JP5672742B2 - Infrared temperature sensor - Google Patents

Infrared temperature sensor Download PDF

Info

Publication number
JP5672742B2
JP5672742B2 JP2010081990A JP2010081990A JP5672742B2 JP 5672742 B2 JP5672742 B2 JP 5672742B2 JP 2010081990 A JP2010081990 A JP 2010081990A JP 2010081990 A JP2010081990 A JP 2010081990A JP 5672742 B2 JP5672742 B2 JP 5672742B2
Authority
JP
Japan
Prior art keywords
infrared
thermal element
temperature
temperature sensor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010081990A
Other languages
Japanese (ja)
Other versions
JP2011214927A (en
Inventor
潤 平林
潤 平林
薄田 真人
真人 薄田
明 渋江
明 渋江
和海 犬伏
和海 犬伏
裕 松尾
裕 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010081990A priority Critical patent/JP5672742B2/en
Publication of JP2011214927A publication Critical patent/JP2011214927A/en
Application granted granted Critical
Publication of JP5672742B2 publication Critical patent/JP5672742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は熱源の温度を非接触測定する赤外線温度センサに関する。   The present invention relates to an infrared temperature sensor for non-contact measurement of a temperature of a heat source.

熱源から放射される赤外線を検出するためのセンサとして、例えば、特開平6−281750号公報に開示されている赤外線検出装置が知られている。この赤外線検出装置は、熱絶縁膜を介さずに半導体基板上に形成された2個一組の検出用サーミスタと、熱絶縁膜を介して半導体基板上に形成された2個一組の補償用サーミスタとから成るサーミスタブリッジ回路を有している。検出用サーミスタは、半導体基板に接して形成されているため、赤外線からの熱が半導体基板へ逃げ易く、急峻な応答速度で抵抗変化を示す。一方、補償用サーミスタは、半導体基板に接しているのではなく、熱絶縁膜上に形成されているため、赤外線からの熱が半導体基板へ逃げ難く、緩慢な応答速度で抵抗変化を示す。このため、赤外線の受光量変化に応じた電圧変化がサーミスタブリッジ回路から高感度で出力される。   As a sensor for detecting infrared rays radiated from a heat source, for example, an infrared detection device disclosed in JP-A-6-281750 is known. This infrared detection device includes a pair of detection thermistors formed on a semiconductor substrate without a thermal insulating film, and a pair of compensation thermistors formed on the semiconductor substrate via a thermal insulating film. It has a thermistor bridge circuit comprising a thermistor. Since the thermistor for detection is formed in contact with the semiconductor substrate, heat from infrared rays easily escapes to the semiconductor substrate and exhibits a resistance change with a steep response speed. On the other hand, since the compensation thermistor is not in contact with the semiconductor substrate but is formed on the thermal insulating film, the heat from the infrared rays hardly escapes to the semiconductor substrate and exhibits a resistance change at a slow response speed. For this reason, a voltage change corresponding to a change in the amount of received infrared light is output from the thermistor bridge circuit with high sensitivity.

特開平6−281750号公報JP-A-6-281750

しかし、検出用サーミスタの応答速度と補償用サーミスタの応答速度との間にずれが生じると、赤外線受光時のサーミスタブリッジ回路の出力信号の立ち上がりが不安定になり易く、応答安定性という観点からは十分なものではなかった。   However, if a deviation occurs between the response speed of the detection thermistor and the response speed of the compensation thermistor, the rise of the output signal of the thermistor bridge circuit when receiving infrared light tends to become unstable, and from the viewpoint of response stability. It was not enough.

そこで、本発明は、感度特性及び応答安定性に優れた赤外線温度センサを提案することを課題とする。   Therefore, an object of the present invention is to propose an infrared temperature sensor excellent in sensitivity characteristics and response stability.

上記の課題を解決するため、本発明に係わる赤外線温度センサは、熱源の温度を非接触測定する赤外線温度センサであって、熱源から放射される赤外線の熱量を検知する赤外線検知用感熱素子と、外部環境からの熱量を検知する温度補償用感熱素子と、赤外線検知用感熱素子及び温度補償用感熱素子が配置される第一の主面及びその裏面である第二の主面を有する基板と、を備え、赤外線検知用感熱素子及び温度補償用感熱素子は、基板の最大肉厚部分よりも肉薄な肉薄部分に配置されている。赤外線検知用感熱素子及び温度補償用感熱素子のそれぞれを基板の熱容量よりも小さい熱容量を有する肉薄部分に形成することで、僅かな熱量でも赤外線検知用感熱素子及び温度補償用感熱素子が敏感に反応するようになるため、赤外線温度センサの感度特性を向上できる。また、赤外線検知用感熱素子及び温度補償用感熱素子のそれぞれを外部環境に関して熱伝導的に対称配置された肉薄部分に形成することで、赤外線検知用感熱素子の応答速度と温度補償用感熱素子の応答速度とを略同一に揃えることが可能となり、赤外線温度センサの応答安定性を向上できる。   In order to solve the above-mentioned problems, an infrared temperature sensor according to the present invention is an infrared temperature sensor that measures the temperature of a heat source in a non-contact manner, and detects a heat amount of infrared rays emitted from the heat source; A temperature-compensating thermal element that detects the amount of heat from the external environment, a substrate having a first principal surface on which the infrared-sensitive thermal element and the temperature-compensating thermal element are disposed, and a second principal surface that is the back surface thereof; The infrared detecting thermal element and the temperature compensating thermal element are arranged in a thin part thinner than the maximum thick part of the substrate. By forming each of the infrared detecting thermal element and the temperature compensating thermal element in a thin portion having a heat capacity smaller than that of the substrate, the infrared detecting thermal element and the temperature compensating thermal element react sensitively even with a small amount of heat. Therefore, the sensitivity characteristic of the infrared temperature sensor can be improved. In addition, by forming each of the infrared detection thermal element and the temperature compensation thermal element in a thin portion thermally arranged symmetrically with respect to the external environment, the response speed of the infrared detection thermal element and the temperature compensation thermal element The response speed can be made substantially the same, and the response stability of the infrared temperature sensor can be improved.

基板は、肉薄部分よりも厚肉な厚肉部分を赤外線検知用感熱素子と温度補償用感熱素子との間に有するのが好ましい。これにより、赤外線検知用感熱素子と温度補償用感熱素子との間の熱抵抗を増大させることが可能となり、両素子間の熱の流出入に起因する温度測定精度の低下を抑制できる。   The substrate preferably has a thick part thicker than the thin part between the infrared detecting thermal element and the temperature compensating thermal element. As a result, it is possible to increase the thermal resistance between the infrared detecting thermal element and the temperature compensating thermal element, and it is possible to suppress a decrease in temperature measurement accuracy due to the flow of heat between the two elements.

赤外線検知用感熱素子及び温度補償用感熱素子の共通電極は、赤外線検知用感熱素子と温度補償用感熱素子との間の第一の主面に形成されているのが好ましい。導電材料から成る共通電極は、熱伝導に優れているため、放熱性を高めることができる。   The common electrode of the infrared detecting thermal element and the temperature compensating thermal element is preferably formed on the first main surface between the infrared detecting thermal element and the temperature compensating thermal element. Since the common electrode made of a conductive material is excellent in heat conduction, heat dissipation can be improved.

赤外線温度センサは、赤外線検知用感熱素子及び温度補償用感熱素子を被覆する保護膜を備えるのが好ましい。保護膜を通じて赤外線検知用感熱素子及び温度補償用感熱素子からの熱拡散を高めることができる。   The infrared temperature sensor preferably includes a protective film covering the infrared detecting thermal element and the temperature compensating thermal element. Thermal diffusion from the infrared detecting thermal element and the temperature compensating thermal element can be enhanced through the protective film.

赤外線温度センサは、温度補償用感熱素子の少なくとも一部を被覆する赤外線反射膜を備えるのが好ましい。熱源から放射される赤外線を赤外線反射膜によって反射し、赤外線の熱量が温度補償用感熱素子に伝熱しないようにできる。   The infrared temperature sensor preferably includes an infrared reflecting film that covers at least a part of the temperature-compensating thermosensitive element. Infrared rays radiated from the heat source are reflected by the infrared reflection film so that the amount of heat of the infrared rays does not transfer to the temperature-compensating heat sensitive element.

赤外線反射膜の基板の厚み方向の投影面積は、肉薄部分の基板の厚み方向の投影面積よりも大きいのが好ましい。これにより、赤外線からの熱量が熱容量の大きい基板に直接流れる事で、より温度補償用感熱素子に流入しないように構成できるので、温度補償用感熱素子は、外部環境からの熱量を正確に検知できる。   The projected area in the thickness direction of the substrate of the infrared reflective film is preferably larger than the projected area in the thickness direction of the thin substrate. As a result, since the heat quantity from the infrared rays flows directly to the substrate having a large heat capacity, it can be configured not to flow into the temperature compensation thermal element, so the temperature compensation thermal element can accurately detect the heat quantity from the external environment. .

