WO2012042685A1 - Semiconductor light emitting device and light source device - Google Patents
Semiconductor light emitting device and light source device Download PDFInfo
- Publication number
- WO2012042685A1 WO2012042685A1 PCT/JP2011/000444 JP2011000444W WO2012042685A1 WO 2012042685 A1 WO2012042685 A1 WO 2012042685A1 JP 2011000444 W JP2011000444 W JP 2011000444W WO 2012042685 A1 WO2012042685 A1 WO 2012042685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor light
- light emitting
- base
- emitting device
- package
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 267
- 238000003466 welding Methods 0.000 claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 56
- 239000007769 metal material Substances 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 19
- 239000011810 insulating material Substances 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 description 42
- 238000012986 modification Methods 0.000 description 33
- 230000004048 modification Effects 0.000 description 33
- 238000000034 method Methods 0.000 description 17
- 239000011521 glass Substances 0.000 description 14
- 239000000470 constituent Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 229910000833 kovar Inorganic materials 0.000 description 8
- 238000005219 brazing Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000005304 optical glass Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- -1 Kovar Chemical compound 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02218—Material of the housings; Filling of the housings
- H01S5/0222—Gas-filled housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/0045—Devices characterised by their operation the devices being superluminescent diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02212—Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
Definitions
- the present invention relates to a semiconductor light emitting device and a light source device having a large emitted light intensity used for a display such as a projector.
- a semiconductor laser device having a high light output exceeding 1 W has been used as a light source for an image display device such as a laser display or a projector, or as a light source for an industrial processing device such as a laser scribing device or a thin film annealing device.
- Semiconductor light emitting devices have been actively developed.
- a semiconductor light emitting device in which a semiconductor light emitting element such as a semiconductor laser element is fixed to a base made of metal and sealed with a cap member provided with a glass window is as follows. Is disclosed in Japanese Patent Application Laid-Open No. H10-228707.
- a conventional semiconductor light emitting device 300 includes a semiconductor laser element 301, a package 320 for holding the semiconductor laser element 301, a semiconductor laser element 301 covering the semiconductor laser element 301, and being fixed to the package 320. It is comprised from the cap member 330 which seals 301.
- FIG. 23 a conventional semiconductor light emitting device 300 includes a semiconductor laser element 301, a package 320 for holding the semiconductor laser element 301, a semiconductor laser element 301 covering the semiconductor laser element 301, and being fixed to the package 320. It is comprised from the cap member 330 which seals 301.
- the package 320 is provided on a base (stem) 321 made of an iron (Fe) -based material, a block portion (heat sink) 322 made of oxygen-free copper fixed thereon, and a base 321 in the front-back direction.
- the lead pins 324 and 325 are fixed to the through holes 321a and 321b through insulating rings 326 made of glass, respectively, and the lead pins 323 are directly fixed to the back surface of the base 321.
- the semiconductor laser element 301 is fixed to the block portion 322 via the submount 302 and is electrically connected to the lead pins 324 and 325 by the two wires 327 and 328, respectively.
- the cap member 330 includes a metal cover made of Kovar (Kovar: Fe—Ni—Co alloy) and a light transmission window 334 made of optical glass and the like fixed by soft glass.
- the metal cover includes a cylindrical side wall portion 331, a top surface portion 332 in which one end of the side wall portion 331 is closed and an emission hole 332 a for extracting laser light from the semiconductor laser element 301 to the outside is formed.
- a flange portion 333 formed at the end and resistance-welded to the upper surface of the base 321 on which the semiconductor laser element 301 is held is provided.
- the light transmission window 334 is fixed to the inside of the top surface portion 332 so as to block the emission hole 332a.
- Patent Document 2 As a fixing method when such a semiconductor light emitting device is used as a light source, for example, a configuration as disclosed in Patent Document 2 is disclosed.
- the fixing jig 400 for fixing the semiconductor light emitting device 300 in which a cap member 330 for hermetically sealing the semiconductor laser element is fixed to a disk-shaped base 321 holding a semiconductor laser element (not shown) is An opening 400a larger than the disk-shaped base 321 is formed. On the wall surface of the opening 400a, a stepped portion 400b that supports the base 321 on its upper surface is provided.
- the opening diameter of the opening 400 a of the fixing jig 400 is set to be slightly larger than the diameter of the base 321 so that the base 321 of the semiconductor light emitting device 300 can be easily fitted.
- the present inventors have found that the conventional semiconductor light emitting device has two problems in manufacturing.
- oxygen-free copper is used as a material having high thermal conductivity for the base constituting the package, for example, oxygen-free copper.
- the base made of copper cannot be resistance-welded with a cap member made of Kovar having a thermal expansion coefficient close to that of the transparent optical element constituting the light transmission window. This is because the heat conductivity and electrical conductivity of oxygen-free copper are sufficiently higher than Kovar, so the amount of current for resistance welding of Kovar does not generate sufficient heat at the welding site on the base side, This is because the generated heat diffuses to the periphery.
- brazing In order to prevent a decrease in confidentiality, a method of brazing the cap member and the base with silver brazing or the like is also conceivable, but brazing exposes the semiconductor light emitting element to a high temperature near 1000 ° C., The semiconductor multilayer structure in the semiconductor light emitting element is altered, and the operating characteristics of the light emitting element are greatly deteriorated.
- the present invention solves the above-described problems, and can efficiently dissipate Joule heat generated from the semiconductor light emitting element to the outside of the package while maintaining the airtightness of the metal cover for sealing the semiconductor light emitting element.
- the purpose is to do.
- the present invention fixes a semiconductor light-emitting device on the base by making the thermal conductivity of the constituent material of the base constituting the package larger than the thermal conductivity of the metal cover.
- a welding stand is provided between the metal cover and the metal cover, which has a smaller difference in thermal conductivity than the base cover.
- a semiconductor light emitting device includes a semiconductor light emitting element, a package that holds the semiconductor light emitting element, and a metal cover that is fixed to the package and seals the semiconductor light emitting element. And a welding base formed on the main surface of the base and capable of resistance-welding the metal cover, and the thermal conductivity of the first metal material constituting the base is a second that constitutes the metal cover. The difference in thermal conductivity between the metal cover and the base is smaller than the difference in thermal conductivity between the metal cover and the base.
- the thermal conductivity of the first metal material constituting the base is larger than the thermal conductivity of the second metal material constituting the metal cover.
- the difference in thermal conductivity is smaller than the difference in thermal conductivity between the metal cover and the base.
- the metal cover is provided with an opening at a position facing the semiconductor light emitting element, and a transparent optical element is fixed so as to cover the opening.
- the difference in thermal expansion coefficient is preferably smaller than the difference in thermal expansion coefficient between the transparent optical element and the base.
- the light from the semiconductor light emitting element can be efficiently extracted outside the package, and the airtightness of the semiconductor light emitting device can be prevented from being deteriorated. Can be prevented.
- At least one through hole is formed in the base, and the package has a lead fixed to the through hole with an insulating material interposed therebetween and electrically connected to the semiconductor light emitting element. You may do it.
- the main surface of the base may be provided with a block portion for fixing the semiconductor light emitting element, and the welding base may be formed on the main surface of the base so as to surround the block portion and the through hole. .
- a stepped portion may be provided on the peripheral edge of the main surface of the base, and the welding table may be formed on the stepped portion.
- annular groove is provided on the peripheral edge of the main surface of the base, and the welding table may be formed in the groove.
- the contact area with the base of the welding table becomes larger and the adhesion with the base of the welding table is improved than when the welding table is formed in the stepped portion or the groove portion. Furthermore, the alignment at the time of forming the welding table is facilitated.
- the welding table may be formed in a region including the through hole, and the welding table and the insulating material of the through hole may be connected to each other.
- a part of the through hole for fixing the lead can be formed using a material different from that of the base. Therefore, if the constituent material of the welding base is close to the thermal expansion coefficient of the constituent material of the insulating material, the lead In addition, the airtightness of the fixed portion of the insulating material can be improved.
- the base may have a polygonal planar shape.
- the contact area with the fixing jig for fixing the base can be easily increased.
- Joule heat generated from the semiconductor light emitting element can be radiated to the outside of the package through the side surface of the package base.
- the base may have a quadrangular planar shape.
- the first metal material is preferably composed mainly of copper.
- a material having high thermal conductivity can be used as the constituent material of the base, so that an increase in the temperature of the semiconductor light emitting element can be suppressed.
- the second metal material may contain iron.
- the package and the metal cover can be joined together by resistance welding (electric welding), so that it can be hermetically sealed easily.
- the semiconductor light emitting element may be a semiconductor laser element.
- the semiconductor light emitting element may be a super luminescent diode.
- a first light source device includes the semiconductor light emitting device of the present invention and a plurality of fixing jigs for holding the semiconductor light emitting device by sandwiching the base from the side surface direction of the base. .
- the first light source device in a light source device using one or more, particularly a plurality of semiconductor light emitting devices, Joule heat generated from the semiconductor light emitting elements can be efficiently radiated to the outside of the package. It is possible to prevent the deterioration of the characteristics.
- a second light source device includes a semiconductor light emitting device having a semiconductor light emitting element, a package holding the semiconductor light emitting element, a metal cover fixed to the package and sealing the semiconductor light emitting element, A plurality of fixing jigs for holding the semiconductor light emitting device are provided by sandwiching the base from the side surface direction of the base.
- the second light source device in a light source device using one or more, particularly a plurality of semiconductor light emitting devices, Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package. It is possible to prevent the deterioration of the characteristics.
- the plurality of fixing jigs do not contact each other.
- the adhesion between the side surface of the base and the fixing jig in each semiconductor light emitting device can be improved.
- Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package.
- the base constituting the semiconductor light emitting device may have a polygonal planar shape.
- the side surface of the base in the semiconductor light emitting device is constituted by a plurality of planes.
- the base constituting the semiconductor light emitting device may have a square shape in plan view.
- the base that constitutes the semiconductor light emitting device can be easily designed.
- Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package while maintaining the airtightness of the metal cover for sealing the semiconductor light emitting element.
- FIG. 1 is a schematic cross-sectional view showing a semiconductor light emitting device according to a first embodiment of the present invention.
- FIG. 2A is an exploded perspective view showing the semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 2B is a perspective view showing the semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view for explaining the operation of the semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of one step showing the method for manufacturing the semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view of one step showing the method for manufacturing the semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view showing a semiconductor light emitting device according to a first embodiment of the present invention.
- FIG. 2A is an exploded perspective view showing the semiconductor light emitting device according to the
- FIG. 6 is a schematic cross-sectional view of one step showing the method for manufacturing a semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 7 is a diagram showing the thermal conductivity, thermal expansion coefficient, and the like of typical materials that can be used for the package of the semiconductor light emitting device according to the first embodiment of the present invention.
- FIG. 8 is a schematic cross-sectional view showing a semiconductor light emitting device according to a first modification of the first embodiment of the present invention.
- FIG. 9 is a graph showing the results of calculating the relationship between the thermal conductivity of the base and the thermal resistance of the semiconductor light emitting device in the semiconductor light emitting device according to the first modification of the first embodiment of the present invention.
- FIG. 10A is a graph showing current-light output characteristics in the semiconductor light emitting device according to the first modification of the first embodiment of the present invention.
- FIG. 10B is a graph showing the relationship between the light output and the power-light conversion efficiency in the semiconductor light emitting device according to the first modification of the first embodiment of the present invention.
- FIG. 11 is a schematic cross-sectional view showing a semiconductor light emitting device according to a second modification of the first embodiment of the present invention.
- FIG. 12 is a schematic cross-sectional view showing a semiconductor light emitting device according to a third modification of the first embodiment of the present invention.
- FIG. 13 is a schematic cross-sectional view for explaining the operation of the semiconductor light emitting device according to the third modification of the first embodiment of the present invention.
- FIG. 10A is a graph showing current-light output characteristics in the semiconductor light emitting device according to the first modification of the first embodiment of the present invention.
- FIG. 10B is a graph showing the relationship between the light output and the power-light conversion efficiency
- FIG. 14 is a schematic cross-sectional view showing a semiconductor light emitting device according to the second embodiment of the present invention.
- FIG. 15A is an exploded perspective view showing a semiconductor light emitting device according to the second embodiment of the present invention.
- FIG. 15B is a perspective view showing a semiconductor light emitting device according to the second embodiment of the present invention.
- FIG. 16A and FIG. 16B are schematic cross-sectional views in order of steps showing a method for fixing a semiconductor light emitting device according to the second embodiment of the present invention.
- FIG. 17 is a schematic cross-sectional view for explaining the operation of the semiconductor light emitting device according to the second embodiment of the present invention.
- FIG. 18B are schematic cross-sectional views in order of steps showing a method for fixing a semiconductor light emitting device according to a first modification of the second embodiment of the present invention.
- FIG. 19A and FIG. 19B are schematic cross-sectional views in order of steps showing a method for fixing a semiconductor light emitting device according to a second modification of the second embodiment of the present invention.
- FIG. 20A and FIG. 20B are schematic cross-sectional views in order of steps showing a method for fixing a semiconductor light emitting device according to a third modification of the second embodiment of the present invention.
- FIG. 21 is a schematic plan view showing a light source device according to the third embodiment of the present invention.
- FIG. 22 is a schematic perspective view of one step showing a method for manufacturing a light source device according to the third embodiment of the present invention.
- FIG. 23 is a schematic cross-sectional view showing a conventional semiconductor light emitting device.
- FIG. 24 is a schematic perspective view of one process showing a conventional method for fixing a semiconductor light emitting device.
- the semiconductor light emitting device 1 includes a semiconductor light emitting element 3, a package 10 that holds the semiconductor light emitting element 3, and a semiconductor light emitting element that is, for example, a semiconductor laser element. 3 and a cap 20 that is fixed to the package 10 and seals the semiconductor light emitting element 3.
- the package 10 includes, for example, a base 11 made of oxygen-free copper (OFCu), a block portion 11b that is integrally formed on the main surface 11a and serves as a heat sink, and two through holes 11c that penetrate in the front and back directions. It has been.
- Leads 15 and 16 are fixed to the respective through holes 11c via insulating materials 18 and 19 made of, for example, hard glass.
- the leads 15 and 16 are electrically connected to the semiconductor light emitting element 3 via wires 30a and 30b, respectively.
- the lead 14 is resistance-welded (electrical welding) to the back surface of the base 11 and is electrically connected to the base 11.
- the peripheral portion of the base 11 on the main surface 11a, that is, the joint with the cap 20, has a smaller coefficient of thermal expansion than that of the base 11, for example, Kovar, Fe: Ni alloy (42 alloy) or iron (steel).
- the welding base 12 made of is hermetically bonded with an adhesive 13 such as silver solder.
- the planar shape of the welding table 12 is an annular shape, but may be, for example, a polygon or an ellipse as long as it can surround the block portion 11b.
- the cap 20 is, for example, a metal cover 21 made of Kovar, Fe: Ni alloy (42 alloy) or iron (steel) formed in a cylindrical shape, and light extraction is performed above the light emission surface of the semiconductor light emitting element 3.
- An opening 21b is formed.
- a transparent optical element 22 made of optical glass such as BK7 is fixed to the opening 21b by a fixing material 23 made of soft glass, for example.
- a flange portion 21 a that is open to the outside is provided so as to be easily fixed to the welding table 12.
- the semiconductor light emitting element 3 fixed to the block portion 11 b via the submount 6 has a stripe 3 a corresponding to the optical resonator formed in the semiconductor light emitting element 3 and the transparent optical element 22. It arrange
- the base 11 When the semiconductor light emitting device 1 is incorporated into a product, the base 11 is fixed so as to be in close contact with a fixing jig 50 made of a material having high thermal conductivity such as an aluminum alloy, and is further fixed from above by a pressing jig 51. It is fixed so as to be sandwiched. At this time, power is supplied to the semiconductor light emitting element 3 through leads 15 and 16 from an external power source (not shown). The electric power applied to the semiconductor light emitting element 3 is converted into light having a predetermined wavelength and emitted.
- a fixing jig 50 made of a material having high thermal conductivity such as an aluminum alloy
- the emitted light 70 is transmitted through the transparent optical element 22 and emitted to the outside of the semiconductor light emitting device 1.
- the applied electric power is converted into light in the semiconductor light emitting element 3
- part of the electric power is not converted into light but becomes Joule heat.
- Joule heat generated from the semiconductor light emitting element 3 is conducted through the submount 6, the block portion 11 b and the base 11 and is released to the outside of the package 10. Since the base 11 is in close contact with the fixed jig 50 by the holding jig 51, the base 11 can efficiently radiate heat through the heat dissipation path 60. Part of the Joule heat contributes to a temperature increase in the semiconductor light emitting element 3 and the vicinity thereof, and increases the temperature of the semiconductor light emitting element 3.
