WO2019225771A1 - 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법 - Google Patents

태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법 Download PDF

Info

Publication number
WO2019225771A1
WO2019225771A1 PCT/KR2018/005792 KR2018005792W WO2019225771A1 WO 2019225771 A1 WO2019225771 A1 WO 2019225771A1 KR 2018005792 W KR2018005792 W KR 2018005792W WO 2019225771 A1 WO2019225771 A1 WO 2019225771A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
voltage
index
unit
controller
Prior art date
Application number
PCT/KR2018/005792
Other languages
English (en)
French (fr)
Inventor
장현수
Original Assignee
(주)현태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)현태 filed Critical (주)현태
Priority to KR1020187014453A priority Critical patent/KR20200066115A/ko
Priority to PCT/KR2018/005792 priority patent/WO2019225771A1/ko
Publication of WO2019225771A1 publication Critical patent/WO2019225771A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a voltage measuring system of a solar cell and a method for diagnosing individual faults of the solar cell using the same, and more particularly, by measuring an individual voltage value of the solar cell and having an abnormality among the individual solar cells.
  • the present invention relates to a solar cell voltage measurement system capable of discriminating solar cells and an individual failure diagnosis method of the solar cell using the same.
  • Such a photovoltaic power generation system is composed of a plurality of solar panel modules that convert electrical energy by receiving sunlight and are required by connecting a plurality of solar panel modules (hereinafter referred to as 'solar cells') in series or in parallel. I am getting power.
  • the form of such a general photovoltaic power generation system is shown in FIG. 1.
  • a general photovoltaic power generation system connects individual solar cells (C) in series to make a row of solar cells in order to increase voltage, and connects the rows of solar cells in parallel to a current. Increase capacity and use.
  • the solar cells connected in the above structure produces power, it is focused on the inverter I and processed and used in the required form.
  • any one of the unit solar cells C constituting the system has an abnormality.
  • the entire heat of the solar cell (C) including the problem solar cell (C) is abnormal operation.
  • the photovoltaic power generation system may be a problem because most of the installed places such as foothills, rooftops of buildings, and idle areas are installed unattended and are operated unattended.
  • Korean Patent No. 10-1023445 provides a solar cell module remote monitoring and control system.
  • the registered patent includes a solar cell module control device including a sensor sensing unit and a switching unit for sensing voltage and current, a connection terminal box equipped with the solar cell module control device, and a central control system. According to the data transmission command to measure the state of the solar cell module and accordingly provides a solar cell module remote monitoring and control system for the central control system to control the operation state of each part.
  • Korean Patent Publication No. 10-2014-0111744 provides a method for setting a wireless communication network of a solar power monitoring system.
  • the above-mentioned patent discloses a method of combining a plurality of independent digital wireless communication networks distinguished by PAN IDs and configuring a digital wireless network to operate as a huge single network by installing a super network on top.
  • Korean Patent Application Publication No. 10-2016-0126844 discloses a sequential wireless transmission system for photovoltaic power generation facility monitoring data
  • Patent Registration No. 10-1777195 provides a connection panel for a photovoltaic device having a photovoltaic failure diagnosis remote monitoring monitoring system. It is starting.
  • the present invention provides a configuration and method for performing individual fault diagnosis of a solar cell in a manner different from those of the prior arts, and an object thereof is to provide a voltage measuring system for a solar cell and a method for individual fault diagnosis using a same. have.
  • a solar cell voltage measurement system for use in a photovoltaic power generation system including at least one solar cell and an inverter, the solar cell voltage measuring system comprising: at least one solar cell; A voltage sensor measuring a voltage of electric energy generated by the solar cell generation; And at least one solar cell unit connected to the solar cell and including a bypass unit which is a switch circuit that determines whether to transmit or receive electrical energy generated by the generation of the solar cell.
  • a controller communicatively connected to a voltage sensor of each of the one or more solar cell units;
  • a server unit communicatively connected to the controller;
  • the present invention provides a solar cell voltage measurement system connected to the server unit and connected to the server unit and including a display unit including an input / output device.
  • the solar cell unit is composed of at least two, each bypass unit of the solar cell unit is connected in series to form one or more solar cell string unit, each of the solar cell string is connected in parallel and connected to the inverter desirable.
  • any one of the solar cell unit in the solar cell string may be installed in addition to the current sensor for measuring the current of the electrical energy generated by the solar cell.
  • the solar cell and the controller of each of the two or more solar cell units in the solar cell string characterized in that the communication is connected in the form of any one of a linear topology or a linear bus topology, solar cell voltage measurement system.
  • the controller in the sensor is connected to the sensor so as to communicate with the sensor;
  • An operation unit including a voltage determination unit determining whether the measured voltage value is faulty and a control unit controlling an operation of the bypass unit;
  • Photo sensor And
  • a communication module communicatively coupled to the server unit.
  • the server unit may include a schematic program.
  • a solar cell failure diagnosis method using the solar cell voltage measuring system wherein any one of the voltage sensors of each of the one or more solar cell units detects that an electric energy voltage value generated by the solar cell is out of a normal range, and detects a failure detection signal.
  • (F) generating a fault (S1) for transmitting to the controller;
  • a failure determination step (S2) of determining whether the controller has failed after the step (S1);
  • a voltage index creation request step (S4) in which the controller transmits a voltage index creation request (V.req) to any one of the voltage sensors of each of the one or more solar cell units after the step (S3);
  • the voltage sensor receiving the voltage index creation request (V.req) through the step (S4) creates a pre-index (V.index) to record and store its own ID information
  • a schematic voltage index providing step (S7) to provide a solar cell failure diagnosis method that can deliver the information of the solar cell failure occurs to the administrator.
  • the state information of the voltage index (V. index) is preferably divided into three states of a normal state, an unstable state, and a fault state.
  • a voltage index (V.index) is created, and the ID information and state information thereof are recorded, stored, and updated, and the updated voltage index (V.index) is connected to communicate by itself.
  • the other voltage sensor that has received the voltage index (V.index) records, updates, and stores its ID information and status information under the ID information and status information recorded by the previous voltage sensor. It is then desirable to transmit to another voltage sensor or controller that is communicatively coupled with itself.
  • FIG. 1 is a schematic structural diagram of a conventional photovoltaic power generation system.
  • FIG. 2 is a structural diagram of a photovoltaic power generation system of the present invention.
  • Figure 3 is a controller and server unit operation structure diagram of the photovoltaic power generation system of the present invention.
  • FIG. 4 is a structural diagram of a voltage color of the present invention.
  • FIG. 5 is a schematic diagram of a schematic voltage color of the present invention.
  • Figure 6 is a flow chart of the individual fault diagnosis method of the solar cell using the voltage measurement system of the solar cell of the present invention.
  • 410 sensor connection.
  • 420 arithmetic unit.
  • 421 voltage determination unit.
  • 422 control unit.
  • FIG. 2 is a structural diagram of a solar cell voltage measurement system of the present invention. Hereinafter, an operation configuration of the solar cell voltage measuring system of the present invention will be described with reference to FIG. 2.
  • the solar cell voltage measuring system of the present invention is used in a photovoltaic device using at least one solar cell 110.
  • at least one solar cell 110 is connected in series to form a solar cell array A (10) which is a unit of solar cells, and the other one or more solar cells 210 are connected in series to form a solar cell array.
  • B (20) is formed, and the solar cell row A (10) and the solar cell row B (20) are connected in parallel and used in a solar power generation device connected to the inverter (30).
  • the present invention is not applied only to the preferred form as described above, in addition to the solar cell heat A (10) and B (20), another solar cell heat can be configured in any number, and also one solar cell heat Even if the number of solar cells also connected in series in one or more can be used if possible.
  • FIG. 1 two solar cell rows 10 and 20 will be described as an example.
  • the parts connected to each other in a solid line in the structural diagram of FIG. 2 represent power lines through which the generated electrical energy is transmitted and received, and the dotted lines represent control connection relationships in which signals or information can be exchanged with each other.
  • the solid line and the dotted line are separated without contact and do not influence each other.
  • the solar cell voltage measuring system of the present invention at least one solar cell 110 and a current sensor 130 for measuring a current of electric energy generated by power generation in the solar cell 110. ), And the voltage sensor 120 for measuring the voltage, and the solar cell unit 100 by tying the bypass unit 140 which is connected to the solar cell 110 and a switch circuit capable of transmitting and receiving power in one unit.
  • the solar cell unit 100 since the solar cell unit 100 will be configured to be the same as the number of solar cell columns A 10 to which the corresponding solar cell 110 belongs, the solar cell unit 100 is several days as shown in FIG. Can be.
  • the voltage sensors 120 and 120a to 120x are all linearly connected to enable signal transmission, and the bypass units 140 and 140a to 140x are also connected in series to enable transmission of electrical energy. Since the bypass units 140 and 140a to 140x do not operate normally, the solar cells in the solar cell unit 100 may be connected in series because the bypass units 140 and 140a to 140x may freely transmit power generated by the respective solar cells connected thereto.
  • bypass unit 140a of the second solar cell unit 100a the bypass unit in the solar cell alignment connection of the solar cell string A
  • the solar cell unit 100a in which the 140a is operated is excluded, and both solar cell units 100 and 100b are directly connected to each other.
  • the role of the remaining bypass units are all the same, and the configuration thereof may be a conventional bypass switching circuit, and so a detailed description thereof will be omitted.
  • the remaining solar cell heat B (20) also in the form as described above. Since the components and the connection form are the same as those of the solar cell column A 10, description thereof will be omitted.
  • the current sensor 130 and the voltage sensor 120 is installed only in any one of the solar cell units (100, 100a to 100x) belonging to, and the voltage sensors (120a to 120x) in the rest.
  • the reason for installing each bay is, because the solar cells in the solar cell unit (100, 100a ⁇ 100x) are all connected in series, the current value of the solar cells connected in series only knows the current value of the remaining solar cells Because it can.
