WO2012043051A1 - 管状センサ、成分測定装置、及び管状センサの製造方法 - Google Patents

管状センサ、成分測定装置、及び管状センサの製造方法 Download PDF

Info

Publication number
WO2012043051A1
WO2012043051A1 PCT/JP2011/067324 JP2011067324W WO2012043051A1 WO 2012043051 A1 WO2012043051 A1 WO 2012043051A1 JP 2011067324 W JP2011067324 W JP 2011067324W WO 2012043051 A1 WO2012043051 A1 WO 2012043051A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
tubular body
electrodes
tubular sensor
plate
Prior art date
Application number
PCT/JP2011/067324
Other languages
English (en)
French (fr)
Inventor
秀雄 川本
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to EP11828612.9A priority Critical patent/EP2623031A4/en
Priority to CN201180047575.3A priority patent/CN103153188B/zh
Publication of WO2012043051A1 publication Critical patent/WO2012043051A1/ja
Priority to US13/846,524 priority patent/US9521972B2/en
Priority to HK13113100.5A priority patent/HK1185776A1/xx
Priority to US15/236,908 priority patent/US10188336B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • A61B5/1411Devices for taking blood samples by percutaneous method, e.g. by lancet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150389Hollow piercing elements, e.g. canulas, needles, for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150389Hollow piercing elements, e.g. canulas, needles, for piercing the skin
    • A61B5/150396Specific tip design, e.g. for improved penetration characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • A61B5/150511Details of construction of shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150847Communication to or from blood sampling device
    • A61B5/15087Communication to or from blood sampling device short range, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6848Needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150847Communication to or from blood sampling device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates to a tubular sensor for detecting a component in a liquid such as a body fluid, and a manufacturing method thereof. Moreover, it is related with the component measuring apparatus using this tubular sensor.
  • Patent Document 1 described below describes disposing two electrodes in a tubular puncture needle having a hole inside.
  • the electrodes in the puncture needle are connected to the control board through electric wires, and current values are measured.
  • blood sugar level can be measured with blood collected in the puncture needle, so the required blood volume can be kept low, and after puncturing the puncture needle into the patient's skin, it can be measured as it is, It is possible to reduce the burden on the patient.
  • Patent Document 3 a method for manufacturing a tubular body having holes in the axial direction such as an injection needle is proposed in Patent Document 3 below.
  • a metal thin plate is first punched into a shape in which a desired tubular body is developed.
  • deployment shape of the tubular body is shape
  • an object of the present invention is to provide a tubular sensor, a component measuring apparatus, and a tubular sensor manufacturing method that can accurately detect components and can be easily manufactured.
  • a tubular sensor includes a tubular body having a hole penetrating in the long axis direction, an insulating layer formed on the inner wall surface of the tubular body, and a tubular body on the insulating layer. And a plurality of electrodes that are formed in the major axis direction of the tubular body and are continuous from one end to the other end of the tubular body.
  • the electrode is formed on the inner wall surface of the tubular body via the insulating layer. Therefore, the electrodes can be fixed to the tubular body, and the distance between the electrodes can be easily maintained constant.
  • the component measuring apparatus of the present invention includes the above-described tubular sensor, a measuring unit that measures an electrical signal output from the tubular sensor, and a liquid sampled in the tubular sensor by calculating a detection signal measured by the measuring unit. It has a control part which calculates the component value in it.
  • the component measuring apparatus of the present invention is configured using the tubular sensor described above. Therefore, since the electrodes are fixed to the tubular body, the distance between the electrodes is kept constant. For this reason, the electrical signal according to the component of the liquid collected in the tubular sensor can be detected with high accuracy.
  • the manufacturing method of the tubular sensor of this invention has the step of forming an insulating layer on a thin metal plate, and the step of forming a plurality of striped electrodes on the insulating layer.
  • the method for manufacturing a tubular sensor of the present invention includes a step of cutting out a thin metal plate on which an insulating layer and an electrode are formed, and forming a plate-like body having a developed shape of a tubular body having a hole penetrating in the long axis direction. And pressing the plate-like body to form a tubular body.
  • a tubular body having an electrode fixed to the inner wall surface can be easily manufactured. Therefore, it is possible to omit the process of inserting and fixing the electrode inside the tubular body after the tubular body and the electrode are manufactured separately. In addition, since the electrodes can be formed fixed to the inner wall surface of the tubular body, the distance between the electrodes can be kept constant.
  • the tubular sensor of the present invention since the electrodes are fixed to the inner wall surface of the tubular body, the distance between the electrodes is kept constant. For this reason, it is possible to accurately detect the current. Moreover, according to the component measuring apparatus of this invention, the electrical signal according to the component of the liquid extract
  • the process of inserting and fixing the electrode into the tubular body after the tubular body and the electrode are manufactured separately can be omitted. For this reason, a manufacturing process can be simplified and cost reduction can be aimed at.
  • FIG. 1A is a side view of the tubular sensor according to the first embodiment of the present invention
  • FIG. 1B is an explanatory view of the tubular sensor according to the first embodiment of the present invention viewed from the long axis direction
  • FIG. 1C is a cross-sectional view of the tubular sensor according to the first embodiment of the present invention
  • FIG. 2 is an explanatory diagram showing a state in which the tubular sensor according to the first embodiment of the present invention is connected to an external device.
  • 3A is an explanatory view showing a tubular sensor in which the outer diameter and the inner diameter are changed stepwise
  • FIG. 3B is an explanatory view showing the tubular sensor in which the outer diameter and the inner diameter are continuously changed
  • FIG. 4A is a top view of a thin metal plate on which an insulating layer and an electrode are formed as seen from above, and FIG. 4B is a cross-sectional view thereof.
  • FIG. 5A is an explanatory view showing a plate-like body formed by cutting out a thin metal plate
  • FIG. 5B is an explanatory view showing a state in which the plate-like body is pressed using an upper die and a lower die
  • FIG. 5C is an explanatory view showing a state where the plate-like body is curved by press working
  • FIG. 5A is an explanatory view showing a plate-like body formed by cutting out a thin metal plate
  • FIG. 5B is an explanatory view showing a state in which the plate-like body is pressed using an upper die and a lower die
  • FIG. 5C is an explanatory view showing a state where the plate-like body is curved by press working
  • FIG. 5D shows a state in which the plate-like body is processed into a closed curved surface using another upper mold to form a tubular body. It is explanatory drawing shown.
  • FIG. 6 is a schematic cross-sectional view of an upper die and a lower die used for pressing a plate-like body.
  • FIG. 7A is an explanatory view showing electrodes arranged in a plate-like body molded into a tubular body having a constant diameter
  • FIG. 7B shows a plate-like body molded into tubular bodies having different diameters in stages. It is explanatory drawing which shows the electrode arranged in.
  • FIG. 8A is an explanatory view showing a case where one of the electrodes is located on the joint surface of the tubular body, and FIG.
  • FIG. 9A is an explanatory diagram showing a case where four electrodes are arranged in the tubular body
  • FIG. 9B is a portion of the four electrodes arranged in the tubular body that may be damaged. It is explanatory drawing which shows the state by which two electrodes are arrange
  • FIG. 10 is an explanatory diagram showing a component measuring apparatus according to the second embodiment of the present invention.
  • FIG. 1A is a side view of a tubular sensor 100 according to the first embodiment.
  • 1B is a cross-sectional view of the tubular sensor 100 in FIG. 1A
  • FIG. 1C is a cross-sectional view of the tubular sensor 100 in FIG. 1A.
  • the tubular sensor 100 includes a tubular body 1 having a hole in the major axis direction, an insulating layer 2 formed on the inner wall surface of the tubular body 1, and an electrode 3 formed on the insulating layer 2. .
  • the tubular body 1 is made of, for example, stainless steel such as SUS304 or SUS316, or a metal material such as aluminum, an aluminum alloy, or titanium. Further, other materials may be used as long as they have the same hardness, ductility, and plasticity as those materials.
  • the tubular body 1 has a hollow structure in which holes are penetrated in the major axis direction. Here, the outer diameter and the inner diameter are different at both ends.
