JPH02106077A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH02106077A
JPH02106077A JP63258991A JP25899188A JPH02106077A JP H02106077 A JPH02106077 A JP H02106077A JP 63258991 A JP63258991 A JP 63258991A JP 25899188 A JP25899188 A JP 25899188A JP H02106077 A JPH02106077 A JP H02106077A
Authority
JP
Japan
Prior art keywords
electrode
scattering
photoelectric conversion
photo
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63258991A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
隆 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP63258991A priority Critical patent/JPH02106077A/en
Publication of JPH02106077A publication Critical patent/JPH02106077A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To augment the photo-scattering ratio and the utilization ratio of reflected ray by a method wherein the second electrode is composed of a transparent conductive material while a white colored sheet having photo-scattering surface is provided on the semiconductor layer side opposite to the second electrode through the intermediary of a translucent resin layer. CONSTITUTION:The second electrode 8 comprising a transparent conductive material is provided with a photo-scattering white colored sheet 10 on the semiconductor layers 3-5 opposite to the second electrode side through the intermediary of a translucent insulating resin layer 9. Since the second electrode 8 is composed of the transparent conductive material similar to the first electrode 2, any residual ray not to be completely absorbed into the semiconductor layers 3-5 transmitting the second electrode 8 and then the translucent insulating resin layer 9 is completely scattered on the photo- scattering surface of the white colored sheet 10 mostly to be reflected. The scattered and reflected ray enters into the semiconductor layers 3-4 mostly in the oblique direction through the inverse path to be absorbed into the semiconductor layers 3-5 through a long optical path contributing to the photoelectric conversion. Through these procedures, the photo-scattering ratio and the utilization ratio of reflected ray can be augmented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透光性基板上に透明電橋を介して形成される
非晶質または多結晶半導体層を光電変損層とする太陽電
池等の光電変換装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a solar cell in which a photoelectric loss layer is an amorphous or polycrystalline semiconductor layer formed on a transparent substrate via a transparent electric bridge. The present invention relates to photoelectric conversion devices such as the following.

〔従来の技術〕[Conventional technology]

光電変換装置として最もよく知られているのは非晶質シ
リコン(以下a−5IGHと記す)を用いた太陽電池で
ある。第2図はそのような太陽電池の単位素子を示し、
ガラス基板l上に熱CVD法等の手法で透明導電膜から
なる第一電極2を形成し、これを基体としてその上にp
形a −31:C!H膜3ドープしないa−SI:H膜
4およびn形a −Si:H膜5を順次プラズマCVD
等の手法により積層し、さらにその上部には、金属から
なる第二電極(裏面反射電極)6を蒸着やスパッタリン
グ等の手法により形成したものである。この太陽電池に
ガラス基板から入力した光7は非晶質半導体層 (主と
してa−5i:H膜4)で吸収され、残った長波長光は
第二電極6で反射、散乱され、反射光71として再び非
晶質半導体層に吸収される。これらの光によって生ずる
光電流は第一電極2の端部に備えられた端子21と第二
電極6から取出される。この場合光を散乱させて非晶質
半導体層での吸収率を高めるため、透明導電膜からなる
第一電極2の表面に凹凸を形成し、それに応じて第二電
−−n形a−51+H膜5との界面も凹凸となるように
しである。
The most well-known photoelectric conversion device is a solar cell using amorphous silicon (hereinafter referred to as a-5IGH). Figure 2 shows a unit element of such a solar cell,
A first electrode 2 made of a transparent conductive film is formed on a glass substrate l by a method such as a thermal CVD method, and a p
Form a-31:C! H film 3 undoped a-SI:H film 4 and n-type a-Si:H film 5 are sequentially plasma CVD
A second electrode (rear surface reflective electrode) 6 made of metal is formed on top of the layer by a method such as vapor deposition or sputtering. The light 7 input into this solar cell from the glass substrate is absorbed by the amorphous semiconductor layer (mainly the a-5i:H film 4), and the remaining long wavelength light is reflected and scattered by the second electrode 6, and the reflected light 71 It is absorbed into the amorphous semiconductor layer again. Photocurrent generated by these lights is taken out from the terminal 21 provided at the end of the first electrode 2 and the second electrode 6. In this case, in order to scatter light and increase the absorption rate in the amorphous semiconductor layer, irregularities are formed on the surface of the first electrode 2 made of a transparent conductive film, and the second electrode 2 is accordingly The interface with the film 5 is also made uneven.