  • the voltage value may be different for each of the solar cells, and the voltage value of the electric energy produced by the solar cell heat A 10 is the electric energy voltage produced by each of the solar cell units 100 and 100a to 100x. Since it will be the sum of the values, it should be installed as above.
  • the solar cell strings A 10 and the solar cell strings B 20, in which the solar cells are connected in series, are connected in parallel again and connected to the inverter 30.
  • the inverter 30 may be a conventional one, and since the operation method is also the same as that of the conventional solar power generation system, a detailed description of the inverter 30 will be omitted.
  • the inverter 30 is connected to exchange the signal or information with the controller 40, the inverter 30 may provide its operation status information and the like to the controller 40.
  • the controller 40 is connected to the voltage sensors 120, 120a-120x, 220, 220a-220x and the current sensors 130, 230 to receive voltage and current values of the solar cells respectively measured by the controller. Determine and control the state of solar cells.
  • the network connection form of the voltage sensors 120, 120a to 120x, 220, 220a to 220x and the controller 40 has a linear topology in the solar cells 10 and 20, respectively. Or establish a communication link relationship in the form of a linear bus topology.
  • the current sensors 130 and 230 may naturally be located anywhere as one of the components of the two topologies.
  • connection relationship between the voltage sensors 120, 120a to 120x in the solar cell A 10 is configured using a linear topology
  • one of the voltage sensors 120 is located at one end and the other end.
  • the controller 40 is connected to the position.
  • the controller 40 may be configured on both sides of the linear bus topology. It is good to connect so that it may be located in either end of the end.
  • the controller 40 is communicatively connected to the server unit 50.
  • the server unit 50 updates and stores the current states of the solar cell rows 10 and 20, and also stores voltage and current information of the solar cell rows 10 and 20 transmitted by the controller 40. It collects them and processes them to make them easier to see.
  • controller 40 and the server unit 50 are wirelessly connected.
  • the server unit 50 is communicatively coupled to the display unit 60.
  • the display unit 60 is a display screen that allows an administrator to visually check the states of the solar cell rows 10 and 20, and the manager is configured to perform the operation through the server unit 50 and the controller 40. It includes a series of input devices that allow control of the solar cell rows 10, 20.
  • the display unit 60 as described above may use a conventional communication terminal such as a personal computer (PC), a smartphone, a PDA, and the like with general input devices and a monitor.
  • a conventional communication terminal such as a personal computer (PC), a smartphone, a PDA, and the like with general input devices and a monitor.
  • the monitor and the input devices in the display unit 60 may be configured as a GUI (Graphic User Interface).
  • FIG. 3 is a structural diagram illustrating specific components and operation states of the controller 40, the server unit 50, and the display unit 60.
  • specific components of the controller 40, the server unit 50, and the display unit 60 will be described with reference to FIG. 3.
  • the controller 40 is first connected to the current and voltage sensors of each of the solar cell rows 10 and 20 in a wired manner, the sensor connection unit 410 and the sun in the solar cell rows 10 and 20.
  • the voltage determination unit 420 for determining whether the measured voltage value is a failure and a control unit 422 for controlling the operation of the solar cell strings (10, 20)
  • the computing unit 420 including one or more computing devices and storage devices such as a CPU or MPU, and one or more programs, a light sensor 430 for measuring the illuminance of the current solar light, and the server unit ( 50) and a communication module 440 for wirelessly communicating.
  • the server unit 50 includes a wireless communication device, one or more arithmetic units and storage devices, and operating programs for wirelessly connecting the controller 40.
  • the server unit 50 is a general PC or smart phone. Since it can be implemented using a terminal such as a PDA, a description thereof will be omitted.
  • the server unit 50 implemented as described above includes a solar cell string DB 511 and 512 capable of individually updating and storing current and voltage value information of each of the solar cell strings 10 and 20, and the controller ( And a schematic program 520 for modifying and processing the voltage information transmitted from 40) and providing the same to the display unit 60.
  • the display unit 60 also includes hardware and programs for providing the voltage information provided from the diagramming program 520 to the manager, and the configuration thereof may be performed as described above, and thus a detailed description thereof will be omitted.
  • FIGS. 4 and 5 illustrate the components of the voltage index (V.index) and the schematic voltage index (Vgindex) generated during the fault diagnosis method of the present invention
  • FIG. 6 shows the voltage of the solar cell of the present invention.
  • any one of the solar cells of the photovoltaic power generation facility for example, the solar cell of the fourth solar cell unit 100c of FIG.
  • the voltage sensor 120c of the fourth solar cell unit 100c detects that the electric energy voltage value generated by the fourth solar cell unit 100c is out of the normal range. Then, a failure generation step S1 of transmitting the failure detection signal F to the controller 40 is performed.
  • the failure detection signal F is measured by identification information such as a unique number or an ID of the solar cell unit 100c, a voltage value of electric energy generated by the solar cell unit 100c, and a corresponding voltage value. It is preferable to include the time information that is kept.
  • the calculation unit 420 of the controller 40 which has received the failure detection signal F through the step S1 determines whether the corresponding solar cell unit 100c has a failure based on the information in the failure detection signal F.
  • the failure determination step (S2) to determine is performed. If the operation unit 420 determines in step S2 that the solar cell unit 100c is not a malfunction, such as determining that the solar cell unit 100c is a temporary phenomenon or a normal range, the operation returns to the normal operation step. Just go.
  • step S2 If it is determined in step S2 that the corresponding solar cell unit 100c is out of order, the operation unit 420 operates the bypass unit 140c of the solar cell unit 100c that is determined to be out of order.
  • the pass part transfer step S3 is performed.
  • the quality of the electrical energy produced by the solar cell column A 10 is kept constant.
  • the safety accident due to malfunction or failure of the failed solar cell unit 100c may be primarily prevented.
  • step S3 when the controller 40 is communicatively connected to the inverter 30, the electrical energy produced by the solar cell heat A 10 through the current sensor 130 additionally.
  • the additional process of checking whether the bypass unit 140c in the faulty solar cell unit 100c operates clearly by measuring and checking the current value of the current value or by additionally measuring and checking the current and voltage values of the electric energy introduced through the inverter 30. It may be rough.
  • step (S3) After performing the step (S3), and performs a voltage index creation request step (S4) to notify the manager of the failure of the solar cell unit (100c).
  • the network communication network between the controller-voltage sensors becomes the voltage sensor of the far end at the opposite side of the controller (40).
  • the final destination is the voltage sensor 120 at the end of the linear network communication end.
  • the controller is located at one end of the linear bus topology network, so that the voltage index creation request (V.req)
  • the final destination is a voltage sensor located at the other end.
  • the voltage index creation request (V.req) is sent to the remaining solar cell strings connected to the controller 40, such as the solar cell string B (20), as well as the solar cell string A (10) where a failure occurs. You can ask to build a voltage index for.
  • the voltage sensor 120 sets the voltage index V. index according to a previously input program.
  • the voltage index preparation step S5 to be created is performed.
  • the voltage index (V.index) is identifiable ID information (S / C ID) such as a unique number or name of each solar cell unit of the corresponding solar cell string A 10 and the corresponding solar cell. It includes status information indicating the status of the parts.
  • the status information should be displayed by dividing it into at least two stages, that is, a normal state and a fault state, and preferably divided into three or more stages of a normal state, an unstable state, and a fault state.
  • the steady state is an indication that the solar cell unit is normally generating electric energy in a predetermined voltage range, and an unstable state is not a failure, but a numerical value such as the voltage of the electric energy generated by the solar cell unit is generated.
  • An unstable or troublesome component other than the solar cell is an indication of the solar cell part which the manager needs to check later, and the fault condition indicates that the solar cell is broken or the electrical energy is produced through the above step (S3).
  • the solar cell unit is excluded.
  • the voltage sensor 120 located at the end of the network generates a voltage index (V.index) to record and store its ID information (S / C ID) and status information (Status), and then The voltage index V.index is transmitted to the voltage sensor 120a next to the network in the network.
  • V.index a voltage index
  • S / C ID ID information
  • Status status information
  • the voltage sensor 120a receiving the voltage index V.index records and updates its ID information (S / C ID) and status information (Status) by adding it under the information of the previous voltage sensor 120. Later, it stores the updated voltage index (V.index) again to another voltage sensor 100b connected to its own side.
  • the voltage sensor 100b additionally records its ID information (S / C ID) and status information (Status) under the information of the previous voltage sensor 120a and transmits it to the next voltage sensor 100c by the above-described method.
  • the other solar cell string 20 may be completed, which is the voltage color of the solar cell string, and transmitted to the controller 40.
  • the operation unit 420 of the controller 40 preferably captures and stores the voltage indexes V. index in its memory.
  • the operation unit 420 of the controller 40 passes through the communication module 440 to the server
  • the voltage index (V.index) of the solar cells is transmitted to the unit 50, and the diagrammatic program 520 of the server unit 50 receives the transmitted voltage index (V.index) and is a schematized voltage index.
  • a schematic voltage index generation step S6 for generating Vgindex is performed.
  • the form of the plotted voltage index (V.g.index) is shown in FIG.
  • the schematic voltage index (Vgindex) is a collection of all the voltage index (V.index) of the solar cells received to indicate the state of each solar cell in color, the normal state is green, the unstable state is yellow, the fault state Separated by red.
  • the administrator is provided with the schematic voltage index (V.g. index) in the schematic voltage index providing step (S7), it is possible to quickly and effectively determine which solar cell unit is in a faulty state and an unstable state to take action.
  • the schematic program 520 is based on the information in the respective voltage index (V. index) to the individual DB (511, 512) of the solar cell rows (10, 20)
  • the contents of the individual DBs 511 and 512 may be updated and stored.
  • the manager may check the latest state of the solar cell rows 10 and 20 by referring to any one of the individual DBs 511 and 512 through the display unit 60.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