赤外線温度センサは、温度補償用感熱素子の少なくとも一部を被覆する第一の赤外線吸収膜と、第一の赤外線吸収膜の少なくとも一部を被覆する第一の赤外線反射膜と、赤外線検知用感熱素子の少なくとも一部を被覆する第二の赤外線反射膜と、第二の赤外線反射膜の少なくとも一部を被覆する第二の赤外線吸収膜とを備えるのが好ましい。第一の赤外線吸収膜及び第一の赤外線反射膜から成る積層構造の熱容量と、第二の赤外線反射膜及び第二の赤外線吸収膜から成る積層構造の熱容量とを略同一に調整できるため、赤外線検知用感熱素子及び温度補償用感熱素子のそれぞれが外部環境から受ける熱の影響を均一化できる。   The infrared temperature sensor includes a first infrared absorbing film that covers at least a part of the temperature-compensating thermosensitive element, a first infrared reflecting film that covers at least a part of the first infrared absorbing film, and a thermal sensor for detecting infrared rays. It is preferable to include a second infrared reflection film that covers at least a part of the element and a second infrared absorption film that covers at least a part of the second infrared reflection film. The heat capacity of the laminated structure composed of the first infrared absorbing film and the first infrared reflecting film and the heat capacity of the laminated structure composed of the second infrared reflecting film and the second infrared absorbing film can be adjusted to be substantially the same. It is possible to equalize the influence of heat received from the external environment on each of the detection thermal element and the temperature compensation thermal element.

赤外線温度センサは、赤外線検知用感熱素子の少なくとも一部を被覆する赤外線吸収膜を更に備え、赤外線吸収膜の基板の厚み方向の投影面積は、肉薄部分の基板の厚み方向の投影面積よりも小さいのが好ましい。これにより、赤外線吸収膜が吸収した熱量をできるだけ基板へ漏らさずに、肉薄部分に閉じ込めることができるので、赤外線検知用感熱素子の感度特性を向上できる。   The infrared temperature sensor further includes an infrared absorbing film that covers at least a part of the infrared detecting thermal element, and the projected area in the thickness direction of the substrate of the infrared absorbing film is smaller than the projected area in the thickness direction of the thin substrate. Is preferred. As a result, the amount of heat absorbed by the infrared absorption film can be confined in a thin portion without leaking to the substrate as much as possible, so that the sensitivity characteristics of the infrared detecting thermal element can be improved.

赤外線反射膜は、温度補償用感熱素子の出力端子電極、又は赤外線検知用感熱素子及び温度補償用感熱素子の共通電極のうち少なくとも何れか一方に接続しているのが好ましい。これにより、赤外線の熱量を赤外線反射膜から出力端子電極又は共通電極を介して効率よく外部に放熱させることができるため、温度補償用感熱素子が赤外線から受ける影響を低減し、赤外線温度センサの感度特性を向上できる。   The infrared reflection film is preferably connected to at least one of the output terminal electrode of the temperature compensation thermal element or the common electrode of the infrared detection thermal element and the temperature compensation thermal element. As a result, the amount of infrared heat can be efficiently radiated from the infrared reflecting film to the outside via the output terminal electrode or the common electrode, so that the influence of the temperature compensating thermosensitive element from the infrared rays is reduced, and the sensitivity of the infrared temperature sensor is reduced. The characteristics can be improved.

赤外線温度センサは、赤外線検知用感熱素子及び温度補償用感熱素子を被覆する保護膜を更に備え、保護膜は、赤外線検知用感熱素子と共通電極との間、又は温度補償用感熱素子と共通電極との間において第一の主面側に陥没する凹部を有するのが好ましい。このように保護膜に凹部を形成することで、赤外線検知用感熱素子と温度補償用感熱素子との間の熱抵抗を増大させ、一方の素子からの熱伝導が他方の素子の温度に影響を与えないようにできる。   The infrared temperature sensor further includes a protective film that covers the infrared detecting thermal element and the temperature compensating thermal element, and the protective film is provided between the infrared detecting thermal element and the common electrode or between the temperature compensating thermal element and the common electrode. It is preferable to have a recess recessed on the first main surface side. By forming a recess in the protective film in this way, the thermal resistance between the infrared detecting thermal element and the temperature compensating thermal element is increased, and the heat conduction from one element affects the temperature of the other element. You can avoid giving.

本発明によれば、感度特性及び応答安定性に優れた赤外線温度センサを提供できる。   According to the present invention, an infrared temperature sensor excellent in sensitivity characteristics and response stability can be provided.

実施形態1に係わる赤外線温度センサの回路構成図である。1 is a circuit configuration diagram of an infrared temperature sensor according to Embodiment 1. FIG. 実施形態1に係わる赤外線温度センサの各構成要素の平面レイアウトを示す説明図である。FIG. 3 is an explanatory diagram illustrating a planar layout of each component of the infrared temperature sensor according to the first embodiment. 実施形態1に係わる赤外線温度センサの製造工程断面図である。5 is a manufacturing process cross-sectional view of the infrared temperature sensor according to Embodiment 1. FIG. 実施形態1に係わる赤外線温度センサの製造工程断面図である。5 is a manufacturing process cross-sectional view of the infrared temperature sensor according to Embodiment 1. FIG. 実施形態1に係わる赤外線温度センサの製造工程断面図である。5 is a manufacturing process cross-sectional view of the infrared temperature sensor according to Embodiment 1. FIG. 実施形態2に係わる赤外線温度センサの断面図である。It is sectional drawing of the infrared temperature sensor concerning Embodiment 2. FIG. 実施形態3に係わる赤外線温度センサの断面図である。It is sectional drawing of the infrared temperature sensor concerning Embodiment 3. FIG. 実施形態4に係わる赤外線温度センサの断面図である。It is sectional drawing of the infrared temperature sensor concerning Embodiment 4.

以下、各図を参照しながら本発明に係わる実施形態について説明する。同一のデバイスについては同一の符号を付すものとし、重複する説明を省略する。なお、図面は、模式的なものであり、説明の便宜上、厚みと平面寸法との関係、及びデバイス相互間の厚みの比率は、本発明の効果が得られる範囲内で現実のセンサ構造とは異なっていてもよい。   Embodiments according to the present invention will be described below with reference to the drawings. The same devices are denoted by the same reference numerals, and redundant description is omitted. The drawings are schematic, and for convenience of explanation, the relationship between thickness and planar dimensions, and the ratio of thickness between devices are within the range where the effect of the present invention can be obtained. May be different.

[実施形態1]
図1は本実施形態に係わる赤外線温度センサ100の回路構成図である。赤外線温度センサ100は、出力端子電極51を介して直列接続された赤外線検知用感熱素子20及び固定抵抗素子41から成るハーフブリッジ回路と、出力端子電極52を介して直列接続された温度補償用感熱素子30及び固定抵抗素子42から成るハーフブリッジ回路とが並列接続されたフルブリッジ回路を有している。固定抵抗素子41,42の間には、入力端子電極53が接続され、赤外線検知用感熱素子20及び温度補償用感熱素子30の間には、共通電極(グランド端子電極)50が接続されている。入力端子電極53と共通電極50との間には、電源60が接続されており、フルブリッジ回路に電流が流れるように構成されている。赤外線検知用感熱素子20は、熱源から放射される赤外線の熱量を検知するためのセンサ素子であり、温度補償用感熱素子30は、外部環境からの熱量を検知するためのセンサ素子である。赤外線検知用感熱素子20が受け取る熱量は、熱源から放射される赤外線の熱量に限らず、外部環境からの熱量も受け取るため、外部環境からの熱量を温度補償用感熱素子30で検出することにより、熱源から放射される赤外線の熱量(即ち、熱源の温度)を推定することができる。このため、赤外線検知用感熱素子20は、熱源から放射される赤外線を受光できるように配置される一方、温度補償用感熱素子30は、熱源から放射される赤外線を受光しないように(言い換えれば、外部環境からの熱量のみを検知できるように)配置される。赤外線検知用感熱素子20及び温度補償用感熱素子30は、受熱熱量に応じて電気的特性が変化するセンサ素子であればよく、特に限定されるものではないが、例えば、抵抗温度特性を有するサーミスタ等のボロメータ、又は抵抗測温体等が好適である。また、赤外線検知用感熱素子20及び温度補償用感熱素子30の抵抗温度特性をできるだけ同一に調整し、外部環境からの熱量の影響による両者の抵抗値変化を揃えるのが好ましい。同様に、固定抵抗素子41,42の抵抗値は、できるだけ同一であることが好ましい。これにより、赤外線温度センサ100に熱源からの赤外線が照射されない状態では、出力端子電極51,52の間の電圧はゼロとなる一方、赤外線温度センサ100に熱源からの赤外線が照射される状態では、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの抵抗値変化の相違により、出力端子電極51,52の間に不平衡電圧が出力される。この不平衡電圧と熱源の温度とを予め対応付けたマップデータを用意しておくことで、不平衡電圧から熱源の温度を推定することができる。
[Embodiment 1]
FIG. 1 is a circuit configuration diagram of an infrared temperature sensor 100 according to the present embodiment. The infrared temperature sensor 100 includes a half-bridge circuit composed of an infrared detection thermal element 20 and a fixed resistance element 41 connected in series via an output terminal electrode 51, and a temperature compensation thermal sensor connected in series via an output terminal electrode 52. It has a full bridge circuit in which a half bridge circuit composed of the element 30 and the fixed resistance element 42 is connected in parallel. An input terminal electrode 53 is connected between the fixed resistance elements 41 and 42, and a common electrode (ground terminal electrode) 50 is connected between the infrared detecting thermal element 20 and the temperature compensating thermal element 30. . A power source 60 is connected between the input terminal electrode 53 and the common electrode 50 so that a current flows through the full bridge circuit. The infrared detecting thermal element 20 is a sensor element for detecting the amount of heat of infrared rays emitted from the heat source, and the temperature compensating thermal element 30 is a sensor element for detecting the amount of heat from the external environment. The amount of heat received by the infrared detection thermal element 20 is not limited to the amount of infrared radiation radiated from the heat source, but also receives the amount of heat from the external environment, so the temperature compensation thermal element 30 detects the amount of heat from the external environment, The amount of infrared heat radiated from the heat source (ie, the temperature of the heat source) can be estimated. Therefore, the infrared detecting thermal element 20 is arranged so as to receive infrared rays emitted from the heat source, while the temperature compensating thermal element 30 does not receive infrared rays emitted from the heat source (in other words, Placed so that only the amount of heat from the external environment can be detected. The infrared detection thermal element 20 and the temperature compensation thermal element 30 are not particularly limited as long as the electrical characteristics change according to the amount of heat received. For example, a thermistor having resistance temperature characteristics A bolometer such as the above or a resistance temperature sensor is suitable. In addition, it is preferable that the resistance temperature characteristics of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 are adjusted as much as possible so that the resistance value changes due to the amount of heat from the external environment are made uniform. Similarly, the resistance values of the fixed resistance elements 41 and 42 are preferably as identical as possible. Thereby, in the state where the infrared ray from the heat source is not irradiated to the infrared temperature sensor 100, the voltage between the output terminal electrodes 51 and 52 becomes zero, while in the state where the infrared temperature sensor 100 is irradiated with the infrared ray from the heat source, An unbalanced voltage is output between the output terminal electrodes 51 and 52 due to the difference in resistance value between the infrared detecting thermal element 20 and the temperature compensating thermal element 30. By preparing map data that associates the unbalanced voltage with the temperature of the heat source in advance, the temperature of the heat source can be estimated from the unbalanced voltage.

