WO2012043835A1 - 熱間成形品の製造方法 - Google Patents

熱間成形品の製造方法 Download PDF

Info

Publication number
WO2012043835A1
WO2012043835A1 PCT/JP2011/072670 JP2011072670W WO2012043835A1 WO 2012043835 A1 WO2012043835 A1 WO 2012043835A1 JP 2011072670 W JP2011072670 W JP 2011072670W WO 2012043835 A1 WO2012043835 A1 WO 2012043835A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
molding
hot
transformation
steel plate
Prior art date
Application number
PCT/JP2011/072670
Other languages
English (en)
French (fr)
Inventor
圭介 沖田
純也 内藤
池田 周之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2012043835A1 publication Critical patent/WO2012043835A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Definitions

  • the present invention heats a steel sheet (blank) as a raw material to an austenite temperature (Ac 3 transformation point) or higher, and then press-forms it. It relates to a method of producing a molded product that can obtain a predetermined strength by quenching a steel sheet at the same time as shaping when forming into a predetermined shape, particularly without causing breakage or cracking during press molding.
  • the present invention relates to a method for producing a hot-formed product that can realize excellent molding.
  • a hot pressing method that simultaneously improves the strength of the component by press molding and quenching has been proposed (for example, Patent Document 1).
  • the steel sheet is heated to an austenite ( ⁇ ) region above the Ac 3 transformation point and hot pressed, and the steel sheet is simultaneously quenched by bringing it into contact with a normal temperature mold during press forming. This is a method for realizing high strength.
  • Such a hot pressing method since it is molded in a low strength state, the spring back is reduced (the shape freezing property is good), and a strength of a tensile strength of 1500 MPa class is obtained by rapid cooling.
  • a hot pressing method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot pressing method.
  • FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out hot press molding as described above (hereinafter sometimes referred to as “hot press”).
  • 3 is a blank holder
  • 4 is a steel plate (blank)
  • BHF is a crease pressing force
  • rp is a punch shoulder radius
  • rd is a die shoulder radius
  • CL is a punch / die clearance.
  • the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
  • a cooling medium for example, water
  • the steel sheet is heated to the austenite region above the Ac 3 transformation point (for example, around 900 ° C.) and then cooled by a press molding die in a high temperature state.
  • the steel sheet structure becomes supercooled austenite. Since this supercooled austenite has poor moldability, it becomes difficult to perform deep drawing, and there is a problem that it can be formed only up to a range as low as 2 in the limit drawing ratio (LDR).
  • LDR limit drawing ratio
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a useful method for producing a hot-formed product having good moldability to such an extent that deep drawing can be performed. .
  • the hot method for producing a molded article of the present invention which could achieve the above object, impinges on the production of moldings thin steel sheet by molding with hot using a punch and die, a thin steel sheet Ac 3 transformation After heating to a temperature equal to or higher than the point, the gist is that the molding is started at a temperature not higher than (ferrite transformation start temperature + 50 ° C.).
  • the thin steel plate is heated and then cooled to the forming start temperature.
  • molding is the temperature below a ferrite transformation start temperature.
  • the molding end temperature may be a ferrite transformation start temperature or lower, more specifically 600 ° C. or lower, but is preferably higher than the martensite transformation start temperature Ms.
  • the method of the present invention is particularly effective in the case of drawing using a wrinkle presser, and even if such a method is adopted, good formability can be secured without causing breakage or cracking.
  • a state in which ferrite transformation is likely to occur for example, a temperature at which processing induction is likely to occur
  • a state in which some ferrite transformation has occurred. Therefore, it is possible to perform good molding without causing breakage or cracking during molding, and it can be expected that the application range is widened.
  • FIG. 6 is a stress-strain curve when the values shown in FIG. 5 are changed to be similar to reflect the change in work hardening due to ferrite transformation.
  • FIG. 6 is explanatory drawing which shows the state which reached the shaping
  • the present inventors have studied from various angles in order to achieve good formability without generating supercooled austenite when hot pressing a thin steel sheet. As a result, after heating the steel sheet to a temperature equal to or higher than the Ac 3 transformation point, forming is not started as it is, but after heating the steel sheet to a temperature equal to or higher than the Ac 3 transformation point, the steel sheet is held or cooled for a while, The present invention has been completed by finding that good formability can be secured if the press molding is started after the ferrite transformation is likely to occur before the press molding is started.
  • the present invention will be described in detail along the background of the completion of the present invention.
  • the inventors first heated a steel plate having the chemical composition shown in Table 1 below to 900 ° C. (Ac 1 transformation point of this steel plate: 725 ° C., Ac 3 transformation point: 850 ° C., martensitic transformation start temperature). Ms: 460 ° C.), when the drawing experiment was performed using the mold shown in FIG. 1 according to the procedure described above, the blank where cracking occurred when molding was started at 780 ° C. started molding at 740 ° C. or less. Thus, it was found that molding can be performed without cracking (see Examples below).
  • the above-mentioned Ac 3 transformation point means the transformation completion temperature Ac 3 to austenite when the steel plate is heated, and is obtained by the following equation (1).
  • the Ac 1 transformation point and the martensitic transformation start temperature Ms are values obtained by the following formulas (2) and (3), respectively (for example, “Heat Treatment” 41 (3), 164 to 169, 2001 Akira "Prediction of Ac 1 , Ac 3 and Ms transformation points of steel by empirical formula").
  • Ac 3 transformation point (° C.) ⁇ 230.5 ⁇ [C] + 31.6 ⁇ [Si] ⁇ 20.4 ⁇ [Mn] ⁇ 39.8 ⁇ [Cu] ⁇ 18.1 ⁇ [Ni] -14.
