WO2012043660A1 - メタルボンド砥石の製造方法 - Google Patents

メタルボンド砥石の製造方法 Download PDF

Info

Publication number
WO2012043660A1
WO2012043660A1 PCT/JP2011/072248 JP2011072248W WO2012043660A1 WO 2012043660 A1 WO2012043660 A1 WO 2012043660A1 JP 2011072248 W JP2011072248 W JP 2011072248W WO 2012043660 A1 WO2012043660 A1 WO 2012043660A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
grindstone
cooling
inert gas
metal bond
Prior art date
Application number
PCT/JP2011/072248
Other languages
English (en)
French (fr)
Inventor
正人 氏橋
慎吾 松本
難波 規之
直秀 海野
和彦 北中
杉山 宏
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010221969A external-priority patent/JP5514689B2/ja
Priority claimed from JP2010224083A external-priority patent/JP5520771B2/ja
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2012043660A1 publication Critical patent/WO2012043660A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses

Definitions

  • the present invention relates to a technique for manufacturing a metal bond grindstone suitable for honing roughing.
  • FIG. 8 is an enlarged schematic view of the cross section of the cylinder subjected to the plateau honing process.
  • the surface of the cylinder 100 subjected to the plateau honing process has innumerable plateaus (hills) 101 and adjacent plateaus 101 and 101. And a trough 102 formed between the two.
  • the top surface 103 of the plateau 101 reduces the surface roughness to reduce wear, and maintains the lubrication between the top surface 103 and the piston with the oil accumulated in the valley 102. As a result, both slidability and lubricity can be achieved.
  • Patent Document 1 discloses that a material containing barium sulfate (BaSO 4 ) is subjected to pressure sintering under conditions of a sintering temperature of 500 ° C. and a molding pressure of 15 MPa.
  • Patent Document 1 does not describe the cooling rate after sintering, but the inventors of the present application performed pressure sintering of the material under conditions of a sintering temperature of 500 ° C. and a molding pressure of 15 MPa, When the metal bond grindstone was obtained by stopping the energization and cooling, the cooling rate was 5.8 ° C./min.
  • FIG. 9 is a schematic cross-sectional view of the metal bond grindstone obtained by the above (sintering temperature 500 ° C., molding pressure 15 MPa, cooling by stopping energization of the heater).
  • the metal bond wheel 110 the metal-based in the binding material Mb as the base material, and cobalt (Co) particles 111, the abrasive grains 112, and basically that disperses the tungsten disulfide (WS 2) particles 113
  • the agglomerate 115 was included therein.
  • the filler added for the purpose of improving the mechanical properties is insufficiently dispersed. Therefore, the agglomerate 115 and the cobalt particles 111 that are fillers in the coarse crystals of the metal-based binder Mb that is the base material are mixed. It is generated by aggregation of tungsten sulfide particles 113. Such agglomerates 115 are more fragile than the surroundings.
  • FIG. 10 is an explanatory diagram of the operation of FIG. 9.
  • the metal bond grindstone 110 was ground for a while, the agglomerate 115 dropped off from the surface, and the pocket 116 was formed. For this reason, since the holding power is reduced and the amount of grinding is reduced due to the progress of falling off of the abrasive grains, and the wear is rapidly increased due to the progress of falling off of the agglomerates, the conventional metal bond grindstone 110 has a short life. I found out that
  • One or more embodiments of the present invention provide a manufacturing technique capable of manufacturing a long-life metal bond grindstone.
  • a method for manufacturing a metal bond grindstone having abrasive grains as abrasives, cobalt, ceramics, and a binder is performed by hot pressing from abrasive grains, cobalt, ceramics, and a binder.
  • a heat treatment step for obtaining a fired product by firing treatment while applying a press pressure to the raw material, and a cooling treatment step for obtaining a grindstone by stopping heating and cooling the fired product may be provided.
  • the cooling may be performed at a temperature lowering rate of 15 ° C./min or more from the firing temperature to 600 ° C.
  • a method for manufacturing a metal bond grindstone having abrasive grains as abrasives, cobalt, ceramics, and a binder is obtained by hot pressing.
  • a cooling treatment step of obtaining a grindstone by cooling is obtained by hot pressing.
  • the hot press 10 includes a water cooling jacket 11, a furnace shell 12 that can withstand an internal pressure of 0.98 MPa (G), and a lower punch 13 that is inserted upward from the bottom of the furnace shell 12.