図2は赤外温度センサ100の各構成要素の平面レイアウトを示す説明図であり、図5は図2の5−5線矢視断面図である。赤外線検知用感熱素子20は、所定のギャップ間隔をおいて形成される個別電極21及び共通電極50と、これらの電極間に成膜される感熱膜22とを備える。温度補償用感熱素子30は、所定のギャップ間隔をおいて形成される個別電極31及び共通電極50と、これらの電極間に成膜される感熱膜32とを備える。感熱膜22,32の材質として、例えば、アモルファスシリコン、ポリシリコン、ゲルマニウム、シリコンカーバイド、複合金属酸化物等の負の温度係数を有するサーミスタ薄膜が好適である。個別電極21,31及び共通電極50の材質としては、感熱膜22,32の成膜工程や熱処理工程等に耐え得る耐熱性を有し、且つ適度な伝導性を有する比較的高融点の材質が好ましく、例えば、モリブデン(Mo)、白金(Pt)、金(Au)、タングステン(W)、タンタル(Ta)、パラジウム(Pd)、イリジウム(Ir)、又はこれらの金属を2種類以上含む合金等が好適である。出力端子電極51,52は、それぞれ個別電極21,31に接続して電気信号を取り出すためのパッド電極であり、素子に電圧を印加するための入力端子電極54を共通電極としている。その材質としては、ワイヤーボンドやフリップチップボンディング等の電気的接続が容易な材質、例えば、アルミニウム(Al)、金(Au)等が好適である。   2 is an explanatory diagram showing a planar layout of each component of the infrared temperature sensor 100, and FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. The infrared detecting thermal element 20 includes an individual electrode 21 and a common electrode 50 that are formed with a predetermined gap interval, and a thermal film 22 that is formed between these electrodes. The temperature compensating thermosensitive element 30 includes an individual electrode 31 and a common electrode 50 that are formed with a predetermined gap interval, and a thermosensitive film 32 that is formed between these electrodes. As a material of the heat sensitive films 22 and 32, for example, a thermistor thin film having a negative temperature coefficient such as amorphous silicon, polysilicon, germanium, silicon carbide, composite metal oxide or the like is suitable. As the material of the individual electrodes 21 and 31 and the common electrode 50, a material having a relatively high melting point having heat resistance capable of withstanding the film-forming process or heat treatment process of the heat-sensitive films 22 and 32 and having appropriate conductivity. Preferably, for example, molybdenum (Mo), platinum (Pt), gold (Au), tungsten (W), tantalum (Ta), palladium (Pd), iridium (Ir), or an alloy containing two or more of these metals Is preferred. The output terminal electrodes 51 and 52 are pad electrodes for connecting to the individual electrodes 21 and 31, respectively, and taking out an electric signal, and the input terminal electrode 54 for applying a voltage to the element is a common electrode. The material is preferably a material that can be easily electrically connected, such as wire bonding or flip chip bonding, such as aluminum (Al) or gold (Au).

基板11は、第一の主面11A及びその裏面である第二の主面11Bを有しており、それぞれの主面には絶縁膜12が形成されている。基板11の材質としては、適度な機械的強度を有し、且つエッチング等の微細加工に適した材質であればよく、特に限定されるものではないが、例えば、シリコン単結晶基板、サファイア単結晶基板、セラミックス基板、石英基板、ガラス基板等が好適である。絶縁膜12としては、適度な機械的強度を有し、且つ公知の薄膜プロセスで容易に成膜できるものであればよく、特に限定されるものではないが、例えば、シリコン酸化膜、シリコン窒化膜等が好適である。基板11の第一の主面11Aには、上述の赤外線検知用感熱素子20、温度補償用感熱素子30、固定抵抗素子41,42、出力端子電極51,52、及び入力端子電極53が絶縁膜12を介して形成されている。また、赤外線検知用感熱素子20及び温度補償用感熱素子30を被覆して外気から遮蔽するための保護膜13が形成されている。ここで保護膜13は少なくとも赤外線検知用感熱素子20及び温度補償用感熱素子30のみが覆われていればよいが、図5に開示されている保護層を貫通して露出している形態がより好ましい。このような形態にすることにより放熱性、温度均一性、信頼性の面で有利である。保護膜13の材質としては、適度な耐久性を有する絶縁膜であればよく、特に限定されるものではないが、絶縁膜12の材質と同一であることが好ましい。このようにすることで赤外線検知用感熱素子20及び温度補償用感熱素子30の周囲を構成する絶縁膜が全て同一材質になるため、より均一な温度分布となり好ましい。共通電極50には、電気信号を取り出すための取り出し電極54が接続している。また、熱源から放射される赤外線を吸収してそのエネルギーを熱に変換し、その熱を赤外線検知用感熱素子20に伝熱させるための赤外線吸収膜70が保護膜13を介して赤外線検知用感熱素子20の少なくとも一部を被覆するように成膜されている。赤外線吸収膜70の材質としては、4μm〜10μmの赤外線を効率よく吸収する材質であればよく、特に限定されるものではないが、例えば、Au黒、Pt黒などの黒体材料、ポリイミド等の赤外線吸収効率の高い樹脂が好適である。但し、保護膜13が赤外線吸収効率に優れた薄膜(例えば、シリコン酸化膜)である場合には、保護膜13自体を赤外線吸収膜70として機能させてもよい。また、熱源から放射される赤外線を反射し、赤外線の熱量が温度補償用感熱素子30に伝熱しないようにするための赤外線反射膜80が温度補償用感熱素子30の少なくとも一部を被覆するように成膜されている。赤外線反射膜80の材質としては、適度な赤外線反射率を有する薄膜であればよく、特に限定されるものではないが、例えば、アルミニウム(Al)や金(Au)等の金属材質が好適であり、特に、公知の薄膜プロセスで容易に成膜可能で熱伝導性に優れたものが更に好ましい。また、固定抵抗素子41,42としては、抵抗変化の温度依存性の小さいものが好ましく、特に公知の薄膜プロセスで容易に形成できるNiCr等が好適である。   The substrate 11 has a first main surface 11A and a second main surface 11B which is the back surface thereof, and an insulating film 12 is formed on each main surface. The material of the substrate 11 is not particularly limited as long as it has a suitable mechanical strength and is suitable for fine processing such as etching. For example, a silicon single crystal substrate, a sapphire single crystal A substrate, a ceramic substrate, a quartz substrate, a glass substrate, or the like is preferable. The insulating film 12 is not particularly limited as long as it has an appropriate mechanical strength and can be easily formed by a known thin film process. For example, a silicon oxide film, a silicon nitride film, etc. Etc. are suitable. On the first main surface 11A of the substrate 11, the infrared detecting thermal element 20, the temperature compensating thermal element 30, the fixed resistance elements 41 and 42, the output terminal electrodes 51 and 52, and the input terminal electrode 53 are insulating films. 12 is formed. Further, a protective film 13 is formed to cover the infrared detecting thermal element 20 and the temperature compensating thermal element 30 to shield from the outside air. Here, the protective film 13 only needs to cover at least the infrared detecting thermal element 20 and the temperature compensating thermal element 30, but the form exposed through the protective layer disclosed in FIG. 5 is more preferable. preferable. Such a configuration is advantageous in terms of heat dissipation, temperature uniformity, and reliability. The material of the protective film 13 is not particularly limited as long as it is an insulating film having moderate durability, but is preferably the same as the material of the insulating film 12. By doing in this way, since the insulating film which comprises the circumference | surroundings of the thermal element 20 for infrared rays detection and the thermal element 30 for temperature compensation becomes all the same material, a more uniform temperature distribution is preferable. The common electrode 50 is connected to an extraction electrode 54 for extracting an electric signal. Further, an infrared absorption film 70 for absorbing infrared rays radiated from a heat source, converting the energy into heat, and transferring the heat to the infrared detection thermal element 20 is provided through the protective film 13 for infrared detection. A film is formed so as to cover at least a part of the element 20. The material of the infrared absorbing film 70 is not particularly limited as long as it is a material that efficiently absorbs infrared rays of 4 μm to 10 μm. For example, black body materials such as Au black and Pt black, polyimide, etc. Resins with high infrared absorption efficiency are suitable. However, when the protective film 13 is a thin film (for example, a silicon oxide film) excellent in infrared absorption efficiency, the protective film 13 itself may function as the infrared absorption film 70. Further, the infrared reflection film 80 for reflecting the infrared rays radiated from the heat source and preventing the heat quantity of the infrared rays from being transferred to the temperature compensating thermal element 30 covers at least a part of the temperature compensating thermal element 30. It is formed into a film. The material of the infrared reflecting film 80 is not particularly limited as long as it is a thin film having an appropriate infrared reflectance. For example, a metal material such as aluminum (Al) or gold (Au) is suitable. In particular, a film that can be easily formed by a known thin film process and has excellent thermal conductivity is more preferable. Further, as the fixed resistance elements 41 and 42, those having a small temperature dependency of resistance change are preferable, and NiCr or the like that can be easily formed by a known thin film process is particularly preferable.

