battery system 104 corresponds to the large battery system 104 to which the present invention is applied and is the smallest unit that can be installed in the smart grid (micro grid) area.
  • the battery plant 105 becomes a battery plant 105.
  • battery plant 105 is the power source with the largest capacity and voltage.
  • the variable disconnection apparatus includes a battery cell 101, a battery module 102, a battery pack 103, a battery system 104, a battery plant 105, and the like corresponding to the battery assembly unit 100.
  • the stability of the large battery system is secured by variably disconnecting the connection for each lower battery unit.
  • the disconnection unit of the battery is illustrated as the battery cell 101, but the actual disconnection unit is a battery module corresponding to the battery assembly unit 100 as well as the battery cell 101. 102, battery pack 103, battery system 104, and battery plant 105, respectively.
  • FIG. 4 illustrates a battery system 104 in accordance with one embodiment of the present invention.
  • the battery system 104 has a wiring structure in which a plurality of battery units are accommodated in an accommodating device so that each battery unit is connected in parallel or in series.
  • three battery modules 102 are connected to each other to form a battery pack 103 of one layer, and three layers of battery pack 103 are connected to each other to constitute a battery system 104.
  • the battery system 104 is only an example and is not limited to this configuration.
  • FIG. 5 is a device configuration diagram showing a schematic configuration of a variable disconnection device 1 according to an embodiment of the present invention.
  • variable disconnection device includes a plurality of switches 11, a switch control module 12, and a disconnection control module 14.
  • the switch 11 is installed in the wiring connecting the battery assembly unit 100, and is selectively installed in the wiring to perform a variable disconnect and disconnection (connect).
  • the individual switch 11 can be used as long as it is known switch means known to control the electrical connection of the wiring, such as a semiconductor switch or a mechanical relay switch.
  • the battery assembly unit 100 includes at least one selected from the group consisting of a battery cell 101, a battery module 102, a battery pack 103, a battery system 104, and a battery plant 105, or a combination thereof.
  • the switch 11 is connected between the battery cell 101 and the cell 101, between the battery module 102 and the module 102, between the battery pack 103 and the pack 103, the battery system 104, and the like. It may be installed with a predetermined placement period between the systems 104 and between the battery plant 105 and the plant 105.
  • the arrangement cycle means an interval at which the switch 11 is installed. For example, if the arrangement period is 3, it means that one switch 11 is installed for every three battery assembly units 100.
  • the batch cycle may be variably adjusted as necessary, such as stability and filling capacity.
  • the switch control module 12 receives an operation control signal of on or off of the switch 11 from the disconnection control module 13 to apply an open / close signal to each switch 11 to provide electrical Disconnect or disconnect (connect) the connection.
  • the switch control module 12 can be implemented using conventional analog circuitry, such as analog front end circuitry. However, the present invention is not limited thereto.
  • the disconnection control module 14 determines the disconnection level and transmits a disconnection command to the switch control module 12 according to the determined disconnection level to control the variable disconnection according to the situation-specific level.
  • the disconnection command includes information for identifying the individual switch 11 to be controlled to open and close, and is information for applying an open / close operation signal (connect or disconnect) of the switch 11 to the switch control module 12.
  • variable disconnection device 1 may further include a sensor module 13 composed of a plurality of sensors.
  • the sensor module 13 detects a dangerous situation including temperature, humidity, leakage, flooding, earthquake, etc. and transmits it to the disconnection control module 14 in real time.
  • the sensor module 13 may be installed at the structure door of the battery system to transmit the door open / closed state to the disconnection control module 14.
  • data communication between the sensor module 13 and the disconnection control module 14 may be wired or wireless communication.
  • the disconnection control module 14 may receive a manual input from an administrator and control the opening and closing of the switch 11.
  • the disconnection control module 14 is connected to the input / output I / F 15 and the input / output I / F 15 is connected to the screen output means 16 and the data input means 17. Therefore, the administrator inputs data input means 17 (eg, if necessary) in the process of monitoring battery operation information such as sensor values and battery operation status of the sensor module 13 through the screen output means 16 (eg, a monitor). : You can input the disconnection command with the keyboard).
  • the disconnection control module 14 may control the opening and closing of the switch 11 by receiving a disconnection command from an external terminal through a network.
  • the disconnection control module 14 is connected to the wired or wireless communication module 18 for external network control, and receives the disconnection command wired or wirelessly transmitted from the communication module 18.
  • FIG 6 illustrates the operation of the disconnection control module 14 according to an embodiment of the present invention.
  • the disconnection control module 14 controls disconnection and connection of the interconnection wire according to an event occurrence situation such as an operation strategy of the variable disconnection device 1, an internal / external risk level, system maintenance, and the like.
  • the disconnection control module 14 determines the disconnection level according to the event occurrence situation detected by the sensor module 13 and commands the disconnection command or the connection command to the switch control module 13.
  • the disconnection control module 14 can receive a manual input from the administrator and transmit the corresponding connection command and disconnection command to the switch control module 13 (local command), and can be connected by wired or wireless network connection from a remote central control station.
  • the command and the disconnection command can be received and transmitted to the switch control module 13 (remote command).
  • the wired / wireless network typically includes all communication networks capable of data communication using various protocols such as mobile communication networks, wired and wireless public networks such as the Internet, or dedicated networks.
  • the disconnection command includes identification information of the switch 11 to be disconnected according to the disconnection level, and the disconnection interval of the battery assembly unit 110 is shortened in a dangerous situation.
  • the disconnection interval of the “state A” is shorter than that of the “state B”, and thus, the “state A” has been described as having a low capacity and a low power stabilization state.
  • the disconnection control module 14 may command various situational disconnection commands as follows.
  • a disconnection command is issued in units of the battery cell 101 which is the minimum unit in order to prevent an electric shock accident. If a dangerous situation is detected but there is no problem with the continuous use of the battery, disconnect part of the parallel connection, use only the remaining connected battery, and replace it with a battery that is disconnected in sequence to issue a connection command.
  • a disconnection command may be issued to arbitrarily disconnect the parallel connection (see FIG. 2).
  • the operator when the operator enters the maintenance mode into the battery system for the maintenance of the battery assembly unit 100, it is disconnected to the voltage level (for example 30 volts or less) required to ensure safety or the door and the door of the battery system structure
  • the voltage level for example 30 volts or less
  • a disconnection command that automatically switches below the safety level allowance can be issued.
  • FIG 7 shows an embodiment of the sensor module 13 according to an embodiment of the present invention.
  • the sensor module 13 may be directly installed in the battery assembly 110.
  • the battery assembly 110 is a concept including a battery system controlled by the installation of the variable disconnect device of the present invention.
  • the battery assembly 110 may be extended to a concept including a structure in which a plurality of battery assembly units 100 are located.
  • the installation position of the sensor module 13 can be anywhere as long as it is a suitable point for detecting a dangerous situation.
  • the sensor module 13 may be installed on the inner surface, the outer surface, and the door of the structure as well as the battery to detect a dangerous situation including temperature, humidity, leakage, flooding, earthquake, and the like, and disconnect the detection data. To send).
  • a door sensor for opening and closing detection in the door that the operator enters and exits.
  • the disconnection control module 14 may take the disconnection action of lowering the voltage below a stable level (for example, 30 volts or less) after receiving the detection data of the open state from the door sensor.
  • the battery assembly 110 is a battery plant in which a plurality of battery systems are assembled.
  • the battery plant is built in a space that can protect the battery system from the external environment.
  • the battery assembly an air conditioning apparatus for maintaining the temperature and humidity of the battery plant at an appropriate level, and a fire extinguishing apparatus for extinguishing the fire are installed.
  • the battery plant is provided with a disconnection control module 14 for performing charge / discharge control, screen monitoring, various protection operations, communication with the outside, and variable disconnection operation according to the present invention of each battery system constituting the battery plant. It is desirable to be.
  • variable disconnection device of the large battery system Detailed functions and operations of the individual components constituting the variable disconnection device of the large battery system will be described through the method configuration described below.
  • variable disconnection control method of the battery system may be preferably realized through the construction of the variable disconnection apparatus described above.
  • FIG. 8 is a schematic flowchart of a variable disconnection control method according to an embodiment of the present invention.
  • the battery system controls and monitors power storage and supply for the individual battery assembly unit 100.
  • the control and monitoring may be operated according to the automation operation strategy, or may be operated according to a command received from the central control center through the administrator's manual input and wired or wireless network.
  • An example of the battery assembly unit 100 has been described above with reference to FIGS. 3 and 4.
  • the sensor module 13 of the variable disconnection device disconnects detection data such as a dangerous situation including a temperature, humidity, an electric leak, a flood, an earthquake, and an open / closed state of a door.
  • the control module 14 transmits (S11).
  • the sensor module 13 may be configured of a plurality of sensors, and individual sensors may be installed at different positions, and transmit sensing data by wired / wireless communication with the disconnection control module 14.
  • the disconnection control module 14 receives the sensing data from the sensor module 13 in real time or at a predetermined cycle to determine a dangerous situation and then determines the disconnection level (S12).
  • the disconnection level is information for determining the disconnection command and the connection command including information such as the switch 11, disconnection or connection, disconnection interval, etc. of the control target.
  • disconnection control of the switch 11 in the unit of the battery cell 101 which is the minimum unit, occurs, and the disconnection interval is shortened.
  • the disconnection control module 14 sends the disconnection command to the switch control module 13, and the switch control module 13 receives the disconnection command from the disconnection control module 14 ( S13).
  • the switch control module 13 applies a disconnection signal (switch-off) to the switch 11 to be controlled, and the switch 11 disconnects the wiring connection (S14).
  • the disconnection control module 14 transmits the connection command to the switch control module 13, and the switch control module 13 receives the connection command from the disconnection control module 14. (S15).
  • the switch control module 13 applies a connection signal (switch-on) to the switch 11 to be controlled, and the switch 11 connects the wire connection (S16). After connection, the battery system is restored to the state before disconnection.
  • the disconnection command and the connection command may be transmitted for each battery unit of the battery assembly unit 100 illustrated in FIG. 3.
  • the command in the unit of the battery cell 101 may control the capacity and voltage of the power in more detail than the command in the unit of the battery system 104.
  • the shorter the disconnection interval the more stable the low-capacity, low-voltage unit can be.
  • the disconnection control module 14 is capable of automatic control according to the disconnection level of external situation data sensed by the sensor module 13, and receives the manual input from the administrator to control disconnection and connection of the switch control module 13. It is possible. Furthermore, after receiving a command from the central control station via the network, it is possible to control disconnection or connection.
  • variable disconnection device As described above, embodiments of the variable disconnection device and the variable disconnection control method of the large battery system according to the present invention are configured.
  • present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and claims to be described below by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Power Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 감지된 외부 상황의 위험 정도에 따라서 대형 배터리 시스템의 배터리 단위별로 스위치 연결을 가변적으로 단선 또는 접속 제어하여 저용량, 저전압 상태로 전환하는 가변적 단선 장치 및 가변적 단선 제어 방법에 관한 것이다. 본 발명에 따르는 가변적 단선 장치는, 배터리 집합 단위의 물리적 연결을 가변적으로 단선 제어하는 가변적 단선 장치에 있어서, 배터리 집합 단위의 연결 배선에 설치되어 배선을 전기적으로 연결 또는 단선시키는 스위치; 스위치에 온 또는 오프 신호를 인가하는 스위치 제어 모듈; 및 감지된 위험 수준에 따라 스위치 제어 모듈을 통제하여 개폐 스위치의 위치 및 수와 단선 간격을 가변시키는 단선 제어 모듈을 포함한다. 본 발명에 따르면, 대형 배터리 시스템의 위험 상황을 감지하고 배터리 단위의 물리적 접속을 가변적으로 단선제어하여 저용량, 저전압 상태로 안정화할 수 있다.

