WO2012042636A1 - 移動物体検知装置 - Google Patents

移動物体検知装置 Download PDF

Info

Publication number
WO2012042636A1
WO2012042636A1 PCT/JP2010/067090 JP2010067090W WO2012042636A1 WO 2012042636 A1 WO2012042636 A1 WO 2012042636A1 JP 2010067090 W JP2010067090 W JP 2010067090W WO 2012042636 A1 WO2012042636 A1 WO 2012042636A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection means
radiation detection
radiation
moving object
transmission
Prior art date
Application number
PCT/JP2010/067090
Other languages
English (en)
French (fr)
Inventor
智由 安江
櫛田 知義
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/510,638 priority Critical patent/US8830114B2/en
Priority to JP2011545974A priority patent/JP5310870B2/ja
Priority to PCT/JP2010/067090 priority patent/WO2012042636A1/ja
Publication of WO2012042636A1 publication Critical patent/WO2012042636A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1609Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems
    • G08B13/1618Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means
    • G08B13/1627Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means using Doppler shift detection circuits

Definitions

  • the present invention relates to a moving object detection device that detects the movement of an object or the presence / absence of a moving object by radiating electromagnetic waves to an object to be measured, and in particular, the movement or movement of an object using a standing wave generated between the object and the object.
  • the present invention relates to a moving object detection apparatus that detects the presence or absence of an object.
  • the pulse radar method is a method of obtaining a distance to a measurement target by transmitting a pulsed electromagnetic wave toward the measurement target and measuring a time until the electromagnetic wave reflected by the measurement target returns.
  • the FM-CW method is a method in which a beat signal is generated by mixing a transmission signal and a reception signal whose frequency gradually increases and decreases, and the frequency of the beat signal (beat frequency) is increased by an increase unit in which the frequency of the transmission signal increases.
  • This is a method of specifying for each section of the descending part where the frequency decreases, and measuring the distance and relative speed from the measurement object based on the beat frequency of the ascending part and the beat frequency of the descending part.
  • a moving object detection apparatus that detects the movement of an object or the presence or absence of a moving object (hereinafter simply referred to as “movement of an object”) using a standing wave (standing wave).
  • a standing wave is a wave generated by overlapping electromagnetic waves (traveling waves) having the same frequency but different traveling directions.
  • a moving object detection apparatus using a standing wave generates a standing wave by superimposing an electromagnetic wave radiated by an antenna and an electromagnetic wave reflected by an object and returned. Then, the movement of the object is detected using the fact that the amplitude of the standing wave fluctuates due to the movement of the object (due to a change in the distance between the apparatus and the object).
  • a moving object detection device that detects the movement of an object using a standing wave can detect the movement of an object existing at a short distance with higher accuracy than the pulse radar method or the FM-CW method. Therefore, it is suitable for an intrusion sensor that detects whether or not an intruder exists in the interior of a car or in a house, a sensor that detects the behavior of a driver driving a car, a person's heartbeat, breathing, body movement, etc. Used for. In such an apparatus, it is also possible to measure the distance from the object by analyzing the amplitude fluctuation after changing the frequency of the electromagnetic wave to be radiated.
  • FIG. 1 is a diagram illustrating a state in which the antenna of the moving object detection apparatus as described above radiates a transmission wave, and a reflected wave reflected by the object returns to the antenna.
  • AT is an antenna
  • OB is an object
  • is a transmitted wave
  • is a reflected wave.
  • the wave that is composed of the transmitted wave ⁇ and the reflected wave ⁇ is a standing wave.
  • the standing wave is expressed as ⁇ .
  • N is a positive integer and an even number.
  • FIG. 2 is a diagram showing how the amplitude of the standing wave ⁇ becomes zero.
  • the amplitude of the standing wave ⁇ becomes maximum when the distance between the antenna AT and the object OB is M ⁇ ⁇ / 4 (M is a positive integer and an odd number).
  • FIG. 3 is a diagram illustrating how the amplitude of the standing wave ⁇ is maximized.
  • the amplitude of the standing wave generated between the object and the object by radiating electromagnetic waves from the antenna periodically changes according to the distance between the antenna and the object. Therefore, by monitoring this change in amplitude, it is possible to detect the movement of the object.
  • Patent Document 1 describes a measuring apparatus that measures a distance from a measurement object by detecting a standing wave.
  • the detection means is provided closer to the measurement object than the transmission means for emitting electromagnetic waves. Then, the distance to the measurement object is measured based on the detection signal function formed from the frequency of the electromagnetic wave emitted by the transmission unit and the amplitude of the standing wave detected by the detection unit.
  • Patent Document 2 describes a device that does not use a standing wave but aims to accurately detect a minute movement of an object.
  • a transmission signal and a reception signal are converted to a lower frequency by using a local signal having a predetermined frequency, and the movement detection object is based on the phase difference between the transmission signal and the reception signal that have been converted to a lower frequency. The movement state of is determined.
  • the device that detects the movement of the object using the standing wave as described above, when the target object is located near the antinode and node of the standing wave, In some cases, the change in the amplitude becomes small, and the movement of the object cannot be detected accurately.
  • the antinode of the standing wave is a portion where the amplitude is maximum, and the node of the standing wave is a portion where the amplitude is minimum. That is, when the distance between the device and the object is in a specific relationship, the sensitivity of the device may decrease.
  • FIG. 4 is an explanatory diagram for explaining the amplitude variation with respect to the same displacement amount in the standing wave.
  • the horizontal axis indicates the distance to the antenna.
  • the amount of displacement of the object (change in distance from the antenna) ) Amplitude variation is minimal. Therefore, the detection sensitivity with respect to the movement of the object located at the locations X1 and X3 is low.
  • N 0 , N 1 , and N 2 are positive integers and even numbers, and M 1 and M 2 are positive integers and odd numbers.
  • the high sensitivity region and the low sensitivity region appear repeatedly at intervals of ⁇ / 8 from the device.
  • is the wavelength of the transmission wave as described above.
  • FIG. 5 is a diagram illustrating the distribution of the high sensitivity region and the low sensitivity region generated in the moving object detection device using the standing wave, and the object that satisfies the specific condition that makes it difficult to detect the movement.
  • the high sensitivity region and the low sensitivity region of the moving object detection device alternately appear concentrically around the antenna AT.
  • the interval between the central portion H of the high sensitivity region and the central portions L1 and L2 of the low sensitivity region (L1 corresponds to the node of the standing wave and L2 corresponds to the antinode of the standing wave) is ⁇ / 8.
  • the object OB1 in FIG. 5 is sufficiently large in size, any part thereof intersects the high sensitivity region. As a result, the displacement of the object OB1 is detected with high sensitivity by the moving object detection device, and the possibility that the movement of the object OB1 is overlooked is reduced.
  • the object OB2 in FIG. 5 is small in size and almost entirely located in the low sensitivity region. In this case, if the displacement of the object OB2 is smaller than ⁇ / 8, the displacement of the object OB2 becomes difficult to be detected by the moving object detection device, and the possibility that the movement of the object OB2 is overlooked increases.
  • Patent Document 2 states that “in the standing wave that changes in a sine wave shape, the amplitude change of the standing wave in the vicinity of the maximum amplitude value is slow, so that an error occurs in the detection of the maximum amplitude value of the standing wave.
  • This detection error of the maximum amplitude value becomes the detection error of the minute movement amount as it is, and therefore, in the conventional technique, the detection accuracy of the minute movement amount is caused by the detection error of the maximum amplitude value of the standing wave.
  • the present invention is intended to solve such problems, and it is a main object of the present invention to provide a moving object detection device that does not require adjustment of frequency and antenna position and can suppress a decrease in detection accuracy.
  • the first aspect of the present invention provides: First radiation detection means for radiating electromagnetic waves and detecting standing waves generated by the reflected electromagnetic waves being reflected by an object; An electromagnetic wave having the same frequency as the electromagnetic wave radiated by the first radiation detection means is radiated so as to pass in the vicinity of an electromagnetic wave radiation location in the first radiation detection means, and the radiated electromagnetic wave is reflected by an object.
  • Second radiation detection means for detecting standing waves generated by A moving object detection device for detecting the movement of an object or the presence or absence of a moving object based on a standing wave detected by the first radiation detection means and / or the second radiation detection means,
  • the distance from the electromagnetic wave radiated by the second radiation detection means to the vicinity of the electromagnetic wave radiation location in the first radiation detection means is radiated by the first radiation detection means and the second radiation detection means. It is a distance obtained by adding a wavelength corresponding to a predetermined period smaller than the half period to an integral multiple of the wavelength corresponding to a half period of the electromagnetic wave, It is a moving object detection device.
  • the first radiation detection means and the second radiation detection means complement each other's low sensitivity regions, it is not necessary to adjust the frequency and the antenna position, and the detection accuracy. Can be suppressed.
  • the wavelength corresponding to the predetermined period is a wavelength corresponding to one-eighth period of the electromagnetic wave radiated from the first radiation detection unit and the second radiation detection unit.
  • the low sensitivity area of the first radiation detection means and the high sensitivity area of the second radiation detection means are exactly overlapped, so that a reduction in detection accuracy can be more effectively suppressed.
  • the electromagnetic waves radiated by the first radiation detection unit and the second radiation detection unit have orthogonal polarization planes.
  • the first radiation detection means and the second radiation detection means can detect only the standing waves generated by themselves.
  • the second radiation detection means radiates electromagnetic waves in a direction opposite to the direction in which the first radiation detection means radiates electromagnetic waves, and reflects the radiated electromagnetic waves by a reflecting member having an elliptical cross section.
  • the elliptical shape of the cross-section of the reflecting member is preferably characterized in that the electromagnetic wave radiation locations in the first radiation detection means and the second radiation detection means are two focal points.