- FIG. 4 shows a cross-sectional configuration of the package 10 constituting the semiconductor light emitting device 1 according to the first embodiment.
- a mold 10 that can form the base 11 and the block portion 11b is made of oxygen-free copper (OFCu), and the base 11 and the block portion 11b are formed integrally by, for example, press working. To do.
- the base 11 and the block portion 11b are not necessarily formed integrally. However, if the same constituent material, for example, oxygen-free copper having a high thermal conductivity is used for the base 11 and the block portion 11b, Integral molding is preferred.
- the annular welding table 12 is bonded to the main surface 11a of the base 11 by an adhesive 13 made of, for example, silver solder so as to surround the block portion 11b.
- the lead 14 is bonded to the back surface of the base 11 by a high temperature treatment using an adhesive 13 made of, for example, silver solder.
- an adhesive 13 made of, for example, silver solder.
- the leads 15 and 16 are inserted into the respective through holes 11c together with the cylindrical glass to be the insulating materials 18 and 19, and then the insulating materials 18 and 19 made of glass are further inserted into the respective through holes.
- the leads 15 and 16 are fixed to the through holes 11c via the insulating materials 18 and 19, respectively.
- the semiconductor light emitting element 3 is fixed on the inner side surface of the block portion 11 b of the base 11 via a submount 6 made of, for example, AlN ceramic or SiC ceramic. Thereafter, the semiconductor light emitting element 3 and the leads 15 and 16 are electrically connected by wires 30a and 30b, respectively.
- the cap 20 forms a flange portion 21a and an opening portion 21b on a cylindrical metal cover 21 made of a material having a thermal expansion coefficient close to that of glass, such as Kovar, by pressing. At this time, a projection 21c for welding is formed on the lower surface of the flange portion 21a.
- the transparent optical element 22 made of an optical glass having an antireflection film having a low reflectance with respect to the wavelength of light emitted from the semiconductor light emitting element 3 on the surface thereof is used as the fixing material 23 made of, for example, soft glass. Due to this, it is fixed inside the opening 21b.
- the semiconductor light emitting device 3 is fixed to the block portion 11b with the submount 6 interposed therebetween, but the semiconductor light emitting device 3 is directly fixed to the block portion 11b without the submount 6 interposed. Also good.
- the base 11 of the package 10 to which the semiconductor light emitting element 3 is fixed is fixed at a predetermined position using the fixing base 31a.
- the flange portion 21a of the metal cover 21 constituting the cap 20 is fixed using the pressing portion 31b.
- the protrusion 21c formed on the lower surface of the flange portion 21a is disposed on the welding base 12 bonded onto the base 11.
- the pressing portion 31b is pressed against the upper surface of the flange portion 21a, and a predetermined current is passed through the pressing portion 31b ⁇ the flange portion 21a ⁇ the welding table 12 ⁇ the base 11 ⁇ the fixing table 31a, thereby lowering the lower surface of the flange portion 21a.
- the protrusion 21c is heated and melted, and the metal cover 21 and the welding base 12 are welded.
- the metal cover 21 and the welding table 12 are made of the same material system such as 42 alloy, the metal cover 21 and the welding table 12 can be easily separated after the protrusion 21c of the metal cover 21 is melted by heating. Join. As shown in FIG. 3, Joule heat generated from the semiconductor light emitting element 3 is conducted through the base 11 having a high thermal conductivity and is efficiently radiated to the outside of the fixing jig 50 and the like. For this reason, since the temperature rise of the semiconductor light emitting element 3 can be suppressed, the deterioration of the operating characteristics of the semiconductor light emitting element 3 can be prevented.
- FIG. 7 is a table showing the thermal conductivity, thermal expansion coefficient, and the like of typical materials that can be used for the package of the semiconductor light emitting device.
- high thermal conductivity materials constituting semiconductor light emitting device packages are pure copper such as oxygen-free copper and copper alloys such as copper tungsten, steel (SPC, Cold Roller Steel), Fe: Ni alloy.
- Iron / stainless steel materials such as (42 alloy) and Kovar (Fe—Ni—Co alloy) or aluminum materials such as aluminum alloy (A5052) and pure aluminum are the mainstream.
- BK7 is mentioned as a typical thing in the optical glass which comprises a transparent optical element. As can be seen from FIG.
- the optical glass constituting the transparent optical element provided on the cap has a low coefficient of thermal expansion of 7.5 ⁇ 10 ⁇ 6 / K, so that the metal cover is in close contact with the transparent optical element 22 according to the present embodiment. It is necessary to set the thermal expansion coefficient of 21 and the fixing material 23 low.
- the constituent material of the metal cover 21 is required to satisfy this condition, to be excellent in press workability, and to be low in cost. Therefore, an iron-based material such as Kovar is used as the constituent material of the metal cover 21.
- the fixing material 23 is made of soft glass in order to increase the adhesion between the transparent optical element 22 and the metal cover 21.
- the thermal expansion of iron and nickel such as Kovar, Fe: Ni alloy (42 alloy), steel (SPC), or nickel, is performed on the welding table 12.
- a material having a relatively small coefficient and being close to the material constituting the metal cover 21 is used.
- the base 11 and the block portion 11b gold, silver, copper, copper alloy, aluminum, aluminum alloy or the like, which is a material having high thermal conductivity, is preferable. More specifically, copper, aluminum, an aluminum alloy, or the like that is relatively low cost and excellent in press properties is preferable.
- the semiconductor light emitting device 1A according to the first modification has a step portion 11d having a lower outer side (side surface side) formed at the peripheral edge of the main surface of the base 11A constituting the package 10A. ing.
- the welding table 12 is hermetically bonded with an adhesive 13 made of silver brazing or the like on the bottom surface of the step portion 11d formed so as to surround the block portion 11b and the through hole 11c so as to contact the wall surface.
- the contact area between the base 11A and the welding table 12 increases, so that the adhesion between the welding table 12 and the base 11A can be improved. Furthermore, in the bonding process of the welding table 12 shown in FIG. 4, the alignment when forming the welding table 12 on the main surface of the base 11A becomes easy.
- FIG. 9 shows a result obtained by calculating a change in thermal resistance of the semiconductor light emitting device 1A when the thermal conductivity of the base 11A of the semiconductor light emitting device 1A according to the first modification is changed.
- the planar shape of the base 11A constituting the package 10A is circular, and the outer diameter D1 is 5.6 mm.
- the base 11 ⁇ / b> A is in contact with the fixing jig 50 from the outer peripheral portion of the back surface opposite to the main surface 11 a to the inner diameter D ⁇ b> 2 of 4.5 mm.
- the fixing jig 50 can be regarded as an infinite heat radiation surface.
- Oxygen-free copper is used for the block part 11b, and its thermal conductivity is 390 W / mK. As a result, as the thermal conductivity of the base 11A increases, the thermal resistance of the semiconductor light emitting device 1A decreases significantly. In particular, it can be seen that when the thermal conductivity of the base 11A is 200 W / mK or more, the thermal resistance of the semiconductor light emitting device 1A is saturated and becomes constant at about 12 K / W.
- Structure A and structure B are measurement data for a semiconductor light emitting device manufactured by the present inventors.
- the base 11A and the block portion 11b are integrally molded, and oxygen-free copper (OFCu) is used as a constituent material thereof.
- the structure B is for comparison, and steel (iron, SPC) is used for the base 11A, oxygen-free copper is used for the constituent material of the block portion 11b, and both are joined by brazing.
- 10 (a) and 10 (b) compare the current-light output characteristics and the relationship between the light output-power / light conversion efficiency in each of the semiconductor light emitting devices according to the structures A and B, respectively. Show. First, in the current-light output characteristics shown in FIG. 10A, the maximum light output of the structure A is improved from 2.0 W to 2.5 W as compared with the structure B.
- the structure A is improved by about 10% compared to the structure B.
- the improvement in these characteristics is because the thermal resistance in the semiconductor light emitting device 1A is reduced by changing the material of the base 11A constituting the package 10A to a material having a high thermal conductivity.
- the structure according to this embodiment can greatly improve the characteristics of the semiconductor light emitting device.
- the semiconductor light emitting device 1B according to the second modification has a groove portion 11e formed so as to surround the block portion 11b and the through hole 11c at the peripheral portion of the main surface of the base 11B constituting the package 10B.
- the welding table 12 is hermetically bonded with an adhesive 13 made of silver brazing or the like so as to be embedded in the groove 11e.
- the contact area between the base 11B and the welding base 12 is increased by the bottom surface and both wall surfaces of the groove 11e, so that the adhesion between the welding base 12 and the base 11B is further improved.
- the welding table 12 can be formed on the main surface of the base 11 ⁇ / b> B in a self-aligning manner, so that the positioning of the welding table 12 becomes easy.
- the semiconductor light emitting device 1C according to the third modification has a step portion 11d1 whose outer side (side surface side) is formed low on the peripheral edge of the main surface of the base 11C constituting the package 10C. ing.
- the step portion 11d1 is formed up to a region including the formation region of the through hole 11c, that is, a region surrounding the vicinity of the side surface of the block portion 11b. Yes. Therefore, each through-hole 11c is formed in the area
- a welding base 12 made of, for example, Fe: Ni alloy (42 alloy) having a smaller thermal expansion coefficient than that of the base 11C is bonded to the main surface 11a of the base 11C by an adhesive 13 made of, for example, silver brazing.
- the welding table 12 is annular, and an opening for penetrating the leads 15 and 16 is formed in a part of the welding table 12 in a region corresponding to the through hole 11c of the base 11C.
- the welding table 12 is hermetically bonded to the bottom and side surfaces of the step portion 11d1. Furthermore, the leads 15 and 16 are fixed to the through holes 11c and the openings of the welding table 12 via an insulating material 18 made of, for example, hard glass.
- the peripheral portion of the base 11C is sandwiched and fixed by the fixing jig 50 and the pressing jig 51 from above and below.
- the emitted light 70 emitted from the semiconductor light emitting element 3 in the cap 20 has a main line 70a (normal line of the main surface 11a) in the direction toward the transparent optical element 22 provided in the light extraction opening 21b as a central axis. Radiated, transmitted through the transparent optical element 22, and emitted to the outside of the package 10C. On the other hand, Joule heat generated from the semiconductor light emitting element 3 is conducted through the submount 6, the block portion 11b, and the base 11C, and is released to the outside of the package 10C.
- the upper part of the through hole 11c in each of the leads 15 and 16 is covered with the welding base 12 made of 42 alloy having a small thermal expansion coefficient. Therefore, even if the temperature of the semiconductor light emitting device 1C rises, the difference in thermal expansion coefficient between the leads 15, 16 and the insulating materials 18, 19 and the welding base 12 is small, so that the airtightness in the cap 20 is improved. can do. As a result, the deterioration of the operating characteristics of the semiconductor light emitting element 3 can be sufficiently suppressed.
- the thickness of the base 11D constituting the package 10D is set to be equal to the width dimension of the base 11D.
- the planar shape of the base 11D is a polygonal shape, for example, a rectangular shape.
- the area of the side surface of the base 11D is increased and the four side surfaces have a planar shape, so that the contact area with the fixing jig and the like is also increased.
- Joule heat from the semiconductor light emitting element 3 can be efficiently exhausted.
- the semiconductor light emitting device 1D according to the second embodiment has the same configuration as that of the third modification of the first embodiment, in which the welding base 12 is formed in the step portion 11d1 having a large bottom area.
- the configuration of the welding stand 12 is not limited, and may be the same configuration as that of the first embodiment, the first modified example, or the second modified example.
- the semiconductor light emitting device 3A is, for example, a semiconductor laser array having a plurality of stripes.
- a high output nitride having an emission wavelength in the range of 380 nm to 550 nm and an optical output exceeding 1 W.
- Semiconductor laser device The semiconductor light emitting element 3A is fixed to the block portion 11b of the base 11D constituting the package 10D via the submount 6.
- 16 (a) and 16 (b) show an example of a method for fixing the semiconductor light emitting device 1D according to the second embodiment to a fixing jig.
- the first fixing jig 150 and the second fixing jig 160 that are paired with each other have recesses that fit into the two side surfaces of the package 10D of the semiconductor light emitting device 1D.
- the first fixing jig 150 is provided with screw holes 155a and 155b on the side surface on the concave side so that the fixing jigs 150 and 160 can be screwed to each other.
- the first fixing jig 150 and the second fixing jig 160 have mounting holes 150a and 150b and 160a and 160b so that the main surface penetrates in the front and back direction and can be attached to other members. Each is provided.
- the package 10D constituting the semiconductor light emitting device 1D is held so as to be sandwiched between the first fixing jig 150 and the second fixing jig 160, and is fixed by screws 180a and 180b.
- the opposing surfaces of the first fixing jig 150 and the second fixing jig 160 are not in contact with each other, that is, a gap is formed. If it does in this way, the planar side surface of base 11D which comprises package 10D can be made to contact reliably the inner surface of the recessed part of each fixing jig 150,160.
- the semiconductor light emitting device 1 ⁇ / b> D is fixed with the side surface of the base 11 ⁇ / b> D sandwiched between the first fixing jig 150 and the second fixing jig 160.
- the semiconductor light emitting element 3A converts the power supplied from the leads 14, 15 and 16 and the wires 30a, 30b and 30c and other leads and wires (not shown) into light.
- the converted outgoing light 70 is transmitted through the transparent optical element 22 with the main line 70a (normal line of the main surface 11a) as the central axis, and is output to the outside.
- Joule heat generated from the semiconductor light emitting element 3A can be radiated to the fixing jigs 150 and 160 from a plurality of relatively wide planar side surfaces of the base 11D.
- the planar shape of the base 11E of the package according to the first modification is triangular.
- the first fixing jig 150 is formed with a recess that fits with a planar portion of one side surface of the base 11E.
- the second fixing jig 160 is formed with a recess that fits with two adjacent side surfaces of the base 11E.
- the base 11E of the package and the fixing jigs 150 and 160 can be accurately fixed.
- the side surfaces of the base 11E and the inner surfaces of the recesses provided in the fixing jigs 150 and 160 are in contact with each other, the heat generated from the semiconductor light emitting device 1D can be efficiently radiated to the outside.
- the planar shape of the base 11F of the package according to the second modification is a pentagonal shape.
- the first fixing jig 150 is formed with a recess that fits with a planar portion of one side surface of the base 11F.
- the second fixing jig 160 is formed with a recess that fits with two adjacent side surfaces of the base 11F.
- the base 11F of the package and the fixing jigs 150 and 160 can be accurately fixed by sandwiching the three side surfaces of the base 11F from opposite sides.
- the side surfaces of the base 11F and the inner surfaces of the recesses provided in the fixing jigs 150 and 160 are in contact with each other, the heat generated from the semiconductor light emitting device 1D can be efficiently radiated to the outside.
- the planar shape of the base 11G of the package according to the third modification is a hexagonal shape.
- the first fixing jig 150 and the second process jig 160 are each formed with a recess that fits with a planar portion of two adjacent side surfaces of the base 11G.
- the base 11G of the package and the fixing jigs 150 and 160 can be accurately fixed by sandwiching the four opposing side surfaces of the base 11G from the opposing sides.
- the side surfaces of the base 11G and the inner surfaces of the recesses provided in the fixing jigs 150 and 160 are in contact with each other, the heat generated from the semiconductor light emitting device 1D can be efficiently radiated to the outside.
- the semiconductor light emitting element 3A is a high power nitride semiconductor laser array having an emission wavelength of 380 nm to 550 nm and an optical output exceeding 1 W, for example.
- a single-wavelength semiconductor laser element may be used as the semiconductor light emitting element, and a nitride semiconductor superluminescent diode with low speckle noise that is suitable for a backlight of an image display device may be used.
- a semiconductor laser element or a super luminescent diode made of an (Al, In, Ga, P, As) -based material having a wavelength of 550 nm to 660 nm may be used.
- the semiconductor light-emitting device 1D which concerns on 2nd Embodiment provides the welding stand 12 in the junction part of base 11D and the metal cover 21, in this embodiment, the conventional welding stand 12 is not provided. Even if it is a semiconductor light-emitting device, if the fixing jig 150,160 which concerns on this embodiment which makes the base thickness thick, makes the planar shape polygonal shape, and also adhere
- the light source device 201 includes, for example, six semiconductor light emitting devices 1D according to the second embodiment, and a first fixing jig that fixes and holds them. 250, a second fixing jig 260, and a third fixing jig 270.
- the first fixing jig 250 is provided with three concave portions that are respectively fitted to two adjacent side surfaces of the package 10D constituting the semiconductor light emitting device 1D on one side surface thereof.
- the second fixing jig 260 is provided with six concave portions that are respectively fitted to two adjacent side surfaces of each base 10D on two side surfaces facing each other.