태양전지의 전압측정 시스템과 이를 이용한 태양전지의 개별 고장진단 방법을 개시한다. 본 발명은 태양전지의 개별전압값을 측정하여 전압의 이상유무를 통해 개별 태양전지들 중 이상이 있는 태양전지를 판별할 수 있는, 태양전지의 전압측정 시스템과 이를 이용한 태양전지의 개별 고장진단 방법으로서 적어도 하나 이상의 태양전지; 상기 태양전지가 발전하여 생성하는 전기에너지의 전압을 측정하는 전압센서; 그리고 상기 태양전지와 연결되어 상기 태양전지가 발전하여 생성하는 전기에너지의 송수신 여부를 결정하는 스위치회로인 바이패스부를 포함하는 하나 이상의 태양전지부; 상기 하나 이상의 태양전지부 각각의 전압센서와 통신 가능하게 연결되는 컨트롤러; 상기 컨트롤러와 통신 가능하게 연결되는 서버부; 그리고 상기 서버부와 통신 가능하겨 연결되며, 입출력장치를 포함하는 디스플레이부를 포함한다.

Description

태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법
본 발명은 태양전지의 전압측정 시스템과 이를 이용한 태양전지의 개별 고장진단 방법에 관한 것으로, 보다 상세하게는 태양전지의 개별전압값을 측정하여 전압의 이상유무를 통해 개별 태양전지들 중 이상이 있는 태양전지를 판별할 수 있는, 태양전지의 전압측정 시스템과 이를 이용한 태양전지의 개별 고장진단 방법에 대한 것이다.
화석연료의 고갈문제와 화석연료의 사용으로 인한 지구온난화 문제 등으로 대체에너지 개발 및 보급이 시급한 실정이어서 정부는 국내에서 소비하는 에너지 중 대체에너지의 비중을 점차 확대하는 정책을 추진하고 있다.
오늘날 대체 에너지 가운데 가장 친환경적이고 무한한 에너지원으로서 태양광으로부터 직접 전기에너지로 변환하는 태양광 발전시스템이 각광을 받고 있으며, 정부의 지원으로 보급이 급속히 확대되고 있다. 이러한, 태양광 발전시스템은 태양광을 받아 전기에너지를 변환하는 다수의 태양전지판 모듈을 단위로 구성되어 있으며, 다수의 태양전지판 모듈(이하 ‘태양전지’ 라 함)을 직렬 또는 병렬로 연결하여 필요로 하는 전력을 얻고 있다. 이러한 일반적인 태양광 발전시스템의 형태가 도 1에 도시되어 있다.
도 1에서 도시된 바와 같이, 일반적인 태양광 발전시스템은 전압을 높이기 위하여 개별 태양전지(C)를 직렬로 연결하여 태양전지의 열(row)을 만들고, 이러한 태양전지의 열들을 병렬로 연결하여 전류용량을 키워 사용한다. 상기와 같은 구조로 연결된 태양전지들이 전력을 생산하면, 이는 인버터(I)에 집속되어 필요한 형태로 가공, 사용된다.
그러나 도 1의 형태와 같이 다수의 태양전지(C)를 직렬 또는 병렬로 연결하여 사용하는 태양광 발전시스템은, 그 연결 형태상 시스템을 구성하는 단위 태양전지(C) 중 어느 하나가 이상이 발생하게 될 경우, 문제가 발생한 태양전지(C)를 포함하는 태양전지(C)의 열 전체가 이상동작을 하는 문제점이 있다.
이러한 상기 태양광 발전시스템은 특히, 대부분이 산기슭이나 건물 옥상, 유휴지 등 설치된 장소가 사람이 접근하기 어려운 곳에 설치되어 무인으로 운용되고 있기 때문에 더 문제가 될 수 있다.
상기와 같은 문제점으로 인하여, 설치 이후에는 태양전지를 효율적으로 관리하는 것이 매우 어려운 실정이기 때문에 각 태양전지들의 고장진단이나 동작이상 유무를 상태를 원격지에서 진단할 수 있는 수단이 요구되고 있다.
태양전지의 고장진단이나 동작이상 유무를 진단할 수 있는 수단들은 다양한 형태로 개발, 제공되고 있다. 예를 들어, 등록특허 10-1023445호는 태양전지모듈 원격 감시 및 제어시스템을 제공하고 있다. 상기 등록특허는 전압과 전류를 감지하는 센서감지부와 스위칭부를 포함하는 태양전지모듈 제어장치와, 상기 태양전지모듈 제어장치가 장착된 접속단자함, 그리고 중앙제어시스템을 포함하여, 상기 중앙제어시스템의 데이터 송출명령에 따라 상기 태양전지모듈의 상태를 측정하고 이에 따라 상기 중앙제어시스템이 각부의 동작상태를 제어하는 태양전지모듈 원격 감시 및 제어시스템을 제공한다.
또한 공개특허 10-2014-0111744호는 태양광 발전 모니터링 시스템의 무선 통신 네트워크 설정 방법을 제공한다. 상기 공개특허는 PAN ID로 구별되는 복수개의 독립된 디지털 무선 통신 네트워크를 결합하여, 상위에 슈퍼네트워크를 설치, 거대한 단일 네트워크로 동작하도록 디지털 무선 네트워크를 구성하는 방법을 제시하고 있다.
그리고 공개특허 10-2016-0126844호는 태양광 발전설비 모니터링 데이터의 순차식 무선 전송 시스템을, 등록특허 10-1777195호는 태양광발전 고장진단 원격감시 모니터링 시스템을 갖는 태양광 발전장치용 접속반을 개시하고 있다.
이러한 상기의 등록특허들 및 공개특허들은 본 발명과는 구체적인 구성요소나 동작방식들이 상이한 것으로 판단되었으며, 그 외에도 다양한 방식으로 개시되어 있는 태양전지의 감시 및 제어방법들 역시 본 발명과는 구성 및 동작 등에서 상이한 것으로 판단되었다.
본 발명은 상기와 같은 종래 기술들과는 다른 방식으로 태양전지의 개별 고장진단을 할 수 있는 구성 및 방법으로서, 태양전지의 전압측정 시스템과 이를 이용한 태양전지의 개별 고장진단 방법을 제공하는 데 그 목적이 있다.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여,
적어도 하나 이상의 태양전지와 인버터를 포함하는 태양광 발전 시스템에 사용되는 태양전지 전압측정 시스템으로서, 적어도 하나 이상의 태양전지; 상기 태양전지가 발전하여 생성하는 전기에너지의 전압을 측정하는 전압센서; 그리고 상기 태양전지와 연결되어 상기 태양전지가 발전하여 생성하는 전기에너지의 송수신 여부를 결정하는 스위치회로인 바이패스부를 포함하는 하나 이상의 태양전지부; 상기 하나 이상의 태양전지부 각각의 전압센서와 통신 가능하게 연결되는 컨트롤러; 상기 컨트롤러와 통신 가능하게 연결되는 서버부; 그리고 상기 서버부와 통신 가능하겨 연결되며, 입출력장치를 포함하는 디스플레이부를 포함하는 태양전지 전압측정 시스템을 제공한다..
상기에서, 태양전지부는 적어도 둘 이상 구성되어, 태양전지부 각각의 바이패스부가 직렬로 연결되어 단위체인 태양전지열을 하나 이상 형성하고, 상기 태양전지열 각각은 병렬로 연결되어 인버터에 접속되는 것이 바람직하다.
상기에서, 태양전지열 내 태양전지부들 중 어느 하나에는 해당 태양전지가 생성하는 전기에너지의 전류를 측정하는 전류센서가 추가로 포함되어 설치될 수 있다.
상기에서, 태양전지열 내 둘 이상의 태양전지부 각각의 태양전지와 컨트롤러는 선형 토폴로지 또는 선형 버스 토폴로지 중 어느 하나의 형태로 통신 가능하게 연결되는 것을 특징으로 하는, 태양전지 전압측정 시스템.
상기에서의 컨트롤러는 상기 전압센서와 통신 가능하게 연결되는 센서접속부; 측정된 전압값의 고장 여부를 판단하는 전압판단부와 상기 바이패스부의 동작을 제어하기 위한 제어부를 포함하는 연산부; 광도센서; 그리고 상기 서버부와 통신 가능하게 연결되는 통신모듈을 포함한다.
상기에서, 서버부는 도식화 프로그램을 포함할 수 있다.