  • the electromagnetic waves radiated by the second radiation detection means are collected in the vicinity of the electromagnetic wave radiation location of the first radiation detection means.
  • the collected electromagnetic waves pass through the vicinity of the electromagnetic radiation point of the first radiation detection means, and then diffuse as if radiated from the first radiation detection means and proceed to the detection area of the moving object detection device. .
  • the directivity of the first radiation detection means and the second radiation detection means are made to be the same, the detection area by the first radiation detection means and the detection area by the second radiation detection means are substantially matched. be able to.
  • the second radiation detection means is located behind the electromagnetic radiation direction of the first radiation detection means, and is provided between the second radiation detection means and the first radiation detection means to transmit electromagnetic waves.
  • An electromagnetic wave may be radiated in substantially the same direction as the first radiation detecting means through a refracting dielectric lens.
  • the second aspect of the present invention is: First radiation detection means for radiating electromagnetic waves and detecting standing waves generated by the reflected electromagnetic waves being reflected by an object; Positioned behind the electromagnetic radiation direction of the first radiation detection means, and radiates the electromagnetic waves having the same frequency as the electromagnetic waves emitted by the first radiation detection means so as to pass through the vicinity of the first radiation detection means.
  • a moving object detection device for detecting the movement of an object or the presence or absence of a moving object based on a standing wave detected by the first radiation detection means and / or the second radiation detection means,
  • the distance from the electromagnetic waves radiated by the plurality of second radiation detection means to the vicinity of the electromagnetic wave radiation location in the first radiation detection means is determined by the first radiation detection means and the second radiation detection means. It is a distance obtained by adding an integer multiple of a wavelength corresponding to a predetermined cycle smaller than the half cycle to an integral multiple of a wavelength corresponding to a half cycle of the radiated electromagnetic wave, It is a moving object detection device.
  • the first radiation detection means and the second radiation detection means complement each other's low sensitivity regions, adjustment of frequency and antenna position is not required, and detection accuracy is achieved. Can be suppressed.
  • the electromagnetic waves radiated by the first radiation detection means and the second radiation detection means have polarization planes different from each other by a predetermined angle.
  • the present invention it is possible to provide a moving object detection device that does not require adjustment of frequency and antenna position and can suppress a decrease in detection accuracy.
  • FIG. 1 It is a conceptual diagram of the moving object detection apparatus which concerns on this invention. It is a structural example of the moving object detection apparatus 1 which concerns on 1st Example of this invention. It is a figure which shows distribution of the high sensitivity area
  • FIG. 3 is a diagram illustrating a distribution of a central portion of a high sensitivity region of the first transmission / reception antenna 10 around the first transmission / reception antenna 10 and a central portion of a high sensitivity region of the second transmission / reception antenna 20.
  • It is a structural example of the moving object detection apparatus 2 which concerns on 2nd Example of this invention.
  • FIG. 6 is a conceptual diagram of a moving object detection device according to the present invention.
  • the moving object detection device according to the present invention is capable of detecting the movement (or presence) of a moving object OB that has a minute displacement equal to or less than the wavelength of the radiated electromagnetic wave.
  • An AT, an oscillation device VB, a standing wave intensity detection device DT, and a detection resolution improvement device IM are provided.
  • FIG. 7 is a configuration example of the moving object detection apparatus 1 according to the first embodiment of the present invention.
  • the moving object detection device 1 includes a first transmission / reception antenna 10, a second transmission / reception antenna 20, a reflection member 30, an oscillation device 40, and a standing wave intensity detection device 50 as main components.
  • the 2nd transmission / reception antenna 20 and the reflection member 30 are equivalent to the detection resolution improvement apparatus IM in FIG.
  • the first transmission / reception antenna 10 and the second transmission / reception antenna 20 are transmission / reception integrated antennas having a certain directivity, and radiate microwaves according to the voltage supplied from the oscillation device 40.
  • the first transmission / reception antenna 10 and the second transmission / reception antenna 20 have a configuration in which, for example, a microstrip line, a ground member formed with a slit, and a patch antenna are sequentially stacked.
  • the first transmission / reception antenna 10 and the second transmission / reception antenna 20 may be arrayed as necessary, and may be configured to increase directivity.
  • the first transmitting / receiving antenna 10 radiates microwaves toward the center direction of the detection area of the moving object detection device 1 (the Z direction in FIG. 7).
  • the first transmitting / receiving antenna 10 generates an antenna voltage corresponding to the amplitude of the standing wave, which is generated when the radiated microwave is reflected by the object. This antenna voltage is input to the standing wave intensity detection device 50 and used to detect the movement of the object.
  • the second transmitting / receiving antenna 20 radiates microwaves having the same frequency as that of the first transmitting / receiving antenna 10 toward the side opposite to the center direction (Z direction in FIG. 7) of the detection area of the moving object detection device 1.
  • the microwave radiated from the second transmitting / receiving antenna 20 is reflected by the reflecting member 30.
  • the reflecting member 30 is a concave member made of a metal or the like that reflects microwaves.
  • the reflecting member 30 rotates, for example, a part of an ellipse whose focal points are the first transmission / reception antenna 10 and the second transmission / reception antenna 20 about a straight line connecting the first transmission / reception antenna 10 and the second transmission / reception antenna 20.
  • the cross section of the reflecting member 30 has an elliptical shape having the first transmitting / receiving antenna 10 and the second transmitting / receiving antenna 20 as two focal points.
  • a shaded circle in FIG. 7 indicates the focal point of the ellipse.
  • the shape of the reflecting member 30 is not limited to this, and may be a polyhedral shape or the like whose cross section is close to an ellipse.
  • the microwaves radiated by the second transmitting / receiving antenna 20 are collected in the vicinity of the first transmitting / receiving antenna 10.
  • the collected microwaves pass through the vicinity of the first transmission / reception antenna 10, and then diffuse as if radiated from the first transmission / reception antenna 10 and proceed to the detection region of the moving object detection device 1.
  • the directivity of the first transmission / reception antenna 10 and the second transmission / reception antenna 20 is made the same, the detection area by the first transmission / reception antenna 10 and the detection area by the second transmission / reception antenna 20 are substantially matched. be able to.
  • the microwave radiated from the second transmitting / receiving antenna 20 is reflected by the object, a standing wave is generated between the second transmitting / receiving antenna 20, the reflecting member 30, and the object.
  • the second transmitting / receiving antenna 20 generates an antenna voltage corresponding to the amplitude of the standing wave. This antenna voltage is input to the standing wave intensity detection device 50 and used to detect the movement of the object.
  • the polarization planes of the microwave radiated from the first transmission / reception antenna 10 and the microwave radiated from the second transmission / reception antenna 20 are orthogonal to each other. As a result, the first transmitting / receiving antenna 10 and the second transmitting / receiving antenna 20 can detect only the standing wave generated by themselves as the antenna voltage.
  • the distance from the microwave radiated by the second transmitting / receiving antenna 20 to the vicinity of the first transmitting / receiving antenna 10 is the wavelength of the microwave radiated by the first transmitting / receiving antenna 10 and the second transmitting / receiving antenna 20.
  • the positional relationship among the first transmitting / receiving antenna 10, the second transmitting / receiving antenna 20, and the reflecting member 30 is set so that ⁇ K ⁇ ⁇ / 2 + ⁇ / 8 (K is a positive integer) ⁇ . .
  • the first transmission / reception antenna 10 and the second transmission / reception antenna 20 can complement each other's low-sensitivity regions and suppress a decrease in detection accuracy of the moving object detection device 1.
  • FIG. 8 is a diagram showing the distribution of the high sensitivity region and the low sensitivity region around the first transmission / reception antenna 10 due to the standing wave generated by the first transmission / reception antenna 10. As shown in the figure, the high sensitivity region and the low sensitivity region due to the standing wave generated by the first transmission / reception antenna 10 alternately appear concentrically around the first transmission / reception antenna 10, and the center of the high sensitivity region The distance between the portion H and the central portions L1 and L2 of the low sensitivity region is ⁇ / 8.
  • FIG. 9 is a diagram showing the distribution of the high sensitivity region and the low sensitivity region centered on the first transmission / reception antenna 10 due to the standing wave generated by the second transmission / reception antenna 20.
  • the high sensitivity region and the low sensitivity region due to the standing wave generated by the second transmission / reception antenna 20 alternately appear concentrically around the first transmission / reception antenna 10, and the central portion H of the high sensitivity region and the low sensitivity
  • the distance between the center portions L1 and L2 of the region is ⁇ / 8. These are the same as those caused by the standing wave generated by the first transmitting / receiving antenna 10.
  • the distance from the microwave radiated by the second transmitting / receiving antenna 20 to the vicinity of the first transmitting / receiving antenna 10 is ⁇ K ⁇ ⁇ / 2 + ⁇ / 8 (K is a positive integer) ⁇ It is set to become. Therefore, the standing wave generated by the second transmitting / receiving antenna 20 has a phase difference corresponding to the wavelength ⁇ / 8 with respect to the standing wave generated by the first transmitting / receiving antenna 10. .
  • the wavelength of the standing wave from node to node, or the wavelength from antinode to antinode, is ⁇ / 2.
  • FIG. 10 is a diagram illustrating a state in which the high sensitivity region and the low sensitivity region of the standing wave generated by the first transmission / reception antenna 10 and the second transmission / reception antenna 20 overlap each other.
  • the horizontal axis represents the distance from the first transmitting / receiving antenna 10.
  • the standing wave gamma was allowed to occur by the second receiving antenna 20 20 of heart H 20 2 overlaps the sensitive region
  • the low sensitivity region center L 20 3 of the second standing wave gamma 20 was allowed to occur by the transceiver antenna 20, generated by the first transmitting and receiving antenna 10 relationship that is the heart H 10 3 overlaps the sensitive region of the standing wave gamma 10 which is allowed is periodically continued.
