WO2012043104A1 - Planar heat generation body and heating device - Google Patents

Planar heat generation body and heating device Download PDF

Info

Publication number
WO2012043104A1
WO2012043104A1 PCT/JP2011/069258 JP2011069258W WO2012043104A1 WO 2012043104 A1 WO2012043104 A1 WO 2012043104A1 JP 2011069258 W JP2011069258 W JP 2011069258W WO 2012043104 A1 WO2012043104 A1 WO 2012043104A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
film
planar heating
glass plate
low emissivity
Prior art date
Application number
PCT/JP2011/069258
Other languages
French (fr)
Japanese (ja)
Inventor
隆義 斉藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2012043104A1 publication Critical patent/WO2012043104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54

Definitions

  • the present invention relates to a sheet heating element and a heating device including the same.
  • a planar heating element is known as a heating element used for the purpose of preventing condensation on a window plate.
  • the following Patent Documents 1 and 2 disclose a planar heating element in which a conductive thin film is formed on a resin film.
  • the planar heating element described in Patent Documents 1 and 2 since the base material is a resin film, the planar heating element described in Patent Documents 1 and 2 is limited to use in a low temperature range and used in a high temperature range. I can't do it.
  • Patent Document 3 discloses a planar heating element in which a transparent conductive film made of ITO or the like is formed on a substrate made of glass or the like.
  • the planar heating element described in Patent Document 3 can be used even in a high temperature range.
  • planar heating element described in Patent Document 3 has a problem that the responsiveness of heating and cooling is low.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a planar heating element that can be heated to a high temperature and has excellent responsiveness to heating and cooling during voltage application. There is to do.
  • the planar heating element according to the present invention includes a glass plate having a thickness of 200 ⁇ m or less and a transparent conductive film formed on the glass plate.
  • the glass plate has a thickness of 200 ⁇ m or less.
  • the planar heating element according to the present invention is excellent in heating and cooling responsiveness.
  • the planar heating element according to the present invention has flexibility, it can be non-planar.
  • the substrate is a glass plate, the planar heating element according to the present invention can generate heat up to a high temperature range.
  • the “glass plate” includes a crystallized glass plate.
  • the planar heating element further includes an insulating film formed on the transparent conductive film.
  • the insulating film is not particularly limited, but can be formed of, for example, an oxide or nitride of aluminum, silicon, or titanium.
  • the planar heating element is preferably formed on a transparent conductive film, and further includes a low emissivity film having an infrared emissivity lower than that of the glass plate.
  • a transparent conductive film having an infrared emissivity lower than that of the glass plate.
  • infrared rays can be mainly emitted from the glass plate side, and infrared rays can be effectively suppressed from being emitted from the side opposite to the glass plate. Therefore, the glass plate side can be heated to a higher temperature. It is also possible to arrange the planar heating element so that the low emissivity film side is close to a member having low heat resistance.
  • the low emissivity film has the amount of infrared radiation from the glass plate side of the planar heating element from the low emissivity film side. It is preferable to be configured to be at least twice the amount of infrared radiation.
  • the amount of infrared radiation from the low emissivity film side can be adjusted by the thickness, material, etc. of the low emissivity film.
  • the low emissivity film may be a single layer film or a multilayer film, and may further be composed of a gradient film. However, from an economical viewpoint, the low emissivity film is preferably composed of a single layer film.
  • the low emissivity film can be formed of, for example, ITO (Indium Tin Oxide).
  • ITO Indium Tin Oxide
  • the planar heating element according to the present invention preferably has an average light transmittance of 70% or more in a wavelength region of 400 nm to 800 nm.
  • the average transmittance is a transmittance including surface reflection, not a so-called internal transmittance.
  • ITO has a low electromagnetic wave emissivity of about 0.3 (glass is about 0.95)
  • a low emissivity film is formed while maintaining translucency by forming a low emissivity film with ITO. The amount of infrared radiation from the side can be effectively reduced.
  • the low emissivity film is made of a metal or an alloy
  • the low emissivity film is preferably insulated from the transparent conductive film by an insulating film.
  • the heating device according to the present invention includes the planar heating element according to the present invention. For this reason, the heating device according to the present invention has high heating efficiency and is excellent in heating and cooling responsiveness.
  • a heating device has an internal space in which the above-described planar heating element is accommodated, and has a housing in which an opening is formed in the internal space, and the planar heating element faces the opening. It may be arranged like this.
  • the heating device according to the present invention may be one in which a planar heating element is arranged inside a housing in which no opening is formed. In that case, a concave portion is formed, and a casing is constituted by a pair of casing portions to which the respective concave portions are attached and fixed, and the planar heating element is sandwiched by the pair of casing portions. Also good.
  • the casing can be formed of, for example, resin or glass.
  • planar heating element that can be heated to a high temperature and has excellent responsiveness to heating and cooling when a voltage is applied.
  • FIG. 1 is a schematic cross-sectional view of a heating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a heating apparatus according to another embodiment of the present invention.
  • the heating device 1 and the planar heating element 11 included in the heating device 1 are merely examples.
  • the present invention is not limited to the heating device 1 and the planar heating element 11.
  • the heating device 1 includes a housing 10 and a planar heating element 11 housed in the housing 10.
  • the constituent material and size of the housing 10 are not particularly limited.
  • the housing 10 can be formed of, for example, glass, metal, alloy, ceramic, resin, or the like.
  • the housing 10 is preferably formed of a translucent resin or translucent glass.
  • a planar heating element 11 is accommodated in the housing 10.
  • the planar heating element 11 includes a glass plate 17, a transparent conductive film 12 formed on the glass plate 17, an insulating film 13 formed on the transparent conductive film 12, and the insulating film 13.
  • membrane 14 currently formed and the pair of electrodes 15 and 16 electrically connected to the transparent conductive film 12 are provided.
  • the planar heating element 11 is disposed in the housing 10 such that the glass plate 17 faces the opening 10a side of the housing 10 and the low emissivity film 14 side faces the bottom wall portion 10b side of the housing 10. .
  • the glass plate 17 faces the opening 10a.
  • the glass plate 17 is a flexible glass plate having a thickness of 200 ⁇ m or less.
  • the planar heating element 11 according to the present embodiment is also flexible.
  • the glass plate 17 is thin, the heat capacity of the glass plate 17 is small. Therefore, the temperature of the planar heating element 11 can be raised or lowered in a short time. Therefore, the heating device 1 is excellent in responsiveness of heating and cooling.
  • the planar heating element 11 since the base material is the glass plate 17, it can generate heat to a high temperature range.