상기의 태양전지 전압측정 시스템을 이용한 태양전지 고장진단 방법으로서, 하나 이상의 태양전지부 각각의 전압센서 중 어느 하나가 태양전지가 생성하는 전기에너지 전압 값이 정상 범위를 벗어났음을 감지하고 고장감지신호(F)를 컨트롤러에 전송하는 고장발생단계(S1); 상기 단계(S1) 후, 상기 컨트롤러가 고장 여부를 판단하는 고장여부 판단단계(S2); 상기 단계(S2)에서 고장으로 판단되면, 상기 고장감지신호(F)를 송신한 전압센서가 속한 태양전지부의 바이패스부를 동작시키는 바이패스부 절체단계(S3); 상기 단계(S3) 후, 상기 컨트롤러가 상기 하나 이상의 태양전지부 각각의 전압센서 중 어느 하나에게 전압색인 작성요청(V.req)을 송신하는 전압색인 작성요청단계(S4); 상기 단계(S4)를 통해 전압색인 작성요청(V.req)을 수신한 상기 전압센서는, 전암색인(V.index)을 작성하여 자신의 식별 가능한 ID정보와 상태정보를 기록하여 저장 갱신하고, 상기 갱신한 전압색인(V.index)을 자신과 통신 가능하게 연결된 다른 전압센서 또는 컨트롤러에 전송하는 전압색인 작성단계(S5); 상기 단계(S5)에 따라 갱신된 전압색인(V.index)가 컨트롤러에 수신되면, 상기 컨트롤러가 상기 서버부에 상기 전압색인(V.index)를 송신하는 전압색인 생성단계(S6); 그리고 상기 단계(S6)에 따라 상기 서버부가 상기 전압색인(V.index)를 수신하면, 상기 수신한 전압색인(V.index)을 도식화된 전압색인(V.g.index)으로 변환하여 상기 디스플레이부에 송신하는 도식화된 전압색인 제공단계(S7)를 통하여 관리자에게 고장이 발생한 태양전지의 정보를 전달할 수 있는 태양전지 고장진단 방법을 제공한다.
상기에서, 전압색인(V.index)의 상태정보는 정상 상태, 불안 상태, 고장 상태의 3가지로 구분되는 것이 바람직하다.
상기에서, 상기 단계(S5)에서 전압색인(V.index)을 작성한여 자신의 ID정보와 상태정보를 기록하여 저장 갱신하고, 상기 갱신한 전압색인(V.index)을 자신겨 통신 가능하게 연결된 다른 전압센서에게 송신할 경우, 상기 전압색인(V.index)을 수힌한 다른 전압센서는 자신의 ID정보와 상태정보를 이전 전압센서가 기록한 ID정보와 상태정보의 밑에 덧붙여 기록, 갱신하여 저장한 뒤 자신과 통신 가능하게 연결된 다른 전압센서 또는 컨트롤러에 전송하는 것이 바람직하다.
본 발명에 의하면, 추가적인 설비 없이 경제적이면서도 관리자의 위치 등에 구애받지 않고 태양전지 각각의 고장 여부를 정확하게 진단하고 통보될 수 있다.
도 1은 종래의 태양광 발전시스템의 개략 구조도.
도 2는 본 발명의 태양광 발전시스템의 구조도.
도 3은 본 발명의 태양광 발전시스템의 컨트롤러 및 서버부 동작 구조도.
도 4는 본 발명의 전압색인 구조도.
도 5는 본 발명의 도식화된 전압색인 구조도.
도 6은 본 발명의 태양전지의 전압측정 시스템을 이용한 태양전지의 개별 고장진단 방법 순서도.
[부호의 설명]
10, 20 : 태양전지열. 100, 200 : 태양전지부.
110, 210 : 태양전지. 120, 220 : 전압센서.
130, 230 : 전류센서. 140, 240 : 바이패스부.
30 : 인버터. 40 : 컨트롤러.
410 : 센서접속부. 420 : 연산부.
421 : 전압판단부. 422 : 제어부.
430 : 광도센서. 440 : 통신모듈.
50 : 서버부. 511, 512 : 개별 DB
520 : 도식화 프로그램. 60 : 디스플레이부.
이하에서는 본 발명을 첨부되는 도면을 참조하여 보다 상세히 설명한다. 하기의 설명은 본 발명의 실시와 이해를 돕기 위한 것이지 본 발명을 이에 한정하는 것은 아니다. 당업자들은 이하의 특허등록청구의 범위에 기재된 본 발명의 사상 내에서 다양한 변형 및 변경이 있을 수 있음을 이해할 것이다.
도 2는 본 발명의 태양전지 전압측정 시스템의 구조도이다. 이하에서는 도 2를 통하여 본 발명의 태양전지 전압측정 시스템의 동작 구성에 대하여 설명한다.
본 발명의 태양전지 전압측정 시스템은, 적어도 하나 이상의 태양전지(110)를 사용하는 태양광 발전장치에 사용된다. 바람직하게는, 적어도 하나 이상의 태양전지(110)들이 직렬로 연결되어 태양전지들의 단위체인 태양전지열 A(10)를 형성하고, 또한 다른 하나 이상의 태양전지(210)들이 직렬로 연결되어 태양전지열 B(20)를 형성하여, 상기 태양전지열 A(10) 및 태양전지열 B(20)이 병렬로 연결되어 인버터(30)에 접속되어 있는 태양광 발전장치에 사용된다.
물론 본 발명은 상기와 같은 바람직한 형태에서만 적용되는 것은 아니며, 상기 태양전지열 A(10) 및 B(20) 외에 또 다른 태양전지열이 수에 관계없이 구성될 수 있으며, 또한 하나의 태양전지열 안에서도 태양전지의 개수 또한 하나 이상 직렬로 연결되어 있으면 모두 가능하게 사용될 수 있다. 이하에서는 설명의 편의를 위하여 도 1에서 도시된 바와 같이, 2개의 태양전지열(10, 20)이 있는 것을 일예시로 하여 설명하기로 한다.
또한 설명에 앞서, 도 2의 구조도에서 실선으로 상호간에 연결되어 있는 부분은 생성된 전기에너지가 송수신되는 전력선을 표현한 것이고, 점선은 상호간에 신호나 정보를 주고받을 수 있는 제어 연결관계를 표시한 것이며, 실선과 점선 간에는 접점 없이 분리되어 상호간에 영향을 주고받지 않는다.
도 2에 도시된 바와 같이, 본 발명의 태양전지 전압측정 시스템에서는, 적어도 하나 이상의 태양전지(110)와, 상기 태양전지(110)에서 발전하여 생성하는 전기에너지의 전류를 측정하는 전류센서(130), 그리고 전압을 측정하는 전압센서(120), 그리고 상기 태양전지(110)와 연결되어 전력을 송수신할 수 있는 스위치회로인 바이패스부(140)를 하나의 단위체로 묶어 태양전지부(100)를 구성한다.
이때 상기 태양전지부(100)는 해당 태양전지(110)가 속한 태양전지열 A(10)의 수와 동일하게 구성될 것이므로, 상기 태양전지부(100)는 도 1에 도시된 바와 같이 여러 개일 수 있다.
이때, 상기 태양전지열 A(10)에 속한 다수의 태양전지부(100, 100a, 100b, 100c~100x)중 어느 하나(100)에만 전압센서(120) 및 전류센서(130), 바이패스부(140)가 모두 갖춰지고, 상기 나머지 태양전지부(100a, 100b, 100c~100x)는 전류센서가 구성에서 제외되어 전압센서(120a, 120b, 120c~120x)와 바이패스부(140a, 140b, 140c~140x)만이 각각 구성된다.
그리고 상기 전압센서들(120, 120a~120x)은 모두 신호전달이 가능하게끔 선형으로 연결되며, 또한 상기 바이패스부(140, 140a~140x) 또한 전기 에너지의 전송이 가능하게끔 직렬로 연결된다. 상기 바이패스부(140, 140a~140x)는 평상시에는 동작하지 않아 연결된 각각의 태양전지들이 생산한 전력을 자유롭게 전송할 수 있으므로, 상기 태양전지부(100) 내의 태양전지들이 직렬로 연결될 수 있는 것이다.
여기서 만약 상기 바이패스부 중 어느 하나, 예를 들어 2번 태양전지부(100a)의 바이패스부(140a)가 동작하게 되는 경우, 상기 태양전지열 A의 태양전지 적렬 연결관계에서 상기 바이패스부(140a)가 동작한 태양전지부(100a)는 제외되고, 양 옆의 태양전지부(100, 100b)가 직결 연결된다. 나머지 바이패스부들의 역할은 모두 동일하며, 또한 그 구성은 종래의 바이패스 절체회로 등을 사용하면 되는 것이므로, 이에 대한 자세한 설명은 생략한다.
상기와 같은 형태로 나머지 태양전지열 B(20) 또한 구성한다. 그 구성요소 및 연결 형태는 상기 태양전지열 A(10)와 동일하므로, 이에 대한 설명은 생략한다.