- the third fixing jig 270 is also provided with three concave portions that are respectively fitted to two adjacent side surfaces of the base 10 ⁇ / b> D on the side surface facing the second fixing jig 260.
- the fixing jigs 250, 260, and 270 are provided with mounting holes 250a, 250b, 260a, 260b, 270a, and 270b that penetrate the main surfaces in the front and back directions and can be attached to other members. ing.
- the six semiconductor light emitting devices 1D are sandwiched by the fixing jigs 250, 260, and 270 from opposite diagonal directions, and fixed by the screws 280a to 280d and 281a to 281d, respectively. .
- the planar shape of the base 11D constituting the semiconductor light emitting device 1D is configured as a polygonal shape with a plurality of planes, so that the concave portions of the fixing jigs 250, 260, and 270 are formed. Since it is in surface contact with the inner surface, heat generated by each semiconductor light emitting device 1D can be efficiently radiated to each fixing jig 250, 260, and 270.
- the mutually opposing surfaces of the fixing jigs 250, 260, and 270 do not contact each other, that is, a gap is formed. If it does in this way, the planar side surface of package 10D can be reliably made to contact the inner surface of the recessed part of each fixing jig 250,260,270.
- the semiconductor light emitting device 1D including the semiconductor light emitting element 3A having the laser array structure is used for the light source device, but the present invention is not limited to this. That is, a single-wavelength semiconductor laser element may be used as the semiconductor light-emitting element, and a nitride semiconductor superluminescent diode with low speckle noise that is suitable for a backlight of an image display device may be used. Good.
- the same semiconductor light emitting device 1D is used for the plurality of semiconductor light emitting devices used in the light source device, but the present invention is not limited to this.
- a semiconductor light-emitting element mounted on a semiconductor light-emitting device used in a light source device a nitride-based semiconductor light-emitting element having an emission wavelength of 380 nm to 490 nm, a nitride-based semiconductor light-emitting element having an emission wavelength of 490 nm to 550 nm, and an emission wavelength of A total of six 550 nm to 640 nm (Al, In, Ga, P, As) -based semiconductor light emitting elements may be arranged so that white light is emitted as light emitted from the light source device. .
- the semiconductor light emitting device 1D according to the second embodiment is used as the semiconductor light emitting device, but the configuration of the welding table 12 is the same as that of the first embodiment, the first modified example, or A configuration equivalent to that of the second modification may be used.
- the semiconductor light emitting device 1D according to the third embodiment has the welding table 12 provided at the joint between the base 11D and the metal cover 21, but in this embodiment, the conventional welding table 12 is not provided.
- the fixing jigs 250, 260, and 270 according to the present embodiment are used in which the thickness of the base is increased, the planar shape is a polygonal shape, and the surface is fixed in close contact with the side surface.
- the semiconductor light emitting device and the light source device according to the present invention can efficiently dissipate Joule heat generated from the semiconductor light emitting element to the outside of the package while maintaining the airtightness of the metal cover that seals the semiconductor light emitting element. It is useful for a semiconductor light emitting device and a light source device having a high intensity of emitted light used for a display such as a projector.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Led Device Packages (AREA)
Abstract
A semiconductor light emitting device (1) comprises: a semiconductor light emitting element (3); a package (10) that holds the semiconductor light emitting element (3); and a metal cover (21) that is affixed to the package (10) and encapsulates the semiconductor light emitting element (3). The package (10) has: a base (11); and a welding stage (12), which is formed on a main surface of the base (11), and onto which the metal cover (21) is resistance welded. The heat conductivity of a first metal material that constitutes the base (11) is higher than the heat conductivity of a second metal material that constitutes the metal cover (21). The heat conductivity difference between the base (11) and the welding stage (12) is smaller than the heat conductivity difference between the base (11) and the metal cover (21).
Description
本発明は、プロジェクタ等のディスプレイに用いる出射光強度が大きい半導体発光装置及び光源装置に関する。
The present invention relates to a semiconductor light emitting device and a light source device having a large emitted light intensity used for a display such as a projector.
近年、レーザディスプレイ又はプロジェクタ等の画像表示装置の光源用途、又はレーザスクライビング装置若しくは薄膜のアニール装置等の産業用加工装置の光源用途として、光出力が1Wを超える高光出力の半導体レーザ装置を用いた半導体発光装置が盛んに開発されている。このような半導体発光装置の一例として、例えば、半導体レーザ素子等の半導体発光素子を金属からなる基台に固着し、さらに、ガラス窓を設けたキャップ部材により封止された半導体発光装置が、下記の特許文献1に公開されている。
In recent years, a semiconductor laser device having a high light output exceeding 1 W has been used as a light source for an image display device such as a laser display or a projector, or as a light source for an industrial processing device such as a laser scribing device or a thin film annealing device. Semiconductor light emitting devices have been actively developed. As an example of such a semiconductor light emitting device, for example, a semiconductor light emitting device in which a semiconductor light emitting element such as a semiconductor laser element is fixed to a base made of metal and sealed with a cap member provided with a glass window is as follows. Is disclosed in Japanese Patent Application Laid-Open No. H10-228707.
以下、図23を用いて従来の半導体発光装置について説明する。図23に示すように、従来の半導体発光装置300は、半導体レーザ素子301と、該半導体レーザ素子301を保持するパッケージ320と、半導体レーザ素子301を覆ってパッケージ320と固着され、該半導体レーザ素子301を封止するキャップ部材330とから構成されている。
Hereinafter, a conventional semiconductor light emitting device will be described with reference to FIG. As shown in FIG. 23, a conventional semiconductor light emitting device 300 includes a semiconductor laser element 301, a package 320 for holding the semiconductor laser element 301, a semiconductor laser element 301 covering the semiconductor laser element 301, and being fixed to the package 320. It is comprised from the cap member 330 which seals 301. FIG.
パッケージ320は、鉄(Fe)系材料からなる基台(ステム)321と、その上に固着された無酸素銅からなるブロック部(ヒートシンク)322と、基台321にその表裏方向に設けられた貫通孔321a、321bにそれぞれガラスからなる絶縁リング326を介して固着されたリードピン324、325と、基台321の裏面に直接に固着されたリードピン323とから構成される。
The package 320 is provided on a base (stem) 321 made of an iron (Fe) -based material, a block portion (heat sink) 322 made of oxygen-free copper fixed thereon, and a base 321 in the front-back direction. The lead pins 324 and 325 are fixed to the through holes 321a and 321b through insulating rings 326 made of glass, respectively, and the lead pins 323 are directly fixed to the back surface of the base 321.
半導体レーザ素子301は、サブマウント302を介してブロック部322に固着され、2本のワイヤ327、328によってそれぞれリードピン324、325と電気的に接続される。
The semiconductor laser element 301 is fixed to the block portion 322 via the submount 302 and is electrically connected to the lead pins 324 and 325 by the two wires 327 and 328, respectively.
キャップ部材330は、コバール(Kovar:Fe-Ni-Co合金)からなる金属カバーと、軟質ガラスで固着された、光学ガラス等からなる光透過窓334により構成される。金属カバーは、円筒状の側壁部331と、該側壁部331の一端を閉じると共に半導体レーザ素子301からのレーザ光を外部に取り出す出射孔332aが形成された天面部332と、側壁部331の他端に形成され、半導体レーザ素子301が保持される基台321の上面に抵抗溶接されるフランジ部333とを有している。光透過窓334は、出射孔332aを塞ぐように天面部332の内側に固着される。
The cap member 330 includes a metal cover made of Kovar (Kovar: Fe—Ni—Co alloy) and a light transmission window 334 made of optical glass and the like fixed by soft glass. The metal cover includes a cylindrical side wall portion 331, a top surface portion 332 in which one end of the side wall portion 331 is closed and an emission hole 332 a for extracting laser light from the semiconductor laser element 301 to the outside is formed. A flange portion 333 formed at the end and resistance-welded to the upper surface of the base 321 on which the semiconductor laser element 301 is held is provided. The light transmission window 334 is fixed to the inside of the top surface portion 332 so as to block the emission hole 332a.
このような半導体発光装置を光源として用いる場合の固定方法として、例えば特許文献2のような構成が公開されている。
As a fixing method when such a semiconductor light emitting device is used as a light source, for example, a configuration as disclosed in Patent Document 2 is disclosed.
次に、図24を用いて従来の半導体発光装置の固定方法について説明する。半導体レーザ素子(図示せず)を保持する円盤状の基台321に該半導体レーザ素子を気密に封止するためのキャップ部材330が固着された半導体発光装置300を固定する固定冶具400には、円盤状の基台321よりも大きな開口部400aが形成されている。開口部400aの壁面には、その上面で基台321を支持する段差部400bが設けられている。ここで、固定冶具400の開口部400aの開口径は、半導体発光装置300の基台321の嵌合が容易となるように、該基台321の径よりも若干大きく設定されている。
Next, a conventional method for fixing a semiconductor light emitting device will be described with reference to FIG. The fixing jig 400 for fixing the semiconductor light emitting device 300 in which a cap member 330 for hermetically sealing the semiconductor laser element is fixed to a disk-shaped base 321 holding a semiconductor laser element (not shown) is An opening 400a larger than the disk-shaped base 321 is formed. On the wall surface of the opening 400a, a stepped portion 400b that supports the base 321 on its upper surface is provided. Here, the opening diameter of the opening 400 a of the fixing jig 400 is set to be slightly larger than the diameter of the base 321 so that the base 321 of the semiconductor light emitting device 300 can be easily fitted.
しかしながら、前記従来の半導体発光装置には、製造上の2つの問題があることを本願発明者らは見出した。
However, the present inventors have found that the conventional semiconductor light emitting device has two problems in manufacturing.
第1に、半導体発光素子の高光出力を図るべくその放熱性を高めるために、パッケージを構成する基台に熱伝導率が高い材料として、例えば無酸素銅を用いようとした場合に、無酸素銅からなる基台は、光透過窓を構成する透明光学素子との熱膨張係数の値が近いコバールからなるキャップ部材とは抵抗溶接ができなくなる。これは、無酸素銅の熱伝導率及び電気伝導率がコバールよりも十分に高いため、コバールを抵抗溶接するための電流量では、基台側の溶接箇所が十分に発熱せず、さらには、発生した熱が周辺に拡散してしまうためである。一方、基台側の溶接箇所を過熱するために、溶接時の電流量を増加した場合は、キャップ部材側が過剰に温度上昇してしまう。このため、キャップ部材と基台との密着性を十分に高くすることができなくなる。その結果、キャップ部材の気密性が低下して、半導体発光素子の動作特性(光学特性)が低下する。
First, in order to increase the heat dissipation of the semiconductor light emitting device in order to achieve high light output, oxygen-free copper is used as a material having high thermal conductivity for the base constituting the package, for example, oxygen-free copper. The base made of copper cannot be resistance-welded with a cap member made of Kovar having a thermal expansion coefficient close to that of the transparent optical element constituting the light transmission window. This is because the heat conductivity and electrical conductivity of oxygen-free copper are sufficiently higher than Kovar, so the amount of current for resistance welding of Kovar does not generate sufficient heat at the welding site on the base side, This is because the generated heat diffuses to the periphery. On the other hand, when the amount of current during welding is increased in order to overheat the welded portion on the base side, the temperature on the cap member side excessively increases. For this reason, the adhesiveness between the cap member and the base cannot be sufficiently increased. As a result, the airtightness of the cap member is lowered, and the operating characteristics (optical characteristics) of the semiconductor light emitting element are lowered.
これに対し、キャップ部材を構成する金属カバーの構成材料を基台と合わせるように銅等の熱伝導率が高い材料を用いた場合は、光透過窓と軟質ガラスと金属カバーとの熱膨張係数の差が大きくなる。このため、キャップ部材の作製時に光透過窓と金属カバーとを接着させる軟質ガラスの接着強度が低下して気密性が低下する。
On the other hand, when a material with high thermal conductivity such as copper is used so that the constituent material of the metal cover constituting the cap member matches the base, the thermal expansion coefficient of the light transmitting window, the soft glass, and the metal cover The difference becomes larger. For this reason, the adhesive strength of the soft glass which adheres the light transmission window and the metal cover during the production of the cap member is lowered, and the airtightness is lowered.
なお、機密性の低下を防止するため、キャップ部材と基台とを銀ろう等によってろう付けする方法も考えられるが、ろう付けは半導体発光素子を1000℃近くの高温にさらすことになるため、半導体発光素子内の半導体積層構造が変質してしまい、発光素子の動作特性を大きく劣化させてしまう。
In order to prevent a decrease in confidentiality, a method of brazing the cap member and the base with silver brazing or the like is also conceivable, but brazing exposes the semiconductor light emitting element to a high temperature near 1000 ° C., The semiconductor multilayer structure in the semiconductor light emitting element is altered, and the operating characteristics of the light emitting element are greatly deteriorated.
以上から、パッケージを構成する基台に熱伝導率が高い材料を用いて、半導体発光装置の放熱性を向上しようとすると、基台の構成材料が例えば銅であれば、必然的にその熱膨張係数も大きくなってしまい、キャップ部材との気密性が低下してしまう。一方、光透過窓と金属カバーとの気密性を確保するという観点から、金属カバーに熱伝導率が高い材料(熱膨張係数が大きい材料)を用いることができない。
From the above, when trying to improve the heat dissipation of the semiconductor light emitting device by using a material having high thermal conductivity for the base constituting the package, if the constituent material of the base is, for example, copper, inevitably its thermal expansion. A coefficient also becomes large and the airtightness with a cap member will fall. On the other hand, from the viewpoint of ensuring airtightness between the light transmission window and the metal cover, a material having a high thermal conductivity (a material having a large thermal expansion coefficient) cannot be used for the metal cover.
第2に、半導体発光装置における半導体発光素子からその動作中に発生するジュール熱に関しては、従来の構成においては、上述したように、パッケージの基台よりも大きい外形の固定冶具に取り付けられるため、基台と固定冶具との密着性が不十分となる。その結果、半導体発光素子の温度上昇を十分に抑えることができないという問題がある。
Secondly, regarding the Joule heat generated during the operation from the semiconductor light emitting element in the semiconductor light emitting device, in the conventional configuration, as described above, it is attached to a fixing jig having an outer shape larger than the base of the package. Adhesiveness between the base and the fixing jig becomes insufficient. As a result, there is a problem that the temperature rise of the semiconductor light emitting element cannot be sufficiently suppressed.
本発明は、前記の問題を解決し、半導体発光素子を封止する金属カバーの気密性を維持しながら、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができるようにすることを目的とする。
The present invention solves the above-described problems, and can efficiently dissipate Joule heat generated from the semiconductor light emitting element to the outside of the package while maintaining the airtightness of the metal cover for sealing the semiconductor light emitting element. The purpose is to do.
前記の目的を達成するため、本発明は、半導体発光装置を、パッケージを構成する基台の構成材料の熱伝導率を金属カバーの熱伝導率よりも大きくし、且つ基台の上に固着する金属カバーとの間に、基台と比べて金属カバーとの熱伝導率の差が小さい溶接台を設ける構成とする。
In order to achieve the above-mentioned object, the present invention fixes a semiconductor light-emitting device on the base by making the thermal conductivity of the constituent material of the base constituting the package larger than the thermal conductivity of the metal cover. A welding stand is provided between the metal cover and the metal cover, which has a smaller difference in thermal conductivity than the base cover.
具体的に、本発明に係る半導体発光装置は、半導体発光素子と、半導体発光素子を保持するパッケージと、パッケージに固着され、半導体発光素子を封止する金属カバーとを備え、パッケージは、基台と、該基台の主面上に形成され、金属カバーを抵抗溶接可能な溶接台とを有し、基台を構成する第1の金属材料の熱伝導率は、金属カバーを構成する第2の金属材料の熱伝導率よりも大きく、金属カバーと溶接台との熱伝導率の差は、金属カバーと基台との熱伝導率の差よりも小さい。
Specifically, a semiconductor light emitting device according to the present invention includes a semiconductor light emitting element, a package that holds the semiconductor light emitting element, and a metal cover that is fixed to the package and seals the semiconductor light emitting element. And a welding base formed on the main surface of the base and capable of resistance-welding the metal cover, and the thermal conductivity of the first metal material constituting the base is a second that constitutes the metal cover. The difference in thermal conductivity between the metal cover and the base is smaller than the difference in thermal conductivity between the metal cover and the base.