  • the glass plate 17 it is preferable to make the glass plate 17 thinner from the viewpoint of further improving the responsiveness of heating and cooling. However, if the glass plate 17 is too thin, the mechanical durability of the planar heating element 11 is too low. Accordingly, the thickness of the glass plate 17 is preferably 5 ⁇ m or more.
  • the transparent conductive film 12 is formed on the glass plate 17.
  • a voltage is applied to the transparent conductive film 12 via the pair of electrodes 15 and 16
  • infrared rays are emitted from the glass plate 17 side. That is, the transparent conductive film 12 functions as a heat source.
  • the transparent conductive film 12 can be formed of, for example, ITO. However, the material of the transparent conductive film 12 is not limited to ITO.
  • the transparent conductive film 12 can also be composed of, for example, an oxide thin film made of a metal thin film such as gold, silver, or aluminum, antimony-containing tin oxide, fluorine-containing tin oxide (FTO), aluminum-containing zinc oxide, or the like.
  • the thickness of the transparent conductive film 12 can be about 50 nm to 500 nm, for example.
  • the transparent conductive film 12 is made of ITO, if the transparent conductive film 12 is too thick, the average light transmittance in the wavelength region of 400 to 800 nm of the planar heating element 11 may be too low. On the other hand, if the transparent conductive film 12 is too thin, the drive voltage may increase.
  • the planar heating element 11 preferably has an average light transmittance of 70% or more in a wavelength region of 400 nm to 800 nm.
  • the insulating film 13 is formed so as to cover substantially the entire portion of the transparent conductive film 12 excluding the electrode 15 and 16 forming portions.
  • the insulation layer 13 suppresses leakage from the sheet heating element 11.
  • the insulating film 13 can be formed of, for example, an oxide or nitride of aluminum, silicon, or titanium. That is, the insulating film 13 can be formed of, for example, aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, titanium oxide, titanium nitride, or the like.
  • the thickness of the insulating film 13 can be about 50 nm to 1000 nm, for example. If the insulating film 13 is too thin, the transparent conductive film 12 may not be reliably insulated. On the other hand, if the insulating film 13 is too thick, the time required to form the insulating film 13 becomes long, and the manufacturing cost of the planar heating element 11 may increase.
  • the low emissivity film 14 is formed on the insulating film 13.
  • the low emissivity film 14 is electrically insulated from the transparent conductive film 12 and the electrode 16 by the insulating film 13.
  • the low emissivity film 14 is a film having an infrared emissivity lower than that of the glass plate 17 and has a function of suppressing the heat generated in the transparent conductive film 12 from being radiated to the low emissivity film 14 side.
  • membrane 14 infrared rays can be mainly radiated
  • the glass plate 17 side of the planar heating element 11 can be heated to a higher temperature. Moreover, it can suppress effectively that the housing
  • the thickness of the low emissivity film 14 is the amount of infrared radiation from the glass plate 17 side. However, it is preferable to be formed in a thickness that is at least twice the amount of infrared radiation from the low emissivity film 14 side. From such a viewpoint, the thickness of the low emissivity film 14 is preferably about 50 nm to 500 nm, for example.
  • the low emissivity film 14 can be formed of, for example, ITO.
  • ITO indium tin oxide
  • the manufacturing cost of the planar heating element 11 can be reduced.
  • the manufacture of the planar heating element 11 becomes easier.
  • ITO indium tin oxide
  • the material of the low emissivity film 14 is not limited to ITO.
  • membrane 14 can also be formed, for example with metals and alloys, such as gold
  • membrane 14, the insulating film 13, and the transparent conductive film 12 is not specifically limited.
  • membrane 14, the insulating film 13, and the transparent conductive film 12 can be formed by sputtering method, CVD method, etc., for example.
  • the pair of electrodes 15 and 16 are formed on the transparent conductive film 12.
  • the electrodes 15 and 16 can be made of, for example, a metal such as aluminum, chromium, molybdenum, silver, or copper, or an alloy.
  • the electrodes 15 and 16 are preferably formed on both sides of the transparent conductive film 12.
  • the electrodes 15 and 16 can be formed, for example, by sputtering, vapor deposition, application of conductive paste, soldering, or the like. Especially, it is preferable to form the electrodes 15 and 16 by sputtering method. By doing so, the adhesion strength between the electrodes 15 and 16 and the transparent conductive film 12 can be increased.
  • Example 1 A planar heating element was produced by forming a transparent conductive film made of ITO having a thickness of 150 nm on a glass plate having a thickness of 150 mm ⁇ 250 mm and a thickness of 70 ⁇ m by a sputtering method.
  • Example 1 A planar heating element was produced in the same manner as in Example 1 except that the thickness of the glass plate was 400 ⁇ m. 70 W of electric power was supplied to the planar heating element, and the time required for the temperature at the center of the glass substrate to reach 100 ° C. from room temperature (24 ° C.) was measured. Thereafter, the supply of power was stopped, and the time required for the temperature at the center of the glass substrate to drop from 100 ° C. to 30 ° C. was measured. The results are shown in Table 1 below.
  • Example 2 From a transparent conductive film 12 made of an ITO film having a thickness of 150 nm, an insulating film 13 made of a SiO 2 film having a thickness of 50 nm, and an Al having a thickness of 100 nm on a glass plate 17 having a thickness of 150 mm ⁇ 250 mm and a thickness of 70 ⁇ m.
  • membrane 14 which becomes this was formed in order by sputtering method, and the planar heating element 11 was produced.
  • the temperatures of the glass plate 17 side and the low emissivity film 14 side when 70 W of power was supplied to the transparent conductive film 12 of the produced planar heating element 11 for 1 minute were measured.
  • the temperature on the glass plate 17 side was 104 ° C.
  • the temperature on the low emissivity film 14 side was 30 ° C.
  • Example 3 A planar heating element was produced in the same manner as in Example 2 except that the low emissivity film 14 was not formed.
  • the temperatures of the glass plate 17 side and the low emissivity film 14 side when 70 W of power was supplied to the transparent conductive film 12 of the produced planar heating element 11 for 1 minute were measured.
  • the temperature on the glass plate 17 side was 104 ° C.
  • the temperature on the low emissivity film 14 side was 43 ° C.
  • FIG. 2 is a schematic cross-sectional view of a heating apparatus according to another embodiment of the present invention.
  • the heating device 2 according to the present embodiment is a surface made of a glass plate 17 on which a transparent conductive film 12 and electrodes 15 and 16 are formed.
  • a heating element 11 is provided.
  • the housing 10 that houses the planar heating element is composed of two resin films 19a and 19b that are joined together by fusing the edge portions. That is, in the heating device 2, the planar heating element 11 is resin-laminated.
  • the housing 10 in addition to the planar heating element 11, also has flexibility. Therefore, the heating device 2 has flexibility and can be used in a curved shape as necessary, for example, in a state of being deformed into a substantially cylindrical shape. Therefore, by using the heating device 2, for example, a non-planar object to be heated can be efficiently heated.
  • the surface of the glass plate 17 is not easily damaged.
  • the resin films 19a and 19b are not particularly limited as long as they are made of heat-resistant resin.
  • the resin films 19a and 19b can be formed of, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) polysulfone, polyphenylene terephthalate, polyimide, polycarbonate, cellulose ester resin, polyamide, or the like.