  • the outer diameter and inner diameter of the tubular body 1 are not particularly limited.
  • the outer diameter of the tubular body 1 is, for example, 0.1 mm to 0.3 mm.
  • the length of the tubular body 1 is not particularly limited. However, when the use is a puncture needle, it is appropriately selected according to the required puncture depth and strength.
  • the blade surface 4 may be provided in the end.
  • the insulating layer 2 is formed on the inner wall surface of the tubular body 1.
  • the insulating layer 2 is made of, for example, an insulating plastic material.
  • the plastic material is selected from the group consisting of polyvinyl chloride, polycarbonate, polysulfone, nylon, polyurethane, polyester, acrylic resin, polystyrene, and the like.
  • non-conductive materials other than plastic such as cellulose may be used.
  • the insulating layer 2 can be formed by various methods such as adhesion, welding, coating, printing, and semiconductor process.
  • an electrode 3 extending in the long axis direction of the tubular body 1 and continuing from one end to the other end of the tubular body 1 is formed.
  • this electrode can be formed by printing or coating using Ag paste, carbon paste, or the like. Further, other materials may be used as long as they have conductivity as an electrode, and they may be formed by other semiconductor processes such as vapor deposition and sputtering.
  • FIG. 1B shows an example in which two electrodes 3 are disposed.
  • two electrodes 3 are used as a working electrode and a counter electrode, respectively.
  • three or more electrodes 3 are formed, two electrodes used as a working electrode and a counter electrode are selected from them.
  • the remaining electrodes can be used as the working electrode and the counter electrode, which is preferable. .
  • a reagent containing an enzyme such as glucose oxidase or glucose dehydrogenase is fixed by drying.
  • Glucose in the blood collected in the pores of the tubular body 1 is oxidized by these enzymes, and the current due to the transfer of electrons via the mediator is detected by the electrode 3.
  • the electrode 3 is connected to a terminal 6 of a connection portion 5 such as a measuring instrument for measuring this current.
  • the terminal 6 is made of conductive rubber such as zebra rubber. Further, as indicated by arrows A1 and A2, the electrode 3 and the terminal 6 of the tubular sensor 100 are made to correspond to each other and connected in alignment.
  • the terminal 6 may be made of other materials, and the connection mode such as other shapes is not particularly limited.
  • the tubular sensor 100 when measuring blood glucose level, the tubular sensor 100 is punctured into the patient's skin. Then, blood may be collected while the tubular sensor 100 is punctured into the skin, or blood that has exuded on the skin surface may be collected after the tubular sensor 100 is removed from the skin. The blood is collected in a hole in the tubular body 1 by, for example, capillary action.
  • the electrode 3 is fixed to the inner wall surface of the tubular body 1 having holes in the long axis direction. For this reason, it becomes easy to keep the inter-electrode distance between the working electrode and the counter electrode constant, and the measurement accuracy can be improved.
  • the electrode 3 can be an electrode formed by a semiconductor process, for example.
  • the tubular sensor 100 can be manufactured collectively as described later. Therefore, after forming the tubular body and the electrode separately, there is no need to insert or adhere the electrode into the pores of the tubular body. Thereby, a process can be simplified and productivity can be improved.
  • the tubular sensor 100 when the tubular sensor 100 is provided with the blade surface 4, blood can be collected as it is after the tubular sensor 100 is punctured into the patient's skin, and blood glucose level and the like can be measured. For this reason, since the amount of work can be reduced, it is possible to reduce the burden on the patient. Moreover, in this Embodiment, since the electrode 3 is arrange
  • the outer diameter of the tubular body 1 is different at both ends.
  • the outer diameter may change in three steps, or the diameter may change continuously as shown in FIG. 3B.
  • the outer diameter may be constant.
  • the cross-sectional shape of the tubular body 1 is not limited to a perfect circle, and may be a polygon such as a quadrangle or a hexagon, or may be an ellipse.
  • FIG. 4A is a top view showing a state in which the insulating layer 2 and the electrode 3 are formed on the metal thin plate 8
  • FIG. 4B is a cross-sectional view taken along the line XX ′ of FIG. 4A.
  • the thin metal plate 8 is made of, for example, stainless steel such as SUS304 or SUS316, or a metal material such as aluminum, aluminum alloy, titanium, or titanium. Further, other materials may be used as long as they have the same hardness, ductility, and plasticity as those materials.
  • the insulating layer 2 is formed on the thin metal plate 8.
  • the insulating layer 2 is made of, for example, an insulating plastic material.
  • the plastic material is selected from the group consisting of polyvinyl chloride, polycarbonate, polysulfone, nylon, polyurethane, polyester, acrylic resin, polystyrene, and the like.
  • non-conductive materials other than plastic such as cellulose may be used.
  • the insulating layer 2 can be formed by a coating method such as spin coating or a printing method such as screen printing.
  • the electrode 3 is then formed in a stripe shape, for example.
  • the electrode 3 is made of, for example, Ag or carbon. Further, other metals, alloys, and conductive organic materials may be used as long as they have ductility and plasticity that can withstand subsequent pressing.
  • the electrode 3 can be formed by a printing method using a solution containing Ag paste, carbon paste, or other conductive material.
  • the electrode 3 may be formed by patterning by etching, lift-off, etc. after forming a conductive film by a method such as sputtering, vapor deposition, or plating. Good.
  • the electrode 3 is formed in advance by a semiconductor process in the manufacturing process. Therefore, it is not necessary to insert and bond the electrode into the puncture needle after the puncture needle and the electrode are separately manufactured as in the prior art, and therefore, it is possible to manufacture them collectively in a series of processes.
  • FIG. 5A shows a state after cutting.
  • a plate-like body 11 having a shape in which a desired tubular body 1 is developed is formed. Further, the plate-like body 11 is formed in a state where it is connected to the metal thin plate of the frame portion 14 left around by the connecting portions 12 and 13. Moreover, the connection parts 12 and 13 are provided in the side used as the one end and the other end of the long-axis direction of a tubular body, when the plate-shaped body 11 is shape
  • the plate-like body 11 is bent and gradually rounded.
  • a convex mold is used for the upper mold 15 disposed above the plate-shaped body 11, and a concave mold is used for the lower mold 16 disposed below the plate-shaped body 11.
  • FIG. 6 shows a cross-sectional view of the upper die 15 and the lower die 16.
  • the lower mold 16 has a shape with a step as indicated by an arrow A3.
  • the end portion on the side having a smaller diameter is lifted with respect to the frame portion 14, and processing is performed while being displaced upward.
  • shaft of a tubular body and the frame part 14 can be maintained in parallel.
  • the central axis of the tubular body is located above the thin metal plate surface of the frame portion 14.
  • the plate-like body 11 is bent into a U-shape as shown in FIG. 5C by gradually repeating the press work.
  • the upper mold 15 and the lower mold 16 may be gradually bent by changing the size, or the same mold may be bent.
  • the bending of the plate-like body 11 proceeds to the state of FIG. 5C, as shown in FIG. 5D, this time, pressing is performed using the concave upper mold 18, and the plate-like body 11 is further bent to be processed into a closed curved surface. Thereby, the tubular body 1 is formed.
  • the seam 19 in the tubular body 1 can be made liquid-tight by processing only by pressing, the tubular body 1 is separated from the frame portion 14 by cutting the connecting portions 12 and 13. Further, the seam 19 of the plate-like body 11 may be joined in a liquid-tight manner by an adhesive or welding.
  • the tubular body 1 is made of metal and the outer diameter is very small, it is preferable to perform joining by welding.
  • the welding method is not particularly limited, for example, welding using a carbon dioxide laser, a YAG laser, an excimer laser, or the like can be performed.
  • the tubular sensor 100 By separating the tubular body 1 from the frame portion 14, the tubular sensor 100 (see FIG. 1) in the present embodiment is almost completed.
  • the blade surface 4 (see FIG. 1) is formed, for example, by cutting, grinding, or polishing the tip of the tubular body 1.
  • a reagent containing an oxidoreductase is applied on the electrode 3 before cutting out the plate-like body 11.
  • the reagent may be attached to the electrode 3 by immersing the tip of the tubular body 1 in the reagent solution.
  • the electrodes 3 may be arranged and cut out so that three electrodes are included in the plate-like body.
  • the cutout is performed so that the three electrodes 3 are included in the developed plate-like body indicated by the dotted line 20 in FIG. 7A. Good.
  • the cutout is made so that three electrodes are included in the expanded plate-like body shown by the dotted line 21 in FIG. 7B. Just do it.
  • the plate-like body shown by the dotted line 21 in FIG. 7B three electrodes are arranged at the end on the side where the diameter is reduced after pressing, whereas five electrodes are arranged at the end on the large diameter side. It will be.