  • the temperature at which ferrite transformation occurs once heated is based on the A 1 transformation point (that is, Ar 1 transformation point) in the cooling process.
  • Ar 1 transformation point that is, Ar 1 transformation point
  • Ac 1 transformation point are used. Since the transformation point does not change so much, it is displayed as an Ac 1 transformation point for convenience.
  • the temperature at which ferrite transformation actually starts varies depending on the cooling conditions and is slightly lower than the Ac 1 transformation point.
  • the deformation resistance behavior of the co-test body (test piece) in the above-described deep-drawing process was investigated by the following simulation experiment.
  • the heat treatment pattern at this time is shown in FIG. That is, the relationship between stress and strain (stress-strain curve) when the heating temperature was 800 ° C. or 900 ° C. and the molding start temperature was 600 ° C. or 800 ° C. was investigated.
  • good moldability was obtained when heated to 900 ° C. and deep-drawn at 740 ° C., but because it is cooled by the mold during molding, Then, the deformation resistance when molding was started at 600 ° C. was investigated.
  • a test was also conducted in the case of heating to 800 ° C. corresponding to the two-phase region (austenite + ferrite region) of the Ac 1 transformation point to the Ac 3 transformation point.
  • FIG. 5 shows a typical example of a stress-strain curve (relationship between plastic strain and true stress) of supercooled austenite at high temperatures (for example, “Thermo-mechanical Analysis of Hot Press Forming of AHSS”). "The Iron and Steel Institute of Japan, 156th Fall Lecture Meeting, Proceedings,” Materials and Processes "Vol. 2, No. 2, published on September 1, 2008).
  • the value shown in FIG. 5 was changed to be similar to reflect the change in work hardening due to ferrite transformation, and analysis of deep drawing was performed.
  • FIG. 6 shows the stress-strain curve (relationship between plastic strain and true stress) at this time.
  • the moldability can be improved to such an extent that deep drawing is possible, and for example, a value exceeding 2 is obtained at the above-mentioned limit drawing ratio (LDR).
  • LDR limit drawing ratio
  • This limit drawing ratio (LDR) is the ratio of the maximum diameter D disk that has been deep drawn to the punch diameter D 0 (D / D 0 ), and the greater the limit drawing ratio, the better the deep drawing workability.
  • the upper limit of this heating temperature is preferably about 1000 ° C.
  • this temperature is higher than 1000 ° C.
  • the generation of oxide scale becomes significant during conveyance from the heating furnace to the press molding machine (for example, 100 ⁇ m or more), and the plate thickness (after descaling) of the molded product is predetermined. There is a risk of becoming thinner than the ones.
  • the molding start temperature needs to be (ferrite transformation start temperature + 50 ° C.) or less, but in order to surely cause ferrite transformation, the molding start temperature is the ferrite transformation start temperature.
  • the following is preferable.
  • the molding end temperature is not particularly limited, but from the viewpoint of reliably generating a ferrite structure during the molding and reducing the martensite structure generated during the molding as much as possible, this temperature (molding)
  • the end temperature is preferably lower than the ferrite transformation start temperature or higher than the martensite transformation start temperature Ms.
  • the forming is not started as it is, but the state where the ferrite transformation is likely to occur or a slight ferrite transformation is generated, and then the press forming is started.
  • the thin steel plate is heated to a temperature equal to or higher than the Ac 3 transformation point, it may be air-cooled until the predetermined processing temperature is reached.
  • the predetermined thickness is determined by the following methods (1) and (2). Molding may be started after cooling to temperature or while cooling. (1) It cools by making it contact with a metal plate or a press-molding die as a refrigerant. (2) Cool either gas or liquid or both as refrigerant.
  • the above-mentioned purpose can be achieved by appropriately controlling the molding start temperature, and such an effect is remarkably exhibited when drawing using a mold having a wrinkle presser.
  • the method of the present invention is not limited to draw forming using a wrinkle presser but includes cases where normal press molding (for example, stretch molding) is performed, and even when a molded product is manufactured by such a method. The effect of the present invention is achieved.
  • the steel having the chemical composition shown in Table 1 was rolled to a thickness of 1.4 mm by ordinary means. From this, a circular blank having a diameter (blank diameter): 100 mm was punched out and used for the experiment (the Ac 1 transformation point of this blank: 725 ° C., Ac 3 transformation point: 850 ° C., martensite transformation start temperature Ms: 460 ° C. ).
  • the molding experiment was performed using the mold shown in FIG. 1 and installed in a crank press. The time from when the mold contacted the blank until it stopped at the bottom dead center was 0.75 seconds.
  • the molding start temperatures were 780 ° C., 740 ° C., 700 ° C., 680 ° C., and 640 ° C. In addition, air cooling was performed from the heating temperature to the molding start temperature.
  • Other press molding conditions are as follows.
  • FIG. 8 The timing when deep drawing is started at each temperature is shown in FIG. 8 (CCT curve: continuous cooling transformation diagram).
  • CCT curve continuous cooling transformation diagram
  • indicates that molding was possible without cracking
  • X indicates that cracking occurred during molding.
  • good formability was exhibited at 740 ° C. or less, which is 50 ° C. higher than the temperature at which ferrite transformation starts (actually 690 ° C.).
  • FIG. 9 schematically shows the appearance of a molded product that has been successfully molded.
  • a thin steel sheet is heated to a temperature equal to or higher than the Ac 3 transformation point, forming is started from a temperature of (ferrite transformation start temperature + 50 ° C.) or less, and formability to such an extent that deep drawing can be performed. It is possible to produce a hot-formed product with good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 パンチおよびダイを用いて薄鋼板を熱間で成形して成形品を製造するに当り、薄鋼板をAc3変態点以上の温度に加熱した後、(フェライト変態開始温度+50℃)以下の温度から成形を開始することによって、深絞り加工が可能な程度に成形性が良好な熱間成形品を製造するための有用な方法を提供する。

