JP2004006824A - Package for optical semiconductor and its manufacturing method - Google Patents

Package for optical semiconductor and its manufacturing method Download PDF

Info

Publication number
JP2004006824A
JP2004006824A JP2003113509A JP2003113509A JP2004006824A JP 2004006824 A JP2004006824 A JP 2004006824A JP 2003113509 A JP2003113509 A JP 2003113509A JP 2003113509 A JP2003113509 A JP 2003113509A JP 2004006824 A JP2004006824 A JP 2004006824A
Authority
JP
Japan
Prior art keywords
optical semiconductor
resistance welding
block portion
eyelet
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113509A
Other languages
Japanese (ja)
Inventor
Takashi Murayama
村山 隆史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003113509A priority Critical patent/JP2004006824A/en
Publication of JP2004006824A publication Critical patent/JP2004006824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package excellent in heat dissipation available for a high power semiconductor laser. <P>SOLUTION: This package for an optical semiconductor is characterized by forming the front surface of a portion 14 on which the semiconductor of an eyelet main body 18 is mounted with a heat sink 17. Also, this package for the optical semiconductor is provided with an eyelet main body whose disc-shaped front surface is mounted with a block portion shaped like a square pole and a cap, and the side face of the block portion on which the optical semiconductor is mounted is characterized by consisting of at least two regions, that is, a region where thermal conductivity is small and a region interposed between the regions where the thermal conductivity is small, where the thermal conductivity is larger than that of those regions from the relative point of view. This method for manufacturing the package for the optical semiconductor is characterized by press-molding a clad material where a disc-shaped eyelet main body 18 and a disc-shaped heat sink and an annular material layer 16 suitable for resistance welding are successively laminated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体を実装するパッケージおよびその製造方法に関する。
【0002】
【従来の技術】
光半導体用パッケージ10は,アイレット11に形成された貫通孔に電気信号リード15を貫通させ,絶縁材料13により固定されている構造からなる。また,アイレット11に直接電気信号リード15が溶接されることもある。アイレット11上面には光半導体を実装する部14が設置されている。
【0003】
一般に半導体レーザーは温度上昇により閾値が上昇し,低電流駆動においては光出力が低下する特性をもつ。そのため,駆動温度を常に低い温度で一定に保持することを目的として,図2に示すステム底面の外周に設置した放熱板20を利用することにより熱を逃がす手段が用いられている。
【0004】
【発明が解決しようとする課題】
上記記載の従来半導体レーザー用パッケージの場合, 例えば特許文献1のように,アイレット本体形成用部材18,ヒートシンク形成用部材17,抵抗溶接に適した材料16よりなる図3記載のクラッド材12を,金型によりプレス成形して打ち抜くことにより,金型形状に近い一体成形されたパッケージ図4を作成している。そのため,図5記載の光半導体を接合する部の断面は,抵抗溶接に適した材料層16,例えば軟鉄が,ヒートシンク17を覆うように形成されてしまう。また、アイレット本体、ヒートシンク形成用部材、抵抗溶接に適した材料よりなる図3記載のクラッド材を、金型によりプレス成形する光半導体用パッケージにおいては、特に光半導体を実装する部の先端に必ずプレス時にできる鉄の厚みむらが生じる。この厚みむらは例えば光半導体として、半導体レーザを実装した際のレーザ光を出射する側の部位で特に厚い。この厚みむらは制御することが困難で、発熱により温度上昇する光半導体の信頼性を欠く大きな原因になっている。このことは,特に消費電力を必要とするGaN系光半導体素子に対しては放熱性の面で不利に働く。
【課題を解決するための手段】
本発明の光半導体用パッケージは、円板状の表面に四角柱のブロック部を有するアイレット本体と、キャップとを有し、前記アイレット本体18のブロック部の側面に位置する、光半導体を実装する部14の表面がヒートシンク17で形成されていることを特徴とする。このような構成をとることにより、放熱性を著しく向上させることが可能である。
【0005】
さらにまた、本発明の光半導体用パッケージにおいて、前記ヒートシンク17がCu若しくはCuを主成分とする材料からなる。ヒートシンクとしてCuは熱伝導率が大きく、光半導体の発熱を効率良くブロック部へ放熱でき好ましい。
【0006】
さらにまた、前記ブロック部の2つの側面が接合される領域は、キャップとの抵抗溶接に適した材料からなることを特徴とする。