  • these electrodes can also be used for blood glucose level measurement. .
  • the other electrode is used as a working electrode or a counter electrode. It is possible to use.
  • three electrodes 3d, 3e, and 3f are formed on the inner wall surface of the tubular body 1 via the insulating layer 2.
  • the electrode 3d disposed in the vicinity of the joint surface 22 by press working or welding may be damaged by heat during welding.
  • the current can be reliably measured by using the electrode 3e and the electrode 3f as the working electrode and the counter electrode.
  • the electrode 3 h is formed at a position facing the bonding surface 22.
  • the electrode formed at this position may be damaged by being pressed from the upper die 15 (see FIG. 5B) during press working. Therefore, in this case, it is possible to avoid an error in the measured current value by using the electrodes 3g and 3k as the working electrode and the counter electrode.
  • FIG. 9 shows a case where four electrodes are arranged in the tubular body 1 with an insulating layer 2 interposed therebetween.
  • 9A four electrodes 3l, 3m, 3n, and 3p are arranged in the tubular body 1.
  • the positions where these electrodes are disposed deviate from the positions facing the bonding surface 22 on the bonding surface 22 of the tubular body 1 and the inner wall surface of the tubular body 1. Therefore, in this case, since none of the electrodes 3l, 3m, 3n, and 3p is damaged, two arbitrary electrodes may be selected and used as the working electrode and the counter electrode.
  • the electrode 3t is located near the joint surface 22 of the tubular body 1, and the electrode 3r is the inner part of the tubular body 1. It is located opposite to the joint surface 22 on the wall surface.
  • the electrode 3t may be damaged during welding of the joint surface 22, and the electrode 3r may be damaged by pressing during press working. Therefore, in this case, the current can be reliably measured by selecting the electrodes 3q and 3s and using them as the working electrode and the counter electrode.
  • the electrodes are arranged at regular intervals as shown in FIG. 7, even if the plate-like body is cut out randomly without positioning, a certain number of electrodes are always left on the plate-like body. It is possible. Therefore, it is preferable that the distance between the electrodes is determined and formed at equal intervals so that three or more electrodes remain in the plate-like body. By doing this, by cutting out the plate-like body at random in the direction perpendicular to the long axis, the electrode is disposed near the joint surface of the tubular body or at the place where the pressure is applied during press processing, and damaged. However, the remaining electrode can be used as a working electrode or a counter electrode. That is, since it is possible to omit the process of positioning at the time of clipping, productivity can be improved and manufacturing cost can be reduced.
  • FIG. 10 is a schematic configuration diagram showing the configuration of the component measuring apparatus 200 according to the second embodiment.
  • the component measuring apparatus 200 according to the present embodiment collects blood, for example, and generates a blood collection chip 30 that generates an electrical signal according to the amount of glucose in the collected blood, and a measurement unit 60 that measures the electrical signal generated by the blood collection chip 30. Is provided.
  • the component measurement apparatus 200 according to the present embodiment calculates a detection signal measured by the measurement unit 60 and obtains a blood glucose level of the collected blood, and displays the blood glucose level calculated by the control unit 70 A display unit 80 is also provided.
  • the blood collection chip 30 includes a puncture needle unit 40 and a housing 50 that holds the puncture needle unit 40.
  • the housing 50 is provided with a hole 51 penetrating in the long axis direction, and the puncture needle unit 40 is held in the hole.
  • the puncture needle unit 40 includes a tubular sensor 100 disposed at the tip thereof, a hub 41 that holds the tubular sensor 100, a gripped portion 42 that is connected and fixed to the rear stage of the hub 41, and a pair of wires 45.
  • This tubular sensor 100 is the same as that shown in the first embodiment (see FIG. 1), and the inner diameter of its tip is made small enough to allow blood to be introduced into the tubular sensor 100 by capillary action. Yes. Further, the tubular sensor 100 has a rear end portion held in the hub 41. In addition, a gripped portion 42 is connected and fixed to the rear stage of the hub 41, and the tubular sensor 100 and the gripped portion 42 are in contact with each other in a hole in the hub 41. Further, the air holes in the tubular sensor 100 are communicated rearward through a vent hole 42a and a center hole 42b provided in the gripped portion 42.
  • the gripped portion 42 is gripped by the grip portion 43.
  • the urging bar 44 disposed in the gripping portion 43 urges the puncture needle unit 40 via the gripping portion 43 by urging means (not shown). Thereby, the blade surface of the tubular sensor 100 is taken in and out of the housing 50.
  • the electrode in the tubular sensor 100 is connected to the wiring 45.
  • the wiring 45 extends on the outer surface of the gripped portion 42.
  • a pair of terminal wires 46 that are in contact with the wiring 45 are provided on the inner surface of the grip portion 43 that grips the gripped portion 42.
  • the terminal wire 46 is connected to a measuring unit 60 that measures a signal from the tubular sensor 100.
  • the measuring unit 60 changes the voltage from the power source 63, the voltage from the power source 63, applies the changed voltage to the electrode of the tubular sensor 100, and the component amount in the liquid collected in the tubular sensor 100.
  • a current measuring unit 62 for measuring the current generated accordingly.
  • the current measurement unit 62 measures the change in the current value and outputs a detection signal to the control unit 70.
  • the control unit 70 calculates a blood sugar level by performing arithmetic processing while performing correction calculation as necessary based on the input detection signal.
  • the calculated blood sugar level is output and displayed by the display unit 80, for example.
  • the tubular sensor 100 shown in the first embodiment is used.
  • the distance between the electrodes is reliably maintained constant. For this reason, for example, a blood glucose level can be measured with high accuracy.
  • the tubular sensor 100 When measuring the blood glucose level of a patient, first, the tubular sensor 100 is used to puncture the patient's skin instantaneously. Next, the blood glucose level can be measured by using the tubular sensor 100 as it is and collecting blood into the tubular sensor 100 from the minute blood clot 90 generated in the air hole 51. That is, since the blood glucose level can be measured with a very simplified operation, the burden on the patient can be reduced. Further, since the blood glucose level can be measured only with the blood collected in the tubular sensor 100, the amount of blood necessary for the measurement can be reduced to a small amount.
  • the tubular body 1 having different diameters at one end and the other end when used, blood collected from the small-diameter portion side is difficult to enter the large-diameter portion side due to capillary action. The amount can be further suppressed.
  • the insulating layer 2 formed on the inner wall surface of the tubular sensor 100 is hydrophobic because it is made of a plastic material.
  • the reagent is hydrophilic, blood is collected only in the region where the reagent is applied. Therefore, for example, the measurement can be performed only with the blood collected in the small-diameter portion to which the reagent is applied, and the amount of collected blood can be suppressed more reliably.
  • the tubular sensor the component measuring apparatus, and the tubular sensor manufacturing method according to the present invention have been described above.
  • the present invention is not limited to the above-described embodiment, and includes various conceivable forms without departing from the gist of the present invention described in the claims.
  • the blood sugar level is measured, but it can also be used as a sensor for measuring the sugar content of fruits and vegetables, or as a sensor for measuring chemical components such as rivers and industrial wastewater. is there.
  • SYMBOLS 1 ... Tubular body, 2 ... Insulating layer, 3, 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3k, 3l, 3m, 3m, 3p, 3q, 3r, 3s, 3t. ..Electrode, 4... Blade surface, 5 .. connection portion, 6, 46... Terminal, 8... Thin metal plate, 9, 10, 20, 21. 12, 13 ... connecting part, 14 ... frame part, 15, 18 ... upper mold, 16 ... lower mold, 19 ... seam, 22 ... seam, 30 ... ⁇ Blood sampling chip, 40... Puncture needle unit, 41... Hub, 42 .. gripped portion, 42 a... Vent hole, 42 b.
  • Energizing bar 45 ... wiring, 46 ... terminal wire, 50 ... housing, 51 ... hole, 60 ... measuring unit, 61 ... voltage changing circuit, 62 ... Flow measuring unit, 63 ... power supply, 70 ... controller, 80 ... display unit, 90 ... clot, 100 ... tubular sensor, 200 ... component measuring device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 精度良く成分検出を行うことができ、簡易に製造可能な管状センサ、成分測定装置、管状センサの製造方法を提供することを目的とする。このために、本発明では、長軸方向に貫通する空孔を有する管状体と、管状体の内壁面に形成された絶縁層と、絶縁層上に、管状体の長軸方向に形成され、かつ前記管状体の一端から他端まで連続する複数の電極と、を含んで管状センサを構成する。また、この管状センサを用いて成分測定装置を構成する。また、この管状センサは、金属薄板上に絶縁層を形成するステップと、絶縁層上に、ストライプ状の複数の電極を形成するステップと、絶縁層及び電極が形成された金属薄板を切り抜き、長軸方向に貫通する空孔を有する管状体の展開形状をなした板状体を、金属薄板と板状体が部分的に接続した状態で形成するステップと、板状体をプレス加工し、管状体を形成するステップと、によって製造される。