Description

熱間成形品の製造方法
 本発明は、主に自動車用車体に適用される薄鋼板成形品を製造する分野において、その素材となる鋼板(ブランク)をオーステナイト温度(Ac3変態点)以上に加熱し、その後プレス成形して所定の形状に成形する際に、形状付与と同時に、鋼板を焼入れて所定の強度を得ることのできる成形品を製造する方法に関するものであり、殊にプレス成形時に破断や割れなどを発生させずに良好な成形が実現できる熱間成形品の製造方法に関するものである。
 地球環境保護の観点から、低燃費化を目的とした自動車の軽量化が強く望まれており、車両を構成する部品に鋼板が使用される場合には、高強度鋼板を適用し、この鋼板の板厚を薄くすることによって、軽量化が図られている。その一方で、自動車の衝突安全性を向上させるために、ピラー等の自動車部品には、更なる高強度化が要求されており、引張強度がより高い超高強度鋼板に対するニーズも高まっている。
 しかしながら、薄鋼板の強度をより高くすると、伸びELやr値(ランクフォード値)が低下し、成形性(例えば、プレス成形性)や形状凍結性が劣化することになる。
 こうした状況の下、高強度の自動車用構造部品を実現するために、プレス成形と焼入れによる部品の強度向上を同時に行う熱間プレス方法(いわゆる「ホットプレス法」)が提案されている(例えば、特許文献1)。この技術は、鋼板をAc3変態点以上のオーステナイト(γ)領域まで加熱して、熱間でプレス成形すると共に、プレス成形時に常温の金型と接触させることによって鋼板の焼入れを同時に行い、超高強度化を実現する方法である。
 こうした熱間プレス方法によれば、低強度状態で成形されるので、スプリングバックも小さくなると共に(形状凍結性が良好)、急冷によって引張強度が1500MPa級の強度が得られることになる。尚、このような熱間プレス方法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている。
 図1は、上記のような熱間プレス成形(以下、「ホットプレス」で代表することがある)を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。
 このような金型を用いてホットプレス(例えば、熱間深絞り加工)するに際しては、ブランク(鋼板4)をAc3変態点以上に加熱して軟化させた状態で成形を開始する。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチ1およびダイ2を冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行うと共に、成形下死点(パンチ先端が最上部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。
特開2002-102980号公報
 これまでのホットプレスでは、鋼板をAc3変態点以上(例えば、900℃付近)のオーステナイト領域まで加熱した後、高温状態のままでプレス成形用金型によって冷却することになるので、成形中の鋼板組織は過冷オーステナイトとなる。この過冷オーステナイトは成形性が悪いので、深絞り成形が難しくなり、限界絞り比(L.D.R)で2程度の低い範囲までしか成形ができないという問題がある。
 こうしたことから、冷間プレスによってニアネット(成形品に近い状態)まで成形し、その後、加熱・ダイクエンチする、いわゆるインダイレクト工法も提案されているが、この方法では成形工程が増えるために成形時間が長くなるという欠点がある。従って、成形工程がそれほど多くならない、いわゆるダイレクト工法によって深絞り加工できるような技術が求められているのが実情である。
 本発明は上記事情に鑑みてなされたものであって、その目的は、深絞り加工が可能な程度に成形性が良好な熱間成形品を製造するための有用な方法を提供することにある。
 上記目的を達成することのできた本発明の熱間成形品の製造方法とは、パンチおよびダイを用いて薄鋼板を熱間で成形して成形品を製造するに当り、薄鋼板をAc3変態点以上の温度に加熱した後、(フェライト変態開始温度+50℃)以下の温度で成形を開始する点に要旨を有するものである。