또한 상기 태양전지열 A(10)에서, 속한 태양전지부(100, 100a~100x) 중 어느 하나에만 전류센서(130)와 전압센서(120)를 설치하고, 나머지에는 전압센서(120a~120x)만을 각각 설치하는 이유는, 상기 태양전지부(100, 100a~100x) 내 태양전지들은 모두 직렬로 연결되어 있으므로, 직렬로 연결된 태양전지들의 전류는 그 중 하나만 측정하면 나머지 태양전지들의 전류값을 알 수 있기 때문이다. 반면에 전압값은 상기 태양전지들마다 모두 다를 수 있으며 상기 태양전지열 A(10)에서 생산하는 전기에너지의 전압값은 각각의 상기 태양전지부(100, 100a~100x)에서 생산하는 전기에너지 전압값의 합이 될 것이므로, 상기와 같이 설치해야만 한다.
상기와 같이 각각 내부의 태양전지들이 직렬로 연결되어 있는 태양전지열 A(10) 및 태양전지열 B(20)는 또 다시 병렬로 연결되어 인버터(30)에 접속한다. 상기 인버터(30)는 통상의 것을 사용하면 되며 동작 방식 또한 종래의 태양광 발전시스템에서의 인버터와 동일하므로, 상기 인버터(30)에 대한 구체적인 설명은 생략하기로 한다. 단지, 상기 인버터(30)는 상기 컨트롤러(40)와 신호나 정보 등을 주고받을 수 있게 연결되어, 상기 인버터(30)가 자신의 동작 현황 정보 등을 상기 컨트롤러(40)에 제공할 수 있다.
그리고 상기 컨트롤러(40)는 상기 전압센서들(120, 120a~120x, 220, 220a~220x) 및 전류센서(130, 230)와 연결되어 이들이 각자 측정한 태양전지들의 전압 및 전류값을 수신하여 상기 태양전지들의 상태를 판단 및 제어한다.
이때 바람직하게는, 상기 전압센서들(120, 120a~120x, 220, 220a~220x)과 컨트롤러(40)의 네트워크 연결 형태는 상기 태양전지열들(10, 20) 내에서 각각 선형 토폴로지(Linear Topology)이거나 선형 버스 토폴로지(Linear Bus Topology)의 형태로 통신 연결 관계를 구축한다.
또한 여기서, 상기 전류센서(130, 230)는 자연스럽게 상기 두 토폴로지의 구성요소들 중 하나로서 어디에든 위치할 수 있다.
예를 들어, 태양전지열 A(10) 내의 전압센서들(120, 120a~120x) 간의 연결 관계를 선형 토폴로지를 이용하여 구성한다면, 일측단에는 전압센서 중 어느 하나(120)가 위치하고, 타측단에 상기 컨트롤러(40)가 위치하게 연결된다.
또다른 예시로서, 상기 태양전지열 A(10) 내의 전압센서들(120, 120a~120x) 간의 연결 관계가 선형 버스 토폴로지를 이용하여 구성한다면, 상기 컨트롤러(40)는 상기 선형 버스 토폴로지의 양 측단부 중 가장 끝 어느 하나에 위치하게 연결하면 된다.
또한 상기 컨트롤러(40)는 서버부(50)와 통신 가능하게 연결된다. 상기 서버부(50)는 상기 태양전지열들(10, 20)의 현재 상태를 갱신하여 저장하고, 또한 상기 컨트롤러(40)가 송신하는 상기 태양전지열들(10, 20)의 전압 및 전류정보들을 취합하여 관리자가 보기 편리하게끔 가공하는 역할을 한다.
이때, 상기 컨트롤러(40)와 서버부(50) 간에는 무선으로 통신 가능하게 연결되는 것이 바람직하다.
그리고 상기 서버부(50)는 디스플레이부(60)와 통신 가능하게 연결된다. 상기 디스플레이부(60)는 관리자가 상기 태양전지열들(10, 20)의 상태를 가시적으로 확인할 수 있도록 하는 디스플레이 화면과, 또한 상기 관리자가 상기 서버부(50) 및 컨트롤러(40)를 통해 상기 태양전지열들(10, 20)을 제어할 수 있도록 하는 일련의 입력장치들을 포함한다.
상기와 같은 디스플레이부(60)는 일반적인 입력장치들과 모니터를 갖춘 PC(Personal Computer)나 스마트폰, PDA 등의 종래의 통신 가능한 단말기를 사용할 수 있다. 이때 상기 디스플레이부(60)에서의 모니터 및 입력장치들은 GUI(Graphic User Interface)로 구성하는 것이 바람직하다.
도 3은 상기 컨트롤러(40), 서버부(50), 디스플레이부(60)의 구체적인 구성요소 및 동작 상태를 표현한 구조도이다. 이하에서는 도 3을 통하여 상기 컨트롤러(40), 서버부(50), 디스플레이부(60)의 구체적인 구성요소들에 대하여 설명한다.
상기 컨트롤러(40)는 우선 각각의 태양전지열들(10, 20)의 전류 및 전압센서들과 유선으로 접속할 수 있는 단자인 센서접속부(410), 상기 태양전지열들(10, 20) 내 태양전지들의 고장 여부를 판단하기 위하여, 측정된 전압값의 고장 여부를 판단하는 전압판단부(420)와 상기 태양전지열들(10, 20)의 동작을 제어하기 위한 제어부(422)를 포함하고, 이를 실현하기 위하여 CPU나 MPU 등 하나 이상의 연산장치와 저장장치 그리고 하나 이상의 프로그램들을 포함하는 연산부(420), 그리고 현재 태양광의 조도(照度)를 측정하기 위한 광도센서(430), 그리고 상기 서버부(50)와 무선으로 통신하기 위한 통신모듈(440)을 포함한다.
그리고 상기 서버부(50)는 상기 컨트롤러(40)와 무선으로 연결되기 위한 무선통신장치 및 하나 이상의 연산장치 및 저장장치, 그리고 운영 프로그램들을 포함하며 이러한 상기 서버부(50)는 일반적인 PC나 스마트폰, PDA 등의 단말기 등을 이용하여 구현할 수 있으므로 이에 대한 설명은 생략하기로 한다.
상기와 같이 구현되는 서버부(50)는 상기 태양전지열(10, 20)들 각각의 전류 및 전압 값 정보를 개별적으로 갱신하여 저장할 수 있는 태양전지열 DB(511, 512)와, 상기 컨트롤러(40)에서 송신하는 전압 정보를 변형 및 가공하여 상기 디스플레이부(60)에 제공할 수 있도록 하는 도식화 프로그램(520)을 포함한다.
그리고 디스플레이부(60) 역시 상기 도식화 프로그램(520)으로부터 제공받은 전압 정보를 관리자에게 제공할 수 있도록 하는 하드웨어와 프로그램들을 포함하며, 그 구성은 상기한 바와 같이 하면 되므로 이에 대한 자세한 설명은 생략한다.
도 4, 도 5는 본 발명의 고장진단 방법 과정에서 생성되는 전압색인(V.index) 및 도식화된 전압색인(V.g.index)의 구성요소를 도시한 것이고, 도 6은 본 발명의 태양전지의 전압측정 시스템을 이용한 태양전지의 개별 고장진단 방법의 순서도이다. 이하에서는 도 2~도 6을 통하여 본 발명의 태양전지 전압측정 시스템을 이용한 태양전지 개별 고장진단 방법에 대하여 설명한다.
우선, 도 2에서와 같이 구성된 태양광 발전설비가 동작을 시작하면, 정상적인 발전이 이루어질 것이다. 발전이 이루어지다가 상기 태양광 발전설비의 태양전지 중 어느 하나, 예를 들어 도 2의 4번째 태양전지부(100c)의 태양전지가 파손이나 고장 등의 어떤 사유로 인하여, 자신이 발전해낸 전기에너지의 전압 값이 정상 범위를 벗어나게 되면, 우선 상기 4번째 태양전지부(100c)의 전압센서(120c)는 상기 4번째 태양전지부(100c)가 발전한 전기에너지 전압 값이 정상 범위에 벗어났음을 감지하고, 고장감지신호(F)를 상기 컨트롤러(40)에 전송하는 고장발생단계(S1)을 실시한다.
여기서 상기 고장감지신호(F)는 해당 태양전지부(100c)의 식별 가능한 고유번호나 ID 등의 식별정보와, 해당 태양전지부(100c)가 발전한 전기에너지의 전압값과 해당 전압값으로 측정된 채 유지되는 시간정보를 포함하는 것이 바람직하다.