Abstract

A planar heat generation body which can be raised in temperature to a high value and has excellent response with respect to a rise in temperature by the application of voltage and with respect to a fall in temperature. A planar heat generation body (11) comprises: a glass plate (17) having a thickness of 200 μm or less; and a transparent electrically conductive film (12) formed on the glass plate (17).

Description

面状発熱体及び加熱装置Planar heating element and heating device
 本発明は、面状発熱体及びそれを備える加熱装置に関する。 The present invention relates to a sheet heating element and a heating device including the same.
 従来、例えば、窓板の結露防止などの用途に使用される発熱体として、面状発熱体が知られている。例えば、下記の特許文献1,2には、樹脂フィルムの上に導電性薄膜が形成された面状発熱体が開示されている。特許文献1,2に記載の面状発熱体では、基材が樹脂フィルムであるため、特許文献1,2に記載の面状発熱体は、低温域での使用に限定され、高温域で使用することはできない。 Conventionally, for example, a planar heating element is known as a heating element used for the purpose of preventing condensation on a window plate. For example, the following Patent Documents 1 and 2 disclose a planar heating element in which a conductive thin film is formed on a resin film. In the planar heating element described in Patent Documents 1 and 2, since the base material is a resin film, the planar heating element described in Patent Documents 1 and 2 is limited to use in a low temperature range and used in a high temperature range. I can't do it.
 それに対して、例えば、下記の特許文献3には、ガラスなどからなる基板の上に、ITOなどからなる透明導電膜を形成した面状発熱体が開示されている。この面状発熱体では、基材と透明導電膜とが共に無機材料からなるため、特許文献3に記載の面状発熱体は、高温域においても使用可能である。 On the other hand, for example, Patent Document 3 below discloses a planar heating element in which a transparent conductive film made of ITO or the like is formed on a substrate made of glass or the like. In this planar heating element, since both the base material and the transparent conductive film are made of an inorganic material, the planar heating element described in Patent Document 3 can be used even in a high temperature range.
特開平1-235181号公報JP-A-1-235181 特開平2-284377号公報JP-A-2-284377 特開2007-241179号公報JP 2007-241179 A
 しかしながら、特許文献3に記載の面状発熱体では、加熱や冷却の応答性が低いという問題がある。 However, the planar heating element described in Patent Document 3 has a problem that the responsiveness of heating and cooling is low.
 本発明は、係る点に鑑みてなされたものであり、その目的は、高温にまで加熱することが可能で、かつ、電圧印加時の加熱や冷却の応答性に優れた面状発熱体を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a planar heating element that can be heated to a high temperature and has excellent responsiveness to heating and cooling during voltage application. There is to do.
 本発明に係る面状発熱体は、厚みが200μm以下のガラス板と、ガラス板の上に形成されている透明導電膜とを備えている。本発明に係る面状発熱体では、ガラス板の厚みが200μm以下である。このため、本発明に係る面状発熱体は、加熱や冷却の応答性に優れている。また、本発明に係る面状発熱体は、可撓性を有するため、非平面形状にすることも可能である。さらに、本発明に係る面状発熱体は、基材がガラス板であるため、高温域にまで発熱させることができる。 The planar heating element according to the present invention includes a glass plate having a thickness of 200 μm or less and a transparent conductive film formed on the glass plate. In the planar heating element according to the present invention, the glass plate has a thickness of 200 μm or less. For this reason, the planar heating element according to the present invention is excellent in heating and cooling responsiveness. Moreover, since the planar heating element according to the present invention has flexibility, it can be non-planar. Furthermore, since the substrate is a glass plate, the planar heating element according to the present invention can generate heat up to a high temperature range.
 なお、本発明においては、「ガラス板」には、結晶化ガラス板が含まれるものとする。 In the present invention, the “glass plate” includes a crystallized glass plate.
 面状発熱体は、透明導電膜の上に形成されている絶縁膜をさらに備えていることが好ましい。この構成によれば、面状発熱体からの漏電を抑制することができる。なお、絶縁膜は、特に限定されないが、例えば、アルミニウム、ケイ素またはチタンの酸化物または窒化物により形成することができる。 It is preferable that the planar heating element further includes an insulating film formed on the transparent conductive film. According to this configuration, leakage from the planar heating element can be suppressed. Note that the insulating film is not particularly limited, but can be formed of, for example, an oxide or nitride of aluminum, silicon, or titanium.
 面状発熱体は、透明導電膜の上に形成されており、ガラス板よりも赤外線の放射率が低い低放射率膜をさらに備えていることが好ましい。この構成によれば、ガラス板側から赤外線を主として放射させることができ、ガラス板とは反対側から赤外線が放射されることを効果的に抑制することができる。従って、ガラス板側をより高温にすることができる。また、面状発熱体を、耐熱性が低い部材に低放射率膜側が近接するように配設することも可能となる。 The planar heating element is preferably formed on a transparent conductive film, and further includes a low emissivity film having an infrared emissivity lower than that of the glass plate. According to this structure, infrared rays can be mainly emitted from the glass plate side, and infrared rays can be effectively suppressed from being emitted from the side opposite to the glass plate. Therefore, the glass plate side can be heated to a higher temperature. It is also possible to arrange the planar heating element so that the low emissivity film side is close to a member having low heat resistance.
 ガラス板とは反対側からの赤外線の放射をより効果的に抑制する観点からは、低放射率膜は、面状発熱体のガラス板側からの赤外線放射量が、低放射率膜側からの赤外線放射量の2倍以上となるように構成されていることが好ましい。 From the viewpoint of more effectively suppressing the infrared radiation from the side opposite to the glass plate, the low emissivity film has the amount of infrared radiation from the glass plate side of the planar heating element from the low emissivity film side. It is preferable to be configured to be at least twice the amount of infrared radiation.
 なお、低放射率膜側からの赤外線放射量は、低放射率膜の厚みや材質などによって調整することができる。 低放射率膜は、単層膜であっても多層膜であってもよく、さらに傾斜膜で構成されてもよい。但し、経済的な観点からは、低放射率膜は、単層膜により構成されていることが好ましい。 The amount of infrared radiation from the low emissivity film side can be adjusted by the thickness, material, etc. of the low emissivity film. The low emissivity film may be a single layer film or a multilayer film, and may further be composed of a gradient film. However, from an economical viewpoint, the low emissivity film is preferably composed of a single layer film.
 低放射率膜は、例えば、ITO(Indium Tin Oxide)により形成することができる。この場合、低放射率膜が可視光を透過するため、透明な面状発熱体を実現することができる。本発明に係る面状発熱体は、400nm~800nmの波長域における平均光透過率が70%以上であるものであることが好ましい。なお、平均透過率は、表面反射を含む透過率であり、いわゆる内部透過率ではない。 The low emissivity film can be formed of, for example, ITO (Indium Tin Oxide). In this case, since the low emissivity film transmits visible light, a transparent planar heating element can be realized. The planar heating element according to the present invention preferably has an average light transmittance of 70% or more in a wavelength region of 400 nm to 800 nm. The average transmittance is a transmittance including surface reflection, not a so-called internal transmittance.
 また、ITOは、電磁波の放射率が約0.3(ガラスは約0.95)と低いため、低放射率膜をITOにより形成することにより、透光性を維持しつつ、低放射率膜側からの赤外線放射量を効果的に小さくすることができる。 In addition, since ITO has a low electromagnetic wave emissivity of about 0.3 (glass is about 0.95), a low emissivity film is formed while maintaining translucency by forming a low emissivity film with ITO. The amount of infrared radiation from the side can be effectively reduced.