 本発明方法においては、薄鋼板を加熱した後、成形開始温度まで冷却することが好ましい。また、成形を開始する温度はフェライト変態開始温度以下の温度であることが好ましい。成形の終了温度については、フェライト変態開始温度以下、より具体的には600℃以下の温度とすることもできるが、マルテンサイト変態開始温度Msよりも高い温度とすることが好ましい。
 本発明方法は、しわ押えを使用して絞り成形する場合に特に有効であり、こうした方法を採用しても破断や割れが生じることなく、良好な成形性を確保できる。
 本発明によれば、薄鋼板をAc3変態点以上の温度に加熱した後、フェライト変態が生じやすい状態(例えば、加工誘起が生じやすい温度)にしてから、若しくは若干のフェライト変態が生じた状態で成形を開始するようにしたので、成形時に破断や割れなどを発生させることなく良好な成形が可能となり、その適用範囲が広くなることが期待できる。
熱間プレス成形を実施するための金型構成を示す概略説明図である。 変形抵抗挙動を調査するための模擬実験における熱処理パターンを示すグラフである。 成形開始温度を800℃としたときの応力-歪み曲線である。 成形開始温度を600℃としたときの応力-歪み曲線である。 過冷オーステナイトの高温域での応力-歪み曲線の代表的な例である。 図5に示された値を、フェライト変態による加工硬化の変化を反映して、類似するように変更したときの応力-歪み曲線である。 早期に成形限界に達した状態を示す説明図である。 各温度で深絞り成形を開始したときのタイミングを示すCCT曲線である。 成形が実施できた成形品の外観形状を模式的に示した斜視図である。
 本発明者らは、薄鋼板をホットプレスするに際して、過冷オーステナイトを生成させることなく、良好な成形性を実現するべく、様々な角度から検討した。その結果、薄鋼板をAc3変態点以上の温度に加熱した後、そのまま成形を開始するのではなく、薄鋼板をAc3変態点以上の温度に加熱した後、鋼板をしばらく保持若しくは冷却し、プレス成形を開始するまでにフェライト変態が生じやすい状態としてからプレス成形を開始するようにすれば、良好な成形性が確保できることを見出し、本発明を完成した。以下、本発明が完成された経緯に沿って本発明について具体的に説明する。
 本発明者らは、まず下記表1に示す化学成分組成を有する鋼板を、900℃に加熱し(この鋼板のAc変態点:725℃、Ac3変態点:850℃、マルテンサイト変態開始温度Ms:460℃)、前記図1に示した金型を用いて前述した手順で絞り成形実験を行ったところ、780℃で成形を開始すれば割れが発生したブランクが、740℃以下で成形開始すれば割れずに成形ができることが判明した(後記実施例参照)。
 尚、上記したAc3変態点は、鋼板を加熱したときのオーステナイトへの変態完了温度Ac3の意味であり、下記(1)式によって求められるものである。また、Ac変態点およびマルテンサイト変態開始温度Msは、夫々下記(2)式および(3)式によって求められる値である(例えば、『熱処理』41(3),164~169,2001 邦武立朗「鋼のAc1,Ac3およびMs変態点の経験式による予測」)。
Ac3変態点(℃)=-230.5×[C]+31.6×[Si]-20.4×[Mn]-39.8×[Cu]-18.1×[Ni]-14.8×[Cr]+16.8×[Mo]+912  …(1)
Ac1変態点(℃)=-32.7×[C]+14.9×[Si]+2.0×[Mn]-17.0×[Cu]-14.2×[Ni]+17.8×[Cr]+25.6×[Mo]+727.0  …(2)
Ms(℃)=560.5-{407.3×[C]+7.3×[Si]+37.8×[Mn]+20.5×[Cu]+19.5×[Ni]+19.8[Cr]+4.5×[Mo]}  …(3)
 但し、[C],[Si],[Mn],[Cu],[Ni],[Cr]および[Mo]は、夫々C,Si,Mn,Cu,Ni,CrおよびMoの含有量(質量%)を示す。また、上記(1)~(3)の各項に示された元素が含まれない場合は、その項がないものとして計算する。

