WO2012039345A1 - 液晶表示装置、および、ディスプレイ装置 - Google Patents

液晶表示装置、および、ディスプレイ装置 Download PDF

Info

Publication number
WO2012039345A1
WO2012039345A1 PCT/JP2011/071134 JP2011071134W WO2012039345A1 WO 2012039345 A1 WO2012039345 A1 WO 2012039345A1 JP 2011071134 W JP2011071134 W JP 2011071134W WO 2012039345 A1 WO2012039345 A1 WO 2012039345A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
liquid crystal
bus line
display device
boundary
Prior art date
Application number
PCT/JP2011/071134
Other languages
English (en)
French (fr)
Inventor
昇平 勝田
豪 鎌田
誠二 大橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/823,146 priority Critical patent/US9013388B2/en
Publication of WO2012039345A1 publication Critical patent/WO2012039345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value

Definitions

  • the present invention relates to a liquid crystal display device that displays an image using liquid crystal.
  • the present invention relates to a liquid crystal display device that displays an image in a stereoscopic manner using the Patterned-Retarder method.
  • the present invention also relates to a display device including such a liquid crystal display device.
  • an active shutter system As a technique for displaying a stereoscopic image, an active shutter system, a naked-eye lenticular system, a Patterned-Retarder system (also called a polarization system or a PR system), and the like are known. In either method, the right-eye image is presented only to the user's right eye, and the left-eye image is presented only to the user's left eye, so that the user can visually recognize the image in three dimensions.
  • a left-eye frame (L frame) and a right-eye frame (R frame) are alternately displayed.
  • the user observes an image displayed on the liquid crystal display device through 3D glasses having a left-eye lens and a right-eye lens that perform a shutter operation in synchronization with switching between the L frame and the R frame. By doing so, the image can be visually recognized in three dimensions.
  • a liquid crystal display device using a naked-eye lenticular system individually presents a left-eye image and a right-eye image to the user's left eye and right eye via a lenticular lens formed on the front side of the liquid crystal panel. Thereby, the user can visually recognize the image stereoscopically without using the 3D glasses.
  • a right-eye image is displayed by pixels defined by odd-numbered horizontal scanning lines
  • a left-eye image is displayed by images defined by even-numbered horizontal scanning lines.
  • FIG. 19A is an exploded perspective view showing the backlight unit 50, the liquid crystal panel 60, and the Patterned Retarder 70 included in the conventional liquid crystal display device using the Patterned Retarder method.
  • the backlight unit 50 supplies backlight to the liquid crystal panel 60 from the back surface of the liquid crystal panel 60.
  • the liquid crystal panel 60 includes horizontal scanning lines (horizontal scanning lines) HL1 to HLN (N is the total number of horizontal scanning lines) and vertical scanning lines (vertical scanning lines) VL1 to VLM (M is the total number of vertical scanning lines). ) Are defined by each of the above.
  • the liquid crystal panel 60 can control the transmittance of the backlight for each pixel by controlling the orientation of the liquid crystal included in each pixel.
  • the liquid crystal panel 60 displays an image for the right eye with pixels defined by odd-numbered horizontal scanning lines HL1, HL3,..., And is defined by pixels defined by even-numbered horizontal scanning lines HL2, HL4,. , Display the image for the left eye.
  • the Patterned Retarder 70 is a retardation plate whose longitudinal direction is the horizontal scanning line direction, and is composed of two types of retardation plates RR and RL having different characteristics.
  • the phase difference plate RR converts linearly polarized light to rightward circularly polarized light
  • the phase difference plate RL converts linearly polarized light to leftward circularly polarized light.
  • a phase difference plate RR is arranged on the front side of pixels defined by odd-numbered horizontal scanning lines HL1, HL3,..., And even-numbered horizontal scanning lines HL2, HL4.
  • a phase difference plate RL is arranged on the front side of the pixel defined by.
  • the image for the right eye displayed by the pixels defined by the odd-numbered horizontal scanning lines is represented by the light circularly polarized to the right after passing through the Patterned Retarder, and is defined by the even-numbered horizontal scanning lines.
  • the image for the left eye displayed by is represented by light that is circularly polarized leftward after passing through the Patterned Retarder.
  • FIG. 19 (b) shows 3D glasses 80 used in the Patterned-Retarder system.
  • the 3D glasses 80 include a right-eye lens and a left-eye lens.
  • the right-eye lens transmits only the light circularly polarized rightward
  • the left-eye lens transmits only the light circularly polarized leftward. Therefore, by using the 3D glasses 80, the user observes the right-eye image displayed by the pixels defined by the odd-numbered horizontal scanning lines among the images displayed by the liquid crystal display device only by the right eye.
  • the left-eye image displayed by the pixels defined by the even-numbered horizontal scanning lines can be observed only by the left eye. Thereby, the user can visually recognize the image three-dimensionally.
  • the Patterned-Retarder type liquid crystal display device can also display a 2D image using both pixels defined by odd-numbered horizontal scanning lines and pixels defined by even-numbered horizontal scanning lines. . In this case, the user may observe the image displayed by the liquid crystal display device without using the 3D glasses.
  • the 3D glasses 80 used in the Patterned Retarder system do not require electrical control like the 3D glasses used in the active shutter system, and can be realized with a simple configuration.
  • crosstalk refers to a right eye displayed by pixels defined by odd-numbered horizontal scanning lines when the user observes the liquid crystal panel from an oblique upper side or from the oblique lower side.
  • a part of the image for observation is observed after passing through the left-eye phase difference plate arranged on the front side of the pixels defined by the even-numbered horizontal scanning lines, and is displayed by the pixels defined by the even-numbered horizontal scanning lines.
  • the left-eye image is observed after being transmitted through the right-eye retardation plate disposed on the front side of the pixel defined by the odd-numbered horizontal scanning lines, and thus by left-circularly polarized light.
  • This is a phenomenon in which the right-eye image is mixed in the left-eye image represented, and the left-eye image is mixed in the right-eye image represented by the light circularly polarized in the right direction.
  • FIG. 20 is a cross-sectional view along the vertical scanning line direction (longitudinal direction) of the backlight unit 50, the liquid crystal panel 60, and the Patterned Retarder 70 included in the conventional liquid crystal display device, and is defined by the nth horizontal scanning line.
  • FIG. 6 is a diagram illustrating a configuration around a pixel defined by the pixel and a pixel defined by an (n + 1) th horizontal scanning line.
  • FIG. 20 shows a liquid crystal panel 60 configured to suppress crosstalk by a black matrix and black stripes, and a Patterned Retarder 70.
  • a backlight unit 50 is disposed on the back side of the liquid crystal panel 60 (left side in FIG. 20), and on the front side of the liquid crystal panel 60 (right side in FIG. 20). Is arranged.
  • the liquid crystal panel 60 includes a first polarizing plate 60a, a TFT-Glass 60b, a TFT substrate 60c, a color filter 60d, a CF-Glass 60e, and a second polarizing plate 60f.
  • a black matrix BM is formed between the pixel Pn defined by the nth horizontal scanning line and the pixel Pn + 1 defined by the (n + 1) th horizontal scanning line. ing. Further, on the front side of the black matrix BM, a black matrix BM ′ is formed in the color filter 60 d, and a black stripe BS is formed in the Patterned Retarder 70.
  • such black matrix and black stripe cause crosstalk when the angle formed between the normal direction and the line-of-sight direction of the liquid crystal panel 60 is within ⁇ degrees in the vertical scanning line direction. Can be suppressed.
  • Non-Patent Document 1 discloses a technique for suppressing crosstalk without using black stripes by dividing each pixel into two subpixels (an upper subpixel and a lower subpixel) in the vertical scanning line direction. Proposed.
  • a display image data voltage is supplied to both subpixels.
  • a display image data voltage is applied only to the upper subpixel.
  • the black sub-pixel is supplied with a data voltage for black display.
  • the lower subpixel to which the data voltage for black display is supplied functions as a black matrix.
  • Non-Patent Document 1 the brightness of the image does not decrease when a 2D image is displayed. Further, when displaying a 3D image, the occurrence of crosstalk can be suppressed by the black matrix.
  • Non-Patent Document 1 when displaying a 3D image, it is necessary to supply different data voltages to the upper subpixel and the lower subpixel. In comparison with the configuration displaying only the image data, twice as many data lines (data bus lines and source bus lines) are required, and the design of the liquid crystal panel is complicated.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a liquid crystal display device capable of suppressing the occurrence of crosstalk without increasing the number of data bus lines. .
  • a liquid crystal display device is a liquid crystal display device capable of displaying in a first display mode and a second display mode, and has N rows and M columns (N and M are A plurality of pixels arranged in a (natural number) matrix, an auxiliary bus line, a gate bus line arranged in each row, a data bus line arranged in each column, and the nth row of the plurality of pixels.
  • n and m are natural numbers satisfying 1 ⁇ n ⁇ N and 1 ⁇ m ⁇ M, respectively
  • a liquid crystal layer A sub-pixel electrode facing the counter electrode via the input electrode, an input transistor arranged for each sub-pixel, connected to the drain electrode connected to the sub-pixel electrode, and to the mth column data bus line Source electrode and gate bus line of the nth row
  • a liquid crystal panel having a gate electrode connected to the first optical plate, a first optical plate that generates outgoing light in a first polarization state from incident light, and the first polarization state from incident light
  • a second optical plate that generates outgoing light in a second polarization state different from that of the liquid crystal panel, and an optical panel formed at a position corresponding to an odd-numbered row and an even-numbered row of the liquid crystal panel, respectively.
  • a boundary vicinity sub-pixel that is a sub-pixel closest to the boundary between the first optical plate and the second optical plate is: A drain electrode electrically connected to a subpixel electrode for the subpixel near the boundary; a source electrode connected to the auxiliary bus line; and a gate electrode connected to a gate bus line before the (n-1) th row; , With output In the second display mode, a gate signal is sequentially supplied from the first row gate bus line to the Nth row gate bus line, and in the first display mode, A gate signal is sequentially supplied from the Nth row gate bus line to the first row gate bus line.
  • the liquid crystal display device configured as described above sequentially supplies gate signals from the first row gate bus lines to the Nth row gate bus lines in the second display mode. That is, by scanning in the forward direction, a common data voltage for each pixel is applied to each subpixel electrode via the data bus line. Thereby, an image is displayed when each sub-pixel exhibits a desired luminance.
  • the liquid crystal display device sequentially supplies gate signals from the Nth row gate bus lines to the first row gate bus lines, that is, scans in the reverse direction.
  • a gate signal is supplied to the gate bus line of the n-th row
  • a common data voltage is applied to the sub-pixel electrode of each sub-pixel in the pixel arranged in the n-th row.
  • the output transistor is turned on, so that the subpixel electrode of the subpixel near the boundary among the subpixels. Changes to the potential of the auxiliary bus line.
  • the liquid crystal layer for the boundary subpixels and the subpixels other than the boundary subpixels without increasing the number of data bus lines.
  • Different voltages can be applied to the liquid crystal layer.
  • the luminance exhibited by the boundary neighboring subpixels can be made smaller than the luminance exhibited by the subpixels other than the boundary neighboring subpixels.
  • the above-described crosstalk phenomenon can be suppressed by displaying a Patterned-Retarder-type stereoscopically viewable image.
  • the boundary neighboring sub-pixel in each pixel exhibits the same luminance as the sub-pixel other than the boundary neighboring sub-pixel in the pixel. Therefore, an image that is not stereoscopically visible in the second mode is displayed.
  • an image with higher luminance can be displayed compared to a conventional configuration including a black matrix that does not exhibit luminance. Can do.
  • the liquid crystal display device is a liquid crystal display device capable of displaying in the first display mode and the second display mode, and is a matrix of N rows and M columns (N and M are natural numbers).
  • N and M are natural numbers.
  • the sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate is the vicinity of the boundary
  • Output transistor In the second display mode gate signals are sequentially supplied from the first row gate bus line to the Nth row gate bus line, and in the first display mode, the Nth row.
  • a gate signal is sequentially supplied from the gate bus line of the row to the gate bus line of the first row.
  • the occurrence of crosstalk when displaying a stereoscopically visible image in the first display mode without increasing the number of data bus lines. Can be suppressed.
  • FIG. 1 is a diagram illustrating an overall configuration of a liquid crystal display device according to a first embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the liquid crystal display device which concerns on the 1st Embodiment of this invention, (a) is a disassembled perspective view which shows the periphery structure of the liquid crystal panel with which the liquid crystal display device which concerns on embodiment is equipped.
  • FIG. 2 is a plan layout diagram illustrating a specific configuration of a liquid crystal panel included in the liquid crystal display device according to the first embodiment of the present invention. 2 is a timing chart schematically showing waveforms and timings of respective voltages when the liquid crystal display device according to the first embodiment of the present invention is driven in a 2D display mode.
  • FIG. (B) shows the voltage waveform of the gate signal supplied to the nth gate bus line by the gate driver.
  • (C) shows the voltage waveform of the (n + 1) th gate driver.
  • FIG. (D) shows the voltage waveform of the sub-pixel electrode of the bright pixel included in the pixel displaying red
  • (e) shows the voltage waveform of the gate signal supplied to the gate bus line.
  • the voltage waveform of the subpixel electrode of the dark pixel with which the pixel to display is shown is shown.
  • 2 is a timing chart schematically showing waveforms and timings of respective voltages when the liquid crystal display device according to the first embodiment of the present invention is driven in a 3D display mode.
  • FIG. (B) shows the voltage waveform of the gate signal supplied to the n-th gate bus line by the gate driver, and (c) shows the voltage waveform of the data signal supplied to the n-th gate bus line.
  • the voltage waveform of the gate signal supplied to the first gate bus line is shown, (d) shows the voltage waveform of the subpixel electrode of the bright pixel included in the pixel displaying red, (e) The voltage waveform of the sub pixel electrode of the dark pixel with which the pixel which displays red is shown. It is a figure which shows typically the brightness
  • luminance Comprising: (a) is a liquid crystal panel and Patterned Retarder (B) is a diagram showing image light observed by an observer when the line-of-sight direction is the normal direction of the liquid crystal panel, and (c) is the line-of-sight direction.
  • FIG. 10 is a plan layout diagram illustrating a specific configuration of a liquid crystal panel according to the modification.
  • FIG. 10 is a plan layout diagram illustrating a specific configuration of a liquid crystal panel according to the modification. It is a figure which shows the equivalent circuit of the liquid crystal panel with which the liquid crystal display device which concerns on the 2nd Embodiment of this invention is provided with each driver and a control circuit.
  • FIG. 1 It is a figure which shows the specific structure of the liquid crystal panel which concerns on the 2nd Embodiment of this invention, (a) is a plane layout figure of the said liquid crystal panel, (b) is a contact part in the said liquid crystal panel. It is sectional drawing shown. It is a timing chart which shows typically the waveform and timing of each voltage at the time of driving the liquid crystal display concerning a 2nd embodiment of the present invention in 2D display mode, and (a) is a source bus line with a source driver (B) shows the waveform of the storage capacitor drive signal supplied to the first CS bus line by the CS driver, and (c) shows the waveform of the data signal supplied to the first CS bus line.