また、基板11には、赤外線検知用感熱素子20が配置される位置に対応してキャビティ91が形成されるとともに、温度補償用感熱素子30が配置される位置に対応してキャビティ92が形成されている。キャビティ91,92は、第二の主面11B側から第一の主面11A側に向けて基板内部に陥没する凹部であり、それぞれ、基板11の最大肉厚部分16よりも肉薄な肉薄部分14,15を有している。言い換えれば、赤外線検知用感熱素子20及び温度補償用感熱素子30は、それぞれ、基板11の肉薄部分14,15に形成されている。図5では、肉薄部分14,15は、絶縁膜12のみによって形成される場合を例示しているが、本実施形態は、これに限られるものではなく、例えば、基板11の肉薄な部分とその上に成膜される絶縁膜12との組み合わせによって形成されてもよい。また、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれと外部環境との間の伝熱経路が熱伝導的に対称であるという条件を満たす限り、キャビティ91,92の形状やそのサイズ、及び肉薄部分14,15の厚みは、同一でもよく或いは異なっていてもよい。ここで、「熱伝導的に対称」とは、必ずしも幾何学的な対称性を意図するものではなく、熱抵抗を加味した伝熱経路の対称性を意味する。このように、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれを基板11の熱容量よりも小さい熱容量を有する肉薄部分14,15(言い換えれば、キャビティ91,92)に形成することで、僅かな熱量でも感熱膜22,32の抵抗値が敏感に変化するようになるため、赤外線温度センサ100の感度特性を向上できる。また、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれを外部環境に関して熱伝導的に対称配置された肉薄部分14,15に形成することで、赤外線検知用感熱素子20の応答速度と温度補償用感熱素子30の応答速度とを略同一に揃えることが可能となり、赤外線温度センサ100の応答安定性を向上できる。なお、本実施形態は上述のセンサ構造に限られるものではなく、例えば、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれを基板11の熱容量よりも小さい熱容量を有する単一の肉薄部分(言い換えれば、単一のキャビティ)に形成し、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれを外部環境に関して熱伝導的に対称配置するセンサ構造を含む。   Further, a cavity 91 is formed on the substrate 11 corresponding to the position where the infrared detecting thermal element 20 is disposed, and a cavity 92 is formed corresponding to the position where the temperature compensating thermal element 30 is disposed. ing. The cavities 91 and 92 are concave portions that are recessed into the substrate from the second main surface 11B side toward the first main surface 11A side, and are thin portions 14 that are thinner than the maximum thick portion 16 of the substrate 11, respectively. , 15. In other words, the infrared detecting thermal element 20 and the temperature compensating thermal element 30 are formed on the thin portions 14 and 15 of the substrate 11, respectively. FIG. 5 illustrates the case where the thin portions 14 and 15 are formed only by the insulating film 12, but the present embodiment is not limited to this, for example, the thin portion of the substrate 11 and the thin portion thereof. You may form by the combination with the insulating film 12 formed into a film on it. In addition, as long as the condition that the heat transfer path between each of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 and the external environment is thermally conductive is satisfied, the shape and size of the cavities 91 and 92 are determined. , And the thickness of the thin portions 14 and 15 may be the same or different. Here, “thermally symmetric” does not necessarily mean geometric symmetry, but means the symmetry of the heat transfer path in consideration of thermal resistance. Thus, by forming each of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 in the thin portions 14 and 15 (in other words, the cavities 91 and 92) having a heat capacity smaller than the heat capacity of the substrate 11, Since the resistance values of the heat sensitive films 22 and 32 change sensitively even with a small amount of heat, the sensitivity characteristics of the infrared temperature sensor 100 can be improved. Further, by forming each of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 in the thin portions 14 and 15 arranged symmetrically in heat conduction with respect to the external environment, the response speed of the infrared detecting thermal element 20 and The response speed of the temperature compensating thermal element 30 can be made substantially the same, and the response stability of the infrared temperature sensor 100 can be improved. The present embodiment is not limited to the above-described sensor structure. For example, each of the infrared detection thermal element 20 and the temperature compensation thermal element 30 is a single thin portion having a heat capacity smaller than the heat capacity of the substrate 11. (In other words, a single cavity), and includes a sensor structure in which each of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 is symmetrically disposed in a thermally conductive manner with respect to the external environment.

また、基板11は、赤外線検知用感熱素子20と温度補償用感熱素子30との間に厚肉部分17を有するのが好ましい。厚肉部分17は、肉薄部分14,15よりも厚肉で且つ基板11の最大肉厚以下の肉厚を有する。これにより、キャビティ91,92間の熱抵抗を増大させることが可能となり、キャビティ91,92間の熱の流出入に起因する温度測定精度の低下を抑制できる。また、図2に示すように、赤外線吸収膜70の基板11の厚み方向の投影面積は、肉薄部分14の基板11の厚み方向の投影面積よりも小さい方が好ましい。つまり、赤外線吸収膜70を基板11(より詳細には、絶縁膜12)に対し基板の厚み方向に投影したとき、その投影面積は肉薄部分14よりも内側に配置されることになる。これにより、赤外線吸収膜70が吸収した熱量をできるだけ基板11へ漏らさずに、キャビティ91内部に閉じ込めることができるので、赤外線検知用感熱素子20の感度特性を向上できる。また、赤外線反射膜80の基板11の厚み方向の投影面積は、肉薄部分15の基板11の厚み方向の投影面積よりも大きい方が好ましい。つまり、赤外線反射膜80を基板11(より詳細には、絶縁膜12)に対し基板の厚み方向に投影したとき、肉薄部分15がその投影面積よりも内側に配置されることになる。これにより、赤外線からの熱量が熱容量の大きい基板に直接流れることでできるだけキャビティ92内に流入しないように構成できるので、温度補償用感熱素子30は、外部環境からの熱量を正確に検知できる。また、共通電極50は、赤外線検知用感熱素子20と温度補償用感熱素子30との間に配置されるのが好ましい。共通電極50は、熱伝導に優れているため、放熱性を高めることができる。また、保護膜13の材質は、絶縁膜12の材質と同一であるものが好ましい。これにより、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれを上下から同一材質の薄膜で取り囲むことができるため、偏りのない均一な熱伝導特性を得ることができる。なお、固定抵抗素子41,42は、必ずしも赤外線検知用感熱素子20及び温度補償用感熱素子30とともに基板11上に形成される必要はなく、別の基板上に形成されていてもよい。   The substrate 11 preferably has a thick portion 17 between the infrared detecting thermal element 20 and the temperature compensating thermal element 30. The thick portion 17 is thicker than the thin portions 14 and 15 and has a thickness equal to or less than the maximum thickness of the substrate 11. As a result, the thermal resistance between the cavities 91 and 92 can be increased, and a decrease in temperature measurement accuracy due to the flow of heat between the cavities 91 and 92 can be suppressed. Further, as shown in FIG. 2, the projected area in the thickness direction of the substrate 11 of the infrared absorption film 70 is preferably smaller than the projected area in the thickness direction of the substrate 11 of the thin portion 14. That is, when the infrared absorption film 70 is projected on the substrate 11 (more specifically, the insulating film 12) in the thickness direction of the substrate, the projected area is arranged on the inner side of the thin portion 14. As a result, the amount of heat absorbed by the infrared absorption film 70 can be confined inside the cavity 91 without leaking to the substrate 11 as much as possible, so that the sensitivity characteristics of the infrared detecting thermal element 20 can be improved. The projected area of the infrared reflecting film 80 in the thickness direction of the substrate 11 is preferably larger than the projected area of the thin portion 15 in the thickness direction of the substrate 11. That is, when the infrared reflecting film 80 is projected on the substrate 11 (more specifically, the insulating film 12) in the thickness direction of the substrate, the thin portion 15 is disposed on the inner side of the projected area. As a result, since the heat quantity from the infrared rays can flow directly into the substrate having a large heat capacity so that it does not flow into the cavity 92 as much as possible, the temperature compensation thermal element 30 can accurately detect the heat quantity from the external environment. The common electrode 50 is preferably disposed between the infrared detecting thermal element 20 and the temperature compensating thermal element 30. Since the common electrode 50 is excellent in heat conduction, heat dissipation can be improved. The protective film 13 is preferably made of the same material as the insulating film 12. Thereby, since each of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 can be surrounded by the same material thin film from above and below, uniform heat conduction characteristics can be obtained. The fixed resistance elements 41 and 42 are not necessarily formed on the substrate 11 together with the infrared detecting thermal element 20 and the temperature compensating thermal element 30, and may be formed on another substrate.