Description

배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법
본 발명은 배터리 시스템에서 외부 상황을 감지하고, 감지된 위험 상황에 따라서 가변적으로 개별 배터리 단위의 물리적 연결을 단선하여 저용량 및 저전압의 안정 상태로 전환하는 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법에 관한 것이다.
본 출원은 2010년 9월 30일에 출원된 한국특허출원 제10-2010-0095338호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
기존 구축된 전력망에서는 개별 전력 소비 주체의 전력 사용량을 예상하여 전력을 공급한다. 하지만, 계절별, 시간별로 전력 사용량이 다르고 전력 소비 주체의 증감에 따라서 적정 전력을 공급하기가 쉽지 않다.
이에 기존의 전력망에서 지역 단위별로 유휴 전력을 저장하였다가, 전력의 초과 수요가 발생되면 저장한 유휴 전력을 공급하는 스마트 그리드 시스템이나 마이크로 그리드 시스템을 도입하고 있다. 즉, 스마트 그리드 시스템(마이크로 그리드 시스템)이란 전력의 생산, 운반, 소비 과정에 정보통신 기술을 접목함으로써 전력 공급과 소비의 상호작용을 통해 전력 이용의 효율성을 높이고자 하는 지능형 전력망 시스템이다.
이러한 스마트 그리드나 마이크로 그리드 등에 쓰이는 전력 저장용 시스템에는 하나 이상의 대형 배터리 시스템이 설치되어 전력의 저장 및 공급을 제어한다. 대형 배터리 시스템의 구성은 전력 저장 및 공급의 최소 단위인 셀, 복수개 셀의 집합체인 모듈, 복수개 모듈의 집합체인 배터리 팩, 배터리 팩의 집합체인 시스템 및 복수개 시스템의 집합체인 플랜트(plant) 등으로 구성된다. 이처럼 대형 배터리 시스템은 배터리 단위인 셀, 모듈, 배터리 팩, 시스템 등의 물리적 연결이 증가할수록 고용량, 고전압의 전력 저장 및 공급이 가능하게 된다.
보통, 대형 배터리 시스템은 상기에서 설명한 바와 같이 배터리 단위의 물리적 연결을 증감함으로써 전력의 용량 및 전압을 조절할 수 있는데, 초기 설치 이후부터 기간이 경과할수록 전력 수요의 증강으로 대형화와 고전압을 형성하게 된다. 이에 따라서 대형 배터리 시스템의 안정성이 더욱 요구된다. 하지만, 대형 배터리 시스템의 경우 그 규모의 증강에 따라서 자연 재해(지진, 침수, 태풍)에 노출되거나 화재, 누전 등 기타 사고에 노출될 경우 그 위험성은 더욱 커지고 있는 실정이다.
예를 들면, 배터리 시스템의 일부 배터리 단위에서 사소한 문제 발생이 주변 배터리에 영향을 미침으로써 감전, 화재, 폭발의 대형 사고로 이어질 수 있는 것이다.
따라서, 배터리 시스템에서는 필요에 따라서 배터리 단위간의 개별적 및 지역적으로 연결 및 단선을 제어하여 고용량, 고저압 상태와 저용량, 저전압 상태 사이에서의 상호 상태 전환이 가능한 기술이 요구된다.
본 발명은 전술한 바와 같은 점에 착안하여 창출된 것으로써, 배터리 시스템에서 배터리 단위의 물리적 연결을 가변적으로 단선 제어하여 저용량 저전압 상태로 전환하는 것을 목적으로 한다.
또한, 상기 단선 제어는 관리자에 의한 매뉴얼 제어가 가능하고 외부 위험 상황을 감지하는 센서를 통하여 감지된 상황에 따라서 단선 정도를 가변적으로 자동 제어하는 것을 목적으로 한다.
전술한 바와 같은 과제를 해결하기 위한 본 발명의 배터리 시스템의 가변적 단선 장치에 따르면, 배터리 집합 단위의 물리적 연결을 가변적으로 단선 제어하는 가변적 단선 장치에 있어서, 배터리 집합 단위의 연결 배선에 설치되어 배선을 전기적으로 연결 또는 단선시키는 스위치; 상기 스위치에 온 또는 오프 신호를 인가하는 스위치 제어 모듈; 및 감지된 위험 수준에 따라 상기 스위치 제어 모듈을 통제하여 개폐 스위치의 위치 및 수와 단선 간격을 가변시키는 단선 제어 모듈을 포함한다.
본 발명에 있어서, 상기 배터리 집합 단위는, 외부 전력을 공급받아 저장하고 저장된 전력을 외부로 공급하는 배터리 셀; 복수개 배터리 단위 셀의 집합체에 해당하는 배터리 모듈; 복수개 배터리 단위 모듈의 집합체에 해당하는 배터리 팩; 복수개 배터리 팩의 집합체에 해당하는 배터리 시스템; 및 복수개 배터리 시스템의 집합체에 해당하는 배터리 플랜트 중 어느 하나 또는 이들의 조합에 해당한다.
또한, 상기 가변적 단선 장치는, 실시간으로 현재 상황을 감지하여 감지 데이터를 단선 제어 모듈로 전송하는 센서 모듈을 더 포함한다.
여기서, 상기 센서 모듈은, 배터리 집합 단위의 구조체 내부 또는 외부에 설치되거나 또는 원거리에 설치되어 온도, 습도, 누전, 침수 및 지진 중 어느 하나를 포함하는 위험 상황을 감지하고 유, 무선 연결에 의하여 감지한 위험 상황 정보를 단선 제어 모듈로 전송한다.
또한, 상기 단선 제어 모듈은, 스위치 제어 모듈로 가변적 단선 또는 접속의 제어 신호를 출력하고, 상기 제어 신호는 개폐 제어할 적어도 하나 이상의 스위치의 식별 정보를 포함한다.
바람직하게, 상기 단선 제어 모듈은, 위험 상황으로 판단된 단선 레벨일수록 배터리 집합 단위의 단선 간격을 짧게 한다.
여기서, 상기 단선 제어 모듈은, 관리자의 매뉴얼 명령 또는 외부 네트워크 명령을 받고 대응하는 접속 명령 또는 단선 명령을 스위치 제어 모듈로 전송한다.
또한, 상기 단선 제어 모듈은, 화면 출력 수단 및 데이터 입력 수단과 연결된 입출력 인터페이스와 연결되어, 상기 데이터 입력 수단에서 입력된 관련자의 매뉴얼 입력을 상기 입출력 인터페이스를 통하여 입력받고 대응하는 접속 명령 및 단선 명령을 상기 스위치 제어 모듈로 전송하는 기능; 및 통신 수단과 연결되어, 중앙 통제소로부터 상기 통신 수단을 통하여 유, 무선 방식으로 접속 명령 및 단선 명령을 수신하여 상기 스위치 제어 모듈로 전송하는 기능 중에서 적어도 하나의 기능을 구비한다.
더욱 바람직하게, 상기 단선 제어 모듈은, 침수 상황이 감지되는 경우, 감전 사고를 예방하기 위하여 배터리 셀 단위로 단선하는 단선 명령; 위험 상황이 감지되었으나 전력 공급에 문제가 없는 경우, 순차적으로 단선된 배터리 구성 모듈로 교체 접속하기 위하여, 병렬 연결의 일부를 단선하는 단선 명령; 배터리 구성 모듈의 유지 보수를 위하여 배터리 시스템에 작업자가 정비 모드로 진입하는 경우, 관리자의 매뉴얼 명령으로 작업자 안전 허용치 이하의 전압 단위로 단선하는 단선 명령; 배터리 시스템 구조물의 출입문과 연동하여 센서 모듈로부터 출입문 열림의 감지 데이터를 수신하면 자동으로 작업자 안전 허용치 이하의 전압 단위로 단선하는 단선 명령; 또는 배터리 시스템에서 예비용 배터리로 활용하기 위하여 병렬 연결을 임의로 단선하는 단선 명령을 내릴 수 있다.