  • This is a sintering furnace (pressure resistant hot press) comprising a heat insulating chamber 17 surrounding the graphite heater 16.
  • the heat insulation chamber 17 is made of a ceramic fiber molded body that is rich in durability and has high heat insulation performance.
  • the lower part of the lower punch 13 is inserted into the cylinder 18, and when the pressure oil is sent from the hydraulic pump 19 to the cylinder 18, the lower punch 13 rises.
  • the oil pressure is detected by the pressure detection means 21.
  • Water cooling jacket 11 is supplied with water by water pump 22. This water is discharged to the chiller 23, the temperature is adjusted, and then returned to the water pump 22.
  • the graphite heater 16 is controlled by the furnace temperature control unit 25. That is, when the temperature detected by the furnace temperature detecting means 26 is lower than the set value, the power supply amount to the graphite heater 16 is increased, and when the temperature is higher than the set value, the power supply amount to the graphite heater 16 is decreased. By doing so, it is possible to control the furnace temperature including the control of the rate of temperature increase.
  • the furnace shell 12 is provided with a furnace pressure detecting means 27 for detecting the pressure in the furnace and an exhaust / pressurizing pipe 28, and an exhaust means 29 such as a vacuum pump or an ejector and an inert gas are provided in the pipe 28.
  • a supply source 31 is connected.
  • the inert gas argon gas or nitrogen gas is easily available.
  • the exhaust means 29 and the inert gas supply source 31 are not used at the same time.
  • the furnace pressure detecting means 27 is preferably provided separately for the pressure reduction and the pressure application, but is here shared for convenience. The following experiment was performed using the hot press 10 described above.
  • ⁇ Inert gas filling Argon gas is blown into the furnace from the inert gas supply source 31 of FIG. 1, and the furnace pressure is maintained at a predetermined pressure.
  • ⁇ Press A press pressure of 30 MPa is applied to the material by the punches 13 and 15 in FIG.
  • Heating and heating rate Heat from the atmospheric temperature (25 ° C.) to the sintering temperature (740 ° C.) at a heating rate of 12.5 ° C./min. By holding at 740 ° C. for a certain time, the sintering process is performed.
  • ⁇ Heating stop The graphite heater 16 in FIG. 1 is stopped. This lowers the temperature in the furnace and the material. When the temperature is lowered, the pressure is monitored by the furnace pressure detecting means 27 to control the exhaust means 29 and the inert gas supply source 31 so that the pressure of the inert gas in the furnace is maintained.
  • the cooling rate was as shown in the following figure. As shown in FIG. 2, when the pressure in the furnace is 0.01 MPa (G), the cooling rate is 11.9 ° C./min, 0.10 MPa (G) is 12.8 ° C./min, and 0.49 MPa (G). 16.0 ° C./min, 0.69 MPa (G) at 17.5 ° C./min, 0.80 MPa (G) at 18.7 ° C./min, 0.92 MPa (G) at 19.3 ° C./min there were.
  • Cooling means that heat is transferred (escapes) from the furnace center having a high temperature to the low outer periphery.
  • the transmitting substance that fulfills this mediation is the atmosphere. In other words, heat transfer is performed by collision of gas molecules.
  • the inside of the furnace is decompressed or replaced with gas, and the oxygen partial pressure is lowered before sintering. This is to prevent deterioration due to oxidation.
  • a reduced pressure atmosphere there are fewer substances (gas molecules) that transfer heat.
  • gas replacement the number of gas molecules hardly changes even if the type of gas changes. Therefore, the cooling rate is not improved in a general hot press atmosphere. In the case of a high vacuum, as described above, the temperature lowering rate becomes half or less.
  • the temperature drop rate is improved by performing a hot press manufacturing method with the atmosphere in the furnace in a pressurized state. Increasing the number of gaseous molecules by enclosing high pressure gas in the furnace. That is, it is possible to accelerate the heat dissipation by increasing the collision of molecules.
  • the pressure in the furnace is set to 20 Pa (a) with the hot press 10.
  • a grindstone was manufactured at a temperature decrease rate of 5 ° C./min obtained with this setting.
  • the experiment number relating to the obtained grindstone will be referred to as Experiment 02.
  • the upper limit of the temperature drop rate remains at 20 ° C./min.
  • the heat insulating chamber 17 in FIG. 1 was replaced with a ceramic fiber felt having a heat insulating performance smaller than that of the ceramic fiber molded body.
  • a large temperature decrease rate of 30 ° C./min could be obtained.
  • a grindstone was manufactured at a temperature decrease rate of 30 ° C./min.
  • the experiment number related to the obtained grindstone was called experiment 03, and the grinding ratio was examined. The results are shown in Table 2.
  • Fig. 3 shows the correlation between the temperature drop rate and the grinding ratio. It was confirmed that the grinding ratio dramatically increased when the temperature decreasing rate was 15 ° C./min or more.
  • FIG. 4 is a schematic cross-sectional view of the grindstone of Experiment 02 before grinding.
  • the grindstone 40 of Experiment 02 includes abrasive grains 41, cobalt particles 42, ceramic particles 43, and a metal-based binder 44 that binds these. Although it was a basic element, this included an agglomerate 45.
  • this agglomerate 45 is not sufficiently dispersed in fillers added for the purpose of improving mechanical properties, so that coarse crystals of a metallic binder as a base material are formed. It is produced by agglomeration of cobalt particles 42 and ceramic particles 43 as fillers. Such agglomerates 45 are more fragile than the surroundings.
  • FIG. 5 is a schematic cross-sectional view of the grindstone of Experiment 03 before grinding.
  • the grindstone 50 of Experiment 03 is composed of abrasive grains 51, cobalt particles 52, ceramic particles 53, and a metal-based binder 54 that binds these. And no agglomerates were observed.
  • the temperature lowering rate is preferably 15 ° C./min or higher, and the higher the better.
  • the heat insulation performance was lowered as described in the remarks column of Table 2, the electricity cost required for heating increases.
  • the ceramic fiber felt is less durable than the ceramic fiber molded article, the replacement cost of the heat insulation chamber 17 increases. Therefore, in order to carry out the experiment 03, the operation cost increases and it becomes difficult to carry out the experiment. That is, it is desired that the temperature lowering rate is 20 ° C./min or less in order to suppress an increase in operating cost.
  • the maximum value of the plot in FIG. 2 was 0.92 MPa (G).
  • mold in FIG. 3 can raise the pressure in a furnace to 10 atmospheres (0.98MP (G)). Therefore, as shown in FIG. 7, a furnace pressure of 0.92 to 0.98 MPa (G) is recommended as a preferred range.
  • the manufacturing method of the metal bond grindstone which has the abrasive grain as an abrasive, cobalt, ceramics, and a binder is the said abrasive grain, cobalt, ceramics, and a coupling
  • a heat treatment step for obtaining a fired product by firing treatment while applying a press pressure to the material made of the material, and a cooling treatment step for obtaining a grindstone by stopping the heating and cooling the fired product. May be.
  • the cooling may be performed at a rate of temperature decrease of 15 ° C./min or more from the firing temperature to 600 ° C.
  • the size of the aggregate can be sufficiently reduced by this cooling, and the life of the grindstone can be extended.
  • the temperature decreasing rate may be set in a range of 15 to 20 ° C./min.
  • cooling rate is kept at 20 ° C./min, an increase in operating costs such as electricity bills can be suppressed.
  • a method for manufacturing a metal bond grindstone having abrasive grains as abrasives, cobalt, ceramics, and a binder is obtained by hot pressing the abrasive grains, cobalt, ceramics.
  • a heat treatment step of obtaining a fired product by firing the material in a compressed inert gas atmosphere while applying a press pressure to the material composed of the binder and the heating, and stopping the heating is obtained by hot pressing the abrasive grains, cobalt, ceramics.
  • a heat treatment step of obtaining a fired product by firing the material in a compressed inert gas atmosphere while applying a press pressure to the material composed of the binder and the heating, and stopping the heating
  • the inert gas When the inert gas is compressed, the density increases and the frequency of collision between the gas molecules increases, thus increasing the heat transfer. That is, the compressed inert gas serves as a heat carrier that efficiently transfers the retained heat of the fired product to the water-cooled jacket. When cooled at a high temperature-decreasing rate, generation of fragile agglomerates can be suppressed. As a result, the life of the grindstone can be extended.
  • the pressure of the compressed inert gas may be 0.92 to 0.98 MPa as a gauge pressure.
  • the present invention is suitable for a metal bond grindstone used for roughing honing.
  • Binder metal binder

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

 研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法は、ホットプレスにより前記砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、前記素材を圧縮不活性ガス雰囲気中で、焼成処理することで焼成品を得る加熱処理工程と、加熱を停止し、前記圧縮不活性ガスの圧力を維持しつつ前記焼成品を冷却することで砥石を得る冷却処理工程と、を有する。

Description

メタルボンド砥石の製造方法
 本発明は、ホーニング粗加工に好適なメタルボンド砥石の製造技術に関する。 
 近年、あらゆる分野において環境に対する取り組みがなされている。車両においても、燃費向上は取り組むべき重大な事項である。燃費向上対策の一つに、シリンダとピストンとの間の摩擦軽減がある。この摩擦軽減は、燃費向上だけでなく、運動性能の向上にも繋がる。
 上述の摩擦軽減を実現するには、プラトーホーニング工法が有効である。
 図8はプラトーホーニング加工が施されたシリンダの断面を拡大した模式図であり、プラトーホーニング加工が施されたシリンダ100の表面には、無数のプラトー(丘)101と、隣り合うプラトー101、101の間に形成される谷102とが形成される。プラトー101の頂面103は面粗さを小さくして摩耗を低減させ、谷102に溜めたオイルで頂面103とピストンとの間の潤滑を維持する。この結果、摺動性と潤滑性を両立させることができる。
 以上に述べたプラトーホーニング加工に適した砥石として、メタルボンド砥石が提案されている(例えば、特許文献1参照。)。
日本国特開2008-229794号公報
 特許文献1は、焼結温度500℃及び成型圧力15MPaの条件で、硫酸バリウム(BaSO)を含む材料を加圧焼結すること、を開示している。
 特許文献1には、焼結後の冷却速度が記載されていないが、本願の発明者らが、焼結温度500℃及び成型圧力15MPaの条件で材料の加圧焼結を行い、ヒータへの通電を停止して冷却することでメタルボンド砥石を得た際には、冷却速度は5.8℃/分であった。
 図9は、上記(焼結温度500℃、成型圧力15MPa、ヒータへの通電を停止して冷却)によって得られたメタルボンド砥石の断面模式図である。このメタルボンド砥石110では、母材である金属系結合材Mb中に、コバルト(Co)粒子111と、砥粒112と、二硫化タングステン(WS)粒子113とを分散させることを基本とするが、これに凝集塊115が含まれていることが判明した。
 この凝集塊115は、機械的特性の向上を目的に添加されるフィラーの分散が不十分であるため、母材である金属系結合材Mbの粗大な結晶中にフィラーであるコバルト粒子111と二硫化タングステン粒子113とが凝集したことにより生成される。このような凝集塊115は、周囲に較べて脆弱である。
 図10は図9の作用説明図であり、メタルボンド砥石110で暫く研削を行ったところ、凝集塊115が表面から脱落して、ポケット116ができていた。このため保持力が低下して砥粒の脱落が進行することによる研削量の低下、および、凝集塊脱落の進行による摩耗の急増が発生するので、従来のメタルボンド砥石110は寿命が短いという問題があることが分かった。 
 本発明の一以上の実施形態は、高寿命のメタルボンド砥石を製造することができる製造技術を提供する。
 本発明の実施形態によれば、研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法は、ホットプレスにより砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、焼成処理することで焼成品を得る加熱処理工程と、加熱を停止し、焼成品を冷却することで砥石を得る冷却処理工程と、を有してもよい。冷却は、焼成温度から600℃まで15℃/分以上の降温速度で実施してもよい。
 また、本発明の実施形態によれば、研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法は、ホットプレスにより砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、素材を圧縮不活性ガス雰囲気中で、焼成処理することで焼成品を得る加熱処理工程と、加熱を停止し、圧縮不活性ガス雰囲気中で焼成品を冷却することで砥石を得る冷却処理工程と、を有してもよい。 
ホットプレスの断面図である。 炉内圧力と降温速度の相関図である。 降温速度と研削比の相関図である。 研削前における実験02の砥石の断面模式図である。 研削前における実験03の砥石の断面模式図である。 好適な降温速度の範囲を説明する図である。 炉内圧力の好適範囲を示す図である。 プラトーホーニング加工が施されたシリンダの断面を拡大した模式図である。 従来の砥石の断面を拡大した模式図である。 使用後の砥石の断面を拡大した模式図である。
<典型的実施形態>
 本発明の典型的実施形態を図面に基づいて説明する。なお、以下の説明において、圧力に関しては次の表記を採用する。減圧状態には、絶対真空をゼロとした絶対圧を使用し、単位の後に(a)を記す。加圧状態には、大気圧をゼロとしたケージ圧を使用し、単位の後に(G)を記す。
 図1に示されるように、ホットプレス10は、水冷ジャケット11を備え、内圧が0.98MPa(G)まで耐える炉殻12と、この炉殻12の底から上向きに挿入された下部パンチ13と、この下部パンチ13に載せられる円筒状のダイ14と、炉殻12のトップから下向きに挿入され、ダイ14に挿入される上部パンチ15と、ダイ14の周囲に配置される黒鉛ヒータ16と、この黒鉛ヒータ16を囲う断熱室17とからなる焼結炉(耐加圧型ホットプレス)である。
 断熱室17は、耐久性に富み、断熱性能が高いセラミックファイバー製成形体からなる。
 下部パンチ13の下部はシリンダ18に挿入され、このシリンダ18へ油圧ポンプ19から圧油が送られると下部パンチ13は上昇する。油圧は圧力検出手段21で検出する。
 水冷ジャケット11へは、水ポンプ22で給水される。この水はチラー23に排出され、温度調節がなされた後、水ポンプ22に戻される。
 黒鉛ヒータ16は炉温制御部25で制御される。すなわち、炉温検出手段26で検出した温度が設定値より低い場合には、黒鉛ヒータ16への給電量を増加し、温度が設定値より高い場合には、黒鉛ヒータ16への給電量を減少させることにより、昇温速度の制御を含む炉温制御が可能となる。
 また、炉殻12には、炉内の圧力を検出する炉圧検出手段27及び排気・加圧兼用の管28が設けられ、この管28に真空ポンプやエジェクターなどの排気手段29及び不活性ガス供給源31が接続されている。不活性ガスは、アルゴンガスや窒素ガスが入手容易である。ただし、排気手段29と不活性ガス供給源31とは同時に使用されることはない。
 また、炉圧検出手段27は減圧用と加圧用とは別々に設けることが望ましいが、ここでは便宜的に共用とした。
 以上に説明したホットプレス10を用いて次に述べる実験を行った。
(実験例)
 本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
○素材:
 砥粒(平均粒径69μm):10体積%
 コバルト:40体積%
 セラミックス:20体積%
 結合材:30体積%
○素材充填:
 上記素材を、図1のダイ14に充填した。なお、ダイ14の最大径は120mmである。
○排気:
 炉内の空気を排除するために、図1の排気手段29により、炉内を20Pa(a)又はそれ以下の圧力に減圧する。これで、酸素は殆ど除去される。
○不活性ガス充填:
 図1の不活性ガス供給源31からアルゴンガスを炉内へ吹き込み、炉圧を所定の圧力に維持する。
○プレス:
 図1のパンチ13、15により、素材に30MPaのプレス圧を付与する。
○加熱及び昇温速度:
 大気温度(25℃)から焼結温度(740℃)まで、12.5℃/分の昇温速度で加熱する。740℃で一定時間保持することにより、焼結処理がなされる。
○加熱停止:
 図1の黒鉛ヒータ16を止める。これで、炉内及び素材の温度は下がる。降温の際には、炉内の不活性ガスの圧力が維持されるように、炉圧検出手段27で圧力を監視して排気手段29、及び不活性ガス供給源31を制御する。
 降温速度は、次図に示す通りであった。
 図2に示すように、炉内圧力が0.01MPa(G)では、降温速度は11.9℃/分、0.10MPa(G)で12.8℃/分、0.49MPa(G)で16.0℃/分、0.69MPa(G)で17.5℃/分、0.80MPa(G)で18.7℃/分、0.92MPa(G)で、19.3℃/分であった。
 なお、降温速度は740℃~600℃までの所要時間を計測し、(740-600)/所要時間=降温速度の計算により求めた。
 また、炉内が20Pa(a)もの高真空の場合は、5℃/分であった。
 降温速度の差異は、次のように説明することができる。
 冷却とは温度が高い炉中心部から低い外周部に熱が伝わる(逃げる)事である。この仲介を果たす伝達物質が雰囲気となる。言い換えれば、熱の伝達は気体分子の衝突で行われる。
 一般的なホットプレス製法は、炉内を減圧もしくはガス置換を行い、酸素分圧を下げてから焼結する。これは、酸化による劣化を防ぐ為である。減圧雰囲気では、熱を伝達する物質(気体分子)が少なくなる。また、ガス置換についても、ガスの種類が変わっても気体分子数はほとんど変わらない。よって、一般的なホットプレスの雰囲気では降温速度は向上しない。高真空の場合は、上述したように降温速度が半分以下になる。
 本実施形態では、炉内の雰囲気を加圧状態でホットプレス製法を行うことにより、降温速度を向上させるものである。高圧ガスを炉に封入することにより気体の分子の数を増やす。すなわち、分子の衝突を増やして放熱を加速することができる。
 次に、降温速度と砥石の性能との相関を調べる。
 図1で説明したホットプレス10で、炉内圧力を0.5MPa(G)に設定する。この設定で得られる15℃/分の降温速度で、砥石を製造した。得られた砥石に係る実験番号を実験01と呼ぶことにする。
 同様に、ホットプレス10で、炉内圧力を20Pa(a)に設定する。この設定で得られる5℃/分の降温速度で、砥石を製造した。得られた砥石に係る実験番号を実験02と呼ぶことにする。
 得られた砥石(粗砥石)を用いて、粗研削を行って、研削比を調べた。結果を表1に示す。なお、研削比の定義は次の通りである。
 砥石でワークを研削した場合に、ワークは所定の体積だけ研削除去される。この体積を研削体積と呼ぶ。また、砥石側もある程度の体積が摩耗する。この体積を摩耗体積と呼ぶ。
 (研削体積/摩耗体積)=研削比と定義する。研削比は砥石の寿命そのものを表すので、研削比の大きな砥石、すなわち、砥石の摩耗量が少なく、ワークの研削量が大きい砥石が望まれる。
Figure JPOXMLDOC01-appb-T000001
 実験02より実験01の方が、大きな研削比を得ることができた。すなわち、砥石の研削比は降温速度に比例して増加することが期待できる。
 そこで、より大きな降温速度で砥石を製造し、研削比を調べることにする。
 図1の設備では、降温速度の上限が20℃/分に留まる。降温速度を更に高めるために、図1中の断熱室17を、セラミックファイバー製成形体より断熱性能が小さなセラミックスファイバー製フェルトに交換した。結果、30℃/分もの大きな降温速度を得ることができた。30℃/分の降温速度で、砥石を製造した。得られた砥石に係る実験番号を実験03と呼び、研削比を調べた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図3で、降温速度と研削比の相関を示す。降温速度が15℃/分以上になると、研削比が飛躍的に増大することが確認できた。
 研削比が大きく異なっているため、実験02の砥石と実験03の砥石とを、顕微鏡で観察した。断面の様子を模式図で説明する。
 図4は研削前における実験02の砥石の断面模式図であり、実験02の砥石40は、砥粒41と、コバルト粒子42と、セラミックス粒子43と、これらを結合する金属系結合材44とを基本要素とするが、これに凝集塊45が含まれていた。
 この凝集塊45は、[従来の技術]で説明したように、機械的特性の向上を目的に添加されるフィラーの分散が不十分であるため、母材である金属系結合材の粗大な結晶中にフィラーであるコバルト粒子42とセラミックス粒子43とが凝集したことにより生成される。このような凝集塊45は、周囲に較べて脆弱である。
 研削作業を行うと、脆弱な凝集塊45が脱落する。すると、砥粒41に対する支持力が減少し、砥粒41が砥石40から脱落する。摩耗体積が増加し、研削体積が減少するため、(研削体積/摩耗体積)で示される研削比が小さくなり、表1に示されように、研削比が4800に留まった。
 図5は研削前における実験03の砥石の断面模式図であり、実験03の砥石50は、砥粒51と、コバルト粒子52と、セラミックス粒子53と、これらを結合する金属系結合材54とからなり、凝集塊は認められなかった。
 研削作業を実行すると、砥粒51の脱落は少なく、良好な研削が行えた。結果、研削比が飛躍的に大きくなり、表2に示されように、研削比が14000になった。
 表1と表2とに基づいて、炉内圧力と研削比との相関をグラフ化した。
 図6に示すように、研削比は、降温速度が5~15℃/分の範囲では、それ程の増大は期待できない。一方、降温速度が15~30℃/分の範囲では、降温速度に比例した大きな研削比が得られる。
 したがって、研削比の面から、降温速度は15℃/分以上が好ましく、且つ大きいほど良い。
 また、表2の備考欄に記載したように、断熱性能を下げたため、加熱に要する電気代が嵩む。また、セラミックスファイバー製フェルトは、セラミックスファイバー製成形体より耐久性に乏しいため、断熱室17の交換費用が嵩む。
 したがって、実験03を実施するには、運転費が嵩み、実施が困難となる。すなわち、運転費の上昇を抑えることから降温速度は20℃/分以下であることが望まれる。
 図2のプロットの最大値は、0.92MPa(G)であった。また、図3での真空加圧型は、10気圧(0.98MP(G))まで炉内圧力を高めることができる。
 したがって、図7に示すように、0.92~0.98MPa(G)の炉内圧力が好適範囲として推奨される。
 上記の典型的実施形態によれば、研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法は、ホットプレスにより前記砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、焼成処理することで焼成品を得る加熱処理工程と、加熱を停止し、前記焼成品を冷却することで砥石を得る冷却処理工程と、を有してもよい。前記冷却は、焼成温度から600℃まで15℃/分以上の降温速度で実施してもよい。
 焼成処理後に、15℃/分以上の冷却を行えば、この冷却により、凝集塊の大きさを十分に小さくすることができ、砥石の寿命を延ばすことができる。
 前記降温速度は、15~20℃/分の範囲に設定してもよい。
 降温速度を、20℃/分に留めれば、電気代などの運転費の上昇を抑えることができる。
 また、上記の典型的実施例によれば、研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法は、ホットプレスにより前記砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、前記素材を圧縮不活性ガス雰囲気中で、焼成処理することで焼成品を得る加熱処理工程と、加熱を停止し、前記圧縮不活性ガスの圧力を維持しつつ前記焼成品を冷却することで砥石を得る冷却処理工程と、を有してもよい。
 不活性ガスは圧縮されると密度が大きくなりガス分子同士の衝突頻度が増すので、伝熱性が高まる。すなわち、圧縮不活性ガスは、焼成品の保有熱を、水冷ジャケットへ効率よく伝達する、熱キャリアの役割を果たす。高い降温速度で冷却すると、脆弱な凝集塊の発生を抑制することができる。結果、砥石の寿命を延ばすことができる。
 前記圧縮不活性ガスの圧力は、ゲージ圧力で0.92~0.98MPaとしてもよい。
 0.98MPaを超えると高圧容器関連法令により、ホットプレスの耐圧性が強く求められ、ホットプレスが高価になる。この点、0.98MPaに留めることにより、ホットプレスの価格を抑えつつ、高い降温速度が得られる。また、0.92MPa以上であれば、高い降温速度が得られる。
 本発明は、ホーニング粗加工に用いるメタルボンド砥石に好適である。 
 50…メタルボンド砥石、51…砥粒、52…コバルト粒子、53…セラミックス粒子、54…結合材(金属系結合材)

Claims (7)

  1.  研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法であって、
     ホットプレスにより前記砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、焼成処理することで焼成品を得る加熱処理工程と、
     加熱を停止し、前記焼成品を冷却することで砥石を得る冷却処理工程と、からなり、
     前記冷却は、焼成温度から600℃まで15℃/分以上の降温速度で実施する、
     メタルボンド砥石の製造方法。
  2.  前記降温速度は、15~20℃/分の範囲に設定する、請求項1記載のメタルボンド砥石の製造方法。
  3.  前記加熱処理工程において、前記素材は圧縮不活性ガス雰囲気中で、焼成処理され、
     前記冷却処理工程において、前記焼成品は前記圧縮不活性ガスの圧力を維持しつつ冷却され、
     前記圧縮不活性ガスの圧力は、ゲージ圧力で0.92~0.98MPaである、
     請求項1に記載のメタルボンド砥石の製造方法。
  4.  研削材としての砥粒と、コバルトと、セラミックスと、結合材と、を有するメタルボンド砥石の製造方法であって、
     ホットプレスにより前記砥粒、コバルト、セラミックス及び結合材からなる素材にプレス圧を付与しながら、前記素材を圧縮不活性ガス雰囲気中で、焼成処理することで焼成品を得る加熱処理工程と、
     加熱を停止し、前記圧縮不活性ガスの雰囲気中で前記焼成品を冷却することで砥石を得る冷却処理工程と、
     からなることを特徴とするメタルボンド砥石の製造方法。
  5.  前記冷却処理工程において、前記圧縮不活性ガスの圧力が維持される、請求項4に記載のメタルボンド砥石の製造方法。
  6.  前記圧縮不活性ガスの圧力は、ゲージ圧力で0.92~0.98MPaである、請求項5記載のメタルボンド砥石の製造方法。
  7.  前記冷却処理工程において、前記冷却は、焼成温度から600℃まで15℃/分以上の降温速度で実施する、請求項4に記載のメタルボンド砥石の製造方法。
PCT/JP2011/072248 2010-09-30 2011-09-28 メタルボンド砥石の製造方法 WO2012043660A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010221969A JP5514689B2 (ja) 2010-09-30 2010-09-30 メタルボンド砥石の製造方法
JP2010-221969 2010-09-30
JP2010224083A JP5520771B2 (ja) 2010-10-01 2010-10-01 メタルボンド砥石の製造方法
JP2010-224083 2010-10-01

Publications (1)

Publication Number Publication Date
WO2012043660A1 true WO2012043660A1 (ja) 2012-04-05

Family

ID=45893099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072248 WO2012043660A1 (ja) 2010-09-30 2011-09-28 メタルボンド砥石の製造方法

Country Status (1)

Country Link
WO (1) WO2012043660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994747A (zh) * 2018-08-01 2018-12-14 江苏三锐研磨科技有限公司 一种磨削量自动补偿的树脂精磨砂轮成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001668A (ja) * 2000-06-19 2002-01-08 Mitsubishi Materials Corp メタルボンド砥石
JP2003512937A (ja) * 1998-10-23 2003-04-08 サンーゴバン アブレイシブズ,インコーポレイティド 剛直に結合された薄い砥石
JP2008229794A (ja) * 2007-03-22 2008-10-02 Mizuho:Kk 超砥粒メタルボンド砥石

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512937A (ja) * 1998-10-23 2003-04-08 サンーゴバン アブレイシブズ,インコーポレイティド 剛直に結合された薄い砥石
JP2002001668A (ja) * 2000-06-19 2002-01-08 Mitsubishi Materials Corp メタルボンド砥石
JP2008229794A (ja) * 2007-03-22 2008-10-02 Mizuho:Kk 超砥粒メタルボンド砥石

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994747A (zh) * 2018-08-01 2018-12-14 江苏三锐研磨科技有限公司 一种磨削量自动补偿的树脂精磨砂轮成型方法

Similar Documents

Publication Publication Date Title
EP3084029B1 (en) A method for producing a sintered component and a sintered component
KR20130015396A (ko) 마찰교반 접합툴용 텅스텐 카바이드 소결체 제조 방법
JP2009248164A (ja) アルミニウム−黒鉛−炭化珪素質複合体及びその製造方法
JP5578429B2 (ja) セラミックボール素球、セラミックボール素球成形用金型およびセラミックボール素球の製造方法
Lampman Compressibility and compactibility of metal powders
JP5057193B2 (ja) 均質性、緻密性が高くかつ高硬度の立方晶窒化ホウ素焼結体の製造法
JP2004009195A (ja) 超仕上用砥石
WO2012043660A1 (ja) メタルボンド砥石の製造方法
KR101793031B1 (ko) 고내마모성을 갖는 알루미나-그래핀 복합체의 제조방법
JP5364485B2 (ja) メタルボンド砥石の製造方法
WO2011010670A1 (ja) メタルボンド砥石及びその製造方法
JPWO2008053903A1 (ja) 摺動部材とその製造方法およびこれを用いたメカニカルシールリングならびにメカニカルシール
JP5520771B2 (ja) メタルボンド砥石の製造方法
JP5514689B2 (ja) メタルボンド砥石の製造方法
CN107175593B (zh) 不含纯铜粉的金刚石磨轮的制作方法
CN113443919A (zh) 一种非晶态合金喷嘴材料及其制备方法
WO2011010671A1 (ja) メタルボンド砥石の製造方法およびメタルボンド砥石製造用焼結炉
KR101206534B1 (ko) 마찰교반 용접툴용 텅스텐 카바이드-코발트 소결체 제조 방법
JP5364486B2 (ja) メタルボンド砥石の製造方法
JP5426263B2 (ja) メタルボンド砥石製造用焼結炉
JP2011020242A (ja) メタルボンド砥石
JP5551040B2 (ja) メタルボンド砥石
Narayanasamy et al. Some aspects of workability studies in cold forging of pure aluminium powder metallurgy compacts
JP2011020245A (ja) メタルボンド砥石及びその製造方法
WO2017157157A1 (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829213

Country of ref document: EP

Kind code of ref document: A1