【0007】
さらにまた、前記円板状の表面は、前記キャップとの抵抗溶接に適した材料からなることを特徴とする。キャップとの抵抗溶接として好ましい材料としては、Feやコバールなどが挙げられ、光半導体が実装されたアイレット本体とキャップとを強固に接合でき、キャップが剥れることを防止できると共に、不活性な窒素や、酸素などの従来の気密性を保つことが必要な半導体レーザ素子を強固に気密封止できるので好ましい。
【0008】
また、本発明の光半導体用パッケージは、円板状の表面に四角柱のブロック部を有するアイレット本体と、キャップとを有し、光半導体を実装するブロック部の側面が、相対的にみて、前記熱伝導率の小さい領域と、該熱伝導率の小さい領域に挟まれた熱伝導率の大きい領域との、少なくとも2つの領域からなることを特徴とする。このようなブロック部の側面に光半導体を実装することで、放熱性に優れ、さらに信頼性も高い光半導体用パッケージを得ることができる。
【0009】
さらにまた、前記光半導体は、ブロック部側面のうち、前記熱伝導率の大きい領域の表面に実装されてなることを特徴とする。熱伝導率の大きい領域の表面に光半導体を実装することで、光半導体からの発熱が効率良く放熱される。
【0010】
さらにまた、前記円板状の表面には、キャップとの抵抗溶接に適した材料が露出されてなることを特徴とする。キャップとの抵抗溶接として好ましい材料としては、Feやコバールなどが挙げられ、光半導体が実装されたアイレット本体とキャップとを強固に接合でき、キャップが剥れることを防止できると共に、不活性な窒素や、酸素などの従来の気密性を保つことが必要な半導体レーザ素子を強固に気密封止できるので好ましい。
【0011】
さらにまた、前記熱伝導率の小さい領域は、キャップとの抵抗溶接に適した材料が露出されてなることを特徴とする。
【0012】
さらにまた、前記熱伝導率の大きい領域は、Cu若しくはCuを主成分とする材料が露出されてなることを特徴とする。ヒートシンクとしてCuは熱伝導率が大きく、光半導体の発熱を効率良くブロック部へ放熱でき好ましい。
【0013】
本発明の光半導体用パッケージの製造方法において、円板状のアイレット本体18と円板状のヒートシンクとリング状の抵抗溶接に適した材料層16を順に積層させたクラッド材をプレス成形することを特徴とする。
【0014】
本発明は,上記記載の問題を解決する為の製造方法として,以下の構成を特徴とするものである。すなわち抵抗溶接に適した材料層16の中央に穴を設け,鉄を主成分とするアイレット本体18,Cuを主成分とするヒートシンク17よりなるクラッド材を,金型によりプレス成形して打ち抜くことにより,少なくともキャップを抵抗溶接する部位に抵抗溶接に適した材料層を備えたステムが作成される。図8は本発明技術を示す模式的断面図である。これにより,抵抗溶接に適した材料層16が,ヒートシンク17を覆うように形成されることなく,光半導体をヒートシンク17に直接実装することが可能となるため,パッケージの熱抵抗を小さくし,放熱性を向上させることが可能となる。
【0015】
本件発明は特に消費電力の高いレーザに対してより有効である。本件においては窒化物半導体レーザを例にとり説明するが、これに限定される訳ではない。
【0016】
【発明の実施の形態】
[実施の形態1]
従来技術では,光半導体を接合する部14の断面は,抵抗溶接に適した材料層16(例えば鉄:熱伝導率50W/mK)が,ヒートシンク(例えばCuを主成分とする材料:熱伝導率400W/mK)を覆うように形成されてしまうため,光半導体からの発熱を放熱板へ十分効率良く逃がすことが出来ない。
【0017】
本発明では,光半導体を接合する部14を除く面に,抵抗溶接に適した材料層16を備えたステムであって,光半導体支持部がヒートシンク17のみで構成されている。
【0018】
このように形成されたパッケージに対し,特に発熱量の大きい窒化物半導体レーザを実装して熱抵抗を評価した。
【0019】
熱抵抗の評価を,窒化物半導体レーザーにおける電圧の温度依存性により評価した.図6に,窒化物半導体レーザーにおける電圧の温度依存性をPULSE駆動およびCW駆動に対して測定した結果を示す。これは,例えば,放熱板と発光点(発熱源)温度との温度差を調べる際に用いられる方法である.例えば放熱板温度20℃にてCW駆動させた場合の電圧(図6中A点)と,PULSE駆動させた際の電圧とが同じになるとき(図6中B点)の温度(図6中C点)は,放熱板温度20℃にてCW駆動させた場合の発光点(発熱源)温度に等しい。これにより,熱抵抗は、
熱抵抗 = {発光点(発熱源)温度 − 放熱板温度} / {投入電力−光出力}
により与えられる。ここで投入電力は図6中A点にてCW駆動させた場合の電力である。
【0020】
このようにして熱抵抗の評価を,窒化物半導体レーザーにおける電圧の温度依存性により評価した結果、本発明におけるパッケージに対し,熱抵抗は一桁[℃/W]程度であった。
[実施の形態2]
本発明の、四角柱のブロック部を有するアイレットは、円板状のアイレット本体と円板状のヒートシンクとリング状の抵抗溶接に適した材料を順に積層させたクラッド材を、下面と上面とからプレス成形することにより形成される。上面からのプレスは、円板の内部にブロック部が形成されるように四角形の開口部を有するプレス板を用い、ヒートシンクに到達する深さまでプレスすることで得られる。このようにプレスすることで、アイレットの表面が抵抗溶接に適した材料で形成され、キャップと強固な接合ができると共に、光半導体を実装するブロック部の少なくとも内部がヒートシンクからなり、光半導体からの発熱を効率よく放熱できる。
【0021】
本発明の抵抗溶接に適した材料は、図7に示すようにリング状である。つまり円板状であって、さらに内部に円形の開口部を有する。この開口部は以下のようにして設ける。図9にアイレット表面側から見たときの、円形の開口部25と四角形のブロック部底面24との関係を図示している。ここでは開口部となる円の中心と、ブロック部底面となる四角形の重心とを一致させる。このとき、円の直径を四角形の一辺と等しいかそれより長く、四角形の対角線と等しいかそれより短くする。このように円の直径を決めることで、光半導体を実装するブロック部の側面に、相対的にみて、前記熱伝導率の小さい領域と、該熱伝導率の小さい領域に挟まれた熱伝導率の大きい領域との、少なくとも2つの領域が形成される。そして熱伝導率の大きい領域に光半導体を実装することで、放熱性に優れたアイレットが形成され、好適に放熱される。
【0022】
ここで、円の直径が四角形の一辺より短い場合、ブロック部側面のうち、光半導体を実装する部が、抵抗溶接に適した材料からなり、さらにその材料が厚いために、熱伝導率が小さく、好適に放熱されない。また抵抗溶接に適する材料の厚みむらが、光半導体を実装する部位で生じてしまう。具体的な例として、光半導体として、半導体レーザを実装した際、レーザ光が出射される側の部位で特に厚くなる。レーザ光の出射端面は特に発熱するため、この厚みむらは放熱性を特に悪くしてしまう。加えて、円の直径が四角形の一辺と等しいとき、ブロック部の光半導体を実装する部位は、厚みむらが無い抵抗溶接に適する材料からなり、かつ抵抗溶接に適する材料は非常に薄く、放熱性もヒートシンクが露出するときと大差ない。この薄いときとは、抵抗溶接に適する材料がおおよそ50μm以下をさす。