本発明の半導体発光装置によると、基台を構成する第1の金属材料の熱伝導率は、金属カバーを構成する第2の金属材料の熱伝導率よりも大きく、金属カバーと溶接台との熱伝導率の差は、金属カバーと基台との熱伝導率の差よりも小さい。このため、金属カバーと溶接台との熱伝導率及び電気伝導率の差を小さくすることができるので、金属カバーと溶接台とを抵抗溶接により容易に接合することができる。その結果、基台と金属カバーとの密着性が向上して、半導体発光素子の特性の劣化を防止することができる。
According to the semiconductor light emitting device of the present invention, the thermal conductivity of the first metal material constituting the base is larger than the thermal conductivity of the second metal material constituting the metal cover. The difference in thermal conductivity is smaller than the difference in thermal conductivity between the metal cover and the base. For this reason, since the difference of the heat conductivity and electrical conductivity of a metal cover and a welding stand can be made small, a metal cover and a welding stand can be joined easily by resistance welding. As a result, the adhesion between the base and the metal cover is improved, and deterioration of the characteristics of the semiconductor light emitting element can be prevented.
本発明の半導体発光装置において、金属カバーには、半導体発光素子と対向する位置に開口部が設けられると共に、開口部を覆うように透明光学素子が固着されており、透明光学素子と金属カバーとの熱膨張係数の差は、透明光学素子と基台との熱膨張係数の差よりも小さいことが好ましい。
In the semiconductor light emitting device of the present invention, the metal cover is provided with an opening at a position facing the semiconductor light emitting element, and a transparent optical element is fixed so as to cover the opening. The difference in thermal expansion coefficient is preferably smaller than the difference in thermal expansion coefficient between the transparent optical element and the base.
このようにすると、半導体発光素子からの光を効率良くパッケージの外部に取り出すことができると共に、半導体発光装置の気密性が劣化するのを防止することができるため、半導体発光素子の特性の劣化を防止することができる。
In this way, the light from the semiconductor light emitting element can be efficiently extracted outside the package, and the airtightness of the semiconductor light emitting device can be prevented from being deteriorated. Can be prevented.
本発明の半導体発光装置において、基台には、少なくとも1つの貫通孔が形成され、パッケージは、貫通孔に絶縁材を介在させて固着され且つ半導体発光素子と電気的に接続されるリードを有していてもよい。
In the semiconductor light emitting device of the present invention, at least one through hole is formed in the base, and the package has a lead fixed to the through hole with an insulating material interposed therebetween and electrically connected to the semiconductor light emitting element. You may do it.
このようにすると、半導体発光素子に容易に且つ確実に電力を供給することができる。
This makes it possible to easily and reliably supply power to the semiconductor light emitting element.
この場合に、基台の主面には、半導体発光素子を固着するブロック部が設けられ、溶接台はブロック部と貫通孔とを囲むように基台の主面上に形成されていてもよい。
In this case, the main surface of the base may be provided with a block portion for fixing the semiconductor light emitting element, and the welding base may be formed on the main surface of the base so as to surround the block portion and the through hole. .
このようにすると、半導体発光素子の気密性を維持しつつ、リードを通して半導体発光素子に外部から電力を供給することができる。
In this way, power can be supplied from the outside to the semiconductor light emitting element through the leads while maintaining the airtightness of the semiconductor light emitting element.
さらにこの場合に、基台の主面の周縁部には、段差部が設けられており、溶接台は段差部に形成されていてもよい。
Furthermore, in this case, a stepped portion may be provided on the peripheral edge of the main surface of the base, and the welding table may be formed on the stepped portion.
また、この場合に、基台の主面の周縁部には、環状の溝部が設けられており、溶接台は溝部に形成されていてもよい。
In this case, an annular groove is provided on the peripheral edge of the main surface of the base, and the welding table may be formed in the groove.
このようにすると、溶接台が段差部又は溝部に形成されるより、溶接台の基台との接触面積が大きくなって、溶接台の基台との密着性が向上する。さらに、溶接台を形成する際の位置合わせが容易となる。
In this case, the contact area with the base of the welding table becomes larger and the adhesion with the base of the welding table is improved than when the welding table is formed in the stepped portion or the groove portion. Furthermore, the alignment at the time of forming the welding table is facilitated.
また、この場合に、溶接台は貫通孔を含む領域に形成され、溶接台と貫通孔の絶縁材とは互いに接続されていてもよい。
In this case, the welding table may be formed in a region including the through hole, and the welding table and the insulating material of the through hole may be connected to each other.
このようにすると、リードを固着する貫通孔の一部を基台と異なる材料を用いて形成することができるため、溶接台の構成材料が絶縁材の構成材料の熱膨張係数と近ければ、リード及び絶縁材の固着部分の気密性を向上することができる。
In this way, a part of the through hole for fixing the lead can be formed using a material different from that of the base. Therefore, if the constituent material of the welding base is close to the thermal expansion coefficient of the constituent material of the insulating material, the lead In addition, the airtightness of the fixed portion of the insulating material can be improved.
本発明の半導体発光装置において、基台はその平面形状が多角形状であってもよい。
In the semiconductor light emitting device of the present invention, the base may have a polygonal planar shape.
このようにすると、基台の側面が平面状となるため、基台を固定する固定治具との接触面積を容易に大きくすることができる。その結果、半導体発光素子から発生したジュール熱をパッケージの基台の側面を通してパッケージの外部に放熱させることができる。
In this case, since the side surface of the base is flat, the contact area with the fixing jig for fixing the base can be easily increased. As a result, Joule heat generated from the semiconductor light emitting element can be radiated to the outside of the package through the side surface of the package base.
この場合に、基台はその平面形状が四角形状であってもよい。
In this case, the base may have a quadrangular planar shape.
このようにすると、基台の設計が容易となる。
This makes it easy to design the base.
本発明の半導体発光装置において、第1の金属材料は、銅を主成分とすることが好ましい。
In the semiconductor light emitting device of the present invention, the first metal material is preferably composed mainly of copper.
このようにすると、基台の構成材料に熱伝導率が高い材料を用いることができるため、半導体発光素子の温度上昇を抑制することできる。
In this case, a material having high thermal conductivity can be used as the constituent material of the base, so that an increase in the temperature of the semiconductor light emitting element can be suppressed.
この場合に、第2の金属材料は、鉄を含んでいてもよい。
In this case, the second metal material may contain iron.
このようにすると、パッケージと金属カバーとを抵抗溶接(電気溶接)により接合することができるため、容易に気密封止することができる。
In this way, the package and the metal cover can be joined together by resistance welding (electric welding), so that it can be hermetically sealed easily.
本発明の半導体発光装置において、半導体発光素子は、半導体レーザ素子であってもよい。
In the semiconductor light emitting device of the present invention, the semiconductor light emitting element may be a semiconductor laser element.
また、本発明の半導体発光装置において、半導体発光素子は、スーパールミネッセントダイオードであってもよい。
In the semiconductor light emitting device of the present invention, the semiconductor light emitting element may be a super luminescent diode.
いずれの場合も、半導体発光素子からの光の指向性を高くすることができるため、光取り出し用の開口部から、光を高効率で外部へ取り出すことができる。
In any case, since the directivity of light from the semiconductor light emitting device can be increased, light can be extracted to the outside with high efficiency from the light extraction opening.
本発明に係る第1の光源装置は、本発明の半導体発光装置と、基台を該基台の側面方向からそれぞれ挟むことにより、半導体発光装置を保持する複数の固定治具とを備えている。
A first light source device according to the present invention includes the semiconductor light emitting device of the present invention and a plurality of fixing jigs for holding the semiconductor light emitting device by sandwiching the base from the side surface direction of the base. .
第1の光源装置によると、1つ以上、特に複数の半導体発光装置を用いた光源装置において、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができるため、半導体発光装置の特性の劣化を防止することができる。
According to the first light source device, in a light source device using one or more, particularly a plurality of semiconductor light emitting devices, Joule heat generated from the semiconductor light emitting elements can be efficiently radiated to the outside of the package. It is possible to prevent the deterioration of the characteristics.
本発明に係る第2の光源装置は、半導体発光素子と、該半導体発光素子を保持するパッケージと、該パッケージに固着され、半導体発光素子を封止する金属カバーとを有する半導体発光装置と、基台を該基台の側面方向からそれぞれ挟むことにより、半導体発光装置を保持する複数の固定治具とを備えている。
A second light source device according to the present invention includes a semiconductor light emitting device having a semiconductor light emitting element, a package holding the semiconductor light emitting element, a metal cover fixed to the package and sealing the semiconductor light emitting element, A plurality of fixing jigs for holding the semiconductor light emitting device are provided by sandwiching the base from the side surface direction of the base.
第2の光源装置によると、1つ以上、特に複数の半導体発光装置を用いた光源装置において、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができるため、半導体発光装置の特性の劣化を防止することができる。
According to the second light source device, in a light source device using one or more, particularly a plurality of semiconductor light emitting devices, Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package. It is possible to prevent the deterioration of the characteristics.
第1又は第2の光源装置において、複数の固定冶具同士は、互いに接触しないことが好ましい。
In the first or second light source device, it is preferable that the plurality of fixing jigs do not contact each other.
このようにすると、半導体発光装置を用いた光源装置において、各半導体発光装置における基台の側面と固定冶具との密着性を向上することができる。その結果、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができる。
Thus, in the light source device using the semiconductor light emitting device, the adhesion between the side surface of the base and the fixing jig in each semiconductor light emitting device can be improved. As a result, Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package.
第1又は第2の光源装置において、半導体発光装置を構成する基台は、その平面形状が多角形状であってもよい。
In the first or second light source device, the base constituting the semiconductor light emitting device may have a polygonal planar shape.
このようにすると、半導体発光装置を用いた光源装置において、半導体発光装置における基台の側面が複数の平面で構成される。これにより、固定冶具と基台の側面との密着性が向上するので、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができる。
In this manner, in the light source device using the semiconductor light emitting device, the side surface of the base in the semiconductor light emitting device is constituted by a plurality of planes. Thereby, since the adhesiveness between the fixing jig and the side surface of the base is improved, Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package.
この場合に、半導体発光装置を構成する基台は、その平面形状が四角形状であってもよい。
In this case, the base constituting the semiconductor light emitting device may have a square shape in plan view.
このようにすると、半導体発光装置を用いた光源装置において、半導体発光装置を構成する基台の設計を容易に行えるようになる。
In this way, in the light source device using the semiconductor light emitting device, the base that constitutes the semiconductor light emitting device can be easily designed.
本発明に係る半導体発光装置によると、半導体発光素子を封止する金属カバーの気密性を維持しながら、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができる。
According to the semiconductor light emitting device of the present invention, Joule heat generated from the semiconductor light emitting element can be efficiently radiated to the outside of the package while maintaining the airtightness of the metal cover for sealing the semiconductor light emitting element.
(第1の実施形態)
本発明の第1の実施形態に係る半導体発光装置について図1及び図2を参照しながら説明する。 (First embodiment)
A semiconductor light emitting device according to a first embodiment of the present invention will be described with reference to FIGS.
本発明の第1の実施形態に係る半導体発光装置について図1及び図2を参照しながら説明する。 (First embodiment)
A semiconductor light emitting device according to a first embodiment of the present invention will be described with reference to FIGS.
図1及び図2に示すように、第1の実施形態に係る半導体発光装置1は、半導体発光素子3と、該半導体発光素子3を保持するパッケージ10と、例えば半導体レーザ素子である半導体発光素子3を覆ってパッケージ10と固着され、該半導体発光素子3を封止するるキャップ20とから構成される。
As shown in FIGS. 1 and 2, the semiconductor light emitting device 1 according to the first embodiment includes a semiconductor light emitting element 3, a package 10 that holds the semiconductor light emitting element 3, and a semiconductor light emitting element that is, for example, a semiconductor laser element. 3 and a cap 20 that is fixed to the package 10 and seals the semiconductor light emitting element 3.
パッケージ10は、例えば無酸素銅(OFCu)からなる基台11と、その主面11a上に一体に形成され、ヒートシンクとなるブロック部11bと、表裏方向に貫通する2つの貫通孔11cとが設けられている。各貫通孔11cには、リード15、16が、例えば硬質ガラスからなる絶縁材18、19を介して固着される。各リード15、16は、それぞれワイヤ30a、30bを介して半導体発光素子3と電気的に接続される。リード14は、基台11の裏面に抵抗溶接(電気溶接)されて、基台11と電気的に接続される。
The package 10 includes, for example, a base 11 made of oxygen-free copper (OFCu), a block portion 11b that is integrally formed on the main surface 11a and serves as a heat sink, and two through holes 11c that penetrate in the front and back directions. It has been. Leads 15 and 16 are fixed to the respective through holes 11c via insulating materials 18 and 19 made of, for example, hard glass. The leads 15 and 16 are electrically connected to the semiconductor light emitting element 3 via wires 30a and 30b, respectively. The lead 14 is resistance-welded (electrical welding) to the back surface of the base 11 and is electrically connected to the base 11.
基台11における主面11a上の周縁部、すなわちキャップ20との接合部には、基台11と比べて熱膨張係数が小さい、例えばコバール、Fe:Ni合金(42アロイ)又は鉄(鋼)からなる溶接台12が、例えば銀ろう等の接着材13によりに気密に接着されている。なお、第1の実施形態においては、溶接台12の平面形状は環状としているが、ブロック部11bの周囲を囲むことができる形状であれば、例えば多角形又は楕円形等でも構わない。
The peripheral portion of the base 11 on the main surface 11a, that is, the joint with the cap 20, has a smaller coefficient of thermal expansion than that of the base 11, for example, Kovar, Fe: Ni alloy (42 alloy) or iron (steel). The welding base 12 made of is hermetically bonded with an adhesive 13 such as silver solder. In the first embodiment, the planar shape of the welding table 12 is an annular shape, but may be, for example, a polygon or an ellipse as long as it can surround the block portion 11b.
キャップ20は、例えば、筒状に形成されたコバール、Fe:Ni合金(42アロイ)又は鉄(鋼)からなる金属カバー21であり、半導体発光素子3における光の出射面の上方には光取り出し用の開口部21bが形成されている。開口部21bには、例えば表面に反射防止膜が形成された板状で、BK7等の光学ガラスからなる透明光学素子22が、例えば軟質ガラスからなる固着材23により固着される。金属カバー21における基台11側には、溶接台12との固着が容易なように、外側に開いたフランジ部21aが設けられている。
The cap 20 is, for example, a metal cover 21 made of Kovar, Fe: Ni alloy (42 alloy) or iron (steel) formed in a cylindrical shape, and light extraction is performed above the light emission surface of the semiconductor light emitting element 3. An opening 21b is formed. A transparent optical element 22 made of optical glass such as BK7 is fixed to the opening 21b by a fixing material 23 made of soft glass, for example. On the base 11 side of the metal cover 21, a flange portion 21 a that is open to the outside is provided so as to be easily fixed to the welding table 12.
さらに、図2に示すように、ブロック部11bにサブマウント6を介して固着された半導体発光素子3は、該半導体発光素子3に形成された光共振器と対応するストライプ3aを透明光学素子22と対向するように配置される。
Further, as shown in FIG. 2, the semiconductor light emitting element 3 fixed to the block portion 11 b via the submount 6 has a stripe 3 a corresponding to the optical resonator formed in the semiconductor light emitting element 3 and the transparent optical element 22. It arrange | positions so that it may oppose.
次に、図3を参照しながら第1の実施形態に係る半導体発光装置1の動作を説明する。
Next, the operation of the semiconductor light emitting device 1 according to the first embodiment will be described with reference to FIG.
半導体発光装置1は、製品に組み込まれる際には、例えばアルミニウム合金等の熱伝導率が高い材料からなる固定冶具50に基台11が密着されるように固定され、さらに押さえ冶具51によって上方から挟み込むようにして固定される。このとき、図示しない外部電源からリード15、16を通じて半導体発光素子3に電力が供給される。半導体発光素子3に印加された電力は所定の波長の光に変換されて出射される。半導体発光素子3から出射された光は、該半導体発光素子3から開口部21bに設けられた透明光学素子22に向かう方向(主線70a=主面11aの法線)に所定の拡がり角を持った出射光70となり、透明光学素子22を透過して半導体発光装置1の外部に出射される。
When the semiconductor light emitting device 1 is incorporated into a product, the base 11 is fixed so as to be in close contact with a fixing jig 50 made of a material having high thermal conductivity such as an aluminum alloy, and is further fixed from above by a pressing jig 51. It is fixed so as to be sandwiched. At this time, power is supplied to the semiconductor light emitting element 3 through leads 15 and 16 from an external power source (not shown). The electric power applied to the semiconductor light emitting element 3 is converted into light having a predetermined wavelength and emitted. The light emitted from the semiconductor light emitting element 3 has a predetermined divergence angle in a direction from the semiconductor light emitting element 3 toward the transparent optical element 22 provided in the opening 21b (main line 70a = normal line of the main surface 11a). The emitted light 70 is transmitted through the transparent optical element 22 and emitted to the outside of the semiconductor light emitting device 1.