  • FIG. 1 It is a timing chart which shows typically the waveform and timing of each voltage at the time of driving the liquid crystal display device concerning a 2nd embodiment of the present invention in 3D display mode, and (a) is a source bus line with a source driver (B) shows the waveform of the storage capacitor drive signal supplied to the first CS bus line by the CS driver, and (c) shows the waveform of the data signal supplied to the first CS bus line. 2 shows the waveform of the auxiliary capacitance drive signal supplied to the second CS bus line, (d) shows the voltage waveform of the gate signal supplied to the nth gate bus line by the gate driver, and (e) shows the waveform.
  • FIG. 5 shows the voltage waveform of the gate signal supplied to the n ⁇ 1th gate bus line by the gate driver
  • FIG. 5F shows the voltage waveform of the sub-pixel electrode of the bright pixel included in the pixel displaying red.
  • (g) shows the voltage waveform of the sub-pixel electrode of the dark pixel included in the pixel displaying red.
  • FIG. 10 is a plan layout diagram illustrating a specific configuration of a liquid crystal panel according to the modification. It is a figure which shows the structure of the liquid crystal panel which concerns on the 2nd modification of the 2nd Embodiment of this invention, Comprising: (a) is an equivalent circuit schematic of the liquid crystal panel which concerns on the said modification, (b) FIG. 10 is a plan layout diagram illustrating a specific configuration of a liquid crystal panel according to the modification.
  • a vertical alignment type liquid crystal display device (VA (Vertical Alignment) type liquid crystal display device) using a liquid crystal material having a negative dielectric anisotropy is exemplified, but the present invention is not limited to this, for example, The present invention can also be applied to a TN (Twisted Nematic) type or IPS (In-Plane Switching) type liquid crystal display device.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • a normally black type liquid crystal display device in which the transmittance of the liquid crystal layer increases as the absolute value of the voltage applied to the liquid crystal layer increases is illustrated, but this embodiment is not limited thereto.
  • the present invention can be applied to a normally white liquid crystal display device in which the transmittance of the liquid crystal layer decreases as the absolute value of the voltage applied to the liquid crystal layer increases.
  • FIG. 2 is a diagram showing an overall configuration of the liquid crystal display device 1 according to the present embodiment.
  • the liquid crystal display device 1 includes a control circuit 20, a gate driver 22, a source driver 24, a constant voltage source 25, and a liquid crystal panel 100.
  • the liquid crystal display device 1 operates in any one of a 2D display mode for displaying an image that cannot be stereoscopically viewed and a 3D display mode for displaying an image that can be stereoscopically viewed.
  • the liquid crystal display device 1 may be configured so that the user can select one of the two display modes, or by referring to mode information associated with image data indicating an image to be displayed, It may be configured to automatically select one of the two display modes.
  • One of the 2D display mode and the 3D display mode is also referred to as the first display mode, and the other is also referred to as the second display mode.
  • the liquid crystal display device 1 includes a plurality of gate bus lines 2, a plurality of source bus lines 4, a plurality of common bus lines (auxiliary bus lines) 5, and each gate bus line in the liquid crystal panel 100. And a pixel defined by each source bus line.
  • the total number of gate bus lines 2 is N (N is a natural number)
  • the total number of source bus lines 4 is M
  • the total number of common bus lines 5 is M (M is a natural number).
  • a gate bus line 2n indicates the n-th gate bus line 2 (where n is a natural number satisfying 1 ⁇ n ⁇ N).
  • the source bus line 4m is the m-th source bus line 4m (where m is a natural number satisfying 1 ⁇ m ⁇ M).
  • the common bus line 5m indicates the m-th common bus line 5.
  • each pixel defined by the gate bus line 2n is also expressed as each pixel defined by the nth horizontal scanning line HLn, and each pixel defined by the source bus line 4m is represented by mth.
  • Each pixel defined by the vertical scanning line VLm may be expressed.
  • the liquid crystal panel included in the liquid crystal display device 1 includes a gate driver 22 that supplies a gate signal to each gate bus line 2, a source driver 24 that supplies a data signal to each source bus line 4, A constant voltage source 25 that supplies a constant voltage to each common bus line 5 is connected to each other.
  • Each of these drivers operates based on a control signal output from the control circuit 20.
  • the control circuit 20 calculates the gradation value for each pixel from the luminance information indicating the luminance for each picture element and the color difference information indicating the color difference for each pixel included in the image data indicating the image to be displayed. calculate.
  • a picture element is a unit composed of pixels that individually display a plurality of different colors.
  • one picture element is a pixel that displays red, and green. It is comprised from the pixel which displays, and the pixel which displays blue.
  • the control circuit 20 controls the timing of the gate signal supplied by the gate driver 22 and the data signal supplied by the source driver 24.
  • the gate driver 22 when the 2D display mode is selected, the gate driver 22 supplies a gate signal to each gate bus line 2 so that the scan direction is the forward direction, and the 3D display mode is set. When selected, the gate driver 22 supplies a gate signal to each gate bus line 2 so that the scanning direction is reversed.
  • the scan direction is forward (also referred to as forward scan) means that gate signals are sequentially supplied from the first gate bus line 21 to the Nth gate bus line 2N.
  • the reverse direction (also referred to as reverse scanning) means that gate signals are sequentially supplied from the Nth gate bus line 2N to the first gate bus line 21.
  • the gate signal is supplied to the gate bus line 2 (n + 1) after the gate signal is supplied to the gate bus line 2n, and the scan direction is the reverse direction. In some cases, after the gate signal is supplied to the gate bus line 2n, the gate signal is supplied to the gate bus line 2 (n-1).
  • FIG. 3A is an exploded perspective view showing a configuration around the liquid crystal panel 100 in the liquid crystal display device 1.
  • the liquid crystal display device 1 has a backlight unit BLU on the back side of the liquid crystal panel 100, and a patterned retarder 200 on the front side of the liquid crystal panel 100.
  • the backlight unit BLU, the liquid crystal panel 100, the control circuit 20 (not shown in FIG. 3A), each driver (not shown in FIG. 3A), and the Patterned Retarder 200 are arranged in the back case.
  • the front side of the patterned retarder 200 is covered with a transparent protective panel (not shown).
  • the liquid crystal panel 100 and the patterned retarder 200 may be collectively referred to as a display panel.
  • the backlight unit BLU supplies backlight to the liquid crystal panel 100 from the back surface of the liquid crystal panel 100.
  • the backlight unit BLU can have, for example, a configuration in which a plurality of LEDs (light emitting diodes) that emit white light are arranged substantially uniformly on the back surface of the liquid crystal panel 100 (configuration of a direct type LED).
  • the backlight unit BLU is configured to include a diffusion plate, and the light emitted from the plurality of LEDs is configured to irradiate the back surface of the liquid crystal panel 100 after making the uniform backlight with the diffusion plate. Can do.
  • the luminance unevenness of the backlight can be suppressed and the light use efficiency can be increased, so that power consumption can be reduced.
  • the backlight unit BLU may have a configuration in which a light source for backlight such as an LED and a fluorescent tube is disposed near the edge of the liquid crystal panel 100 (edge light type configuration).
  • the backlight unit BLU further includes a light guide plate and a reflection plate on the back surface of the diffusion plate, and the light emitted from the light source is converted into a uniform backlight by the light guide plate and the reflection plate, and then the liquid crystal What is necessary is just to set it as the structure irradiated to the back surface of the panel 100.
  • the Patterned Retarder 200 is a retardation plate whose longitudinal direction is parallel to the gate bus line, and is composed of two types of retardation plates RR and RL having different characteristics.
  • the phase difference plate RR converts linearly polarized light to rightward circularly polarized light
  • the phase difference plate RL converts linearly polarized light to leftward circularly polarized light.
  • a phase difference plate RR is arranged on the front side of the pixels defined by the odd-numbered horizontal scanning lines HL1, HL3,. , HL4,..., HL4,.
  • the image displayed by the pixels defined by the odd-numbered gate bus lines is represented by the right circularly polarized light after passing through the Patterned Retarder 200 and displayed by the pixels defined by the even-numbered gate bus lines.
  • the image to be displayed is represented by light that is circularly polarized leftward after passing through the Patterned Retarder 200.
  • the phase difference plate RR and the phase difference plate RL can be constituted by, for example, ⁇ / 4 wavelength plates having different optical axes.
  • phase difference plate RR and the phase difference plate RL can be generally expressed as optical plates that generate outgoing lights having different polarization states from incident light.
  • phase difference plate RR and the phase difference plate RL are also referred to as a first optical plate, and the other is also referred to as a second optical plate.
  • the light converted by the first optical plate is also referred to as outgoing light in the first polarization state
  • the light converted by the second optical plate is also referred to as outgoing light in the second polarization state.
  • FIG. 3B shows 3D glasses 300 used in the present embodiment.
  • the 3D glasses 300 include a right-eye lens and a left-eye lens.
  • the right-eye lens transmits only light polarized in the right direction and the left-eye lens transmits only light polarized in the left direction. Therefore, by using the 3D glasses 300, the user observes an image displayed by the pixels defined by the odd-numbered gate bus lines among the images displayed by the liquid crystal display device 1 only with the right eye. The image displayed by the pixels defined by the even-numbered gate line can be observed only by the left eye.
  • the right-eye image and the left-eye image different in viewpoint from the right-eye image are displayed. Therefore, the user can visually recognize the image in three dimensions.
  • the liquid crystal display device 1 can also display a 2D image using both pixels defined by odd-numbered gate bus lines and pixels defined by even-numbered gate bus lines. In this case, the user may observe the image displayed on the liquid crystal display device 1 without using the 3D glasses 300.
  • the 3D glasses 300 used in the present embodiment do not require electrical control like the 3D glasses used in the active shutter system, and can be realized with a simple configuration.
  • FIG. 3C is an overview of a liquid crystal color television receiver including the liquid crystal display device 1 according to the present embodiment.
  • the liquid crystal display device 1 is mounted on the display unit of the liquid crystal color television receiver.
  • the liquid crystal display device 1 according to the present invention can be used for, for example, a notebook personal computer, various displays, a mobile phone terminal, a portable information terminal, and the like in addition to a liquid crystal color television receiver.
  • FIG. 1 is a diagram showing an equivalent circuit of a pixel having a multi-pixel structure for each picture element of the liquid crystal panel 100 included in the liquid crystal display device 1 according to the present embodiment, together with each driver and the control circuit 20. .
  • a plurality of pixels are formed in a liquid crystal panel 100 provided in the liquid crystal display device 1, and the liquid crystal display device 1 drives each pixel by a driving method corresponding to a 3TFT driving method.
  • Each pixel has a liquid crystal layer and an electrode for applying a voltage to the liquid crystal layer, and is arranged in a matrix having rows and columns.
  • a picture element is a unit composed of pixels that individually display a plurality of different colors. In this embodiment, one picture element is an R pixel 8 that displays red, and a G pixel that displays green. 10 and a B pixel 12 that displays blue.
  • a liquid crystal panel 100 included in the liquid crystal display device 1 includes a plurality of gate bus lines 2, a plurality of source bus lines 4, a plurality of common bus lines 5, a plurality of switching elements TFT1 to TFT3, and a plurality of liquid crystals. Capacitances Clc1 and Clc2 are provided.
  • the plurality of gate bus lines 2 and the plurality of source bus lines 4 are formed so as to intersect each other via an insulating film (not shown).
  • an R pixel 8 that displays red, a G pixel 10 that displays green, and blue are displayed for each region defined by one gate bus line 2 and one source bus line 4.
  • One of the B pixels 12 is formed.
  • the R pixel 8, the G pixel 10, and the B pixel 12 are formed adjacent to each other along the gate bus line 2.
  • the liquid crystal display device 1 will be described by taking as an example a configuration including the R pixel, the G pixel, and the B pixel.
  • the present embodiment is not limited to this, and for example, the liquid crystal display device 1 may be configured to include one or both of a Ye pixel that displays yellow and a W pixel that displays white in addition to the R pixel, the G pixel, and the B pixel. Even if it exists, there exists an effect mentioned later.
  • each of the R pixel 8, the G pixel 10, and the B pixel 12 has two subpixels that can apply different voltages to the liquid crystal layer.
  • the R pixel 8 has a sub-pixel 8a and a sub-pixel 8b
  • the G pixel 10 has a sub-pixel 10a and a sub-pixel 10b
  • the B pixel 12 Has a sub-pixel 12a and a sub-pixel 12b.
  • the sub-pixel 8a, the sub-pixel 10a, and the sub-pixel 12a may be referred to as a bright pixel
  • the sub-pixel 8b, the sub-pixel 10b, and the sub-pixel 12b may be referred to as a dark pixel. is there.
  • each pixel constituting each picture element is arranged along the gate bus line 2 in the order of the R pixel 8, the G pixel 10, and the B pixel 12.
  • Each bright pixel is arranged on a first straight line parallel to the gate bus line 2, and each dark pixel is arranged on a second straight line parallel to the gate bus line 2.
  • the dark pixel 8b of the R pixel 8 defined by the gate bus line 2n and the bright pixel 8a of the R pixel 8 defined by the gate bus line 2 (n + 1) pass through a boundary parallel to the gate bus line 2. Are adjacent to each other. The same applies to the G pixel 10 and the B pixel 12.
  • the dark pixel 8b of the R pixel 8 and the dark pixel 10b of the G pixel 10 are adjacent to each other via a boundary parallel to the source bus line 4, and the dark pixel 10b of the G pixel 10 and the dark pixel 12b of the B pixel 12 are connected. Are adjacent to each other through a boundary parallel to the source bus line 4. The same applies to bright pixels.
  • a sub-pixel included in each pixel has a liquid crystal capacitance.
  • the bright pixel has a liquid crystal capacitance Clc1R
  • the dark pixel has a liquid crystal capacitance Clc2R.
  • the bright pixel 10a of the G pixel 10 has a liquid crystal capacitance Clc1G
  • the dark pixel 10b has a liquid crystal capacitance Clc2G.
  • the bright pixel 12a of the B pixel 12 has a liquid crystal capacitance Clc1B
  • the dark pixel 12b has a liquid crystal capacitance Clc2B.
  • Each liquid crystal capacitor is formed by a sub-pixel electrode, a liquid crystal layer, and a counter electrode facing the sub-pixel electrode through the liquid crystal layer.
  • switching elements TFT1 to TFT2 In each of the R pixel 8, the G pixel 10, and the B pixel 12, a TFT (thin film transistor) 1 and a TFT 2 are formed.
  • the gate electrodes of TFT1 to TFT2 are connected to a common gate bus line 2n, and the source electrodes of TFT1 to TFT2 are connected to a common source bus line 4. That is, as shown in FIG. 1, the source electrodes of the TFT 1R and the TFT 2R of the R pixel 8 are connected to the source bus line 4m.
