JPS59214184A - Heater for defroster - Google Patents

Heater for defroster

Info

Publication number
JPS59214184A
JPS59214184A JP8725483A JP8725483A JPS59214184A JP S59214184 A JPS59214184 A JP S59214184A JP 8725483 A JP8725483 A JP 8725483A JP 8725483 A JP8725483 A JP 8725483A JP S59214184 A JPS59214184 A JP S59214184A
Authority
JP
Japan
Prior art keywords
film
heat generating
substrate
heat
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8725483A
Other languages
Japanese (ja)
Inventor
水木 伸也
隆志 田口
上野 洋祥樹
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP8725483A priority Critical patent/JPS59214184A/en
Publication of JPS59214184A publication Critical patent/JPS59214184A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は窓カラスやミラーに付着した霜あるいは露を加
熱除去するデフロスタ用ヒータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defroster heater that heats and removes frost or dew adhering to window glass or mirrors.

この種のデフロスタ用ヒータには基板たる窓ガラスやミ
ラーに所定の抵抗値を有する導電膜を形成して発熱膜と
なし、これに通電発熱せしめることにより基板を加熱し
て、基板に付着した霜や露を除去するものがある。
In this type of defroster heater, a conductive film with a predetermined resistance value is formed on a window glass or mirror as a substrate to form a heat-generating film, and by energizing this and generating heat, the board is heated and the frost that adheres to the board is removed. There are things that remove dirt and dew.

ところで、上記発熱膜は熱伝導によりこれと接する基板
を加熱する以外に熱線たる赤外線を放射してこれにより
基板を輻射加熱するが、基板に面しない側の発熱膜面か
ら放射される赤外線は基板の加熱にほとんど寄与するこ
となく放散してしまうという問題がある。
By the way, the heat-generating film described above not only heats the substrate in contact with it through thermal conduction, but also emits infrared rays, which are hot rays, and thereby radiantly heats the board. However, the infrared rays emitted from the heat-generating film surface on the side that does not face the substrate heat the substrate. The problem is that it dissipates without contributing much to the heating of the gas.

本発明は上記問題点に鑑み、発熱膜より発する赤外線の
放散を防止して基板に付着した霜等を効率的に加熱除去
し得るデフロスタ用ヒータを提供する目的を有するもの
である。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a defroster heater that can prevent the dissipation of infrared rays emitted from a heat generating film and efficiently heat and remove frost and the like adhering to a substrate.

すなわち、本発明のデフロスタ用ヒータは基板面に所定
の抵抗値を有する導電膜を形成するとともに、これを電
源に接続して抵抗発熱膜となし、該発熱膜には絶縁膜を
介してさらに導電膜を積層して、該導電膜を上記発熱膜
より発する赤外線を基板方向へ反射せしめるドルーデ反
射膜となしたものである。
That is, in the defroster heater of the present invention, a conductive film having a predetermined resistance value is formed on the substrate surface, and this is connected to a power source to form a resistance heating film. The conductive film is formed by laminating films to form a Drude reflective film that reflects infrared rays emitted from the heat generating film toward the substrate.

しかして、上記反射膜により発熱膜より発した赤外線は
放散することなく基板方向へ反射せしめられ、基板の加
熱が効率的に行なわれて基板に付着した霜等は速やかに
加熱除去される。
Therefore, the infrared rays emitted from the heat-generating film are reflected toward the substrate by the reflective film, without being dissipated, and the substrate is efficiently heated, so that frost and the like adhering to the substrate are quickly removed by heat.

ところで、上記ドルーデ反射について説明すると、自由
電子を有する導体あるいは半導体は固体プラズマ状態に
あり、自由電子の電子密度変化による所定のプラズマ振
動数を有する。そして、上記プラズマ振動数以下の電磁
波は上記導体等に入射することなく反射せしめられる。
By the way, to explain the above-mentioned Drude reflection, a conductor or semiconductor having free electrons is in a solid plasma state and has a predetermined plasma frequency due to a change in the electron density of free electrons. Electromagnetic waves having a frequency lower than the plasma frequency are reflected without being incident on the conductor or the like.