一方、半導体発光素子3において、印加された電力が光に変換される際に、電力の一部は光に変換されず、ジュール熱となる。半導体発光素子3から発生したジュール熱は、サブマウント6、ブロック部11b及び基台11を伝導し、パッケージ10の外部に放出される。基台11は、押さえ冶具51により固定冶具50と密着されているため、放熱経路60を通って効率的に放熱できる。なお、ジュール熱の一部は、半導体発光素子3及びその近傍の温度上昇に寄与し、該半導体発光素子3の温度を上昇させる。
On the other hand, when the applied electric power is converted into light in the semiconductor light emitting element 3, part of the electric power is not converted into light but becomes Joule heat. Joule heat generated from the semiconductor light emitting element 3 is conducted through the submount 6, the block portion 11 b and the base 11 and is released to the outside of the package 10. Since the base 11 is in close contact with the fixed jig 50 by the holding jig 51, the base 11 can efficiently radiate heat through the heat dissipation path 60. Part of the Joule heat contributes to a temperature increase in the semiconductor light emitting element 3 and the vicinity thereof, and increases the temperature of the semiconductor light emitting element 3.
以下、前記のように構成された半導体発光装置の製造方法について図4~図6を参照しながら説明する。
Hereinafter, a method of manufacturing the semiconductor light emitting device configured as described above will be described with reference to FIGS.
図4は第1の実施形態に係る半導体発光装置1を構成するパッケージ10の断面構成を示している。
FIG. 4 shows a cross-sectional configuration of the package 10 constituting the semiconductor light emitting device 1 according to the first embodiment.
まず、基台11とブロック部11bとを形成可能な金型により、無酸素銅(OFCu)からなり、基台11とブロック部11bとが、例えばプレス加工により一体に成型されたパッケージ10を作製する。なお、基台11とブロック部11bとは、必ずしも一体に形成する必要はないが、基台11とブロック部11bとに同一の構成材料、例えば熱伝導率が高い無酸素銅を用いるならば、一体成型が好ましい。続いて、環状の溶接台12を、例えば銀ろうからなる接着材13により、基台11の主面11a上にブロック部11bを囲むように高温処理により接着する。この溶接台12の接着工程において、リード14を、例えば銀ろうからなる接着材13を用いて基台11の裏面に高温処理により接着する。続いて、所定の冶具を用いて、リード15、16を絶縁材18、19となる筒状のガラスと共に各貫通孔11cに挿入し、その後、さらに、ガラスからなる絶縁材18、19を各貫通孔11cに充填して、ガラスの軟化温度以上まで過熱することにより、リード15、16を絶縁材18、19を介して各貫通孔11cに固着する。なお、上記のリード14、15及び16の固着並びに溶接台12の接着の順序については、処理温度に合わせて変更することが好ましい。また、基台11及びブロック部11bには、上記の工程の最後又は途中において、例えば、Ni/Auめっきにより表面をコーティングすることが好ましい。
First, a mold 10 that can form the base 11 and the block portion 11b is made of oxygen-free copper (OFCu), and the base 11 and the block portion 11b are formed integrally by, for example, press working. To do. The base 11 and the block portion 11b are not necessarily formed integrally. However, if the same constituent material, for example, oxygen-free copper having a high thermal conductivity is used for the base 11 and the block portion 11b, Integral molding is preferred. Subsequently, the annular welding table 12 is bonded to the main surface 11a of the base 11 by an adhesive 13 made of, for example, silver solder so as to surround the block portion 11b. In the bonding step of the welding table 12, the lead 14 is bonded to the back surface of the base 11 by a high temperature treatment using an adhesive 13 made of, for example, silver solder. Subsequently, using a predetermined jig, the leads 15 and 16 are inserted into the respective through holes 11c together with the cylindrical glass to be the insulating materials 18 and 19, and then the insulating materials 18 and 19 made of glass are further inserted into the respective through holes. By filling the hole 11c and heating it to the glass softening temperature or higher, the leads 15 and 16 are fixed to the through holes 11c via the insulating materials 18 and 19, respectively. In addition, it is preferable to change according to process temperature about the order of adhesion | attachment of said lead | read | reed 14,15 and 16, and adhesion | attachment of the welding stand 12. FIG. Moreover, it is preferable to coat the surface of the base 11 and the block part 11b by Ni / Au plating, for example, at the end or in the middle of the above process.
次に、図5に示すように、基台11におけるブロック部11bの内側の側面上に、例えばAlNセラミック又はSiCセラミック等からなるサブマウント6を介して、半導体発光素子3を固着する。その後、半導体発光素子3とリード15、16とをそれぞれワイヤ30a、30bによって電気的に接続する。一方、キャップ20は、例えばコバール等の熱膨張係数がガラスに近い材料からなる筒状の金属カバー21に、プレス加工によってフランジ部21a及び開口部21bを形成する。このとき、フランジ部21aの下面には溶接用の突起部21cを形成する。続いて、例えば、表面に半導体発光素子3から放射される光の波長に対して反射率が低い反射防止膜が形成された光学ガラスからなる透明光学素子22を、例えば軟質ガラスである固着材23により開口部21bの内側に固着する。
Next, as shown in FIG. 5, the semiconductor light emitting element 3 is fixed on the inner side surface of the block portion 11 b of the base 11 via a submount 6 made of, for example, AlN ceramic or SiC ceramic. Thereafter, the semiconductor light emitting element 3 and the leads 15 and 16 are electrically connected by wires 30a and 30b, respectively. On the other hand, the cap 20 forms a flange portion 21a and an opening portion 21b on a cylindrical metal cover 21 made of a material having a thermal expansion coefficient close to that of glass, such as Kovar, by pressing. At this time, a projection 21c for welding is formed on the lower surface of the flange portion 21a. Subsequently, for example, the transparent optical element 22 made of an optical glass having an antireflection film having a low reflectance with respect to the wavelength of light emitted from the semiconductor light emitting element 3 on the surface thereof is used as the fixing material 23 made of, for example, soft glass. Due to this, it is fixed inside the opening 21b.
なお、上記において、半導体発光素子3を、サブマウント6を介在させてブロック部11bに固着しているが、サブマウント6を介在させることなく半導体発光素子3を直接にブロック部11bに固着してもよい。
In the above description, the semiconductor light emitting device 3 is fixed to the block portion 11b with the submount 6 interposed therebetween, but the semiconductor light emitting device 3 is directly fixed to the block portion 11b without the submount 6 interposed. Also good.
次に、図6を用いて、第1の実施形態に係るパッケージ10とキャップ20との接合方法について説明する。
Next, a method for joining the package 10 and the cap 20 according to the first embodiment will be described with reference to FIG.
まず、半導体発光素子3を固着したパッケージ10の基台11を固定台31aを用いて所定の位置に固定する。続いて、キャップ20を構成する金属カバー21のフランジ部21aを押さえ部31bを用いて固定する。続いて、固定台31a及び押さえ部31bを用いて、基台11の上に接着された溶接台12の上に、フランジ部21aの下面に形成された突起部21cが当たるように配置する。続いて、押さえ部31bをフランジ部21aの上面に押し当て、所定の電流を、押え部31b→フランジ部21a→溶接台12→基台11→固定台31aと流すことにより、フランジ部21aの下面の突起部21cが加熱されて溶融し、金属カバー21と溶接台12とが溶接される。
First, the base 11 of the package 10 to which the semiconductor light emitting element 3 is fixed is fixed at a predetermined position using the fixing base 31a. Subsequently, the flange portion 21a of the metal cover 21 constituting the cap 20 is fixed using the pressing portion 31b. Subsequently, using the fixing base 31a and the pressing portion 31b, the protrusion 21c formed on the lower surface of the flange portion 21a is disposed on the welding base 12 bonded onto the base 11. Subsequently, the pressing portion 31b is pressed against the upper surface of the flange portion 21a, and a predetermined current is passed through the pressing portion 31b → the flange portion 21a → the welding table 12 → the base 11 → the fixing table 31a, thereby lowering the lower surface of the flange portion 21a. The protrusion 21c is heated and melted, and the metal cover 21 and the welding base 12 are welded.
このとき、金属カバー21と溶接台12とは、42アロイ等の同一の材料系からなるため、金属カバー21の突起部21cが加熱により溶融した後、金属カバー21と溶接台12とは容易に接合する。また、図3に示したように、半導体発光素子3から発生したジュール熱は、熱伝導率が高い基台11を伝導し、効率良く固定冶具50等の外部に放熱される。このため、半導体発光素子3の温度上昇を抑えることができるので、半導体発光素子3の動作特性の劣化を防止することができる。
At this time, since the metal cover 21 and the welding table 12 are made of the same material system such as 42 alloy, the metal cover 21 and the welding table 12 can be easily separated after the protrusion 21c of the metal cover 21 is melted by heating. Join. As shown in FIG. 3, Joule heat generated from the semiconductor light emitting element 3 is conducted through the base 11 having a high thermal conductivity and is efficiently radiated to the outside of the fixing jig 50 and the like. For this reason, since the temperature rise of the semiconductor light emitting element 3 can be suppressed, the deterioration of the operating characteristics of the semiconductor light emitting element 3 can be prevented.
上記の熱伝導について、図7に示す種々の材料特性の一覧を用いて、より詳細に説明する。図7は半導体発光装置のパッケージに用いることができる代表的な材料の熱伝導率及び熱膨張係数等を示した表である。現在、半導体発光装置のパッケージを構成する高熱伝導率の材料は、無酸素銅等の純銅及び銅タングステン等の銅合金である銅系の材料、鋼(SPC,Cold Roller Steel)、Fe:Ni合金(42アロイ)及びコバール(Fe-Ni-Co合金)等の鉄/ステンレス系材料、又はアルミ合金(A5052等)及び純アルミニウム等のアルミニウム系材料等が主流である。また、透明光学素子を構成する光学ガラスには、代表的なものとしてBK7が挙げられる。図7から分かるように、キャップに設ける透明光学素子を構成する光学ガラスの熱膨張係数は7.5×10-6/Kと低いため、本実施形態に係る透明光学素子22と密着させる金属カバー21及び固着材23の熱膨張係数を低く設定する必要がある。金属カバー21の構成材料は、この条件を満たし、且つプレス加工性に優れ、低コストであることが要求される。このため、金属カバー21の構成材料には、コバール等の鉄系材料を用いている。一方、固着材23は、透明光学素子22と金属カバー21との密着性を高くするため、軟質ガラスを用いている。従って、溶接台12には、金属カバー21との抵抗溶接を容易にするため、例えば、コバール、Fe:Ni合金(42アロイ)、鋼(SPC)又はニッケル等の、鉄及びニッケル等の熱膨張係数が比較的に小さく、金属カバー21を構成する材料に近い材料を用いる。
The above heat conduction will be described in more detail using a list of various material characteristics shown in FIG. FIG. 7 is a table showing the thermal conductivity, thermal expansion coefficient, and the like of typical materials that can be used for the package of the semiconductor light emitting device. Currently, high thermal conductivity materials constituting semiconductor light emitting device packages are pure copper such as oxygen-free copper and copper alloys such as copper tungsten, steel (SPC, Cold Roller Steel), Fe: Ni alloy. Iron / stainless steel materials such as (42 alloy) and Kovar (Fe—Ni—Co alloy) or aluminum materials such as aluminum alloy (A5052) and pure aluminum are the mainstream. Moreover, BK7 is mentioned as a typical thing in the optical glass which comprises a transparent optical element. As can be seen from FIG. 7, the optical glass constituting the transparent optical element provided on the cap has a low coefficient of thermal expansion of 7.5 × 10 −6 / K, so that the metal cover is in close contact with the transparent optical element 22 according to the present embodiment. It is necessary to set the thermal expansion coefficient of 21 and the fixing material 23 low. The constituent material of the metal cover 21 is required to satisfy this condition, to be excellent in press workability, and to be low in cost. Therefore, an iron-based material such as Kovar is used as the constituent material of the metal cover 21. On the other hand, the fixing material 23 is made of soft glass in order to increase the adhesion between the transparent optical element 22 and the metal cover 21. Therefore, in order to facilitate resistance welding with the metal cover 21, the thermal expansion of iron and nickel, such as Kovar, Fe: Ni alloy (42 alloy), steel (SPC), or nickel, is performed on the welding table 12. A material having a relatively small coefficient and being close to the material constituting the metal cover 21 is used.
一方、基台11及びブロック部11bを構成する材料としては、熱伝導率が高い材料である金、銀、銅、銅合金、アルミニウム又はアルミニウム合金等が好ましい。より具体的には、比較的に低コストで、且つプレス特性に優れた銅、アルミニウム又はアルミニウム合金等が好ましい。
On the other hand, as a material constituting the base 11 and the block portion 11b, gold, silver, copper, copper alloy, aluminum, aluminum alloy or the like, which is a material having high thermal conductivity, is preferable. More specifically, copper, aluminum, an aluminum alloy, or the like that is relatively low cost and excellent in press properties is preferable.
(第1の実施形態の第1変形例)
以下、第1の実施形態の第1変形例について図8~図10を参照しながら説明する。 (First modification of the first embodiment)
Hereinafter, a first modification of the first embodiment will be described with reference to FIGS.
以下、第1の実施形態の第1変形例について図8~図10を参照しながら説明する。 (First modification of the first embodiment)
Hereinafter, a first modification of the first embodiment will be described with reference to FIGS.
図8に示すように、第1変形例に係る半導体発光装置1Aは、パッケージ10Aを構成する基台11Aの主面の周縁部に外側(側面側)が低く形成された段差部11dを有している。溶接台12は、ブロック部11b及び貫通孔11cを囲むように形成された段差部11dの底面上にその壁面と接するように、銀ろう等からなる接着材13により気密に接着されている。
As shown in FIG. 8, the semiconductor light emitting device 1A according to the first modification has a step portion 11d having a lower outer side (side surface side) formed at the peripheral edge of the main surface of the base 11A constituting the package 10A. ing. The welding table 12 is hermetically bonded with an adhesive 13 made of silver brazing or the like on the bottom surface of the step portion 11d formed so as to surround the block portion 11b and the through hole 11c so as to contact the wall surface.
このようにすると、基台11Aの溶接台12との接触面積が増大するので、溶接台12と基台11Aとの密着性を高めることができる。さらに、図4に示した溶接台12の接着工程において、基台11Aの主面に溶接台12を形成する際の位置合わせが容易となる。
In this way, the contact area between the base 11A and the welding table 12 increases, so that the adhesion between the welding table 12 and the base 11A can be improved. Furthermore, in the bonding process of the welding table 12 shown in FIG. 4, the alignment when forming the welding table 12 on the main surface of the base 11A becomes easy.
次に、前記のように構成された第1変形例に係る半導体発光装置1Aにおける効果を実験データに基づいて説明する。
Next, the effect of the semiconductor light emitting device 1A according to the first modified example configured as described above will be described based on experimental data.
図9は第1変形例に係る半導体発光装置1Aの基台11Aにおける熱伝導率を変化させた場合に、該半導体発光装置1Aの熱抵抗の変化を計算により求めた結果を示す。ここで、パッケージ10Aを構成する基台11Aの平面形状は円形であり、外径D1は直径5.6mmとしている。図8に示すように、基台11Aは、主面11aと反対側の裏面の外周部から、内径D2の4.5mmまでの部分が固定治具50と接触している。該固定治具50は、無限放熱面とみなすことができる。
FIG. 9 shows a result obtained by calculating a change in thermal resistance of the semiconductor light emitting device 1A when the thermal conductivity of the base 11A of the semiconductor light emitting device 1A according to the first modification is changed. Here, the planar shape of the base 11A constituting the package 10A is circular, and the outer diameter D1 is 5.6 mm. As shown in FIG. 8, the base 11 </ b> A is in contact with the fixing jig 50 from the outer peripheral portion of the back surface opposite to the main surface 11 a to the inner diameter D <b> 2 of 4.5 mm. The fixing jig 50 can be regarded as an infinite heat radiation surface.
ブロック部11bには無酸素銅を用い、その熱伝導率は390W/mKとしている。その結果、基台11Aの熱伝導率が大きくなるに従い、半導体発光装置1Aの熱抵抗は大幅に減少する。特に、基台11Aの熱伝導率が200W/mK以上になると、半導体発光装置1Aの熱抵抗は飽和し、12K/W程度で一定となることが分かる。なお、構造A及び構造Bは、本願発明者らが作製した半導体発光装置に対する測定データである。構造Aは、基台11Aとブロック部11bとを一体成型し、その構成材料に無酸素銅(OFCu)を用いている。一方、構造Bは比較用であって、基台11Aに鋼(鉄、SPC)を用い、ブロック部11bの構成材料に無酸素銅を用い、両者をろう付けにより接合している。
Oxygen-free copper is used for the block part 11b, and its thermal conductivity is 390 W / mK. As a result, as the thermal conductivity of the base 11A increases, the thermal resistance of the semiconductor light emitting device 1A decreases significantly. In particular, it can be seen that when the thermal conductivity of the base 11A is 200 W / mK or more, the thermal resistance of the semiconductor light emitting device 1A is saturated and becomes constant at about 12 K / W. Structure A and structure B are measurement data for a semiconductor light emitting device manufactured by the present inventors. In the structure A, the base 11A and the block portion 11b are integrally molded, and oxygen-free copper (OFCu) is used as a constituent material thereof. On the other hand, the structure B is for comparison, and steel (iron, SPC) is used for the base 11A, oxygen-free copper is used for the constituent material of the block portion 11b, and both are joined by brazing.