  • the source electrodes of the TFT 1G and TFT 2G of the G pixel 10 are connected to the source bus line 4 (m + 1), and the source electrodes of the TFT 1B and TFT 2B of the B pixel 12 are connected to the source bus line 4 (m + 2). )It is connected to the.
  • the drain electrodes of TFT1 and TFT2 are connected to the corresponding subpixel electrodes.
  • Each of the TFT1 to TFT2 and the TFT3 described later is in a conductive state (ON state) when a high level gate signal is applied to its own gate electrode, and a low level gate signal is applied to its own gate electrode. When is applied, a non-conduction state (off state, cutoff state) is established.
  • a TFT 3 is formed in each dark pixel included in the R pixel 8, the G pixel 10, and the B pixel 12. More specifically, the TFT 3R is formed in the dark pixel 8b of the R pixel 8, the TFT 3G is formed in the dark pixel 10b of the G pixel 10, and the TFT 3B is formed in the dark pixel 12b of the B pixel 12. ing.
  • the gate electrode of the TFT 3 is electrically connected to the gate bus line in the previous stage of the pixel, that is, the gate bus line 2 (n ⁇ 1).
  • the drain electrode of each TFT 3 is electrically connected to the sub-pixel electrode of each dark pixel 8b, 10b, and 12b.
  • the source electrode of each TFT 3 is connected to the corresponding common bus line 5. More specifically, the source electrode of the TFT 3R is connected to the common bus line 5m, the source electrode of the TFT 3G is connected to the common bus line 5 (m + 1), and the source electrode of the TFT 3B is connected to the common bus line 5 (m + 2). It is connected to the.
  • the gate bus line 2n is selected and charges are stored in the liquid crystal capacitance Clc1 of each bright pixel and the liquid crystal capacitance Clc2 of each dark pixel.
  • the gate bus line 2 (n ⁇ 1) in the previous stage is selected with a time difference, and the TFT 3 is turned on, so that the sub-pixel electrode of each dark pixel becomes conductive with the common bus line 5.
  • the scanning direction is the reverse direction
  • the voltage applied to the liquid crystal layer of each dark pixel decreases after the previous gate bus line 2 (n ⁇ 1) is selected, and the dark pixel The transmissivity of the liquid crystal layer is reduced.
  • the gate electrode of the TFT 3 is connected to the gate bus line 2 (n ⁇ 1) in the previous stage of the image.
  • the present embodiment is not limited to this and generally
  • the gate bus line 2 (np) (p is a natural number satisfying 1 ⁇ p ⁇ n) in the previous stage of the pixel can be used.
  • FIG. 4 is a plan layout diagram showing a specific configuration of the R pixel 8 in the liquid crystal panel 100.
  • the gate bus line 2 is formed using the first electrode material
  • the source bus line 4 and the common bus line 5 are formed using the second electrode material.
  • ECLC1R and ECLC2R represent the subpixel electrode provided in the bright pixel 8a and the subpixel electrode provided in the dark pixel 8b, respectively, and these subpixel electrodes use a third electrode material. Is formed.
  • TFT1R and TFT2R are formed on the gate bus line 2n, and TFT3R is formed on the gate bus line 2 (n-1).
  • the source electrode and drain electrode of each TFT are formed using the second electrode material.
  • a liquid crystal layer corresponding to each sub-pixel is disposed on the front side of the sheet of FIG. 4, and a counter electrode is disposed further on the front side.
  • each liquid crystal capacitor and the value of each storage capacitor have a dependency on the voltage applied to each, but in the present embodiment, they are not essential matters. So ignore such dependencies. However, this premise does not limit the present embodiment, and can be similarly applied to a case where there is such dependency.
  • 5A to 5E are timing charts schematically showing the waveform and timing of each voltage in the liquid crystal display device 1 when the scan direction is the forward direction.
  • FIG. 5A shows the voltage waveform Vs of the data signal supplied from the source driver 24 to the source bus line 4, and FIG. 5B shows the gate supplied from the gate driver 22 to the gate bus line 2n.
  • the voltage waveform Vgn of the signal is shown
  • FIG. 5C shows the voltage waveform Vg (n + 1) of the gate signal that the gate driver 22 supplies to the gate bus line 2 (n + 1).
  • FIG. 5D shows the voltage waveform Vlc1R of the subpixel electrode of the bright pixel 8a included in the R pixel 8.
  • FIG. 5E shows the voltage waveform Vlc2R of the subpixel electrode of the dark pixel 8b included in the R pixel 8. Show.
  • the broken line in the figure indicates the voltage waveform COMMON (Vcom) of the counter electrode.
  • the voltage VsR of the data signal transmitted through the source bus line 4 is a display voltage corresponding to the gradation to be displayed in the pixel, and the TFT is in an on state (sometimes referred to as “selection period”). , The corresponding pixel is written.
  • TFT 3R is in an off state during the selection period.
  • the voltage Vgn of the gate signal changes from VgH to VgL, whereby the TFT1R and the TFT2R are simultaneously turned off (off state). Accordingly, the sub-pixel electrode of the bright pixel 8a and the sub-pixel electrode of the dark pixel 8b are all electrically insulated from the source bus line 4 (the period in this state is referred to as “non-selection period”). is there.).
  • the sub-pixels are caused by a pull-in phenomenon (also referred to as a field-through phenomenon) due to the influence of the parasitic capacitance of the TFT 1R and the TFT 2R.
  • the electrode voltages Vlc1R and Vlc2R decrease by ⁇ Vd1R and ⁇ Vd2R, respectively.
  • Vlc1R VsR ⁇ Vd1R (2a)
  • Vlc2R VsR ⁇ Vd2R (2b)
  • the contribution of the voltage drop due to such a field-through phenomenon is ignored.
  • the contribution of the field through phenomenon in the TFT 3 is also ignored (the same applies to the second embodiment).
  • the voltage Vg (n + 1) of the gate signal changes from VgL to VgH at time T3
  • the voltage Vg (n + 1) of the gate signal changes from VgH to VgL at time T4.
  • the voltages Vlc1R and Vlc2R do not change.
  • V1R_f VsR-Vcom (3a)
  • V2R_f VsR-Vcom (3b) It becomes.
  • the effective voltages applied to the liquid crystal layers of the bright pixel 8a and the dark pixel 8b are equal to each other.
  • the brightness exhibited by each of the bright pixel 8a and the dark pixel 8b is substantially equal to each other.
  • V1B_f VsB-Vcom (5a)
  • V2B_f VsB-Vcom (5b) It becomes.
  • the luminances of the bright pixels 10a and the dark pixels 10b included in the G pixel 10 are substantially equal to each other, and the luminances of the bright pixels 12a and the dark pixels 12b included in the B pixel 12 are exhibited. Are substantially equal to each other.
  • FIG. 7 is a figure which shows typically the brightness
  • the bright pixel 8a and the dark pixel 8b have substantially the same luminance
  • the bright pixel 10a and the dark pixel 10b have the substantially same luminance
  • the pixel 12a and the dark pixel 12b exhibit substantially the same luminance.
  • Vcom ′ the voltage supplied to the common bus line 5
  • Vcom the voltage supplied to the counter electrode
  • 6A to 6E are timing charts schematically showing the waveforms and timings of the voltages in the liquid crystal display device 1 when the scanning direction is the reverse direction.
  • FIG. 6A shows the voltage waveform Vs of the data signal supplied from the source driver 24 to the source bus line 4, and FIG. 6B shows the gate supplied from the gate driver 22 to the gate bus line 2n.
  • the voltage waveform Vgn of the signal is shown
  • FIG. 6C shows the voltage waveform Vg (n ⁇ 1) of the gate signal supplied to the gate bus line 2 (n ⁇ 1) by the gate driver 22.
  • 6D shows the voltage waveform Vlc1R of the sub-pixel electrode of the bright pixel 8a included in the R pixel 8
  • FIG. 6E shows the sub-pixel electrode of the dark pixel 8b included in the R pixel 8.
  • a voltage waveform Vlc2R is shown.
  • the broken line in the figure indicates the voltage waveform COMMON (Vcom) of the counter electrode.
  • the voltage Vgn of the gate signal changes from VgH to VgL, so that the TFT1R and the TFT2R are simultaneously turned off. Accordingly, the subpixel electrode of the bright pixel 8 a and the subpixel electrode of the dark pixel 8 b are all electrically insulated from the source bus line 4.
  • the voltage Vg (n-1) of the gate signal changes from VgL to VgH, so that the TFT 3R is turned on. Accordingly, the voltage Vlc2R of the subpixel electrode of the dark pixel 8b changes to the voltage Vcom 'of the common bus line 5. On the other hand, the voltage Vlc1R of the subpixel electrode of the bright pixel 8a does not change.
  • Vlc1R VsR (8a)
  • Vlc2R Vcom ′ (8b)
  • the voltage Vg (n ⁇ 1) of the gate signal changes from VgH to VgL, so that the TFT 3R is turned off.
  • V1R_b VsR-Vcom (9a)
  • V2R_b Vcom′ ⁇ Vcom (9b) It becomes.
  • Vcom′ ⁇ Vcom the dark pixel 8b can be prevented from exhibiting luminance.
  • Vcom ′ Vcom
  • the threshold voltage Vth is a voltage at which the orientation of the liquid crystal starts to change when the voltage applied to the liquid crystal is increased.
  • a pixel included in a VA mode liquid crystal display device does not exhibit luminance when the voltage applied to the liquid crystal included in the pixel is equal to or lower than a threshold voltage, and the voltage applied to the liquid crystal. Begins to exhibit brightness when exceeds the threshold voltage.
  • the dark pixel 8b included in the R pixel 8 can be configured not to exhibit luminance.
  • V1G_b VsG-Vcom (10a)
  • V2G_b Vcom′ ⁇ Vcom (10b) It becomes.
  • V1B_b VsB-Vcom (11a)
  • V2B_b Vcom′ ⁇ Vcom (11b) It becomes.
  • Vcom′ ⁇ Vcom the threshold voltage Vth of the liquid crystal layer
  • the dark pixel 10b included in the G pixel 10 and the dark pixel 12b included in the B pixel 12 can be configured to exhibit no luminance.
  • FIG. 7 is a figure which shows typically the brightness
  • the dark pixel 8a, the dark pixel 10b, and the dark pixel 12b included in each of the R pixel 8, the G pixel 10, and the B pixel 12 exhibit luminance in the 3D display mode. do not do.
  • the dark pixels included in each of the R pixel 8, the G pixel 10, and the B pixel 12 function as a black matrix in the 3D display mode.
  • FIG. 8 exemplarily shows a cross-sectional view of the backlight unit BLU, the liquid crystal panel 100, and the Patterned® Retarder 200 with a plane parallel to the source bus line 4 as a cut surface.
  • the liquid crystal panel 100 includes a first polarizing plate 100a, a TFT-Glass 100b, a TFT substrate 100c, a color filter 100d, a CF-Glass 100e, and a second polarizing plate 100f.
  • the TFT, liquid crystal capacitor, and storage capacitor of the pixel are formed on the TFT substrate 100c.
  • the polarization state of the light emitted from the backlight unit BLU and transmitted through the liquid crystal panel 100 is linearly polarized by the action of the second polarizing plate 100f.
  • the Patterned Retarder 200 converts the linearly polarized light into right circularly polarized light on the side facing the liquid crystal panel 100, and converts the linearly polarized light into left circularly polarized light.
  • a phase difference plate RL is provided. Further, the boundary between the phase difference plate RR and the phase difference plate RL is arranged such that a perpendicular line extending from the boundary to the TFT substrate 100c intersects the dark pixel.
  • the boundary between the retardation film RR and the retardation film RL is preferably arranged so that a perpendicular line extending from the boundary to the TFT substrate 100c intersects a straight line that bisects the dark pixels in the vertical direction. . With such an arrangement, the crosstalk reduction effect can be enhanced.
  • dark pixels do not exhibit luminance, and thus function as a black matrix.
  • the light emitted from the bright pixels arranged on the back surface of the phase difference plate RL has the propagation direction of the light.
  • the phase difference plate RL is transmitted.
  • the light emitted from the bright pixels arranged on the back surface of the phase difference plate RR has the propagation direction of the light of the liquid crystal panel.
  • the light passes through the retardation plate RR when it is within ⁇ degrees upward from the normal direction in the vertical direction of the liquid crystal panel.
  • the liquid crystal display device 1 has crosstalk when the angle formed between the normal direction of the liquid crystal panel 100 and the line-of-sight direction is within ⁇ degrees along the vertical direction of the liquid crystal panel. Occurrence can be suppressed.
  • the display is compared with a configuration in which a black matrix that does not exhibit luminance in any display mode is disposed instead of the dark pixels.
  • the configuration of the liquid crystal panel 100 and the Patterned Retarder 200 according to the present embodiment is not limited to the example shown in FIG.
  • a black stripe having a width smaller than the width of the dark pixel in the vertical direction may be arranged near the boundary between the phase difference plate RR and the phase difference plate RL.
  • the presence of black stripes can improve the crosstalk suppression effect.
  • the vertical width of the black stripe is smaller than the vertical width of the dark pixel, it is displayed in comparison with a configuration in which a black matrix that does not exhibit luminance in any display mode is arranged instead of the dark pixel. The brightness of the image to be improved can be improved.
  • the liquid crystal display device 1 in the 3D display mode, after a common data voltage is applied to the liquid crystal layer included in each subpixel, the liquid crystal layer included in the dark pixel is applied to the liquid crystal layer. By changing the applied voltage, the dark pixel can function as a black matrix.
  • a data bus line for supplying the data voltage to the dark pixel and the light pixel is required. Become.
  • the number of data bus lines can be reduced to half or less compared to such a conventional configuration.
  • the dark pixels included in the liquid crystal display device 1 do not exhibit luminance.
  • the present embodiment is not limited to this.
  • crosstalk can also be suppressed by setting the voltage Vcom ′ supplied to the common bus line 5 so that the luminance exhibited by the dark pixel is equal to or lower than a predetermined luminance.
  • FIGS. 9A to 9D are diagrams for explaining the case where the voltage supplied to the common bus line 5 is set so that the luminance exhibited by the dark pixel is equal to or lower than the predetermined luminance.
  • (C) is an angle formed between the line-of-sight direction and the normal direction of the liquid crystal panel 100, and the angle along the vertical direction of the liquid crystal panel 100 is a predetermined angle ⁇ (beta).
  • 2D is a diagram showing image light observed by an observer, where (d) is an angle formed between the line-of-sight direction and the normal direction of the liquid crystal panel 100, and the angle along the vertical direction of the liquid crystal panel 100 is The image light observed by the observer when the angle is larger than the predetermined angle ⁇ It is to figure.
  • RB represents a dark pixel that displays a right-eye image
  • RA represents a bright pixel that displays a right-eye image
  • LB represents a dark pixel that displays a left-eye image
  • LA represents a bright pixel that displays a left-eye image.