【0023】
逆に、円の直径が四角形の対角線より長い場合、ブロック部の体積が大きくなり、放熱性はさらに上がるが、アイレット表面のキャップ接合部の一部がヒートシンクとなり、強固な接合ができなくなり、さらに気密性も悪くなる。円の直径が四角形の対角線と等しいときは、キャップ接合部はすべて抵抗溶接に適した材料からなり、信頼性高くキャップを実装でき、かつ、放熱性にも最も優れている。
【0024】
これまで抵抗溶接に適した材料の円形の開口部について、ブロック部底面の四角形の一辺および対角線との関係で述べたが、本発明はこれに限るものではなく、少なくとも、ブロック部の光半導体を実装する側面のアイレットに接する辺と、前記開口部の円とが、接するか若しくは交わるように形成されていれば良く、ブロック底面が四角形に限定されない場合は、これに含まれる。光半導体を実装する側面のアイレットに接する辺は、通常アイレット表面の円の弦と平行に形成される。
【0025】
本発明において、ブロック部の断面について説明する。ブロック部の断面を図10に示す斜視図のA−A’方向と、B−B’方向で見たときを図で説明する。抵抗溶接に適した材料の開口部となる円の直径が、ブロック部の底面の四角形の一辺と等しい場合、A−A’方向に見た図は図11のようになる。この場合、ブロック部の光半導体を実装する部位は、厚みむらが無い抵抗溶接に適する材料からなり、またこの材料も薄い。このときのB−B’方向に見た図は図13となり、B−B’方向には抵抗溶接に適する材料に厚みむらが生じており、また抵抗溶接に適する材料は厚い。
【0026】
次に円の直径が、四角形の一辺より大きく、四角形の対角線より短い場合、A−A’は図12のようになり、この場合、ブロック部の光半導体を実装する部位は、ヒートシンクからなる。このときのB−B’方向に見た図は図13となり、B−B’方向には抵抗溶接に適する材料に厚みむらが生じており、また抵抗溶接に適する材料は厚い。
【0027】
次に円の直径が、四角形の対角線と等しい場合、A−A’は図12のようになり、この場合、ブロック部の光半導体を実装する部位は、ヒートシンクからなる。このときのB−B’方向に見た図は図11となり、厚みむらが無い抵抗溶接に適する材料からなる。
【0028】
これらの範囲に抵抗溶接に適した材料の開口部となる円の直径を決めることで、放熱性に優れ、信頼性の高いアイレットを形成することができる。
【0029】
本発明は、ブロック部を四角柱としているが、少なくとも光半導体を実装する側面のアイレットに接する辺が、アイレット表面の円の弦と平行であれば、多角柱であってもよい。
【0030】
本発明のアイレット本体は、好ましくはFeが、ヒートシンクは好ましくはCuが、抵抗溶接に適した材料としては好ましくはFeが用いられるが、従来のそれぞれの機能を有する一般的に用いられる材料であれば、この限りでない。
【実施例】
[実施例1]
実施例1として、アイレットとして、抵抗溶接に適した材料に円形の開口部を設け、その円の直径を、ブロック部底面の四角形の一辺より長く、また対角線より短したクラッド材をプレス成形して形成したアイレットに、発熱量の大きい窒化物半導体レーザを実装して熱抵抗を評価した。
【0031】
実施の形態1に記載の評価を行った結果、熱抵抗は一桁[℃/W]程度であった。
[実施例2]
実施例2として、抵抗溶接に適した材料に円形の開口部を設け、その円の直径を、ブロック部底面の四角形の一辺と等しくしたクラッド材をプレス成形して形成したアイレットに、発熱量の大きい窒化物半導体レーザを実装して熱抵抗を評価した。熱抵抗は実施例1とほぼ同等の結果が得られた。
[実施例3]
実施例3として、アイレットとして、抵抗溶接に適した材料に円形の開口部を設け、その円の直径を、ブロック部底面の四角形の対角線と等しくしたクラッド材をプレス成形して形成したアイレットに、発熱量の大きい窒化物半導体レーザを実装して熱抵抗を評価した。熱抵抗は実施例1とほぼ同等の結果が得られた。
[比較例1]
従来のアイレットとして、抵抗溶接に適した材料に開口部を有しないクラッド材料をプレス成形して形成したアイレットを用いて実施例1と同様に形成した窒化物半導体レーザの熱抵抗を比較例として評価した.パッケージに対し,熱抵抗は10 [℃/W]程度であった。
[比較例2]
比較例2として、抵抗溶接に適した材料に円形の開口部を設け、その円の直径を、ブロック部底面の四角形の一辺より短くしたクラッド材をプレス成形して形成したアイレットに、発熱量の大きい窒化物半導体レーザを実装して熱抵抗を評価した。熱抵抗は比較例1と同等で、円形の開口部を設けたことによる放熱性の改善は見られなかった。
[比較例3]
比較例3として、アイレットとして、抵抗溶接に適した材料に円形の開口部を設け、その円の直径を、ブロック部底面の四角形の対角線より長くしたクラッド材をプレス成形して形成したアイレットに、発熱量の大きい窒化物半導体レーザを実装して熱抵抗を評価した。熱抵抗は実施例1とほぼ同等の結果が得られたが、キャップの抵抗溶接部にヒートシンクが露出することがあり、アイレットとキャップとを強固に接合できず、キャップの剥れが生じることがあった。
【0032】
【発明の効果】
ブロック部の光半導体を実装する部をヒートシンクのみから構成できる結果,高出力半導体レーザに用いることの可能な放熱性に優れたパッケージが得られる。特に本パッケージでは,レーザーの熱抵抗のバラツキが少なくなった。また、少なくともキャップを抵抗溶接する部位に抵抗溶接に適した材料を備え,従来のパッケージと何ら変わり無くキャップの抵抗溶接が可能である。よって,放熱性だけでなく気密性にも優れた半導体レーザを提供することが可能となり,製品の信頼性が向上する。
【0033】
また、ブロック部の光半導体を実装する部が厚みむらが無い抵抗溶接に適する材料からなり、この材料も薄いことで、放熱性もヒートシンクが露出するときと大差ないので、放熱性に優れた半導体レーザを提供することが可能となる。
【図面の簡単な説明】
【図1】一般的な光半導体用パッケージを示す模式的斜視図である、
【図2】一般的な光半導体用パッケージを示す模式的断面図である、
【図3】従来技術を示す模式的断面図である、
【図4】従来技術を示す模式的断面図である、
【図5】従来技術を示す模式的断面図である、
【図6】熱抵抗の評価方法を説明する図である、
【図7】本発明を示す模式的解体図である、
【図8】発明を示す模式的断面図である、
【図9】本発明を示す模式的断面図である、
【図10】本発明を説明する模式的斜視図である、
【図11】本発明を示す模式的断面図である、
【図12】本発明を示す模式的断面図である、
【図13】本発明を示す模式的断面図である。
【符号の説明】
10 光半導体用パッケージ、
11 アイレット、
12 クラッド材、
13 絶縁材料、
14 光半導体素子を実装する部、
15 電気信号リード、
16 抵抗溶接に適した材料、
17 ヒートシンク、
18 アイレット本体、
19 キャップ、
20 放熱板、
21 固定治具、
22 ねじ、
23 ブロック部、
24 ブロック部底面、
25 開口部、
26 光半導体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a package for mounting an optical semiconductor and a method for manufacturing the package.