Figure JPOXMLDOC01-appb-T000001
 こうしたことから、従来の熱間成形では極力高温で成形を開始するのが技術常識と考えられていたのであるが、プレス成形を開始するまでにフェライト変態が生じやすい状態にしてから、若しくは若干のフェライト変態が生じた状態でプレス成形を開始すれば、絞り成形性が向上することが予想できた。尚、一旦加熱してからのフェライト変態を生じる温度は、冷却過程でのA変態点(即ち、Ar変態点)が参考となるのであるが、本発明では、Ar変態点とAc変態点はそれほど変わらないことから、便宜上Ac変態点で表示した。但し、実際にフェライト変態が開始する温度は冷却条件によって異なり、上記Ac変態点よりも若干低い値となる。
 上記の深絞り成形過程(詳細な条件は後記実施例参照)の共試体(試験片)の変形抵抗挙動を、以下の模擬実験によって調査した。このときの熱処理パターンを図2に示す。即ち、加熱温度を800℃または900℃とし、成形開始温度を600℃または800℃としたときの応力と歪みの関係(応力-歪み曲線)を調査した。後記実施例に示すように、900℃まで加熱して、740℃で深絞り成形を行ったときに良好な成形性が得られたのであるが、成形中は金型によって冷却されるため、ここでは600℃で成形を開始したときの変形抵抗を調査した。また、比較のために、二相域(オーステナイト+フェライト域)であるAc変態点以上、Ac3変態点以下に相当する800℃に加熱した場合の試験も実施した。
 成形開始温度を800℃としたときの応力と歪みの関係を図3(応力-歪み曲線)に、成形開始温度を600℃としたときの応力と歪みの関係を図4(応力-歪み曲線)に示す。これらの結果から明らかなように、900℃に加熱した後、600℃で成形した場合のみ、変形中にフェライト変態が生じ、見掛けの加工硬化が大きくなっていることが分かる。加工硬化係数nが大きいと深絞り成形性が良好になることは知られているが、本発明のようにフェライト変態が生じやすい状態にしてから、若しくは若干のフェライト変態が生じてから成形することによって、上記と同様の効果が発現したものと考えられる。
 上記のような応力-歪み曲線に及ぼすフェライト変態の影響を考慮して、以下のような解析実験による検証を行なった。図5は、過冷オーステナイトの高温域での応力-歪み曲線(塑性歪みと真応力の関係)の代表的な例を示したものである(例えば、「Thermo-mechanical Analysis of Hot Press Forming of AHSS」日本鉄鋼協会 第156回秋季講演大会 講演論文集、『材料とプロセス』第2巻第2号 2008年9月1日発行)。図5に示された値を、フェライト変態による加工硬化の変化を反映して、類似するように変更して深絞り成形の解析を実施した。このときの応力-歪み曲線(塑性歪みと真応力の関係)を図6に示す。
 図5の応力-歪み曲線を示した場合には、図7に示すように、成形中に局部変形(図7中、局部変形部分をAで示す)が生じ、早期に成形限界に達していた。これに対して、応力-歪み曲線にフェライト変態の影響を考慮した場合は、より均一に変形が進行し、成形下死点まで深絞りができた。これらの結果は、成形開始までにフェライト変態を生じさせることによって、深絞り性が向上するという本発明の有用性を示すものである。
 本発明によれば、深絞りが可能な程度に成形性が良好にできるものであり、例えば前述した限界絞り比(L.D.R:Limiting Drawing Ratio)で2を超えるような値が得られることになる。尚、この限界絞り比(L.D.R)は、種々の直径の円盤試験片(鋼板)に対して、深絞り加工のできた最大の直径Dの円盤とパンチの直径D0の比(D/D0)を表したものであり、この限界絞り比が大きくなるほど深絞り加工性が良好なことを意味する。
 本発明方法を実施するに当たっては、まず薄鋼板をAc3変態点以上の温度に加熱する必要があるが、この加熱温度の上限は1000℃程度までとすることが好ましい。この温度が1000℃よりも高くなると、加熱炉からプレス成形機への搬送の間に、酸化スケールの生成が著しくなって(例えば、100μm以上)、成形品の板厚(デスケーリング後)が所定のものよりも薄くなる恐れがある。