전술한 바와 같은 과제를 해결하기 위한 본 발명의 배터리 집합체에 따르면, 가변적 단선 장치와 배터리 집합 단위를 포함하여 가변적 단선 장치가 배터리 집합 단위 및 배터리 집합 단위의 임의 조합에 대하여 가변적 단선을 제어한다.
한편, 전술한 바와 같은 과제를 해결하기 위한 본 발명의 배터리 시스템의 가변적 단선 제어 방법에 따르면, 배터리 집합 단위의 물리적 연결을 가변적으로 단선 제어하는 가변적 단선 장치가 하기의 단계들을 실행하는 가변적 단선 제어 방법에 있어서, (S11)상기 가변적 단선 장치의 센서 모듈이 현재 상황을 감지하여 단선 제어 모듈로 전송하는 단계; (S12)단선 제어 모듈이 상기 센서 모듈로부터 현재 상황의 감지 데이터를 수신하여 위험 상황을 판단한 후 단선 레벨을 결정하는 단계; (S13)결정된 단선 레벨이 기 접속된 스위치 제어 모듈의 단선을 적용하는 경우, 단선 제어 모듈이 스위치 제어 모듈로 단선 명령을 전송하는 단계; (S14)스위치 제어 모듈이 단선 명령을 수신하여 대응하는 스위치의 물리적 연결을 단선으로 전환하는 단계; (S15)상기 단계(S12) 이후에, 결정된 단선 레벨이 기 단선된 스위치 제어 모듈의 단선을 해제하는 경우, 단선 제어 모듈이 스위치 제어 모듈로 접속 명령을 전송하는 단계; 및 (S16)스위치 제어 모듈이 접속 명령을 수신하여 대응하는 스위치의 물리적 연결을 접속으로 전환하는 단계를 포함한다.
본 발명에 따르면, 대형 배터리 시스템에 대하여 침수, 화재 등의 감전, 폭발 위험 상황을 감지하고 배터리 단위의 물리적 접속을 가변적으로 단선 및 연결 제어하여 저용량, 저전압 상태로 안정화할 수 있다.
또한, 계절별, 시기별 전력 수급 상황에 맞추어서 단선 및 연결 제어함으로써 가변적인 전원의 수급 조절이 가능하다.
나아가, 배터리 시스템의 유지 보수시에도 단선 및 연결 제어를 통하여 작업자가 저용량, 저전압의 안전 상태에서 작업할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술한 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 배터리 시스템의 상황별 가변적 단선의 개념도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 집합 단위의 개념도이다.
도 4는 본 발명의 일 실시예에 따른 배터리 시스템의 예시도이다.
도 5는 본 발명의 일 실시예에 따른 가변적 단선 장치의 개략적 구성도이다.
도 6은 본 발명의 일 실시예에 따른 단선 제어 모듈의 구성도이다.
도 7은 본 발명의 일 실시예에 따른 센서 모듈의 실시 개념도이다.
도 8은 본 발명의 일 실시예에 따른 가변적 단선 제어 방법의 개략적 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
<1. 장치 구성>
도 1 및 도 2는 본 발명의 일 실시예에 따른 배터리 시스템의 상황별 가변적 단선 장치의 기술 개념을 도시한다.
본 발명의 배터리 시스템에서 전력의 저장 및 공급 주체의 최소 단위는 배터리 셀(101)이다. 대형 배터리 시스템은 배터리 셀(101) 단위를 서로 직렬 또는 병렬 연결하여 대용량 고전압의 전력을 공급할 수 있다.
본 발명에 따른 가변적 단선 장치는, 대형 배터리 시스템에서 지진, 침수, 화재 등의 비상 상황이 발생할 때, 그 상황을 감지하여 위험 상황이라 판단되면 감전이나 폭발 등의 재해 사고를 막고자 가변적으로 배터리 셀(101) 사이의 연결을 단선하여 저용량 저전압의 상태로 전환한다. 이외에도 가변적 단선 장치는, 대형 배터리 시스템의 유지 보수가 필요할 때, 일부 배터리 단위에 휴지기를 적용할 때 등, 필요에 따라서 배터리 셀(101)의 단선 간격을 가변적으로 조정하여 단선할 수 있다.
먼저, 도 1을 참조하면, "상황 A"는 개별 배터리 셀(101) 사이의 연결을 단선하여 배터리 시스템을 안정화시킨다. 그리고 "상황 B"는 2개 배터리 셀(101) 사이의 연결을 단선하여 배터리 시스템을 안정화시킨다. 여기서, "상황 A"는 "상황 B" 보다 단선 간격이 짧아짐에 따라서 더 안정화된 상태로 배터리 시스템이 전환된다.
다음으로, 도 2를 참조하면, 도 1의 "상황 A" 및 "상황 B"의 직렬 연결 단선과는 다르게, "상황 C"는 그룹화된 배터리 셀(101) 사이의 병렬 연결을 단선하여 배터리 시스템을 안정화시킨다. 한편, "상황 C"에서 총 8개의 배터리 셀(101)이 충전 완료된 상태에서 병렬 단선된 이후에 윗쪽 배터리 셀(101) 4개를 사용하고, 단선된 아래쪽 4개의 배터리 셀(101)을 예비용 배터리로 남겨두었다가 단선된 병렬 연결이 회복된 이후에 새로운 전력 공급의 주체로 사용할 수 있다.
도 3은 본 발명의 일 실시예에 따른 배터리 집합 단위(100)를 계층적으로 도시하는 개념도이다.
본 발명의 일 실시예에 따른 배터리 집합 단위(100)는 그 내부를 구성하는 배터리 단위로 구분되며, 최소 단위는 배터리 셀(101)이다. 여기서, 배터리 셀은 양극, 음극 및 분리막을 포함하는 단위 셀로서 전력 저장 및 공급의 최소 단위이다. 복수개 배터리 셀(101)이 서로 연결되어 집합체를 이루면 배터리 모듈(102) 단위가 된다. 복수개 배터리 모듈(102)이 서로 연결되어 집합체를 이루면 배터리 팩(103)이 된다. 복수개 배터리 팩(103)이 서로 연결되어 집합체를 이루면 배터리 시스템(104)이 된다. 개별 배터리 집합 단위 및 이들의 임의 조합은 배터리 집합체를 구성한다.
이 배터리 시스템(104)은 본 발명이 적용되는 대형 배터리 시스템(104)에 해당되며 스마트 그리드(마이크로 그리드) 지역에 설치될 수 있는 최소 단위가 된다. 그리고 복수개 배터리 시스템(104)이 서로 연결되면 배터리 플랜트(plant)(105)가 된다. 물론, 배터리 플랜트(105)가 가장 큰 용량 및 전압을 보유하는 전력원이다.
본 발명에 따른 가변적 단선 장치는, 배터리 집합 단위(100)에 해당하는 배터리 셀(101), 배터리 모듈(102), 배터리 팩(103), 배터리 시스템(104), 배터리 플랜트(105) 및 이들의 조합에 대하여 각각의 하부 배터리 단위별로 가변적으로 연결을 단선하여 대형 배터리 시스템의 안정성을 확보한다.