상기 단계(S1)를 통해 고장감지신호(F)를 수신한 컨트롤러(40)의 연산부(420)는 상기 고장감지신호(F) 내의 정보를 바탕으로 해당 태양전지부(100c)가 고장인지 아닌지를 판단하는 고장여부 판단단계(S2)를 실시한다. 만약 상기 연산부(420)가 상기 단계(S2)에서 해당 태양전지부(100c)가 일시적인 현상 내지는 정상범위 내로 판단하는 등 상기 해당 태양전지부(100c)가 고장이 아니라고 판단한다면, 정상 운용 단계로 되돌아가면 된다.
그리고 만약 상기 단계(S2)에서 상기 해당 태양전지부(100c)가 고장이라고 판단되면, 상기 연산부(420)는 고장이라 판단된 상기 태양전지부(100c)의 바이패스부(140c)를 동작시키는 바이패스부 절체단계(S3)를 실시한다.
상기 단계(S3)를 통하여 태양전지부(100c)를 상기 태양전지열 A(10)의 태양전지 직렬 관계에서 제외시킴으로서 상기 태양전지열 A(10)가 생산하는 전기에너지의 품질을 일정하게 유지하고, 또한 상기 고장난 태양전지부(100c)의 오작동 내지 고장으로 인한 안전사고를 일차적으로 예방할 수 있는 것이다.
또한 상기 단계(S3)에서, 상기 컨트롤러(40)가 상기 인버터(30)와 통신 가능하게 연결되어 있을 경우, 추가적으로 상기 전류센서(130)를 통하여 상기 태양전지열 A(10)가 생산하는 전기에너지의 전류값일 측정하거나 인버터(30)를 통하여 인입되는 전기에너지의 전류 및 전압값을 추가로 측정 및 검산하여 상기 고장난 태양전지부(100c) 내 바이패스부(140c)가 명확히 동작하였는지를 점검하는 추가적인 과정을 거칠 수도 있다.
상기 단계(S3)를 실시한 다음, 관리자에게 상기 태양전지부(100c)의 고장을 알리기 위하여 전압색인 작성요청단계(S4)를 실시한다.
이때, 상기 단계(S4)에서 상기 연산부(420)가 생성하여 상기 태양전지열 A(10) 내 전압센서들(120, 120a~120x)에게 송신하는 전압색인 작성요청(V.req)의 최종 목적지는, 컨트롤러-전압센서들 간의 네트워크 통신망에서, 상기 컨트롤러(40)의 반대편 가장 끄트머리의 전압센서가 된다. 예를 들어, 도 2에서와 같이 상기 태양전지열 A(10)에서와 같이 선형으로 상기 네트워크 통신망이 만들어졌을 경우, 최종 목적지는 상기 선형 네트워크 통신말의 끄트머리인 전압센서(120)가 된다.
마찬가지로, 선형 버스 토폴로지로 상기 컨트롤러-전압센서들 간 네트워크가 형성되어 있다고 하더라도, 전술한 바와 같이 상기 컨트롤러는 상기 선형 버스 토폴로지 네트워크의 일측단부에 위치하고 있으므로, 상기 전압색인 작성요청(V.req)의 최종 목적지는 타측단 끄트머리에 위치한 전압센서를 목적지로 하면 된다.
또한 이때 상기 전압색인 작성요청(V.req)은 고장이 발생한 상기 태양전지열 A(10) 뿐 아니라, 태양전지열 B(20) 등 상기 컨트롤러(40)와 연결된 나머지 태양전지열들에도 보내어 자신들의 전압색인을 작성하라고 요청할 수 있다.
상기 단계(S4)를 통하여 상기 전압색인 작성요청(V.req)이 목적지 전압센서(120)에 도착하게 되면, 상기 전압센서(120)는 미리 입력된 프로그램에 따라 전압색인(V.index)를 작성하는 전압색인 작성단계(S5)를 실시한다.
상기 전압색인(V.index)의 형태가 도 4에 개시되어 있다. 도 4에 개시된 바와 같이, 상기 전압색인(V.index)은 해당 태양전지열 A(10) 각각의 태양전지부의 고유번호나 이름 등의 식별 가능한 ID정보(S/C ID)와 해당 태양전지부들의 상태를 표시하는 상태정보(Status)를 포함한다.
이때, 상기 상태정보(Status)는 최소 두 단계, 즉 정상 상태와 고장 상태로 나누어 표시해야 하며, 바람직하게는 정상 상태, 불안 상태, 고장 상태의 3단계 이상의 단계로 세분화하여 나누는 것이 바람직하다.
상기 단계에 대하여, 정상 상태는 해당 태양전지부가 정해진 전압 범위로 정상적으로 전기에너지 발전을 실시하고 있다는 표시이며, 불안 상태는 고장이라고 볼 수는 없지만 해당 태양전지부가 발전하는 전기에너지의 전압 등의 수치가 불안정하거나, 또는 태양전지 외의 기타 구성요소들에 문제가 있어 관리자가 차후에 점검해야 할 필요가 있는 태양전지부를 나타내는 표시이고, 고장 상태는 태양전지에 고장이 나 상기 단계(S3)를 통해 전기에너지 생산에서 제외되어 있는 태양전지부를 표시한 것이다.
이하에서는 상기와 같이 상태정보(Status)가 3단계로 나뉘어 표기되는 것을 일예시로 하여 설명하기로 한다.
상기와 같이 네트워크에서 가장 끄트머리에 위치한 상기 전압센서(120)가 전압색인(V.index)을 생성하여 자신의 ID정보(S/C ID)와 상태정보(Status)를 기록하여 저장한 뒤, 상기 전압색인(V.index)를 상기 네트워크에서 자신 바로 옆의 전압센서(120a)에게 전송한다.
그리고 상기 전압색인(V.index)를 수신한 상기 전압센서(120a)는 자신의 ID정보(S/C ID)와 상태정보(Status)를 이전 전압센서(120)의 정보 밑에 덧붙여 기록, 갱신한 뒤 저장하고, 이렇게 갱신한 전압색인(V.index)을 다시 자신의 바로 옆에 연결되어 있는 다른 전압센서(100b)에 전달한다. 상기 전압센서(100b)는 상기한 방법으로 자신의 ID정보(S/C ID)와 상태정보(Status)를 이전 전압센서(120a)의 정보 밑에 덧붙여 기록하고 다음 전압센서(100c)에 전송한다.
이러한 방식으로, 상기 전압색인(V.index)이 순차적으로 갱신되면서 상티 태양전지열 A(10) 내 태양전지의 모든 ID정보(S/C ID)와 상태정보(Status)가 도 4와 같은 형태로 기록되어 상기 컨트롤러(40)에 전달됨으로서, 상기 단계(S5)가 마무리될 수 있다.
또한 다른 태양전지열(20)에도 그 태양전지열의 전압색인 완성되어 상기 컨트롤러(40)에 전송될 수 있다. 상기 컨트롤러(40)의 연산부(420)는 자신의 기억장치 내 상기 전압색인들(V.index)을 갈무리하여 분리하여 저장하는 것이 바람직하다.
상기 단계(S5)에 따라 완성된 태양전지들의 전압색인(V.index)이 각각 컨트롤러(40)에 수신되면, 상기 컨트롤러(40)의 연산부(420)는 상기 통신모듈(440)을 거쳐 상기 서버부(50)에 상기 태양전지들의 전압색인(V.index)을 송신하고, 상기 서버부(50)의 도식화 프로그램(520)이 상기 송신된 전압색인(V.index)들을 수신하여 도식화된 전압색인(V.g.index)을 생성하는 도식화 전압색인 생성단계(S6)를 실시한다.
상기 도식화된 전압색인(V.g.index)의 형태가 도 5에 도시되어 있다. 상기 도식화된 전압색인(V.g.index)은 수신된 상기 태양전지들의 모든 전압색인(V.index)을 모아 색으로 각각의 태양전지의 상태를 나타낸 것으로, 정상 상태는 초록색, 불안 상태는 노란색, 고장 상태는 빨간색으로 구분하였다. 관리자는 상기 도식화된 전압색인(V.g.index)을 도식화된 전압색인 제공단계(S7)에서 제공받음으로서 어느 태양전지부가 고장 상태이고 불안 상태인지를 빠르고 효과적으로 파악하여 조치할 수 있게 된다.
또한 상기 단계(S6)에서, 상기 도식화 프로그램(520)은 태양전지열들(10, 20)의 개별 DB(511, 512)에 각각의 전압색인(V.index) 내 정보를 바탕으로 상기 태양전지열들 개별 DB(511, 512)의 내용을 갱신하여 저장할 수도 있다. 관리자는 상기 태양전지열들(10, 20)의 최근 상태를 상기 디스플레이부(60)를 통하여 상기 개별 DB(511, 512)중 어느 하나를 참조함으로서 확인할 수 있다.