第3図は、第2図に示したような太陽電池の単位素子を
複数個配列し、第二電極の端部を隣接素子の第一電極の
端部に接触させることによって各素子を直列接続した充
電変換装置である。この装置では裏面の第二電極を腐食
より守るために、絶縁性樹脂層11と耐水性フィルム1
2により封止されている。
Figure 3 shows a method in which a plurality of solar cell unit elements as shown in Figure 2 are arranged, and each element is connected in series by bringing the end of the second electrode into contact with the end of the first electrode of an adjacent element. This is a charging conversion device. In this device, an insulating resin layer 11 and a water-resistant film 1 are used to protect the second electrode on the back side from corrosion.
It is sealed by 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来装置においては、ガラス基板上に形成された透明導
電膜よりなる第−m掻の表面形状により入射した光7お
よび反射光71の散乱度が決定され、また裏面金属電極
と非晶質半導体層の反射率により反射光をいかに利用出
来るかが決定されていた。
In the conventional device, the degree of scattering of the incident light 7 and the reflected light 71 is determined by the surface shape of the -mth layer made of a transparent conductive film formed on a glass substrate, and the degree of scattering of the incident light 7 and the reflected light 71 is determined by the surface shape of the -mth layer made of a transparent conductive film formed on a glass substrate. How the reflected light can be used was determined by the reflectance of the light.

しかし、散乱度を向上させるため第一電極の表面凹凸を
大きくしすぎると、ピンホール等の欠陥が発生し、また
大面積にわたって均一なものを得ることが難しいという
問題があった。さらには、アルミニウム等の銀に比して
安価な金属を第二電極6に用いた場合は、その反射率は
40〜50%と低くなってしまうといった問題があった
However, if the surface irregularities of the first electrode are made too large in order to improve the degree of scattering, defects such as pinholes occur, and it is difficult to obtain a uniform surface over a large area. Furthermore, when a metal such as aluminum, which is cheaper than silver, is used for the second electrode 6, there is a problem that the reflectance thereof becomes as low as 40 to 50%.

本発明の!1lfiは、第一電極の表面の凹凸化および
非晶質半導体層と第二電極の界面の反射率に依存するこ
となく、第−電橋側から入射した光の散乱および反射に
よる利用率を高めた光電変換装置を提供することにある
The invention! 1lfi increases the utilization rate by scattering and reflecting light incident from the first electric bridge side, without depending on the unevenness of the surface of the first electrode or the reflectance of the interface between the amorphous semiconductor layer and the second electrode. An object of the present invention is to provide a photoelectric conversion device.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、透光性1&板上
に透明導電材料よりなる第一電極を介して形成された半
導体層を光電変換層とし、半導体層の反第一電極側に設
けられた第二電極と第−電極から充電変換出力を取出す
光電変換装置において、第二電極が透明導電材料よりな
り、その第二電極の反半導体層側に透光性絶縁樹脂層を
介して光散乱性表面を有する白色板を備えたものとする
In order to solve the above-mentioned problems, the present invention provides a semiconductor layer formed on a transparent substrate through a first electrode made of a transparent conductive material as a photoelectric conversion layer, and a side of the semiconductor layer opposite to the first electrode. In a photoelectric conversion device that extracts charge conversion output from a second electrode and a second electrode provided in A white plate with a light-scattering surface is provided.

〔作用〕[Effect]

第二電極が第一電極同様透明導電材料よりなるので、半
導体層で吸収しきれなかった光は第二電極を透過し、さ
らに透光性絶縁樹脂層を透過したのち、光散乱性表面に
おいて完全に散乱し、その大部分が反射する。散乱反射
光は逆の径路を通って大部分斜め方向から半導体層に入
射し、長い光学径路を通って半導体層に吸収され、光電
変換に寄与する。
Since the second electrode is made of a transparent conductive material like the first electrode, the light that cannot be completely absorbed by the semiconductor layer is transmitted through the second electrode, and then through the light-transmitting insulating resin layer, where it is completely absorbed by the light-scattering surface. , and most of it is reflected. Most of the scattered reflected light passes through the opposite path and enters the semiconductor layer from an oblique direction, passes through a long optical path, is absorbed by the semiconductor layer, and contributes to photoelectric conversion.