したがって、ドルーデ反射膜をなす導電膜の電気的状態
を適当に選ぶことにより赤外線を効果的に反射せしめる
ことが可能である。
Therefore, by appropriately selecting the electrical state of the conductive film constituting the Drude reflective film, it is possible to effectively reflect infrared rays.

以下、図示の実施例により本発明を説明する。The present invention will be explained below with reference to illustrated embodiments.

第1図は本発明を車両のリヤウインドウの霜取りに利用
した例である。図においてリヤウインドウのウインドウ
ガラス1の車室側面(図の上面)には一面に発熱膜2が
形成してある。発熱膜2は酸化インジュム(In,O3
)中に酸化スズ(SnO2)をドーピングしたいわゆる
ITO膜で、導電性を有し、そのシート抵抗は約10Ω
/1と低くしてある。そして、発熱膜2の端縁部には銅
、ニッケル、アルミニウム等よりなる電極3a、3bが
設けてあり、この電極を介して図示しない電源より電流
が供給されて発熱膜2は抵抗発熱する。
FIG. 1 shows an example in which the present invention is used to defrost the rear window of a vehicle. In the figure, a heat-generating film 2 is formed all over the side surface of the vehicle interior (top surface in the figure) of a window glass 1 of a rear window. The heat generating film 2 is made of indium oxide (In, O3
) is a so-called ITO film doped with tin oxide (SnO2), and has electrical conductivity, and its sheet resistance is approximately 10Ω.
It is set as low as /1. Electrodes 3a and 3b made of copper, nickel, aluminum, etc. are provided at the edge of the heat generating film 2, and current is supplied from a power source (not shown) through these electrodes, so that the heat generating film 2 generates resistance heat.

なお、■TO膜は可視光の通過が可能な透明膜である。Note that the TO film is a transparent film through which visible light can pass.

さて、上記発熱膜2には絶縁膜4を介して反射膜5が積
層してある。反射膜5は上記発熱膜2と同様ITO膜で
ある。反射膜5はドルーデ反射により赤外線を効率良く
反射し、かつ可視光は充分透過せしめるように、後述の
如くその電気的状態を考慮してある。
Now, a reflective film 5 is laminated on the heat generating film 2 with an insulating film 4 interposed therebetween. The reflective film 5 is an ITO film like the heat generating film 2 described above. As will be described later, the electrical state of the reflective film 5 has been taken into consideration so that it can efficiently reflect infrared rays by Drude reflection while sufficiently transmitting visible light.

絶縁膜4は発熱膜2と反射5とを電気的に絶縁するもの
で、本実施例ではガラス1よりも屈折率の小さいフッ化
マグネシウム<MqF,) 膜を使用している。このM
gF2膜も上記ITO膜同様透明膜である。
The insulating film 4 electrically insulates the heat generating film 2 and the reflection film 5, and in this embodiment, a magnesium fluoride film having a lower refractive index than the glass 1 is used. This M
The gF2 film is also a transparent film like the above-mentioned ITO film.

ここで、第2図は反射膜5のプラズマエネルギー1−二
〇を2.000Vどじ、緩和エネルギーEを0.05c
Vとして、MgF2層より入射する電磁波の分光反射率
を調べたものである。図より知られる如く、上記反射膜
5は波長1200nm以上の赤外領域の電磁波を極めて
効率良く反射せしめることかできる。そして、この場合
波長400nm〜700 nmの可視光は支障なく透過
する。
Here, in Fig. 2, the plasma energy of the reflective film 5 is 1-20 at 2.000V, and the relaxation energy E is 0.05c.
As V, the spectral reflectance of electromagnetic waves incident from the MgF2 layer was investigated. As can be seen from the figure, the reflective film 5 can very efficiently reflect electromagnetic waves in the infrared region with a wavelength of 1200 nm or more. In this case, visible light with a wavelength of 400 nm to 700 nm is transmitted without any problem.

上記各膜2、4、5 J3よび電極3a、3bはいずれ
も真空蒸着あるいはスパッタリング等により形成する。
Each of the films 2, 4, 5 J3 and the electrodes 3a, 3b are formed by vacuum evaporation, sputtering, or the like.

上記構造のデフロスタ用ヒータの作動を以下に説明する
The operation of the defroster heater having the above structure will be explained below.