Claims (9)

  1. 적어도 하나 이상의 태양전지와 인버터를 포함하는 태양광 발전 시스템에 사용되는 태양전지 전압측정 시스템으로서,
    적어도 하나 이상의 태양전지; 상기 태양전지가 발전하여 생성하는 전기에너지의 전압을 측정하는 전압센서; 그리고 상기 태양전지와 연결되어 상기 태양전지가 발전하여 생성하는 전기에너지의 송수신 여부를 결정하는 스위치회로인 바이패스부를 포함하는 하나 이상의 태양전지부;
    상기 하나 이상의 태양전지부 각각의 전압센서와 통신 가능하게 연결되는 컨트롤러;
    상기 컨트롤러와 통신 가능하게 연결되는 서버부;
    그리고 상기 서버부와 통신 가능하겨 연결되며, 입출력장치를 포함하는 디스플레이부를 포함하는 것을 특징으로 하는, 태양전지 전압측정 시스템.
  2. 제 1항에 있어서, 상기 태양전지부는 적어도 둘 이상 구성되어, 태양전지부 각각의 바이패스부가 직렬로 연결되어 단위체인 태양전지열을 하나 이상 형성하고, 상기 태양전지열 각각은 병렬로 연결되어 인버터에 접속되는 것을 특징으로 하는, 태양전지 전압측정 시스템.
  3. 제 2항에 있어서, 상기 태양전지열 내 태양전지부들 중 어느 하나에는 해당 태양전지가 생성하는 전기에너지의 전류를 측정하는 전류센서가 추가로 포함되어 설치되는 것을 특징으로 하는, 태양전지 전압측정 시스템.
  4. 제 2항에 있어서, 상기 태양전지열 내 둘 이상의 태양전지부 각각의 태양전지와 컨트롤러는 선형 토폴로지 또는 선형 버스 토폴로지 중 어느 하나의 형태로 통신 가능하게 연결되는 것을 특징으로 하는, 태양전지 전압측정 시스템.
  5. 제 1항에 있어서,
    상기 컨트롤러는 상기 전압센서와 통신 가능하게 연결되는 센서접속부; 측정된 전압값의 고장 여부를 판단하는 전압판단부와 상기 바이패스부의 동작을 제어하기 위한 제어부를 포함하는 연산부; 광도센서; 그리고 상기 서버부와 통신 가능하게 연결되는 통신모듈을 포함하는 것을 특징으로 하는, 태양전지 전압측정 시스템.
  6. 제 1항에 있어서, 상기 서버부는 도식화 프로그램을 포함하는 것을 특징으로 하는, 태양전지 전압측정 시스템.
  7. 제 1항 내지 6항의 태양전지 전압측정 시스템을 이용한 태양전지 고장진단 방법으로서,
    하나 이상의 태양전지부 각각의 전압센서 중 어느 하나가 태양전지가 생성하는 전기에너지 전압 값이 정상 범위를 벗어났음을 감지하고 고장감지신호(F)를 컨트롤러에 전송하는 고장발생단계(S1);
    상기 단계(S1) 후, 상기 컨트롤러가 고장 여부를 판단하는 고장여부 판단단계(S2);
    상기 단계(S2)에서 고장으로 판단되면, 상기 고장감지신호(F)를 송신한 전압센서가 속한 태양전지부의 바이패스부를 동작시키는 바이패스부 절체단계(S3);
    상기 단계(S3) 후, 상기 컨트롤러가 상기 하나 이상의 태양전지부 각각의 전압센서 중 어느 하나에게 전압색인 작성요청(V.req)을 송신하는 전압색인 작성요청단계(S4);
    상기 단계(S4)를 통해 전압색인 작성요청(V.req)을 수신한 상기 전압센서는, 전암색인(V.index)을 작성하여 자신의 식별 가능한 ID정보와 상태정보를 기록하여 저장 갱신하고, 상기 갱신한 전압색인(V.index)을 자신과 통신 가능하게 연결된 다른 전압센서 또는 컨트롤러에 전송하는 전압색인 작성단계(S5);
    상기 단계(S5)에 따라 갱신된 전압색인(V.index)가 컨트롤러에 수신되면, 상기 컨트롤러가 상기 서버부에 상기 전압색인(V.index)를 송신하는 전압색인 생성단계(S6);
    상기 단계(S6)에 따라 상기 서버부가 상기 전압색인(V.index)를 수신하면, 상기 수신한 전압색인(V.index)을 도식화된 전압색인(V.g.index)으로 변환하여 상기 디스플레이부에 송신하는 도식화된 전압색인 제공단계(S7)를 통하여 관리자에게 고장이 발생한 태양전지의 정보를 전달하는 것을 특징으로 하는, 태양전지 고장진단 방법.
  8. 제 7항에 있어서, 상기 전압색인(V.index)의 상태정보는 정상 상태, 불안 상태, 고장 상태의 3가지로 구분되는 것을 특징으로 하는, 태양전지 고장진단 방법.
  9. 제 7항에 있어서, 상기 단계(S5)에서 전압색인(V.index)을 작성한여 자신의 ID정보와 상태정보를 기록하여 저장 갱신하고, 상기 갱신한 전압색인(V.index)을 자신겨 통신 가능하게 연결된 다른 전압센서에게 송신할 경우, 상기 전압색인(V.index)을 수힌한 다른 전압센서는 자신의 ID정보와 상태정보를 이전 전압센서가 기록한 ID정보와 상태정보의 밑에 덧붙여 기록, 갱신하여 저장한 뒤 자신과 통신 가능하게 연결된 다른 전압센서 또는 컨트롤러에 전송하는 것을 특징으로 하는, 태양전지 고장진단 방법.
PCT/KR2018/005792 2018-05-21 2018-05-21 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법 WO2019225771A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187014453A KR20200066115A (ko) 2018-05-21 2018-05-21 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법
PCT/KR2018/005792 WO2019225771A1 (ko) 2018-05-21 2018-05-21 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/005792 WO2019225771A1 (ko) 2018-05-21 2018-05-21 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법