  • the dark pixel RB and the dark pixel LB correspond to any of the dark pixel 8c, the dark pixel 10c, and the dark pixel 12c
  • the sub pixel RA and the sub pixel LA are the bright pixel 8a, the bright pixel 10a, It corresponds to any one of the bright pixels 12a.
  • the boundary between the phase difference plate RR and the phase difference plate RL is a perpendicular line extending from the boundary to the TFT substrate 100c, and the dark pixels are two in the vertical direction. It is assumed that they are arranged so as to intersect with an equally dividing straight line. With such an arrangement, the crosstalk reduction effect can be enhanced.
  • the predetermined angle ⁇ is, as shown in FIG. 9C, (1) the boundary between the bright pixel RA and the dark pixel RB, and (2) the phase difference plate RR and the phase difference plate RL. Is an angle formed by a straight line passing through both of the boundaries closest to the dark pixel RB and a normal line of the liquid crystal panel 100, and an angle along the vertical direction of the liquid crystal panel 100. . Note that the angle ⁇ in FIG. 9C corresponds to the angle ⁇ in FIG.
  • the luminance of the image light emitted from the dark pixel RB and transmitted through the phase difference plate RL is represented by IRBL, and is emitted from the bright pixel LA.
  • the luminance of the image light after passing through the phase difference plate RL is expressed as ILAL and emitted from the dark pixel LB, and the luminance of the image light after passing through the phase difference plate RL is expressed as ILBL and emitted from the bright pixel RA.
  • the luminance of the image light after passing through the phase difference plate RL is represented as IRAL.
  • the luminance IRBL, the luminance ILAL, the luminance ILBL, and the luminance IRAL are emitted from the corresponding subpixels, respectively, and the effective luminance of the image light after passing through the phase difference plate, that is, as shown in FIG. It is assumed that the luminance is after time T4 ′ in the timing chart.
  • the image light emitted from the dark pixel RB and transmitted through the phase difference plate RL is image light causing crosstalk, and the image light emitted from the bright pixel LA and transmitted through the phase difference plate RL.
  • the image light emitted from the dark pixel LB and transmitted through the phase difference plate RL is image light that does not cause crosstalk.
  • the angle formed between the line-of-sight direction and the normal direction of the liquid crystal panel 100, and the angle along the vertical direction of the liquid crystal panel 100 is ⁇ or less.
  • the luminance IRAL is 0, and as shown in FIG. 9D, the angle formed between the line-of-sight direction and the normal direction of the liquid crystal panel 100 and the angle along the vertical direction of the liquid crystal panel 100 is ⁇
  • the luminance IRAL is generally not zero.
  • ⁇ 3 gradations in 32 gradation display corresponds to a luminance difference of 20 percent.
  • the voltage Vcom ′ supplied to the common bus line 5 is set so that the following inequality (A1) is satisfied. .
  • the inequality (A1) is preferably satisfied even at the maximum gradation, that is, when the data voltage supplied to each sub-pixel has the maximum value.
  • the liquid crystal display device 1 when the angle between the line-of-sight direction and the normal direction of the liquid crystal panel 100 and the angle along the vertical direction of the liquid crystal panel 100 is equal to or less than ⁇ , the liquid crystal display device 1 is separated from the liquid crystal panel 100. After the image light emitted in the line-of-sight direction and transmitted through the phase difference plate RL, the luminance of the image light causing the crosstalk is emitted from the liquid crystal panel 100 in the line-of-sight direction and transmitted through the phase difference plate RL. It is preferable to drive each sub-pixel so that it becomes less than 20% of the luminance of the image light that does not cause crosstalk.
  • the liquid crystal display device 1 is Of the image light emitted in the line-of-sight direction and transmitted through the phase difference plate RR, the luminance of the image light causing the crosstalk is emitted from the liquid crystal panel 100 in the line-of-sight direction and transmitted through the phase difference plate RR. It is preferable to drive each sub-pixel so that it becomes less than 20% of the luminance of the image light that does not cause crosstalk among the image light.
  • the inventor determines whether the luminance of the image light that has passed through one of the phase difference plate RL and the phase difference plate RR and causes crosstalk is the level of either one of the phase difference plates RL and the phase difference plate RR. It was found that the observer does not perceive crosstalk when the image light has passed through the phase difference plate and is less than 20 percent of the luminance of the image light that does not cause crosstalk.
  • phase difference plate RR and the phase difference plate RL can be formed so that both transmittances are substantially the same.
  • the luminance exhibited by the dark pixel RB is the sub-pixel LA. If it is less than 20 percent of the luminance exhibited by the above, the inequality (A1) is satisfied in the line-of-sight direction where the luminance IRAL is zero.
  • the R pixel 8, the G pixel 10, and the B pixel 12 are exemplified as a configuration including two sub-pixels (bright pixel and dark pixel). It is not limited to this.
  • the R pixel 8, the G pixel 10, and the B pixel 12 may be configured to include sub-pixels (also referred to as intermediate pixels) other than dark pixels and bright pixels.
  • the intermediate pixel is preferably configured to exhibit lower luminance than the bright pixel in both the 2D display mode and the 3D display mode. With such a configuration, viewing angle characteristics can be improved in both the 2D display mode and the 3D display mode.
  • FIG. 10A is a diagram showing an equivalent circuit of the liquid crystal panel according to this modification with respect to the R pixel 8.
  • the liquid crystal panel according to the present modification further includes an auxiliary capacitor CAR in the dark pixel 8b in addition to the configuration in the R pixel 8 of the liquid crystal panel 100 already described.
  • the auxiliary capacitor CAR is connected in series with the liquid crystal capacitor Clc2R with respect to the drain electrode of the TFT2R. More specifically, one end of the auxiliary capacitor CAR is connected to the drain electrode of the TFT 2R and the drain electrode of the TFT 3R, and the other end of the auxiliary capacitor CAR is connected to the sub-pixel electrode included in the dark pixel 8b.
  • the configurations of the G pixel 10 and the B pixel 12 of the liquid crystal panel according to this modification are the same.
  • FIG. 10B is a plan layout diagram showing a specific configuration of the R pixel 8 in the liquid crystal panel according to this modification.
  • the gate bus line 2 is formed using the first electrode material
  • the source bus line 4 and the common bus line 5 are formed using the second electrode material.
  • ECLC1R and ECLC2R represent the subpixel electrode provided in the bright pixel 8a and the subpixel electrode provided in the dark pixel 8b, respectively. It is formed using an electrode material.
  • TFT1R and TFT2R are formed on the gate bus line 2n, and TFT3R is formed on the gate bus line 2 (n-1).
  • the source electrode and drain electrode of each TFT are formed using the second electrode material.
  • an auxiliary capacitance CAR is formed by the subpixel electrode ECLC2R itself and the second electrode material at the center of the subpixel electrode ECLC2R included in the dark pixel 8b.
  • the sub-pixel electrode ECLC2R is formed in an upper layer (front side of the paper) than the second electrode material.
  • a liquid crystal layer corresponding to each sub-pixel is disposed on the front side of the sheet of FIG. 10B, and a counter electrode is disposed further on the front side.
  • the driving of the liquid crystal panel according to this modification is substantially the same as the driving of the liquid crystal panel 100 described above, but differs in the following points.
  • the effective voltage applied to the subpixel electrode included in the bright pixel 8a and the effective voltage applied to the subpixel electrode included in the dark pixel 8b due to the contribution of the auxiliary capacitor CAR.
  • a voltage difference occurs between the two.
  • V1R_f VsR-Vcom (12a)
  • V2R_f (VsR ⁇ Vcom) ⁇ CAR / (CAR + Clc1R) (12b) It becomes.
  • VsR represents the voltage of the data signal at the time when the TFT1R and the TFT2R are turned on.
  • the effective voltage applied to the liquid crystal layer included in the dark pixel 8b is the liquid crystal included in the bright pixel 8a. Less than the effective voltage applied to the layer. Therefore, in the liquid crystal panel according to the present modification, in the 2D display mode, the dark pixel 8b exhibits a lower luminance than the bright pixel 8a.
  • each of the dark pixels and the bright pixels exhibits different brightness, and thus has a further effect that the viewing angle characteristics are improved.
  • V1R_b VsR-Vcom (13a)
  • V2R_b (Vcom′ ⁇ Vcom) ⁇ CAR / (CAR + Clc1R) ... (13b) It becomes.
  • Vcom ′ and Vcom represent voltages supplied to the common bus line 5 and the counter electrode, respectively, as described above.
  • each of the dark pixels and the bright pixels exhibits different luminances, thereby improving the viewing angle characteristics.
  • Pixels can function as a black matrix.
  • FIG. 11A is a diagram showing an equivalent circuit of the liquid crystal panel according to this modification with respect to the R pixel 8.
  • the liquid crystal panel according to this modification further includes an auxiliary capacitor CAR in the dark pixel 8b in addition to the configuration in the R pixel 8 of the liquid crystal panel 100 already described.
  • the auxiliary capacitor CAR is connected in series with the liquid crystal capacitor Clc2R with respect to the drain electrode of the TFT2R.
  • One end of the auxiliary capacitor CAR is connected to the drain electrode of the TFT 2R, and the other end of the auxiliary capacitor CAR is connected to the sub-pixel electrode included in the dark pixel 8b.
  • the drain electrode of the TFT 3R is connected to the sub-pixel electrode provided in the dark pixel 8b.
  • the configurations of the G pixel 10 and the B pixel 12 of the liquid crystal panel according to this modification are the same.
  • FIG. 11B is a plan layout diagram showing a specific configuration of the R pixel 8 in the liquid crystal panel according to this modification.
  • the gate bus line 2 is formed using the first electrode material
  • the source bus line 4 and the common bus line 5 are formed using the second electrode material.
  • ECLC1R and ECLC2R represent the subpixel electrode provided in the bright pixel 8a and the subpixel electrode provided in the dark pixel 8b, respectively. It is formed using an electrode material.
  • the TFT 1R and the TFT 2R are formed on the gate bus line 2n, and the TFT 3R is formed on the gate bus line 2 (n-1).
  • the source electrode and drain electrode of each TFT are formed using the second electrode material.
  • an auxiliary capacitance CAR is formed by the subpixel electrode ECLC2R itself and the second electrode material at the center of the subpixel electrode ECLC2R included in the dark pixel 8b.
  • the drain electrode of the TFT 3R is connected to the sub-pixel electrode ECLC2R.
  • the sub-pixel electrode ECLC2R is formed in an upper layer (front side of the paper) than the second electrode material.
  • a liquid crystal layer corresponding to each sub-pixel is disposed on the front side of the sheet of FIG. 11B, and a counter electrode is disposed on the further front side.
  • the driving of the liquid crystal panel according to this modification is substantially the same as the driving of the liquid crystal panel according to modification 1 of the first embodiment described above, but differs in the following points.
  • Vcom′ ⁇ Vcom is set to be equal to or lower than the threshold voltage Vth of the liquid crystal layer, thereby preventing the dark pixel 8b from exhibiting luminance. be able to.
  • Vth the threshold voltage of the liquid crystal layer
  • each dark pixel can function as a black matrix in the 3D display mode.
  • the effective voltages applied to the respective liquid crystal layers of the bright pixel 8a and the dark pixel 8b in the 2D display mode are the respective liquid crystal layers of the bright pixel 8a and the dark pixel 8b in the 2D display mode of the first modification of the first embodiment. This is the same as the effective voltage applied to.
  • each of the dark pixels and the bright pixels exhibits different luminance, and thus the viewing angle characteristics are improved.
  • the liquid crystal panel according to the present modification has an advantage that the sub-pixel electrode does not float compared to the liquid crystal panel according to modification 1.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • a vertical alignment type liquid crystal display device VA (Vertical Alignment) type liquid crystal display device
  • a liquid crystal material having a negative dielectric anisotropy a liquid crystal material having a negative dielectric anisotropy
  • the present invention is not limited to this, and can be applied to, for example, a TN (Twisted Nematic) type or IPS (In-Plane Switching) type liquid crystal display device.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • a normally black type liquid crystal display device in which the transmittance of the liquid crystal layer increases as the absolute value of the voltage applied to the liquid crystal layer increases is illustrated, but this embodiment is not limited thereto.
  • the present invention can be applied to a normally white liquid crystal display device in which the transmittance of the liquid crystal layer decreases as the absolute value of the voltage applied to the liquid crystal layer increases.
  • the configuration of the liquid crystal display device 1 ′ according to the present embodiment will be described with reference to FIGS. 12 and 13A to 13B.
  • the liquid crystal display device 1 ′ operates in any one of a 2D display mode that displays an image that cannot be viewed stereoscopically and a 3D display mode that displays an image that can be viewed stereoscopically.
  • the liquid crystal display device 1 ′ may be configured such that the user can select one of the two display modes, or is associated with image data indicating an image to be displayed. Further, it may be configured to automatically select one of the two display modes by referring to the mode information.
  • the same symbol is attached
  • FIG. 12 is a diagram showing a configuration of the liquid crystal display device 1 ′ according to the present embodiment.
  • the liquid crystal display device 1 ′ includes a liquid crystal panel 100 ′, a control circuit 20 ′, a gate driver 22, a source driver 24, and a CS driver 26.
  • FIG. 12 shows an equivalent circuit of a pixel having a multi-pixel structure per pixel in the liquid crystal panel 100 ′.
  • the liquid crystal display device 1 ′ includes a plurality of gate bus lines 2, a plurality of source bus lines 4, a plurality of CS bus lines (auxiliary capacity bus lines) 61, and a plurality of CSs in the liquid crystal panel 100 ′.
  • a bus line (auxiliary capacity bus line) 62 and pixels defined by each gate bus line and each source bus line are provided.
  • a CS bus line 61 n indicates the nth CS bus line 61
  • a CS bus line 62 n indicates the nth CS bus line 62.
  • the CS bus line 61 and the CS bus line 62 may be collectively referred to as a CS bus line 6.
  • a liquid crystal panel 100 ′ included in the liquid crystal display device 1 ′ includes a gate driver 22 that supplies a gate signal to each gate bus line 2 and a source driver that supplies a data signal to each source bus line 4. 24 and a CS driver 26 for supplying an auxiliary capacity drive signal (auxiliary capacity signal) (CS signal) to each CS bus line 6 are connected to each other. Each of these drivers operates based on a control signal output from the control circuit 20 ′.
  • Control circuit 20 ′ calculates the gradation value for each pixel from the luminance information indicating the luminance for each picture element and the color difference information indicating the color difference for each pixel included in the image data indicating the image to be displayed. Is calculated.
  • the control circuit 20 ′ controls the timing of the gate signal supplied by the gate driver 22, the data signal supplied by the source driver 24, and the CS signal supplied by the CS driver 26.
  • the gate driver 22 supplies a gate signal to each gate bus line 2 so that the scan direction is the forward direction, and the 3D display mode. Is selected, a gate signal is supplied to each gate bus line 2 so that the scanning direction is reversed.