[0002]
[Prior art]
The optical semiconductor package 10 has a structure in which an electric signal lead 15 penetrates a through hole formed in an eyelet 11 and is fixed by an insulating material 13. Further, the electric signal lead 15 may be directly welded to the eyelet 11. On the upper surface of the eyelet 11, a section 14 for mounting an optical semiconductor is provided.
[0003]
In general, a semiconductor laser has a characteristic that a threshold value increases with an increase in temperature and an optical output decreases in low-current driving. Therefore, in order to keep the driving temperature constant at a low temperature, a means for releasing heat by using a heat radiating plate 20 installed on the outer periphery of the stem bottom shown in FIG. 2 is used.
[0004]
[Problems to be solved by the invention]
In the case of the above-described conventional semiconductor laser package, for example, as in Patent Document 1, an eyelet body forming member 18, a heat sink forming member 17, and a cladding material 12 shown in FIG. By press-molding with a die and punching, an integrally molded package FIG. 4 close to the shape of the die is created. Therefore, in the cross section of the portion for joining the optical semiconductors shown in FIG. 5, a material layer 16 suitable for resistance welding, for example, soft iron, is formed so as to cover the heat sink 17. Further, in an optical semiconductor package in which the clad material shown in FIG. 3 composed of an eyelet body, a heat sink forming member, and a material suitable for resistance welding is press-molded by a mold, the optical semiconductor package must be formed at the tip of the optical semiconductor mounting part. Irregular thickness of iron is generated during pressing. The thickness unevenness is particularly large, for example, at a portion on the side where laser light is emitted when a semiconductor laser is mounted as an optical semiconductor. It is difficult to control the thickness unevenness, and this is a major cause of the lack of reliability of the optical semiconductor whose temperature rises due to heat generation. This is disadvantageous in terms of heat dissipation, especially for GaN-based optical semiconductor elements that require power consumption.
[Means for Solving the Problems]
The optical semiconductor package of the present invention has an eyelet body having a rectangular column-shaped block portion on a disk-shaped surface, and a cap, and mounts an optical semiconductor located on a side surface of the block portion of the eyelet body 18. The surface of the portion 14 is formed by a heat sink 17. With such a configuration, it is possible to remarkably improve heat dissipation.
[0005]
Furthermore, in the optical semiconductor package of the present invention, the heat sink 17 is made of Cu or a material containing Cu as a main component. As a heat sink, Cu has a high thermal conductivity and is preferable because heat generated by the optical semiconductor can be efficiently radiated to the block portion.
[0006]
Furthermore, the region where the two side surfaces of the block portion are joined is made of a material suitable for resistance welding with the cap.
[0007]
Furthermore, the disk-shaped surface is made of a material suitable for resistance welding with the cap. Preferred materials for the resistance welding with the cap include Fe and Kovar, which can firmly join the cap with the eyelet body on which the optical semiconductor is mounted, preventing the cap from peeling off, and inert nitrogen. Further, it is preferable because a conventional semiconductor laser element which needs to maintain hermeticity such as oxygen can be hermetically sealed.
[0008]
Further, the optical semiconductor package of the present invention has an eyelet body having a rectangular column-shaped block portion on a disk-shaped surface, and a cap, and the side surface of the block portion on which the optical semiconductor is mounted is relatively viewed. It is characterized by comprising at least two regions of a region having a small thermal conductivity and a region having a large thermal conductivity sandwiched between the regions having a small thermal conductivity. By mounting the optical semiconductor on the side surface of such a block portion, it is possible to obtain an optical semiconductor package having excellent heat dissipation and high reliability.
[0009]
Still further, the optical semiconductor is mounted on the surface of the region having a high thermal conductivity in the side surface of the block portion. By mounting the optical semiconductor on the surface of the region having a high thermal conductivity, heat generated from the optical semiconductor is efficiently radiated.
[0010]
Still further, a material suitable for resistance welding with the cap is exposed on the disk-shaped surface. Preferred materials for the resistance welding with the cap include Fe and Kovar, which can firmly join the cap with the eyelet body on which the optical semiconductor is mounted, preventing the cap from peeling off, and inert nitrogen. Further, it is preferable because a conventional semiconductor laser element which needs to maintain hermeticity such as oxygen can be hermetically sealed.