電極3a、3bを介して通電された発熱膜2は発熱し、
その両面より赤外線を発する。ウィンドウガラス1に接
する面より発した赤外線はガラス1内で熱に変り、これ
を効率良く加熱する。
The heat-generating film 2 that is energized via the electrodes 3a and 3b generates heat,
It emits infrared rays from both sides. Infrared rays emitted from the surface in contact with the window glass 1 are converted into heat within the glass 1, and are efficiently heated.

一方、発熱膜2のガラス1に面していない車室側面より
発した赤外線は絶縁膜4を通過した後、第2図に示した
如く反用膜5によりその大部分はガラス1側へ反射せし
められる。反射された赤外線は絶縁膜4を構成するMg
F2膜に化して屈折率の大きいITO膜で構成された発
熱膜2により再び反射され、このようにしく絶縁膜4内
を反射進行する間に熱に変る。この熱は絶縁膜4に接す
る反射膜5および発熱膜2に伝導し、発熱膜2よりさら
にガラス1に伝導してこれを加熱する。
On the other hand, infrared rays emitted from the side of the vehicle interior that does not face the glass 1 of the heating film 2 pass through the insulating film 4, and then most of it is reflected toward the glass 1 side by the reaction film 5, as shown in FIG. I am forced to do it. The reflected infrared rays are absorbed by the Mg constituting the insulating film 4.
The light is turned into an F2 film and is reflected again by the heat generating film 2 made of an ITO film with a high refractive index, and is thus converted into heat while being reflected within the insulating film 4. This heat is conducted to the reflective film 5 and the heat generating film 2 that are in contact with the insulating film 4, and is further conducted from the heat generating film 2 to the glass 1 to heat it.

なお、本実施例において、絶縁膜4を構成するMgF2
膜の屈折率はガラス1の屈折率より小さいから、発熱膜
2と絶縁膜4の屈折率の差は発熱膜2とガラス1のそれ
よりも大きい。物質の界面における電磁波のエネルギー
反射率は界面を形成する両物質の屈折率の差が大きいほ
ど大きくなるから、赤外線のエネルギー反射率は発熱膜
2と絶縁膜4の界面でより大きく、したがって、発熱膜
2より発する赤外線はガラス1方向に多く発せられ、こ
れによってもガラス1の加熱が効率的に行なわれる 上記の如くガラス1が加熱される結果、ガラス1の外側
面(第1図の下面)に付着した霜は急速に融解除去され
る。
Note that in this example, MgF2 constituting the insulating film 4
Since the refractive index of the film is smaller than that of the glass 1, the difference in refractive index between the heat generating film 2 and the insulating film 4 is greater than that between the heat generating film 2 and the glass 1. The energy reflectance of electromagnetic waves at the interface of materials increases as the difference in refractive index between the two materials forming the interface increases, so the energy reflectance of infrared rays increases at the interface between the heat generating film 2 and the insulating film 4, and therefore the heat generation increases. Much of the infrared rays emitted from the film 2 are emitted in the direction of the glass 1, which also heats the glass 1 efficiently.As a result of the glass 1 being heated as described above, the outer surface of the glass 1 (lower surface in FIG. Frost that adheres to the surface is rapidly melted and removed.

第3図は本発明のヒータによるガラス1の0℃付近にお
ける温度上昇量を示すものである。図中線X、V.Zは
それぞれ発熱膜2への投入電力密度を0.13w/am
”. 0.19W/cm2、0.2gW7crnl2と
した時の温度上昇量を示す。本図によれば2分程度で温
度上昇量は10℃〜20℃に達し、カラス面に付着した
霜は急速に除去される。
FIG. 3 shows the amount of temperature rise of the glass 1 near 0° C. by the heater of the present invention. Lines X and V in the diagram. Z is the power density input to the heat generating film 2, which is 0.13w/am.
”. This shows the amount of temperature rise when 0.19W/cm2 and 0.2gW7crnl2 are used. According to this figure, the temperature rise reaches 10℃ to 20℃ in about 2 minutes, and the frost that adheres to the glass surface is rapidly removed. will be removed.

また、車室に面した反射膜5の表面は結露を生じて、く
もることがあるが、これは絶縁膜4より伝導される熱に
より急速に解消される。
Furthermore, although the surface of the reflective film 5 facing the vehicle interior sometimes forms dew condensation and becomes cloudy, this is quickly eliminated by the heat conducted from the insulating film 4.