  • the CS driver 26 in this embodiment supplies rectangular signals having opposite phases to the CS bus line 61 and the CS bus line 62, and the 3D display mode is selected. If it is, a constant voltage is supplied to the CS bus line 61 and the CS bus line 62.
  • a plurality of pixels are formed on a liquid crystal panel 100 ′ included in the liquid crystal display device 1 ′, and the liquid crystal display device 1 ′ displays each pixel in MPD (Multi Pixel Drive) in the 2D display mode. ) And a driving method corresponding to the 3TFT driving method in the 3D display mode.
  • Each pixel has a liquid crystal layer and an electrode for applying a voltage to the liquid crystal layer, and is arranged in a matrix having rows and columns.
  • the liquid crystal panel 100 ′ included in the liquid crystal display device 1 ′ includes a plurality of gate bus lines 2, a plurality of source bus lines 4, a plurality of CS bus lines 61, a plurality of CS bus lines 62, and a plurality of Switching elements TFT1 ′ to TFT3 ′ and a plurality of liquid crystal capacitors Clc1 ′ to Clc2 ′ are provided.
  • the plurality of gate bus lines 2 and the plurality of source bus lines 4 are formed so as to intersect each other via an insulating film (not shown).
  • an R pixel 8 ′ that displays red
  • a G pixel 10 ′ that displays green
  • blue One of the B pixels 12 ′ for displaying is formed.
  • the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ are formed adjacent to each other along the gate bus line 2.
  • the liquid crystal display device 1 ′ will be described by taking as an example a configuration including the R pixel, the G pixel, and the B pixel.
  • the present embodiment is not limited to this, and for example, a liquid crystal display
  • the device 1 may include any one or both of a Ye pixel that displays yellow and a W pixel that displays white. Even so, the effects described later are produced.
  • Each of the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ has two subpixels that can apply different voltages to the liquid crystal layer.
  • the R pixel 8 ′ has a sub-pixel 8a ′ and a sub-pixel 8b ′
  • the G pixel 10 ′ has a sub-pixel 10a ′ and a sub-pixel 10b ′.
  • the B pixel 12 ′ has a sub-pixel 12a ′ and a sub-pixel 12b ′.
  • the subpixel 8a ′, the subpixel 10a ′, and the subpixel 12a ′ may be referred to as a bright pixel
  • the subpixel 8b ′, the subpixel 10b ′, and the subpixel 12b ′ Sometimes called a dark pixel.
  • each pixel constituting each pixel is arranged in the order of the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ along the gate bus line 2 as in the first embodiment. Yes.
  • Each bright pixel is arranged on a first straight line parallel to the gate bus line 2
  • each dark pixel is arranged on a second straight line parallel to the gate bus line 2.
  • the dark pixel 8b ′ of the R pixel 8 ′ defined by the gate bus line 2n and the bright pixel 8a ′ of the R pixel 8 ′ defined by the gate bus line 2 (n + 1) are parallel to the gate bus line 2. Are adjacent to each other through a boundary. The same applies to the G pixel 10 'and the B pixel 12'.
  • the dark pixel 8b ′ of the R pixel 8 ′ and the dark pixel 10b ′ of the G pixel 10 ′ are adjacent to each other through a boundary parallel to the source bus line 4, and the dark pixels 10b ′ and B of the G pixel 10 ′ are adjacent to each other.
  • the dark pixel 12 b ′ of the pixel 12 ′ is adjacent to each other through a boundary parallel to the source bus line 4. The same applies to bright pixels.
  • a sub-pixel included in each pixel has a liquid crystal capacitance.
  • the bright pixel has a liquid crystal capacitance Clc1 ′
  • the dark pixel has a liquid crystal capacitance Clc2 ′.
  • the bright pixel 8a ′ of the R pixel 8 ′ has a liquid crystal capacitance Clc1R ′
  • the dark pixel 8b ′ has a liquid crystal capacitance Clc2R ′.
  • the bright pixel 10a ′ of the G pixel 10 ′ has a liquid crystal capacitor Clc1G ′
  • the dark pixel 10b ′ has a liquid crystal capacitor Clc2G ′.
  • the bright pixel 12a ′ of the B pixel 12 ′ has a liquid crystal capacitance Clc1B ′
  • the dark pixel 12b ′ has a liquid crystal capacitance Clc2B ′.
  • Each liquid crystal capacitor is formed by a sub-pixel electrode, a liquid crystal layer, and a counter electrode facing the sub-pixel electrode through the liquid crystal layer.
  • TFT1 'to TFT2' switching elements TFT1 'to TFT2'
  • a TFT 1 ′ and a TFT 2 ′ are formed in each of the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′.
  • the functions of the TFT 1 ′ and TFT 2 ′ and the manner of connection of the electrodes provided in the TFT 1 ′ and TFT 2 ′ are the same as those of the TFT 1 and TFT 2 in Embodiment 1, and thus the description thereof is omitted here.
  • a TFT 3 ′ is formed in each dark pixel included in the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′. More specifically, a TFT 3R ′ is formed in the dark pixel 8b ′ of the R pixel 8 ′, a TFT 3G ′ is formed in the dark pixel 10b ′ of the G pixel 10 ′, and a dark pixel 12b of the B pixel 12 ′. “TFT3B” is formed in “.
  • the gate electrode of the TFT 3 ' is electrically connected to the previous gate bus line of the pixel, that is, the gate bus line 2 (n-1).
  • the drain electrode of each TFT 3 ' is electrically connected to the subpixel electrode of each dark pixel 8b', 10b ', and 12b'.
  • the source electrode of each TFT 3 ' is connected to the CS bus line 62n.
  • auxiliary capacitor Ccs is formed in each sub-pixel included in the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′.
  • Each auxiliary capacitance Ccs is an auxiliary capacitance electrode connected to the corresponding subpixel electrode, and an auxiliary capacitance counter electrode facing the auxiliary capacitance electrode through the insulating layer, and is connected to the corresponding CS bus line. And a counter electrode.
  • the auxiliary capacitance electrode of the auxiliary capacitance Ccs1R is connected to the sub-pixel electrode of the liquid crystal capacitance Clc1R ′, and the auxiliary capacitance counter electrode of the auxiliary capacitance Ccs1R is connected to the CS bus line 61n.
  • the auxiliary capacitance electrode of the auxiliary capacitance Ccs2R is connected to the subpixel electrode of the liquid crystal capacitance Clc2R ', and the auxiliary capacitance counter electrode of the auxiliary capacitance Ccs2R is connected to the CS bus line 62n.
  • the gate electrode of the TFT 3 ′ is connected to the gate bus line 2 (n ⁇ 1) in the previous stage of the image.
  • the present embodiment is not limited to this, In general, the gate bus line 2 (np) (p is an integer of 1 or more) in the previous stage of the pixel can be connected.
  • FIG. 13A is a plan layout diagram showing a specific configuration of the R pixel 8 ′ in the liquid crystal panel 100 ′.
  • the gate bus line 2 and the CS bus line 6 are formed using the first electrode material
  • the source bus line 4 is formed using the second electrode material.
  • ECLC1R ′ and ECLC2R ′ represent the subpixel electrode provided in the bright pixel 8a ′ and the subpixel electrode provided in the dark pixel 8b ′, respectively. Is formed using a third electrode material.
  • TFT 1R ′ and TFT 2R ′ are formed on the gate bus line 2n, and TFT 3R ′ is formed on the gate bus line 2 (n ⁇ 1). .
  • the source electrode and the drain electrode of each TFT ' are formed using the second electrode material.
  • an auxiliary capacitance is formed by the first electrode material constituting the CS bus line 61 and the second electrode material connected to the drain electrode of the TFT 1R ′.
  • Ccs1R is formed.
  • the auxiliary capacitance is formed by the first electrode material constituting the CS bus line 62 and the second electrode material connected to the drain electrode of the TFT 2R ′. Ccs2R is formed.
  • the sub-pixel electrode ECLC1R 'and the sub-pixel electrode ECLC2R' are formed in an upper layer (front side of the paper) than the second electrode material.
  • a liquid crystal layer corresponding to each sub-pixel is disposed on the front side of the sheet of FIG. 13A, and a counter electrode is disposed on the further front side.
  • FIG. 13A a part of the third electrode material is used for the contact portion Pcon insulated from the sub-pixel electrode ECLC2R ′ included in the dark pixel 8b ′.
  • FIG. 13B is a cross-sectional view of the contact portion Pcon along the cut surface shown in FIG. As shown in FIG. 13B, the third electrode material is used to electrically connect the first electrode material and the second electrode material in the contact portion Pcon. The contact portion Pcon electrically connects the source electrode of the TFT 3R and the CS bus line 62n.
  • each liquid crystal capacitor and the value of each storage capacitor have a dependency on the voltage applied to each, but in the present embodiment, they are not essential matters. So ignore such dependencies. However, this premise does not limit the present embodiment, and can be similarly applied to a case where there is such dependency.
  • FIG. 14 are timing charts schematically showing waveforms and timings of voltages when driving the liquid crystal panel 100 '.
  • FIG. 14A shows the voltage waveform Vs of the data signal supplied from the source driver 24 to the source bus line 4, and FIG. 14B shows the auxiliary supplied from the CS driver 26 to the CS bus line 61n.
  • the voltage waveform of the capacitive drive signal (that is, the voltage waveform of the CS bus line 61n) Vcs1 is shown
  • FIG. 14C shows the voltage waveform of the auxiliary capacitive drive signal that the CS driver 26 supplies to the CS bus line 62n (that is, the voltage waveform).
  • FIG. 14 (d) shows the voltage waveform Vgn of the gate signal supplied to the gate bus line 2n by the gate driver 22, and
  • FIG. 14 (e) shows the voltage waveform Vgs2 of the CS bus line 62n.
  • FIG. 14G Shows a voltage waveform of the subpixel electrode of the dark pixel 8b ′ included in the R pixel 8 ′.
  • Vlc2R ′ is shown.
  • the broken line in the figure indicates the voltage waveform COMMON (Vcom) of the counter electrode.
  • the voltage of the data signal is also applied to the auxiliary capacitor Ccs1R ′ of the bright pixel 8a ′ and the auxiliary capacitor Ccs2R ′ of the dark pixel 8b ′ via the source bus line 4, and the auxiliary capacitor of the bright pixel 8a ′. Both the voltage of the electrode and the auxiliary capacitance electrode of the dark pixel 10b ′ change to the voltage VsR ′ of the data signal.
  • the voltage Vg of the gate signal changes from VgH to VgL, whereby the TFT1R 'and the TFT2R' are simultaneously turned off (off state). Accordingly, the subpixel electrode of the bright pixel 8a ′, the subpixel electrode of the dark pixel 8b ′, the auxiliary capacitance electrode of the bright pixel 8a ′, and the auxiliary capacitance electrode of the dark pixel 8b ′ are all source bus line 4. And electrically insulated.
  • Vcs2 Vcom + (1/2) Vad (16b) It is. That is, the waveforms of the voltages Vcs1 and Vcs2 of the auxiliary capacitance drive signals supplied to the CS bus lines 61n and 62n illustrated here are full width Vad, and their phases are mutually opposite (180 ° different) rectangular waves (duty ratio) Is 1: 1).
  • the voltage Vcs1 of the CS bus line 61n connected to the auxiliary capacitor Ccs1 changes from Vcom ⁇ (1/2) Vad to Vcom + (1/2) Vad, and the CS connected to the auxiliary capacitor Ccs2 is changed.
  • the voltage Vcs2 of the bus line 62n changes from Vcom + (1/2) Vad to Vcom ⁇ (1/2) Vad.
  • K2R Ccs2R / (Clc2R ′ + Ccs2R) (18b) It is.
  • the voltage Vg (n + 1) of the gate signal changes from VgL to VgH at time T14 and changes from VgH to VgL at time T15.
  • the voltage Vlc1R ′ of the subpixel electrode included in the bright pixel 8a ′ is changed.
  • the voltage Vlc2R ′ of the subpixel electrode included in the dark pixel 8b ′ does not change.
  • Vcs1 changes from Vcom + (1/2) Vad to Vcom- (1/2) Vad
  • Vcs2 changes from Vcom- (1/2) Vad to Vcom + (1/2) Vad
  • Vlc1R. ', Vlc2R' also changes from the values represented by the equations (17a) and (17b) to the values represented by the equations (15a) and (15b), respectively.
  • Vcs1 changes from Vcom ⁇ (1/2) Vad to Vcom + (1/2) Vad
  • Vcs2 changes from Vcom + (1/2) Vad to Vcom ⁇ (1/2) Vad
  • Vlc1R. ', Vlc2R' also changes from the values represented by the equations (15a) and (15b) to the values represented by the equations (17a) and (17b), respectively.
  • V1R_f ′ Vlc1R′ ⁇ Vcom (20a)
  • V2R_f ′ VsR′ ⁇ K2R ⁇ (1 ⁇ 2) Vad ⁇ Vcom (21b) It becomes.
  • the effective voltage V1R_f ′ applied to the liquid crystal layer of the bright pixel 8a ′ is higher than the effective voltage V2R_f ′ applied to the liquid crystal layer of the dark pixel 8b ′.
  • the transmittance of the 'liquid crystal layer is larger than the transmittance of the liquid crystal layer of the dark pixel 8b'. Accordingly, in the 2D display mode, the bright pixel 8a 'exhibits higher luminance than the dark pixel 8b'.
  • V1B_f ′ VsB ′ + K1B ⁇ (1/2) Vad ⁇ Vcom (24a)
  • V2B_f ′ VsB′ ⁇ K2B ⁇ (1 ⁇ 2) Vad ⁇ Vcom (24b) It becomes.
  • the effective voltages V1G_f ′ and V1B_f ′ applied to the liquid crystal layers of the bright pixel 10a ′ and the bright pixel 12a ′ are applied to the liquid crystal layers of the dark pixel 10b ′ and the dark pixel 12b ′, respectively. Since the applied effective voltages V2G_f ′ and V2B_f ′ are higher, the transmittance of the liquid crystal layer of the bright pixel 10a ′ and the bright pixel 12a ′ is higher than the transmittance of the liquid crystal layer of the dark pixel 10b ′ and the dark pixel 12b ′, respectively. Also grows. Accordingly, in the 2D display mode, the bright pixel 10a 'and the bright pixel 12a' exhibit higher luminance than the dark pixel 10b 'and the dark pixel 12b', respectively.
  • FIG. 16 is a diagram schematically illustrating the luminance exhibited by each sub-pixel included in the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ in the 2D display mode.
  • each bright pixel exhibits higher brightness than each dark pixel.
  • each of the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ exhibits different luminance from each other, thereby improving the viewing angle characteristics. Play.
  • FIGS. 15A to 15G are timing charts schematically showing waveforms and timings of the respective voltages when driving the liquid crystal panel 100 '.
  • FIG. 15A shows the voltage waveform Vs of the data signal supplied from the source driver 24 to the source bus line 4, and FIG. 15B shows the auxiliary that the CS driver 26 supplies to the CS bus line 61n.