Description

管状センサ、成分測定装置、及び管状センサの製造方法
 本発明は、体液等の液体内の成分を検出する管状センサ、及びこの製造方法に関する。また、この管状センサを用いた成分測定装置に関する。
 従来より、体液中の種々の成分を測定するために、体液中の特定成分と反応する特異酵素物を用いて測定を行う方法が採用されている。特に、血糖値の測定は、患者の状態をモニターするために重要であり、日常の血糖値の変動を患者自身がモニターする自己血糖測定が推奨されている。
 これらの測定においては、例えば、患者が、穿刺針を備えた穿刺装置を用いて指先等の皮膚を穿刺した後、穿刺部位周辺を指等で圧迫して血液を搾り出し、搾り出した血液を、測定装置に装着した使い捨てのセンサに取り込ませる作業が必要である。このため、作業性に問題があった。
 こうした作業の煩雑さを軽減するために、近年では、センサと穿刺針を一体化したものが提案されてきている。
 例えば、下記特許文献1では、内部に空孔を有する管状の穿刺針内に、2個の電極を配設することが記載されている。この穿刺針内の電極は、電線を通じて制御基板に接続され、電流値の計測が行われる。
 この方法では、穿刺針内に採取した血液によって血糖値の計測ができるので、必要とする血液量を低く抑えることができ、また、穿刺針を患者の皮膚に穿刺した後、そのまま計測できるので、患者の負担を軽減することが可能である。
 また、下記特許文献2には、微小注射針に接続したキャピラリ管内に、酸素固定作用電極と対電極と参照電極とを配置することが記載されている。この方法は、毛細管現象により血液が微小注射針を介してキャピラリ管内に誘導され、キャピラリ管内のこれら3電極によって酸化電流を計測するものである。
 一方、例えば注射針のような軸方向に空孔を有する管状体を製造する方法が下記特許文献3に提案されている。下記特許文献3に記載の方法では、まず金属製の薄板を、所望とする管状体を展開した形状に打ち抜く。そして、管状体の展開形状をした薄板をプレス加工によって序々に丸めていくことにより、筒状に成型するものである。
特開2007-54407号公報 特開平9-94231号公報 特許3943390号公報
 ところが、上記特許文献1に記載の手法では、穿刺針と電極を別々に製造した後、電極を穿刺針内部の微小空間に固定する必要があり、固定精度や生産性に問題があった。
 また、酵素反応で生じた電流を精度良く検出するためには、二つの電極間距離が一定とされることが望ましい。しかし、上述のように電極の固定精度にムラがあると、電極間距離にばらつきが生じるため高精度な成分検出を行うことができない。
 また、上記特許文献2に記載の手法においても、細棒状に形成した作用電極と対電極と参照電極を、キャピラリ管内に挿入する作業が必要となる。これら3つの電極は、キャピラリ管内にて中空に固定されているため、高い位置精度で配置することは困難である。したがって、電極間距離にばらつきが生じやすく、成分の検出精度に影響を及ぼしかねない。
 また、穿刺針とキャピラリ管という2個の部材を必要とし、これらを接続する工程も必要となるので、製造コストも高くなる。
 本発明は、上記課題に鑑み、精度良く成分検出を行うことができ、簡易に製造可能な管状センサ、成分測定装置、管状センサの製造方法を提供することを目的とする。
 上記課題を解決するために、本発明による管状センサは、長軸方向に貫通する空孔を有する管状体と、管状体の内壁面に形成された絶縁層と、この絶縁層上に、管状体の長軸方向に形成され、かつ管状体の一端から他端まで連続する複数の電極と、を有する。
 本発明の管状センサによれば、管状体の内壁面に、絶縁層を介して電極が形成されている。したがって、電極が管状体に固定されるとともに、容易に電極間距離を一定に保持することができる。
 また、本発明の成分測定装置は、上述の管状センサと、管状センサにより出力される電気信号を計測する計測部と、計測部において計測された検出信号を演算し、管状センサ内に採取した液体中の成分値を求める制御部を有する。
 本発明の成分測定装置は、上述の管状センサを用いて構成されるものである。したがって、電極が管状体に固定されているので、電極間距離が一定に保持される。このため、管状センサ内に採取した液体の成分に応じた電気信号を精度良く検出することができる。
 また、本発明の管状センサの製造方法は、金属薄板上に絶縁層を形成するステップと、絶縁層上に、ストライプ状の複数の電極を形成するステップと、を有する。
 また、本発明の管状センサの製造方法は、絶縁層及び電極が形成された金属薄板を切り抜き、長軸方向に貫通する空孔を有する管状体の展開形状をなした板状体を形成するステップと、板状体をプレス加工し、管状体を形成するステップも有する。
 本発明の管状センサの製造方法によれば、その内壁面に電極が固定された管状体を簡便に製造することができる。したがって、管状体と電極とを別々に製造した後、電極を管状体の内部に挿入、固定するプロセスを省くことが可能である。
 また、電極が管状体の内壁面に固定して形成できることから、電極間距離を一定に保持することができる。
 本発明の管状センサによれば、電極が管状体の内壁面に固定されるため、電極間距離が一定に保持される。このため、精度良く電流の検出を行うことができる。
 また、本発明の成分測定装置によれば、上述の管状センサを用いていることにより、管状センサ内に採取した液体の成分に応じた電気信号を精度良く検出できる。
 また、本発明の管状センサの製造方法では、管状体と電極とを別々に製造した後、電極を管状体の内部に挿入、固定するプロセスを省くことができる。このため、製造工程を簡略にでき、コストダウンを図ることができる。
図1Aは、本発明の第1の実施の形態に係る管状センサの側面図であり、図1Bは、本発明の第1の実施の形態に係る管状センサをその長軸方向から見た説明図であり、図1Cは、本発明の第1の実施の形態に係る管状センサの断面図である。 図2は、本発明の第1の実施の形態に係る管状センサを外部機器に接続する様子を示す説明図である。 図3Aは、外径及び内径が段階的に変化させた管状センサを示す説明図であり、図3Bは、外径及び内径を連続的に変化させた管状センサを示す説明図であり、図3Cは、外径及び内径が一定とされた管状センサを示す説明図である。 図4Aは、絶縁層及び電極が形成された金属薄板を上方から見た上面図であり、図4Bは、その断面図である。 図5Aは、金属薄板を切り抜くことにより形成された板状体を示す説明図であり、図5Bは、板状体を上型及び下型を用いてプレス加工する様子を示す説明図であり、図5Cは、プレス加工により板状体が湾曲された状態を示す説明図であり、図5Dは、別の上型を用いて板状体を閉曲面に加工し、管状体を形成する様子を示す説明図である。 図6は、板状体のプレス加工に用いる上型と下型の概略断面図である。 図7Aは、径が一定とされた管状体に成型される板状体内に配列される電極を示す説明図であり、図7Bは、径が段階的に異なる管状体に成型される板状体内に配列される電極を示す説明図である。 図8Aは、電極の1つが、管状体の接合面に位置する場合を示す説明図であり、図8Bは、管状体の内壁面において、電極の1つが管状体の接合面に対向する位置に配置された場合を示す説明図である。 図9Aは、管状体内に4個の電極が配設された場合を示す説明図であり、図9Bは、管状体内に配設された4個の電極のうち、ダメージを受ける可能性のある箇所に2個の電極が配置された状態を示す説明図である。 図10は、本発明の第2の実施の形態に係る成分測定装置を示す説明図である。
 以下本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。説明は以下の順序で行う。
1.第1の実施の形態
 1-1.管状センサ
 1-2.管状センサの製造方法
2.第2の実施の形態
 2-1.成分測定装置
1.第1の実施の形態
1-1.管状センサ
 図1Aは、第1の実施の形態に係る管状センサ100の側面図である。また、図1Bは、図1Aにおける管状センサ100のA矢視図であり、図1Cは、図1Aにおける管状センサ100の断面図である。
 本実施形態による管状センサ100は、その長軸方向に空孔を有する管状体1と、管状体1の内壁面に形成された絶縁層2と、絶縁層2上に形成された電極3を備える。
 管状体1は、例えばSUS304,SUS316等のステンレス鋼や、アルミニウム,アルミニウム合金,チタン等の金属材料により構成される。また、これら材料と同等の硬度、延性、塑性を備えるものであれば、その他の材料を用いてもよい。
 管状体1は、その長軸方向に空孔が貫通した中空構造をしている。また、ここでは、その外径及び内径が両端において異なる形状となっている。
 また、管状体1の外径や内径は特に限定されるものではない。管状体1を穿刺針として用いる場合には、管状体1の外径は例えば0.1mm~0.3mmである。
 管状体1の長さも特に限定されるものではない。ただし、用途が穿刺針である場合には、必要とされる穿刺深さや、強度に応じて適宜選択される。
 また、管状体1を穿刺針として用いる場合には、その一端に刃面4が設けてあってもよい。
 管状体1の内壁面には、絶縁層2が形成されている。絶縁層2は、例えば絶縁性のプラスチック材料によって構成される。このプラスチック材料としては、例えばポリ塩化ビニル,ポリカーボネート,ポリスルホン,ナイロン,ポリウレタン,ポリエステル,アクリル樹脂,及びポリスチレン等から成るグループから選択される。他にも、セルロースのようなプラスチック以外の非導電性材料を用いてもよい。
 また、絶縁層2は、接着、溶着、塗布、印刷、半導体プロセス等の様々な方法によって形成することができる。