  • the 1st transmission / reception antenna 10 and the 2nd transmission / reception antenna 20 can complement each other's low sensitivity area
  • the high sensitivity regions of the first transmission / reception antenna 10 and the second transmission / reception antenna 20 appear alternately, so that even a small displacement of the object OB2 having a small size as illustrated is detected with high accuracy. be able to.
  • the standing wave intensity detection device 50 outputs, for example, a diode detector that outputs a voltage corresponding to the amplitude of the standing wave detected by the first transmission / reception antenna 10 and the second transmission / reception antenna 20 and a diode detector. And a comparator that outputs a DC current (signal) when the voltage is equal to or higher than a predetermined voltage. Accordingly, for example, when the presence or absence of the output of the comparator is switched from the Lo state to the Hi state or vice versa, it can be determined that the object has moved (or there is a moving object).
  • the present invention does not limit the use mode of such a determination result, for example, an intrusion sensor that detects whether or not an intruder exists in the interior of a car or a house, the behavior of a driver driving a car,
  • the present invention can be applied to a sensor that detects a person's heartbeat, respiration, body movement, and the like.
  • the standing wave intensity detection device 50 is not limited to the above-described mode, and includes, for example, an A / D converter to which the antenna voltages of the first transmission / reception antenna 10 and the second transmission / reception antenna 20 are input. It is good also as a structure which can output variation
  • the moving object detection apparatus 1 of the present embodiment since the first transmission / reception antenna 10 and the second transmission / reception antenna 20 complement each other's low sensitivity regions, it is necessary to adjust the frequency and the antenna position. Therefore, a decrease in detection accuracy can be suppressed.
  • emitted by the 2nd transmission / reception antenna 20 can be collected in the vicinity of the 1st transmission / reception antenna 10 using the reflection member 30 with an elliptical cross section, the detection by the 1st transmission / reception antenna 10 is possible.
  • the area and the detection area by the second transmission / reception antenna 20 can be substantially matched.
  • FIG. 12 is a configuration example of the moving object detection device 2 according to the second embodiment of the present invention.
  • the moving object detection apparatus 2 includes, as main components, a first transmission / reception antenna 10, a second transmission / reception antenna group 20a, 20b, 20c, a third transmission / reception antenna group 25a, 25b, 25c, and an oscillation apparatus 40.
  • the standing wave intensity detection device 50 is provided.
  • symbol is attached
  • the second transmitting / receiving antenna groups 20 a, 20 b, and 20 c are located behind the first transmitting / receiving antenna 10 with respect to the microwave radiation direction, and are arranged on an arc R 1 having a radius r 1 centered on the first transmitting / receiving antenna 10. .
  • the second transmission / reception antenna groups 20 a, 20 b, and 20 c radiate microwaves having the same frequency as that of the first transmission / reception antenna 10 so as to pass through the vicinity of the first transmission / reception antenna 10.
  • an antenna voltage corresponding to the amplitude of the standing wave generated by the reflected microwave being reflected by the object is generated. This antenna voltage is input to the standing wave intensity detection device 50 and used to detect the movement of the object.
  • the third transmission / reception antenna groups 25a, 25b, 25c are located behind the second transmission / reception antenna groups 20a, 20b, 20c with respect to the microwave radiation direction of the first transmission / reception antenna 10, and the first transmission / reception antenna groups They are arranged on an arc R2 having a radius r2 with the antenna 10 as the center.
  • the third transmitting / receiving antenna groups 25 a, 25 b, and 25 c radiate microwaves having the same frequency as that of the first transmitting / receiving antenna 10 so as to pass through the vicinity of the first transmitting / receiving antenna 10.
  • This antenna voltage is input to the standing wave intensity detection device 50 and used to detect the movement of the object.
  • the polarization plane of the microwave radiated from the second transmission / reception antenna group 20a, 20b, 20c has an angle of 120 degrees with respect to the polarization plane of the microwave radiated from the first transmission / reception antenna 10. Further, the plane of polarization of the microwave radiated from the third transmitting / receiving antenna group 25a, 25b, 25c has an angle of 240 degrees with respect to the plane of polarization of the microwave radiated from the first transmitting / receiving antenna 10. . Accordingly, the first transmitting / receiving antenna group 10, the second transmitting / receiving antenna group 20a, 20b, 20c, and the third transmitting / receiving antenna group 25a, 25b, 25c detect the standing waves generated by themselves as antenna voltages. It becomes easy.
  • the radius r1 of the arc R1 is, for example, ⁇ / 16, and the radius r2 of the arc R2 is, for example, ⁇ / 8.
  • the first transmitting / receiving antenna group 10 the second transmitting / receiving antenna group 20a, 20b, 20c, and the third transmitting / receiving antenna group 25a, 25b, 25c
  • region can be complemented and the fall of the detection accuracy of the moving object detection apparatus 1 can be suppressed.
  • FIG. 13 shows a high sensitivity region and low sensitivity of standing waves generated by the first transmission / reception antenna 10, the second transmission / reception antenna groups 20a, 20b, and 20c, and the third transmission / reception antenna groups 25a, 25b, and 25c. It is a figure which shows a mode that an area
  • the central portion H 20 of the high sensitivity region of ⁇ 20 (strictly speaking, standing wave group), and the standing wave ⁇ 25 (specifically, standing wave) generated by the third transmitting / receiving antenna groups 25a, 25b, and 25c.
  • the relationship in which the center H 25 of the high sensitivity region of the wave group complements the low sensitivity regions of the other transmitting and receiving antennas continues periodically.
  • the first transmission / reception antenna 10, the second transmission / reception antenna group 20 a, 20 b, 20 c and the third transmission / reception antenna group 25 a, 25 b, 25 c complement each other's low-sensitivity regions and detect the moving object detection device 2. A decrease in accuracy can be suppressed.
  • the detection accuracy can be further increased.
  • the first transmission / reception antenna 10, the second transmission / reception antenna groups 20a, 20b, 20c, and the third transmission / reception antenna groups 25a, 25b, 25c are mutually connected. Since the low sensitivity region is complemented, it is not necessary to adjust the frequency and the antenna position, and a decrease in detection accuracy can be suppressed.
  • the detection sensitivity can be further improved because the high sensitivity region is distributed at a higher density.
  • the second transmission / reception antenna 20 is located behind the first transmission / reception antenna 10 with respect to the microwave radiation direction.
  • Microwaves may be radiated in substantially the same direction as the first transmission / reception antenna 10 via a dielectric lens 35 provided between the first transmission / reception antennas 10.
  • FIG. 14 is a configuration example of a moving object detection device according to another embodiment of the present invention.
  • the dielectric lens 35 has a function of refracting electromagnetic waves in the same manner as an optical lens refracts light.
  • the refractive index of the dielectric lens 35 and the first transmission / reception antenna so that the microwaves radiated from the second transmission / reception antenna 20 and passed through the dielectric lens 35 are collected in the vicinity of the first transmission / reception antenna 10. 10, the positional relationship between the second transmitting / receiving antenna 20 and the dielectric lens 35 is adjusted. In this way, as in the first embodiment, if the directivity of the first transmission / reception antenna 10 and the second transmission / reception antenna 20 are made the same, the detection area of the first transmission / reception antenna 10 and the second transmission / reception antenna The detection area by 20 can be substantially matched.
  • the microwaves radiated from the first transmitting / receiving antenna 10 and the microwaves radiating from the second transmitting / receiving antenna 20 are orthogonal to each other. It is. Further, the distance from the microwave radiated by the second transmitting / receiving antenna 20 to the vicinity of the first transmitting / receiving antenna 10 is ⁇ K ⁇ ⁇ / 2 + ⁇ / 8 (K is a positive integer) ⁇ . It is preferable that the positional relationship among the first transmission / reception antenna 10, the second transmission / reception antenna 20, and the dielectric lens 35 is set.
  • both the first embodiment and the second embodiment may include an actuator for changing the detection region. In this way, it is possible to detect the movement of the object and the presence or absence of the moving object in a wider range.
  • any one of the second transmission / reception antenna groups 20a, 20b, 20c and the third transmission / reception antenna groups 25a, 25b, 25c may be omitted.
  • the second transmission / reception antenna groups 20a, 20b, 20c and the third transmission / reception antenna groups 25a, 25b, 25c do not necessarily need to be composed of three antennas, but may be plural.
  • the second transmitting / receiving antenna 20 in the first embodiment may include second transmitting / receiving antenna groups 20a and 20b.
  • FIG. 15 is a configuration example of a moving object detection device according to another embodiment of the present invention. Since the second transmission / reception antenna 20 has a longer distance to the object than the first transmission / reception antenna 10, there is a high possibility that the attenuation of the microwave will be larger than that of the first transmission / reception antenna 10. Therefore, with the configuration as shown in FIG. 15, the output of the second transmitting / receiving antenna 20 can be enhanced and the detection accuracy can be increased.
  • the first transmitting / receiving antenna 10 may include first transmitting / receiving antenna groups 10a and 10b.
  • 16 and 17 are configuration examples of a moving object detection device according to another embodiment of the present invention.
  • the shaded circles in FIGS. 15 to 17 indicate the focal point of the ellipse formed by the cross section of the reflecting member 30.
  • the moving object detection device of the present invention is not limited to microwaves, and may emit other types of electromagnetic waves.
  • the first transmission / reception antenna 10, the second transmission / reception antenna 20, or the transmission / reception antenna group in the second embodiment is an antenna that is not a transmission / reception integrated type, that is, a transmission antenna and a reception antenna.
  • the first transmitting / receiving antenna 10 includes the first transmitting antenna 10A and the first receiving antenna 10B
  • the second transmitting / receiving antenna 20 and the transmitting / receiving antenna group in the second embodiment are the first transmitting antenna. What is necessary is just to radiate
  • the present invention can be used in the manufacturing industry of an apparatus for detecting the movement of an object or the presence of a moving object, and in the automobile industry, the security service industry, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することが可能な移動物体検知装置を提供すること。 【解決手段】電磁波を放射し、電磁波が物体で反射されることにより生じる定在波を検出する第1の放射検出手段と、第1の放射検出手段が放射する電磁波と同じ周波数の電磁波を第1の放射検出手段における電磁波放射箇所の近傍を通過するように放射すると共に放射した電磁波が物体で反射されることにより生じる定在波を検出する第2の放射検出手段と、を備え、第2の放射検出手段が放射する電磁波が第1の放射検出手段の近傍に至るまでの距離は、第1の放射検出手段及び第2の放射検出手段が放射する電磁波の半周期分の波長の整数倍に、この半周期よりも小さい所定周期分の波長を加えた距離である移動物体検知装置。