  • the voltage waveform of the capacitance drive signal (that is, the voltage waveform of the CS bus line 61n) Vcs1 is shown
  • FIG. 15C shows the voltage waveform of the auxiliary capacitance drive signal that the CS driver 26 supplies to the CS bus line 62n (that is, the voltage waveform).
  • FIG. 15D shows a voltage waveform Vgn of the gate signal supplied to the gate bus line 2n by the gate driver 22, and
  • FIG. 15E shows the voltage waveform Vgs2 of the CS bus line 62n.
  • FIG. 15G shows the voltage waveform of the subpixel electrode of the dark pixel 8b ′ included in the R pixel 8 ′.
  • Vlc2R ′ is shown.
  • the broken line in the figure indicates the voltage waveform COMMON (Vcom) of the counter electrode.
  • the voltage Vgn of the gate signal changes from VgL to VgH, whereby the TFT1R ′ and the TFT2R ′ are simultaneously turned on. Accordingly, the voltage of the data signal is applied to the subpixel electrode of the bright pixel 8a ′ and the subpixel electrode of the dark pixel 8b ′ via the source bus line 4, and the subpixel electrode of the bright pixel 8a ′ is applied.
  • the voltage Vgn of the gate signal changes from VgH to VgL, so that the TFT1R' and the TFT2R 'are simultaneously turned off. Accordingly, the sub-pixel electrode of the bright pixel 8 a ′ and the sub-pixel electrode of the dark pixel 8 b ′ are all electrically insulated from the source bus line 4.
  • the voltage Vg (n-1) of the gate signal changes from VgL to VgH, so that the TFT 3R' is turned on. Accordingly, the voltage Vlc2R ′ of the subpixel electrode of the dark pixel 8b ′ changes to the voltage Vcom ′′ of the CS bus line 62n. On the other hand, the voltage Vlc1R 'of the subpixel electrode of the bright pixel 8a' does not change.
  • Vlc1R ′ VsR ′ (28a)
  • Vlc2R ′ Vcom ′′ (28b)
  • the voltage Vg (n ⁇ 1) of the gate signal changes from VgH to VgL, so that the TFT 3R ′ is turned off.
  • V1R_b ′ VsR′ ⁇ Vcom (29a)
  • V2R_b ′ Vcom ′′ ⁇ Vcom (29b) It becomes.
  • Vcom ′′ ′′ ⁇ Vcom Vcom
  • the dark pixel 8b 'included in the R pixel 8' can be configured not to exhibit luminance.
  • V1B_b ′ VsB′ ⁇ Vcom (31a)
  • V2B_b ′ Vcom ′′ ⁇ Vcom (31b) It becomes.
  • the dark pixel 10b ′ and the dark pixel 12b ′ do not exhibit luminance. Can do.
  • the dark pixel 10b 'included in the G pixel 10' and the dark pixel 12b 'included in the B pixel 12' can be configured not to exhibit luminance.
  • FIG. 16B is a diagram schematically showing the luminance exhibited by each sub-pixel included in the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ in the 3D display mode.
  • the dark pixel 8a ′, the dark pixel 10b ′, and the dark pixel 12b ′ included in each of the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ are 3D. Does not exhibit brightness in display mode.
  • the dark pixels included in each of the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ function as a black matrix in the 3D display mode.
  • the display is compared with a configuration in which a black matrix that does not exhibit brightness in any display mode is disposed instead of the dark pixels.
  • the liquid crystal display device 1 ′ in the 3D display mode, a common data voltage is applied to the liquid crystal layer included in each subpixel by setting the scan direction to the reverse direction. Then, each dark pixel can function as a black matrix.
  • a data bus line for supplying the data voltage to the dark pixel and the light pixel is required.
  • the number of data bus lines can be reduced to half or less as compared with such a conventional configuration.
  • the dark pixels included in the liquid crystal display device 1 ′ do not exhibit luminance.
  • the present embodiment is not limited to this.
  • crosstalk can also be suppressed by setting the voltage Vcom ′′ supplied to the CS bus line 62n so that the luminance exhibited by the dark pixel is equal to or lower than a predetermined luminance.
  • crosstalk can also be suppressed by setting Vcom and Vcom ′′ so that the mathematical formula (A1) described in the first embodiment is satisfied.
  • the signals supplied to the CS bus line 61n and the CS bus line 62n in the 3D display mode are both the constant voltage Vcom ′′.
  • Vcom constant voltage
  • an auxiliary capacitance drive signal is supplied so that the voltage effectively applied to the subpixel electrode of the dark pixel is equal to or lower than the threshold voltage Vth of the liquid crystal layer. It is good. Further, an auxiliary capacitance drive signal having a waveform similar to the waveform shown in FIG. 14B may be supplied to the CS bus line 61n even in the 3D display mode.
  • the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ are exemplified as a configuration including two sub-pixels (bright pixel and dark pixel).
  • the embodiment is not limited to this.
  • the R pixel 8 ′, the G pixel 10 ′, and the B pixel 12 ′ may be configured to include sub-pixels (also referred to as intermediate pixels) other than dark pixels and bright pixels.
  • the intermediate pixel is preferably configured to exhibit lower luminance than the bright pixel in both the 2D display mode and the 3D display mode. With such a configuration, viewing angle characteristics can be improved in both the 2D display mode and the 3D display mode.
  • FIG. 17A is a diagram illustrating an equivalent circuit of the liquid crystal panel according to the present modification with respect to the R pixel 8 ′.
  • the liquid crystal panel according to this modification example has the same common bus as the liquid crystal panel 100 according to the first embodiment, in addition to the configuration of the liquid crystal panel 100 ′ described above. Line 5 is provided.
  • the liquid crystal panel according to this modification includes a constant voltage source 25 similar to that included in the liquid crystal panel 100.
  • the source electrode of the TFT 3R ' is connected to the common bus line 5m.
  • the configurations of the G pixel 10 'and the B pixel 12' of the liquid crystal panel according to this modification are the same.
  • FIG. 17 (b) is a plan layout diagram showing a specific configuration of the R pixel 8 'in the liquid crystal panel according to this modification.
  • the common bus line 5 is formed using the second electrode material, and is connected to the source electrode of the TFT 3R.
  • the liquid crystal panel according to this modification does not require the contact portion Pcon. Therefore, according to the liquid crystal panel according to the present modification, the configuration of each dark pixel is simplified as compared with the liquid crystal panel 100 ′. Further, since the contact portion Pcon is unnecessary, the area of the sub-pixel electrode in each dark pixel can be increased as compared with the liquid crystal panel 100 ', and the aperture ratio is improved.
  • the sub-pixel electrode ECLC2R ′ is formed in an upper layer (front side of the paper) than the second electrode material.
  • a liquid crystal layer corresponding to each sub-pixel is disposed on the front side of the sheet of FIG. 17B, and a counter electrode is disposed further on the front side.
  • the driving of the liquid crystal panel according to this modification is substantially the same as the driving of the liquid crystal panel 100 ′ described above, but differs in the following points.
  • the liquid crystal panel when the 3D display mode is selected, that is, when the scanning direction is the reverse direction, the liquid crystal panel is applied to the respective liquid crystal layers of the bright pixel 8a ′ and the dark pixel 8b ′.
  • Vcom ′ represents a voltage supplied to the common bus line 5. Equation (32a) is the same as Equation (29a). On the other hand, as shown in Expression (32b), in the present modification, V2R_b ′ is a function of the voltage Vcom ′ of the common bus line 5. Therefore, by setting Vcom′ ⁇ Vcom to be equal to or lower than the threshold voltage Vth of the liquid crystal layer, the dark pixel 8 b ′ can be prevented from exhibiting luminance.
  • the effective voltage applied to the liquid crystal layer of the dark pixel 10b ′ included in the G pixel 10 ′ and the effective voltage applied to the liquid crystal layer of the dark pixel 12b ′ included in the B pixel 12 ′ is selected. The same applies to the voltage.
  • each dark pixel when the 3D display mode is selected, each dark pixel can function as a black matrix.
  • FIG. 18A is a diagram showing an equivalent circuit of the liquid crystal panel according to this modification with respect to the R pixel 8 '.
  • a CS bus line 62m which is the m-th CS bus line 62, is formed substantially parallel to the source bus line 4m.
  • the CS bus line 62m is connected to the source electrode of the TFT 3R 'and the auxiliary capacitor counter electrode of the auxiliary capacitor Ccs2R.
  • Other configurations are the same as those of the liquid crystal panel 100 '.
  • the configurations of the G pixel 10 ′ and the B pixel 12 ′ of the liquid crystal panel according to this modification are the same as those of the R pixel 8 ′ of the liquid crystal panel according to this modification.
  • FIG. 18B is a plan layout diagram showing a specific configuration of the R pixel 8 ′ in the liquid crystal panel according to this modification.
  • the CS bus line 62m is formed using the second electrode material, and is connected to the source electrode of the TFT 3R ′ and the auxiliary capacitance counter electrode of the auxiliary capacitance Ccs2R. .
  • the liquid crystal panel according to this modification does not require the contact portion Pcon. Therefore, according to the liquid crystal panel according to the present modification, the configuration of each dark pixel is simplified as compared with the liquid crystal panel 100 ′. Further, since the contact portion Pcon is unnecessary, the area of the sub-pixel electrode in each dark pixel can be increased as compared with the liquid crystal panel 100 ', and the aperture ratio is improved.
  • the auxiliary capacitor Ccs2R is formed along the CS bus line 62m. Since the other configuration of the R pixel 8 'in the liquid crystal panel according to this modification is the same as that of the liquid crystal panel 100', the description thereof is omitted.
  • the sub-pixel electrode ECLC2R ′ is formed in an upper layer (front side of the sheet) than the second electrode material. Although not particularly illustrated, a liquid crystal layer corresponding to each sub-pixel is disposed on the front side of the sheet of FIG. 18B, and a counter electrode is disposed further on the front side.
  • the driving of the liquid crystal panel according to this modification is substantially the same as the driving of the liquid crystal panel 100 ′ already described, and thus the description thereof is omitted.
  • the CS bus line 62m is supplied with the same voltage as the CS bus line 62n described in (Basic operation of the liquid crystal display device 1 ′).
  • each dark pixel when the 3D display mode is selected, each dark pixel can function as a black matrix.
  • the gate electrode of the TFT 3 in the pixel defined by the nth gate bus line is connected to the (n ⁇ 1) th or earlier gate bus line, and forward scanning is performed in the 2D display mode.
  • the liquid crystal display device that performs reverse scanning in the display mode has been described as an example, but the above-described embodiment is not limited thereto.
  • the gate electrode of the TFT 3 in the pixel defined by the nth gate bus line may be connected to the (n + 1) th and subsequent gate bus lines.
  • the same effect as described above can be obtained by performing reverse scanning in the 2D display mode and performing forward scanning in the 3D display mode.
  • the liquid crystal display device is a liquid crystal display device capable of displaying in the first display mode and the second display mode, and is a matrix of N rows and M columns (N and M are natural numbers).
  • N and M are natural numbers.
  • the sub-pixel near the boundary that is the sub-pixel closest to the boundary between the first optical plate and the second optical plate is the vicinity of the boundary
  • Output transistor In the second display mode gate signals are sequentially supplied from the first row gate bus line to the Nth row gate bus line, and in the first display mode, the Nth row.
  • a gate signal is sequentially supplied from the gate bus line of the row to the gate bus line of the first row.
  • the liquid crystal display device configured as described above sequentially supplies gate signals from the first row gate bus lines to the Nth row gate bus lines in the second display mode. That is, by scanning in the forward direction, a common data voltage for each pixel is applied to each subpixel electrode via the data bus line. Thereby, an image is displayed when each sub-pixel exhibits a desired luminance.
  • the liquid crystal display device sequentially supplies gate signals from the Nth row gate bus lines to the first row gate bus lines, that is, scans in the reverse direction.
  • a gate signal is supplied to the gate bus line of the n-th row
  • a common data voltage is applied to the sub-pixel electrode of each sub-pixel in the pixel arranged in the n-th row.
  • the output transistor is turned on, so that the subpixel electrode of the subpixel near the boundary among the subpixels. Changes to the potential of the auxiliary bus line.
  • the liquid crystal layer for the boundary subpixels and the subpixels other than the boundary subpixels without increasing the number of data bus lines.
  • Different voltages can be applied to the liquid crystal layer.
  • the luminance exhibited by the boundary neighboring subpixels can be made smaller than the luminance exhibited by the subpixels other than the boundary neighboring subpixels.
  • the above-described crosstalk phenomenon can be suppressed by displaying a Patterned-Retarder-type stereoscopically viewable image.
  • the boundary neighboring sub-pixel in each pixel exhibits the same luminance as the sub-pixel other than the boundary neighboring sub-pixel in the pixel. Therefore, an image that is not stereoscopically visible in the second mode is displayed.
  • an image with higher luminance can be displayed compared to a conventional configuration including a black matrix that does not exhibit luminance. Can do.
  • a constant voltage is applied to the auxiliary bus line in both the first display mode and the second display mode.
  • the crosstalk phenomenon in the first display mode can be suppressed by a simple configuration in which a constant voltage is applied to the auxiliary bus line.
  • the drain electrode of the input transistor in the sub-pixel near the boundary is connected to the sub-pixel electrode in the sub-pixel near the boundary via an auxiliary capacitor.
  • the drain electrode of the input transistor in the sub-pixel near the boundary is connected to the sub-pixel electrode in the sub-pixel near the boundary via the auxiliary capacitor.
  • the data voltage supplied from the data bus line is distributed to the liquid crystal layer for the sub-pixel near the boundary and the auxiliary capacitor. Therefore, the absolute value of the voltage applied to the subpixel electrode in the boundary subpixel is smaller than the absolute value of the data voltage supplied from the data bus line.
  • the scanning direction is the forward direction
  • the voltage applied to the liquid crystal layer of the subpixel near the boundary does not change even when the output transistor is turned on. Therefore, according to the above configuration, in the second display mode, a luminance difference is generated between the pixel near the boundary in each pixel and the sub-pixel other than the pixel near the boundary in the pixel. improves.
  • the voltage applied to the liquid crystal layer of the subpixel near the boundary is the potential of the counter electrode.
  • a voltage defined by the potential difference between the auxiliary bus line and the auxiliary bus line is the potential of the auxiliary bus line.
  • the drain electrode of the output transistor in the boundary subpixel is connected to the subpixel electrode in the boundary subpixel via the auxiliary capacitor.
  • the data voltage supplied from the data bus line is the liquid crystal layer for the sub-pixel near the boundary, the auxiliary capacitor, Distributed against. Therefore, the absolute value of the voltage applied to the subpixel electrode in the boundary subpixel is smaller than the absolute value of the data voltage supplied from the data bus line.