 いずれの加熱温度を採用するにしても、成形開始温度は、(フェライト変態開始温度+50℃)以下とする必要があるが、確実にフェライト変態が生じるためには、成形開始温度はフェライト変態開始温度以下であることが好ましい。また成形終了温度については特に限定されるものではないが、成形途中で確実にフェライト組織を生成するという観点および成形途中で生成するマルテンサイト組織をできるだけ低減するという観点からして、この温度(成形終了温度)は、フェライト変態開始温度よりも低い温度か、マルテンサイト変態開始温度Msよりも高い温度とすることが好ましい。
 本発明では、薄鋼板をAc3変態点以上の温度に加熱した後、そのまま成形を開始するのではなく、フェライト変態が生じやすい状態、若しくは若干のフェライト変態を生じさせてからプレス成形を開始するものであるが、薄鋼板をAc3変態点以上の温度に加熱した後、所定の加工温度になるまでは、空冷してもよいが、例えば下記(1)、(2)の方法で所定の温度まで冷却した後、或は冷却しつつ成形を開始するようにしても良い。
 (1)冷媒として金属板若しくはプレス成形金型と接触させて冷却する。
 (2)気体、液体のいずれか若しくは双方を冷媒として冷却する。
 尚、本発明方法では、成形開始温度を適切に制御することによって上記の目的を達成することができるのであり、こうした効果はしわ押えを有する金型を用いて絞り成形する場合に顕著に発揮されることになる。但し、本発明方法は、しわ押えを用いる絞り成形に限らず、通常のプレス成形(例えば、張り出し成形)を実施する場合も含むものであり、こうした方法によって成形品を製造する場合であっても本発明の効果が達成される。
 以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
 前記表1に示した化学成分組成を有する鋼を通常の手段によって、厚さ1.4mmまで圧延した。これから、直径(ブランク径):100mmの円形ブランクを打ち抜き、実験に用いた(従って、このブランクのAc変態点:725℃、Ac変態点:850℃、マルテンサイト変態開始温度Ms:460℃)。
 上記円形ブランクを用い、パンチの頭部形状が正方形(一辺が45mm)の金型(角筒ダイおよび角筒パンチ)を用い(前記図1参照)、本発明方法に従って、熱間による角筒絞り成形を行った。このときブランクの加熱は、電気炉を用いて大気雰囲気で行い、その加熱温度を900℃に設定した。
 成形実験は、前記図1に示した金型を用い、クランクプレス機に設置して実施した。金型がブランクに接触してから、成形下死点で停止するまでの時間は0.75秒とした。また成形開始温度は、780℃、740℃、700℃、680℃、640℃とした。また加熱温度から成形開始温度までは、空冷とした。その他のプレス成形条件は下記の通りである。
 (他のプレス成形条件)
 しわ押え力:3トン
 ダイ肩半径rd:5mm
 パンチ肩半径rp:5mm
 パンチ-ダイ間クリアランスCL:1.32/2+1.4(鋼板厚さ)mm
 成形高さ:37mm
 各温度で深絞り成形を開始したときのタイミングを図8(CCT曲線:continuous cooling transformation diagram)に示す。図8において、「○」印は割れが発生することなく、成形が可能であったことを示し、「×」印は成形中に割れが発生したことを意味する。その結果、フェライト変態が開始する温度(実際には690℃)よりも50℃高い740℃以下で良好な成形性が発揮されていることが確認できた。
 良好な成形が実施できた成形品の外観形状を模式的に図9(斜視図)に示す。これらの結果から明らかなように、フェライト変態が生じやすい状態にしてから、若しくは若干のフェライト変態が生じた状態で成形を開始した場合には、良好な深絞りが完了しており、成形性が向上していることが分かる。
 本発明方法は、薄鋼板をAc3変態点以上の温度に加熱した後、(フェライト変態開始温度+50℃)以下の温度から成形を開始するものであり、深絞り加工が可能な程度に成形性が良好な熱間成形品を製造することができる。
1 パンチ
2 ダイ
3 ブランクホルダー
4 ブランク(鋼板)