[0011]
Furthermore, the region having a small thermal conductivity is characterized in that a material suitable for resistance welding with the cap is exposed.
[0012]
Still further, the region having a high thermal conductivity is characterized in that Cu or a material containing Cu as a main component is exposed. As a heat sink, Cu has a high thermal conductivity and is preferable because heat generated by the optical semiconductor can be efficiently radiated to the block portion.
[0013]
In the method for manufacturing an optical semiconductor package according to the present invention, it is preferable to press-mold a clad material in which a disc-shaped eyelet body 18, a disc-shaped heat sink, and a material layer 16 suitable for ring-shaped resistance welding are sequentially laminated. Features.
[0014]
The present invention is characterized by the following configuration as a manufacturing method for solving the above-described problem. That is, a hole is provided in the center of a material layer 16 suitable for resistance welding, and a clad material composed of an eyelet body 18 mainly composed of iron and a heat sink 17 mainly composed of Cu is punched out by press molding with a mold. A stem having a material layer suitable for resistance welding at least at a portion where the cap is resistance-welded is produced. FIG. 8 is a schematic sectional view showing the technique of the present invention. As a result, the optical semiconductor can be directly mounted on the heat sink 17 without forming the material layer 16 suitable for resistance welding so as to cover the heat sink 17, so that the thermal resistance of the package is reduced and the heat radiation is reduced. It is possible to improve the performance.
[0015]
The present invention is particularly effective for lasers with high power consumption. In this case, a nitride semiconductor laser will be described as an example, but the present invention is not limited to this.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
In the prior art, the cross section of the part 14 for joining the optical semiconductors has a material layer 16 (for example, iron: thermal conductivity of 50 W / mK) suitable for resistance welding, and a heat sink (for example, a material mainly composed of Cu: thermal conductivity). 400 W / mK), the heat generated from the optical semiconductor cannot be sufficiently efficiently released to the heat sink.
[0017]
In the present invention, the stem is provided with a material layer 16 suitable for resistance welding on the surface excluding the portion 14 for joining the optical semiconductor, and the optical semiconductor support portion is constituted only by the heat sink 17.
[0018]
A thermal resistance was evaluated by mounting a nitride semiconductor laser, which generates a large amount of heat, on the package thus formed.
[0019]
Thermal resistance was evaluated based on the temperature dependence of voltage in nitride semiconductor lasers. FIG. 6 shows the results of measuring the temperature dependence of the voltage in the nitride semiconductor laser for the PULSE drive and the CW drive. This is a method used, for example, when examining the temperature difference between the heat sink and the light emitting point (heating source) temperature. For example, the temperature (point A in FIG. 6) when the CW drive is performed at the heat sink temperature of 20 ° C. and the voltage (point B in FIG. 6) when the voltage when the PULSE drive is performed are the same (point B in FIG. 6). C point) is equal to the light emitting point (heating source) temperature when the CW drive is performed at a heat sink temperature of 20 ° C. As a result, the thermal resistance becomes
Thermal resistance = {light-emitting point (heating source) temperature-heat sink temperature} / {input power-optical output}
Given by Here, the input power is the power when the CW drive is performed at the point A in FIG.
[0020]
As a result of the evaluation of the thermal resistance based on the temperature dependence of the voltage in the nitride semiconductor laser, the thermal resistance of the package according to the present invention was about one digit [° C./W].
[Embodiment 2]
The eyelet of the present invention, having a square pillar block portion, a disk-shaped eyelet body, a disk-shaped heat sink, and a clad material in which materials suitable for ring-shaped resistance welding are sequentially laminated, from the lower surface and the upper surface. It is formed by press molding. Pressing from the upper surface is obtained by using a press plate having a rectangular opening so that a block portion is formed inside the disk, and pressing to a depth that reaches the heat sink. By pressing in this way, the surface of the eyelet is formed of a material suitable for resistance welding, and can be firmly joined to the cap, and at least the inside of the block portion for mounting the optical semiconductor is formed of a heat sink, and the Heat can be efficiently dissipated.
[0021]
The material suitable for the resistance welding of the present invention has a ring shape as shown in FIG. That is, it has a disk shape and further has a circular opening inside. This opening is provided as follows. FIG. 9 illustrates the relationship between the circular opening 25 and the rectangular block portion bottom surface 24 when viewed from the eyelet surface side. Here, the center of the circle serving as the opening is made to coincide with the center of gravity of the square serving as the bottom of the block. At this time, the diameter of the circle is equal to or longer than one side of the rectangle and equal to or shorter than the diagonal line of the rectangle. By determining the diameter of the circle in this manner, the region having a small thermal conductivity and the thermal conductivity sandwiched by the region having a small thermal conductivity are relatively viewed from the side surface of the block portion on which the optical semiconductor is mounted. At least two regions are formed. By mounting the optical semiconductor in a region having a high thermal conductivity, an eyelet having excellent heat dissipation is formed, and heat is appropriately dissipated.
[0022]
Here, when the diameter of the circle is shorter than one side of the rectangle, the portion for mounting the optical semiconductor on the side surface of the block portion is made of a material suitable for resistance welding, and since the material is thicker, the thermal conductivity is small. , Is not suitably dissipated. In addition, uneven thickness of a material suitable for resistance welding occurs at a portion where the optical semiconductor is mounted. As a specific example, when a semiconductor laser is mounted as an optical semiconductor, the thickness is particularly large at a portion where the laser light is emitted. Since the emission end face of the laser beam generates heat in particular, the unevenness of the thickness particularly deteriorates the heat radiation. In addition, when the diameter of the circle is equal to one side of the rectangle, the portion of the block portion where the optical semiconductor is mounted is made of a material suitable for resistance welding without thickness unevenness, and the material suitable for resistance welding is very thin, and heat dissipation This is not much different from when the heat sink is exposed. The term “thin” means that a material suitable for resistance welding is approximately 50 μm or less.