本発明のヒータは上記効果に加えて、発熱体として透明
膜を使用し、これをガラス面全面に形成したから、発熱
抵抗体を罫線状にガラス面に形成した従来のヒータと異
なり、発熱体の間に位置する霜が融解せずに残ったり、
あるいは断線により断線個所以降の発熱体が用をなさな
くなるという不具合は無く、ガラス面に付着した霜は効
果的に除去される。
In addition to the above-mentioned effects, the heater of the present invention uses a transparent film as a heating element and is formed on the entire glass surface. The frost located between the two may remain unmelted,
Alternatively, there is no problem that the heating element after the disconnection point becomes useless due to the disconnection, and the frost adhering to the glass surface is effectively removed.

なお、絶縁膜4としてはMfF2以外にフッ化セリウム
<CeF3)の如く、透明で、かつガラス1よりも屈折
率の低いものが使用できる。
In addition to MfF2, the insulating film 4 can be made of a material that is transparent and has a refractive index lower than that of the glass 1, such as cerium fluoride <CeF3.

また、上記実施例ではヒータをウィンドウガラスの車室
側面に形成したが、車外側面としても良く、この場合に
も各膜の積層順序は上記実施例の如くガラス面に接する
側より発熱膜、絶縁膜、反射膜の順とする。
In addition, in the above embodiment, the heater was formed on the side surface of the vehicle interior of the window glass, but it may also be formed on the outside surface of the vehicle.In this case, the order in which each film is stacked is as in the above embodiment, starting with the heat-generating film and the insulating film from the side that is in contact with the glass surface. Film, then reflective film.

このように、本発明のデフロスタ用ヒータはウインドウ
ガラス面全面に透明導電躾よりなる発熱膜を形成すると
ともに、該発熱膜には透明絶縁膜を介して赤外線反射膜
をなす透明導電膜を積層することにより、可視光の透過
を確保し、かつ発熱膜より発する赤外線の放散を防止し
てガラスを効率的に加熱し、ガラス面に付着した霜や露
を速やかに解消せしめることができる。
As described above, the defroster heater of the present invention has a heat generating film made of a transparent conductive film formed on the entire surface of the window glass, and a transparent conductive film serving as an infrared reflective film is laminated on the heat generating film via a transparent insulating film. By doing so, it is possible to ensure the transmission of visible light and prevent the dissipation of infrared rays emitted from the heat generating film, thereby efficiently heating the glass and quickly eliminating frost and dew adhering to the glass surface.

上記実施例において、電極を設ける位置は第4図、第5
図に示す位置としても良い。
In the above embodiment, the positions where the electrodes are provided are as shown in Figures 4 and 5.
The position shown in the figure may also be used.

すなわち、第4図において、電極3a,3bは発熱膜2
を形成した後に、その上面に形成してある。これによれ
ば、電極3a、3bを発熱膜2より先に形成する上記実
施例の場合と異なり、発熱膜2形成時に雰囲気中に混入
せしめる酸素により電極3a、3bが酸化されることは
ない。
That is, in FIG. 4, the electrodes 3a and 3b are connected to the heat generating film 2.
, and then formed on the upper surface thereof. According to this, unlike the case of the above embodiment in which the electrodes 3a and 3b are formed before the heat generating film 2, the electrodes 3a and 3b are not oxidized by oxygen mixed into the atmosphere when the heat generating film 2 is formed.

第5図は発熱膜2の上下面にそれぞれ電極3a、3b、
3c、3dを形成したものである。これにより、電極3
a、3b、3c、3dと発熱膜2との接触面積が広くな
り、接触抵抗を小さく抑えることができる。
FIG. 5 shows electrodes 3a, 3b on the upper and lower surfaces of the heat generating film 2, respectively.
3c and 3d are formed. As a result, electrode 3
The contact area between a, 3b, 3c, and 3d and the heat generating film 2 is increased, and contact resistance can be kept small.