Description

移動物体検知装置
 本発明は、測定対象物に電磁波を放射して物体の移動又は移動物体の有無を検知する移動物体検知装置に関し、特に、物体との間に生じる定在波を利用して物体の移動又は移動物体の有無を検知する移動物体検知装置に関する。
 従来、レーダ装置の方式として、パルスレーダ方式やFM-CW方式が知られている。パルスレーダ方式とは、パルス状の電磁波を測定対象物に向けて発信し、測定対象物によって反射された電磁波が戻って来るまでの時間を計測して測定対象までの距離を求める方式である。
 また、FM-CW方式とは、周波数が漸次増減する送信信号と受信信号をミキシングすることによりビート信号を発生させ、ビート信号の周波数(ビート周波数)を、送信信号の周波数が増加する上昇部と周波数が減少する下降部の区間毎に特定し、上昇部のビート周波数と下降部のビート周波数に基づいて測定対象物との距離や相対速度を測定する方式である。
 これらの他に、定在波(定常波)を利用して物体の移動又は移動物体の有無等(以下、単に「物体の移動」と表記する)を検知する移動物体検知装置が知られている。定在波とは、周波数が同じで進行方向が異なる電磁波(進行波)が重なることによって生じる波動である。定在波を用いた移動物体検知装置は、アンテナによって放射された電磁波と、物体で反射されて戻って来た電磁波とを重ねることにより定在波を発生させる。そして、定在波の振幅が物体の移動によって(装置と物体の距離変化によって)変動することを利用して、物体の移動を検知する。
 定在波を利用して物体の移動を検知する移動物体検知装置は、パルスレーダ方式やFM-CW方式と比較すると、近距離に存在する物体の移動を高精度に検知することができる。従って、自動車の車室内や家屋内に侵入者が存在するか否かを検知する侵入センサ、自動車を運転する運転者の挙動、人の心拍、呼吸、体動等を検知するセンサ等に、好適に用いられる。なお、このような装置において、放射する電磁波の周波数を変動させた上で振幅変動を解析することによって、物体との距離を測定することも可能である。
 図1は、上記のような移動物体検知装置のアンテナが送信波を放射し、物体で反射された反射波がアンテナに戻って来る様子を示す図である。図中、ATはアンテナであり、OBは物体であり、αは送信波であり、βは反射波である。
 送信波αと反射波βが合成された波動が定在波である。以下、定在波をγと表記する。また、ここでは、反射波βの減衰が無いものと仮定して説明する。定在波γの振幅は、アンテナATと物体OBの距離がN×λ/4(Nは正の整数且つ偶数)のときにゼロとなる。図2は、定在波γの振幅がゼロとなる様子を示す図である。一方、定在波γの振幅は、アンテナATと物体OBの距離がM×λ/4(Mは正の整数且つ奇数)のときに最大となる。図3は、定在波γの振幅が最大となる様子を示す図である。
 このように、アンテナから電磁波を放射することにより物体との間に発生させた定在波は、アンテナと物体の距離に応じて振幅が周期的に変化する。従って、この振幅の変化を監視することによって、物体の移動を検知することが可能となる。
 特許文献1には、定在波を検出することにより測定対象との距離を測定する測定装置について記載されている。この装置では、電磁波を放出する送信手段よりも測定対象側に検出手段を設けている。そして、送信手段が放出した電磁波の周波数から形成される検出信号関数と、検出手段が検出した定在波の振幅に基づいて、測定対象との距離を測定している。
 特許文献2には、定在波を利用したものではないが、対象物の微小移動を精度良く検出することを目的とした装置について記載されている。この装置では、所定周波数のローカル信号を用いて送信信号及び受信信号を、より低周波に周波数変換し、低周波に周波数変換された送信信号と受信信号との位相差に基づいて移動検出対象物の移動状態を判定している。
特開2002-357656号公報 特開2007-170990号公報
 しかしながら、上記の如く定在波を利用して物体の移動を検知する装置においては、定在波の腹と節付近に対象物体が位置する場合に、対象物体との距離変化に対する定在波の振幅の変化が小さくなり、物体の移動を精度よく検知できない場合がある。定在波の腹とは、振幅が最大となる箇所であり、定在波の節とは、振幅が最小となる箇所である。すなわち、装置と物体の距離が特定の関係にある場合に、装置の感度が低下してしまう場合がある。
 図4は、定在波における、同一変位量に対する振幅変動を説明するための説明図である。図中、横軸は、アンテナとの距離を示している。図示するように、定在波の節に相当する箇所X1に物体が位置する場合、及び定在波腹に相当する箇所X3に物体が位置する場合に、物体の変位量(アンテナとの距離変化)に対する振幅変動は最小となる。従って、箇所X1やX3に位置する物体の移動に対する検知感度は低感度となる。一方、定在波の節と腹の中間に相当する箇所X2に物体が位置する場合に、物体の変位量に対する振幅変動は最大となる。従って、箇所X2に位置する物体の移動に対する検知感度は低感度となる。なお、図4において、N0、N1、N2は正の整数且つ偶数であり、M1、M2は正の整数且つ奇数である。
 このように、定在波を利用して物体の移動を検知する移動物体検知装置では、装置からの距離にしてλ/8間隔で、高感度領域と低感度領域が繰り返し現れることになる。λは、前述したように、送信波の波長である。そして、特に低感度領域に存在する物体のサイズが小さい場合に、低感度であることの影響が大きくなり、物体の移動を看過する可能性が高くなる。
 図5は、定在波を利用した移動物体検知装置において発生する高感度領域と低感度領域の分布、及び移動の検知が困難な特定条件を満たす物体を示す図である。図示するように、また図4において説明したように、移動物体検知装置の高感度領域と低感度領域は、アンテナATを中心として同心円状に交互に現れる。高感度領域の中心部Hと低感度領域の中心部L1、L2(L1は定在波の節、L2は定在波の腹に相当する)の間隔は、λ/8である。
 図5における物体OB1は、サイズが十分に大きいため、そのいずれかの箇所が高感度領域と交差することになる。この結果、物体OB1の変位は移動物体検知装置によって高感度に検知され、物体OB1の移動が看過される可能性は小さくなる。
 一方、図5における物体OB2は、サイズが小さく、ほぼ全体が低感度領域に位置している。この場合、物体OB2の変位がλ/8よりも小さければ、物体OB2の変位は移動物体検知装置によって検知されにくくなり、物体OB2の移動が看過される可能性は大きくなる。
 係る課題について、特許文献2には、「正弦波状に変化する定在波では、振幅最大値近傍における定在波の振幅変化が緩慢なために定在波の振幅最大値の検出に誤差が生じ易い。そして、この振幅最大値の検出誤差は、そのまま微小移動量の検出誤差となる。したがって、従来技術では、定在波の振幅最大値の検出誤差に起因して微小移動量の検出精度が低下するという問題点があった。」と記載されている。
 このような課題に対して、周波数(波長)やアンテナ位置の調整により、装置から対象物体までの距離と、定在波波長との関係を修正することが考えられる。しかしながら、周波数やアンテナ位置の調整には専門的な技術が必要であり、エンドユーザが容易に行うことができるものではない。また、対象物体がそもそもどの位置に存在するか予め判明していない場合には、このような手法を適用することができない。
 本発明はこのような課題を解決するためのものであり、周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することが可能な移動物体検知装置を提供することを、主たる目的とする。
 上記目的を達成するための本発明の第1の態様は、
 電磁波を放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する第1の放射検出手段と、
 前記第1の放射検出手段が放射する電磁波と同じ周波数の電磁波を前記第1の放射検出手段における電磁波放射箇所の近傍を通過するように放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する第2の放射検出手段と、を備え、
 前記第1の放射検出手段及び/又は前記第2の放射検出手段により検出された定在波に基づいて、物体の移動又は移動物体の有無を検知する移動物体検知装置であって、
 前記第2の放射検出手段が放射する電磁波が前記第1の放射検出手段における電磁波放射箇所の近傍に至るまでの距離は、前記第1の放射検出手段及び前記第2の放射検出手段が放射する電磁波の半周期分の波長の整数倍に、該半周期よりも小さい所定周期分の波長を加えた距離であることを特徴とする、
 移動物体検知装置である。
 この本発明の第1の態様によれば、第1の放射検出手段及び第2の放射検出手段が互いの低感度領域を補完し合うため、周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することができる。
 本発明の第1の態様において、
 前記所定周期分の波長は、前記第1の放射検出手段及び前記第2の放射検出手段が放射する電磁波の8分の1周期分の波長であると、好適である。
 こうすれば、第1の放射検出手段の低感度領域と第2の放射検出手段の高感度領域が丁度重なることになるため、検知精度の低下をより効果的に抑制することができる。
 また、本発明の第1の態様において、
 前記第1の放射検出手段と前記第2の放射検出手段が放射する電磁波は、偏波面が直交すると、好適である。
 こうすれば、第1の放射検出手段及び第2の放射検出手段は、自己が発生させた定在波のみを検出することが可能となる。
 また、本発明の第1の態様において、
 前記第2の放射検出手段は、前記第1の放射検出手段が電磁波を放射する方向と逆向きに電磁波を放射し、該放射した電磁波を、断面が楕円形状を有する反射部材で反射させて前記第1の放射検出手段における電磁波放射箇所の近傍に向けて放射する手段であり、
 前記反射部材の断面の楕円形状は、前記第1の放射検出手段及び前記第2の放射検出手段における電磁波放射箇所を二つの焦点とすることを特徴とするものとすると、好適である。
 こうすれば、第2の放射検出手段によって放射された電磁波は、第1の放射検出手段の電磁波放射箇所の近傍に集められる。この集められた電磁波は、第1の放射検出手段の電磁波放射箇所の近傍を通過した後、あたかも第1の放射検出手段から放射されたかのように拡散して移動物体検知装置の検知領域に進行する。この結果、第1の放射検出手段と第2の放射検出手段の指向性を同質なものにすれば、第1の放射検出手段による検知領域と第2の放射検出手段による検知領域を略一致させることができる。
 また、本発明の第1の態様において、
 前記第2の放射検出手段は、前記第1の放射検出手段の電磁波放射方向に関して背後側に位置し、前記第2の放射検出手段と前記第1の放射検出手段の間に設けられ、電磁波を屈折させる誘電体レンズを介して前記第1の放射検出手段と略同方向に電磁波を放射することを特徴とするものとしてもよい。
 本発明の第2の態様は、
 電磁波を放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する第1の放射検出手段と、
 前記第1の放射検出手段の電磁波放射方向に関して背後側に位置し、前記第1の放射検出手段が放射する電磁波と同じ周波数の電磁波を前記第1の放射検出手段の近傍を通過するように放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する複数の第2の放射検出手段と、を備え、
 前記第1の放射検出手段及び/又は前記第2の放射検出手段により検出された定在波に基づいて、物体の移動又は移動物体の有無を検知する移動物体検知装置であって、
 前記複数の第2の放射検出手段が放射する電磁波が前記第1の放射検出手段における電磁波放射箇所の近傍に至るまでの距離は、前記第1の放射検出手段及び前記第2の放射検出手段が放射する電磁波の半周期分の波長の整数倍に、該半周期よりも小さい所定周期分の波長の整数倍を加えた距離であることを特徴とする、
 移動物体検知装置である。
 この本発明の第2の態様によれば、第1の放射検出手段及び第2の放射検出手段が互いの低感度領域を補完し合うため、周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することができる。
 本発明の第2の態様において、
 前記第1の放射検出手段と前記第2の放射検出手段が放射する電磁波は、偏波面が所定角度異なっているものとすると、好適である。
 こうすれば、第1の放射検出手段及び第2の放射検出手段は、自己が発生させた定在波を検出することが容易となる。
 本発明によれば、周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することが可能な移動物体検知装置を提供することができる。
移動物体検知装置のアンテナが送信波を放射し、物体で反射された反射波がアンテナに戻って来る様子を示す図である。 定在波の振幅がゼロとなる様子を示す図である。 定在波の振幅が最大となる様子を示す図である。 定在波における、同一変位量に対する振幅変動を説明するための説明図である。 定在波を利用した移動物体検知装置において発生する高感度領域と低感度領域の分布、及び移動の検知が困難な特定条件を満たす物体を示す図である。 本発明に係る移動物体検知装置の概念図である。 本発明の第1実施例に係る移動物体検知装置1の構成例である。 第1の送受信アンテナ10により発生させられた定在波による、第1の送受信アンテナ10を中心とした高感度領域と低感度領域の分布を示す図である。 第2の送受信アンテナ20により発生させられた定在波による、第1の送受信アンテナ10を中心とした高感度領域と低感度領域の分布を示す図である。 第1の送受信アンテナ10及び第2の送受信アンテナ20により発生させられた定在波の高感度領域と低感度領域が重なり合う様子を示す図である。 第1の送受信アンテナ10を中心とした第1の送受信アンテナ10の高感度領域の中心部と、第2の送受信アンテナ20の高感度領域の中心部の分布を示す図である。 本発明の第2実施例に係る移動物体検知装置2の構成例である。 第1の送受信アンテナ10、第2の送受信アンテナ群20a、20b、20c、及び第3の送受信アンテナ群25a、25b、25cにより発生させられた定在波の高感度領域と低感度領域が重なり合う様子を示す図である 本発明の他の実施例に係る移動物体検知装置の構成例である。 本発明の他の実施例に係る移動物体検知装置の構成例である。 本発明の他の実施例に係る移動物体検知装置の構成例である。 本発明の他の実施例に係る移動物体検知装置の構成例である。
 以下、本発明を実施するための形態について、添付図面を参照しながら実施例を挙げて説明する。
 <第1実施例>
 以下、図面を参照し、本発明の第1実施例に係る移動物体検知装置1について説明する。図6は、本発明に係る移動物体検知装置の概念図である。図示するように、本発明に係る移動物体検知装置は、放射された電磁波の波長以下の微小変位をする移動物体OBの移動(又は存在)を検知することを可能としたものであり、送受信アンテナATと、発振装置VBと、定在波強度検知装置DTと、検知分解能向上装置IMと、を備える。
 以下、より具体的に説明する。図7は、本発明の第1実施例に係る移動物体検知装置1の構成例である。移動物体検知装置1は、主要な構成として、第1の送受信アンテナ10と、第2の送受信アンテナ20と、反射部材30と、発振装置40と、定在波強度検知装置50と、を備える。これらのうち、第2の送受信アンテナ20及び反射部材30が、図6における検知分解能向上装置IMに相当する。
 第1の送受信アンテナ10及び第2の送受信アンテナ20は、一定の指向性を有する送受信一体型アンテナであり、発振装置40から供給される電圧に応じてマイクロ波を放射する。第1の送受信アンテナ10及び第2の送受信アンテナ20は、例えばマイクロストリップライン、スリットが形成されたグランド部材、及びパッチアンテナが、順に積層された構成となっている。第1の送受信アンテナ10及び第2の送受信アンテナ20は、必要に応じてアレイ化され、指向性が高まるように構成されてよい。
 第1の送受信アンテナ10は、移動物体検知装置1の検知領域の中心方向(図7におけるZ方向)に向けてマイクロ波を放射する。また、第1の送受信アンテナ10には、放射したマイクロ波が物体で反射されることにより生じる、定在波の振幅に応じたアンテナ電圧が生じる。このアンテナ電圧は、定在波強度検知装置50に入力されて物体の移動の検知に用いられる。
 一方、第2の送受信アンテナ20は、移動物体検知装置1の検知領域の中心方向(図7におけるZ方向)とは反対側に向けて、第1の送受信アンテナ10と同じ周波数のマイクロ波を放射する。第2の送受信アンテナ20から放射されたマイクロ波は、反射部材30で反射される。反射部材30は、マイクロ波を反射する金属等で形成された凹状部材である。反射部材30は、例えば第1の送受信アンテナ10及び第2の送受信アンテナ20を焦点とする楕円の一部を、第1の送受信アンテナ10と第2の送受信アンテナ20を結ぶ直線を中心として回転させた軌跡が形成するドーム型の形状を有している。すなわち、反射部材30の断面は、第1の送受信アンテナ10及び第2の送受信アンテナ20を二つの焦点とする楕円の形状を有している。図7における網掛け丸は、係る楕円の焦点を示している。
 なお、反射部材30の形状はこれに限らず、断面が楕円に近い多面体形状等であってもよい。
 楕円と焦点の関係から、第2の送受信アンテナ20によって放射されたマイクロ波は、第1の送受信アンテナ10の近傍に集められる。この集められたマイクロ波は、第1の送受信アンテナ10の近傍を通過した後、あたかも第1の送受信アンテナ10から放射されたかのように拡散して移動物体検知装置1の検知領域に進行する。この結果、第1の送受信アンテナ10と第2の送受信アンテナ20の指向性を同質なものにすれば、第1の送受信アンテナ10による検知領域と第2の送受信アンテナ20による検知領域を略一致させることができる。
 そして、第2の送受信アンテナ20によって放射されたマイクロ波が物体で反射されることにより、第2の送受信アンテナ20~反射部材30~物体の間に定在波が発生する。第2の送受信アンテナ20には、係る定在波の振幅に応じたアンテナ電圧が生じる。このアンテナ電圧は、定在波強度検知装置50に入力されて物体の移動の検知に用いられる。
 第1の送受信アンテナ10が放射するマイクロ波と、第2の送受信アンテナ20が放射するマイクロ波は、偏波面が直交している。これによって、第1の送受信アンテナ10及び第2の送受信アンテナ20は、自己が発生させた定在波のみをアンテナ電圧として検出することが可能となる。
 また、第2の送受信アンテナ20が放射するマイクロ波が第1の送受信アンテナ10の近傍に至るまでの距離は、第1の送受信アンテナ10及び第2の送受信アンテナ20が放射するマイクロ波の波長をλとすると{K×λ/2+λ/8(Kは正の整数)}となるように、第1の送受信アンテナ10、第2の送受信アンテナ20、及び反射部材30の位置関係が設定されている。
 係る構成によって、第1の送受信アンテナ10及び第2の送受信アンテナ20は、互いの低感度領域を補完し合い、移動物体検知装置1の検知精度の低下を抑制することができる。
 図8は、第1の送受信アンテナ10により発生させられた定在波による、第1の送受信アンテナ10を中心とした高感度領域と低感度領域の分布を示す図である。図示するように、第1の送受信アンテナ10により発生させられた定在波による高感度領域と低感度領域は、第1の送受信アンテナ10を中心として同心円状に交互に現れ、高感度領域の中心部Hと低感度領域の中心部L1、L2の間隔は、λ/8となる。
 一方、図9は、第2の送受信アンテナ20により発生させられた定在波による、第1の送受信アンテナ10を中心とした高感度領域と低感度領域の分布を示す図である。第2の送受信アンテナ20により発生させられた定在波による高感度領域と低感度領域は、第1の送受信アンテナ10を中心として同心円状に交互に現れ、高感度領域の中心部Hと低感度領域の中心部L1、L2の間隔は、λ/8となる。これらについては、第1の送受信アンテナ10により発生させられた定在波によるものと同様である。しかしながら、前述のように、第2の送受信アンテナ20が放射するマイクロ波が第1の送受信アンテナ10の近傍に至るまでの距離は、{K×λ/2+λ/8(Kは正の整数)}となるように設定されている。従って、第2の送受信アンテナ20により発生させられた定在波は、第1の送受信アンテナ10により発生させられた定在波に対して、波長λ/8に相当する位相差を有することになる。なお、定在波の節~節までの波長、或いは腹~腹までの波長は、λ/2である。
 この結果、第1の送受信アンテナ10により発生させられた定在波による低感度領域と、第2の送受信アンテナ20により発生させられた定在波による高感度領域が重なり合い、更に、第1の送受信アンテナ10により発生させられた定在波による高感度領域と、第2の送受信アンテナ20により発生させられた定在波による低感度領域が重なり合うことになる。図10は、第1の送受信アンテナ10及び第2の送受信アンテナ20により発生させられた定在波の高感度領域と低感度領域が重なり合う様子を示す図である。図中、横軸は、第1の送受信アンテナ10からの距離である。図示するように、第1の送受信アンテナ10により発生させられた定在波γ10の低感度領域の中心部L102には、第2の送受信アンテナ20により発生させられた定在波γ20の高感度領域の中心部H202が重なり、第2の送受信アンテナ20により発生させられた定在波γ20の低感度領域の中心部L203には、第1の送受信アンテナ10により発生させられた定在波γ10の高感度領域の中心部H103が重なるという関係が、周期的に継続する。
 これによって、第1の送受信アンテナ10及び第2の送受信アンテナ20は、互いの低感度領域を補完し合い、移動物体検知装置1の検知精度の低下を抑制することができる。図11は、第1の送受信アンテナ10を中心とした第1の送受信アンテナ10の高感度領域の中心部H101、H102、…と、第2の送受信アンテナ20の高感度領域の中心部H201、H202、H203、…の分布を示す図である。このように、第1の送受信アンテナ10及び第2の送受信アンテナ20による高感度領域が交互に現れることにより、図示するような小さいサイズの物体OB2の微小変位であっても、高精度に検知することができる。
 定在波強度検知装置50は、例えば、第1の送受信アンテナ10及び第2の送受信アンテナ20が検出する定在波の振幅に応じた電圧を出力するダイオード検波器と、ダイオード検波器が出力する電圧が所定電圧以上である場合にDC電流(信号)を出力する比較器と、を備える。これによって、例えば比較器の出力の有無がLo状態からHi状態に、又はその逆に切り替わった場合に、物体が移動した(或いは移動物体が存在する)と判断することができる。
 係る判断結果の利用態様について本発明は何ら限定していないが、例えば、自動車の車室内や家屋内に侵入者が存在するか否かを検知する侵入センサ、自動車を運転する運転者の挙動、人の心拍、呼吸、体動等を検知するセンサ等に適用することができる。
 なお、定在波強度検知装置50は、上記の態様に限らず、例えば第1の送受信アンテナ10及び第2の送受信アンテナ20のアンテナ電圧が入力されるA/D変換器等を含み、振幅の変化量を出力可能な構成としてもよい。こうすれば、物体の移動量についての情報を得ることができる。
 以上説明した本実施例の移動物体検知装置1によれば、第1の送受信アンテナ10及び第2の送受信アンテナ20が互いの低感度領域を補完し合うため、周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することができる。
 また、断面が楕円形状の反射部材30を用いて、第2の送受信アンテナ20によって放射されたマイクロ波を第1の送受信アンテナ10の近傍に集めることができるため、第1の送受信アンテナ10による検知領域と第2の送受信アンテナ20による検知領域を略一致させることができる。
 <第2実施例>
 以下、図面を参照し、本発明の第2実施例に係る移動物体検知装置2について説明する。図12は、本発明の第2実施例に係る移動物体検知装置2の構成例である。移動物体検知装置2は、主要な構成として、第1の送受信アンテナ10と、第2の送受信アンテナ群20a、20b、20cと、第3の送受信アンテナ群25a、25b、25cと、発振装置40と、定在波強度検知装置50と、を備える。なお、第1実施例と共通する構成要素については、同一の符号を付して詳細な説明を省略する。
 第2の送受信アンテナ群20a、20b、20cは、第1の送受信アンテナ10のマイクロ波放射方向に関して背後側に位置し、第1の送受信アンテナ10を中心とした半径r1の円弧R1上に並べられる。そして、第2の送受信アンテナ群20a、20b、20cは、第1の送受信アンテナ10と同じ周波数のマイクロ波を、第1の送受信アンテナ10との近傍を通過するように放射する。第2の送受信アンテナ群20a、20b、20cには、放射したマイクロ波が物体で反射されることにより生じる定在波の振幅に応じたアンテナ電圧が生じる。このアンテナ電圧は、定在波強度検知装置50に入力されて物体の移動の検知に用いられる。
 また、第3の送受信アンテナ群25a、25b、25cは、第1の送受信アンテナ10のマイクロ波放射方向に関して第2の送受信アンテナ群20a、20b、20cよりも背後側に位置し、第1の送受信アンテナ10を中心とした半径r2の円弧R2上に並べられる。そして、第3の送受信アンテナ群25a、25b、25cは、第1の送受信アンテナ10と同じ周波数のマイクロ波を、第1の送受信アンテナ10との近傍を通過するように放射する。第3の送受信アンテナ群25a、25b、25cには、放射したマイクロ波が物体で反射されることにより生じる、定在波の振幅に応じたアンテナ電圧が生じる。このアンテナ電圧は、定在波強度検知装置50に入力されて物体の移動の検知に用いられる。
 第2の送受信アンテナ群20a、20b、20cが放射するマイクロ波の偏波面は、第1の送受信アンテナ10が放射するマイクロ波の偏波面に対して、120度の角度を有している。また、第3の送受信アンテナ群25a、25b、25cが放射するマイクロ波の偏波面は、第1の送受信アンテナ10が放射するマイクロ波の偏波面に対して、240度の角度を有している。これによって、第1の送受信アンテナ10、第2の送受信アンテナ群20a、20b、20c、及び第3の送受信アンテナ群25a、25b、25cは、自己が発生させた定在波をアンテナ電圧として検出することが容易となる。
 また、円弧R1の半径r1は、例えばλ/16であり、円弧R2の半径r2は、例えばλ/8である。このように各送受信アンテナの位置関係を設定することによって、第1の送受信アンテナ10、第2の送受信アンテナ群20a、20b、20c、及び第3の送受信アンテナ群25a、25b、25cは、互いの低感度領域を補完し合い、移動物体検知装置1の検知精度の低下を抑制することができる。
 図13は、第1の送受信アンテナ10、第2の送受信アンテナ群20a、20b、20c、及び第3の送受信アンテナ群25a、25b、25cにより発生させられた定在波の高感度領域と低感度領域が重なり合う様子を示す図である。図示するように、第1の送受信アンテナ10により発生させられた定在波γ10の高感度領域の中心部H10、第2の送受信アンテナ群20a、20b、20cにより発生させられた定在波γ20(厳密には、定在波群)の高感度領域の中心部H20、第3の送受信アンテナ群25a、25b、25cにより発生させられた定在波γ25(厳密には、定在波群)の高感度領域の中心部H25が、他の送受信アンテナの低感度領域を補完している関係が、周期的に継続する。
 第1の送受信アンテナ10、第2の送受信アンテナ群20a、20b、20c、及び第3の送受信アンテナ群25a、25b、25cは、互いの低感度領域を補完し合い、移動物体検知装置2の検知精度の低下を抑制することができる。
 また、本実施例の場合、第1実施例に比して、高感度領域がより高密度に分布するため、検知精度を更に高めることができる。
 以上説明した本実施例の移動物体検知装置2によれば、第1の送受信アンテナ10、第2の送受信アンテナ群20a、20b、20c、及び第3の送受信アンテナ群25a、25b、25cが互いの低感度領域を補完し合うため、周波数やアンテナ位置の調整を必要とせず、検知精度の低下を抑制することができる。
 また、第1実施例に比して、アンテナ数の増加により製造コストは増加する可能性があるものの、高感度領域がより高密度に分布するため、検知精度を更に高めることができる。
 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
 例えば、第1実施例の変形として、図14に示すように、第2の送受信アンテナ20は、第1の送受信アンテナ10のマイクロ波放射方向に関して背後側に位置し、第2の送受信アンテナ20と第1の送受信アンテナ10の間に設けられた誘電体レンズ35を介して第1の送受信アンテナ10と略同方向にマイクロ波を放射するものとしてもよい。図14は、本発明の他の実施例に係る移動物体検知装置の構成例である。誘電体レンズ35は、光学レンズが光を屈折させるのと同様に、電磁波を屈折させる機能を有している。そして、第2の送受信アンテナ20によって放射されて誘電体レンズ35を通過したマイクロ波が第1の送受信アンテナ10の近傍に集められるように、誘電体レンズ35の屈折率、及び第1の送受信アンテナ10、第2の送受信アンテナ20、誘電体レンズ35の位置関係が調節されている。こうすれば、第1実施例と同様、第1の送受信アンテナ10と第2の送受信アンテナ20の指向性を同質なものにすれば、第1の送受信アンテナ10による検知領域と第2の送受信アンテナ20による検知領域を略一致させることができる。また、係る構成においても、第1実施例と同様に、第1の送受信アンテナ10が放射するマイクロ波と、第2の送受信アンテナ20が放射するマイクロ波は、偏波面が直交していると好適である。また、第2の送受信アンテナ20が放射するマイクロ波が第1の送受信アンテナ10の近傍に至るまでの距離は、{K×λ/2+λ/8(Kは正の整数)}となるように、第1の送受信アンテナ10、第2の送受信アンテナ20、及び誘電体レンズ35の位置関係が設定されていると好適である。
 また、第1実施例、第2実施例共に、検知領域を変動させるためのアクチュエータを備えるものとしてもよい。こうすれば、より広範囲に物体の移動や移動物体の有無を検知することができる。
 また、第2実施例に係る移動物体検知装置2において、第2の送受信アンテナ群20a、20b、20cと、第3の送受信アンテナ群25a、25b、25cのいずれか一方を省略してもよい。更に、第2の送受信アンテナ群20a、20b、20cや第3の送受信アンテナ群25a、25b、25cは、必ずしも3個のアンテナからなる必要はなく、複数個であればよい。
 また、図15に示すように、第1実施例における第2の送受信アンテナ20が、第2の送受信アンテナ群20a、20bを含むものとしてもよい。図15は、本発明の他の実施例に係る移動物体検知装置の構成例である。第2の送受信アンテナ20は、第1の送受信アンテナ10に比して物体までの距離が長くなるため、マイクロ波の減衰が第1の送受信アンテナ10に比して大きくなる可能性が高い。従って、図15のような構成とすることによって、第2の送受信アンテナ20の出力を増強し、検知精度を高めることができる。
 また、図16、17に示すように、第1の送受信アンテナ10が第1の送受信アンテナ群10a、10bを含むものとしてもよい。図16、17は、本発明の他の実施例に係る移動物体検知装置の構成例である。
 なお、図15~17における網掛け丸は、反射部材30の断面が形成する楕円の焦点を示している。
 また、本発明の移動物体検知装置は、マイクロ波に限らず、他の種類の電磁波を放射するものであってもよい。
 また、第1の送受信アンテナ10や第2の送受信アンテナ20、或いは第2実施例における送受信アンテナ群の少なくとも一部は、送受信一体型でないアンテナである、すなわち送信アンテナと受信アンテナを有するものとしてもよい。ここで、第1の送受信アンテナ10が第1の送信アンテナ10A及び第1の受信アンテナ10Bを有するものとすると、第2の送受信アンテナ20や第2実施例における送受信アンテナ群は、第1の送信アンテナ10A(請求の範囲における「電磁波放射箇所」に相当する)の近傍を通過するようにマイクロ波を放射すればよい。
 本発明は、物体の移動又は移動物体の有無を検知する装置の製造産業、ひいては自動車産業やセキュリティーサービス業等に利用することができる。
 1、2 移動物体検知装置
 10  第1の送受信アンテナ
 10a、10b 第1の送受信アンテナ群
 20  第2の送受信アンテナ
 20a、20b、20c 第2の送受信アンテナ群
 25a、25b、25c 第3の送受信アンテナ群
 30  反射部材
 35  誘電体レンズ
 40  発振装置
 50  定在波強度検知装置
 AT  アンテナ
 OB  物体
 VB  発振装置
 DT  定在波強度検知装置
 IM  検知分解能向上装置
 α   送信波
 β   反射波
 γ   定在波

Claims (7)

  1.  電磁波を放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する第1の放射検出手段と、
     前記第1の放射検出手段が放射する電磁波と同じ周波数の電磁波を前記第1の放射検出手段における電磁波放射箇所の近傍を通過するように放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する第2の放射検出手段と、を備え、
     前記第1の放射検出手段及び/又は前記第2の放射検出手段により検出された定在波に基づいて、物体の移動又は移動物体の有無を検知する移動物体検知装置であって、
     前記第2の放射検出手段が放射する電磁波が前記第1の放射検出手段における電磁波放射箇所の近傍に至るまでの距離は、前記第1の放射検出手段及び前記第2の放射検出手段が放射する電磁波の半周期分の波長の整数倍に、該半周期よりも小さい所定周期分の波長を加えた距離であることを特徴とする、
     移動物体検知装置。
  2.  請求項1に記載の移動物体検知装置であって、
     前記所定周期分の波長は、前記第1の放射検出手段及び前記第2の放射検出手段が放射する電磁波の8分の1周期分の波長である、
     移動物体検知装置。
  3.  請求項1に記載の移動物体検知装置であって、
     前記第1の放射検出手段と前記第2の放射検出手段が放射する電磁波は、偏波面が直交することを特徴とする、
     移動物体検知装置。
  4.  請求項1ないし3のいずれか1項に記載の移動物体検知装置であって、
     前記第2の放射検出手段は、前記第1の放射検出手段が電磁波を放射する方向と逆向きに電磁波を放射し、該放射した電磁波を、断面が楕円形状を有する反射部材で反射させて前記第1の放射検出手段における電磁波放射箇所の近傍に向けて放射する手段であり、
     前記反射部材の断面の楕円形状は、前記第1の放射検出手段及び前記第2の放射検出手段における電磁波放射箇所を二つの焦点とすることを特徴とする、
     移動物体検知装置。
  5.  請求項1ないし3のいずれか1項に記載の移動物体検知装置であって、
     前記第2の放射検出手段は、前記第1の放射検出手段の電磁波放射方向に関して背後側に位置し、前記第2の放射検出手段と前記第1の放射検出手段の間に設けられ、電磁波を屈折させる誘電体レンズを介して前記第1の放射検出手段と略同方向に電磁波を放射することを特徴とする、
     移動物体検知装置。
  6.  電磁波を放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する第1の放射検出手段と、
     前記第1の放射検出手段の電磁波放射方向に関して背後側に位置し、前記第1の放射検出手段が放射する電磁波と同じ周波数の電磁波を前記第1の放射検出手段の近傍を通過するように放射すると共に、該放射した電磁波が物体で反射されることにより生じる定在波を検出する複数の第2の放射検出手段と、を備え、
     前記第1の放射検出手段及び/又は前記第2の放射検出手段により検出された定在波に基づいて、物体の移動又は移動物体の有無を検知する移動物体検知装置であって、
     前記複数の第2の放射検出手段が放射する電磁波が前記第1の放射検出手段の近傍に至るまでの距離は、前記第1の放射検出手段及び前記第2の放射検出手段が放射する電磁波の半周期分の波長の整数倍に、該半周期よりも小さい所定周期分の波長の整数倍を加えた距離であることを特徴とする、
     移動物体検知装置。
  7.  請求項6に記載の移動物体検知装置であって、
     前記第1の放射検出手段と前記第2の放射検出手段が放射する電磁波は、偏波面が所定角度異なっていることを特徴とする、
     移動物体検知装置。
PCT/JP2010/067090 2010-09-30 2010-09-30 移動物体検知装置 WO2012042636A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/510,638 US8830114B2 (en) 2010-09-30 2010-09-30 Mobile object detecting apparatus
JP2011545974A JP5310870B2 (ja) 2010-09-30 2010-09-30 移動物体検知装置
PCT/JP2010/067090 WO2012042636A1 (ja) 2010-09-30 2010-09-30 移動物体検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067090 WO2012042636A1 (ja) 2010-09-30 2010-09-30 移動物体検知装置