[0023]
Conversely, if the diameter of the circle is longer than the diagonal of the rectangle, the volume of the block will increase and the heat dissipation will further increase, but part of the cap joint on the eyelet surface will become a heat sink, making it impossible to make a strong joint. The airtightness also worsens. When the diameter of the circle is equal to the diagonal line of the square, all the cap joints are made of a material suitable for resistance welding, the cap can be mounted with high reliability, and the heat dissipation is the most excellent.
[0024]
So far, the circular opening made of a material suitable for resistance welding has been described in relation to one side and the diagonal of the square on the bottom of the block. However, the present invention is not limited to this, and at least the optical semiconductor of the block is It suffices that the side of the side surface to be mounted, which is in contact with the eyelet, and the circle of the opening be formed so as to be in contact with or intersect with each other. The case where the block bottom surface is not limited to a square is included. The side in contact with the eyelet on the side surface on which the optical semiconductor is mounted is usually formed parallel to the chord of the circle on the eyelet surface.
[0025]
In the present invention, a cross section of the block portion will be described. The section when the cross section of the block portion is viewed in the AA ′ direction and the BB ′ direction in the perspective view shown in FIG. 10 will be described with reference to the drawings. When the diameter of a circle that becomes an opening of a material suitable for resistance welding is equal to one side of a square on the bottom surface of the block portion, a diagram viewed in the AA ′ direction is as shown in FIG. In this case, the portion of the block portion where the optical semiconductor is mounted is made of a material suitable for resistance welding without thickness unevenness, and this material is also thin. FIG. 13 shows the view taken in the direction BB ′ at this time. In the direction BB ′, the material suitable for resistance welding has uneven thickness, and the material suitable for resistance welding is thick.
[0026]
Next, when the diameter of the circle is larger than one side of the rectangle and shorter than the diagonal line of the rectangle, AA ′ is as shown in FIG. 12. In this case, the portion of the block portion where the optical semiconductor is mounted is a heat sink. FIG. 13 shows the view taken in the direction BB ′ at this time. In the direction BB ′, the material suitable for resistance welding has uneven thickness, and the material suitable for resistance welding is thick.
[0027]
Next, when the diameter of the circle is equal to the diagonal of the rectangle, AA ′ is as shown in FIG. 12, and in this case, the portion of the block portion where the optical semiconductor is mounted is formed of a heat sink. FIG. 11 shows a view taken in the direction of BB ′ at this time, and is made of a material suitable for resistance welding without thickness unevenness.
[0028]
By determining the diameter of a circle serving as an opening of a material suitable for resistance welding in these ranges, an eyelet excellent in heat dissipation and highly reliable can be formed.
[0029]
In the present invention, the block portion is a quadrangular prism. However, a polygonal prism may be used as long as at least a side contacting the eyelet on the side surface on which the optical semiconductor is mounted is parallel to a chord of a circle on the surface of the eyelet.
[0030]
Preferably, the eyelet body of the present invention is made of Fe, the heat sink is preferably made of Cu, and Fe is preferably used as a material suitable for resistance welding. This is not the case.
【Example】
[Example 1]
In Example 1, as the eyelet, a circular opening was provided in a material suitable for resistance welding, and the diameter of the circle was longer than one side of the square on the bottom surface of the block portion, and a clad material shorter than the diagonal line was press-formed. A nitride semiconductor laser having a large calorific value was mounted on the formed eyelet, and the thermal resistance was evaluated.
[0031]
As a result of the evaluation described in Embodiment 1, the thermal resistance was about one digit [° C./W].
[Example 2]
Example 2 As Example 2, a circular opening was formed in a material suitable for resistance welding, and the diameter of the circle was made equal to one side of a square on the bottom surface of the block portion. A large nitride semiconductor laser was mounted and thermal resistance was evaluated. The thermal resistance was almost the same as that of Example 1.
[Example 3]
As Example 3, as an eyelet, a circular opening was formed in a material suitable for resistance welding, and the diameter of the circle was equal to the square diagonal line of the bottom of the block portion. The thermal resistance was evaluated by mounting a nitride semiconductor laser having a large calorific value. The thermal resistance was almost the same as that of Example 1.
[Comparative Example 1]
As a conventional eyelet, a thermal resistance of a nitride semiconductor laser formed in the same manner as in Example 1 using an eyelet formed by press-molding a clad material having no opening in a material suitable for resistance welding was evaluated as a comparative example. did. The thermal resistance of the package was about 10 [° C./W].
[Comparative Example 2]
As a comparative example 2, a circular opening was formed in a material suitable for resistance welding, and the diameter of the circle was made shorter than one side of a square on the bottom of the block. A large nitride semiconductor laser was mounted and thermal resistance was evaluated. The thermal resistance was equivalent to that of Comparative Example 1, and no improvement in heat dissipation due to the provision of the circular opening was observed.
[Comparative Example 3]
As Comparative Example 3, as an eyelet, a circular opening was provided in a material suitable for resistance welding, and the diameter of the circle was longer than the square diagonal line on the bottom of the block portion. The thermal resistance was evaluated by mounting a nitride semiconductor laser having a large calorific value. Although the heat resistance was almost the same as that of Example 1, the heat sink was sometimes exposed at the resistance welding portion of the cap, and the eyelet and the cap could not be firmly joined, and the cap could peel off. there were.
[0032]
【The invention's effect】
As a result, the portion of the block portion on which the optical semiconductor is mounted can be composed of only a heat sink, so that a package with excellent heat dissipation that can be used for a high-power semiconductor laser can be obtained. In particular, in this package, the variation in the thermal resistance of the laser has been reduced. In addition, a material suitable for resistance welding is provided at least at a portion where the cap is to be resistance-welded, and the resistance welding of the cap can be performed without any difference from the conventional package. Therefore, it is possible to provide a semiconductor laser which is excellent not only in heat dissipation but also in airtightness, and the reliability of the product is improved.