(実施例〕 第1図は本発明の一実施例を示し、第2図と共通の部分
には同一の符号が付されている。ガラス基板1の上には
Snow、  I T O、ZnOなどの透明導電膜に
よりなる第−電1階蒸着、熱CVD、スパッタリングな
どの手法で表面平坦に形成し、その上にp形a−5+C
:H膜3.ドープしないa −5IGH膜4およびn形
のa−3t:H膜5を順次プラズマCvD、光CVDあ
るいは熱CVD等の作成方法により積層する。これら非
晶質半導体層の第二電極8としてSnO,、I T O
4nOなどの透明導電膜を蒸着。
(Embodiment) Fig. 1 shows an embodiment of the present invention, and the same parts as in Fig. 2 are given the same reference numerals.On the glass substrate 1 are materials such as Snow, ITO, ZnO, etc. A transparent conductive film is formed to have a flat surface by methods such as first-stage vapor deposition, thermal CVD, and sputtering, and a p-type a-5+C film is formed on the transparent conductive film.
:H film 3. An undoped a-5 IGH film 4 and an n-type a-3t:H film 5 are sequentially laminated by a forming method such as plasma CVD, optical CVD, or thermal CVD. As the second electrode 8 of these amorphous semiconductor layers, SnO, ITO
Deposit a transparent conductive film such as 4nO.

スパッタリング、印刷等の手法で形成する。この透明な
第二電極の背面にエチレンビニールアセテ−)  IV
A) 、あるいはポリビニルブチラール(PVB)等の
透光性の封止用樹脂層9とふっ素糸白色樹脂、ポリプロ
ピレン、ポリエチレン、ポリ弗化ビニール、酸化マグネ
シウムなどからなる光散乱性表面をもつ白色板10を圧
着加熱することにより太陽電池の単位電池ができ上がる
Formed using methods such as sputtering and printing. Ethylene vinyl acetate (IV) is placed on the back of this transparent second electrode.
A) or a white plate 10 having a light-scattering surface made of a transparent sealing resin layer 9 such as polyvinyl butyral (PVB) and a fluorine thread white resin, polypropylene, polyethylene, polyvinyl fluoride, magnesium oxide, etc. By pressing and heating, a solar cell unit cell is completed.

このような太陽電池では、ガラス基板1より入射した光
7は第一電極2を直進して透過し、非晶質半導体層、特
に1iia−5t:H膜4で吸収され、吸収されずにこ
の非晶質半導体層を透過した光は封止用樹脂層9を透過
し、光散乱性白色板10の表面で反射する。白色板IO
をふっ素糸樹脂より作成したときは白色板表面での光の
散乱率は90%、炭素マグネシウム粉末、あるいはPT
F[!粉末を固めて作成した板の場合には光の散乱率は
100%となる。
In such a solar cell, light 7 incident from the glass substrate 1 passes straight through the first electrode 2, is absorbed by the amorphous semiconductor layer, especially the 1iia-5t:H film 4, and is not absorbed. The light that has passed through the amorphous semiconductor layer passes through the sealing resin layer 9 and is reflected on the surface of the light-scattering white plate 10. white board IO
When made from fluorine thread resin, the light scattering rate on the white board surface is 90%, and when made from carbon magnesium powder or PT.
F [! In the case of a plate made by solidifying powder, the light scattering rate is 100%.

これは、第2図に示した従来の太陽電池の表面凹凸の第
一電極2および第二電橋6表面での散乱率の和より大き
い。
This is larger than the sum of the scattering rates on the surfaces of the first electrode 2 and the second electric bridge 6 of the surface unevenness of the conventional solar cell shown in FIG.

第4図は第二電極としてM層を用いた太陽電池A、Ag
1liを用いた太陽電池Bと比較して本発明の実施例と
して第二電極の封止用樹脂9としてEVA、白色板10
としてふっ素糸樹脂板を用いた太陽電池C1および白色
板としてMgO板を用いた太陽電池りの短絡電流密度を
示す、第4図より明らかなように、通常用いられるug
面電極を有する太陽電池はもとより、高反射金属である
Agを裏面電極として用いた太陽電池の場合も、本発明
の実施例の太陽電池に短絡電流で及ばないことがわかる
Figure 4 shows solar cell A, Ag using M layer as the second electrode.
In comparison with solar cell B using 1li, as an example of the present invention, EVA is used as the sealing resin 9 of the second electrode, and a white plate 10 is used.
As is clear from Figure 4, which shows the short-circuit current density of the solar cell C1 using a fluorocarbon resin plate as the white plate and the solar cell C1 using an MgO plate as the white plate, the commonly used ug
It can be seen that not only solar cells having a surface electrode but also solar cells using Ag, which is a highly reflective metal, as a back electrode are not as short-circuit current as the solar cells of the examples of the present invention.

第5図は太陽電池の単位素子を直列接続した光電変換装
置を示す、この場合は、バターニングされた非晶質シリ
コン層の間隙より入射する光も裏面の白色板10で散乱
反射するため、発電に有効に利用することが可能となる
効果がある。同時に第3図に示した従来装置の絶縁性樹
脂層11と耐水性フィルム12と同様、封止用樹脂層9
と白色板10が第二電極8および非晶質シリコン半導体
層の腐食等に対する保護の効果も同時に有する。
FIG. 5 shows a photoelectric conversion device in which unit elements of solar cells are connected in series. In this case, since the light incident from the gap between the patterned amorphous silicon layers is also scattered and reflected by the white plate 10 on the back side, This has the effect of making it possible to use it effectively for power generation. At the same time, similar to the insulating resin layer 11 and water-resistant film 12 of the conventional device shown in FIG.
At the same time, the white plate 10 also has the effect of protecting the second electrode 8 and the amorphous silicon semiconductor layer from corrosion.

以上の実施例では、光電変換層として非晶質シリコンお
よび非晶質シリコンカーバイトを用いたが、非晶質シリ
コンゲルマニウムあるいは多結晶シリコン層を用いるこ
ともできる。また光散乱性白色板として樹脂中にM板を
埋め込んだものを用いると耐水性が向上し、特性の安定
化に有利である。
In the above embodiments, amorphous silicon and amorphous silicon carbide were used as the photoelectric conversion layer, but an amorphous silicon germanium or polycrystalline silicon layer may also be used. Further, if a light-scattering white plate in which an M plate is embedded in a resin is used, the water resistance is improved and it is advantageous for stabilizing the characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光電変換装置の半導体層の反光入射側
に設けられる第二電極も透光性とし、半導体層および第
二電極を透過した光も反射させるために透光性絶縁樹脂
層を介して光散乱性表面を有する白色板を設けたもので
、光の散乱率が100%に近いため光を金属第二電極で
反射させる場合、あるいは透明第一電極の表面に凹凸を
設けた場合に比して特性の向上が著しい。
According to the present invention, the second electrode provided on the anti-light incident side of the semiconductor layer of the photoelectric conversion device is also transparent, and the transparent insulating resin layer is provided to reflect the light transmitted through the semiconductor layer and the second electrode. A white plate with a light-scattering surface is provided through the electrode, and the light scattering rate is close to 100%, so the light is reflected by the metal second electrode, or the surface of the transparent first electrode is provided with irregularities. The characteristics are significantly improved compared to the previous one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の一実施例の太陽電池単位素子の断面図
、第2図は従来の太陽電池単位素子の断面図、第3図は
従来の直列接続太陽電池からなる光電変換装置の断面図
、第4図は本発明の実施例の太陽電池と比較例の太陽電
池の短絡電流密度を示すグラフ、第5図は本発明の一実
施例の太陽電池を直列接続した光電変換装置の断面図で
ある。 lニガラス基板、2:透明第一電極、3:p形a−3I
C:H膜、4 : l 1ta−5i:H膜、5=n形
a−5l:H膜、7:光、8:透明第二電極、9:封止
ノ 第3図 第1図 〃 第2図 第4図
FIG. 1 is a cross-sectional view of a solar cell unit element according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional solar cell unit element, and FIG. 3 is a cross-sectional view of a conventional photovoltaic conversion device consisting of series-connected solar cells. Figure 4 is a graph showing the short-circuit current density of a solar cell according to an example of the present invention and a solar cell according to a comparative example, and Figure 5 is a cross section of a photoelectric conversion device in which solar cells according to an example of the present invention are connected in series. It is a diagram. l glass substrate, 2: transparent first electrode, 3: p-type a-3I
C: H film, 4: l 1ta-5i: H film, 5 = n-type a-5l: H film, 7: light, 8: transparent second electrode, 9: sealing Fig. 3 Fig. 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)透光性基板上に透明導電材料よりなる第一電極を介
して形成された半導体層を光電変換層とし、半導体層の
反第一電極側に設けられた第二電極と第一電極から光電
変換出力を取出すものにおいて、第二電極が透明導電材
料よりなり、その第二電極の反半導体層側に透光性絶縁
樹脂層を介して光散乱性表面を有する白色板を備えたこ
とを特徴とする光電変換装置。
1) A semiconductor layer formed on a transparent substrate via a first electrode made of a transparent conductive material is used as a photoelectric conversion layer, and a second electrode and a first electrode provided on the opposite side of the semiconductor layer to the first electrode are used as a photoelectric conversion layer. In a device that extracts photoelectric conversion output, the second electrode is made of a transparent conductive material, and a white plate having a light scattering surface is provided on the side opposite to the semiconductor layer of the second electrode via a transparent insulating resin layer. Features of photoelectric conversion device.
JP63258991A 1988-10-14 1988-10-14 Photoelectric conversion device Pending JPH02106077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258991A JPH02106077A (en) 1988-10-14 1988-10-14 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258991A JPH02106077A (en) 1988-10-14 1988-10-14 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH02106077A true JPH02106077A (en) 1990-04-18

Family

ID=17327836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258991A Pending JPH02106077A (en) 1988-10-14 1988-10-14 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH02106077A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035112A1 (en) * 2007-09-12 2009-03-19 Mitsubishi Materials Corporation Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell
JP2009289946A (en) * 2008-05-29 2009-12-10 Kyocera Corp Thin-film solar cell module
JP2011507223A (en) * 2007-12-07 2011-03-03 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photovoltaic module with reflective adhesive film
WO2012073806A1 (en) * 2010-11-30 2012-06-07 ダイキン工業株式会社 Solar cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870581A (en) * 1981-10-21 1983-04-27 Sharp Corp Solar battery device
JPS59144178A (en) * 1983-02-07 1984-08-18 Semiconductor Energy Lab Co Ltd Photoelectric converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870581A (en) * 1981-10-21 1983-04-27 Sharp Corp Solar battery device
JPS59144178A (en) * 1983-02-07 1984-08-18 Semiconductor Energy Lab Co Ltd Photoelectric converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035112A1 (en) * 2007-09-12 2009-03-19 Mitsubishi Materials Corporation Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell
US8921688B2 (en) 2007-09-12 2014-12-30 Mitsubishi Materials Corporation Composite film for superstrate solar cell having conductive film and electroconductive reflective film formed by applying composition containing metal nanoparticles and comprising air pores of preset diameter in contact surface
JP2011507223A (en) * 2007-12-07 2011-03-03 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photovoltaic module with reflective adhesive film
JP2009289946A (en) * 2008-05-29 2009-12-10 Kyocera Corp Thin-film solar cell module
WO2012073806A1 (en) * 2010-11-30 2012-06-07 ダイキン工業株式会社 Solar cell system
JP2012134464A (en) * 2010-11-30 2012-07-12 Daikin Ind Ltd Solar cell system

Similar Documents

Publication Publication Date Title
JP3670835B2 (en) Solar cell module
US4663495A (en) Transparent photovoltaic module
JP2001148500A (en) Solar cell module
US20080223436A1 (en) Back reflector for use in photovoltaic device
JPS6257113B2 (en)
WO2011065571A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
JP3670834B2 (en) Solar cell module
JPH04372177A (en) Photovoltaic device
JPWO2006046397A1 (en) Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same
KR101169452B1 (en) Solar cell
JPH07321362A (en) Photovoltaic device
JPWO2012033205A1 (en) Solar cell and solar cell module
JPH02106077A (en) Photoelectric conversion device
JPH0752778B2 (en) Photovoltaic device
KR101306913B1 (en) Solar Cell
US5236516A (en) Photovoltaic apparatus
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
JPS6034080A (en) Optical amplifying photovoltaic element
JPH05206490A (en) Photoelectric conversion device
JPH0234975A (en) Photovoltaic element
JP3196155B2 (en) Photovoltaic device
JPH06232437A (en) Flexible thin film photoelectric conversion element
JPS59125669A (en) Solar battery
KR20140121915A (en) Bifacial solar cell module
JP2000196113A (en) Solar battery