次に、図3乃至図5を参照しながら赤外温度センサ100の製造工程について説明する。まず、図3に示すように、基板11として(100)シリコン基板を用意し、基板11の第一の主面11A及び第二の主面11Bに絶縁膜12としてシリコン酸化膜を成膜する。シリコン酸化膜を成膜するには、例えば、熱酸化法等を適用すればよい。絶縁膜12の膜厚は、基板11との絶縁性が確保される程度に調整すればよく、例えば、0.1μm〜0.5μm程度が好適である。次に、第一の主面11A上の絶縁膜12に個別電極21,31、共通電極50、及び固定抵抗素子41,42を形成する。個別電極21,31及び共通電極50を形成するには、例えば、RFマグネトロンスパッタ法等を用いて絶縁膜12上に150nm〜600nm程度の金属薄膜を堆積し、フォトリソグラフィによってエッチングマスクを形成し、反応性イオンエッチングやイオンミリング等のドライエッチングでこの金属薄膜を所定の電極形状に加工すればよい。金属薄膜と絶縁膜12との間の密着性を高めるには、チタン(Ti)等の密着層を介在させるのが好ましい。   Next, the manufacturing process of the infrared temperature sensor 100 will be described with reference to FIGS. First, as shown in FIG. 3, a (100) silicon substrate is prepared as the substrate 11, and a silicon oxide film is formed as an insulating film 12 on the first main surface 11 </ b> A and the second main surface 11 </ b> B of the substrate 11. In order to form the silicon oxide film, for example, a thermal oxidation method or the like may be applied. The film thickness of the insulating film 12 may be adjusted to such an extent that insulation with the substrate 11 is ensured, and for example, about 0.1 μm to 0.5 μm is preferable. Next, the individual electrodes 21 and 31, the common electrode 50, and the fixed resistance elements 41 and 42 are formed on the insulating film 12 on the first main surface 11A. In order to form the individual electrodes 21 and 31 and the common electrode 50, for example, a metal thin film of about 150 nm to 600 nm is deposited on the insulating film 12 using an RF magnetron sputtering method or the like, an etching mask is formed by photolithography, The metal thin film may be processed into a predetermined electrode shape by dry etching such as reactive ion etching or ion milling. In order to improve the adhesion between the metal thin film and the insulating film 12, it is preferable to interpose an adhesion layer such as titanium (Ti).

次に、図4に示すように、感熱膜22,32としての複合金属酸化膜をスパッタ法により個別電極21,31及び共通電極50上に堆積し、ウェットエッチングにより複合金属酸化膜を所定形状にパターニングする。以上の工程により、絶縁膜12上に赤外線検知用感熱素子20及び温度補償用感熱素子30が形成される。続いて、保護膜13としての酸化シリコン膜をTEOS−CVD法により0.3μm〜2μm程度の膜厚で基板全面に成膜し、フォトリソグラフィによりエッチングマスクを形成した後、酸化シリコン膜をウェットエッチングにより選択的に除去し、出力端子電極51,52及び取り出し電極54が形成されるべき箇所を露出させる。そして、出力端子電極51,52及び取り出し電極54としてのアルミニウム電極をEB蒸着法により1μm程度形成し、リフトオフ法によりアルミニウム電極の不要部分を除去する。   Next, as shown in FIG. 4, a composite metal oxide film as the heat sensitive films 22 and 32 is deposited on the individual electrodes 21 and 31 and the common electrode 50 by sputtering, and the composite metal oxide film is formed into a predetermined shape by wet etching. Pattern. Through the above steps, the infrared detecting thermal element 20 and the temperature compensating thermal element 30 are formed on the insulating film 12. Subsequently, a silicon oxide film as a protective film 13 is formed on the entire surface of the substrate with a film thickness of about 0.3 μm to 2 μm by TEOS-CVD, an etching mask is formed by photolithography, and then the silicon oxide film is wet etched. To selectively remove the portions where the output terminal electrodes 51 and 52 and the extraction electrode 54 are to be formed. Then, an aluminum electrode as the output terminal electrodes 51 and 52 and the extraction electrode 54 is formed to about 1 μm by EB vapor deposition, and unnecessary portions of the aluminum electrode are removed by lift-off.

次に、図5に示すように、赤外線反射膜80としての金(Au)をスパッタ法により保護膜13上に成膜し、キャビティ92の開口領域(肉薄部分15の基板11の厚み方向の投影領域)の外縁の所定距離(例えば、20μm)外側に赤外線反射膜80の外縁が位置するように、リフトオフ法を用いて赤外線反射膜80の不要部分を除去する。次に、キャビティ91の開口領域(肉薄部分14の基板11の厚み方向の投影領域)の外縁の所定距離(例えば、20μm)内側に赤外線吸収膜70の外縁が位置するように、キャビティ91の開口領域よりも小さい開口を有するシャドーマスクを用いてAu黒を保護膜13上に加熱蒸着し、赤外線吸収膜70を成膜する。最後に、基板11の第二の主面11B側にフォトリソグラフィによってエッチングマスクを形成した後、フッ化物系ガスを用いたD−RIE法等の反応性イオンエッチングによって、基板11を第二の主面11Bに対して垂直に深堀し、キャビティ91,92を開口する。D−RIE法とは、C48ガスを用いて反応抑止膜(フルオロカーボン系ポリマー)をキャビティ91,92の側壁に堆積させることにより、主としてFラジカルによる化学的なサイドエッチングを抑制するためのプラズマデポジション工程と、SF6ガスを用いてFラジカルによる基板11の化学的エッチングとFイオンによる反応抑止膜の物理的エッチングとにより、基板11を略垂直に異方性エッチングするためのプラズマエッチング工程とを交互に繰り返して基板11を深堀する方法である。 Next, as shown in FIG. 5, gold (Au) as the infrared reflecting film 80 is formed on the protective film 13 by sputtering, and the opening region of the cavity 92 (projection of the thin portion 15 in the thickness direction of the substrate 11). Unnecessary portions of the infrared reflecting film 80 are removed using a lift-off method so that the outer edge of the infrared reflecting film 80 is positioned outside a predetermined distance (for example, 20 μm) of the outer edge of the region. Next, the opening of the cavity 91 is arranged so that the outer edge of the infrared absorption film 70 is located inside a predetermined distance (for example, 20 μm) of the outer edge of the opening area of the cavity 91 (projection area of the thin portion 14 in the thickness direction of the substrate 11). Using a shadow mask having an opening smaller than the region, Au black is heated and evaporated on the protective film 13 to form an infrared absorption film 70. Finally, after an etching mask is formed on the second main surface 11B side of the substrate 11 by photolithography, the substrate 11 is made to be second main ion by reactive ion etching such as D-RIE method using fluoride gas. Deep digging perpendicular to the surface 11B, the cavities 91 and 92 are opened. The D-RIE method is mainly for suppressing chemical side etching caused by F radicals by depositing a reaction inhibiting film (fluorocarbon-based polymer) on the sidewalls of the cavities 91 and 92 using C 4 F 8 gas. Plasma etching for anisotropically etching the substrate 11 substantially vertically by a plasma deposition step and chemical etching of the substrate 11 with F radicals using SF 6 gas and physical etching of the reaction suppression film with F ions. This is a method of deepening the substrate 11 by repeating the steps alternately.

次に、実施例1,2,3と比較例1との比較結果について説明する。   Next, a comparison result between Examples 1, 2, and 3 and Comparative Example 1 will be described.