[0033]
In addition, the part for mounting the optical semiconductor in the block part is made of a material suitable for resistance welding without thickness unevenness, and since this material is also thin, the heat dissipation is not much different from when the heat sink is exposed, so the semiconductor with excellent heat dissipation It is possible to provide a laser.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a general optical semiconductor package.
FIG. 2 is a schematic cross-sectional view showing a general optical semiconductor package.
FIG. 3 is a schematic sectional view showing a conventional technique.
FIG. 4 is a schematic sectional view showing a conventional technique;
FIG. 5 is a schematic sectional view showing a conventional technique;
FIG. 6 is a diagram illustrating a method for evaluating thermal resistance.
FIG. 7 is a schematic disassembly diagram showing the present invention.
FIG. 8 is a schematic sectional view showing the invention.
FIG. 9 is a schematic sectional view showing the present invention;
FIG. 10 is a schematic perspective view illustrating the invention.
FIG. 11 is a schematic sectional view showing the present invention.
FIG. 12 is a schematic sectional view showing the present invention.
FIG. 13 is a schematic sectional view showing the present invention.
[Explanation of symbols]
10. Optical semiconductor package,
11 eyelets,
12 clad material,
13 insulating materials,
14 A part for mounting an optical semiconductor element,
15 electrical signal leads,
16 Materials suitable for resistance welding,
17 heat sink,
18 Eyelet body,
19 caps,
20 heat sink,
21 fixing jig,
22 screws,
23 block part,
24 Block bottom,
25 openings,
26 Optical semiconductor.

Claims (10)

光半導体用パッケージにおいて、円板状の表面にブロック部を有するアイレットと、キャップとを有し、前記アイレットのブロック部の側面に位置する、光半導体を実装する部の表面がヒートシンクで形成されていることを特徴とする光半導体用パッケージ。In the package for an optical semiconductor, an eyelet having a block portion on a disk-shaped surface and a cap, and a surface of a portion for mounting an optical semiconductor, which is located on a side surface of the block portion of the eyelet, is formed by a heat sink. A package for an optical semiconductor. 前記ヒートシンクがCu若しくはCuを主成分とする材料からなる請求項1に記載の光半導体用パッケージ。The optical semiconductor package according to claim 1, wherein the heat sink is made of Cu or a material containing Cu as a main component. 前記ブロック部の2つの側面が接合される領域は、キャップとの抵抗溶接に適した材料からなることを特徴とする請求項1または請求項2に記載の光半導体用パッケージ。3. The optical semiconductor package according to claim 1, wherein a region where the two side surfaces of the block portion are joined is made of a material suitable for resistance welding with a cap. 4. 前記円板状の表面は、前記キャップとの抵抗溶接に適した材料からなることを特徴とする請求項1乃至3のいずれかに記載の光半導体用パッケージ。The optical semiconductor package according to any one of claims 1 to 3, wherein the disk-shaped surface is made of a material suitable for resistance welding with the cap. 光半導体用パッケージにおいて、円板状の表面に四角柱のブロック部を有するアイレットと、キャップとを有し、光半導体を実装するブロック部の側面が、相対的にみて、前記熱伝導率の小さい領域と、該熱伝導率の小さい領域に挟まれた熱伝導率の大きい領域との、少なくとも2つの領域からなることを特徴とする光半導体用パッケージ。In the package for an optical semiconductor, an eyelet having a rectangular column-shaped block portion on a disk-shaped surface, and a cap, and the side surface of the block portion for mounting the optical semiconductor is relatively small in the thermal conductivity when viewed relatively. An optical semiconductor package comprising at least two regions: a region and a region having a high thermal conductivity sandwiched between the regions having a low thermal conductivity. 前記光半導体は、ブロック部側面のうち、前記熱伝導率の大きい領域の表面に実装されてなることを特徴とする請求項5に記載の光半導体用パッケージ。The optical semiconductor package according to claim 5, wherein the optical semiconductor is mounted on a surface of the region having a high thermal conductivity in a side surface of the block portion. 前記円板状の表面には、キャップとの抵抗溶接に適した材料が露出されてなることを特徴とする請求項5または6に記載の光半導体用パッケージ。7. The optical semiconductor package according to claim 5, wherein a material suitable for resistance welding with the cap is exposed on the disk-shaped surface. 前記熱伝導率の小さい領域は、キャップとの抵抗溶接に適した材料が露出されてなることを特徴とする請求項5乃至7のいずれかに記載の光半導体用パッケージ。The optical semiconductor package according to claim 5, wherein a material suitable for resistance welding with the cap is exposed in the region having a low thermal conductivity. 前記熱伝導率の大きい領域は、Cu若しくはCuを主成分とする材料が露出されてなることを特徴とする請求項5乃至8のいずれかに記載の光半導体用パッケージ。9. The optical semiconductor package according to claim 5, wherein the region having a high thermal conductivity is formed by exposing Cu or a material containing Cu as a main component. 光半導体用パッケージの製造方法において、円板状のアイレット本体と円板状のヒートシンクとリング状の抵抗溶接に適した材料層を順に積層させたクラッド材をプレス成形して、円板状の表面に光半導体を実装するブロック部を有するアイレットを形成することを特徴とする光半導体用パッケージの製造方法。In a method of manufacturing a package for an optical semiconductor, a clad material in which a disc-shaped eyelet body, a disc-shaped heat sink, and a material layer suitable for ring-shaped resistance welding are sequentially laminated is press-formed to form a disc-shaped surface. Forming an eyelet having a block portion on which an optical semiconductor is mounted.