Claims (7)

  1.  パンチおよびダイを用いて薄鋼板を熱間で成形して成形品を製造するに当り、薄鋼板をAc3変態点以上の温度に加熱した後、(フェライト変態開始温度+50℃)以下の温度から成形を開始することを特徴とする熱間成形品の製造方法。
  2.  薄鋼板を加熱した後、成形開始温度まで冷却する請求項1に記載の熱間成形品の製造方法。
  3.  フェライト変態開始温度以下の温度で成形を終了する請求項1に記載の熱間成形品の製造方法。
  4.  フェライト変態開始温度以下の温度から成形を開始する請求項1に記載の熱間成形品の製造方法。
  5.  600℃以下の温度で成形を開始する請求項4に記載の熱間成形品の製造方法。
  6.  マルテンサイト変態開始温度Msよりも高い温度で成形を終了する請求項1に記載の製造方法。
  7.  しわ押えを使用して絞り成形する請求項1~6のいずれかに記載の製造方法。
PCT/JP2011/072670 2010-09-30 2011-09-30 熱間成形品の製造方法 WO2012043835A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222941A JP5612992B2 (ja) 2010-09-30 2010-09-30 熱間成形品の製造方法
JP2010-222941 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043835A1 true WO2012043835A1 (ja) 2012-04-05