 絶縁層2上には、管状体1の長軸方向に延伸し、管状体1の一端から他端まで連続した電極3が形成されている。この電極は、後述するように、Agペーストやカーボンペースト等を用い、印刷や塗布等によって形成することができる。また、電極としての導電性を有するものであればその他の材料を用いてよく、蒸着やスパッタ等のその他の半導体プロセスにより形成してもよい。
 また、この電極3は、少なくとも2個以上形成される。図1Bでは2個の電極3が配設された例としてあり、例えば血糖値の測定の場合には、それぞれ作用極、対極として用いられる。3個以上の電極3が形成されている場合には、その中から作用極、対極として用いる2個の電極が選択される。
 後述するように3個以上の電極3が形成されている場合は、その製造過程において電極3のいずれかに不具合が生じたとしても、残りの電極を作用極、対極として用いることができるため好ましい。
 電極3上には、グルコースオキシダーゼやグルコースデヒドロゲナーゼ等の酵素を含む試薬が乾燥固定されている。管状体1の空孔内に採取された血液中のブドウ糖はこれらの酵素により酸化され、メディエータを介した電子の授受による電流が電極3によって検出される。
 図2に示すように、電極3は、この電流を測定する測定器等の接続部5の端子6に接続される。この端子6は、例えばゼブラゴム等の導電性ゴムによって構成される。また、矢印A1,A2に示すように管状センサ100の電極3と端子6とを対応させ、位置合わせして接続される。
 端子6は、他の材料であってもよく、その他形状等、接続態様は特に限定するものではない。
 例えば血糖値を計測する場合には、この管状センサ100を患者の皮膚に穿刺する。そして、皮膚内に管状センサ100を穿刺したまま血液の採取を行ってもよいし、管状センサ100を皮膚から抜いた後、皮膚表面に滲出した血液を採取してもよい。血液は、例えば毛管現象により管状体1内の空孔に採取される。
 このように、本実施の形態による管状センサ100は、長軸方向に空孔を有する管状体1の内壁面に電極3が固定されている。このため、作用極と対極との間の電極間距離を一定に保つことが容易となり、測定精度の向上を図ることができる。
 また、電極3には、例えば半導体プロセスにより形成される電極を用いることができる。このため、後述するように、一括して管状センサ100を製造することができる。したがって、管状体と電極とを別々に形成した後、電極を管状体の空孔内に挿入したり、接着したりする必要が無い。これにより工程を簡易にでき、生産性を向上させることができる。
 また、管状センサ100に刃面4が設けてある場合には、管状センサ100を患者の皮膚に穿刺した後、そのまま血液を採取し、血糖値等の計測を行うことができる。このため、作業量を減らせるので患者の負担を軽くすることが可能である。
 また、本実施の形態では、管状体1の空孔内に電極3が配設されているため、空孔内に採取した僅かな血液量で計測を行うことができる。
 また、ここでは管状体1の外径が、両端で異なる形状を挙げた。この形状は、図3Aに示すように、外径が3段階に変化するものであってもよく、また図3Bのように連続的に径が変化してもよい。また、図3Cに示すように、外径が一定のものであってもよい。
 また、管状体1の横断面形状は、真円に限定されず、四角形、六角形等の多角形であってもよく、また楕円形であってもよい。
1-2.管状センサの製造方法
 次に本実施の形態による管状センサ100の製造方法について、図4~図9を参照して以下に説明する。また、図1と対応する部位には同一符号を付している。
 図4Aは、金属薄板8上に絶縁層2、電極3をそれぞれ形成した様子を示す上面図であり、図4Bは、図4AのX-X’断面図である。
 金属薄板8は、例えばSUS304,SUS316等のステンレス鋼や、アルミニウム,アルミニウム合金,チタン,チタン等の金属材料により構成される。また、これら材料と同等の硬度、延性、塑性を備えるものであれば、その他の材料を用いてもよい。
 まず、金属薄板8上に絶縁層2が形成される。この絶縁層2は、例えば絶縁性のプラスチック材料によって構成される。このプラスチック材料としては、例えばポリ塩化ビニル,ポリカーボネート,ポリスルホン,ナイロン,ポリウレタン,ポリエステル,アクリル樹脂,及びポリスチレン等から成るグループから選択される。他にも、セルロースのようなプラスチック以外の非導電性材料を用いてもよい。
 このような有機高分子材料によって絶縁層2を構成する場合には、例えばスピンコート等の塗布法や、スクリーン印刷等の印刷法によって絶縁層2を形成することができる。また、その他の半導体プロセスや、接着、溶着等の手法により形成してもよい。
 金属薄板8上に絶縁層2を形成すると、次に電極3を例えばストライプ状に形成する。電極3は、例えばAgやカーボン等によって構成される。また、後のプレス加工に耐え得る延性と塑性を備えるものであれば、その他の金属、合金、導電性有機材料を用いてもよい。
 電極3の形成には、Agペーストやカーボンペースト、その他の導電性物質を含む溶液を用いた印刷法を用いることができる。
 また、電極3の構成に導電性無機材料を用いる場合には、スパッタや蒸着、めっき等の方法により導電性膜を形成した後、エッチングやリフトオフ等によりパターニングすることで電極3を形成してもよい。
 このように本実施の形態では、その製造過程において、半導体プロセスにより予め電極3が形成されることになる。したがって、従来のように穿刺針と電極とを別々に製造した後、電極を穿刺針内に挿入、接着する必要が無いため、一連のプロセスの中で一括して製造することが可能である。
 電極3が形成されると、図4Aの点線9、点線10に示すように、所望とする管状体1を展開した形状を切り抜き、板状体を形成する。この切り抜きは、プレス機によるメカ的な切断であってもよいし、レーザ等を用いた熱による切断であってもよい。
 また、ここでは、点線9,10に示す展開形状内に二本の電極3が含まれるように位置合わせをして切り抜きを行う。
 図5Aに、切り抜き後の状態を示す。切り抜きにより、所望とする管状体1を展開した形状の板状体11が形成される。また、板状体11は、周囲に残された枠部14の金属薄板に対して、連結部12,13により接続された状態で形成される。
 また、連結部12,13は、板状体11を管状体1に成型した際に、管状体の長軸方向の一端と他端となる側に設けられる。
 次いで、図5Bに示すように、上型15と下型16を用いて板状体11を上下方向からプレス加工することにより、板状体11を湾曲して序々に丸めていく。
 例えば板状体11の上方に配置される上型15には凸状の型を用い、板状体11の下方に配置される下型16には凹状の型が用いられる。
 ここで、図6に上型15,下型16の断面図を示す。下型16は、矢印A3に示すように、段差が設けられた形状となっている。これにより、形成される管状体において径の小さい側の端部を枠部14に対して持ち上げ、上方に変位させながら加工が行われる。
 このことにより、両端において径の異なる管状体であっても、管状体の中心軸と、枠部14とを平行に維持できる。また、この場合には、管状体の中心軸は、枠部14の金属薄板面よりも上方に位置することになる。
 図5に戻ると、プレス加工を徐々に繰り返していくことにより、図5Cに示すようにU字型形状に板状体11が湾曲される。この過程においては、上型15,下型16のサイズを変えることによって序々に湾曲させていってもよいし、同一の型のままで湾曲を行ってもよい。
 図5Cの状態まで板状体11の湾曲が進むと、図5Dに示すように今度は凹状の上型18を用いてプレスし、板状体11をさらに湾曲させることで閉曲面に加工する。これにより、管状体1が形成される。
 プレスのみの加工で管状体1内の継ぎ目19を液密にできる場合には、連結部12、13を切断することにより、管状体1が枠部14から切り離される。また、板状体11の継ぎ目19を接着材や溶接等により液密に接合してもよい。
 ただし、管状体1が金属によって構成されていること、また、外径が非常に小さいことから、溶接による接合を行うことが好ましい。溶接の方法は特に限定しないが、例えば炭酸ガスレーザ、YAGレーザ、エキシマレーザ等を用いた溶接を行うことができる。
 管状体1を枠部14から切り離すことによって、本実施の形態における管状センサ100(図1参照)がほぼ完成する。管状センサ100を穿刺針として用いる場合には、例えば管状体1の先端を切断、研削、研磨する等により刃面4(図1参照)が形成される。
 また、血糖値等を測定するセンサとして管状センサ100を用いる場合には、酸化還元酵素を含む試薬を、板状体11の切り抜き前に電極3上に塗布する。もしくは、管状体1を形成して枠部14から切り離した後、管状体1の先端を試薬液に浸すことによって電極3に試薬を付着させてもよい。
 ここでは管状体に2個の電極を配設する例としたが、3個以上の電極を配設してもよい。この場合には、板状体内に3個の電極が含まれるように、電極3を配列し、切り抜きを行えばよい。
 例えば、長軸方向に外径が一定とされた管状体を形成する場合には、図7Aの点線20に示す展開形状の板状体内に3個の電極3が含まれるように切り抜きを行えばよい。
 また、図7Bに示すように、その両端で外径の異なる管状体を形成する場合には、図7Bの点線21に示す展開形状の板状体内に3個の電極が含まれるように切り抜きを行えばよい。
 ただし図7Bの点線21に示す板状体では、プレス加工後に小径となる側の端部において電極が3個配置されているのに対し、大径側の端部では電極が5個配置されることになる。