설명의 편의상, 도 1, 도 2, 도 6에서는 배터리의 단선 단위를 배터리 셀(101)로 도시하였으나, 실제 단선 단위는 배터리 셀(101)은 물론이고 배터리 집합 단위(100)에 해당하는 배터리 모듈(102), 배터리 팩(103), 배터리 시스템(104) 및 배터리 플랜트(105) 각각이 될 수 있다.
도 4는 본 발명의 일 실시예에 따른 배터리 시스템(104)을 도시한다.
배터리 시스템(104)은 수납 장치에 복수의 배터리 단위가 수납되어 각각의 배터리 단위가 병렬 또는 직렬 연결된 배선 구조를 가진다. 도면에는, 3개의 배터리 모듈(102)이 서로 연결되어 1개 층의 배터리 팩(103)을 형성하고, 3개 층의 배터리 팩(103)이 서로 연결되어 배터리 시스템(104)을 구성하는 것으로 도시되어 있으나, 도시된 배터리 시스템(104)은 일 예시에 불과하며 이 구성 방식으로 한정되는 것은 아니다.
도 5는 본 발명의 일 실시예에 따른 가변적 단선 장치(1)의 개략적 구성을 도시한 장치 구성도이다.
본 발명의 일 실시예에 따른 가변적 단선 장치는 복수의 스위치(11), 스위치 제어 모듈(12) 및 단선 제어 모듈(14)을 포함한다.
상기 스위치(11)는 배터리 집합 단위(100)의 사이를 연결하는 배선에 설치되되, 가변적 단선(disconnect) 및 단선 해제(connect)를 실시하고자 하는 배선에 선택적으로 설치된다. 개별 스위치(11)는 반도체 스위치나 기계적 릴레이 스위치 등 배선의 전기적 연결을 제어할 수 있다고 알려진 공지의 스위치 수단이라면 어떠한 것이라도 사용이 가능하다.
상기 배터리 집합 단위(100)는 배터리 셀(101), 배터리 모듈(102), 배터리 팩(103), 배터리 시스템(104) 및 배터리 플랜트(105)로 구성된 군에서 선택된 적어도 하나 또는 이들의 조합으로 구성될 수 있다. 따라서, 상기 스위치(11)는 배터리 셀(101)과 셀(101) 사이, 배터리 모듈(102)과 모듈(102) 사이, 배터리 팩(103)과 팩(103) 사이, 배터리 시스템(104)과 시스템(104) 사이 및 배터리 플랜트(105)와 플랜트(105) 사이에 소정의 배치 주기를 가지고 설치될 수 있다. 여기서, 배치 주기라 함은 스위치(11)가 설치되는 간격을 의미한다. 예를 들어, 배치 주기가 3이라면, 3개의 배터리 집합 단위(100)마다 스위치(11)가 하나씩 설치되는 것을 의미한다. 그리고 상기 배치 주기는 안정성, 충전 용량 등 필요에 따라서 가변적으로 조절될 수 있다.
상기 스위치 제어 모듈(12)은 단선 제어 모듈(13)로부터 스위치(11)의 온 또는 오프의 동작 제어 신호를 인가받아 각 스위치(11)에 개폐 신호를 인가하여 스위치(11)가 설치된 배선의 전기적 연결을 단선 또는 단선 해제(접속)시킨다. 상기 스위치 제어 모듈(12)은 아날로그 전단 회로(analog front end circuit)와 같은 통상적인 아날로그 회로를 사용하여 구현할 수 있다. 하지만, 본 발명이 이에 한정하는 것은 아니다.
상기 단선 제어 모듈(14)은 단선 레벨을 결정하고, 결정된 단선 레벨에 따라서 스위치 제어 모듈(12)로 단선 명령을 전송하여 상황별 수준에 따른 가변적 단선을 제어한다. 여기서, 상기 단선 명령은 개폐 제어될 개별 스위치(11)를 식별하는 정보를 포함하는 것으로서 스위치 제어 모듈(12)로 당해 스위치(11)의 개폐 동작 신호(connect or disconnect)를 인가하는 정보이다.
바람직하게, 본 발명의 일 실시예에 따른 가변적 단선 장치(1)는 복수개 센서로 구성된 센서 모듈(13)을 더 포함할 수 있다. 상기 센서 모듈(13)은 온도, 습도, 누전, 침수, 지진 등을 포함하는 위험 상황을 감지하여 실시간으로 단선 제어 모듈(14)로 전송한다. 또한, 센서 모듈(13)은 배터리 시스템의 구조체 출입문에 설치되어 출입문 개폐 상태를 단선 제어 모듈(14)로 전송할 수 있다. 상기 센서 모듈(13)의 설치 개수 및 설치 위치에 특별한 제한은 없으며, 배터리 시스템의 내부 및 원거리 위치에 설치할 수 있음은 물론이다. 또한, 센서 모듈(13)과 단선 제어 모듈(14) 사이의 데이터 통신은 유선 또는 무선 통신이 가능하다.
나아가, 상기 단선 제어 모듈(14)은 관리자로부터 매뉴얼 입력을 받고 스위치(11)의 개폐를 제어할 수 있다. 관리자의 매뉴얼 제어를 위하여, 단선 제어 모듈(14)은 입출력 I/F(15)와 연결되고, 입출력 I/F(15)는 화면 출력 수단(16) 및 데이터 입력 수단(17)과 연결된다. 따라서, 관리자는 화면 출력 수단(16)(예 : 모니터)을 통하여 센서 모듈(13)의 센서값, 배터리 동작 현황 등의 배터리 운영 정보를 모니터링 하는 과정에서 필요에 따라서 데이터 입력 수단(17)(예 : 키보드)으로 단선 명령을 입력할 수 있다.
더욱 바람직하게, 상기 단선 제어 모듈(14)은 외부 단말로부터 단선 명령을 네트워크 수신하여 스위치(11)의 개폐를 제어할 수 있다. 외부 네트워크 제어를 위하여 단선 제어 모듈(14)은 유선 또는 무선 통신 모듈(18)과 연결되고, 통신 모듈(18)로부터 유, 무선 전송된 단선 명령을 수신한다.
도 6은 본 발명의 일 실시예에 따른 단선 제어 모듈(14)의 동작을 예시한다.
상기 단선 제어 모듈(14)은 가변적 단선 장치(1)의 운용 전략, 내/외부적 위험 정도, 시스템 유지 보수 등의 이벤트 발생 상황에 따라서 연결 배선의 단선 및 접속을 제어한다.
바람직하게, 단선 제어 모듈(14)은 센서 모듈(13)이 감지한 이벤트 발생 상황에 따라서 단선 레벨을 결정하여 단선 명령 또는 접속 명령을 스위치 제어 모듈(13)로 지령한다.
나아가, 단선 제어 모듈(14)은 관리자로부터 매뉴얼 입력을 받고 대응하는 접속 명령 및 단선 명령을 스위치 제어 모듈(13)로 전송할 수 있고(로컬 지령), 원거리 중앙 통제소로부터 유, 무선 네트워크 연결에 의하여 접속 명령 및 단선 명령을 수신하여 스위치 제어 모듈(13)로 전송할 수 있다(원격 지령). 참고로, 상기 유, 무선 네트워크는 대표적으로 이동통신망, 인터넷과 같은 유, 무선 공중망이나 전용망 등과 같이 다양한 프로토콜을 이용하여 데이터 통신이 가능한 모든 통신망을 포괄한다.
여기서, 상기 단선 명령은 단선 레벨에 따라서 단선해야 하는 스위치(11)의 식별 정보를 포함하는데, 위험 상황일수록 배터리 집합 단위(110)의 단선 간격을 짧게 한다. 전술한 도 1에서는 "상황 A"의 단선 간격이 "상황 B" 보다 더 짧음으로써 "상황 A"가 저용량, 저전력의 안정화 상태임을 설명한 바 있다.