Publications (1)

Publication Number Publication Date
WO2019225771A1 true WO2019225771A1 (ko) 2019-11-28

Family

ID=68615577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005792 WO2019225771A1 (ko) 2018-05-21 2018-05-21 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법

Country Status (2)

Country Link
KR (1) KR20200066115A (ko)
WO (1) WO2019225771A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102414192B1 (ko) * 2020-08-28 2022-06-29 전현진 로라 통신 기반의 태양광 발전에 대한 센서 데이터를 관리하기 위한 장치 및 이를 위한 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222591A (ja) * 2008-03-17 2009-10-01 Oki Semiconductor Co Ltd 光量測定装置及び光量測定方法
US20120235687A1 (en) * 2010-10-15 2012-09-20 Sanyo Electric Co., Ltd. Self-diagnostic apparatus for electrical storage system
WO2016117797A2 (ko) * 2015-01-19 2016-07-28 한국에너지기술연구원 고장 진단장치가 구비되는 태양광 발전 시스템과 태양광 발전 시스템의 고장 진단 방법
US20170170781A1 (en) * 2015-12-15 2017-06-15 Hitachi, Ltd. Diagnosis system and diagnosis method for photovoltaic power generation system
KR20170110798A (ko) * 2016-03-24 2017-10-12 한국에너지기술연구원 태양광발전시스템 및 태양광발전시스템의 고장진단방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222591A (ja) * 2008-03-17 2009-10-01 Oki Semiconductor Co Ltd 光量測定装置及び光量測定方法
US20120235687A1 (en) * 2010-10-15 2012-09-20 Sanyo Electric Co., Ltd. Self-diagnostic apparatus for electrical storage system
WO2016117797A2 (ko) * 2015-01-19 2016-07-28 한국에너지기술연구원 고장 진단장치가 구비되는 태양광 발전 시스템과 태양광 발전 시스템의 고장 진단 방법
US20170170781A1 (en) * 2015-12-15 2017-06-15 Hitachi, Ltd. Diagnosis system and diagnosis method for photovoltaic power generation system
KR20170110798A (ko) * 2016-03-24 2017-10-12 한국에너지기술연구원 태양광발전시스템 및 태양광발전시스템의 고장진단방법

Also Published As

Publication number Publication date
KR20200066115A (ko) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2013032062A1 (ko) 태양광 모듈 모니터링 시스템
WO2016117797A2 (ko) 고장 진단장치가 구비되는 태양광 발전 시스템과 태양광 발전 시스템의 고장 진단 방법
WO2021049838A1 (ko) 중간 노드를 이용하여 통신하는 배터리 관리 시스템 및 방법
WO2020111561A1 (ko) 머신러닝 기반 태양광 발전 제어 시스템 및 방법
WO2014200188A1 (ko) Rtu를 이용한 태양광발전모니터링 방법 및 무선 rtu장치
WO2020111560A1 (ko) 태양광 발전 밸런싱 제어 시스템 및 방법
WO2018101576A1 (ko) 데이터 집중 장치 및 이의 동작 방법
WO2020138623A1 (ko) 배전반 감시 시스템 및 그것의 동작방법
WO2022019481A1 (ko) 통신 오류의 원인을 진단하기 위한 슬레이브 bms, 마스터 bms 및 배터리 팩
WO2014038835A1 (ko) 네트워크 백업 장치 및 이를 구비한 네트워크 시스템
WO2022222507A1 (zh) 一种mlpe光伏系统及其mlpe设备检测方法
WO2020166804A1 (ko) 발전량 추세분석을 통한 태양광발전 진단장치
WO2020242131A1 (ko) 배터리 관리 시스템 및 상위 시스템으로 데이터를 송신하는 방법
WO2015170904A1 (ko) 태양 광 발전모듈의 원격 진단시스템 및 방법
WO2019225771A1 (ko) 태양전지의 전압측정 시스템 및 이를 이용한 태양전지의 개별 고장진단 방법
WO2017090978A1 (ko) 배터리 팩 상태 병렬 모니터링 장치
WO2022025386A1 (ko) 건축물 에너지 공공 데이터를 이용한 규칙 기반 및 기계 학습 기반의 고장 진단 시스템 및 방법
WO2017090896A1 (ko) 분산전원이 연계된 전력 계통의 전력 관리 장치 및 그 방법
WO2010114268A2 (ko) 바이패스 유닛을 구비하는 태양 전지판
WO2020171307A1 (ko) 링 네트워크를 이용한 배전반 관리 시스템
CN206710860U (zh) 集中控制设备
WO2021125678A1 (ko) 병렬 배터리 릴레이 진단 장치 및 방법
CN211206662U (zh) 一种网络化高压大功率脉冲电容器系统运行状态监控装置
WO2016085009A1 (ko) 직렬 연결된 태양광 모듈 스트링에서의 이상 모듈 진단 시스템 및 방법
WO2023101341A1 (ko) 배터리 정보 관리 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919997

Country of ref document: EP

Kind code of ref document: A1