[実施例1]
図5に示された実施例1に関わる赤外線温度センサ100を以下の手順で製造した。まず、基板11として、(100)シリコン基板を用意し、その基板表面に絶縁膜12としての熱絶縁膜を0.5μm成膜した。次に、Pt/Tiをスパッタ法で絶縁膜12上に成膜し、ドライエッチングで所定の電極形状に加工することで、個別電極21,31及び共通電極50を形成した。次に、基板温度600℃、成膜圧力0.5Pa、O2/Ar流量比1%、RFパワー400Wのスパッタ条件でMnNiCo系酸化物を個別電極21,31及び共通電極50上に0.4μm程度堆積した。その後、焼成炉を用いてMnNiCo系酸化物膜に大気雰囲気で650℃1時間の熱処理を施し、塩化第二鉄水溶液を用いたウェットエッチングで所定形状に加工することで、目標抵抗値140kΩ(室温)の感熱膜22,32を形成した。次に、TEOS−CVD法により0.5μm程度の保護膜13を成膜し、出力端子電極51,52及び取り出し電極54としてのアルミニウム電極をEB蒸着法により1μm程度形成した。続いて、赤外線反射膜80としての金(Au)をスパッタ法により0.1μm程度成膜し、赤外線吸収膜70としてのAu黒を加熱蒸着法により5μm程度成膜した。最後に、D−RIE法により基板11を略垂直に深堀し、外部環境に関して熱伝導的に対称なキャビティ91,92を形成した。このようにして製造した赤外線温度センサ100にタングステンランプからの赤外線を照射し、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの抵抗変化を測定した。5.0V、1秒のパルス波を照射したところ、赤外線検知用感熱素子20の抵抗値は、140kΩから91.49kΩに変化した。この抵抗値変化から換算される温度変化は10.74℃であった。一方、温度補償用感熱素子30の抵抗値は、140kΩから134.25kΩに変化した。この抵抗値変化から換算される温度変化は1.33℃であった。また、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの90%応答の変化は、110msec,108msecであった。これらの抵抗値変化をフルブリッジ回路から電圧変化として出力することにより、90%応答110msec、出力電圧(出力端子電極51,52の間の不平衡電圧)471.5mVが得られた。
[Example 1]
The infrared temperature sensor 100 according to Example 1 shown in FIG. 5 was manufactured by the following procedure. First, a (100) silicon substrate was prepared as the substrate 11, and a thermal insulating film as an insulating film 12 was formed to a thickness of 0.5 μm on the substrate surface. Next, Pt / Ti was formed on the insulating film 12 by sputtering and processed into a predetermined electrode shape by dry etching, thereby forming the individual electrodes 21 and 31 and the common electrode 50. Next, 0.4 μm of MnNiCo-based oxide is deposited on the individual electrodes 21 and 31 and the common electrode 50 under sputtering conditions of a substrate temperature of 600 ° C., a deposition pressure of 0.5 Pa, an O 2 / Ar flow rate ratio of 1%, and an RF power of 400 W. Deposition to some extent. Thereafter, the MnNiCo-based oxide film is heat-treated at 650 ° C. for 1 hour in an air atmosphere using a baking furnace, and processed into a predetermined shape by wet etching using a ferric chloride aqueous solution, so that the target resistance value is 140 kΩ (room temperature ) Heat-sensitive films 22 and 32 were formed. Next, the protective film 13 having a thickness of about 0.5 μm was formed by TEOS-CVD, and the aluminum electrodes as the output terminal electrodes 51 and 52 and the extraction electrode 54 were formed by about 1 μm by the EB vapor deposition method. Subsequently, about 0.1 μm of gold (Au) as the infrared reflecting film 80 was formed by sputtering, and about 5 μm of Au black as the infrared absorbing film 70 was formed by heating vapor deposition. Finally, the substrate 11 was deepened substantially vertically by the D-RIE method to form cavities 91 and 92 that were thermally conductive with respect to the external environment. The infrared temperature sensor 100 manufactured as described above was irradiated with infrared rays from a tungsten lamp, and the respective resistance changes of the infrared detection thermal element 20 and the temperature compensation thermal element 30 were measured. When a pulse wave of 5.0 V for 1 second was irradiated, the resistance value of the thermal element 20 for infrared detection changed from 140 kΩ to 91.49 kΩ. The temperature change converted from this resistance value change was 10.74 ° C. On the other hand, the resistance value of the temperature compensating thermosensitive element 30 changed from 140 kΩ to 134.25 kΩ. The temperature change converted from this resistance value change was 1.33 ° C. The 90% response changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 were 110 msec and 108 msec, respectively. By outputting these resistance value changes as voltage changes from the full bridge circuit, a 90% response of 110 msec and an output voltage (unbalanced voltage between the output terminal electrodes 51 and 52) of 471.5 mV were obtained.

[実施例2]
実施例2に係わる赤外線温度センサは、赤外線吸収膜70を有しない点において実施例1に係わる赤外線温度センサ100と相違し、その余の点で共通する。実施例2に係わる赤外線温度センサにタングステンランプからの赤外線を照射し、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの抵抗変化を測定した。5.0V、1秒のパルス波を照射したところ、赤外線検知用感熱素子20の抵抗値は、140kΩから115.2kΩに変化した。この抵抗値変化から換算される温度変化は5.74℃であった。一方、温度補償用感熱素子30の抵抗値は、140kΩから134.25kΩに変化した。この抵抗値変化から換算される温度変化は1.33℃であった。また、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの90%応答の変化は、95msec,108msecであった。これらの抵抗値変化をフルブリッジ回路から電圧変化として出力することにより、90%応答108msec、出力電圧190.5mVが得られた。実施例1に係わる赤外線温度センサ100と比較すると、実施例2に係わる赤外線温度センサの感度は、低いことが理解できる。
[Example 2]
The infrared temperature sensor according to the second embodiment is different from the infrared temperature sensor 100 according to the first embodiment in that it does not have the infrared absorption film 70, and is common in other points. The infrared temperature sensor according to Example 2 was irradiated with infrared rays from a tungsten lamp, and the respective resistance changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 were measured. When the pulse wave of 5.0 V and 1 second was irradiated, the resistance value of the infrared detecting thermal element 20 changed from 140 kΩ to 115.2 kΩ. The temperature change converted from this resistance value change was 5.74 ° C. On the other hand, the resistance value of the temperature compensating thermosensitive element 30 changed from 140 kΩ to 134.25 kΩ. The temperature change converted from this resistance value change was 1.33 ° C. The 90% response changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 were 95 msec and 108 msec, respectively. By outputting these resistance value changes as voltage changes from the full bridge circuit, a 90% response of 108 msec and an output voltage of 190.5 mV were obtained. As compared with the infrared temperature sensor 100 according to the first embodiment, it can be understood that the sensitivity of the infrared temperature sensor according to the second embodiment is low.

[実施例3]
実施例3に係わる赤外線温度センサは、赤外線反射膜80を有しない点において実施例1に係わる赤外線温度センサ100と相違し、その余の点で共通する。実施例3に係わる赤外線温度センサにタングステンランプからの赤外線を照射し、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの抵抗変化を測定した。5.0V、1秒のパルス波を照射したところ、赤外線検知用感熱素子20の抵抗値は、140kΩから91.49kΩに変化した。この抵抗値変化から換算される温度変化は10.74℃であった。一方、温度補償用感熱素子30の抵抗値は、140kΩから115.2kΩに変化した。この抵抗値変化から換算される温度変化は5.74℃であった。また、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの90%応答の変化は、110msec,95msecであった。これらの抵抗値変化をフルブリッジ回路から電圧変化として出力することにより、90%応答110msec、出力電圧280.9mVが得られた。実施例1に係わる赤外線温度センサ100と比較すると、実施例3に係わる赤外線温度センサの感度は、低いことが理解できる。
[Example 3]
The infrared temperature sensor according to the third embodiment is different from the infrared temperature sensor 100 according to the first embodiment in that it does not have the infrared reflection film 80, and is common in the remaining points. The infrared temperature sensor according to Example 3 was irradiated with infrared rays from a tungsten lamp, and resistance changes of the infrared detection thermal element 20 and the temperature compensation thermal element 30 were measured. When a pulse wave of 5.0 V for 1 second was irradiated, the resistance value of the thermal element 20 for infrared detection changed from 140 kΩ to 91.49 kΩ. The temperature change converted from this resistance value change was 10.74 ° C. On the other hand, the resistance value of the temperature compensating thermosensitive element 30 was changed from 140 kΩ to 115.2 kΩ. The temperature change converted from this resistance value change was 5.74 ° C. The 90% response changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 were 110 msec and 95 msec, respectively. By outputting these resistance value changes as voltage changes from the full bridge circuit, a 90% response of 110 msec and an output voltage of 280.9 mV were obtained. Compared with the infrared temperature sensor 100 according to the first embodiment, it can be understood that the sensitivity of the infrared temperature sensor according to the third embodiment is low.

[比較例1]
比較例1に係わる赤外線温度センサは、キャビティ91,92を有しない点において実施例1に係わる赤外線温度センサ100と相違し、その余の点で共通する。実施例2、3と同様に比較例1に係わる赤外線温度センサにタングステンランプからの赤外線を照射し、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの抵抗変化をフルブリッジ回路から電圧変化として出力したが、出力電圧は7.5mVしか得られなかった。実施例1に係わる赤外線温度センサ100と比較すると、比較例1に係わる赤外線温度センサの感度は、極端に低い値を示し実用上使用できないことが理解できる。
[Comparative Example 1]
The infrared temperature sensor according to Comparative Example 1 is different from the infrared temperature sensor 100 according to Example 1 in that it does not have the cavities 91 and 92, and is common in the remaining points. In the same manner as in Examples 2 and 3, the infrared temperature sensor according to Comparative Example 1 is irradiated with infrared rays from a tungsten lamp, and the resistance changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 are applied to the voltage from the full bridge circuit. Although output as a change, the output voltage was only 7.5 mV. Compared with the infrared temperature sensor 100 according to Example 1, it can be understood that the sensitivity of the infrared temperature sensor according to Comparative Example 1 is extremely low and cannot be used practically.