이외에도, 단선 제어 모듈(14)은 다음과 같은 다양한 상황별 단선 명령을 지령할 수 있다. 침수 상황이 감지되는 경우, 감전 사고를 예방하기 위하여 최소 단위인 배터리 셀(101) 단위로 단선 명령을 내린다. 위험 상황이 감지되었으나 배터리의 계속 사용에 문제가 없는 경우, 병렬 연결의 일부를 끊고 나머지 연결된 배터리로만 사용하다가 순차적으로 단선된 배터리로 교체하여 연결 회복시키는 접속 명령을 내린다. 배터리 시스템에서 예비용 배터리로 활용하기 위하여 병렬 연결을 임의로 단선하는 단선 명령을 내릴 수 있다(도 2 참조). 또한, 배터리 집합 단위(100)의 유지 보수를 위하여 배터리 시스템 내부로 작업자가 정비 모드로 진입하는 경우, 안전 확보에 요구되는 전압 수준(예 : 30볼트 이하)으로 단선하거나 또는 배터리 시스템 구조물의 출입문과 연동하여 센서 모듈로부터 출입문 열림의 감지 데이터를 수신하면 자동으로 안전 수준 허용치 이하로 전환하는 단선 명령을 내릴 수 있다.
도 7은 본 발명의 일 실시예에 따른 센서 모듈(13)의 실시 개념을 도시한다.
도면을 참조하면, 상기 센서 모듈(13)은 배터리 집합체(110)에 직접 설치될 수 있다. 여기서, 배터리 집합체(110)는 본 발명의 가변 단선 장치의 설치로 제어되는 배터리 시스템을 포함하는 개념이다. 나아가, 상기 배터리 집합체(110)는 복수개 배터리 집합 단위(100)가 위치하는 구조체를 포함하는 개념으로 확장될 수 있다.
상기 센서 모듈(13)의 설치 위치는 위험 상황을 감지하는데 적합한 지점이라면 어디라도 가능하다. 예를 들어, 센서 모듈(13)은 배터리는 물론이며 구조체의 내면, 외면 및 출입문에 설치되어 온도, 습도, 누전, 침수, 지진 등을 포함하는 위험 상황을 감지하여 감지 데이터를 단선 제어 모듈(14)로 전송한다. 또한, 작업자가 출입하는 출입문에 개폐 감지용 출입문 센서를 설치하는 것도 가능하다. 출입문이 개방되었을 경우, 단선 제어 모듈(14)이 출입문 센서로부터 개방 상태의 감지 데이터를 수신한 후, 전압을 안정 레벨 이하(예 : 30볼트 이하)로 내리는 단선 조치를 취할 수 있다.
상기 배터리 집합체(110)는 복수의 배터리 시스템이 집합되어 있는 배터리 플랜트이다. 상기 배터리 플랜트는 외부 환경으로부터 배터리 시스템을 보호할 수 있는 공간에 구축된다. 상기 배터리 집합체, 배터리 플랜트의 온도와 습도를 적정 수준으로 유지하기 위한 공조 장치, 화재를 진압하기 위한 소화 장치 등이 설치되는 것이 바람직하다. 또한, 배터리 플랜트에는, 배터리 플랜트를 구성하는 각각의 배터리 시스템의 충방전 제어, 화면 모니터링, 각종 보호 동작, 외부와의 통신, 본 발명에 따른 가변적 단선 동작을 수행하는 단선 제어 모듈(14)이 설치되는 것이 바람직하다.
이상의 대형 배터리 시스템의 가변적 단선 장치를 구성하는 개별 구성 요소들의 상세한 기능과 동작은 후술하는 방법 구성을 통하여 설명한다.
<2. 방법 구성>
본 발명의 일 실시예에 따른 배터리 시스템의 가변적 단선 제어 방법은 전술한 가변적 단선 장치의 구축을 통하여 바람직하게 실현될 수 있다.
도 8은 본 발명의 일 실시예에 따른 가변적 단선 제어 방법의 개략적 순서를 도시한다.
배터리 시스템에서는 개별 배터리 집합 단위(100)를 대상으로 전력 저장 및 공급을 제어 및 감시한다. 여기서, 제어 및 감시는 자동화 운용 전략에 따라서 운용됨은 물론이며, 관리자의 매뉴얼 입력 및 유, 무선 네트워크를 통하여 중앙 통제소로부터 전송받은 지령에 따라서 운용될 수 있다. 배터리 집합 단위(100)의 예시는 도 3 및 도 4를 참조하여 기 설명한 바 있다.
배터리 시스템의 전력 수급 운용 과정에서, 본 발명에 따른 가변적 단선 장치의 센서 모듈(13)은 온도, 습도, 누전, 침수 및 지진 중 어느 하나를 포함하는 위험 상황 및 출입문 개폐 상태 등의 감지 데이터를 단선 제어 모듈(14)로 전송한다(S11). 센서 모듈(13)은 복수개 센서로 구성될 수 있고, 개별 센서는 서로 다른 위치에 설치될 수 있으며 단선 제어 모듈(14)과 유, 무선 통신에 의하여 감지 데이터를 전송한다.
단선 제어 모듈(14)은 실시간 또는 정해진 주기마다 센서 모듈(13)로부터 감지 데이터를 수신하여 위험 상황을 판단한 후 단선 레벨을 결정한다(S12). 여기서, 단선 레벨은 제어 대상의 스위치(11), 단선 또는 접속 여부, 단선 간격 등의 정보를 포함하는 단선 명령 및 접속 명령을 결정하는 정보이다. 그리고 위험 상황일수록 최소 단위인 배터리 셀(101) 단위의 스위치(11) 단선 제어가 발생하고, 그 단선 간격도 짧아진다.
단선 레벨이 단선 명령에 해당하는 경우, 단선 제어 모듈(14)은 스위치 제어 모듈(13)로 단선 명령을 전송하고, 스위치 제어 모듈(13)이 단선 제어 모듈(14)로부터 단선 명령을 수신한다(S13). 그리고 스위치 제어 모듈(13)은 제어 대상의 스위치(11)로 단선 신호(스위치 오프)를 인가하고, 당해 스위치(11)는 배선 연결을 단선한다(S14).
만약, 단선 레벨이 접속 명령에 해당하는 경우, 단선 제어 모듈(14)은 스위치 제어 모듈(13)로 접속 명령을 전송하고, 스위치 제어 모듈(13)이 단선 제어 모듈(14)로부터 접속 명령을 수신한다(S15). 그리고 스위치 제어 모듈(13)은 제어 대상의 스위치(11)로 접속 신호(스위치 온)를 인가하고, 당해 스위치(11)는 배선 연결을 연결한다(S16). 접속 이후, 배터리 시스템은 단선 이전의 상태로 복원된다.
여기서, 상기 단선 명령 및 접속 명령은 도 3에 도시한 배터리 집합 단위(100)의 각각의 배터리 단위별로 전송이 가능하다. 예를 들면, 배터리 시스템(104) 단위로 명령하는 것보다 배터리 셀(101) 단위로 명령하는 것이 보다 상세하게 전력의 용량과 전압을 제어할 수 있다. 그리고 단선 간격을 짧게 할수록 저용량, 저전압 단위의 안정 상태를 만들 수 있다.
한편, 단선 제어 모듈(14)은 센서 모듈(13)이 감지한 외부 상황 데이터의 단선 레벨에 따라서 자동 제어가 가능하고, 관리자로부터 매뉴얼 입력을 받아 스위치 제어 모듈(13)의 단선 및 접속의 제어가 가능하다. 나아가, 중앙 통제소로부터 네트워크를 통하여 명령을 수신한 후 단선 또는 접속의 제어가 가능하다.
상술한 바와 같이, 본 발명에 따른 대형 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법의 실시예가 구성된다. 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (19)