図9から分かるように、これらの測定結果は計算結果と良く一致している。すなわち、基台11Aに熱伝導率が高い材料を用いることにより、半導体発光装置1Aにおける熱抵抗を大幅に低減できることが分かる。
As can be seen from FIG. 9, these measurement results are in good agreement with the calculation results. That is, it can be seen that the thermal resistance in the semiconductor light emitting device 1A can be greatly reduced by using a material having high thermal conductivity for the base 11A.
さらに、図10(a)及び図10(b)に、上記の構造A及び構造Bに係る各半導体発光装置における電流-光出力特性と、光出力-電力光変換効率の関係とをそれぞれ比較して示す。まず、図10(a)に示す電流-光出力特性において、構造Aは構造Bと比較して、最大光出力は2.0Wから2.5W程度に向上している。
10 (a) and 10 (b) compare the current-light output characteristics and the relationship between the light output-power / light conversion efficiency in each of the semiconductor light emitting devices according to the structures A and B, respectively. Show. First, in the current-light output characteristics shown in FIG. 10A, the maximum light output of the structure A is improved from 2.0 W to 2.5 W as compared with the structure B.
また、図10(b)に示す光出力-電力光変換効率においては、構造Aは構造Bと比較して、10%程度向上していることが分かる。これらの特性の向上は、パッケージ10Aを構成する基台11Aの材料を熱伝導率が大きい材料に変更することにより、半導体発光装置1Aにおける熱抵抗が低減したためである。
Further, in the light output-power light conversion efficiency shown in FIG. 10B, it can be seen that the structure A is improved by about 10% compared to the structure B. The improvement in these characteristics is because the thermal resistance in the semiconductor light emitting device 1A is reduced by changing the material of the base 11A constituting the package 10A to a material having a high thermal conductivity.
以上のように、本実施形態に係る構造により、半導体発光装置の特性を大きく向上することができる。
As described above, the structure according to this embodiment can greatly improve the characteristics of the semiconductor light emitting device.
(第1の実施形態の第2変形例)
以下、第1の実施形態の第2変形例に係る半導体発光装置について図11を参照しながら説明する。 (Second modification of the first embodiment)
Hereinafter, a semiconductor light emitting device according to a second modification of the first embodiment will be described with reference to FIG.
以下、第1の実施形態の第2変形例に係る半導体発光装置について図11を参照しながら説明する。 (Second modification of the first embodiment)
Hereinafter, a semiconductor light emitting device according to a second modification of the first embodiment will be described with reference to FIG.
第2変形例に係る半導体発光装置1Bは、パッケージ10Bを構成する基台11Bの主面の周縁部に、すなわちブロック部11b及び貫通孔11cを囲むように形成された溝部11eを有している。溶接台12は、溝部11eに埋め込むように銀ろう等からなる接着材13により気密に接着されている。
The semiconductor light emitting device 1B according to the second modification has a groove portion 11e formed so as to surround the block portion 11b and the through hole 11c at the peripheral portion of the main surface of the base 11B constituting the package 10B. . The welding table 12 is hermetically bonded with an adhesive 13 made of silver brazing or the like so as to be embedded in the groove 11e.
このようにすると、基台11Bの溶接台12との接触面積が溝部11eの底面及び両壁面によって増大するので、溶接台12と基台11Bとの密着性がさらに向上する。さらに、図4に示した溶接台12の接着工程において、基台11Bの主面に溶接台12を自己整合的に形成できるので、溶接台12の位置合わせが容易となる。
In this case, the contact area between the base 11B and the welding base 12 is increased by the bottom surface and both wall surfaces of the groove 11e, so that the adhesion between the welding base 12 and the base 11B is further improved. Furthermore, in the bonding step of the welding table 12 shown in FIG. 4, the welding table 12 can be formed on the main surface of the base 11 </ b> B in a self-aligning manner, so that the positioning of the welding table 12 becomes easy.
(第1の実施形態の第3変形例)
以下、第1の実施形態の第3変形例に係る半導体発光装置について図12及び図13を参照しながら説明する。 (Third Modification of First Embodiment)
Hereinafter, a semiconductor light emitting device according to a third modification of the first embodiment will be described with reference to FIGS.
以下、第1の実施形態の第3変形例に係る半導体発光装置について図12及び図13を参照しながら説明する。 (Third Modification of First Embodiment)
Hereinafter, a semiconductor light emitting device according to a third modification of the first embodiment will be described with reference to FIGS.
図12に示すように、第3変形例に係る半導体発光装置1Cは、パッケージ10Cを構成する基台11Cの主面の周縁部に外側(側面側)が低く形成された段差部11d1を有している。ここで、第3変形例においては、第1変形例とは異なり、段差部11d1は、貫通孔11cの形成領域を含む領域、すなわち、ブロック部11bの側面の近傍を囲む領域にまで形成されている。従って、各貫通孔11cは、段差部11d1の底面の領域に形成される。
As shown in FIG. 12, the semiconductor light emitting device 1C according to the third modification has a step portion 11d1 whose outer side (side surface side) is formed low on the peripheral edge of the main surface of the base 11C constituting the package 10C. ing. Here, in the third modified example, unlike the first modified example, the step portion 11d1 is formed up to a region including the formation region of the through hole 11c, that is, a region surrounding the vicinity of the side surface of the block portion 11b. Yes. Therefore, each through-hole 11c is formed in the area | region of the bottom face of level | step-difference part 11d1.
基台11Cの主面11aには、該基台11Cよりも熱膨張係数が小さい、例えばFe:Ni合金(42アロイ)からなる溶接台12が、例えば銀ろうからなる接着材13により接着されている。ここで、溶接台12は環状であり、その一部には基台11Cの貫通孔11cと対応する領域に、リード15、16をそれぞれ貫通させる開口部が形成されている。溶接台12は、段差部11d1の底面及び側面に気密に接着される。さらに、リード15、16は、各貫通孔11c及び溶接台12の各開口部に、例えば硬質ガラスからなる絶縁材18を介して固着される。
A welding base 12 made of, for example, Fe: Ni alloy (42 alloy) having a smaller thermal expansion coefficient than that of the base 11C is bonded to the main surface 11a of the base 11C by an adhesive 13 made of, for example, silver brazing. Yes. Here, the welding table 12 is annular, and an opening for penetrating the leads 15 and 16 is formed in a part of the welding table 12 in a region corresponding to the through hole 11c of the base 11C. The welding table 12 is hermetically bonded to the bottom and side surfaces of the step portion 11d1. Furthermore, the leads 15 and 16 are fixed to the through holes 11c and the openings of the welding table 12 via an insulating material 18 made of, for example, hard glass.
次に、図13を参照しながら第3変形例に係る半導体発光装置1Cの動作を説明する。
Next, the operation of the semiconductor light emitting device 1C according to the third modification will be described with reference to FIG.
図13に示すように、半導体発光装置1Cは、固定冶具50と押さえ冶具51とにより基台11Cの周縁部が上下方向から挟まれて固定される。キャップ20内の半導体発光素子3から出射された出射光70は、光取り出し用の開口部21bに設けられた透明光学素子22に向かう方向の主線70a(主面11aの法線)を中心軸として放射され、透明光学素子22を透過してパッケージ10Cの外部に出射される。一方、半導体発光素子3から発生したジュール熱は、サブマウント6、ブロック部11b及び基台11Cを伝導して、パッケージ10Cの外部に放出される。
As shown in FIG. 13, in the semiconductor light emitting device 1C, the peripheral portion of the base 11C is sandwiched and fixed by the fixing jig 50 and the pressing jig 51 from above and below. The emitted light 70 emitted from the semiconductor light emitting element 3 in the cap 20 has a main line 70a (normal line of the main surface 11a) in the direction toward the transparent optical element 22 provided in the light extraction opening 21b as a central axis. Radiated, transmitted through the transparent optical element 22, and emitted to the outside of the package 10C. On the other hand, Joule heat generated from the semiconductor light emitting element 3 is conducted through the submount 6, the block portion 11b, and the base 11C, and is released to the outside of the package 10C.
このとき、各リード15、16における貫通孔11cの上側部分は、熱膨張係数が小さい42アロイからなる溶接台12により覆われている。従って、半導体発光装置1Cの温度が上昇したとしても、各リード15、16と絶縁材18、19と溶接台12との各熱膨張係数差がいずれも小さいため、キャップ20内の気密性を向上することができる。その結果、半導体発光素子3の動作特性の劣化を十分に抑えることができる。
At this time, the upper part of the through hole 11c in each of the leads 15 and 16 is covered with the welding base 12 made of 42 alloy having a small thermal expansion coefficient. Therefore, even if the temperature of the semiconductor light emitting device 1C rises, the difference in thermal expansion coefficient between the leads 15, 16 and the insulating materials 18, 19 and the welding base 12 is small, so that the airtightness in the cap 20 is improved. can do. As a result, the deterioration of the operating characteristics of the semiconductor light emitting element 3 can be sufficiently suppressed.
(第2の実施形態)
以下、本発明の第2の実施形態に係る半導体発光装置について図14~図17を参照しながら説明する。 (Second Embodiment)
A semiconductor light emitting device according to the second embodiment of the present invention will be described below with reference to FIGS.
以下、本発明の第2の実施形態に係る半導体発光装置について図14~図17を参照しながら説明する。 (Second Embodiment)
A semiconductor light emitting device according to the second embodiment of the present invention will be described below with reference to FIGS.
図14に示すように、第2の実施形態に係る半導体発光装置1Dは、パッケージ10Dを構成する基台11Dの厚さを、該基台11Dの幅寸法と同等の厚さとしている。さらに、図15(a)及び図15(b)に示すように、基台11Dの平面形状を多角形状とし、ここでは、例えば四角形状としている。これにより、基台11Dの側面の面積が大きくなると共に、4つの側面が平面形状となるため、固定治具等との接触面積も大きくなる。その結果半導体発光素子3からのジュール熱を効率良く排熱することができる。
As shown in FIG. 14, in the semiconductor light emitting device 1D according to the second embodiment, the thickness of the base 11D constituting the package 10D is set to be equal to the width dimension of the base 11D. Further, as shown in FIGS. 15A and 15B, the planar shape of the base 11D is a polygonal shape, for example, a rectangular shape. As a result, the area of the side surface of the base 11D is increased and the four side surfaces have a planar shape, so that the contact area with the fixing jig and the like is also increased. As a result, Joule heat from the semiconductor light emitting element 3 can be efficiently exhausted.
なお、第2の実施形態に係る半導体発光装置1Dは、溶接台12を底面積が広い段差部11d1に形成する、第1の実施形態の第3変形例と同等の構成としているが、これに限られず、溶接台12の構成は、第1の実施形態、その第1変形例又は第2変形例と同等の構成であってもよい。
The semiconductor light emitting device 1D according to the second embodiment has the same configuration as that of the third modification of the first embodiment, in which the welding base 12 is formed in the step portion 11d1 having a large bottom area. The configuration of the welding stand 12 is not limited, and may be the same configuration as that of the first embodiment, the first modified example, or the second modified example.
第2の実施形態に係る半導体発光装置1Dの詳細な構成を説明する。
A detailed configuration of the semiconductor light emitting device 1D according to the second embodiment will be described.
図14及び図15に示すように、半導体発光素子3Aは、例えば複数のストライプを有する半導体レーザアレイであり、例えば発光波長が380nm~550nmの範囲で且つ光出力が1Wを超える高出力の窒化物系半導体レーザ素子である。半導体発光素子3Aは、パッケージ10Dを構成する基台11Dのブロック部11bの上にサブマウント6を介して固着される。
As shown in FIGS. 14 and 15, the semiconductor light emitting device 3A is, for example, a semiconductor laser array having a plurality of stripes. For example, a high output nitride having an emission wavelength in the range of 380 nm to 550 nm and an optical output exceeding 1 W. Semiconductor laser device. The semiconductor light emitting element 3A is fixed to the block portion 11b of the base 11D constituting the package 10D via the submount 6.
図16(a)及び図16(b)は第2の実施形態に係る半導体発光装置1Dの固定冶具への固定方法の一例を示している。
16 (a) and 16 (b) show an example of a method for fixing the semiconductor light emitting device 1D according to the second embodiment to a fixing jig.
図16(a)に示すように、互いに対をなす第1の固定冶具150及び第2の固定治具160は、それぞれ半導体発光装置1Dのパッケージ10Dの2つの側面と嵌合する凹部を有している。さらに、各固定冶具150及び160は、互いにねじ止めが可能なように、第1の固定治具150には、凹部側の側面にねじ穴155a及び155bが設けられ、第2の固定治具160には、第1の固定冶具150のねじ穴155a及び155bと対向する側面を貫通する貫通孔165a及び165bが設けられている。さらに、第1の固定治具150及び第2の固定治具160には、主面を表裏方向に貫通し、他の部材に取り付けが可能なように、取り付け孔150a、150b及び160a、160bがそれぞれ設けられている。
As shown in FIG. 16 (a), the first fixing jig 150 and the second fixing jig 160 that are paired with each other have recesses that fit into the two side surfaces of the package 10D of the semiconductor light emitting device 1D. ing. Further, the first fixing jig 150 is provided with screw holes 155a and 155b on the side surface on the concave side so that the fixing jigs 150 and 160 can be screwed to each other. Are provided with through holes 165a and 165b penetrating the side surfaces of the first fixing jig 150 facing the screw holes 155a and 155b. Further, the first fixing jig 150 and the second fixing jig 160 have mounting holes 150a and 150b and 160a and 160b so that the main surface penetrates in the front and back direction and can be attached to other members. Each is provided.
半導体発光装置1Dを構成するパッケージ10Dは、図16(b)に示すように、第1の固定冶具150及び第2の固定治具160によって挟まれるように保持され、ねじ180a及び180bにより固定される。ここで、第1の固定冶具150及び第2の固定治具160との互いの対向面は、互いに接触せず、すなわち隙間が空くようにすることが好ましい。このようにすると、各固定冶具150、160の凹部の内面にパッケージ10Dを構成する基台11Dの平面状の側面を確実に接触させることができる。
As shown in FIG. 16B, the package 10D constituting the semiconductor light emitting device 1D is held so as to be sandwiched between the first fixing jig 150 and the second fixing jig 160, and is fixed by screws 180a and 180b. The Here, it is preferable that the opposing surfaces of the first fixing jig 150 and the second fixing jig 160 are not in contact with each other, that is, a gap is formed. If it does in this way, the planar side surface of base 11D which comprises package 10D can be made to contact reliably the inner surface of the recessed part of each fixing jig 150,160.
次に、図17を参照しながら第2に実施形態に係る半導体発光装置1Dの動作を説明する。
Next, the operation of the semiconductor light emitting device 1D according to the second embodiment will be described with reference to FIG.
図17に示すように、半導体発光装置1Dは、第1の固定冶具150と第2の固定冶具160とにより基台11Dの側面が挟まれて固定される。
As shown in FIG. 17, the semiconductor light emitting device 1 </ b> D is fixed with the side surface of the base 11 </ b> D sandwiched between the first fixing jig 150 and the second fixing jig 160.
この状態で、半導体発光素子3Aは、リード14、15及び16並びにワイヤ30a、30b及び30c並びに図示しない他のリード及びワイヤから供給された電力を光に変換する。変換されて出力される出射光70は、主線70a(主面11aの法線)を中心軸として透明光学素子22を透過し、外部に出射される。一方、半導体発光素子3Aから発生するジュール熱は、基台11Dの比較的に広い複数の平面状の側面から各固定冶具150、160に放射させることができる。
In this state, the semiconductor light emitting element 3A converts the power supplied from the leads 14, 15 and 16 and the wires 30a, 30b and 30c and other leads and wires (not shown) into light. The converted outgoing light 70 is transmitted through the transparent optical element 22 with the main line 70a (normal line of the main surface 11a) as the central axis, and is output to the outside. On the other hand, Joule heat generated from the semiconductor light emitting element 3A can be radiated to the fixing jigs 150 and 160 from a plurality of relatively wide planar side surfaces of the base 11D.