  • the scanning direction is the forward direction
  • the voltage applied to the liquid crystal layer of the subpixel near the boundary does not change even when the output transistor is turned on. Therefore, according to the above configuration, in the second display mode, a luminance difference is generated between the pixel near the boundary in each pixel and the sub-pixel other than the pixel near the boundary in the pixel. improves.
  • the voltage applied to the liquid crystal layer of the subpixel near the boundary is the potential of the counter electrode.
  • a voltage defined by the potential difference between the auxiliary bus line and the auxiliary bus line is the potential of the auxiliary bus line.
  • the liquid crystal display device further includes a first auxiliary capacitance bus line and a second auxiliary capacitance bus line insulated from the first auxiliary capacitance bus line, wherein the sub-pixels near the boundary Are connected to the first auxiliary capacitance bus line via a first auxiliary capacitance, and the subpixel electrodes for subpixels other than the boundary neighboring subpixel are the second auxiliary capacitance.
  • the first auxiliary capacitance bus line and the second auxiliary capacitance bus line are different from each other in the second display mode.
  • An auxiliary capacitance signal having a waveform is supplied, and an auxiliary capacitance signal having a constant voltage level is supplied to the first auxiliary capacitance bus line and the second auxiliary capacitance bus line in the first display mode. That, it is preferable.
  • auxiliary capacitance signals having different waveforms are supplied to the first auxiliary capacitance bus line and the second auxiliary capacitance bus line.
  • the effective voltage applied to the liquid crystal layer for the subpixels near the boundary is different from the effective voltage applied to the liquid crystal layer for the subpixels other than the pixels near the boundary. Therefore, according to the above configuration, in the second display mode, a luminance difference is generated between the pixel near the boundary in each pixel and the sub-pixel other than the pixel near the boundary in the pixel. improves.
  • the voltage applied to the liquid crystal layer of the subpixel near the boundary is the potential of the counter electrode.
  • a voltage defined by the potential difference between the auxiliary bus line and the auxiliary bus line is the potential of the auxiliary bus line.
  • the auxiliary bus line includes a first auxiliary capacitor bus line and a second auxiliary capacitor bus line insulated from the first auxiliary capacitor bus line.
  • the source electrode of the output transistor is connected to the first auxiliary capacitance bus line
  • the subpixel electrode for the boundary subpixel is connected to the first auxiliary capacitance bus via the first auxiliary capacitance.
  • auxiliary capacitance signals having waveforms different from each other are supplied to the first auxiliary capacitance bus line and the second auxiliary capacitance bus line.
  • auxiliary capacitance signals having different waveforms are supplied to the first auxiliary capacitance bus line and the second auxiliary capacitance bus line.
  • the effective voltage applied to the liquid crystal layer for the subpixels near the boundary is different from the effective voltage applied to the liquid crystal layer for the subpixels other than the pixels near the boundary. Therefore, according to the above configuration, in the second display mode, a luminance difference is generated between the pixel near the boundary in each pixel and the sub-pixel other than the pixel near the boundary in the pixel. improves.
  • the voltage applied to the liquid crystal layer of the subpixel near the boundary is the potential of the counter electrode.
  • a voltage defined by the potential difference between the auxiliary bus line and the auxiliary bus line is the potential of the auxiliary bus line.
  • the auxiliary bus line includes a first auxiliary capacitor bus line and a second auxiliary capacitor bus line that is electrically independent of the first auxiliary capacitor bus line. Since the source electrode of the output transistor is connected to the first auxiliary capacitor bus line, the source electrode of the output transistor is connected to a bus line other than the first auxiliary capacitor bus line. Compared to the circuit configuration, the circuit configuration and the bus line configuration can be simplified.
  • the maximum luminance value of the sub-pixels near the boundary is the luminance value of sub-pixels other than the sub-pixels near the boundary. Preferably it is less than 20 percent of the maximum value.
  • the inventor said that the observer recognizes the boundary vicinity pixel as a black pixel when the maximum brightness value of the boundary vicinity pixel is less than 20% of the maximum brightness value of the boundary vicinity pixel. Obtained knowledge.
  • the maximum luminance value exhibited by the boundary neighboring subpixels is less than 20% of the maximum luminance value exhibited by subpixels other than the boundary neighboring subpixels. Recognizes the pixel near the boundary as a black pixel, that is, a black matrix.
  • a boundary between the boundary neighboring subpixel and a subpixel adjacent to the boundary neighboring subpixel is formed along a row direction.
  • a direction perpendicular to both the normal direction of the liquid crystal panel and the column direction of the liquid crystal panel is an angle formed by a straight line passing through both of the boundaries near the boundary subpixel and the normal direction of the liquid crystal panel.
  • the light is emitted from the sub-pixel near the boundary in the line-of-sight direction, and any of the first optical plate and the second optical plate in the optical panel is obtained.
  • the maximum value of the luminance of the image light transmitted through one of the optical plates is emitted in the line-of-sight direction from a pixel adjacent to the sub-pixel near the boundary via a boundary in the row direction, and It is preferably less than 20 percent of the maximum value of the luminance of the image light transmitted through one of the optical plates.
  • the inventor also provides image light emitted from the pixels near the boundary and transmitted through one of the first optical plate and the second optical plate in the optical panel.
  • the luminance is the maximum of the luminance of the image light that is emitted in the line-of-sight direction from a pixel adjacent to the boundary neighboring sub-pixel through the boundary in the row direction and transmitted through the one optical plate in the optical panel.
  • the observer has obtained knowledge that the boundary neighboring pixels are recognized as black pixels.
  • the observer recognizes the boundary neighboring pixels as black pixels, that is, a black matrix.
  • the occurrence of crosstalk can be more effectively suppressed by causing the boundary vicinity subpixels to function as a black matrix.
  • the display device is a display device including the liquid crystal display device, and displays a stereoscopically visible image in the first display mode.
  • the display device configured as described above, in the first display mode, a stereoscopically viewable image is displayed, so that occurrence of crosstalk can be suppressed.
  • the present invention can be suitably applied to a liquid crystal display device that displays an image in a stereoscopic manner using the Patterned-Retarder method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶表示装置(1)は、行列状に配置された複数の画素を有する液晶パネルと、位相差板(RR)および位相差板(RL)が液晶パネルの奇数行および偶数行に対応する位置に形成されているPatterned Retarder と、を有しており、第n行目の画素の有する各副画素のうち、位相差板(RR)と位相差板(RL)との境界に最も近い副画素である境界近傍副画素の副画素電極は、第n-1行以前のゲートバスラインに接続されたゲート電極を有するトランジスタを介して補助バスラインに接続されており、第2の表示モードにおいては、第1行から第N行のゲートバスラインに対して、順次ゲート信号を供給し、第1の表示モードにおいては、第N行から第1行のゲートバスラインに対して、順次ゲート信号を供給する。

Description

液晶表示装置、および、ディスプレイ装置
 本発明は、液晶を用いて画像を表示する液晶表示装置に関する。特に、Patterned Retarder方式を用いて、画像を立体視可能に表示する液晶表示装置に関する。また、そのような液晶表示装置を備えているディスプレイ装置に関する。
 近年、画像を立体視不能に表示する(以下、「2D(平面)画像を表示する」とも言う)機能に加え、画像を立体視可能に表示する(以下、「3D(立体)映像を表示する」とも言う)機能を有する液晶表示装置が実現されている。
 立体映像を表示する技術としては、アクティブシャッター方式、裸眼レンチキュラー(lenticular)方式、及び、Patterned Retarder方式(偏光方式、PR方式とも呼ぶ)等が知られている。何れの方式においても、右目用画像がユーザの右目のみに提示され、左目用画像がユーザの左目のみに提示されることによって、ユーザは画像を立体的に視認することができる。
 アクティブシャッター方式を用いる液晶表示装置では、左目用のフレーム(L用フレーム)と右目用のフレーム(R用フレーム)とが交互に表示される。ユーザは、当該液晶表示装置に表示される画像を、L用フレームとR用フレームとの切り替えに同期してシャッター動作が行われる左目用レンズと右目用レンズとを有する3D用メガネを介して観測することによって、当該画像を立体的に視認することができる。
 裸眼レンチキュラー方式を用いる液晶表示装置は、左目用画像と右目用画像とを、液晶パネルの正面側に形成されたレンチキュラーレンズを介してユーザの左目と右目とに個別に提示する。これにより、ユーザは、3D用メガネを用いることなく、当該画像を立体的に視認することができる。
 Patterned Retarder方式を用いる液晶表示装置では、奇数番目の水平走査線によって画定される画素により右目用の画像が表示され、偶数番目の水平走査線によって画定される画像により左目用の画像が表示される。
 以下では、図19の(a)~(b)、および、図20を参照して、Patterned Retarder方式についてより具体的に説明を行う。図19の(a)は、Patterned Retarder方式を用いる従来の液晶表示装置の備えるバックライトユニット50、液晶パネル60、および、Patterned Retarder70を示す分解斜視図である。
 バックライトユニット50は、液晶パネル60に対して、該液晶パネル60の背面からバックライトを供給する。液晶パネル60には、水平走査線(横方向走査線)HL1~HLN(Nは水平走査線の総数)、および、垂直走査線(縦方向走査線)VL1~VLM(Mは垂直走査線の総数)のそれぞれによって画定される画素が形成されている。液晶パネル60は、各画素の備える液晶の配向を制御することによって、バックライトの透過率を画素毎に制御することができる。また、液晶パネル60は、奇数番目の水平走査線HL1、HL3、…によって画定される画素によって、右目用の画像を表示し、偶数番目の水平走査線HL2、HL4、…によって画定される画素によって、左目用の画像を表示する。
 Patterned Retarder70は、水平走査線方向を長手方向とする位相差板であって、互いに特性の異なる2種類の位相差板RRおよびRLから構成されている。ここで、位相差板RRは、直線偏光した光を右向きに円偏光した光に変換するものであり、位相差板RLは、直線偏光した光を左向きに円偏光した光に変換するものである。図19の(a)に示すように、奇数番目の水平走査線HL1、HL3、…によって画定される画素の正面側には、位相差板RRが配置され、偶数番目の水平走査線HL2、HL4、…によって画定される画素の正面側には、位相差板RLが配置されている。
 したがって、奇数番目の水平走査線によって画定される画素によって表示される右目用画像は、Patterned Retarderを透過した後、右向きに円偏光した光によって表され、偶数番目の水平走査線によって画定される画素によって表示される左目用画像は、Patterned Retarderを透過した後、左向きに円偏光した光によって表される。