  1. 배터리 집합 단위의 물리적 연결을 가변적으로 단선 제어하는 가변적 단선 장치에 있어서,
    배터리 집합 단위의 연결 배선에 설치되어 배선을 전기적으로 연결 또는 단선시키는 스위치;
    상기 스위치에 온 또는 오프 신호를 인가하는 스위치 제어 모듈; 및
    감지된 위험 수준에 따라 상기 스위치 제어 모듈을 통제하여 개폐 스위치의 위치 및 수와 단선 간격을 가변시키는 단선 제어 모듈
    을 포함하는 것을 특징으로 하는 가변적 단선 장치.
  2. 제 1항에 있어서,
    상기 배터리 집합 단위는,
    외부 전력을 공급받아 저장하고 저장된 전력을 외부로 공급하는 배터리 셀;
    복수개 배터리 단위 셀의 집합체에 해당하는 배터리 모듈;
    복수개 배터리 단위 모듈의 집합체에 해당하는 배터리 팩;
    복수개 배터리 팩의 집합체에 해당하는 배터리 시스템; 및
    복수개 배터리 시스템의 집합체에 해당하는 배터리 플랜트
    중 어느 하나 또는 이들의 조합에 해당하는 것을 특징으로 하는 가변적 단선 장치.
  3. 제 1항 또는 제 2항에 있어서,
    실시간으로 현재 상황을 감지하여 감지 데이터를 단선 제어 모듈로 전송하는 센서 모듈을 더 포함하는 것을 특징으로 하는 가변적 단선 장치.
  4. 제 3항에 있어서,
    상기 센서 모듈은,
    배터리 집합 단위의 구조체 내부 또는 외부에 설치되거나 또는 원거리에 설치되어 온도, 습도, 누전, 침수 및 지진 중 어느 하나를 포함하는 위험 상황을 감지하고 유, 무선 연결에 의하여 감지한 위험 상황 정보를 단선 제어 모듈로 전송하는 것을 특징으로 하는 가변적 단선 장치.
  5. 제 4에 있어서,
    상기 단선 제어 모듈은 스위치 제어 모듈로 가변적 단선 또는 접속의 제어 신호를 출력하고,
    상기 제어 신호는 개폐 제어할 적어도 하나 이상의 스위치의 식별 정보를 포함하는 것을 특징으로 하는 가변적 단선 장치.
  6. 제 5항에 있어서,
    상기 단선 제어 모듈은,
    위험 상황으로 판단된 단선 레벨일수록 배터리 집합 단위의 단선 간격을 짧게 하는 것을 특징으로 하는 가변적 단선 장치.
  7. 제 6항에 있어서,
    상기 단선 제어 모듈은,
    관리자의 매뉴얼 명령 또는 외부 네트워크 명령을 받고 대응하는 접속 명령 또는 단선 명령을 스위치 제어 모듈로 전송할 수 있는 것을 특징으로 하는 가변적 단선 장치.
  8. 제 7항에 있어서,
    상기 단선 제어 모듈은,
    화면 출력 수단 및 데이터 입력 수단과 연결된 입출력 인터페이스와 연결되어, 상기 데이터 입력 수단에서 입력된 관련자의 매뉴얼 입력을 상기 입출력 인터페이스를 통하여 입력받고 대응하는 접속 명령 및 단선 명령을 상기 스위치 제어 모듈로 전송하는 기능; 및
    통신 수단과 연결되어, 중앙 통제소로부터 상기 통신 수단을 통하여 유, 무선 방식으로 접속 명령 및 단선 명령을 수신하여 상기 스위치 제어 모듈로 전송하는 기능
    중에서 적어도 하나의 기능을 구비하는 것을 특징으로 하는 가변적 단선 장치.
  9. 제 8항에 있어서,
    상기 단선 제어 모듈은,
    침수 상황이 감지되는 경우, 감전 사고를 예방하기 위하여 배터리 셀 단위로 단선하는 단선 명령;
    위험 상황이 감지되었으나 전력 공급에 문제가 없는 경우, 순차적으로 단선된 배터리 구성 모듈로 교체 접속하기 위하여, 병렬 연결의 일부를 단선하는 단선 명령;
    배터리 구성 모듈의 유지 보수를 위하여 배터리 시스템에 작업자가 정비 모드로 진입하는 경우, 관리자의 매뉴얼 명령으로 작업자 안전 허용치 이하의 전압 단위로 단선하는 단선 명령;
    배터리 시스템 구조물의 출입문과 연동하여 센서 모듈로부터 출입문 열림의 감지 데이터를 수신하면 자동으로 작업자 안전 허용치 이하의 전압 단위로 단선하는 단선 명령; 및
    배터리 시스템에서 예비용 배터리로 활용하기 위하여 병렬 연결을 임의로 단선하는 단선 명령
    중에서 적어도 하나의 명령을 내릴 수 있는 것을 특징으로 하는 가변적 단선 장치.
  10. 가변적 단선 장치와 배터리 집합 단위를 포함하여
    가변적 단선 장치가 배터리 집합 단위 및 배터리 집합 단위의 임의 조합에 대하여 가변적 단선을 제어하는 것을 특징으로 하는 배터리 집합체.
  11. 배터리 집합 단위의 물리적 연결을 가변적으로 단선 제어하는 가변적 단선 장치가 하기의 단계들을 실행하는 가변적 단선 제어 방법에 있어서,
    (S11)상기 가변적 단선 장치의 센서 모듈이 현재 상황을 감지하여 단선 제어 모듈로 전송하는 단계;
    (S12)단선 제어 모듈이 상기 센서 모듈로부터 현재 상황의 감지 데이터를 수신하여 위험 상황을 판단한 후 단선 레벨을 결정하는 단계;
    (S13)결정된 단선 레벨이 기 접속된 스위치 제어 모듈의 단선을 적용하는 경우, 단선 제어 모듈이 스위치 제어 모듈로 단선 명령을 전송하는 단계;
    (S14)스위치 제어 모듈이 단선 명령을 수신하여 대응하는 스위치의 물리적 연결을 단선으로 전환하는 단계;
    (S15)상기 단계(S12) 이후에, 결정된 단선 레벨이 기 단선된 스위치 제어 모듈의 단선을 해제하는 경우, 단선 제어 모듈이 스위치 제어 모듈로 접속 명령을 전송하는 단계; 및
    (S16)스위치 제어 모듈이 접속 명령을 수신하여 대응하는 스위치의 물리적 연결을 접속으로 전환하는 단계
    를 포함하는 것을 특징으로 하는 가변적 단선 제어 방법.
  12. 제 11항에 있어서,
    상기 배터리 집합 단위는,
    외부 전력을 공급받아 저장하고 저장된 전력을 외부로 공급하는 배터리 셀;
    복수개 배터리 단위 셀의 집합체에 해당하는 배터리 모듈;