 この形状の板状体により形成された管状体において、小径側の端部から採取した血液が電極3a,3bまで到達する場合には、これらの電極を血糖値の測定に用いることも可能である。しかし、採血の確実性を考慮すると、小径側の端部まで配列された電極3cの中から測定極、対極を選択するのが好ましい。
 このように3個以上の電極が板状体内に配設されるようにすることで、プレス加工や溶接時においていずれかの電極がダメージを受けたとしても、その他の電極を作用極や対極として用いることが可能である。
 例えば、図8Aでは、管状体1の内壁面に絶縁層2を介して3個の電極3d,3e,3fが形成されている。しかし、プレス加工や溶接による接合面22の近辺に配設された電極3dは、溶接時の熱によってダメージを受けている可能性がある。このような場合には、電極3eと電極3fとを作用極及び対極として用いることで、電流を確実に計測することができる。
 また、図8Bでは、接合面22と対向する位置に電極3hが形成されている。この位置に形成された電極は、プレス加工時において上型15(図5B参照)から押圧を受けることによりダメージを受けている可能性がある。
 したがって、この場合には、電極3g,3kを作用極及び対極として用いることで、計測した電流値に誤差が生じるのを回避できる。
 また、管状体1内に、絶縁層2を介して4個の電極が配設されている場合を図9に示す。
 図9Aにおいて、4個の電極3l,3m,3n,3pが管状体1内に配設されている。しかし、これらの電極の配設されている位置は、管状体1の接合面22、及び管状体1の内壁面において接合面22に対向する位置から外れている。
 したがって、この場合には電極3l,3m,3n,3pのいずれもダメージを受けていないので、任意の電極を2個選択し、作用極及び対極として用いてよい。
 一方、図9Bでは、配設された4個の電極3q,3r,3s,3tのうち、電極3tは管状体1の接合面22付近に位置しており、電極3rは、管状体1の内壁面において接合面22と対向して位置している。
 電極3tは、接合面22の溶接時においてダメージを受けている可能性があり、電極3rは、プレス加工時の押圧によってダメージを受けている可能性がある。
 したがって、この場合には、電極3q,3sを選択して作用極や対極として用いることで、確実に電流の計測を行うことができる。
 このように、管状体に電極を3個以上等間隔で配設することで、ダメージを受けた電極を作用協や対極として用いるのを回避できる。
 また、電極がダメージを受ける可能性のある箇所が、管状体の接合面付近と、管状体の内壁面において管状体の接合面と対向する位置の2箇所であることがわかっている。したがって、4個以上の電極を一つの板状体内に等間隔で配設しておけば、必ず2個以上の電極が損傷を受けること無く存在し、これらの電極を作用極及び対極として用いることができる。
 また、図7のように電極を等間隔で配置している場合には、位置決めをすることなくランダムに板状体の切り抜きを行ったとしても、必ず一定数以上の電極を板状体に残すことが可能である。
 したがって、3個以上の電極が板状体内に残るように、電極同士の距離を定めて等間隔に形成しておくことが好ましい。これにより、その長軸と直交する方向にランダムに板状体の切り抜きを行うことで、電極が管状体の接合面付近や、プレス加工時に押圧を受ける箇所に配設され、ダメージを受けたとしても、残りの電極を作用極や対極として用いることができる。
 すなわち、切り抜きの際に位置決めを行うプロセスを省略することが可能であるため、生産性の向上が図られ、製造コストを抑えることができる。
2.第2の実施の形態
2-1.成分測定装置
 第2の実施の形態として、上述の管状センサ100を用い、血糖値を測定する成分測定装置を構成する例を挙げる。
 図10は、第2の実施の形態に係る成分測定装置200の構成を示す概略構成図である。本実施の形態による成分測定装置200は、例えば血液を採取し、採取した血液のグルコース量に応じた電気信号を発生させる採血チップ30と、採血チップ30で発生した電気信号を計測する計測部60を備える。
 また、本実施の形態による成分測定装置200は、計測部60において計測された検出信号を演算し、採取した血液の血糖値を求める制御部70と、制御部70において算出された血糖値を表示する表示部80も備える。
 採血チップ30は、穿刺針ユニット40と、穿刺針ユニット40を保持するハウジング50を備える。ハウジング50には、その長軸方向に貫通する空孔51が設けられており、この空孔内に穿刺針ユニット40が保持される。
 穿刺針ユニット40は、その先端に配設される管状センサ100と、管状センサ100を保持するハブ41と、ハブ41の後段に接続固定された被把持部42と、一対の配線45を備える。
 この管状センサ100は、第1の実施の形態(図1参照)で示したものであり、その先端部の内径は、毛管現象により血液を管状センサ100内に導入できる程度に細径とされている。また、管状センサ100は、その後端部がハブ41内に保持されている。
 また、ハブ41の後段には、被把持部42が接続固定されており、ハブ41内の空孔において管状センサ100と被把持部42とが接触している。
 また、管状センサ100内の空孔は、被把持部42に設けられた通気孔42a、中心孔42bを介して後方に連通される。
 また、被把持部42は、把持部43によって把持されている。把持部43内に配設された付勢バー44が、図示しない付勢手段により把持部43を介して穿刺針ユニット40を付勢する。これにより、管状センサ100の刃面がハウジング50の内外に出し入れされる。
 管状センサ100内の電極は、配線45に接続されている。配線45は、例えば被把持部42の通気孔42aを通った後、被把持部42の外表面に貫通すると、被把持部42の外表面上に延伸されている。
 一方、被把持部42を把持する把持部43の内表面には、配線45に接触する一対の端子線46が設けられている。この端子線46は、管状センサ100からの信号を計測する計測部60に接続される。
 計測部60は、電源63と、電源63からの電圧を変更し、変更後の電圧を管状センサ100の電極に印加する電圧変更回路61と、管状センサ100内に採取した液体中の成分量に応じて生じた電流を計測する電流測定部62と、を備える。
 電圧変更回路61によって管状センサ100内の電極間に所定の電圧を印加することで、血液中のグルコース量に応じた電流が電流測定部を流れる。この電流値の変化を電流測定部62が計測し、検出信号を制御部70へと出力する。
 制御部70は、入力された検出信号を基に、必要に応じて補正計算を行いながら演算処理することにより、血糖値を算出する。算出された血糖値は、例えば表示部80によって出力表示される。
 このように、本実施の形態による成分測定装置200では、第1の実施の形態において示した管状センサ100が用いられている。管状センサ100では、その内壁面に電極が固定されているため、確実に電極間距離が一定に保持されている。このため、例えば血糖値の測定を精度良く行うことができる。
 患者の血糖値を測定する際には、まず管状センサ100で患者の皮膚を瞬間的に穿刺する。次いで、管状センサ100をそのまま用い、空孔51内に生じた微小な血塊90から管状センサ100内に血液を採取することで血糖値の測定を行うことができる。すなわち、非常に簡略化された動作で血糖値の測定が可能であるため、患者の負担を軽くすることが可能である。
 また、管状センサ100内に採取される血液のみによって血糖値の測定を行うことができるため、測定に必要な血液量も少量に抑えることができる。特に、一端と他端とで径の異なる管状体1を用いる場合には、細径部側から採取される血液は、毛管現象のために大径部側には浸入しにくいので、採取する血液量をより抑えることができる。
 また、管状センサ100の先端側の細径部内にのみ試薬を配設すると、採取する血液量をより抑えることができるので好ましい。管状センサ100の内壁面に形成されている絶縁層2は、プラスチック材料によって構成されているので疎水性である。一方、試薬は親水性であるため、試薬の塗布された領域のみに血液が採取される。したがって、例えば試薬の塗布された細径部内に採取した血液のみによって測定を行うことが可能であり、より確実に採血量を抑えることができる。
 以上、本発明による管状センサ、成分測定装置、管状センサの製造方法の実施の形態について説明した。本発明は上記実施の形態にとらわれることなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、考えられる種々の形態を含むものである。
 また、ここでは、血液の血糖値を測定する例を挙げたが、例えば果物や野菜の糖度を測定するためのセンサや、河川や工場排水などの化学成分を測定するセンサとして用いることも可能である。
 1・・・管状体、2・・・絶縁層、3,3a,3b,3c,3d,3e,3f,3g,3h,3k,3l,3m,3m,3p,3q,3r,3s,3t・・・電極、4・・・刃面、5・・・接続部、6,46・・・端子、8・・・金属薄板、9,10,20,21・・・線、11・・・板状体、12,13・・・連結部、14・・・枠部、15,18・・・上型、16・・・下型、19・・・継ぎ目、22・・・継ぎ目、30・・・採血チップ、40・・・穿刺針ユニット、41・・・ハブ、42・・・被把持部、42a・・・通気孔、42b・・・中心孔、43・・・把持部、44・・・付勢バー、45・・・配線、46・・・端子線、50・・・ハウジング、51・・・空孔、60・・・計測部、61・・・電圧変更回路、62・・・電流測定部、63・・・電源、70・・・制御部、80・・・表示部、90・・・血塊、100・・・管状センサ、200・・・成分測定装置