Family

ID=45893272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072670 WO2012043835A1 (ja) 2010-09-30 2011-09-30 熱間成形品の製造方法

Country Status (2)

Country Link
JP (1) JP5612992B2 (ja)
WO (1) WO2012043835A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923605A (zh) * 2014-03-20 2015-09-23 富士重工业株式会社 热压深拉成型方法以及装置
CN106001231A (zh) * 2015-03-26 2016-10-12 维巴模具制造有限公司 用于生产局部硬化的成形部件的工艺和装置
EP2995395A4 (en) * 2013-05-09 2016-12-28 Nippon Steel & Sumitomo Metal Corp SURFACE PROCESSING WITH SURFACE CORRFINDERING AND HOT SHEARING PRODUCT WITH SURFACE CORNFINERATION

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002072B2 (ja) * 2013-03-26 2016-10-05 株式会社神戸製鋼所 プレス成形品の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329449A (ja) * 2004-05-21 2005-12-02 Kobe Steel Ltd 温熱間成形品の製造方法および成形品
JP2007275937A (ja) * 2006-04-07 2007-10-25 Nippon Steel Corp 鋼板熱間プレス方法及びプレス成形品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515521B2 (ja) * 2009-08-31 2014-06-11 Jfeスチール株式会社 鋼板の熱間プレス成形方法
JP2011179028A (ja) * 2010-02-26 2011-09-15 Sumitomo Metal Ind Ltd 成形品の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329449A (ja) * 2004-05-21 2005-12-02 Kobe Steel Ltd 温熱間成形品の製造方法および成形品
JP2007275937A (ja) * 2006-04-07 2007-10-25 Nippon Steel Corp 鋼板熱間プレス方法及びプレス成形品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995395A4 (en) * 2013-05-09 2016-12-28 Nippon Steel & Sumitomo Metal Corp SURFACE PROCESSING WITH SURFACE CORRFINDERING AND HOT SHEARING PRODUCT WITH SURFACE CORNFINERATION
CN104923605A (zh) * 2014-03-20 2015-09-23 富士重工业株式会社 热压深拉成型方法以及装置
CN104923605B (zh) * 2014-03-20 2017-03-15 富士重工业株式会社 热压深拉成型方法以及装置
CN106001231A (zh) * 2015-03-26 2016-10-12 维巴模具制造有限公司 用于生产局部硬化的成形部件的工艺和装置

Also Published As

Publication number Publication date
JP2012076101A (ja) 2012-04-19
JP5612992B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP3816937B1 (ja) 熱間成形品用鋼板およびその製造方法並びに熱間成形品
JP5808845B2 (ja) プレス成形品の製造装置
JP4681492B2 (ja) 鋼板熱間プレス方法及びプレス成形品
JP4551694B2 (ja) 温熱間成形品の製造方法および成形品
JP5890711B2 (ja) 熱間プレス成形品およびその製造方法
JP5883350B2 (ja) 熱間プレス成形品、その製造方法および熱間プレス成形用薄鋼板
WO2013047526A1 (ja) プレス成形品の製造方法およびプレス成形設備
WO2012043832A1 (ja) プレス成形品の製造方法
JP6318971B2 (ja) 熱間プレス成形方法
JP2011179028A (ja) 成形品の製造方法
CN109333001A (zh) 高强钢汽车外覆盖件总成及其制造方法
KR100692723B1 (ko) 고온동시성형에 의한 자동차용 부품의 제조방법
JP5612992B2 (ja) 熱間成形品の製造方法
WO2017029773A1 (ja) 熱間プレス部材の製造方法および熱間プレス部材
WO2012043833A1 (ja) プレス成形設備
CN109570343A (zh) 高强钢汽车覆盖件总成及其制造方法和装置
WO2013118862A1 (ja) プレス成形品およびその製造方法
JP5612993B2 (ja) プレス成形品およびその製造方法
WO2012043834A1 (ja) プレス成形品およびその製造方法
JP5321599B2 (ja) ガスケット用鋼板の製造方法及びガスケット
JP5952881B2 (ja) プレス成形品の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829388

Country of ref document: EP

Kind code of ref document: A1