    복수개 배터리 단위 모듈의 집합체에 해당하는 배터리 팩;
    복수개 배터리 팩의 집합체에 해당하는 배터리 시스템; 및
    복수개 배터리 시스템의 집합체에 해당하는 배터리 플랜트
    중 어느 하나 또는 이들의 조합에 해당하는 것을 특징으로 하는 가변적 단선 제어 방법.
  13. 제 12항에 있어서,
    센서 모듈은,
    배터리 집합 단위의 구조체 내부 또는 외부에 설치되거나 또는 원거리에 설치되어 온도, 습도, 누전, 침수 및 지진 중 어느 하나를 포함하는 위험 상황을 감지하고, 유, 무선 연결에 의하여 감지한 위험 상황 정보를 단선 제어 모듈로 전송하는 것을 특징으로 하는 가변적 단선 제어 방법.
  14. 제 13에 있어서,
    상기 단선 제어 모듈은 스위치 제어 모듈로 가변적 단선 또는 접속의 제어 신호를 출력하고,
    상기 제어 신호는 개폐 제어할 적어도 하나 이상의 스위치의 식별 정보를 포함하는 것을 특징으로 하는 가변적 단선 제어 방법.
  15. 제 14항에 있어서,
    상기 단선 제어 모듈은,
    위험 상황으로 판단된 단선 레벨일수록 배터리 집합 단위의 단선 간격을 짧게 하는 것을 특징으로 하는 가변적 단선 제어 방법.
  16. 제 15항에 있어서,
    상기 단선 제어 모듈은,
    관리자의 매뉴얼 명령 또는 외부 네트워크 명령을 받고 대응하는 접속 명령 또는 단선 명령을 스위치 제어 모듈로 전송할 수 있는 것을 특징으로 하는 가변적 단선 제어 방법.
  17. 제 16항에 있어서,
    상기 단선 제어 모듈은,
    화면 출력 수단 및 데이터 입력 수단과 연결된 입출력 인터페이스와 연결되어, 상기 데이터 입력 수단에서 입력된 관련자의 매뉴얼 입력을 상기 입출력 인터페이스를 통하여 입력받고 대응하는 접속 명령 및 단선 명령을 상기 스위치 제어 모듈로 전송하는 기능; 및
    통신 수단과 연결되어, 중앙 통제소로부터 상기 통신 수단을 통하여 유, 무선 방식으로 접속 명령 및 단선 명령을 수신하여 상기 스위치 제어 모듈로 전송하는 기능
    중에서 적어도 하나의 기능을 구비하는 것을 특징으로 하는 가변적 단선 제어 방법.
  18. 제 17항에 있어서,
    상기 단선 제어 모듈은,
    침수 상황이 감지되는 경우, 감전 사고를 예방하기 위하여 배터리 셀 단위로 단선하는 단선 명령;
    위험 상황이 감지되었으나 전력 공급에 문제가 없는 경우, 순차적으로 단선된 배터리 구성 모듈로 교체 접속하기 위하여, 병렬 연결의 일부를 단선하는 단선 명령;
    배터리 구성 모듈의 유지 보수를 위하여 배터리 시스템에 작업자가 정비 모드로 진입하는 경우, 관리자의 매뉴얼 명령으로 작업자 안전 허용치 이하의 전압 단위로 단선하는 단선 명령;
    배터리 시스템 구조물의 출입문과 연동하여 센서 모듈로부터 출입문 열림의 감지 데이터를 수신하면 자동으로 작업자 안전 허용치 이하의 전압 단위로 단선하는 단선 명령; 또는
    배터리 시스템에서 예비용 배터리로 활용하기 위하여 병렬 연결을 임의로 단선하는 단선 명령
    을 내릴 수 있는 것을 특징으로 하는 가변적 단선 제어 방법.
  19. 제 11항 또는 제 12항에 있어서,
    가변적 단선 장치가 배터리 집합 단위 및 배터리 집합 단위의 임의 조합에 대하여 가변적 단선을 제어하는 것을 특징으로 하는 가변적 단선 제어 방법.
PCT/KR2011/007279 2010-09-30 2011-09-30 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법 WO2012044125A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013531501A JP5843208B2 (ja) 2010-09-30 2011-09-30 バッテリーシステムの可変的断線装置及び可変的断線制御方法
BR112013007827A BR112013007827B1 (pt) 2010-09-30 2011-09-30 aparelho e método para controle de forma variável da desconexão de conexões físicas entre unidades de montagem de bateria, e montagem de bateria
CN201180047802.2A CN103140981B (zh) 2010-09-30 2011-09-30 电池系统的可变断开设备及其可变断开控制方法
EP11829631.8A EP2634855B1 (en) 2010-09-30 2011-09-30 Apparatus and method for variably controlling disconnection of interconnection lines in battery system
US13/851,239 US9362741B2 (en) 2010-09-30 2013-03-27 Apparatus and method for variably controlling disconnection of interconnection lines in battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0095338 2010-09-30
KR1020100095338A KR101579195B1 (ko) 2010-09-30 2010-09-30 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/851,239 Continuation US9362741B2 (en) 2010-09-30 2013-03-27 Apparatus and method for variably controlling disconnection of interconnection lines in battery system