JP2003113509A 2002-04-17 2003-04-17 Package for optical semiconductor and its manufacturing method Pending JP2004006824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113509A JP2004006824A (en) 2002-04-17 2003-04-17 Package for optical semiconductor and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002114248 2002-04-17
JP2003113509A JP2004006824A (en) 2002-04-17 2003-04-17 Package for optical semiconductor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004006824A true JP2004006824A (en) 2004-01-08

Family

ID=30447089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113509A Pending JP2004006824A (en) 2002-04-17 2003-04-17 Package for optical semiconductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004006824A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019973A (en) * 2003-05-30 2005-01-20 Shinko Electric Ind Co Ltd Method of manufacturing stem for optical semiconductor device
JP2006135219A (en) * 2004-11-09 2006-05-25 Shinko Electric Ind Co Ltd Stem for semiconductor package and its manufacturing method
JP2006351804A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Stem for semiconductor laser and semiconductor laser with it, as well as method of manufacturing the stem
JP2007103701A (en) * 2005-10-05 2007-04-19 Shinko Electric Ind Co Ltd Package for optical semiconductor element and its manufacturing method
DE102012102306A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for use as light source in automotive region, has solder layer arranged between laser diode chip and mounting element, and chip arranged on mounting element, where thickness of solder layer lies within specific range
DE102012102305A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for projection system, has crystalline protective layer made of dielectric material is formed on radiation uncoupling surface of laser diode chip which is provided on mounting element
US8737445B2 (en) 2012-04-04 2014-05-27 Osram Opto Semiconductors Gmbh Laser diode assembly
US8867582B2 (en) 2012-04-04 2014-10-21 Osram Opto Semiconductors Gmbh Laser diode assembly
JP2015012101A (en) * 2013-06-28 2015-01-19 株式会社リコー Optical module, optical scanner, image forming apparatus, and manufacturing method of optical module
US9008138B2 (en) 2012-04-12 2015-04-14 Osram Opto Semiconductors Gmbh Laser diode device
US9331453B2 (en) 2012-04-12 2016-05-03 Osram Opto Semiconductors Gmbh Laser diode device
CN111146094A (en) * 2019-12-04 2020-05-12 中国电子科技集团公司第十三研究所 Gallium nitride power module packaging method, pressurizing device and pre-curing molding rubber ring

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019973A (en) * 2003-05-30 2005-01-20 Shinko Electric Ind Co Ltd Method of manufacturing stem for optical semiconductor device
JP2006135219A (en) * 2004-11-09 2006-05-25 Shinko Electric Ind Co Ltd Stem for semiconductor package and its manufacturing method
JP4649172B2 (en) * 2004-11-09 2011-03-09 新光電気工業株式会社 Manufacturing method of stem for semiconductor package
JP2006351804A (en) * 2005-06-15 2006-12-28 Rohm Co Ltd Stem for semiconductor laser and semiconductor laser with it, as well as method of manufacturing the stem
JP2007103701A (en) * 2005-10-05 2007-04-19 Shinko Electric Ind Co Ltd Package for optical semiconductor element and its manufacturing method
US9356423B2 (en) 2012-03-19 2016-05-31 Osram Opto Semiconductors Gmbh Laser diode assembly
DE102012102305A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for projection system, has crystalline protective layer made of dielectric material is formed on radiation uncoupling surface of laser diode chip which is provided on mounting element
DE102012102306A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for use as light source in automotive region, has solder layer arranged between laser diode chip and mounting element, and chip arranged on mounting element, where thickness of solder layer lies within specific range
DE102012102306B4 (en) * 2012-03-19 2021-05-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laser diode device
US8737445B2 (en) 2012-04-04 2014-05-27 Osram Opto Semiconductors Gmbh Laser diode assembly
US8867582B2 (en) 2012-04-04 2014-10-21 Osram Opto Semiconductors Gmbh Laser diode assembly
US9008138B2 (en) 2012-04-12 2015-04-14 Osram Opto Semiconductors Gmbh Laser diode device
US9331453B2 (en) 2012-04-12 2016-05-03 Osram Opto Semiconductors Gmbh Laser diode device
JP2015012101A (en) * 2013-06-28 2015-01-19 株式会社リコー Optical module, optical scanner, image forming apparatus, and manufacturing method of optical module
CN111146094A (en) * 2019-12-04 2020-05-12 中国电子科技集团公司第十三研究所 Gallium nitride power module packaging method, pressurizing device and pre-curing molding rubber ring
CN111146094B (en) * 2019-12-04 2021-08-31 中国电子科技集团公司第十三研究所 Gallium nitride power module packaging method and pressurizing device

Similar Documents

Publication Publication Date Title
JP6484588B2 (en) Light emitting device and light emitting device package
KR100764432B1 (en) Led package having anodized isolations and its manufacturing method
KR101284796B1 (en) method for light emitting device with can package and the light emitting device
US10447005B2 (en) Light source device
US20120037939A1 (en) Light emitting diode
US20090080485A1 (en) Nitride semiconductor laser device
WO2012042685A1 (en) Semiconductor light emitting device and light source device
JP2004006824A (en) Package for optical semiconductor and its manufacturing method
KR100665182B1 (en) High power led package and fabrication method thereof
US7567599B2 (en) Semiconductor laser diode device with thermal conductive encapsulating resin and method for manufacturing the same
US11349278B2 (en) Stem for semiconductor package, and semiconductor package
JP2007048938A (en) Semiconductor laser
KR20070087055A (en) Semiconductor laser device and method for manufacturing same
JP3869575B2 (en) Semiconductor laser
JP7014645B2 (en) Semiconductor light emitting device
JP2007048937A (en) Semiconductor laser and manufacturing method thereof
KR100878398B1 (en) High power led package and fabrication method thereof
JP5179795B2 (en) Method for manufacturing light emitting device
JP2003283037A (en) Package for optical semiconductor
JP2001036180A (en) Semiconductor laser and manufacture thereof
JP7467877B2 (en) Semiconductor light emitting device
JP2019075460A (en) Semiconductor light emitting element and semiconductor light emitting device
JP2004235203A (en) Package for storing light emitting element and light emitting device
JP2020150184A (en) Laser device and lid used therefor
JP3128615U (en) Light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208