[実施形態2]
図6は本実施形態に係わる赤外線温度センサ200の断面図である。赤外線温度センサ200は、赤外線反射膜80が取り出し電極54を介して共通電極50に接続する点において赤外線温度センサ100と相違し、その余の点において両者は共通する。赤外線温度センサ200にタングステンランプからの赤外線を照射し、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの抵抗変化を測定した。5.0V、1秒のパルス波を照射したところ、赤外線検知用感熱素子20の抵抗値は、140kΩから91.49kΩに変化した。この抵抗値変化から換算される温度変化は10.74℃であった。一方、温度補償用感熱素子30の抵抗値は、140kΩから136.12kΩに変化した。この抵抗値変化から換算される温度変化は0.83℃であった。また、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの90%応答の変化は、110msec,108msecであった。これらの抵抗値変化をフルブリッジ回路から電圧変化として出力することにより、90%応答110msec、出力電圧488mVが得られた。取り出し電極54を介して赤外線反射膜80を共通電極50に接続することにより、赤外線の熱量を赤外線反射膜80から取り出し電極54を介して外部に効率よく放熱させることができるため、温度補償用感熱素子30が赤外線から受ける影響を低減し、赤外線温度センサ200の感度特性を向上できる。なお、本実施形態は、図6に示すセンサ構造に限定されるものではなく、例えば、赤外線反射膜80を出力端子電極52に接続してもよく、或いは取り出し電極54を介して赤外線反射膜80を共通電極50に接続するとともに赤外線反射膜80を出力端子電極52に接続してもよい。このようなセンサ構造においても同様の作用効果を得ることができる。
[Embodiment 2]
FIG. 6 is a cross-sectional view of the infrared temperature sensor 200 according to the present embodiment. The infrared temperature sensor 200 is different from the infrared temperature sensor 100 in that the infrared reflective film 80 is connected to the common electrode 50 via the extraction electrode 54, and the other points are common. The infrared temperature sensor 200 was irradiated with infrared rays from a tungsten lamp, and the respective resistance changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 were measured. When a pulse wave of 5.0 V for 1 second was irradiated, the resistance value of the thermal element 20 for infrared detection changed from 140 kΩ to 91.49 kΩ. The temperature change converted from this resistance value change was 10.74 ° C. On the other hand, the resistance value of the temperature compensating thermosensitive element 30 was changed from 140 kΩ to 136.12 kΩ. The temperature change converted from this resistance value change was 0.83 degreeC. The 90% response changes of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 were 110 msec and 108 msec, respectively. By outputting these resistance value changes as voltage changes from the full bridge circuit, a 90% response of 110 msec and an output voltage of 488 mV were obtained. By connecting the infrared reflection film 80 to the common electrode 50 via the extraction electrode 54, the amount of infrared heat can be efficiently radiated from the infrared reflection film 80 to the outside via the extraction electrode 54. The influence which the element 30 receives from infrared rays can be reduced, and the sensitivity characteristic of the infrared temperature sensor 200 can be improved. The present embodiment is not limited to the sensor structure shown in FIG. 6. For example, the infrared reflection film 80 may be connected to the output terminal electrode 52, or the infrared reflection film 80 may be connected via the extraction electrode 54. May be connected to the common electrode 50 and the infrared reflective film 80 may be connected to the output terminal electrode 52. Similar effects can be obtained even in such a sensor structure.

[実施形態3]
図7は本実施形態に係わる赤外線温度センサ300の断面図である。赤外線温度センサ300は、赤外線検知用感熱素子20と取り出し電極54(又は共通電極50)との間、又は温度補償用感熱素子30と取り出し電極54(又は共通電極50)との間において第一の主面11A側に陥没する凹部13Aが保護膜13に形成されている点において赤外線温度センサ100と相違し、その余の点において両者は共通する。このように保護膜13に凹部13Aを形成することで、キャビティ91,92相互間の熱抵抗を増大させ、一方のキャビティからの熱伝導が他方のキャビティの温度に影響を与えないようにできる。キャビティ91,92相互間の熱遮蔽をより高めるためには、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれの外縁を取り囲むように閉曲線状に凹部13Aを形成するのが好ましい。
[Embodiment 3]
FIG. 7 is a cross-sectional view of the infrared temperature sensor 300 according to the present embodiment. The infrared temperature sensor 300 is a first sensor between the infrared detection thermal element 20 and the extraction electrode 54 (or the common electrode 50) or between the temperature compensation thermal element 30 and the extraction electrode 54 (or the common electrode 50). It differs from the infrared temperature sensor 100 in that a recess 13A that is depressed on the main surface 11A side is formed in the protective film 13, and the other points are common. By forming the recess 13A in the protective film 13 in this manner, the thermal resistance between the cavities 91 and 92 can be increased, and the heat conduction from one cavity can be prevented from affecting the temperature of the other cavity. In order to further enhance the heat shielding between the cavities 91 and 92, it is preferable to form the recess 13A in a closed curve so as to surround the outer edges of the infrared detecting thermal element 20 and the temperature compensating thermal element 30.

[実施形態4]
図8は本実施形態に係わる赤外線温度センサ400の断面図である。赤外線温度センサ400は、保護膜13を介して温度補償用感熱素子30の少なくとも一部を被覆する赤外線吸収膜71と、赤外線吸収膜71の少なくとも一部を被覆する赤外線反射膜81と、保護膜13を介して赤外線検知用感熱素子20の少なくとも一部を被覆する赤外線反射膜82と、赤外線反射膜82の少なくとも一部を被覆する赤外線吸収膜72とを有する点において赤外線温度センサ100と相違し、その余の点において両者は共通する。このようなデバイス構造によれば、赤外線吸収膜71及び赤外線反射膜81から成る積層構造の熱容量と、赤外線反射膜82及び赤外線吸収膜72から成る積層構造の熱容量とを略同一に調整できるため、赤外線検知用感熱素子20及び温度補償用感熱素子30のそれぞれが外部環境から受ける熱の影響を均一化できる。
[Embodiment 4]
FIG. 8 is a cross-sectional view of an infrared temperature sensor 400 according to this embodiment. The infrared temperature sensor 400 includes an infrared absorption film 71 that covers at least a part of the temperature-compensating thermosensitive element 30 via the protective film 13, an infrared reflection film 81 that covers at least a part of the infrared absorption film 71, and a protective film. 13 is different from the infrared temperature sensor 100 in that it includes an infrared reflection film 82 that covers at least a part of the infrared detecting thermal element 20 and an infrared absorption film 72 that covers at least a part of the infrared reflection film 82. The other points are the same. According to such a device structure, the heat capacity of the laminated structure composed of the infrared absorbing film 71 and the infrared reflecting film 81 and the heat capacity of the laminated structure composed of the infrared reflecting film 82 and the infrared absorbing film 72 can be adjusted substantially the same. Each of the infrared detecting thermal element 20 and the temperature compensating thermal element 30 can equalize the influence of heat received from the external environment.

[実施形態5]
上述の実施形態1乃至4のセンサ構造は、相互に組み合わせることも可能であり、本発明はそのような組み合わせを含む。
[Embodiment 5]
The sensor structures of Embodiments 1 to 4 described above can be combined with each other, and the present invention includes such combinations.

本発明に係わる赤外線温度センサは、熱源の温度を非接触測定する様々な用途に利用できる。   The infrared temperature sensor according to the present invention can be used in various applications for non-contact measurement of the temperature of a heat source.