Publications (2)

Publication Number Publication Date
WO2012044125A2 true WO2012044125A2 (ko) 2012-04-05
WO2012044125A3 WO2012044125A3 (ko) 2012-07-19

Family

ID=45893703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007279 WO2012044125A2 (ko) 2010-09-30 2011-09-30 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법

Country Status (7)

Country Link
US (1) US9362741B2 (ko)
EP (1) EP2634855B1 (ko)
JP (2) JP5843208B2 (ko)
KR (1) KR101579195B1 (ko)
CN (1) CN103140981B (ko)
BR (1) BR112013007827B1 (ko)
WO (1) WO2012044125A2 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234918B2 (en) 2014-08-29 2019-03-19 Hewlett-Packard Development Company, L.P. Disconnecting a battery from a system
CN106784585A (zh) * 2016-12-13 2017-05-31 高玮 一种可控断开保险装置
BR112020000016A2 (pt) * 2017-07-10 2020-07-21 Berker Gmbh & Co. Kg equipamento elétrico e módulo funcional adicional associado
BR112020000022A2 (pt) * 2017-07-10 2020-07-14 Berker Gmbh & Co. Kg equipamento elétrico e módulo funcional adicional associado
AU2017423233B2 (en) * 2017-07-10 2021-07-01 Berker Gmbh & Co. Kg Electrical equipment and additional functional module associated therewith
JP7296896B2 (ja) * 2020-01-28 2023-06-23 ニチコン株式会社 蓄電システム
US11671181B2 (en) * 2020-03-31 2023-06-06 Samsung Sdi Co., Ltd. Battery system with light-based communication

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287267A (en) * 1980-05-27 1981-09-01 Energy Development Associates, Inc. Zinc-chlorine battery plant system and method
US4502000A (en) * 1983-07-19 1985-02-26 Energy Development Associates, Inc. Device for balancing parallel strings
JP3331529B2 (ja) * 1993-01-29 2002-10-07 キヤノン株式会社 蓄電装置及び電力システム
EP0609101B1 (en) * 1993-01-29 2002-06-26 Canon Kabushiki Kaisha Electric power accumulating apparatus and electric power system
US5898291A (en) * 1998-01-26 1999-04-27 Space Systems/Loral, Inc. Battery cell bypass topology
US6430692B1 (en) * 1998-09-25 2002-08-06 International Business Machines, Corporation Series-parallel battery array conversion
JP2001086656A (ja) 1999-07-09 2001-03-30 Fujitsu Ltd バッテリ監視装置
JP2002042901A (ja) * 2000-07-19 2002-02-08 Honda Motor Co Ltd 蓄電装置の容量均等化装置
JP4411775B2 (ja) * 2000-10-31 2010-02-10 日産自動車株式会社 組電池
JP3081744U (ja) * 2001-05-15 2001-11-22 元▲ねい▼ 蔡 多機能真空加工機
US20020170595A1 (en) * 2001-05-17 2002-11-21 Oliver Jason A. Earthquake and/or emission detector with utility shut off
KR20030021666A (ko) * 2001-09-07 2003-03-15 엘지이노텍 주식회사 배터리 팩
CN100379078C (zh) * 2001-10-11 2008-04-02 迪诺佛研究有限公司 数字电池组
DE10330834A1 (de) * 2003-07-08 2005-02-03 Cooper Crouse-Hinds Gmbh Verfahren und Vorrichtung zur Versorgung wenigstens einer Last
KR100624944B1 (ko) 2004-11-29 2006-09-18 삼성에스디아이 주식회사 배터리 팩의 보호회로
JP4196122B2 (ja) * 2005-02-25 2008-12-17 パナソニック株式会社 電池パック
KR100834009B1 (ko) * 2006-03-15 2008-06-02 한국철도기술연구원 비상시 전원공급 차단기능을 가지는 배터리
WO2009048974A1 (en) * 2007-10-09 2009-04-16 Hum Cycles, Inc. Power source and method of managing a power source
US7763993B2 (en) * 2008-07-16 2010-07-27 International Business Machines Corporation DC UPS with auto-ranging backup voltage capability
JP5397985B2 (ja) * 2008-11-26 2014-01-22 Necエナジーデバイス株式会社 二次電池パック

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2634855A4

Also Published As

Publication number Publication date
CN103140981B (zh) 2015-08-05
BR112013007827B1 (pt) 2019-11-26
WO2012044125A3 (ko) 2012-07-19
BR112013007827A2 (pt) 2016-06-14
JP2015228790A (ja) 2015-12-17
US20130207476A1 (en) 2013-08-15
EP2634855A4 (en) 2016-10-12
JP2013546119A (ja) 2013-12-26
KR20120033680A (ko) 2012-04-09
JP6198778B2 (ja) 2017-09-20
KR101579195B1 (ko) 2015-12-21
US9362741B2 (en) 2016-06-07
EP2634855B1 (en) 2019-08-21
CN103140981A (zh) 2013-06-05
EP2634855A2 (en) 2013-09-04
JP5843208B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2012044125A2 (ko) 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법
WO2013032062A1 (ko) 태양광 모듈 모니터링 시스템
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2012165858A2 (ko) 전력 저장 장치, 이를 이용한 전력 저장 시스템 및 전력 저장 시스템의 구성 방법
WO2015046804A1 (ko) 삽입형 bms어셈블리를 포함하는 전지팩
WO2012033248A1 (ko) 지능형 에너지 저장 시스템 및 방법
WO2020071734A1 (ko) 스마트 슬레이브 배터리 관리 시스템 및 이의 구동방법
WO2012165890A9 (ko) 전력저장용 단위 랙의 연결을 위한 전압 평준화 장치 및 이를 포함하는 전력저장 시스템
WO2022015025A1 (ko) 배터리 밸브 및 이를 포함하는 배터리
WO2019103388A1 (ko) 연료전지 파워팩 및 그것의 전원 공급 제어 방법
WO2017090896A1 (ko) 분산전원이 연계된 전력 계통의 전력 관리 장치 및 그 방법
WO2018088685A1 (ko) 배터리 팩
WO2020171417A1 (ko) Ess의 안정화 시스템 및 그 방법
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법
WO2021029542A1 (ko) 태양광 전지의 발전 효율 향상 장치 및 방법
KR101589194B1 (ko) 배터리 시스템의 가변적 단선 장치 및 가변적 단선 제어 방법
WO2023158069A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2019225771A1 (ko) 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법
WO2022145708A1 (ko) 에너지 저장 시스템의 배터리 오토 밸런싱 장치 및 방법
WO2021096043A1 (ko) 모듈 배터리 시스템
WO2023068717A1 (ko) 화재 예방 장치 및 그것의 동작 방법
CN220569829U (zh) 后备电池
JP7310948B1 (ja) 蓄電装置
CN217642873U (zh) 一种微电网应用的电化学储能一体机
WO2023003441A1 (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047802.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829631

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013531501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829631

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007827

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007827

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130401