Claims (11)

  1.  長軸方向に貫通する空孔を有する管状体と、
     前記管状体の内壁面に形成された絶縁層と、
     前記絶縁層上に、前記管状体の長軸方向に形成され、かつ前記管状体の一端から他端まで連続する複数の電極と、
    を有する
     管状センサ。
  2.  複数の前記電極は、前記管状体の内壁面に、少なくとも3以上形成される請求項1に記載の管状センサ。
  3.  少なくとも3以上の前記電極は、前記管状体の内壁の周方向に対して等間隔に形成される請求項2に記載の管状センサ。
  4.  前記管状体の先端に刃面が設けられた請求項1~3のいずれか1項に記載の管状センサ。
  5.  請求項1~4のいずれか1項に記載の管状センサと、
     前記管状センサにより出力される電気信号を計測する計測部と、
     該計測部において計測された検出信号を演算し、前記管状センサ内に採取した液体中の成分値を求める制御部と、
    を有する
     成分測定装置。
  6.  金属薄板上に絶縁層を形成するステップと、
     前記絶縁層上に、ストライプ状の複数の電極を形成するステップと、
     前記絶縁層及び前記電極が形成された前記金属薄板を切り抜き、長軸方向に貫通する空孔を有する管状体の展開形状をなした板状体を形成するステップと、
     前記板状体をプレス加工し、管状体を形成するステップと、
    を有する
     管状センサの製造方法。
  7.  前記電極の長手方向と、前記管状体の長軸方向が一致するように前記板状体を切り抜く請求項6に記載の管状センサの製造方法。
  8.  前記プレス加工による前記管状体の継ぎ目を溶接するステップを含む請求項6又は7に記載の管状センサの製造方法。
  9.  前記板状体は、前記金属薄板に枠状に残された枠部と部分的に接続された状態で形成される請求項6~8のいずれか1項に記載の管状センサの製造方法。
  10.  複数の前記電極は、等間隔で設けられる請求項6~9のいずれか1項に記載の管状センサの製造方法。
  11.  前記板状体上に少なくとも3以上の前記電極を残すように、前記金属薄板を切り抜く請求項10に記載の管状センサの製造方法。
       
     
PCT/JP2011/067324 2010-09-30 2011-07-28 管状センサ、成分測定装置、及び管状センサの製造方法 WO2012043051A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11828612.9A EP2623031A4 (en) 2010-09-30 2011-07-28 TUBULAR SENSOR, CONSTITUENT MEASURING DEVICE, AND METHOD FOR MANUFACTURING TUBULAR SENSOR
CN201180047575.3A CN103153188B (zh) 2010-09-30 2011-07-28 管状传感器、成分测定装置、以及管状传感器的制造方法
US13/846,524 US9521972B2 (en) 2010-09-30 2013-03-18 Tubular sensor, constituent measuring device, and tubular sensor manufacturing method
HK13113100.5A HK1185776A1 (en) 2010-09-30 2013-11-25 Tubular sensor, constituent measuring device, and tubular sensor manufacturing method
US15/236,908 US10188336B2 (en) 2010-09-30 2016-08-15 Puncture needle sensor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-221867 2010-09-30
JP2010221867A JP5758606B2 (ja) 2010-09-30 2010-09-30 成分測定装置、及び成分測定装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/846,524 Continuation US9521972B2 (en) 2010-09-30 2013-03-18 Tubular sensor, constituent measuring device, and tubular sensor manufacturing method

Publications (1)

Publication Number Publication Date
WO2012043051A1 true WO2012043051A1 (ja) 2012-04-05

Family

ID=45892528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067324 WO2012043051A1 (ja) 2010-09-30 2011-07-28 管状センサ、成分測定装置、及び管状センサの製造方法