100,200,300,400…赤外線温度センサ
11…基板
12…絶縁膜
13…保護膜
14,15…肉薄部分
16…最大肉厚部分
17…厚肉部分
20…赤外線検知用感熱素子
30…温度補償用感熱素子
41,42…固定抵抗素子
50…共通電極
51,52…出力端子電極
53…入力端子電極
70…赤外線吸収膜
80…赤外線反射膜
91,92…キャビティ
100, 200, 300, 400 ... Infrared temperature sensor 11 ... Substrate 12 ... Insulating film 13 ... Protective film 14, 15 ... Thin portion 16 ... Maximum thickness portion 17 ... Thick portion 20 ... Infrared detection thermal element 30 ... Temperature compensation Thermal element 41, 42 ... Fixed resistance element 50 ... Common electrode 51, 52 ... Output terminal electrode 53 ... Input terminal electrode 70 ... Infrared absorbing film 80 ... Infrared reflecting film 91, 92 ... Cavity

Claims (6)

熱源の温度を非接触測定する赤外線温度センサであって、
前記熱源から放射される赤外線の熱量を検知する赤外線検知用感熱素子と、
外部環境からの熱量を検知する温度補償用感熱素子と、
前記赤外線検知用感熱素子及び前記温度補償用感熱素子が配置される第一の主面及びその裏面である第二の主面を有する基板と、を備え、
前記赤外線検知用感熱素子及び前記温度補償用感熱素子は、前記基板の最大肉厚部分よりも肉薄な肉薄部分に配置され、
前記基板は、前記肉薄部分よりも厚肉な厚肉部分を前記赤外線検知用感熱素子と前記温度補償用感熱素子との間に有し、
前記赤外線検知用感熱素子及び前記温度補償用感熱素子が配置される前記肉薄部分と、前記肉薄部分に配置される前記赤外線検知用感熱素子及び前記温度補償用感熱素子が有する一対の感熱膜は、同一形状および同一面積であり、前記厚肉部分を間にはさんで対称に配置され、
前記赤外線検知用感熱素子及び前記温度補償用感熱素子の共通電極が前記赤外線検知用感熱素子と前記温度補償用感熱素子との間の前記厚肉部分上の前記第一の主面に形成され、
前記温度補償用感熱素子の少なくとも一部を被覆する赤外線反射膜を更に備え、
前記赤外線反射膜の前記基板の厚み方向の投影面積は、前記肉薄部分の前記基板の厚み方向の投影面積よりも大きい、赤外線温度センサ。
An infrared temperature sensor for non-contact measurement of the temperature of the heat source,
A thermosensitive element for detecting infrared rays for detecting the amount of infrared rays emitted from the heat source; and
A temperature-compensating thermal element that detects the amount of heat from the external environment;
A first main surface on which the infrared detecting thermal element and the temperature compensating thermal element are disposed and a substrate having a second main surface which is the back surface thereof,
The infrared detecting thermal element and the temperature compensating thermal element are arranged in a thin part thinner than the maximum thick part of the substrate,
The substrate has a thick part thicker than the thin part between the infrared detecting thermal element and the temperature compensating thermal element,
The thin part where the infrared detecting thermal element and the temperature compensating thermal element are arranged, and the pair of thermal films which the infrared detecting thermal element and the temperature compensating thermal element arranged in the thin part have, The same shape and the same area, arranged symmetrically with the thick part in between,
A common electrode of the infrared detecting thermal element and the temperature compensating thermal element is formed on the first main surface on the thick portion between the infrared detecting thermal element and the temperature compensating thermal element,
An infrared reflection film covering at least a part of the temperature-compensating thermosensitive element;
The infrared temperature sensor, wherein a projected area of the infrared reflecting film in the thickness direction of the substrate is larger than a projected area of the thin portion in the thickness direction of the substrate.
請求項に記載の赤外線温度センサであって、
前記赤外線検知用感熱素子及び前記温度補償用感熱素子を被覆する保護膜を更に備える、赤外線温度センサ。
The infrared temperature sensor according to claim 1 ,
An infrared temperature sensor, further comprising a protective film that covers the infrared detecting thermal element and the temperature compensating thermal element.
請求項1又は請求項2に記載の赤外線温度センサであって、
前記温度補償用感熱素子の少なくとも一部を被覆する第一の赤外線吸収膜と、
前記第一の赤外線吸収膜の少なくとも一部を被覆する第一の赤外線反射膜と、
前記赤外線検知用感熱素子の少なくとも一部を被覆する第二の赤外線反射膜と、
前記第二の赤外線反射膜の少なくとも一部を被覆する第二の赤外線吸収膜と、
を更に備える、赤外線温度センサ。
The infrared temperature sensor according to claim 1 or 2 ,
A first infrared absorbing film covering at least a part of the temperature-compensating thermosensitive element;
A first infrared reflecting film covering at least a part of the first infrared absorbing film;
A second infrared reflective film covering at least a part of the infrared detecting thermal element;
A second infrared absorbing film covering at least a part of the second infrared reflecting film;
An infrared temperature sensor further comprising:
請求項1又は請求項2に記載の赤外線温度センサであって、
前記赤外線検知用感熱素子の少なくとも一部を被覆する赤外線吸収膜を更に備え、
前記赤外線吸収膜の前記基板の厚み方向の投影面積は、前記肉薄部分の前記基板の厚み方向の投影面積よりも小さい、赤外線温度センサ。
The infrared temperature sensor according to claim 1 or 2 ,
An infrared absorbing film covering at least a part of the infrared detecting thermal element;
An infrared temperature sensor, wherein a projected area of the infrared absorbing film in the thickness direction of the substrate is smaller than a projected area of the thin portion in the thickness direction of the substrate.
請求項に記載の赤外線温度センサであって、
前記赤外線反射膜は、前記温度補償用感熱素子の出力端子電極、又は前記赤外線検知用感熱素子及び前記温度補償用感熱素子の共通電極のうち少なくとも何れか一方に接続している、赤外線温度センサ。
The infrared temperature sensor according to claim 2 ,
The infrared reflection film is connected to at least one of an output terminal electrode of the temperature compensation thermal element or a common electrode of the infrared detection thermal element and the temperature compensation thermal element.
請求項に記載の赤外線温度センサであって、
前記赤外線検知用感熱素子及び前記温度補償用感熱素子を被覆する保護膜を更に備え、 前記保護膜は、前記赤外線検知用感熱素子と前記共通電極との間、又は前記温度補償用感熱素子と前記共通電極との間において前記第一の主面側に陥没する凹部を有する、赤外線温度センサ。
The infrared temperature sensor according to claim 1 ,
Further comprising a protective film covering the infrared detecting thermal element and the temperature compensating thermal element, the protective film between the infrared detecting thermal element and the common electrode, or the temperature compensating thermal element and the An infrared temperature sensor having a concave portion that is depressed on the first main surface side with a common electrode.
JP2010081990A 2010-03-31 2010-03-31 Infrared temperature sensor Active JP5672742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081990A JP5672742B2 (en) 2010-03-31 2010-03-31 Infrared temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081990A JP5672742B2 (en) 2010-03-31 2010-03-31 Infrared temperature sensor

Publications (2)

Publication Number Publication Date
JP2011214927A JP2011214927A (en) 2011-10-27
JP5672742B2 true JP5672742B2 (en) 2015-02-18

Family

ID=44944836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081990A Active JP5672742B2 (en) 2010-03-31 2010-03-31 Infrared temperature sensor

Country Status (1)

Country Link
JP (1) JP5672742B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155998B2 (en) * 2013-09-13 2017-07-05 Tdk株式会社 Infrared temperature sensor
JP6743741B2 (en) * 2017-03-29 2020-08-19 三菱マテリアル株式会社 Infrared sensor
CN109827674B (en) * 2019-03-27 2021-07-06 电子科技大学 Integrated high-precision flexible temperature sensor and preparation method thereof
CN113155281B (en) * 2021-04-25 2023-04-11 核工业西南物理研究院 Metal resistance detector and nuclear fusion plasma physical research device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140008A (en) * 1993-11-15 1995-06-02 Matsushita Electric Works Ltd Radiation thermometer
JP3327668B2 (en) * 1994-03-24 2002-09-24 石塚電子株式会社 Infrared detector
JP3208320B2 (en) * 1996-03-28 2001-09-10 シャープ株式会社 Non-contact temperature sensor
JPH09292277A (en) * 1996-04-26 1997-11-11 Matsushita Electric Works Ltd Infrared detector
JPH1164111A (en) * 1997-08-26 1999-03-05 Matsushita Electric Works Ltd Infrared detecting element
JP2001304973A (en) * 2000-04-26 2001-10-31 Denso Corp Infrared image sensor
JP2002054995A (en) * 2000-08-10 2002-02-20 Sharp Corp Thermal type infrared ray detecting element, infrared ray image pickup device having this and method of manufacturing thermal type infrared. ray detecting element

Also Published As

Publication number Publication date
JP2011214927A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US5962854A (en) Infrared sensor and infrared detector
US5798684A (en) Thin-film temperature sensor
JP2011232295A (en) Gas sensor
JP5672742B2 (en) Infrared temperature sensor
JPH10274561A (en) Thermal infrared detecting element
JP5609919B2 (en) Micro heater element
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
CN114964512A (en) Micro-bolometer, manufacturing method and infrared detector
CN103852171B (en) A kind of non-brake method Long Wave Infrared Probe absorbent layer structure
JP6988585B2 (en) Sensor element and gas sensor equipped with it
JPH09329499A (en) Infrared sensor and infrared detector
JP6142618B2 (en) Infrared sensor
JP5803435B2 (en) Infrared temperature sensor
KR100769587B1 (en) Non-contact ir temperature sensor
KR20090096196A (en) Non-contact ir temperature sensor module and method for manufacturing the same
JP6340967B2 (en) Gas sensor
JP5669678B2 (en) Infrared sensor
JP5786320B2 (en) Thermistor, temperature sensor and gas sensor
JP3274881B2 (en) Infrared sensor and method of manufacturing the same
JP6155998B2 (en) Infrared temperature sensor
JP5633195B2 (en) Thermal detection device
KR101054468B1 (en) Micro infrared source and its manufacturing method
JPH08159866A (en) Infrared-ray sensor
KR100511268B1 (en) Method for manufacturing gas sensor
JPH07318420A (en) Infrared ray sensor and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5672742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150