このように、第2の実施形態によると、半導体発光素子からのジュール熱を効率良く外部に放射することができるため、半導体発光素子3Aの温度上昇による動作特性の劣化を防止することができる。
As described above, according to the second embodiment, since Joule heat from the semiconductor light emitting element can be efficiently radiated to the outside, it is possible to prevent deterioration of operating characteristics due to a temperature rise of the semiconductor light emitting element 3A.
(第2の実施形態の第1変形例)
以下、第2の実施形態の第1変形例に係る半導体発光装置について図18を参照しながら説明する。 (First Modification of Second Embodiment)
Hereinafter, a semiconductor light emitting device according to a first modification of the second embodiment will be described with reference to FIG.
以下、第2の実施形態の第1変形例に係る半導体発光装置について図18を参照しながら説明する。 (First Modification of Second Embodiment)
Hereinafter, a semiconductor light emitting device according to a first modification of the second embodiment will be described with reference to FIG.
図18(a)及び図18(b)に示すように、第1変形例に係るパッケージの基台11Eの平面形状は三角形状である。第1の固定冶具150には、基台11Eの一側面の平面部分と嵌合する凹部が形成されている。また、第2の固定冶具160には、基台11Eの隣り合う2つの側面の平面部分と嵌合する凹部が形成されている。
As shown in FIGS. 18 (a) and 18 (b), the planar shape of the base 11E of the package according to the first modification is triangular. The first fixing jig 150 is formed with a recess that fits with a planar portion of one side surface of the base 11E. In addition, the second fixing jig 160 is formed with a recess that fits with two adjacent side surfaces of the base 11E.
従って、基台11Eの3つの側面を、対向する側方から互いに挟み込むことにより、パッケージの基台11Eと各固定治具150、160とを精度良く固定することができる。その上、基台11Eの各側面と各固定治具150、160に設けられた凹部の内面とは互いに接触するため、半導体発光装置1Dから発生する熱を効率良く外部に放熱することができる。
Therefore, by sandwiching the three side surfaces of the base 11E from opposite sides, the base 11E of the package and the fixing jigs 150 and 160 can be accurately fixed. In addition, since the side surfaces of the base 11E and the inner surfaces of the recesses provided in the fixing jigs 150 and 160 are in contact with each other, the heat generated from the semiconductor light emitting device 1D can be efficiently radiated to the outside.
(第2の実施形態の第2変形例)
以下、第2の実施形態の第2変形例に係る半導体発光装置について図19を参照しながら説明する。 (Second modification of the second embodiment)
Hereinafter, a semiconductor light emitting device according to a second modification of the second embodiment will be described with reference to FIG.
以下、第2の実施形態の第2変形例に係る半導体発光装置について図19を参照しながら説明する。 (Second modification of the second embodiment)
Hereinafter, a semiconductor light emitting device according to a second modification of the second embodiment will be described with reference to FIG.
図19(a)及び図19(b)に示すように、第2変形例に係るパッケージの基台11Fの平面形状は五角形状である。第1の固定冶具150には、基台11Fの一側面の平面部分と嵌合する凹部が形成されている。また、第2の固定冶具160には、基台11Fの隣り合う2つの側面の平面部分と嵌合する凹部が形成されている。
19A and 19B, the planar shape of the base 11F of the package according to the second modification is a pentagonal shape. The first fixing jig 150 is formed with a recess that fits with a planar portion of one side surface of the base 11F. In addition, the second fixing jig 160 is formed with a recess that fits with two adjacent side surfaces of the base 11F.
従って、基台11Fの3つの側面を、対向する側方から互いに挟み込むことにより、パッケージの基台11Fと各固定治具150、160とを精度良く固定することができる。その上、基台11Fの各側面と各固定治具150、160に設けられた凹部の内面とは互いに接触するため、半導体発光装置1Dから発生する熱を効率良く外部に放熱することができる。
Therefore, the base 11F of the package and the fixing jigs 150 and 160 can be accurately fixed by sandwiching the three side surfaces of the base 11F from opposite sides. In addition, since the side surfaces of the base 11F and the inner surfaces of the recesses provided in the fixing jigs 150 and 160 are in contact with each other, the heat generated from the semiconductor light emitting device 1D can be efficiently radiated to the outside.
(第2の実施形態の第3変形例)
以下、第2の実施形態の第3変形例に係る半導体発光装置について図20を参照しながら説明する。 (Third Modification of Second Embodiment)
Hereinafter, a semiconductor light emitting device according to a third modification of the second embodiment will be described with reference to FIG.
以下、第2の実施形態の第3変形例に係る半導体発光装置について図20を参照しながら説明する。 (Third Modification of Second Embodiment)
Hereinafter, a semiconductor light emitting device according to a third modification of the second embodiment will be described with reference to FIG.
図20(a)及び図20(b)に示すように、第3変形例に係るパッケージの基台11Gの平面形状は六角形状である。第1の固定冶具150及び第2の工程治具160には、それぞれ基台11Gの隣り合う2つの側面の平面部分と嵌合する凹部が形成されている。
20 (a) and 20 (b), the planar shape of the base 11G of the package according to the third modification is a hexagonal shape. The first fixing jig 150 and the second process jig 160 are each formed with a recess that fits with a planar portion of two adjacent side surfaces of the base 11G.
従って、基台11Gの対向する4つの側面を、対向する側方から互いに挟み込むことにより、パッケージの基台11Gと各固定治具150、160とを精度良く固定することができる。その上、基台11Gの各側面と各固定治具150、160に設けられた凹部の内面とは互いに接触するため、半導体発光装置1Dから発生する熱を効率良く外部に放熱することができる。
Therefore, the base 11G of the package and the fixing jigs 150 and 160 can be accurately fixed by sandwiching the four opposing side surfaces of the base 11G from the opposing sides. In addition, since the side surfaces of the base 11G and the inner surfaces of the recesses provided in the fixing jigs 150 and 160 are in contact with each other, the heat generated from the semiconductor light emitting device 1D can be efficiently radiated to the outside.
なお、第2の実施形態及びその変形例においては、半導体発光素子3Aを、例えば発光波長が380nm~550nmで、光出力が1Wを超える高出力の窒化物系半導体レーザアレイとしたが、これに限られない。例えば、半導体発光素子には、単波長の半導体レーザ素子を用いてもよく、さらには、画像表示装置のバックライトに適する、スペックルノイズが低い窒化物半導体系スーパールミネッセントダイオードを用いてもよい。さらには、例えば波長が550nm~660nmの(Al、In、Ga、P、As)系の材料により作製された半導体レーザ素子又はスーパールミネッセントダイオードを用いてもよい。
In the second embodiment and its modifications, the semiconductor light emitting element 3A is a high power nitride semiconductor laser array having an emission wavelength of 380 nm to 550 nm and an optical output exceeding 1 W, for example. Not limited. For example, a single-wavelength semiconductor laser element may be used as the semiconductor light emitting element, and a nitride semiconductor superluminescent diode with low speckle noise that is suitable for a backlight of an image display device may be used. Good. Further, for example, a semiconductor laser element or a super luminescent diode made of an (Al, In, Ga, P, As) -based material having a wavelength of 550 nm to 660 nm may be used.
また、第2の実施形態に係る半導体発光装置1Dは、基台11Dと金属カバー21との接合部に溶接台12を設けているが、本実施形態においては、溶接台12を設けない従来の半導体発光装置であっても、基台の厚さを厚くし、その平面形状を多角形状として、さらにその側面に密着して固定する本実施形態に係る固定治具150、160を用いれば、溶接台12を設けない半導体発光装置の放熱性を高めることが可能となる。
Moreover, although the semiconductor light-emitting device 1D which concerns on 2nd Embodiment provides the welding stand 12 in the junction part of base 11D and the metal cover 21, in this embodiment, the conventional welding stand 12 is not provided. Even if it is a semiconductor light-emitting device, if the fixing jig 150,160 which concerns on this embodiment which makes the base thickness thick, makes the planar shape polygonal shape, and also adhere | attaches and fixes to the side surface will be welded It becomes possible to improve the heat dissipation of the semiconductor light emitting device not provided with the base 12.
(第3の実施形態)
以下、本発明の第3の実施形態に係る光源装置について図21を参照しながら説明する。 (Third embodiment)
Hereinafter, a light source device according to a third embodiment of the present invention will be described with reference to FIG.
以下、本発明の第3の実施形態に係る光源装置について図21を参照しながら説明する。 (Third embodiment)
Hereinafter, a light source device according to a third embodiment of the present invention will be described with reference to FIG.
図21に示すように、第3の実施形態に係る光源装置201は、例えば、6個の第2の実施形態に係る半導体発光装置1Dと、それらを固定して保持する第1の固定治具250、第2の固定治具260及び第3の固定治具270とを備えている。
As shown in FIG. 21, the light source device 201 according to the third embodiment includes, for example, six semiconductor light emitting devices 1D according to the second embodiment, and a first fixing jig that fixes and holds them. 250, a second fixing jig 260, and a third fixing jig 270.
第1の固定治具250には、その一側面に半導体発光装置1Dを構成するパッケージ10Dの隣り合う2つの側面とそれぞれ嵌合する3つの凹部が設けられている。また、第2の固定治具260には、互いに対向する2つの側面に各基台10Dの隣り合う2つの側面とそれぞれ嵌合する6つの凹部が設けられている。また、第3の固定治具270にも、第2の固定治具260と対向する側面に各基台10Dの隣り合う2つの側面とそれぞれ嵌合する3つの凹部が設けられている。
The first fixing jig 250 is provided with three concave portions that are respectively fitted to two adjacent side surfaces of the package 10D constituting the semiconductor light emitting device 1D on one side surface thereof. In addition, the second fixing jig 260 is provided with six concave portions that are respectively fitted to two adjacent side surfaces of each base 10D on two side surfaces facing each other. Further, the third fixing jig 270 is also provided with three concave portions that are respectively fitted to two adjacent side surfaces of the base 10 </ b> D on the side surface facing the second fixing jig 260.
また、各固定治具250、260及び270には、それぞれの主面を表裏方向に貫通し、他の部材に取り付けが可能な取り付け孔250a、250b、260a、260b及び270a、270bがそれぞれ設けられている。
The fixing jigs 250, 260, and 270 are provided with mounting holes 250a, 250b, 260a, 260b, 270a, and 270b that penetrate the main surfaces in the front and back directions and can be attached to other members. ing.
図22に示すように、6個の半導体発光装置1Dは、各固定冶具250、260及び270により、それぞれ対向する対角方向から挟まれ、各ねじ280a~280d及び281a~281dによりそれぞれ固定される。
As shown in FIG. 22, the six semiconductor light emitting devices 1D are sandwiched by the fixing jigs 250, 260, and 270 from opposite diagonal directions, and fixed by the screws 280a to 280d and 281a to 281d, respectively. .
このように、第3の実施形態によると、半導体発光装置1Dを構成する基台11Dの平面形状を多角形状として複数の平面で構成することにより、各固定治具250、260及び270の凹部の内面と面接触するため、各半導体発光装置1Dが発する熱を各固定冶具250、260及び270に効率良く放射させることができる。
As described above, according to the third embodiment, the planar shape of the base 11D constituting the semiconductor light emitting device 1D is configured as a polygonal shape with a plurality of planes, so that the concave portions of the fixing jigs 250, 260, and 270 are formed. Since it is in surface contact with the inner surface, heat generated by each semiconductor light emitting device 1D can be efficiently radiated to each fixing jig 250, 260, and 270.
なお、図21に示すように、各固定冶具250、260及び270の互いの対向面は、互いに接触せず、すなわち隙間が空くようにすることが好ましい。このようにすると、各固定冶具250、260及び270の凹部の内面にパッケージ10Dの平面状の側面を確実に接触させることができる。
In addition, as shown in FIG. 21, it is preferable that the mutually opposing surfaces of the fixing jigs 250, 260, and 270 do not contact each other, that is, a gap is formed. If it does in this way, the planar side surface of package 10D can be reliably made to contact the inner surface of the recessed part of each fixing jig 250,260,270.
また、第3の実施形態においては、レーザアレイ構造を有する半導体発光素子3Aを備えた半導体発光装置1Dを光源装置に用いたが、これに限られない。すなわち、半導体発光素子には、単波長の半導体レーザ素子を用いてもよく、さらには、画像表示装置のバックライトに適する、スペックルノイズが低い窒化物半導体系スーパールミネッセントダイオードを用いてもよい。
In the third embodiment, the semiconductor light emitting device 1D including the semiconductor light emitting element 3A having the laser array structure is used for the light source device, but the present invention is not limited to this. That is, a single-wavelength semiconductor laser element may be used as the semiconductor light-emitting element, and a nitride semiconductor superluminescent diode with low speckle noise that is suitable for a backlight of an image display device may be used. Good.
また、第3の実施形態においては、光源装置に用いられる複数の半導体発光装置に、すべて同一の半導体発光装置1Dを用いたが、これに限られない。例えば、光源装置に用いる半導体発光装置に搭載される半導体発光素子として発光波長が380nm~490nmの窒化物系半導体発光素子と、発光波長が490nm~550nmの窒化物系半導体発光素子と、発光波長が550nm~640nmの(Al、In、Ga、P、As)系半導体発光素子とを、各2個ずつ、合計6個を配置し、光源装置の出射光として白色光が出射される構成としてもよい。
In the third embodiment, the same semiconductor light emitting device 1D is used for the plurality of semiconductor light emitting devices used in the light source device, but the present invention is not limited to this. For example, as a semiconductor light-emitting element mounted on a semiconductor light-emitting device used in a light source device, a nitride-based semiconductor light-emitting element having an emission wavelength of 380 nm to 490 nm, a nitride-based semiconductor light-emitting element having an emission wavelength of 490 nm to 550 nm, and an emission wavelength of A total of six 550 nm to 640 nm (Al, In, Ga, P, As) -based semiconductor light emitting elements may be arranged so that white light is emitted as light emitted from the light source device. .
また、第3の実施形態においては、半導体発光装置として、第2の実施形態に係る半導体発光装置1Dを用いたが、溶接台12の構成は、第1の実施形態、その第1変形例又は第2変形例と同等の構成であってもよい。
Further, in the third embodiment, the semiconductor light emitting device 1D according to the second embodiment is used as the semiconductor light emitting device, but the configuration of the welding table 12 is the same as that of the first embodiment, the first modified example, or A configuration equivalent to that of the second modification may be used.
さらに、第3の実施形態に係る半導体発光装置1Dは、基台11Dと金属カバー21との接合部に溶接台12を設けているが、本実施形態においては、溶接台12を設けない従来の半導体発光装置であっても、基台の厚さを厚くし、その平面形状を多角形状として、さらにその側面に密着して固定する本実施形態に係る固定治具250、260及び270を用いれば、溶接台12を設けない半導体発光装置の放熱性を高めることが可能となる。
Furthermore, the semiconductor light emitting device 1D according to the third embodiment has the welding table 12 provided at the joint between the base 11D and the metal cover 21, but in this embodiment, the conventional welding table 12 is not provided. Even in the case of a semiconductor light emitting device, if the fixing jigs 250, 260, and 270 according to the present embodiment are used in which the thickness of the base is increased, the planar shape is a polygonal shape, and the surface is fixed in close contact with the side surface. In addition, it is possible to improve the heat dissipation of the semiconductor light emitting device in which the welding table 12 is not provided.
本発明に係る半導体発光装置及び光源装置は、半導体発光素子を封止する金属カバーの気密性を維持しながら、半導体発光素子から発生するジュール熱を効率良くパッケージの外部に放熱することができ、プロジェクタ等のディスプレイに用いる出射光強度が大きい半導体発光装置及び光源装置等に有用である。
The semiconductor light emitting device and the light source device according to the present invention can efficiently dissipate Joule heat generated from the semiconductor light emitting element to the outside of the package while maintaining the airtightness of the metal cover that seals the semiconductor light emitting element. It is useful for a semiconductor light emitting device and a light source device having a high intensity of emitted light used for a display such as a projector.