Country Status (6)

Country Link
US (2) US9521972B2 (ja)
EP (1) EP2623031A4 (ja)
JP (1) JP5758606B2 (ja)
CN (1) CN103153188B (ja)
HK (1) HK1185776A1 (ja)
WO (1) WO2012043051A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089058A1 (en) 2012-12-03 2014-06-12 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
CN110237419A (zh) * 2019-07-23 2019-09-17 上海华聆人工耳医疗科技有限公司 平底半环电极触片及其制作方法
US11016052B2 (en) 2007-08-30 2021-05-25 Pepex Biomedical Inc. Electrochemical sensor and method for manufacturing
US11045124B2 (en) 2014-06-04 2021-06-29 Pepex Biomedical, Inc. Electrochemical sensors and methods for making electrochemical sensors using advanced printing technology
US11150212B2 (en) 2007-08-30 2021-10-19 Pepex Biomedical, Inc. Electrochemical sensor and method for manufacturing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880491A (zh) * 2015-06-24 2015-09-02 京东方科技集团股份有限公司 一种果蔬含糖量检测器
EP3170574B1 (de) * 2015-11-19 2022-07-13 Heraeus Deutschland GmbH & Co. KG Verfahren zur herstellung einer hülse für eine elektrode für medizinische anwendungen
US11766203B2 (en) * 2017-09-13 2023-09-26 National Technology & Engineering Solutions Of Sandia, Llc Coaxial microneedle assemblies and methods thereof
KR20210107629A (ko) * 2018-10-22 2021-09-01 아이스 뉴로시스템즈 아이엔씨 단기 반구 뇌 모니터링을 위한 모상건막하 전극 어레이들의 병상 삽입 및 기록 기능을 최적화하기 위한 시스템들 및 방법들

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994231A (ja) 1995-09-29 1997-04-08 Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou ミクロ針状酵素電極と音声告知デバイスを用いた皮膚挿入型バイオセンシングデバイス
JP2007014382A (ja) * 2005-07-05 2007-01-25 National Institute Of Advanced Industrial & Technology 穿刺器具一体型バイオセンサー
JP2007014381A (ja) * 2005-07-05 2007-01-25 National Institute Of Advanced Industrial & Technology 穿刺器具一体型バイオセンサー
JP2007054407A (ja) 2005-08-25 2007-03-08 Terumo Corp 穿刺装置及び穿刺針チップ
JP3943390B2 (ja) 2001-12-27 2007-07-11 テルモ株式会社 金属製の管状体およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855929A (en) * 1955-06-20 1958-10-14 Becton Dickinson Co Venting needle
EP0232444A1 (en) * 1986-02-19 1987-08-19 Yasuo Nakamura A suture needle and its manufacturing processes
US4785868A (en) * 1987-06-04 1988-11-22 Titan Medical, Inc. Medical needle and method for making
JPH0294231A (ja) * 1988-09-29 1990-04-05 Nec Corp ヘリツクス進行波管
GB9111049D0 (en) * 1991-05-22 1991-07-17 Parkin Adrian Hypodermic needle
DE10329424B4 (de) * 2003-07-01 2005-04-28 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines längsgeschlitzten Hohlprofils mit mehreren, im Querschnitt verschiedenen Längsabschnitten aus einer ebenen Blechplatine
CN101026994A (zh) * 2004-08-10 2007-08-29 诺和诺德公司 形成消毒传感器包装件的方法以及消毒传感器包装件
JP4576624B2 (ja) * 2005-03-02 2010-11-10 独立行政法人産業技術総合研究所 針一体型バイオセンサー
EP1980203B8 (en) 2006-01-31 2014-06-11 Panasonic Healthcare Co., Ltd. Blood sensor and blood test apparatus having the same
CN104622480B (zh) * 2013-11-12 2017-12-05 上海移宇科技股份有限公司 单针集成型人工胰腺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994231A (ja) 1995-09-29 1997-04-08 Kokuritsu Shintai Shogaisha Rehabilitation Center Souchiyou ミクロ針状酵素電極と音声告知デバイスを用いた皮膚挿入型バイオセンシングデバイス
JP3943390B2 (ja) 2001-12-27 2007-07-11 テルモ株式会社 金属製の管状体およびその製造方法
JP2007014382A (ja) * 2005-07-05 2007-01-25 National Institute Of Advanced Industrial & Technology 穿刺器具一体型バイオセンサー
JP2007014381A (ja) * 2005-07-05 2007-01-25 National Institute Of Advanced Industrial & Technology 穿刺器具一体型バイオセンサー
JP2007054407A (ja) 2005-08-25 2007-03-08 Terumo Corp 穿刺装置及び穿刺針チップ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623031A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11016052B2 (en) 2007-08-30 2021-05-25 Pepex Biomedical Inc. Electrochemical sensor and method for manufacturing
US11150212B2 (en) 2007-08-30 2021-10-19 Pepex Biomedical, Inc. Electrochemical sensor and method for manufacturing
WO2014089058A1 (en) 2012-12-03 2014-06-12 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
US20150313521A1 (en) * 2012-12-03 2015-11-05 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
EP2925229A4 (en) * 2012-12-03 2017-01-25 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
US11224367B2 (en) 2012-12-03 2022-01-18 Pepex Biomedical, Inc. Sensor module and method of using a sensor module
US11045124B2 (en) 2014-06-04 2021-06-29 Pepex Biomedical, Inc. Electrochemical sensors and methods for making electrochemical sensors using advanced printing technology
CN110237419A (zh) * 2019-07-23 2019-09-17 上海华聆人工耳医疗科技有限公司 平底半环电极触片及其制作方法
CN110237419B (zh) * 2019-07-23 2024-05-03 上海华聆人工耳医疗科技有限公司 平底半环电极触片及其制作方法

Also Published As

Publication number Publication date
HK1185776A1 (en) 2014-02-28
JP5758606B2 (ja) 2015-08-05
CN103153188B (zh) 2015-07-01
EP2623031A4 (en) 2014-02-19
JP2012075550A (ja) 2012-04-19
CN103153188A (zh) 2013-06-12
US9521972B2 (en) 2016-12-20
EP2623031A1 (en) 2013-08-07
US20130225957A1 (en) 2013-08-29
US20160345883A1 (en) 2016-12-01
US10188336B2 (en) 2019-01-29

Similar Documents

Publication Publication Date Title
JP5758606B2 (ja) 成分測定装置、及び成分測定装置の製造方法
JP4621843B2 (ja) 装着体および濃度測定装置
US10022080B2 (en) Analyte sensors, systems, testing apparatus and manufacturing methods
CA2428365C (en) Physiological sample collection devices and methods of using the same
EP2564768A1 (en) Method of constructing a biosensor
JP2006038841A (ja) 試験細片の再使用を防止する方法および検体測定システムでの試験細片の再使用を防止する方法
US20030212346A1 (en) Methods of fabricating physiological sample collection devices
JP5940719B2 (ja) 生体情報測定装置とそれを用いた生体情報測定方法
WO2014108082A1 (zh) 用于体液中物质实时检测的微型生物芯片
US20210361204A1 (en) Electrochemical sensors and methods for making electrochemical sensors using advanced printing technology
CN102202575A (zh) 刺血针分析物传感器和制造方法
JP2008054884A (ja) 採液測定装置及び採液測定方法
CA2735666A1 (en) Analyte sensors, testing apparatus and manufacturing methods
JP4182005B2 (ja) 生体成分測定装置
JP7136776B2 (ja) センサ、及び、センサの針部材の製造方法
EP2198283B1 (en) Method of defining electrodes using laser-ablation and dielectric material
EP2275035A1 (en) Body-liquid sampling circuit board, its manufacturing method and its using method, and biosensor having the body-liquid sampling circuit board
JP4665135B2 (ja) バイオセンサーの製造法
US20110056848A1 (en) Electrochemical test sensor
JP4635260B2 (ja) バイオセンサーおよびその製造法
JP2007205988A (ja) バイオセンサーおよびその製造法
JP2007202666A (ja) 針一体型バイオセンサー
JP2008061883A (ja) バイオセンサ用穿刺器具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047575.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011828612

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE