WO2012041209A1 - 双面扫描装置及其检测方法 - Google Patents

双面扫描装置及其检测方法 Download PDF

Info

Publication number
WO2012041209A1
WO2012041209A1 PCT/CN2011/080182 CN2011080182W WO2012041209A1 WO 2012041209 A1 WO2012041209 A1 WO 2012041209A1 CN 2011080182 W CN2011080182 W CN 2011080182W WO 2012041209 A1 WO2012041209 A1 WO 2012041209A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
reference data
test data
data
pixel ratio
Prior art date
Application number
PCT/CN2011/080182
Other languages
English (en)
French (fr)
Inventor
王春涛
许春凯
许加波
王玉国
Original Assignee
山东新北洋信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东新北洋信息技术股份有限公司 filed Critical 山东新北洋信息技术股份有限公司
Publication of WO2012041209A1 publication Critical patent/WO2012041209A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/203Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet
    • H04N1/2032Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet of two pictures corresponding to two sides of a single medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • H04N1/00013Reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00031Testing, i.e. determining the result of a trial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00045Methods therefor using a reference pattern designed for the purpose, e.g. a test chart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00063Methods therefor using at least a part of the apparatus itself, e.g. self-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • H04N1/00082Adjusting or controlling
    • H04N1/00087Setting or calibrating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • H04N1/4076Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
    • H04N1/192Simultaneously or substantially simultaneously scanning picture elements on one main scanning line
    • H04N1/193Simultaneously or substantially simultaneously scanning picture elements on one main scanning line using electrically scanned linear arrays, e.g. linear CCD arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0081Image reader

Definitions

  • the present invention relates to a double-sided scanning device and a detecting method thereof.
  • BACKGROUND OF THE INVENTION Scanners are widely used, such as check scanning, identity information scanning, banknote scanning, etc., in the prior art, in the prior art, the optical device used to acquire the scanned medium image in the scanner usually has a charge. Coupling image sensor (CCD for short) and contact image sensor (CIS for short). As the usage time increases, the light source of the scanner's optics will attenuate, reducing the grayscale of the scanned image, and the grayscale of the image will affect the image quality and accurate recognition of the scanned image.
  • the main object of the present invention is to provide a double-sided scanning device and a detection method thereof to solve the above problems. .
  • a double-sided scanning device is provided.
  • the double-sided scanning device comprises: a first image sensor, the first image sensor comprising: a first illuminator for emitting light; a first base white region; a first photoreceptor array, a second image sensor, the second image
  • the sensor comprises: a second illuminator disposed opposite to the first base white region for emitting light; a second base white region disposed opposite the first illuminator; a second photoreceptor array, a first memory for storing the reference Data; controller, for receiving from the first Test data of the photoreceptor array and/or the second photoreceptor array, and comparing the test data with the reference data to detect the first image sensor and/or the second image sensor, wherein the first base white area is used for The light emitted by the second illuminator is reflected to the second photoreceptor array, and the second base white area is for reflecting the light emitted by the first illuminator to the first photoreceptor array, the first photoreceptor array and/or the second photo
  • a detection method of a double-sided scanning device includes: the first image sensor detects itself via a second base white area on the second image sensor to obtain first test data, wherein the second base white area is used to use the first image sensor The light emitted by the first first illuminator is reflected to the first photoreceptor array on the first image sensor, and/or the second image sensor detects itself via the first base white area on the first image sensor, a second test data, wherein the first base white area is configured to reflect light emitted by the second illuminator on the second image sensor to a second photoreceptor array on the second image sensor, The first test data and/or the second test data are compared with the reference data to check the first image sensor and/or the second image sensor
  • the double-sided scanning device mentioned above and the detection method thereof are used for two image sensors
  • the oppositely disposed double-sided scanning device detects the state of the other image sensor by using the base white region of one of the two image sensors, thereby solving the optical device of the double-sided scanning device in the related art
  • the problem of relatively large state detection difficulty is achieved, and the effect of detecting the double-sided scanning device conveniently and efficiently is achieved.
  • FIG. 1 is a schematic view of a double-sided scanning device according to a first embodiment of the present invention
  • FIG. 2 is a schematic view of a double-sided scanning device according to a second embodiment of the present invention
  • FIG. 4 is a schematic diagram of relative mounting of two image sensors according to an embodiment of the present invention
  • FIG. 5 is a flowchart of an image sensor detecting method according to a first embodiment of the present invention
  • 6 is a flowchart of an image sensor detecting method according to a second embodiment of the present invention
  • FIG. 7 is a flowchart of an image sensor detecting method according to a third embodiment of the present invention.
  • the duplex scanning device includes: a controller 12, a first memory and an optical device, wherein the optical device includes a first image sensor 40 and a second image sensor 30, and the first memory may be a FLASH memory. 16.
  • the FLASH memory 16 is connected to the controller 12 for storing various test data of the image sensor, such as initial reference data, historical reference data, and the like.
  • the first image sensor 40 includes: a first illuminator for emitting light; a first base white region; and a first photoreceptor array.
  • the second image sensor 30 includes: a second illuminator disposed opposite to the first base white region for emitting light; a second base white region disposed opposite the first illuminator; and a second photoreceptor array.
  • the first memory is used to store the reference data.
  • the controller 12 is configured to receive test data from the first photoreceptor array and/or the second photoreceptor array, and compare the test data with the reference data to detect the first image sensor and/or the second image sensor, wherein When the controller 12 receives the test data from the first photoreceptor array, the test data is compared with the corresponding reference data to detect the first image sensor, and the controller 12 receives the test from the second photoreceptor array.
  • the first base white area for reflecting the light emitted by the second illuminator to the second photoreceptor array
  • the second base white The area is for reflecting light emitted by the first illuminator to the first photoreceptor array
  • the first photoreceptor array and/or the second photosensitive array are for obtaining test data based on the received reflected light.
  • the first image sensor and the second image sensor detect by using the base white area of the other party as the scanning medium, without using an additional scanning medium, which saves the cost of the additional white strip, and does not need to In order to participate manually, not only can the double-sided scanning device be easily detected, but also the scanning quality of the scanned image can be ensured. It should be noted that in the present invention, the detection may be performed only for the first image sensor or the second image sensor, or both.
  • 2 is a schematic diagram of a scanning device in accordance with a second embodiment of the present invention. The following description will be made according to the figure. As shown in FIG.
  • the scanning device includes: a controller 12, a communication unit 18, a FLASH memory 16, a RAM memory 14, a prompting unit 20, and an optical device.
  • the controller 12 controls the execution of each module operation. For example, the data communication between the communication unit 18 and the host or network device (not shown) or the like is controlled, the optical device is controlled to perform image scanning, status detection, etc., and the control prompting unit 20 issues prompt information and the like.
  • the optical device includes a first image sensor 40 and a second image sensor 30 that are mounted opposite each other.
  • the image sensor can be a CCD or a CIS.
  • the scanning device scans information on one side of the medium by the first image sensor 40, and scans information on the other side of the medium by the second image sensor 30, and the generated double-sided scanned image information is transmitted to the host or network device or the like through the communication unit 18.
  • 3 is a schematic diagram of an image sensor in accordance with an embodiment of the present invention.
  • 4 is a schematic illustration of the relative mounting of two image sensors in accordance with an embodiment of the present invention. The image sensor mounting method will be described below with CIS as an example in conjunction with FIG. 3 and FIG.
  • the first image sensor 40 includes: an illuminator 42, a photoreceptor array 41, and a white region 43.
  • the illuminator 42 is generally a line source extending along the direction 46, and the line source may be a point source array, or a line source that is converted by a point source through a light guide bar or a light guide plate;
  • the number of photoreceptors is determined by the number of scanning pixels of the image sensor;
  • the white area 43 is usually made of a pure white material, and the surface is smooth and uniform, and its main function is to block the light scattering of the illuminator 42. It is emitted from a certain angle, and when the light is reflected by the base white area, its effect is equivalent to correcting the white strip. As shown in FIG.
  • the first image sensor 40 and the second image sensor 30 are oppositely mounted; wherein the illuminator 32 of the second image sensor 30 is opposite to the base white region 43 of the first image sensor 40, the first image sensor 40
  • the illuminator 42 is opposite to the base white region 33 of the second image sensor 30; when the illuminator light emitted by the illuminator 32 of the second image sensor 30 is illuminated on the base white region 43 of the first image sensor 40, the reflection thereon The area 44 is reflected, and the reflected light is received by the photoreceptor array 31 of the second image sensor 30.
  • the illuminator light emitted by the illuminator 42 of the first image sensor 40 is reflected by the base white area 33 of the second image sensor 30.
  • the communication unit 18 provides a communication path for data interaction between the controller 12 and a host or network device (not shown), etc., such as receiving a scan command sent by the host, transmitting scan data of the scan medium, and the like.
  • the FLASH memory 16 which is connected to the controller 12, stores various test data of the image sensor, such as initial reference data, historical reference data, and the like.
  • the image sensor is in the normal state, after the initial correction, and the bright output data generated by scanning the base region of the image sensor is used as the initial reference data, and after the image sensor is corrected last time, the image is generated by scanning the base region of the image sensor.
  • the output data is used as historical reference data, and the explicit output data generated by the scan relative to the white area of the image sensor is used as test data, the test data is compared with the initial reference data, and corresponding prompt information is generated according to the comparison result, for example, if If the brightness value of the test data is greater than or equal to the first threshold value relative to the brightness value of the historical reference data, the image sensor needs to be recalibrated, and other cases will be described in detail in the following embodiments; the test data and the historical reference data are Compare and generate corresponding prompt information according to the comparison result. For example, if the proportion of newly added pixels in the test data to the scanning pixel exceeds the third threshold, the image sensor needs to be maintained, and other situations will be In the embodiment described in detail embodiments.
  • the RAM memory 14 temporarily stores various scanning commands received by the communication unit 18, scanned image data of the scanning device, test data of the first image sensor, the second image sensor, and the like.
  • the prompting unit 20 is configured to indicate various prompt information generated by the scanning device during the image sensor detecting process, and the prompting unit may be a display device, such as an LED (Light Emitting Diode) or an LCD (Liquid Crystal Display), or may be an audio prompting device, such as A buzzer, a speaker, etc., may also be a combination of a display device and an audio prompting device, such as a combination of a liquid crystal display device and a buzzer.
  • Figure 5 is a flow chart of an image sensor detecting method in accordance with a first embodiment of the present invention.
  • the method includes the following steps: Step S10: The first image sensor detects a state of the self by using a second base white area on the second image sensor to obtain first test data, where the second base white area is obtained. Light for reflecting the first illuminator on the first image sensor to the first photoreceptor array on the first image sensor. Step S12, the second image sensor detects the state of the self by the first base white area on the first image sensor to obtain second test data, wherein the first base white area is used for the second illumination on the second image sensor.
  • the light emitted by the device is reflected to the second photoreceptor array on the second image sensor, and in step S16, the first test data and/or the second test data are compared with the corresponding reference data to the first image sensor and/or the Two image sensors are detected.
  • the first test data is compared to the corresponding reference data to detect the first image sensor
  • the second test data is compared to the corresponding reference data to detect the second image sensor.
  • the reference data at the location may include: initial reference data and historical reference data, wherein the initial reference data is test data of the first image sensor or the second image sensor in an initial state, the historical reference data being a first image sensor or The test data obtained by the second image sensor at the last detection.
  • the first image sensor is detected by comparing the first test data with the test data of the first image sensor in an initial state, by initializing the second test data and the second image sensor The test data in the state is compared to detect the second image sensor; when the reference data is historical reference data, the first test data is compared with the test data obtained by the first image sensor at the last detection to the first image The sensor performs detection, and the second image sensor is detected by comparing the second test data with the test data obtained by the second image sensor at the last detection.
  • the detecting method may further include: calculating a brightness value H0 of the initial reference data of the detected image sensor, a brightness value H1 of the historical reference data, and testing a brightness value H2 of the data, and calculating a rate of change of the H2 with respect to the HI, obtaining a first rate of change of brightness, calculating a rate of change of the H2 with respect to the H0, obtaining a second rate of change of brightness;
  • the defective pixel ratio B0 of the initial reference data of the image detecting sensor, the defective pixel ratio B1 of the historical reference data, and the defective pixel ratio B2 of the test data; and the first prompt information is issued when the first brightness change rate is greater than or equal to the first threshold
  • the correction information of the image sensor is used to indicate that the image sensor needs to be corrected, and the second is issued when the first brightness change rate is less than the first threshold and the second brightness change rate is greater than or equal to the second threshold.
  • Prompt information for example, image sensor fault information, used to indicate that the image sensor is faulty, in the absence
  • the third prompt information is sent when the difference between the trapped pixel ratio B2 and the defective pixel ratio B1 is greater than or equal to the third threshold, for example, information of the cleaning image sensor for indicating that the image sensor needs to be cleaned, and the proportion of the defective pixel
  • the fourth prompt information is sent when the difference between the B2 and the defective pixel ratio B1 is less than a third threshold and the difference between the defective pixel ratio B2 and the defective pixel ratio B0 is greater than or equal to a fourth threshold, for example, image sensor abnormality information, Indicates that there is an abnormality in the image sensor.
  • the two oppositely placed image sensors are tested by using the base white area of the relative image sensor as a scanning medium, and the brightness output of the image sensor is determined by comparing the brightness of the test data with the reference data, and the ratio of the abnormal data in the test data is determined.
  • the degree of pixel defects in the image sensor and the degree of surface damage of the light-transmitting plate no need to use additional scanning medium, which not only saves the cost of additional white strips, but also automatically detects the two image sensors, and ensures the scanning quality of the scanned image.
  • the first test data and/or the second test data may also be saved.
  • FIG. 6 is a flowchart of a method for detecting an image sensor according to a second embodiment of the present invention.
  • the specific detection method is as follows: Step S20: Comparing test data and initial reference data to detect the output attenuation of the image sensor.
  • three kinds of scan data are used, which are initial reference data, historical reference data and test data respectively; the initial reference data is an explicit output generated by the image sensor after being corrected and scanned by the image sensor.
  • the image sensor's intact state refers to the condition that the surface is free from damage, no dust, the illuminator is not attenuated, and the photoreceptor is free of defects;
  • the historical reference data is the bright output generated by the image sensor after the last correction and scanning relative image sensor Data;
  • test data is the clear output data generated during the test.
  • the image sensor may have bad changes, such as the illuminator's ability to emit light, scratches or dust on the surface, defects in the photoreceptor, etc. Comparing the test data with the initial reference data, it is possible to detect the bright output attenuation of the image sensor after a period of use, determine the state of the image sensor according to the degree of attenuation of the bright output, and make a corresponding prompt.
  • Step S22 comparing the test data with the historical reference data to detect a change in uniformity of the image sensor.
  • the scanning device performs a corresponding information prompt according to the uniformity of the image sensor.
  • Step S24 performing corresponding operations according to the detection result. According to the detection results of step S20 and step S22, the operation required by the scanning device is determined.
  • step S20 and step S22 may be adjusted. In addition to the execution sequence listed in this embodiment, step S22 may be performed first, and the test data and the historical reference data are compared to detect the uniformity change of the image sensor.
  • step S20 is performed to compare the test data and the initial reference data to detect the attenuation of the image sensor, and determine the state of the image sensor according to the degree of attenuation of the bright output and make a corresponding prompt.
  • the image sensor detecting method according to the third embodiment of the present invention will be described below with reference to FIG. 7.
  • one of two oppositely mounted image sensors is taken as an example to illustrate the implementation flow of the detecting method, and another image sensor detecting method is used. It is exactly the same and will not be described here. As shown in FIG.
  • the method includes: Step S30, reading initial reference data (AO) and its luminance value (H0), historical reference data (A1), and its luminance value (H1).
  • the controller 10 reads initial reference data (AO) of the detected image sensor stored in the FLASH memory 16 and its luminance value (H0) and historical reference data (A1) and its luminance value (HI); initial reference data and
  • the brightness value is reference data for judging the attenuation of the image sensor light source, and is always stored in the FLASH memory 16. Unless the image sensor is replaced, the initial reference data and its brightness value are not modified; the historical reference data and its brightness value are judgment image sensors. Whether there are new scratches or reference data with obvious attenuation of the light source during use. This data is the last corrected test data. The data is always saved.
  • the new test data is used. And its brightness value instead of historical reference data and its brightness value.
  • the brightness value of the test data may be an average value of test data of all pixels, or may be a value obtained by processing all pixel test data according to other algorithms.
  • the relative image sensor is scanned to generate test data (A2) and its brightness value (H2). Scanning the image sensor relative to the detected image sensor, such as using the base white area of the relative image sensor as the scanning medium for scanning, generating the clear output data as test data (A2) and calculating the brightness value (H2); passing the test data
  • the brightness value is compared with the initial reference data and its luminance value, historical reference data, and its luminance value to determine the state change of the image sensor.
  • step S34 the luminance value change rate is calculated.
  • VI the test data brightness value H2 relative to the historical reference data
  • Step 36 Determine whether the first brightness value change rate VI is greater than or equal to the first threshold. If yes, go to step S46, otherwise, go to step S38. A determination is made as to whether the first brightness value change rate VI is greater than or equal to the first threshold value, and it is possible to determine whether the light source's light-emitting capability and the photoreceptor's light-sensing ability have changed since the last time the image sensor was corrected; if the first brightness value change rate VI If the first threshold is 3%, if the first threshold is 3%, the gray level change of the scanned image is obvious, then the process goes to step S46; if the first brightness value change rate VI is smaller than the first threshold, the gray scale of the scanned image is indicated.
  • step S38 it is determined whether the second brightness value change rate V2 is greater than or equal to the second threshold. If yes, step S48 is performed; otherwise, step S40 is performed.
  • the image sensor Judging whether the second brightness value change rate V2 is greater than or equal to the second threshold value, it can be determined whether the image sensor is in use, whether the light source of the light source and the photosensitive capability of the photoreceptor have undergone significant changes, thereby making the brightness value of the test data If the second brightness value change rate V2 is greater than or equal to the second threshold value, for example, the second threshold value is 30%, indicating that the gray level of the scanned image changes greatly, which has affected the normal recognition and use of the scanned image, and needs to be alarmed. If the second brightness value change rate V2 is less than the second threshold, the image sensor can continue to be used, then go to step S40; normally, the first threshold is significantly smaller than the second threshold, approximately It is about 1/10 of the second threshold.
  • step S38 may be performed to determine whether the second brightness value change rate V2 is greater than or equal to the second threshold. If yes, go to step S48. Otherwise, go to step S36 to determine whether the first brightness value change rate VI is greater than or equal to the first threshold. If yes, go to step S46, otherwise, go to step S40. In step S40, the defective pixel ratio is calculated.
  • the defective pixel ratio B0 of the initial reference data, the defective pixel ratio B1 of the history reference data, and the defective pixel ratio B2 of the test data are calculated based on the initial reference data A0, the history reference data A1, and the test data A2, the method comprising: a) determining the initial reference separately The number of defective pixels of the image sensor in the data, historical reference data, and test data are recorded as Tl, ⁇ 2, and ⁇ 3, respectively.
  • step S42 it is determined whether the difference between the defective pixel ratio B2 of the test data and the defective pixel ratio B1 of the historical reference data is greater than or equal to a third threshold.
  • the difference between the defective pixel ratio B2 of the test data and the defective pixel ratio B1 of the historical reference data is judged, that is, whether the state of the image sensor changes significantly after the last correction, for example, the sensitivity of the individual photoreceptors is significantly deteriorated.
  • Step S44 it is judged whether the difference between the defective pixel ratio B2 of the test data and the defective pixel ratio B0 of the initial reference data is greater than or equal to a fourth threshold.
  • step S42 and step S44 may be adjusted.
  • step S44 may be performed to determine the defective pixel ratio B2 of the test data and the defective pixel ratio B0 of the initial reference data. Whether the difference is greater than or equal to the fourth threshold, if yes, step S52 is performed, otherwise step S42 is performed to determine whether the difference between the defective pixel ratio B2 of the test data and the defective pixel ratio B1 of the historical reference data is greater than or equal to the third threshold, and if so, Step S50 is performed. Otherwise, it indicates that the state of the image sensor is basically unchanged since the last correction, and can be used continuously. In step S46, image sensor correction information is issued.
  • the image sensor correction information may be prompted by the prompting unit 20, and may be transmitted to the host or the like through the communication unit 18.
  • the scanning device corrects the image sensor after the image sensor correction information is issued to reduce or eliminate the image sensor change pair scanning. Effect of image quality;
  • the scanning device updates the historical reference data with new test data after correcting the image sensor.
  • image sensor failure information is issued.
  • the image sensor fault information may be prompted by the prompting unit 20, and may be transmitted to the host device or the like through the communication unit 18; the image sensor fault information indicates that the light emitting capability of the illuminator in the image sensor, the photosensitive capability of the photoreceptor is significantly decreased, or the light transmission is transparent.
  • step S50 image sensor cleaning information is issued.
  • the image sensor cleaning information indicates that the surface of the light-transmitting plate is dusty and needs to be cleaned; the information may be prompted by the prompting unit 20, or may be transmitted to the host or the like through the communication unit 18.
  • step S52 image sensor abnormality information is issued.
  • the image sensor abnormality information indicates that there are many scratches on the surface of the light-transmitting plate of the image sensor, which has obviously affected the scanning effect of the image.
  • the surface scratches affect the focus of the emitted light or the reflected light, and further measures are needed to compensate. Processing, such as compensating for pixels in the scratched area of the scanned image, or performing necessary corrections on the corrected data. It should be noted that although the logical order is shown in the flowcharts, in some cases, the steps shown or described may be performed in a different order than the ones described herein. Through the comparison between the test data and the historical reference data, it is found that the image sensor has weakening of the illuminating ability of the illuminator during the interval from the last correction to the current test, whether there is a new pixel defect point, and the light transmission Whether there are new scratches, etc.
  • the usage status of the two relatively placed graphic sensors is automatically detected, and various prompt information is sent to the scanning device, which not only saves the equipment cost of the additional test white strip and the maintenance cost of the scanning equipment. , also guarantees the quality of the scanned image.
  • the double-sided scanning device of the present invention can automatically scan the two image sensors that are relatively placed by using the base white area of the image sensor as a test medium, thereby automatically detecting the state of the image sensor, thereby achieving convenient and convenient
  • the image scanning device performs detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

本发明公开了一种双面扫描装置及其检测方法。该双面扫描装置包括:第一图像传感器,该第一图像传感器包括:第一发光器,用于发射光;第一基白区域;第一感光器阵列,第二图像传感器,该第二图像传感器包括:第二发光器,与第一基白区域相对设置,用于发射光;第二基白区域,与第一发光器相对设置;第二感光器阵列,第一存储器,用于存储基准数据;控制器,用于接收来自第一感光器阵列和/或第二感光器阵列的测试数据,并将测试数据和基准数据进行比较以对第一图像传感器和/或第二图像传感器进行检测。通过本发明,能够实现方便地对双面扫描装置进行检测。

Description

双面扫描装置及其检测方法 技术领域 本发明涉及一种双面扫描装置及其检测方法。 背景技术 随着人们处理大量信息的需求, 扫描仪得到广泛的应用, 如支票扫描、 身份信息 扫描、 纸币扫描等, 现有技术中, 扫描仪中用于获取扫描介质图像的光学器件通常有 电荷耦合图像传感器 (简称 CCD) 和接触式图像传感器 (简称 CIS) 等。 随着使用时 间的延长, 扫描仪的光学器件的光源会发生衰减, 降低了扫描图像的灰度, 而图像灰 度的下降会影响图像质量和对扫描图像的准确识别; 另外, 在使用过程中光学器件的 透光板表面残留灰尘或介质的残渣或刮痕,从而导致在扫描图像中出现暗线甚至黑条。 因此, 在扫描仪的使用过程中需要对光学器件状态进行及时检测, 出现问题时进行维 护, 以保证图像的扫描质量。 传统的单面扫描仪包括一个光学器件和与光学器件相对的白条, 利用白条可以对 光学器件进行检测。 然而, 对于两个光学器件相对设置的双面扫描仪来说, 由于没有 空间在扫描仪内部设置分别与两个光学器件相对的白条, 因此只能通过人工定期使用 校准介质对光学器件进行检测。 这种方法的缺点是操作复杂, 及时性不强。 针对相关技术中双面扫描装置的光学器件状态检测难度比较大的问题, 目前尚未 提出有效的解决方案。 发明内容 针对相关技术中双面扫描装置的光学器件状态检测难度比较大的问题而提出本发 明, 为此, 本发明的主要目的在于提供一种双面扫描装置及其检测方法, 以解决上述 问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种双面扫描装置。 该双面 扫描装置包括: 第一图像传感器, 该第一图像传感器包括: 第一发光器, 用于发射光; 第一基白区域; 第一感光器阵列, 第二图像传感器, 该第二图像传感器包括: 第二发 光器, 与第一基白区域相对设置, 用于发射光; 第二基白区域, 与第一发光器相对设 置; 第二感光器阵列, 第一存储器, 用于存储基准数据; 控制器, 用于接收来自第一 感光器阵列和 /或第二感光器阵列的测试数据, 并将测试数据和基准数据进行比较以对 第一图像传感器和 /或第二图像传感器进行检测, 其中, 第一基白区域用于将第二发光 器发射的光反射至第二感光器阵列, 第二基白区域用于将第一发光器发射的光反射至 第一感光器阵列,第一感光器阵列和 /或第二感光阵列用于根据接收到的反射光得到测 试数据。 为了实现上述目的, 根据本发明的另一方面, 提供了一种双面扫描装置的检测方 法。 该检测方法包括: 第一图像传感器经由第二图像传感器上的第二基白区域对自身 进行检测, 得到第一测试数据, 其中, 所述第二基白区域用于将所述第一图像传感器 上的第一发光器发射的光反射至所述第一图像传感器上的第一感光器阵列,和 /或第二 图像传感器经由第一图像传感器上的第一基白区域对自身进行检测, 得到第二测试数 据, 其中, 所述第一基白区域用于将所述第二图像传感器上的第二发光器发射的光反 射至所述第二图像传感器上的第二感光器阵列,将所述第一测试数据和 /或所述第二测 试数据与基准数据相比较以对所述第一图像传感器和 /或所述第二图像传感器进行检
通过本发明, 采用上述提到的双面扫描装置及其检测方法, 对于两个图像传感器
(即光学器件) 相对设置的双面扫描装置来说, 利用两个图像传感器中的一个图像传 感器的基白区域检测另一个图像传感器的状态, 从而解决了相关技术中双面扫描装置 的光学器件状态检测难度比较大的问题, 进而达到了方便高效地对双面扫描装置进行 检测的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明第一实施例的双面扫描装置的示意图; 图 2是根据本发明第二实施例的双面扫描装置的示意图; 图 3是根据本发明实施例的图像传感器的示意图; 图 4是根据本发明实施例的两个图像传感器相对安装的示意图; 图 5是根据本发明第一实施例的图像传感器检测方法流程图; 图 6是根据本发明第二实施例的图像传感器检测方法流程图; 以及 图 7是根据本发明第三实施例的图像传感器检测方法流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 1是根据本发明第一实施例的双面扫描装置的示意图。 如图 1所示, 该双面扫描装置包括: 控制器 12, 第一存储器和光学器件, 其中, 该光学器件包括第一图像传感器 40 和第二图像传感器 30, 该第一存储器可以为 FLASH存储器 16。 其中, FLASH存储器 16与控制器 12连接,用于存储图像传感器的各种测试数据, 如初始基准数据、 历史基准数据等。 第一图像传感器 40包括: 第一发光器, 用于发射光; 第一基白区域; 第一感光器 阵列。 第二图像传感器 30包括: 第二发光器, 与第一基白区域相对设置, 用于发射光; 第二基白区域, 与第一发光器相对设置; 第二感光器阵列。 第一存储器, 用于存储基准数据。 控制器 12用于接收来自第一感光器阵列和 /或第二感光器阵列的测试数据, 并将 测试数据和基准数据进行比较以对第一图像传感器和 /或第二图像传感器进行检测,其 中,控制器 12接收到来自第一感光器阵列的测试数据时,将该测试数据与相应的基准 数据进行比较以对第一图像传感器进行检测,控制器 12接收到来自第二感光器阵列的 测试数据时,将该测试数据与相应的基准数据进行比较以对第二图像传感器进行检测, 第一基白区域用于将第二发光器发射的光反射至第二感光器阵列, 第二基白区域用于 将第一发光器发射的光反射至第一感光器阵列,第一感光器阵列和 /或第二感光阵列用 于根据接收到的反射光得到测试数据。 在该实施例中, 第一图像传感器和第二图像传感器通过利用对方的基白区域作为 扫描介质进行检测, 不需要使用额外的扫描介质, 既节省了附加白条的成本, 又不需 要人工的参与, 不仅可以方便地对双面扫描装置进行检测, 而且保证了扫描图像的扫 描质量。 需要说明的是, 在本发明中, 可以仅针对第一图像传感器或第二图像传感器进行 检测, 也可以对二者均进行检测。 图 2是根据本发明第二实施例的扫描装置的示意图。 下面依图进行说明。 如图 2所示, 扫描装置包括: 控制器 12, 通信单元 18, FLASH存储器 16, RAM 存储器 14, 提示单元 20和光学器件。 其中, 控制器 12, 控制各模块动作的执行。 比如, 控制通信单元 18与主机或网 络设备(图中未示出)等之间的数据通信, 控制光学器件进行图像扫描、 状态检测等, 控制提示单元 20发出提示信息等。 光学器件包括第一图像传感器 40和第二图像传感器 30, 二者相对安装。 图像传 感器可以是 CCD, 也可以是 CIS。 扫描装置通过第一图像传感器 40扫描介质一面的 信息、第二图像传感器 30扫描介质另一面的信息, 生成的双面扫描图像信息通过通信 单元 18传送到主机或网络设备等。 图 3是根据本发明实施例的图像传感器的示意图。 图 4是根据本发明实施例的两 个图像传感器相对安装的示意图。 下面结合图 3和图 4, 以 CIS为例说明图像传感器安装方式。 如图 3所示, 第一 图像传感器 40包括: 发光器 42, 感光器阵列 41, 基白区域 43。 其中, 发光器 42通 常为沿着方向 46延伸的线光源, 该线光源可以是点光源阵列, 也可以是点光源经导光 条或导光板转换的线光源; 感光器阵列 41由多个感光器排列而成, 感光器的数量由图 像传感器的扫描像素数确定;基白区域 43,通常是由纯白的材料制成,表面光滑均匀, 其主要作用是阻挡发光器 42的光线散射, 使其从一个确定的角度发射出来, 当利用基 白区域进行光线反射时, 其作用相当于校正白条。 如图 4 所示, 第一图像传感器 40 和第二图像传感器 30相对安装; 其中,第二图像传感器 30的发光器 32与第一图像传 感器 40的基白区域 43相对, 第一图像传感器 40的发光器 42与第二图像传感器 30 的基白区域 33相对;第二图像传感器 30的发光器 32发射的发光器光线照射在第一图 像传感器 40的基白区域 43上时, 由其上的反射区域 44进行反射, 反射的光线通过第 二图像传感器 30的感光器阵列 31接收, 同样的, 第一图像传感器 40的发光器 42发 射的发光器光线由第二图像传感器 30的基白区域 33反射后, 通过第一图像传感器 40 的感光器阵列 41接收。 通信单元 18, 为控制器 12和主机或网络设备 (图中未示出) 等之间的数据交互 提供通信通路, 如接收主机发送的扫描指令, 发送扫描介质的扫描数据等。
FLASH存储器 16, 与控制器 12连接, 用于存储图像传感器的各种测试数据, 如 初始基准数据、 历史基准数据等。 例如, 把图像传感器在正常状态下、 经初始校正后、 扫描相对图像传感器基白区域生成的明输出数据作为初始基准数据, 把图像传感器经 上次校正后、 扫描相对图像传感器基白区域生成的明输出数据作为历史基准数据, 把 本次扫描相对图像传感器基白区域生成的明输出数据作为测试数据, 把测试数据与初 始基准数据进行比较, 并根据比较结果生成相应的提示信息, 例如, 如果测试数据的 亮度值相对历史基准数据的亮度值衰减幅度大于或等于第一阈值, 则需要对图像传感 器进行重新校正, 其他的情况将在以下实施例中进行详细描述; 把测试数据与历史基 准数据进行比较, 并根据比较结果生成相应的提示信息, 例如, 如果测试数据中新增 变劣像素点占扫描像素点的比例超过第三阈值, 则需要对图像传感器进行维护, 其他 的情况将在以下实施例中进行详细描述。
RAM存储器 14, 临时存储通过通信单元 18接收的各种扫描指令、 扫描装置的扫 描图像数据及第一图像传感器、 第二图像传感器的测试数据等。 提示单元 20, 对扫描装置在图像传感器检测过程中生成的各种提示信息进行指 示, 提示单元可以是显示设备, 如 LED (发光二极管) 或 LCD (液晶显示器), 也可 以是声音提示设备, 如蜂鸣器、 喇叭等, 也可以是显示设备和声音提示设备的组合, 如液晶显示设备和蜂鸣器的组合等。 图 5是根据本发明第一实施例的图像传感器检测方法流程图。 如图 5所示, 该方法包括以下步骤: 步骤 S10, 第一图像传感器经由第二图像传感器上的第二基白区域对自身状态进 行检测, 得到第一测试数据, 其中, 第二基白区域用于将第一图像传感器上的第一发 光器发射的光反射至第一图像传感器上的第一感光器阵列。 步骤 S12, 第二图像传感器经由第一图像传感器上的第一基白区域对自身状态进 行检测, 得到第二测试数据, 其中, 第一基白区域用于将第二图像传感器上的第二发 光器发射的光反射至第二图像传感器上的第二感光器阵列, 步骤 S16, 将第一测试数据和 /或第二测试数据与相应的基准数据相比较以对第一 图像传感器和 /或第二图像传感器进行检测。 将第一测试数据与相应的基准数据比较以对第一图像传感器进行检测,和 /或将第 二测试数据与相应的基准数据比较以对第二图像传感器进行检测。 该处的基准数据可以包括: 初始基准数据和历史基准数据, 其中, 该初始基准数 据为第一图像传感器或者第二图像传感器在初始状态下的测试数据, 该历史基准数据 为第一图像传感器或者第二图像传感器在上一次检测时得到的测试数据。 在基准数据 为初始基准数据时, 通过将第一测试数据与第一图像传感器在初始状态下的测试数据 进行比较对第一图像传感器进行检测, 通过将第二测试数据与第二图像传感器在初始 状态下的测试数据进行比较对第二图像传感器进行检测; 在基准数据为历史基准数据 时, 通过将第一测试数据与第一图像传感器在上一次检测时得到的测试数据进行比较 对第一图像传感器进行检测, 通过将第二测试数据与第二图像传感器在上一次检测时 得到的测试数据进行比较对第二图像传感器进行检测。 在得到测试数据 (第一测试数据和 /或第二测试数据)之后, 该检测方法还可以包 括, 计算被检测的图像传感器的初始基准数据的亮度值 H0、 历史基准数据的亮度值 Hl、 测试数据的亮度值 H2, 并计算所述 H2相对于所述 HI的变化率, 得到第一亮度 变化率, 计算所述 H2相对于所述 H0的变化率, 得到第二亮度变化率; 计算被检测的 图像检测传感器的初始基准数据的缺陷像素比例 B0、 历史基准数据的缺陷像素比例 Bl、测试数据的缺陷像素比例 B2;在所述第一亮度变化率大于等于第一阈值时发出第 一提示信息, 例如, 图像传感器的校正信息, 用于指示需要对图像传感器进行校正, 在所述第一亮度变化率小于所述第一阈值并且所述第二亮度变化率大于等于第二阈值 时发出第二提示信息, 例如, 图像传感器的故障信息, 用于指示图像传感器存在故障, 在所述缺陷像素比例 B2与所述缺陷像素比例 B1之差大于等于第三阈值时发出第三提 示信息, 例如, 清洁图像传感器的信息, 用于指示需要对图像传感器进行清洁, 以及 在所述缺陷像素比例 B2与所述缺陷像素比例 B1之差小于第三阈值并且所述缺陷像素 比例 B2与所述缺陷像素比例 B0之差大于等于第四阈值时发出第四提示信息, 例如, 图像传感器异常信息, 用于指示图像传感器存在异常。 通过使用相对图像传感器的基白区域作为扫描介质对两个相对放置的图像传感器 进行测试, 通过测试数据与基准数据的亮度值对比确定图像传感器的明输出衰减, 通 过测试数据中异常数据的比例判定图像传感器中像素缺陷程度和透光板表面损伤程 度; 不需要使用额外的扫描介质, 既节省了附加白条的成本, 又能自动完成对两个图 像传感器的检测, 保证了扫描图像的扫描质量。 在获得第一测试数据和 /或第二测试数据之后,还可以对第一测试数据和 /或第二测 试数据进行保存。 需要说明的是, 上述步骤 S10和步骤 S12的顺序是可变的, 而且该方法也可以仅 包括步骤 S10或步骤 S12, 此时, 仅需要对将第一测试数据或第二测试数据与相应的 基准数据相比较以对第一图像传感器或第二图像传感器进行检测。 图 6为本发明第二实施例的图像传感器检测方法流程图, 具体的检测方法如下: 步骤 S20, 比较测试数据和初始基准数据检测图像传感器的明输出衰减。 在图像传感器的检测过程中, 使用三种扫描数据, 分别是初始基准数据、 历史基 准数据及测试数据; 初始基准数据是图像传感器在完好状态下并且通过校正后, 扫描 相对图像传感器生成的明输出数据; 图像传感器的完好状态是指其表面没有损伤、 没 有灰尘, 发光器未发生衰减, 感光器无缺陷的情况; 历史基准数据是图像传感器在上 次校正后、 扫描相对图像传感器生成的明输出数据; 测试数据是本次进行测试时生成 的明输出数据, 此时图像传感器可能会出现不良的变化, 如发光器发光能力衰减, 表 面有擦痕或粘有灰尘、 感光器出现缺陷等; 通过对测试数据和初始基准数据的比较, 能够检测图像传感器在使用一段时间后的明输出衰减, 根据明输出的衰减程度确定图 像传感器的状态并进行相应的提示。 步骤 S22, 比较测试数据和历史基准数据检测图像传感器的均匀性变化。 对测试数据与历史基准数据的每个像素点数据进行处理, 可以确定自上次校正到 本次测试之间图像传感器的均匀性变化, 主要指感光器阵列是否发生新的缺陷等、 表 面是否有新的擦痕等; 扫描装置根据图像传感器的均匀性变化,进行相应的信息提示。 步骤 S24, 根据检测结果进行相应的操作。 根据步骤 S20和步骤 S22的检测结果, 确定扫描装置需要进行的操作, 如当图像 传感器的明输出衰减超过一定阈值后, 将提示扫描装置需要进行校正操作, 以消除明 输出衰减对扫描图像的影响; 当感光器阵列有新的缺陷时, 提示扫描装置需要进行图 像传感器校正; 当表面粘有灰尘时时, 提示扫描装置需要清洁图像传感器等。 需要说 明的是,步骤 S20和步骤 S22的执行顺序可以调整,除了本实施例列出的执行顺序外, 还可以先执行步骤 S22, 比较测试数据和历史基准数据检测图像传感器的均匀性变化, 根据图像传感器的均匀性变化进行相应的信息提示, 再执行步骤 S20, 比较测试数据 和初始基准数据检测图像传感器的明输出衰减, 根据明输出的衰减程度确定图像传感 器的状态并进行相应的提示。 下面以图 7来说明本发明第三实施例的图像传感器检测方法, 图中以两个相对安 装的图像传感器中的一个为例来说明检测方法的实施流程, 另一图像传感器的检测方 法与此完全相同, 此处不再赘述。 如图 7所示, 该方法包括: 步骤 S30, 读取初始基准数据 (AO) 及其亮度值 (H0)、 历史基准数据 (A1 ) 及 其亮度值 (Hl )。 控制器 10读取存储在 FLASH存储器 16中的被检测图像传感器的初始基准数据 (AO)及其亮度值 (H0)和历史基准数据 (A1 )及其亮度值 (HI ); 初始基准数据及 其亮度值是判断图像传感器光源衰减的参考数据,其一直保存在 FLASH存储器 16中, 除非更换图像传感器, 否则初始基准数据及其亮度值不会进行修改; 历史基准数据及 其亮度值是判断图像传感器在使用过程中是否出现新的刮痕、 或光源出现明显衰减的 参考数据, 该数据为上一次校正后的测试数据, 该数据一直保存, 只有在图像传感器 再次校正后, 才由新的测试数据及其亮度值来替代历史基准数据及其亮度值。 测试数 据的亮度值可以为所有像素的测试数据的平均值, 也可以为按照其他算法对所有像素 测试数据进行处理后得到的数值。 步骤 S32, 对相对图像传感器进行扫描, 生成测试数据 (A2)及其亮度值 (H2)。 对与被检测图像传感器相对图像传感器进行扫描, 如利用相对图像传感器的基白 区域作为扫描介质进行扫描, 生成的明输出数据为测试数据 (A2) 并计算其亮度值 (H2); 通过测试数据及其亮度值与初始基准数据及其亮度值、 历史基准数据及其亮 度值的比较, 判断图像传感器的状态变化。 步骤 S34, 计算亮度值变化率。 根据初始基准数据亮度值 H0、 历史基准数据亮度值 HI和测试数据亮度值 H2计 算第一亮度值变化率 VI、 第二亮度值变化率 V2, 其中, VI为测试数据亮度值 H2相 对历史基准数据亮度值 HI 的变化率 (以下简称第一亮度变化率), 计算公式为: V1=(H1-H2)/H1*100%; V2为测试数据亮度值 H2相对初始基准数据亮度值 H0的变化 率 (以下简称第二亮度变化率), 计算公式为: V2=(H0-H2)/H0*100%。 步骤 36, 判断第一亮度值变化率 VI是否大于等于第一阈值, 如果是, 执行步骤 S46, 否则, 执行步骤 S38。 对第一亮度值变化率 VI 是否大于等于第一阈值进行判断, 能够确定图像传感器 自上次校正后, 其光源的发光能力、 感光器的感光能力是否发生变化; 如果第一亮度 值变化率 VI大于等于第一阈值,如第一阈值为 3%,则说明扫描图像的灰度变化明显, 则转到步骤 S46; 如果第一亮度值变化率 VI小于第一阈值,则说明扫描图像的灰度未 明显变化, 转到步骤 S38进行下一步的处理; 第一阈值的具体数值, 可以根据图像传 感器的类型来确定, 也可以根据要扫描图像的灰度特性, 对第一阈值进行修改。 步骤 S38, 判断第二亮度值变化率 V2是否大于等于第二阈值, 如果是, 执行步骤 S48, 否则, 执行步骤 S40。 对第二亮度值变化率 V2是否大于等于第二阈值进行判断, 能够确定图像传感器 在使用过程, 其光源的发光能力、 感光器的感光能力是否发生了显著的变化, 从而使 测试数据的亮度值差别很大; 如果第二亮度值变化率 V2大于等于第二阈值, 如第二 阈值为 30%,说明扫描图像的灰度变化很大, 已经影响到扫描图像的正常识别和使用, 需要进行报警提示,进一步处理转到步骤 S48; 如果第二亮度值变化率 V2小于第二阈 值, 说明图像传感器还可以继续使用, 则转到步骤 S40; 通常情况下, 第一阈值明显 小于第二阈值, 大约是第二阈值的 1/10左右。 需要说明的是, 步骤 S36和步骤 S38的执行的先后顺序可以调整, 除了本实施例 列举的执行顺序外,还可以先执行步骤 S38,判断第二亮度值变化率 V2是否大于等于 第二阈值, 如果是, 执行步骤 S48, 否则, 执行步骤 S36, 判断第一亮度值变化率 VI 是否大于等于第一阈值, 如果是, 执行步骤 S46, 否则, 执行步骤 S40。 步骤 S40, 计算缺陷像素比例。 根据初始基准数据 A0、 历史基准数据 A1和测试数据 A2计算初始基准数据的缺 陷像素比例 B0、历史基准数据的缺陷像素比例 B1和测试数据的缺陷像素比例 B2, 方 法包括: a)分别确定初始基准数据、 历史基准数据和测试数据中图像传感器的缺陷像 素数, 分别记做 Tl、 Τ2和 Τ3。 确定像素点是否有缺陷的方法为: 像素点的扫描数据 相对于所有像素点扫描数据的平均值的变化率, 高于第一设定值或低于第二设定值, 则该像素为缺陷像素; 不同型号的图像传感器、 不同厂家生产的图像传感器, 判断缺 陷像素的设定值可能略有不同; b) 根据计算公式为 Bx= (Tx/总测试像素) *100%, χ=0、 1、 2, 分别计算初始基准数据的缺陷像素比例 Β0、 历史基准数据的缺陷像素比 例 B1及测试数据的缺陷像素比例 Β2, 正常情况下, BO < Bl < Β2, Β0接近或等于零。 步骤 S42, 判断测试数据的缺陷像素比例 B2与历史基准数据的缺陷像素比例 B1 之差是否大于等于第三阈值。 对测试数据的缺陷像素比例 B2与历史基准数据的缺陷像素比例 B1 之差进行判 断, 即判断从上次校正后, 图像传感器的状况是否发生明显的变化, 如个别感光器的 感光能力明显变差、 透光板是否出现新的擦痕或粘有灰尘等; 如果该差值大于等于第 三阈值, 如第三阈值等于 1%, 说明新增加了 1%的缺陷像素, 则转到步骤 S50; 如果 差值小于第三阈值, 则转到步骤 S44, 进行下一步判断。 步骤 S44, 判断测试数据的缺陷像素比例 B2与初始基准数据的缺陷像素比例 B0 之差是否大于等于第四阈值。 对测试数据的缺陷像素比例 B2与初始基准数据的缺陷像素比例 B0之差进行判 断, 即从图像传感器使用开始, 其状况是否明显变劣, 如部分感光器发生缺陷、 透光 板多处出现擦痕等; 如果该差值大于等于第四阈值, 如第四阈值等于 10%, 则说明图 像传感器共有 10%左右的像素出现缺陷, 已经影响到扫描装置的正常扫描, 转到步骤 S52 进行下一步处理; 否则, 说明自上次校正后, 图像传感器的状况基本不变, 可以 继续使用。 需要说明的是, 步骤 S42和步骤 S44的执行顺序可以调整, 除了本实施例列举的 执行顺序外,还可以先执行步骤 S44,判断测试数据的缺陷像素比例 B2与初始基准数 据的缺陷像素比例 B0之差是否大于等于第四阈值, 如果是, 执行步骤 S52, 否则执行 步骤 S42, 判断测试数据的缺陷像素比例 B2与历史基准数据的缺陷像素比例 B1之差 是否大于等于第三阈值, 如果是, 执行步骤 S50, 否则, 说明自上次校正后, 图像传 感器的状况基本不变, 可以继续使用。 步骤 S46, 发出图像传感器校正信息。 图像传感器校正信息, 可以通过提示单元 20进行提示, 可以通过通信单元 18传 送到主机等设备; 扫描装置在发出图像传感器校正信息后, 对图像传感器进行校正, 以减小或消除图像传感器变化对扫描图像质量的影响; 扫描装置在对图像传感器校正 后, 用新的测试数据对历史基准数据进行更新。 步骤 S48, 发出图像传感器故障信息。 图像传感器故障信息, 可以通过提示单元 20进行提示, 可以通过通信单元 18传 送到主机等设备; 图像传感器故障信息, 表示图像传感器中发光器的发光能力、 感光 器的感光能力明显下降, 或者透光板大面积擦伤, 导致扫描图像的灰度明显下降、 扫 描图像模糊等, 即图像传感器处于其使用寿命的后期, 此时需要人工参入, 确认其能 否继续使用。 步骤 S50, 发出图像传感器清洁信息。 图像传感器清洁信息, 表示其透光板表面附有灰尘, 需要进行清理; 该信息可以 通过提示单元 20进行信息提示, 也可以通过通信单元 18传送到主机等设备。 步骤 S52, 发出图像传感器异常信息。 图像传感器异常信息, 表示图像传感器的透光板表面有多处擦伤, 已经明显地影 响到图像的扫描效果, 如表面擦伤处影响了发射光线或反射光线的聚焦, 需要采取进 一步措施进行补偿处理, 如对扫描图像中擦伤处的像素进行补偿, 或对校正数据进行 必要的修正等处理。 需要说明的是, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可以以不 同于此处的顺序执行所示出或描述的步骤。 通过测试数据与历史基准数据的比较,发现从上次校正到本次测试的间隔时间内, 图像传感器在使用过程中是否出现发光器发光能力变弱现象、 是否出现新的像素缺陷 点、 透光板表面是否有新的擦痕等; 通过测试数据与初始基准数据的比较, 发现从图 像传感器开始使用一直到当前为止, 其明输出衰减是否已经超过图像扫描可接受的程 度、 其透光板表面是否多处划伤、 是否有比较多的像素点出现缺陷等。 通过把相对传 感器的基白区域作为扫描介质进行测试, 自动检测两个相对放置图形传感器的使用状 况, 向扫描装置发出各种提示信息, 不仅节省了附加测试白条的设备成本及扫描设备 的维护成本, 还保证了扫图像描的质量。 本发明的双面扫描装置, 可以通过使用相对图像传感器的基白区域作为测试介质 使相对放置的两个图像传感器相互扫描、 检测, 从而能够对图像传感器状态进行自动 检测, 进而实现了方便地对图像扫描装置进行检测。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种双面扫描装置, 其特征在于, 包括:
第一图像传感器, 包括:
第一发光器, 用于发射光;
第一基白区域; 以及
第一感光器阵列,
第二图像传感器, 包括:
第二发光器, 与所述第一基白区域相对设置, 用于发射光; 第二基白区域, 与所述第一发光器相对设置; 以及 第二感光器阵列,
第一存储器, 用于存储基准数据; 以及
控制器,用于接收来自所述第一感光器阵列和 /或所述第二感光器阵列的测 试数据, 并将所述测试数据和所述基准数据进行比较以对所述第一图像传感器 和 /或所述第二图像传感器进行检测,
其中, 所述第一基白区域用于将所述第二发光器发射的光反射至所述第二 感光器阵列, 所述第二基白区域用于将所述第一发光器发射的光反射至所述第 一感光器阵列,所述第一感光器阵列和 /或所述第二感光阵列用于根据接收到的 反射光得到所述测试数据。
2. 根据权利要求 1所述的双面扫描装置, 其特征在于, 还包括第二存储器, 用于 存储所述测试数据。
3. 根据权利要求 1所述的双面扫描装置, 其特征在于, 还包括:
提示机构, 用于在所述控制器对所述测试数据和所述基准数据进行比较之 后, 根据比较结果进行提示。
4. 根据权利要求 3所述的双面扫描装置, 其特征在于, 所述基准数据包括: 初始基准数据, 其中, 该初始基准数据为所述第一图像传感器或所述第二 图像传感器在初始状态下的测试数据; 以及 历史基准数据, 其中, 该历史基准数据为所述第一图像传感器或所述第二 图像传感器在上一次检测时得到的测试数据。
5. 根据权利要求 4所述的双面扫描装置, 其特征在于:
所述控制器还用于通过对所述测试数据和所述初始基准数据进行比较检测 所述第一图像传感器和 /或所述第二图像传感器的明输出衰减, 以及通过对所述 测试数据和所述历史基准数据进行比较检测所述第一图像传感器和 /或所述第 二图像传感器的均匀性变化;
所述提示机构还用于根据所述明输出衰减的程度和 /或所述均匀性变化进 行相应的提示。
6. 根据权利要求 5所述的双面扫描装置, 其特征在于:
所述控制器还用于计算所述初始基准数据的亮度值 H0、所述历史基准数据 的亮度值 Hl、 所述测试数据的亮度值 H2、 所述初始基准数据的缺陷像素比例 B0、所述历史基准数据的缺陷像素比例 Bl、所述测试数据的缺陷像素比例 B2, 并计算所述 H2相对于所述 HI的变化率, 得到第一亮度变化率, 计算所述 H2 相对于所述 H0的变化率, 得到第二亮度变化率;
所述提示机构还用于在所述第一亮度变化率大于等于第一阈值时发出图像 传感器校正信息, 在所述第一亮度变化率小于所述第一阈值并且所述第二亮度 变化率大于等于第二阈值时发出图像传感器故障信息,在所述缺陷像素比例 B2 与所述缺陷像素比例 B1 之差大于等于第三阈值时发出清洁图像传感器信息, 以及在所述缺陷像素比例 B2与所述缺陷像素比例 B1之差小于第三阈值并且所 述缺陷像素比例 B2与所述缺陷像素比例 B0之差大于等于第四阈值时发出图像 传感器异常信息。
7. 一种双面扫描装置的检测方法, 其特征在于, 包括:
第一图像传感器经由第二图像传感器上的第二基白区域对自身进行检测, 得到第一测试数据, 其中, 所述第二基白区域用于将所述第一图像传感器上的 第一发光器发射的光反射至所述第一图像传感器上的第一感光器阵列, 和 /或, 第二图像传感器经由第一图像传感器上的第一基白区域对自身进行检测, 得到 第二测试数据, 其中, 所述第一基白区域用于将所述第二图像传感器上的第二 发光器发射的光反射至所述第二图像传感器上的第二感光器阵列; 以及
将所述第一测试数据和 /或所述第二测试数据与相应的基准数据相比较以 对所述第一图像传感器和 /或所述第二图像传感器进行检测。
8. 根据权利要求 7所述的检测方法, 其特征在于, 所述基准数据包括: 初始基准数据, 其中, 该初始基准数据为所述第一图像传感器或所述第二 图像传感器在初始状态下的测试数据; 以及
历史基准数据, 其中, 该历史基准数据为所述第一图像传感器或所述第二 图像传感器在上一次检测时得到的测试数据。
9. 根据权利要求 8所述的检测方法, 其特征在于, 所述方法还包括:
通过对所述测试数据和所述初始基准数据进行比较检测所述第一图像传感 器和 /或所述第二图像传感器的明输出衰减;
通过对所述测试数据和所述历史基准数据进行比较检测所述第一图像传感 器和 /或所述第二图像传感器的均匀性变化; 以及
根据所述明输出衰减的程度和 /或所述均匀性变化进行相应的提示。
10. 根据权利要求 9所述的检测方法, 其特征在于, 通过对所述测试数据和所述初始基准数据进行比较检测所述第一图像传感 器和 /或所述第二图像传感器的明输出衰减包括:
计算所述初始基准数据的亮度值 H0、所述历史基准数据的亮度值 HI、 所述测试数据的亮度值 H2, 并计算所述 H2相对于所述 HI的变化率, 得 到第一亮度变化率,计算所述 H2相对于所述 H0的变化率,得到第二亮度 变化率,
通过对所述测试数据和所述历史基准数据进行比较检测所述第一图像传感 器和 /或所述第二图像传感器的均匀性变化包括:
计算所述初始基准数据的缺陷像素比例 B0、所述历史基准数据的缺陷 像素比例 Bl、 所述测试数据的缺陷像素比例 B2,
根据所述明输出衰减的程度和 /或所述均匀性变化进行相应的提示包括: 在所述第一亮度变化率大于等于第一阈值时发出第一提示信息, 在所 述第一亮度变化率小于所述第一阈值并且所述第二亮度变化率大于等于第 二阈值时发出第二提示信息, 在所述缺陷像素比例 B2与所述缺陷像素比 例 B1 之差大于等于第三阈值时发出第三提示信息, 以及在所述缺陷像素 比例 B2与所述缺陷像素比例 B1之差小于第三阈值并且所述缺陷像素比例 B2与所述缺陷像素比例 B0之差大于等于第四阈值时发出第四提示信息。
11. 根据权利要求 10所述的检测方法, 其特征在于, 所述第一提示信息为图像传感器的校正信息;
所述第二提示信息为图像传感器的故障信息;
所述第三提示信息为清洁图像传感器信息; 以及
所述第四提示信息为图像传感器异常信息。
12. 根据权利要求 7 所述的检测方法, 其特征在于, 在得到所述第一测试数据和 / 或所述第二测试数据之后, 所述方法还包括:
对所述第一测试数据和所述第二测试数据进行保存。
PCT/CN2011/080182 2010-09-28 2011-09-26 双面扫描装置及其检测方法 WO2012041209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010294373.6 2010-09-28
CN2010102943736A CN102420929A (zh) 2010-09-28 2010-09-28 双面扫描装置及其检测方法

Publications (1)

Publication Number Publication Date
WO2012041209A1 true WO2012041209A1 (zh) 2012-04-05

Family

ID=45891949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080182 WO2012041209A1 (zh) 2010-09-28 2011-09-26 双面扫描装置及其检测方法

Country Status (2)

Country Link
CN (1) CN102420929A (zh)
WO (1) WO2012041209A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885070B (zh) * 2022-07-11 2022-09-16 北京高德品创科技有限公司 一种扫描起始位置的定位方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477848A (zh) * 2002-08-23 2004-02-25 力捷电脑股份有限公司 产生校正曲线的方法
US20050134923A1 (en) * 2003-12-08 2005-06-23 Samsung Electronics Co., Ltd. Image scanning apparatus and method
CN201063697Y (zh) * 2007-07-10 2008-05-21 崴强科技股份有限公司 光学扫描装置
CN201585032U (zh) * 2009-12-31 2010-09-15 虹光精密工业(苏州)有限公司 小型化馈纸式双面扫描仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477848A (zh) * 2002-08-23 2004-02-25 力捷电脑股份有限公司 产生校正曲线的方法
US20050134923A1 (en) * 2003-12-08 2005-06-23 Samsung Electronics Co., Ltd. Image scanning apparatus and method
CN201063697Y (zh) * 2007-07-10 2008-05-21 崴强科技股份有限公司 光学扫描装置
CN201585032U (zh) * 2009-12-31 2010-09-15 虹光精密工业(苏州)有限公司 小型化馈纸式双面扫描仪

Also Published As

Publication number Publication date
CN102420929A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
US7558437B2 (en) Method and apparatus for image processing
US7884975B2 (en) Apparatus, method and program product for reading image
US7817317B2 (en) Image reading apparatus and shading correction data generating method
US5495329A (en) Adaptive lamp control
KR20080006476A (ko) 프로젝션 이전에 이미지를 자동적으로 변경하기 위한시스템 및 방법
KR101849411B1 (ko) 기판 검사 장치, 기판 검사 방법 및 기억 매체
JP7117866B2 (ja) 画像読取装置および画像読取装置の制御方法
CN102037394B (zh) 玻璃波纹检测装置
CN108737678A (zh) 图像读取装置、压板开闭检测方法、以及图像形成装置
WO2012041209A1 (zh) 双面扫描装置及其检测方法
US11209371B2 (en) Optical detecting device and calibrating method
US20100110503A1 (en) System and method for adjusting light sources in measurement of a surface image
KR100773584B1 (ko) 영상을 이용한 조명 제어 방법
KR20040000004A (ko) 백 라이트 유닛 검사 장치
JP2013030842A (ja) 画像読取装置
JP2007189429A (ja) 異常診断装置
US7463390B2 (en) Information reading apparatus, method and system for processing image, program, and recording medium
JP2010107730A (ja) 画像形成装置
JP2021083021A (ja) 画像読取装置
JPH11289432A (ja) デジタル画像読取装置
JP7208027B2 (ja) 画像読取装置
KR20180043643A (ko) 수명 연장형 해상력 검사 장치
JP4627905B2 (ja) 画像読み取り装置
JP2002318343A (ja) 焦点レベル検出機構および焦点調整方法
JP2020115621A (ja) 画像読取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828105

Country of ref document: EP

Kind code of ref document: A1