第6図は他の実施例を示すもので、本発明のヒータを車
両のフエンダミラー等の霜取りに使用した例である。す
なわち、ガラス基板1には一方の面に可視光反射率の非
常に高いアルミニウム、クロム、チタンあるいはこれら
の合金よりなる金属膜6が形成され、ミラーを構成して
いる。そして外光が入射する基板1の他面には上記実施
例と同様の透明な発熱膜2、絶縁膜4および反射膜5を
積層したヒータが形成してある。
FIG. 6 shows another embodiment, in which the heater of the present invention is used to defrost a fender mirror or the like of a vehicle. That is, a metal film 6 made of aluminum, chromium, titanium, or an alloy thereof, which has a very high visible light reflectance, is formed on one surface of the glass substrate 1 to constitute a mirror. On the other surface of the substrate 1 onto which external light is incident, a heater is formed by laminating a transparent heat generating film 2, an insulating film 4, and a reflective film 5 similar to those in the above embodiment.

反射膜5の表面(図の上面)に付着した霜は発熱膜2よ
りの熱伝導に加えて、放射された赤外線により加熱され
た絶縁膜4および基板1よりの熱電導により急速に融解
除去される。
Frost adhering to the surface of the reflective film 5 (top surface in the figure) is rapidly melted and removed by heat conduction from the heat generating film 2 as well as from the insulating film 4 and substrate 1 heated by the radiated infrared rays. Ru.

なお、外光の入射側を図の下側とすれば、上記基板1お
よび各膜2、4、5は透明である必要はなく、基板1と
しては樹脂あるいはセラミックが使用でき、発熱膜2お
よb反射膜5としてはクロムあるいはアルミニウム等の
金属膜か使用でき、さらに絶縁膜4としては窒化チタン
膜等が使用できる。
Note that if the incident side of external light is the lower side of the figure, the substrate 1 and the films 2, 4, and 5 do not need to be transparent; resin or ceramic can be used as the substrate 1, and the heat-generating film 2 and As the reflective film 5, a metal film such as chromium or aluminum can be used, and as the insulating film 4, a titanium nitride film or the like can be used.

以上の如く、本発明のデフロスタ用ヒ−タは基板表面に
所定の抵抗値を有する導電膜を形成して抵抗発熱膜とな
すとともに該発熱膜には絶縁膜を介してさらに導電膜を
積層し、該導電膜を上記発熱膜より発する赤外線を基板
方向へ反射せしめるドルーデ反射膜となして、赤外線の
放散を効果的に防止することにより、基板に付着した霜
あるいは露の速やかな加熱除去を可能としたものである
As described above, in the defroster heater of the present invention, a conductive film having a predetermined resistance value is formed on the surface of a substrate to form a resistance heating film, and a conductive film is further laminated on the heating film with an insulating film interposed therebetween. By using the conductive film as a Drude reflective film that reflects infrared rays emitted from the heat generating film toward the substrate, and effectively preventing the dissipation of infrared rays, frost or dew attached to the substrate can be quickly removed by heating. That is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示すもので、
第1図はヒータを形成した車両のリヤウインドウの断面
図、第2図は反射膜の分光反射率を示す図、第3図はヒ
ータを形成したガラスの温度上昇を示す図、第4図、第
5図は電極の形成位置を示す断面図、第6図は本発明の
他の実施例を示すもので、ヒータを形成したフェンダミ
ラーのミラー部断面図である。 1・・・・・・基板 2・・・・・・発熱膜 3a、3b・・・・・・電極 4・・・・・・絶緑膜 5・・・・・・反射膜 6・・・・・・金属膜 代理人弁埋十伊胚求馬
1 to 3 show an embodiment of the present invention,
Figure 1 is a cross-sectional view of a rear window of a vehicle on which a heater is formed, Figure 2 is a diagram showing the spectral reflectance of the reflective film, Figure 3 is a diagram showing the temperature rise of the glass on which the heater is formed, Figure 4, FIG. 5 is a cross-sectional view showing the formation positions of electrodes, and FIG. 6 is a cross-sectional view of a mirror portion of a fender mirror in which a heater is formed, showing another embodiment of the present invention. 1... Substrate 2... Heat generating films 3a, 3b... Electrodes 4... Evergreen film 5... Reflective film 6...・・・Metal membrane agent Ben-bu Jui Uegiuma

Claims (3)