1 半導体発光装置
1A 半導体発光装置
1B 半導体発光装置
1C 半導体発光装置
1D 半導体発光装置
3 半導体発光素子
3a ストライプ
3A 半導体発光素子
6 サブマウント
10 パッケージ
10A パッケージ
10B パッケージ
10C パッケージ
10D パッケージ
11 基台
11A 基台
11B 基台
11C 基台
11D 基台
11E 基台
11F 基台
11G 基台
11a 主面
11b ブロック部
11c 貫通孔
11d 段差部
11d1 段差部
11e 溝部
12 溶接台
13 接着材
14 リード
15 リード
16 リード
18 絶縁材
19 絶縁材
20 キャップ
21 金属カバー
21a フランジ部
21b 開口部
21c 突起部
22 透明光学素子
23 固着材
25 溶接部
30a ワイヤ
30b ワイヤ
30c ワイヤ
31a 固定台
31b 押さえ部
50 固定治具
51 押さえ治具
60 放熱経路
150 第1の固定治具
150a 取り付け孔
150b 取り付け孔
155a ねじ穴
155b ねじ穴
160 第2の固定治具
160a 取り付け孔
160b 取り付け孔
165a 貫通孔
165b 貫通孔
180a ねじ
180b ねじ
201 光源装置
250 第1の固定治具
250a 取り付け孔
250b 取り付け孔
260 第2の固定治具
260a 取り付け孔
260b 取り付け孔
270 第3の固定治具
270a 取り付け孔
270b 取り付け孔
280a ねじ
280b ねじ
280c ねじ
280d ねじ
281a ねじ
281b ねじ
281c ねじ
281d ねじ DESCRIPTION OFSYMBOLS 1 Semiconductor light-emitting device 1A Semiconductor light-emitting device 1B Semiconductor light-emitting device 1C Semiconductor light-emitting device 1D Semiconductor light-emitting device 3 Semiconductor light-emitting device 3a Stripe 3A Semiconductor light-emitting device 6 Submount 10 Package 10A Package 10B Package 10C Package 10D Package 11 Base 11A Base 11B Base 11C Base 11D Base 11E Base 11F Base 11G Base 11a Main surface 11b Block 11c Through-hole 11d Step 11d1 Step 11e Groove 12 Welding base 13 Adhesive 14 Lead 15 Lead 16 Lead 18 Insulating material 19 Insulating material 20 Cap 21 Metal cover 21a Flange 21b Opening 21c Protrusion 22 Transparent optical element 23 Adhering material 25 Welding portion 30a Wire 30b Wire 30c Wire 1a Fixing base 31b Holding part 50 Fixing jig 51 Holding jig 60 Heat radiation path 150 First fixing jig 150a Mounting hole 150b Mounting hole 155a Screw hole 155b Screw hole 160 Second fixing jig 160a Mounting hole 160b Mounting hole 165a Through hole 165b Through hole 180a Screw 180b Screw 201 Light source device 250 First fixing jig 250a Mounting hole 250b Mounting hole 260 Second fixing jig 260a Mounting hole 260b Mounting hole 270 Third fixing jig 270a Mounting hole 270b Mounting Hole 280a Screw 280b Screw 280c Screw 280d Screw 281a Screw 281b Screw 281c Screw 281d Screw
1A 半導体発光装置
1B 半導体発光装置
1C 半導体発光装置
1D 半導体発光装置
3 半導体発光素子
3a ストライプ
3A 半導体発光素子
6 サブマウント
10 パッケージ
10A パッケージ
10B パッケージ
10C パッケージ
10D パッケージ
11 基台
11A 基台
11B 基台
11C 基台
11D 基台
11E 基台
11F 基台
11G 基台
11a 主面
11b ブロック部
11c 貫通孔
11d 段差部
11d1 段差部
11e 溝部
12 溶接台
13 接着材
14 リード
15 リード
16 リード
18 絶縁材
19 絶縁材
20 キャップ
21 金属カバー
21a フランジ部
21b 開口部
21c 突起部
22 透明光学素子
23 固着材
25 溶接部
30a ワイヤ
30b ワイヤ
30c ワイヤ
31a 固定台
31b 押さえ部
50 固定治具
51 押さえ治具
60 放熱経路
150 第1の固定治具
150a 取り付け孔
150b 取り付け孔
155a ねじ穴
155b ねじ穴
160 第2の固定治具
160a 取り付け孔
160b 取り付け孔
165a 貫通孔
165b 貫通孔
180a ねじ
180b ねじ
201 光源装置
250 第1の固定治具
250a 取り付け孔
250b 取り付け孔
260 第2の固定治具
260a 取り付け孔
260b 取り付け孔
270 第3の固定治具
270a 取り付け孔
270b 取り付け孔
280a ねじ
280b ねじ
280c ねじ
280d ねじ
281a ねじ
281b ねじ
281c ねじ
281d ねじ DESCRIPTION OF
Claims (18)
- 半導体発光素子と、
前記半導体発光素子を保持するパッケージと、
前記パッケージに固着され、前記半導体発光素子を封止する金属カバーとを備え、
前記パッケージは、基台と、該基台の主面上に形成され、前記金属カバーを抵抗溶接可能な溶接台とを有し、
前記基台を構成する第1の金属材料の熱伝導率は、前記金属カバーを構成する第2の金属材料の熱伝導率よりも大きく、
前記金属カバーと前記溶接台との熱伝導率の差は、前記金属カバーと前記基台との熱伝導率の差よりも小さい半導体発光装置。 A semiconductor light emitting device;
A package for holding the semiconductor light emitting element;
A metal cover fixed to the package and sealing the semiconductor light emitting element;
The package includes a base and a welding base formed on the main surface of the base and capable of resistance welding the metal cover,
The thermal conductivity of the first metal material constituting the base is greater than the thermal conductivity of the second metal material constituting the metal cover,
The difference in thermal conductivity between the metal cover and the welding table is smaller than the difference in thermal conductivity between the metal cover and the base. - 請求項1において、
前記金属カバーには、前記半導体発光素子と対向する位置に開口部が設けられると共に、前記開口部を覆うように透明光学素子が固着されており、
前記透明光学素子と前記金属カバーとの熱膨張係数の差は、前記透明光学素子と前記基台との熱膨張係数の差よりも小さい半導体発光装置。 In claim 1,
The metal cover is provided with an opening at a position facing the semiconductor light emitting element, and a transparent optical element is fixed so as to cover the opening,
The semiconductor light emitting device in which a difference in thermal expansion coefficient between the transparent optical element and the metal cover is smaller than a difference in thermal expansion coefficient between the transparent optical element and the base. - 請求項1又は2において、
前記基台には、少なくとも1つの貫通孔が形成され、
前記パッケージは、前記貫通孔に絶縁材を介在させて固着され且つ前記半導体発光素子と電気的に接続されるリードを有している半導体発光装置。 In claim 1 or 2,
At least one through hole is formed in the base,
The semiconductor light emitting device, wherein the package has a lead fixed to the through hole with an insulating material interposed therebetween and electrically connected to the semiconductor light emitting element. - 請求項3において、
前記基台の主面には、前記半導体発光素子を固着するブロック部が設けられ、
前記溶接台は、前記ブロック部と前記貫通孔とを囲むように前記基台の主面上に形成される半導体発光装置。 In claim 3,
The main surface of the base is provided with a block portion for fixing the semiconductor light emitting element,
The said welding stand is a semiconductor light-emitting device formed on the main surface of the said base so that the said block part and the said through-hole may be enclosed. - 請求項4において、
前記基台の主面の周縁部には、段差部が設けられており、
前記溶接台は、前記段差部に形成されている半導体発光装置。 In claim 4,
A step portion is provided on the peripheral edge of the main surface of the base,
The said welding stand is a semiconductor light-emitting device currently formed in the said level | step-difference part. - 請求項4において、
前記基台の主面の周縁部には、環状の溝部が設けられており、
前記溶接台は、前記溝部に形成されている半導体発光装置。 In claim 4,
An annular groove is provided on the peripheral edge of the main surface of the base,
The said welding stand is a semiconductor light-emitting device currently formed in the said groove part. - 請求項3~6のいずれか1項において、
前記溶接台は前記貫通孔を含む領域に形成され、
前記溶接台と前記貫通孔の絶縁材とは互いに接続されている半導体発光装置。 In any one of claims 3 to 6,
The welding table is formed in a region including the through hole,
A semiconductor light emitting device in which the welding table and the insulating material of the through hole are connected to each other. - 請求項1~7のいずれか1項において、
前記基台は、その平面形状が多角形状である半導体発光装置。 In any one of claims 1 to 7,
The base is a semiconductor light emitting device having a polygonal planar shape. - 請求項8において、
前記基台は、その平面形状が四角形状である半導体発光装置。 In claim 8,
The base is a semiconductor light emitting device having a quadrangular planar shape. - 請求項1~9のいずれか1項において、
前記第1の金属材料は、銅を主成分とする半導体発光装置。 In any one of claims 1 to 9,
The first metal material is a semiconductor light emitting device having copper as a main component. - 請求項10において、
前記第2の金属材料は、鉄を含む半導体発光装置。 In claim 10,
The second metal material is a semiconductor light emitting device containing iron. - 請求項1~11のいずれか1項において、
前記半導体発光素子は、半導体レーザ素子である半導体発光装置。 In any one of claims 1 to 11,
The semiconductor light emitting device, wherein the semiconductor light emitting element is a semiconductor laser element. - 請求項1~11のいずれか1項において、
前記半導体発光素子は、スーパールミネッセントダイオードである半導体発光装置。 In any one of claims 1 to 11,
The semiconductor light-emitting device is a superluminescent diode. - 請求項1~13のいずれか1項に記載の半導体発光装置と、
前記基台を該基台の側面方向からそれぞれ挟むことにより、前記半導体発光装置を保持する複数の固定治具とを備えている光源装置。 A semiconductor light emitting device according to any one of claims 1 to 13,
A light source device comprising a plurality of fixing jigs for holding the semiconductor light emitting device by sandwiching the base from the side surfaces of the base. - 半導体発光素子と、該半導体発光素子を保持するパッケージと、該パッケージに固着され、前記半導体発光素子を封止する金属カバーとを有する半導体発光装置と、
前記基台を該基台の側面方向からそれぞれ挟むことにより、前記半導体発光装置を保持する複数の固定治具とを備えている光源装置。 A semiconductor light emitting device comprising: a semiconductor light emitting element; a package holding the semiconductor light emitting element; and a metal cover fixed to the package and sealing the semiconductor light emitting element;
A light source device comprising a plurality of fixing jigs for holding the semiconductor light emitting device by sandwiching the base from the side surfaces of the base. - 請求項14又は15において、
前記複数の固定冶具同士は、互いに接触しない光源装置。 In claim 14 or 15,
The light source device in which the plurality of fixing jigs do not contact each other. - 請求項14~16のいずれか1項において、
前記半導体発光装置を構成する前記基台は、その平面形状が多角形状である光源装置。 In any one of claims 14 to 16,
The said base which comprises the said semiconductor light-emitting device is a light source device whose planar shape is a polygonal shape. - 請求項17において、
前記半導体発光装置を構成する前記基台は、その平面形状が四角形状である光源装置。 In claim 17,
The said base which comprises the said semiconductor light-emitting device is a light source device whose planar shape is a square shape.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-222020 | 2010-09-30 | ||
JP2010222020A JP2012079827A (en) | 2010-09-30 | 2010-09-30 | Semiconductor light emitting device and light source device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012042685A1 true WO2012042685A1 (en) | 2012-04-05 |
Family
ID=45892188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000444 WO2012042685A1 (en) | 2010-09-30 | 2011-01-27 | Semiconductor light emitting device and light source device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012079827A (en) |
WO (1) | WO2012042685A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103986058A (en) * | 2014-05-20 | 2014-08-13 | 深圳市易飞扬通信技术有限公司 | Can-shaped packaging structure and method of vertical-cavity surface emitting laser device |
CN111837299A (en) * | 2018-03-15 | 2020-10-27 | 三菱电机株式会社 | Semiconductor module and method for manufacturing the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6037293B2 (en) * | 2012-07-11 | 2016-12-07 | パナソニックIpマネジメント株式会社 | Nitride semiconductor light emitting device |
JP6218106B2 (en) * | 2013-06-28 | 2017-10-25 | 株式会社リコー | Optical module, optical scanning device, image forming apparatus, and optical module manufacturing method |
DE102013217796A1 (en) * | 2013-09-05 | 2015-03-05 | Osram Opto Semiconductors Gmbh | Optoelectronic component, optoelectronic device and method for producing an optoelectronic device |
JP6268856B2 (en) * | 2013-09-24 | 2018-01-31 | 三菱電機株式会社 | Optical module and manufacturing method thereof |
JP6349238B2 (en) * | 2014-11-25 | 2018-06-27 | 新光電気工業株式会社 | Semiconductor device stem and semiconductor device |
CN208571224U (en) * | 2016-03-18 | 2019-03-01 | Nec显示器解决方案株式会社 | The cooling structure and projection display device of light-emitting component, light-emitting component |
JP7025624B2 (en) * | 2017-06-21 | 2022-02-25 | 日亜化学工業株式会社 | Luminous module |
JP7467877B2 (en) * | 2019-10-17 | 2024-04-16 | ウシオ電機株式会社 | Semiconductor light emitting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174179A (en) * | 1988-12-26 | 1990-07-05 | Hitachi Ltd | Optoelectronic device and its manufacture |
JPH05164950A (en) * | 1991-12-17 | 1993-06-29 | Rohm Co Ltd | Light source unit and its adjusting method |
JP2001135745A (en) * | 1999-11-05 | 2001-05-18 | Shinko Electric Ind Co Ltd | Method for manufacturing stem for semiconductor package, eyelet for semiconductor package and eyelet for semiconductor package |
JP2001358398A (en) * | 2000-06-13 | 2001-12-26 | Furukawa Electric Co Ltd:The | Semiconductor laser element unit and semiconductor laser module |
JP2004235212A (en) * | 2003-01-28 | 2004-08-19 | Matsushita Electric Ind Co Ltd | Airtight terminal and semiconductor device using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004031763A (en) * | 2002-06-27 | 2004-01-29 | Nichia Chem Ind Ltd | Light emitting device |
JP4401337B2 (en) * | 2004-09-30 | 2010-01-20 | シャープ株式会社 | Nitride semiconductor laser light source manufacturing method and nitride semiconductor laser light source manufacturing apparatus |
JP2007088320A (en) * | 2005-09-26 | 2007-04-05 | Fujifilm Corp | Light source device and optical semiconductor device |
-
2010
- 2010-09-30 JP JP2010222020A patent/JP2012079827A/en active Pending
-
2011
- 2011-01-27 WO PCT/JP2011/000444 patent/WO2012042685A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02174179A (en) * | 1988-12-26 | 1990-07-05 | Hitachi Ltd | Optoelectronic device and its manufacture |
JPH05164950A (en) * | 1991-12-17 | 1993-06-29 | Rohm Co Ltd | Light source unit and its adjusting method |
JP2001135745A (en) * | 1999-11-05 | 2001-05-18 | Shinko Electric Ind Co Ltd | Method for manufacturing stem for semiconductor package, eyelet for semiconductor package and eyelet for semiconductor package |
JP2001358398A (en) * | 2000-06-13 | 2001-12-26 | Furukawa Electric Co Ltd:The | Semiconductor laser element unit and semiconductor laser module |
JP2004235212A (en) * | 2003-01-28 | 2004-08-19 | Matsushita Electric Ind Co Ltd | Airtight terminal and semiconductor device using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103986058A (en) * | 2014-05-20 | 2014-08-13 | 深圳市易飞扬通信技术有限公司 | Can-shaped packaging structure and method of vertical-cavity surface emitting laser device |
CN111837299A (en) * | 2018-03-15 | 2020-10-27 | 三菱电机株式会社 | Semiconductor module and method for manufacturing the same |
CN111837299B (en) * | 2018-03-15 | 2023-08-08 | 三菱电机株式会社 | Semiconductor module and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2012079827A (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012042685A1 (en) | Semiconductor light emitting device and light source device | |
JP6484588B2 (en) | Light emitting device and light emitting device package | |
US9595806B2 (en) | Laser light-emitting apparatus | |
JP6880725B2 (en) | Light emitting device | |
US10447005B2 (en) | Light source device | |
US8124998B2 (en) | Light emitting device package | |
KR101284796B1 (en) | method for light emitting device with can package and the light emitting device | |
JP4192742B2 (en) | Light emitting device | |
JP2007027716A (en) | Package for laser diode device, laser diode device and method for manufacturing laser diode device | |
US20120037939A1 (en) | Light emitting diode | |
JP2007250979A (en) | Semiconductor package | |
JP2008288536A (en) | Surface mounting type ceramic substrate | |
JP2022009833A (en) | Light-emitting device | |
JP6225834B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
JP2016219504A (en) | Light-emitting device | |
JP2012174954A (en) | Semiconductor light-emitting device and light source device using the same | |
JP2004006824A (en) | Package for optical semiconductor and its manufacturing method | |
JP7014645B2 (en) | Semiconductor light emitting device | |
JP2011103353A (en) | Light emitting module | |
JP7174219B2 (en) | Light source device | |
JP2020126987A (en) | Semiconductor laser light source device | |
JPWO2020031944A1 (en) | Semiconductor light emitting device | |
JP6642749B1 (en) | Semiconductor laser light source device | |
JP2019102716A (en) | Light emitting apparatus and method of manufacturing the same | |
JP2015046236A (en) | Light-emitting device and lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11828255 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11828255 Country of ref document: EP Kind code of ref document: A1 |