 なお、低放射率膜が金属や合金からなる場合は、低放射率膜は、絶縁膜により透明導電膜から絶縁されていることが好ましい。 When the low emissivity film is made of a metal or an alloy, the low emissivity film is preferably insulated from the transparent conductive film by an insulating film.
 本発明に係る加熱装置は、上記本発明に係る面状発熱体を備えている。このため、本発明に係る加熱装置は、高い加熱効率を有し、かつ、加熱や冷却の応答性に優れている。 The heating device according to the present invention includes the planar heating element according to the present invention. For this reason, the heating device according to the present invention has high heating efficiency and is excellent in heating and cooling responsiveness.
 本発明に係る加熱装置は、上記面状発熱体が収納された内部空間を有し、その内部空間に開口する開口部が形成された筐体を有し、面状発熱体が開口部に臨むように配置されたものであってもよい。また、本発明に係る加熱装置は、開口部が形成されていない筐体の内部に面状発熱体を配置したものであってもよい。その場合は、凹部が形成され、それぞれの凹部が付き合わされて固定された一対の筐体部により筐体を構成し、その一対の筐体部により上記面状発熱体を狭持するようにしてもよい。 A heating device according to the present invention has an internal space in which the above-described planar heating element is accommodated, and has a housing in which an opening is formed in the internal space, and the planar heating element faces the opening. It may be arranged like this. In addition, the heating device according to the present invention may be one in which a planar heating element is arranged inside a housing in which no opening is formed. In that case, a concave portion is formed, and a casing is constituted by a pair of casing portions to which the respective concave portions are attached and fixed, and the planar heating element is sandwiched by the pair of casing portions. Also good.
 なお、筐体は、例えば、樹脂やガラスにより形成することができる。 Note that the casing can be formed of, for example, resin or glass.
 本発明によれば、高温にまで加熱することが可能で、かつ、電圧印加時の加熱や冷却の応答性に優れた面状発熱体を提供することができる。 According to the present invention, it is possible to provide a planar heating element that can be heated to a high temperature and has excellent responsiveness to heating and cooling when a voltage is applied.
図1は、本発明の一実施形態に係る加熱装置の略図的断面図である。FIG. 1 is a schematic cross-sectional view of a heating apparatus according to an embodiment of the present invention. 図2は、本発明の他の実施形態に係る加熱装置の略図的断面図である。FIG. 2 is a schematic cross-sectional view of a heating apparatus according to another embodiment of the present invention.
 以下、本発明を実施した好ましい形態について、図1に示す加熱装置1を例に挙げて説明する。但し、加熱装置1及び加熱装置1に含まれる面状発熱体11は、単なる例示である。本発明は、加熱装置1及び面状発熱体11に何ら限定されない。 Hereinafter, a preferable embodiment in which the present invention is implemented will be described by taking the heating apparatus 1 shown in FIG. However, the heating device 1 and the planar heating element 11 included in the heating device 1 are merely examples. The present invention is not limited to the heating device 1 and the planar heating element 11.
 図1に示すように、加熱装置1は、筐体10と、筐体10に収納されている面状発熱体11とを備えている。筐体10の構成材料や大きさは、特に限定されない。筐体10は、例えば、ガラス、金属、合金、セラミック、樹脂などにより形成することができる。加熱装置1を、透光性を有するものとする場合には、筐体10を透光性樹脂や透光性ガラスなどにより形成することが好ましい。 As shown in FIG. 1, the heating device 1 includes a housing 10 and a planar heating element 11 housed in the housing 10. The constituent material and size of the housing 10 are not particularly limited. The housing 10 can be formed of, for example, glass, metal, alloy, ceramic, resin, or the like. In the case where the heating device 1 has translucency, the housing 10 is preferably formed of a translucent resin or translucent glass.
 筐体10の内部には、面状発熱体11が収納されている。面状発熱体11は、ガラス板17と、ガラス板17の上に形成されている透明導電膜12と、透明導電膜12の上に形成されている絶縁膜13と、絶縁膜13の上に形成されている低放射率膜14と、透明導電膜12に電気的に接続されている一対の電極15,16とを備えている。面状発熱体11は、筐体10内において、ガラス板17が筐体10の開口10a側を向き、低放射率膜14側が筐体10の底壁部10b側を向くように配置されている。ガラス板17は、開口10aに臨んでいる。 A planar heating element 11 is accommodated in the housing 10. The planar heating element 11 includes a glass plate 17, a transparent conductive film 12 formed on the glass plate 17, an insulating film 13 formed on the transparent conductive film 12, and the insulating film 13. The low emissivity film | membrane 14 currently formed and the pair of electrodes 15 and 16 electrically connected to the transparent conductive film 12 are provided. The planar heating element 11 is disposed in the housing 10 such that the glass plate 17 faces the opening 10a side of the housing 10 and the low emissivity film 14 side faces the bottom wall portion 10b side of the housing 10. . The glass plate 17 faces the opening 10a.
 本実施形態において、ガラス板17は、厚みが200μm以下である可撓性を有するガラス板である。このため、本実施形態に係る面状発熱体11も可撓性を有している。また、ガラス板17が薄いため、ガラス板17の熱容量が小さい。よって、面状発熱体11の温度を、短時間の間に上昇させたり降下させたりすることができる。従って、加熱装置1は、加熱や冷却の応答性に優れている。また、面状発熱体11では、基材がガラス板17であるため、高温域にまで発熱させることができる。 In the present embodiment, the glass plate 17 is a flexible glass plate having a thickness of 200 μm or less. For this reason, the planar heating element 11 according to the present embodiment is also flexible. Moreover, since the glass plate 17 is thin, the heat capacity of the glass plate 17 is small. Therefore, the temperature of the planar heating element 11 can be raised or lowered in a short time. Therefore, the heating device 1 is excellent in responsiveness of heating and cooling. Moreover, in the planar heating element 11, since the base material is the glass plate 17, it can generate heat to a high temperature range.
 なお、加熱や冷却の応答性をより向上する観点からは、ガラス板17をより薄くすることが好ましい。しかしながら、ガラス板17が薄すぎると、面状発熱体11の機械的耐久性が低くなりすぎる。従って、ガラス板17の厚みは、5μm以上であることが好ましい。 In addition, it is preferable to make the glass plate 17 thinner from the viewpoint of further improving the responsiveness of heating and cooling. However, if the glass plate 17 is too thin, the mechanical durability of the planar heating element 11 is too low. Accordingly, the thickness of the glass plate 17 is preferably 5 μm or more.
 透明導電膜12は、ガラス板17の上に形成されている。この透明導電膜12に一対の電極15,16を介して電圧が印加されることによりガラス板17側から赤外線が放射される。すなわち、この透明導電膜12は、熱源としての機能を有する。 The transparent conductive film 12 is formed on the glass plate 17. When a voltage is applied to the transparent conductive film 12 via the pair of electrodes 15 and 16, infrared rays are emitted from the glass plate 17 side. That is, the transparent conductive film 12 functions as a heat source.
 透明導電膜12は、例えば、ITOにより形成することができる。もっとも、透明導電膜12の材質は、ITOに限定されない。透明導電膜12は、例えば、金、銀、アルミニウム等の金属薄膜、アンチモン含有酸化スズ、フッ素含有酸化スズ(FTO)、アルミニウム含有酸化亜鉛などからなる酸化物薄膜により構成することもできる。 The transparent conductive film 12 can be formed of, for example, ITO. However, the material of the transparent conductive film 12 is not limited to ITO. The transparent conductive film 12 can also be composed of, for example, an oxide thin film made of a metal thin film such as gold, silver, or aluminum, antimony-containing tin oxide, fluorine-containing tin oxide (FTO), aluminum-containing zinc oxide, or the like.
 透明導電膜12の厚みは、例えば、50nm~500nm程度とすることができる。透明導電膜12がITOにより形成されている場合は、透明導電膜12が厚すぎると、面状発熱体11の400nm~800nmの波長域における平均光透過率が低くなりすぎる場合がある。一方、透明導電膜12が薄すぎると、駆動電圧が高くなる場合がある。 The thickness of the transparent conductive film 12 can be about 50 nm to 500 nm, for example. When the transparent conductive film 12 is made of ITO, if the transparent conductive film 12 is too thick, the average light transmittance in the wavelength region of 400 to 800 nm of the planar heating element 11 may be too low. On the other hand, if the transparent conductive film 12 is too thin, the drive voltage may increase.
 なお、面状発熱体11全体としては、400nm~800nmの波長域における平均光透過率が70%以上であることが好ましい。 Note that, as a whole, the planar heating element 11 preferably has an average light transmittance of 70% or more in a wavelength region of 400 nm to 800 nm.
 絶縁膜13は、透明導電膜12の電極15,16形成部を除いた部分の実質的に全体を覆うように形成されている。この絶縁層13により面状発熱体11からの漏電が抑制されている。絶縁膜13は、例えば、アルミニウム、ケイ素、チタンの酸化物または窒化物により形成することができる。すなわち、絶縁膜13は、例えば、酸化アルミニウム、窒化アルミニウム、酸化ケイ素、窒化ケイ素、酸化チタン、窒化チタンなどにより形成することができる。 The insulating film 13 is formed so as to cover substantially the entire portion of the transparent conductive film 12 excluding the electrode 15 and 16 forming portions. The insulation layer 13 suppresses leakage from the sheet heating element 11. The insulating film 13 can be formed of, for example, an oxide or nitride of aluminum, silicon, or titanium. That is, the insulating film 13 can be formed of, for example, aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, titanium oxide, titanium nitride, or the like.
 絶縁膜13の厚みは、例えば、50nm~1000nm程度とすることができる。絶縁膜13の厚みが薄すぎると、透明導電膜12を確実に絶縁できない場合がある。一方、絶縁膜13が厚すぎると、絶縁膜13の形成に要する時間が長くなり、面状発熱体11の製造コストが上昇してしまう場合がある。 The thickness of the insulating film 13 can be about 50 nm to 1000 nm, for example. If the insulating film 13 is too thin, the transparent conductive film 12 may not be reliably insulated. On the other hand, if the insulating film 13 is too thick, the time required to form the insulating film 13 becomes long, and the manufacturing cost of the planar heating element 11 may increase.
 低放射率膜14は、絶縁膜13の上に形成されている。低放射率膜14は、絶縁膜13によって透明導電膜12及び電極16から電気的に絶縁されている。この低放射率膜14は、ガラス板17よりも赤外線の放射率が低い膜であり、透明導電膜12において生じた熱が低放射率膜14側に放射されることを抑制する機能を有する。この低放射率膜14を設けることによって、ガラス板17側から主として赤外線を放射させることができる。その結果、面状発熱体11のガラス板17側をより高温にすることができる。また、筐体10が加熱されることを効果的に抑制することができる。 The low emissivity film 14 is formed on the insulating film 13. The low emissivity film 14 is electrically insulated from the transparent conductive film 12 and the electrode 16 by the insulating film 13. The low emissivity film 14 is a film having an infrared emissivity lower than that of the glass plate 17 and has a function of suppressing the heat generated in the transparent conductive film 12 from being radiated to the low emissivity film 14 side. By providing this low emissivity film | membrane 14, infrared rays can be mainly radiated | emitted from the glass plate 17 side. As a result, the glass plate 17 side of the planar heating element 11 can be heated to a higher temperature. Moreover, it can suppress effectively that the housing | casing 10 is heated.
 面状発熱体11のガラス板17側の温度をより高くし、低放射率膜14側の温度を低くする観点からは、低放射率膜14の厚みは、ガラス板17側からの赤外線放射量が、低放射率膜14側からの赤外線放射量の2倍以上となるような厚みに形成されていることが好ましい。このような観点から、低放射率膜14の厚みは、例えば、50nm~500nm程度であることが好ましい。 From the viewpoint of increasing the temperature on the glass plate 17 side of the sheet heating element 11 and lowering the temperature on the low emissivity film 14 side, the thickness of the low emissivity film 14 is the amount of infrared radiation from the glass plate 17 side. However, it is preferable to be formed in a thickness that is at least twice the amount of infrared radiation from the low emissivity film 14 side. From such a viewpoint, the thickness of the low emissivity film 14 is preferably about 50 nm to 500 nm, for example.
 低放射率膜14は、例えば、ITOにより形成することができる。低放射率膜14と透明導電膜12との両方をITOにより形成することにより、面状発熱体11の製造コストを低減することができる。また、面状発熱体11の製造がより容易となる。さらに、低放射率膜14を、放射率が低いITOにより形成することによって、透光性の低下を抑制しつつ、低放射率膜14側への赤外線の放射を効果的に抑制することができる。 The low emissivity film 14 can be formed of, for example, ITO. By forming both the low emissivity film 14 and the transparent conductive film 12 from ITO, the manufacturing cost of the planar heating element 11 can be reduced. Moreover, the manufacture of the planar heating element 11 becomes easier. Furthermore, by forming the low emissivity film 14 from ITO having a low emissivity, it is possible to effectively suppress infrared radiation to the low emissivity film 14 side while suppressing a decrease in translucency. .
 もっとも、低放射率膜14の材質は、ITOに限定されない。低放射率膜14は、例えば、金、銀、アルミニウムなどの金属や合金、アンチモン含有酸化スズ、フッ素含有酸化スズ(FTO)、アルミニウム含有酸化亜鉛などにより形成することもできる。 However, the material of the low emissivity film 14 is not limited to ITO. The low emissivity film | membrane 14 can also be formed, for example with metals and alloys, such as gold | metal | money, silver, and aluminum, antimony containing tin oxide, fluorine containing tin oxide (FTO), aluminum containing zinc oxide.
 なお、低放射率膜14、絶縁膜13及び透明導電膜12の形成方法は、特に限定されない。低放射率膜14、絶縁膜13及び透明導電膜12は、例えば、スパッタリング法やCVD法などにより形成することができる。 In addition, the formation method of the low emissivity film | membrane 14, the insulating film 13, and the transparent conductive film 12 is not specifically limited. The low emissivity film | membrane 14, the insulating film 13, and the transparent conductive film 12 can be formed by sputtering method, CVD method, etc., for example.
 一対の電極15,16は、透明導電膜12の上に形成されている。電極15,16は、例えば、アルミニウム、クロム、モリブデン、銀、銅などの金属や、合金などにより形成することができる。電極15,16は、透明導電膜12両側に形成されていることが好ましい。電極15,16は、例えば、スパッタリング法、蒸着法、導電性ペーストの塗布、半田付けなどにより形成することができる。なかでも、スパッタリング法により電極15,16を形成することが好ましい。そうすることにより、電極15,16と透明導電膜12との密着強度を高めることができる。 The pair of electrodes 15 and 16 are formed on the transparent conductive film 12. The electrodes 15 and 16 can be made of, for example, a metal such as aluminum, chromium, molybdenum, silver, or copper, or an alloy. The electrodes 15 and 16 are preferably formed on both sides of the transparent conductive film 12. The electrodes 15 and 16 can be formed, for example, by sputtering, vapor deposition, application of conductive paste, soldering, or the like. Especially, it is preferable to form the electrodes 15 and 16 by sputtering method. By doing so, the adhesion strength between the electrodes 15 and 16 and the transparent conductive film 12 can be increased.
 (実施例1)
 150mm×250mmで、厚さが70μmのガラス板の上に、厚さ150nmのITOからなる透明導電膜をスパッタリング法により形成することにより面状発熱体を作製した。
Example 1
A planar heating element was produced by forming a transparent conductive film made of ITO having a thickness of 150 nm on a glass plate having a thickness of 150 mm × 250 mm and a thickness of 70 μm by a sputtering method.
 上記作製の面状発熱体に70Wの電力を供給し、ガラス基板中央部の温度が、室温(24℃)から100℃に達するまでに要した時間を測定した。その後、電力の供給を停止し、ガラス基板中央部の温度が100℃から30℃にまで低下するのに要した時間を測定した。結果を下記の表1に示す。なお、ガラス基板中央部の温度は、放射温度計を用いて測定した。 70 W of electric power was supplied to the sheet heating element produced above, and the time required for the temperature at the center of the glass substrate to reach 100 ° C. from room temperature (24 ° C.) was measured. Thereafter, the supply of power was stopped, and the time required for the temperature at the center of the glass substrate to drop from 100 ° C. to 30 ° C. was measured. The results are shown in Table 1 below. In addition, the temperature of the glass substrate center part was measured using the radiation thermometer.
 (比較例1)
 ガラス板の厚みを400μmとしたこと以外は、実施例1と同様にして面状発熱体を作製した。その面状発熱体に70Wの電力を供給し、ガラス基板中央部の温度が、室温(24℃)から100℃に達するまでに要した時間を測定した。その後、電力の供給を停止し、ガラス基板中央部の温度が100℃から30℃にまで低下するのに要した時間を測定した。結果を下記の表1に示す。
(Comparative Example 1)
A planar heating element was produced in the same manner as in Example 1 except that the thickness of the glass plate was 400 μm. 70 W of electric power was supplied to the planar heating element, and the time required for the temperature at the center of the glass substrate to reach 100 ° C. from room temperature (24 ° C.) was measured. Thereafter, the supply of power was stopped, and the time required for the temperature at the center of the glass substrate to drop from 100 ° C. to 30 ° C. was measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、ガラス板の厚みを200μm以下とすることにより、加熱及び冷却の応答性を効果的に向上できることが分かる。 As shown in Table 1 above, it can be seen that the response of heating and cooling can be effectively improved by setting the thickness of the glass plate to 200 μm or less.
 (実施例2)
 150mm×250mmで、厚さが70μmのガラス板17の上に、厚さ150nmのITO膜からなる透明導電膜12、厚さ50nmからなるSiO膜からなる絶縁膜13、厚さ100nmのAlからなる低放射率膜14を、スパッタリング法により順次形成し、面状発熱体11を作製した。
(Example 2)
From a transparent conductive film 12 made of an ITO film having a thickness of 150 nm, an insulating film 13 made of a SiO 2 film having a thickness of 50 nm, and an Al having a thickness of 100 nm on a glass plate 17 having a thickness of 150 mm × 250 mm and a thickness of 70 μm. The low emissivity film | membrane 14 which becomes this was formed in order by sputtering method, and the planar heating element 11 was produced.
 作製した面状発熱体11の透明導電膜12に70Wの電力を1分間供給した際のガラス板17側と低放射率膜14側とのそれぞれの温度を、放射温度計を用いて測定した。 Using the radiation thermometer, the temperatures of the glass plate 17 side and the low emissivity film 14 side when 70 W of power was supplied to the transparent conductive film 12 of the produced planar heating element 11 for 1 minute were measured.
 その結果、ガラス板17側の温度は、104℃であり、低放射率膜14側の温度は、30℃であった。 As a result, the temperature on the glass plate 17 side was 104 ° C., and the temperature on the low emissivity film 14 side was 30 ° C.
 (実施例3)
 低放射率膜14を形成しないこと以外は、上記実施例2と同様にして面状発熱体を作製した。
(Example 3)
A planar heating element was produced in the same manner as in Example 2 except that the low emissivity film 14 was not formed.
 作製した面状発熱体11の透明導電膜12に70Wの電力を1分間供給した際のガラス板17側と低放射率膜14側とのそれぞれの温度を、放射温度計を用いて測定した。 Using the radiation thermometer, the temperatures of the glass plate 17 side and the low emissivity film 14 side when 70 W of power was supplied to the transparent conductive film 12 of the produced planar heating element 11 for 1 minute were measured.
 その結果、ガラス板17側の温度は、104℃であり、低放射率膜14側の温度は、43℃であった。 As a result, the temperature on the glass plate 17 side was 104 ° C., and the temperature on the low emissivity film 14 side was 43 ° C.
 実施例2,3の結果より、低放射率膜14を設けることにより、低放射率膜14側からの赤外線の放射を効果的に抑制できることが分かる。 From the results of Examples 2 and 3, it can be seen that infrared radiation from the low emissivity film 14 side can be effectively suppressed by providing the low emissivity film 14.
 以下、本発明を実施した好ましい形態の他の例について説明する。以下の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の機能で参照し、説明を省略する。 Hereinafter, other examples of preferred embodiments in which the present invention is implemented will be described. In the following description, members having substantially the same functions as those of the above-described embodiment are referred to by common functions, and description thereof is omitted.
 図2は、本発明の他の実施形態に係る加熱装置の略図的断面図である。図2に示すように、本実施形態に係る加熱装置2は、上記加熱装置1と同様に、透明導電膜12と、電極15,16とが表面上に形成されているガラス板17からなる面状発熱体11を有する。 FIG. 2 is a schematic cross-sectional view of a heating apparatus according to another embodiment of the present invention. As shown in FIG. 2, the heating device 2 according to the present embodiment, like the heating device 1, is a surface made of a glass plate 17 on which a transparent conductive film 12 and electrodes 15 and 16 are formed. A heating element 11 is provided.
 本実施形態において、面状発熱体を収納している筐体10は、端縁部同士が融着することにより接合されている2枚の樹脂フィルム19a、19bにより構成されている。すなわち、加熱装置2では、面状発熱体11は、樹脂ラミネートされている。 In this embodiment, the housing 10 that houses the planar heating element is composed of two resin films 19a and 19b that are joined together by fusing the edge portions. That is, in the heating device 2, the planar heating element 11 is resin-laminated.
 このため、本実施形態においては、面状発熱体11に加えて、筐体10も可撓性を有する。よって、加熱装置2は、可撓性を有し、必要に応じて湾曲させた形状、例えば略円筒状に変形した状態で使用することもできる。従って、加熱装置2を用いることによって、例えば、非平面状の被加熱物を効率的に加熱することができる。 For this reason, in this embodiment, in addition to the planar heating element 11, the housing 10 also has flexibility. Therefore, the heating device 2 has flexibility and can be used in a curved shape as necessary, for example, in a state of being deformed into a substantially cylindrical shape. Therefore, by using the heating device 2, for example, a non-planar object to be heated can be efficiently heated.
 また、ガラス板17が樹脂製の筐体10で覆われているため、ガラス板17の表面が傷つきにくいため、加熱装置2では、強度の経時劣化が生じにくい。 In addition, since the glass plate 17 is covered with the resin casing 10, the surface of the glass plate 17 is not easily damaged.
 なお、樹脂フィルム19a、19bは、耐熱性を有する樹脂からなるものである限りにおいて特に限定されない。樹脂フィルム19a、19bは、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)ポリスルフォン、ポリフェニレンテレフタレート、ポリイミド、ポリカーボネート、セルロースエステル樹脂、ポリアミドなどにより形成することができる。 The resin films 19a and 19b are not particularly limited as long as they are made of heat-resistant resin. The resin films 19a and 19b can be formed of, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) polysulfone, polyphenylene terephthalate, polyimide, polycarbonate, cellulose ester resin, polyamide, or the like.
 1,2…加熱装置
 10…筐体
 10a…開口
 10b…底壁部
 10c…接合部
 11…面状発熱体
 12…透明導電膜
 13…絶縁膜
 14…低放射率膜
 15,16…電極
 17,18…ガラス板
 19a、19b…樹脂フィルム
DESCRIPTION OF SYMBOLS 1, 2 ... Heating device 10 ... Housing 10a ... Opening 10b ... Bottom wall part 10c ... Joint part 11 ... Planar heating element 12 ... Transparent conductive film 13 ... Insulating film 14 ... Low emissivity film | membrane 15, 16 ... Electrode 17, 18 ... Glass plate 19a, 19b ... Resin film

Claims (8)

  1.  厚みが200μm以下のガラス板と、
     前記ガラス板の上に形成されている透明導電膜と、
    を備える面状発熱体。
    A glass plate having a thickness of 200 μm or less;
    A transparent conductive film formed on the glass plate;
    A planar heating element.
  2.  前記透明導電膜の上に形成されている絶縁膜をさらに備える請求項1に記載の面状発熱体。 The planar heating element according to claim 1, further comprising an insulating film formed on the transparent conductive film.
  3.  前記絶縁膜は、アルミニウム、ケイ素またはチタンの酸化物または窒化物からなる請求項2に記載の面状発熱体。 The planar heating element according to claim 2, wherein the insulating film is made of an oxide or nitride of aluminum, silicon or titanium.
  4.  前記透明導電膜の上に形成されており、前記ガラス板よりも赤外線の放射率が低い低放射率膜をさらに備える請求項1~3のいずれか一項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 3, further comprising a low emissivity film formed on the transparent conductive film and having an infrared emissivity lower than that of the glass plate.
  5.  前記低放射率膜は、前記面状発熱体のガラス板側からの赤外線放射量が、前記低放射率膜側からの赤外線放射量の2倍以上となるように構成されている請求項4に記載の面状発熱体。 The low emissivity film is configured such that the amount of infrared radiation from the glass plate side of the planar heating element is at least twice the amount of infrared radiation from the low emissivity film side. The planar heating element as described.
  6.  前記低放射率膜は、ITOからなる請求項4または5に記載の面状発熱体。 The sheet heating element according to claim 4 or 5, wherein the low emissivity film is made of ITO.
  7.  400nm~800nmの波長域における平均光透過率が70%以上である請求項1~6のいずれか一項に記載の面状発熱体。 The planar heating element according to any one of claims 1 to 6, wherein an average light transmittance in a wavelength region of 400 nm to 800 nm is 70% or more.
  8.  請求項1~7のいずれか一項に記載の面状発熱体を備える加熱装置。 A heating device comprising the planar heating element according to any one of claims 1 to 7.
PCT/JP2011/069258 2010-09-30 2011-08-26 Planar heat generation body and heating device WO2012043104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010220204A JP2012074325A (en) 2010-09-30 2010-09-30 Planar heating element and heating apparatus
JP2010-220204 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043104A1 true WO2012043104A1 (en) 2012-04-05

Family

ID=45892578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069258 WO2012043104A1 (en) 2010-09-30 2011-08-26 Planar heat generation body and heating device

Country Status (3)

Country Link
JP (1) JP2012074325A (en)
TW (1) TW201218847A (en)
WO (1) WO2012043104A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048986A (en) * 2014-06-26 2014-09-17 哈尔滨工程大学 PLIF-PIV (planar laser induced fluorescence-particle image velocimetry) visible pool boiling experiment device heater
EP3996468A4 (en) * 2019-07-04 2023-07-19 Lintec Corporation Heat radiant heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132009A (en) * 2020-02-21 2021-09-09 リンテック株式会社 Sheet-like heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214184A (en) * 1983-05-18 1984-12-04 株式会社日本自動車部品総合研究所 Heater for defroster
JP2008159534A (en) * 2006-12-26 2008-07-10 Nippon Electric Glass Co Ltd Conductive frit material, transparent planar heater and electromagnetic wave shielding body
JP2009201509A (en) * 2008-02-01 2009-09-10 Kunio Isono Culture vessel formed by transparent electroconductive film processing and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214184A (en) * 1983-05-18 1984-12-04 株式会社日本自動車部品総合研究所 Heater for defroster
JP2008159534A (en) * 2006-12-26 2008-07-10 Nippon Electric Glass Co Ltd Conductive frit material, transparent planar heater and electromagnetic wave shielding body
JP2009201509A (en) * 2008-02-01 2009-09-10 Kunio Isono Culture vessel formed by transparent electroconductive film processing and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048986A (en) * 2014-06-26 2014-09-17 哈尔滨工程大学 PLIF-PIV (planar laser induced fluorescence-particle image velocimetry) visible pool boiling experiment device heater
EP3996468A4 (en) * 2019-07-04 2023-07-19 Lintec Corporation Heat radiant heater

Also Published As

Publication number Publication date
JP2012074325A (en) 2012-04-12
TW201218847A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
US6809298B2 (en) Thermal insulation container with electric heater
WO2012043104A1 (en) Planar heat generation body and heating device
JP2006183885A (en) Heating cooker
EP3321939B1 (en) Filler structure and electronic device including the same
Kang et al. Highly flexible, hydrophobic, and large area plasma‐polymer‐fluorocarbon/Cu/SiNx transparent thin film heater and thermotherapy pad application
JP2009224152A (en) Transparent electrode, transparent conductive substrate, and transparent touch panel
CN213991067U (en) Heating structure and laser radar device
TWI470670B (en) Infrared source
US20140314396A1 (en) Electrothermal element
JP5639528B2 (en) Infrared radiation element, infrared light source
JP5672742B2 (en) Infrared temperature sensor
KR20200037547A (en) Planar-type heating film and manufacturing method thereof
JP2019168174A (en) Radiation cooling device
KR102556009B1 (en) Filler structure and the electric device including the same
JP2012083686A (en) Transparent heat insulation sheet and method for producing the same
WO2023125872A1 (en) Capsule endoscope
JP5407958B2 (en) Condensation suppression mechanism for automotive window plates and automotive window plates
JP2019503894A5 (en)
JP7029567B1 (en) Silica heat reflector
JP2006214662A (en) Heating device
JP2023005106A (en) Thermal radiation element, thermal radiation element module, and thermal radiation light source
JP2006214662A5 (en)
JP2023066366A (en) Heat radiation element, heat radiation element module, and heat radiation source
JPWO2020045409A1 (en) Optical device and heater substrate with conductive film
JP2021026861A (en) Heater substrate with conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828665

Country of ref document: EP

Kind code of ref document: A1