Publications (1)

Publication Number Publication Date
WO2012042636A1 true WO2012042636A1 (ja) 2012-04-05

Family

ID=45892140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067090 WO2012042636A1 (ja) 2010-09-30 2010-09-30 移動物体検知装置

Country Status (3)

Country Link
US (1) US8830114B2 (ja)
JP (1) JP5310870B2 (ja)
WO (1) WO2012042636A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050055A1 (ja) * 2012-09-27 2014-04-03 アルプス電気株式会社 無線センサ装置
WO2015029794A1 (ja) * 2013-09-02 2015-03-05 アルプス電気株式会社 無線センサ装置
US11543511B2 (en) * 2019-03-11 2023-01-03 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and vehicle
US20230091178A1 (en) * 2019-03-11 2023-03-23 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and vehicle
WO2024116904A1 (ja) * 2022-12-02 2024-06-06 株式会社村田製作所 生体情報検知装置、それを備えた車両及びベッド、並びに、生体情報検知方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024511A (ko) 2018-08-28 2020-03-09 삼성전자주식회사 대화 에이전트의 동작 방법 및 그 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239426A (ja) * 1997-02-27 1998-09-11 Ikuo Arai 物標変位検出装置
JP2002267744A (ja) * 2001-03-08 2002-09-18 Toto Ltd 物体検知装置
JP2002277558A (ja) * 2001-03-19 2002-09-25 Toto Ltd 人体検知装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR698774A (fr) * 1929-07-27 1931-02-05 Philips Nv Dispositif d'alarme
FR809612A (fr) * 1935-08-19 1937-03-08 Telefunken Gmbh Procédé de détection d'objets mobiles dans une zone à surveiller
US2197028A (en) * 1936-10-28 1940-04-16 Rca Corp Protective device
US2203807A (en) * 1937-08-18 1940-06-11 Rca Corp Radio beam system
US2247246A (en) * 1938-12-03 1941-06-24 American District Telegraph Co Micro-wave radio alarm system
US2649538A (en) * 1949-10-13 1953-08-18 Westinghouse Air Brake Co Space intrusion detection system
US2660718A (en) * 1949-12-30 1953-11-24 Gen Electric Microwave protective system
US2656527A (en) * 1950-07-24 1953-10-20 John E Tillman Signal deviation warning system
US3562749A (en) * 1967-11-20 1971-02-09 Tsukushi Uchimoto Detection system using oscillation waves
US3733602A (en) * 1971-05-20 1973-05-15 Motorola Inc Microwave intrusion detecting system and apparatus
US3805061A (en) * 1973-04-23 1974-04-16 Tyco Laboratories Inc Object detecting apparatus
US3877002A (en) * 1973-05-25 1975-04-08 Omni Spectra Inc Intrusion detecting system
US4191953A (en) * 1975-01-23 1980-03-04 Microwave and Electronic System Limited Intrusion sensor and aerial therefor
JPS54162497A (en) * 1978-06-13 1979-12-24 Nec Corp Clash preventive unit
US4207560A (en) * 1978-08-23 1980-06-10 The United States Of America As Represented By The Secretary Of The Air Force R F Area intruder detection and tracking system
IL62589A (en) * 1981-04-05 1988-02-29 Israel Aircraft Ind Ltd Electromagnetic field perimeter detection apparatus
JPS5866074A (ja) * 1981-10-15 1983-04-20 Nec Corp レ−ダ−方式
US4580249A (en) * 1984-11-26 1986-04-01 Gte Government Systems Corporation Apparatus for and method of doppler motion detection with standing wave drift compensation
US4661936A (en) * 1984-11-26 1987-04-28 Gte Government Systems Corporation Apparatus for and method of doppler motion detection with standing wave drift compensation
DE3447131A1 (de) * 1984-12-22 1986-06-26 Telenot Electronic GmbH, 7080 Aalen Raumschutzanlage
US5376922A (en) * 1990-09-26 1994-12-27 Kiss; Michael Z. Wireless bistatic link intrusion detection system
US5160915A (en) * 1990-09-26 1992-11-03 Kiss Michael Z Wireless bistatic link intrusion detection system
US5268698A (en) * 1992-07-31 1993-12-07 Smith Sr Louis P Target acquisition, locating and tracking system
GB9512753D0 (en) * 1995-06-22 1995-08-30 Dando David J Intrusion sensing system
US6208248B1 (en) * 1999-01-28 2001-03-27 Anro Engineering, Inc. Quick response perimeter intrusion detection sensor
US6307475B1 (en) * 1999-02-26 2001-10-23 Eric D. Kelley Location method and system for detecting movement within a building
JP3461498B2 (ja) 2001-03-01 2003-10-27 徹志 上保 距離測定装置、距離測定設備および距離測定方法
US6466157B1 (en) * 2001-07-17 2002-10-15 Sensor Technologies & Systems, Inc. Electronic fence using high-resolution millimeter-wave radar in conjunction with multiple passive reflectors
US6885300B1 (en) * 2002-06-05 2005-04-26 The Watt Stopper, Inc. Broad field motion detector
JP2007170990A (ja) 2005-12-22 2007-07-05 Yokogawa Denshikiki Co Ltd 微小移動検出装置
US7928900B2 (en) * 2006-12-15 2011-04-19 Alliant Techsystems Inc. Resolution antenna array using metamaterials
US7804441B1 (en) * 2007-07-13 2010-09-28 The United States Of America As Represented By The Secretary Of The Navy Detection of concealed object by standing waves
RU2369323C1 (ru) 2008-02-20 2009-10-10 Игорь Яковлевич Иммореев Импульсный сверхширокополосный датчик
US8138918B2 (en) * 2009-09-17 2012-03-20 Raytheon Company Intrusion detection and tracking system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239426A (ja) * 1997-02-27 1998-09-11 Ikuo Arai 物標変位検出装置
JP2002267744A (ja) * 2001-03-08 2002-09-18 Toto Ltd 物体検知装置
JP2002277558A (ja) * 2001-03-19 2002-09-25 Toto Ltd 人体検知装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050055A1 (ja) * 2012-09-27 2014-04-03 アルプス電気株式会社 無線センサ装置
JPWO2014050055A1 (ja) * 2012-09-27 2016-08-22 アルプス電気株式会社 無線センサ装置
WO2015029794A1 (ja) * 2013-09-02 2015-03-05 アルプス電気株式会社 無線センサ装置
JPWO2015029794A1 (ja) * 2013-09-02 2017-03-02 アルプス電気株式会社 無線センサ装置
US11543511B2 (en) * 2019-03-11 2023-01-03 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and vehicle
US20230091178A1 (en) * 2019-03-11 2023-03-23 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and vehicle
US11782147B2 (en) 2019-03-11 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus and vehicle
WO2024116904A1 (ja) * 2022-12-02 2024-06-06 株式会社村田製作所 生体情報検知装置、それを備えた車両及びベッド、並びに、生体情報検知方法

Also Published As

Publication number Publication date
JP5310870B2 (ja) 2013-10-09
US8830114B2 (en) 2014-09-09
US20120235850A1 (en) 2012-09-20
JPWO2012042636A1 (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5310870B2 (ja) 移動物体検知装置
KR100849152B1 (ko) 위상 기반 감지 시스템
JP5009981B2 (ja) 角度分解型レーダセンサ
US10054424B2 (en) Terahertz measuring device and method for measuring test objects
CN101680759B (zh) 用在测量和勘测应用中的觇标
CN100504437C (zh) 雷达
JP4396436B2 (ja) 物標検出装置
CN111060891A (zh) 激光雷达
US20220120864A1 (en) Method for measuring deflection angle of galvanometer scanner, and laser radar using method
KR102576470B1 (ko) 스트랜드형 대상물의 직경 및/또는 외부 윤곽을 결정하기 위한 장치
JP5615428B2 (ja) 位置測定装置及び位置測定方法
JP5186724B2 (ja) レーダ装置の光軸調整方法
US20200378803A1 (en) Optical encoder
CN111684237B (zh) 检测方法、检测装置及激光雷达
WO2018079268A1 (ja) 信号処理装置、レーダ装置及び信号処理方法
EP3761056A1 (en) Optical scanner, object detector, and sensing apparatus
CN111344537B (zh) 利用雷达技术检测转动位置的角度传感器
JP2018165664A (ja) レーダ装置
JP2017125765A (ja) 対象物検出装置
JP5767150B2 (ja) ターゲットサイズ測定装置
KR20180003234A (ko) 라이다 장비의 광학계
US20090091737A1 (en) Laser measuring device
JP2007200045A (ja) 自律移動装置
KR100660259B1 (ko) 원통형 모노펄스 비교기
CN116413689A (zh) 一种同轴收发激光雷达和光芯片

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011545974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13510638

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857849

Country of ref document: EP

Kind code of ref document: A1