【特許請求の範囲】[Claims] (1)基板面に所定の抵抗値を有する導電膜を形成する
とともに、これを電源に接続して抵抗発熱膜となし、該
発熱膜には絶縁膜を介してさらに導電膜を積層して、該
導電膜を上記発熱膜より発する赤外線を基板方向へ反射
せしめるドルーデ反射膜となしたことを特徴とするデフ
ロスタ用ヒータ。
(1) A conductive film having a predetermined resistance value is formed on the substrate surface, and this is connected to a power source to form a resistance heating film, and a conductive film is further laminated on the heating film via an insulating film, A heater for a defroster, characterized in that the conductive film is a Drude reflective film that reflects infrared rays emitted from the heat generating film toward the substrate.
(2)上記絶縁膜と発熱膜の屈折率の差を、基板と発熱
膜の屈折率の差より大きくした特許請求の範囲第1項記
載のデフロスタ用ヒータ。
(2) The defroster heater according to claim 1, wherein the difference in refractive index between the insulating film and the heat generating film is greater than the difference in refractive index between the substrate and the heat generating film.
(3)上記基板は窓ガラスないしミラーであり、上記発
熱膜、絶縁膜および反射膜を透明材で構成し、これらを
窓ガラスないしミラーの前面または裏面に積層した特許
請求の範囲第1項記載のデフロスタ用ヒータ。
(3) The substrate is a window glass or a mirror, and the heat generating film, the insulating film, and the reflective film are made of a transparent material, and these are laminated on the front or back surface of the window glass or mirror, according to claim 1. Defroster heater.
JP8725483A 1983-05-18 1983-05-18 Heater for defroster Pending JPS59214184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8725483A JPS59214184A (en) 1983-05-18 1983-05-18 Heater for defroster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8725483A JPS59214184A (en) 1983-05-18 1983-05-18 Heater for defroster

Publications (1)

Publication Number Publication Date
JPS59214184A true JPS59214184A (en) 1984-12-04

Family

ID=13909651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8725483A Pending JPS59214184A (en) 1983-05-18 1983-05-18 Heater for defroster

Country Status (1)

Country Link
JP (1) JPS59214184A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043104A1 (en) * 2010-09-30 2012-04-05 日本電気硝子株式会社 Planar heat generation body and heating device
JP2016044096A (en) * 2014-08-21 2016-04-04 大日本印刷株式会社 Glass laminate, vehicle and window
JP2018032631A (en) * 2011-11-15 2018-03-01 株式会社美鈴工業 Heater, and fixing device and drying device provided with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043104A1 (en) * 2010-09-30 2012-04-05 日本電気硝子株式会社 Planar heat generation body and heating device
JP2018032631A (en) * 2011-11-15 2018-03-01 株式会社美鈴工業 Heater, and fixing device and drying device provided with the same
JP2016044096A (en) * 2014-08-21 2016-04-04 大日本印刷株式会社 Glass laminate, vehicle and window

Similar Documents

Publication Publication Date Title
JPS597043A (en) Heat-wave shielding laminate
JPH0380100B2 (en)
CN113296078B (en) Front-mounted heating optical window of laser radar
JP2012533477A (en) Improved bus bar system for aircraft transparency
US8304072B2 (en) Display-on-demand mirror with optional defogging feature, and method of making the same
JPS63847B2 (en)
JPS59214184A (en) Heater for defroster
EP0741957B1 (en) Imaging device with anti-condensation provision
JP7004597B2 (en) Radiative cooling device
CN100374832C (en) Absorbed layer of room-temp. ferroelectric film infrared focal plane probe and preparation method
WO2012043104A1 (en) Planar heat generation body and heating device
JPH0233882A (en) Heater and manufacture thereof
JP3566749B2 (en) Conductive laminate
JP2008013420A (en) Heat ray reflective glass
JPH0423364A (en) Photoelectromotive force device usable as mirror
CN219678709U (en) High light transmittance heating structure
JP7090904B2 (en) Power generator
JPH11109422A (en) Electrochromic antidazzle mirror
JPH0373937B2 (en)
JP2018016859A (en) Reflector
JPS6217290B2 (en)
JPH0794263A (en) Laminated glass
JPS62165601A (en) Reflecting mirror for laser beam
JP3560638B2 (en) Reflective film
JPH02106077A (en) Photoelectric conversion device