 図19の(b)は、Patterned Retarder方式において用いられる3D用メガネ80を示している。図19の(b)に示すように、3D用メガネ80は、右目用レンズと左目用レンズとを備えている。右目用レンズは、右向きに円偏光した光のみを透過するものであり、左目用レンズは、左向きに円偏光した光のみを透過するものである。したがって、ユーザは、当該3D用メガネ80を使用することによって、液晶表示装置の表示する画像のうち、奇数番目の水平走査線によって画定される画素によって表示される右目用画像を、右目のみによって観測し、偶数番目の水平走査線によって画定される画素によって表示される左目用画像を、左目のみによって観測することができる。これにより、ユーザは、当該画像を立体的に視認することができる。
 また、Patterned Retarder方式の液晶表示装置は、奇数番目の水平走査線によって画定される画素、および、偶数番目の水平走査線によって画定される画素の双方を用いて、2D画像を表示することもできる。この場合、ユーザは、3D用メガネを用いることなく、当該液晶表示装置の表示する画像を観測すればよい。
 また、Patterned Retarder方式に用いられる3D用メガネ80は、アクティブシャッター方式に用いられる3D用メガネのような電気的な制御が不要なので、簡易な構成によって実現することができる。
 一方で、Patterned Retarder方式では、主として、液晶パネルを構成するGlass層の厚みが有限であることに起因して、クロストークと呼ばれる現象が生じることが知られている。
 ここで、クロストークとは、ユーザが斜め上側から液晶パネルを観測する場合、または、斜め下側から液晶パネルを観測する場合に、奇数番目の水平走査線によって画定される画素により表示される右目用画像の一部が、偶数番目の水平走査線によって画定される画素の正面側に配置された左目用位相差板を透過した後に観測され、偶数番目の水平走査線によって画定される画素により表示される左目用画像の一部が、奇数番目の水平走査線によって画定される画素の正面側に配置された右目用位相差板を透過した後に観測されることにより、左向きに円偏光した光によって表される左目用画像の中に、右目用画像が混在し、右向きに円偏光した光によって表される右目用画像の中に、左目用画像が混在してしまうという現象である。
 従来、液晶パネルおよびPatterned Retarderに、それぞれ水平走査線に沿ってブラックマトリックスおよびブラックストライプを形成することによって、上記のクロストークを抑制する構成が知られている。
 図20は、従来の液晶表示装置の備えるバックライトユニット50、液晶パネル60、および、Patterned Retarder70の垂直走査線方向(縦方向)に沿った断面図であって、n番目の水平走査線によって画定される画素、および、n+1番目の水平走査線によって画定される画素の周辺の構成を示す図である。図20においては、ブラックマトリックスおよびブラックストライプによってクロストークを抑制するように構成された液晶パネル60、および、Patterned Retarder70が示されている。
 図20に示すように、液晶パネル60の背面側(図20において向かって左側)にはバックライトユニット50が配置され、液晶パネル60の正面側(図20において向かって右側)には、Patterned Retarder70が配置されている。また、液晶パネル60は、第1の偏光板60a、TFT-Glass60b、TFT基板60c、カラーフィルタ60d、CF-Glass60e、第2の偏光板60fより構成されている。
 図20に示すように、TFT基板60cにおいて、n番目の水平走査線によって画定される画素Pnと、n+1番目の水平走査線によって画定される画素Pn+1との間には、ブラックマトリックスBMが形成されている。また、当該ブラックマトリックスBMの正面側には、カラーフィルタ60d内にブラックマトリックスBM’が形成されており、Patterned Retarder70内にブラックストライプBSが形成されている。
 このようなブラックマトリックスおよびブラックストライプによって、図20に示すように、液晶パネル60の法線方向と視線方向とのなす角が、垂直走査線方向にα度以内である場合に、クロストークの発生を抑制することができる。
 しかしながら、このような構成では、ブラックマトリックスおよびブラックストライプによって開口率が低下するため、画像の輝度が低下するという問題がある。
 非特許文献1には、各画素を垂直走査線方向に2つの副画素(上側の副画素および下側の副画素)に分割することによって、ブラックストライプを用いることなくクロストークを抑制する技術が提案されている。この技術においては、2D画像を表示する場合には、双方の副画素に、表示画像用データ電圧が供給され、3D画像を表示する場合には、上側の副画素のみに表示画像用データ電圧が供給され、下側の副画素には、黒表示用のデータ電圧が供給される。黒表示用のデータ電圧が供給される当該下側の副画素は、ブラックマトリックスとして機能する。
 したがって、非特許文献1に開示された技術によれば、2D画像を表示する場合に画像の輝度が低下することがない。また、3D画像を表示する場合には、ブラックマトリックスによってクロストークの発生を抑制することができる。
"A Nobel Polarizer Glasses-type 3D Displays with a Patterned Retarder", 2010 SID International Symposium, Washington State Convention Center, Seattle, Washington USA, May 25 2010
 しかしながら、非特許文献1に開示された技術においては、3D画像を表示する場合、上側の副画素と下側の副画素とに対して、互いに異なるデータ電圧を供給する必要があるため、2D画像のみを表示する構成に比べて、2倍の本数のデータライン(データバスライン、ソースバスライン)が必要となり、液晶パネルの設計が複雑になるという問題を有している。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、データバスラインの本数を増大させることなく、クロストークの発生を抑制することのできる液晶表示装置を実現することにある。
 上記の問題を解決するために、本発明に係る液晶表示装置は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、N行M列(N及びMは自然数)の行列状に配置された複数の画素と、補助バスラインと、各行に配置されたゲートバスラインと、各列に配置されたデータバスラインと、前記複数の画素のうち第n行第m列(n及びmはそれぞれ1≦n≦N及び1≦m≦Mを満たす自然数)の画素について、複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、前記副画素毎に配置された入力トランジスタであって、前記副画素電極に接続されたドレイン電極と、第m列のデータバスラインに接続されたソース電極と、第n行のゲートバスラインに接続されたゲート電極とを有する入力トランジスタと、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、第n行第m列の画素についての複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素は、当該境界近傍副画素についての副画素電極に電気的に接続されたドレイン電極と、前記補助バスラインに接続されたソース電極と、第n-1行以前のゲートバスラインに接続されたゲート電極と、を備える出力トランジスタを更に有しており、第2の表示モードにおいては、第1行のゲートバスラインから第N行のゲートバスラインに対して、順次ゲート信号を供給し、第1の表示モードにおいては、第N行のゲートバスラインから第1行のゲートバスラインに対して、順次ゲート信号を供給する、ことを特徴としている。
 以上のように構成された本発明に係る液晶表示装置は、上記第2の表示モードにおいて、第1行のゲートバスラインから第N行のゲートバスラインに対して順次ゲート信号を供給することによって、すなわち、順方向にスキャンすることによって、上記データバスラインを介して各副画素電極に対して画素毎に共通のデータ電圧を印加する。これにより、各副画素が所望の輝度を呈することによって、画像が表示される。
 一方で、上記液晶表示装置は、上記第1の表示モードにおいては、第N行のゲートバスラインから第1行のゲートバスラインに対して順次ゲート信号を供給する、すなわち、逆方向にスキャンする。ここで、第n行に配置された画素における各副画素の副画素電極には、当該第n行のゲートバスラインにゲート信号が供給されたときに、当該画素について共通のデータ電圧が印加され、それに引き続き、第n-1行以前のゲートバスラインにゲート信号が供給されたときに、上記出力トランジスタがオン状態に変化することによって、当該各副画素のうち境界近傍副画素の副画素電極の電位が、上記補助バスラインの電位へと変化する。
 したがって、上記のように構成された本発明に係る液晶表示装置によれば、データバスラインの本数を増やすことなく、上記境界近傍副画素についての液晶層と、上記境界近傍副画素以外の副画素についての液晶層とに対して、互いに異なる電圧を印加することができる。また、上記補助バスラインの電位を適宜設定することによって、上記境界近傍副画素の呈する輝度を、上記境界近傍副画素以外の副画素の呈する輝度に比べて小さくすることができる。
 また、上記第1のモードにおいて、Patterned Retarder方式の立体視可能な画像を表示することにより、上述したクロストークの現象を抑制することができる。
 また、上記第2の表示モードにおいては、各画素における境界近傍副画素は、該画素における境界近傍副画素以外の副画素と同じ輝度を呈するので、上記第2のモードにおいて立体視不能な画像を表示することにより、立体視不能な画像を表示するときにも立体視可能な画像を表示するときにも輝度を呈しないブラックマトリックスを備える従来の構成に比べて、輝度の高い画像を表示することができる。
 以上のように、本発明に係る液晶表示装置は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、N行M列(N及びMは自然数)の行列状に配置された複数の画素と、補助バスラインと、各行に配置されたゲートバスラインと、各列に配置されたデータバスラインと、前記複数の画素のうち第n行第m列(n及びmはそれぞれ1≦n≦N及び1≦m≦Mを満たす自然数)の画素について、複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、前記副画素毎に配置された入力トランジスタであって、前記副画素電極に接続されたドレイン電極と、第m列のデータバスラインに接続されたソース電極と、第n行のゲートバスラインに接続されたゲート電極とを有する入力トランジスタと、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、第n行第m列の画素についての複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素は、当該境界近傍副画素についての副画素電極に電気的に接続されたドレイン電極と、前記補助バスラインに接続されたソース電極と、第n-1行以前のゲートバスラインに接続されたゲート電極と、を備える出力トランジスタを更に有しており、第2の表示モードにおいては、第1行のゲートバスラインから第N行のゲートバスラインに対して、順次ゲート信号を供給し、第1の表示モードにおいては、第N行のゲートバスラインから第1行のゲートバスラインに対して、順次ゲート信号を供給する、ことを特徴としている。
 上記のように構成された本発明に係る液晶表示装置によれば、データバスラインの本数を増大させることなく、上記第1の表示モードにおいて立体視可能な画像を表示する際のクロストークの発生を抑制することができる。
本発明の第1の実施形態に係る液晶表示装置の備える液晶パネルの等価回路を、各ドライバ、定電圧源、および、制御回路と共に示す図である。 本発明の第1の実施形態に係る液晶表示装置の全体構成を示す図である。 本発明の第1の実施形態に係る液晶表示装置を説明するための図であって、(a)は、実施形態に係る液晶表示装置の備える液晶パネルの周辺の構成を示す分解斜視図であり、(b)は、実施形態に係る液晶表示装置と共に用いられる3D用メガネを示す図であり、(c)は、実施形態に係る液晶表示装置を備えている液晶カラーテレビ受像機の概観図である。 本発明の第1の実施形態に係る液晶表示装置の備える液晶パネルの具体的な構成を示す平面レイアウト図である。 本発明の第1の実施形態に係る液晶表示装置を2D表示モードにて駆動する際の各電圧の波形およびタイミングを模式的に示すタイミングチャートであり、(a)は、ソースドライバがソースバスラインに供給するデータ信号の電圧波形を示しており、(b)は、ゲートドライバがn本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(c)は、ゲートドライバがn+1本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(d)は、赤色を表示する画素の備える明画素の副画素電極の電圧波形を示しており、(e)は、赤色を表示する画素の備える暗画素の副画素電極の電圧波形を示している。 本発明の第1の実施形態に係る液晶表示装置を3D表示モードにて駆動する際の各電圧の波形およびタイミングを模式的に示すタイミングチャートであり、(a)は、ソースドライバがソースバスラインに供給するデータ信号の電圧波形を示しており、(b)は、ゲートドライバがn本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(c)は、ゲートドライバがn-1本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(d)は、赤色を表示する画素の備える明画素の副画素電極の電圧波形を示しており、(e)は、赤色を表示する画素の備える暗画素の副画素電極の電圧波形を示している。 本発明の第1の実施形態に係る液晶表示装置の備える各副画素の呈する輝度を模式的に示す図であり、(a)は、2D表示モードにて各画素が呈する輝度を模式的に示しており、(b)は、3D表示モードにて各画素が呈する輝度を模式的に示している。 本発明の第1の実施形態に係る液晶表示装置において、3D表示モードが選択された場合の、バックライトユニット、液晶パネル、および、Patterned Retarderの、ソースバスラインに平行な直線に沿った断面図である。 暗画素の呈する輝度が所定の輝度以下となるように第1の実施形態に係る液晶表示装置を駆動する場合を説明するための図であって、(a)は、液晶パネル、および、Patterned Retarderの一部を示す断面図であり、(b)は、視線方向が、液晶パネルの法線方向である場合に、観測者が観測する画像光を示す図であり、(c)は、視線方向と液晶パネルの法線方向とのなす角度であって、液晶パネルの縦方向に沿った角度が、所定の角度β(beta)である場合に、観測者が観測する画像光を示す図であり、(d)は、視線方向と液晶パネルの法線方向とのなす角度であって、液晶パネルの縦方向に沿った角度が、所定の角度より大きい場合に、観測者が観測する画像光を示す図である。 本発明の第1の実施形態の第1の変形例に係る液晶パネルの構成を示す図であって、(a)は、当該変形例に係る液晶パネルの等価回路図であり、(b)は、当該変形例に係る液晶パネルの具体的な構成を示す平面レイアウト図である。 本発明の第1の実施形態の第2の変形例に係る液晶パネルの構成を示す図であって、(a)は、当該変形例に係る液晶パネルの等価回路図であり、(b)は、当該変形例に係る液晶パネルの具体的な構成を示す平面レイアウト図である。 本発明の第2の実施形態に係る液晶表示装置の備える液晶パネルの等価回路を、各ドライバ、および、制御回路と共に示す図である。 本発明の第2の実施形態に係る液晶パネルの具体的な構成を示す図であり、(a)は、当該液晶パネルの平面レイアウト図であり、(b)は、当該液晶パネルにおけるコンタクト部を示す断面図である。 本発明の第2の実施形態に係る液晶表示装置を2D表示モードにて駆動する際の各電圧の波形およびタイミングを模式的に示すタイミングチャートであり、(a)は、ソースドライバがソースバスラインに供給するデータ信号の電圧波形を示しており、(b)は、CSドライバが第1のCSバスラインに供給する補助容量駆動信号の波形を示しており、(c)は、CSドライバが第2のCSバスラインに供給する補助容量駆動信号の波形を示しており、(d)は、ゲートドライバがn本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(e)は、ゲートドライバがn+1本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(f)は、赤色を表示する画素の備える明画素の副画素電極の電圧波形を示しており、(g)は、赤色を表示する画素の備える暗画素の副画素電極の電圧波形を示している。 本発明の第2の実施形態に係る液晶表示装置を3D表示モードにて駆動する際の各電圧の波形およびタイミングを模式的に示すタイミングチャートであり、(a)は、ソースドライバがソースバスラインに供給するデータ信号の電圧波形を示しており、(b)は、CSドライバが第1のCSバスラインに供給する補助容量駆動信号の波形を示しており、(c)は、CSドライバが第2のCSバスラインに供給する補助容量駆動信号の波形を示しており、(d)は、ゲートドライバがn本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(e)は、ゲートドライバがn-1本目のゲートバスラインに供給するゲート信号の電圧波形を示しており、(f)は、赤色を表示する画素の備える明画素の副画素電極の電圧波形を示しており、(g)は、赤色を表示する画素の備える暗画素の副画素電極の電圧波形を示している。 本発明の第2の実施形態に係る液晶表示装置の備える各副画素の呈する輝度を模式的に示す図であり、(a)は、2D表示モードにて各画素が呈する輝度を模式的に示しており、(b)は、3D表示モードにて各画素が呈する輝度を模式的に示している。 本発明の第2の実施形態の第1の変形例に係る液晶パネルの構成を示す図であって、(a)は、当該変形例に係る液晶パネルの等価回路図であり、(b)は、当該変形例に係る液晶パネルの具体的な構成を示す平面レイアウト図である。 本発明の第2の実施形態の第2の変形例に係る液晶パネルの構成を示す図であって、(a)は、当該変形例に係る液晶パネルの等価回路図であり、(b)は、当該変形例に係る液晶パネルの具体的な構成を示す平面レイアウト図である。 従来の液晶表示装置を説明するための図であって、(a)は、従来の液晶表示装置の備えるバックライト、液晶パネル、および、Patterned Retarderを示す分解斜視図であり、(b)は、従来の液晶表示装置と共に用いられる3D用メガネを示す図である。 従来の液晶表示装置における、バックライトユニット、液晶パネル、および、Patterned Retarderの、垂直走査線に平行な直線に沿った断面図である。
 〔実施形態1〕
 本発明に係る第1の実施形態について、図1~図9を参照して以下に説明する。以下の説明では、誘電異方性が負の液晶材料を用いた垂直配向型液晶表示装置(VA(Vertical Alignment)型の液晶表示装置)を例示するが、本発明はこれに限定されず、例えば、TN(Twisted Nematic)型やIPS(In-Plane Switching)型の液晶表示装置にも適用できる。また、以下の説明においては、液晶層に印加される電圧の絶対値が大きい程、液晶層の透過率が高くなるノーマリーブラック型の液晶表示装置を例示するが、本実施形態はこれに限定されるものではなく、液晶層に印加される電圧の絶対値が大きい程、液晶層の透過率が低くなるノーマリーホワイト型の液晶表示装置に対しても適用できる。
 (液晶表示装置1の構成)
 まず、本実施形態に係る液晶表示装置1の全体構成について図2~図3を参照して説明する。図2は、本実施形態に係る液晶表示装置1の全体構成を示す図である。図2に示すように、液晶表示装置1は、制御回路20、ゲートドライバ22、ソースドライバ24、定電圧源25、および、液晶パネル100を備えている。
 液晶表示装置1は、立体視不能な画像を表示する2D表示モード、および、立体視可能な画像を表示する3D表示モードの何れかのモードで動作する。液晶表示装置1は、ユーザにより、当該2つの表示モードの何れか一方を選択できるように構成してもよいし、表示すべき画像を示す画像データに関連付けられたモード情報を参照することによって、当該2つの表示モードの何れか一方を自動的に選択する構成としてもよい。
 なお、2D表示モード及び3D表示モードの何れか一方を第1の表示モードをも称し、他方と第2の表示モードとも称する。
 図2に示すように、液晶表示装置1は、液晶パネル100において、複数のゲートバスライン2、複数のソースバスライン4、複数のコモンバスライン(補助バスライン)5、および、各ゲートバスラインと各ソースバスラインとによって画定される画素を備えている。なお、本実施形態においては、ゲートバスライン2の総数はN(Nは自然数)であり、ソースバスライン4の総数はMであり、コモンバスライン5の総数はM(Mは自然数)である。
 図2において、ゲートバスライン2nは、n(ただしnは1≦n≦Nを満たす自然数)本目のゲートバスライン2を示している。また、ソースバスライン4mは、m(ただしmは1≦m≦Mを満たす自然数)本目のソースバスライン4mを示している。また、コモンバスライン5mは、m本目のコモンバスライン5を示している。
 以下では、ゲートバスライン2nによって画定される各画素のことを、n番目の水平走査線HLnによって画定される各画素とも表現し、ソースバスライン4mによって画定される各画素のことを、m番目の垂直走査線VLmによって画定される各画素とも表現することがある。
 (ドライバ)
 図2に示すように、液晶表示装置1の備える液晶パネルには、各ゲートバスライン2にゲート信号を供給するゲートドライバ22と、各ソースバスライン4にデータ信号を供給するソースドライバ24と、各コモンバスライン5に一定の電圧を供給する定電圧源25とが、それぞれ接続されている。これらのドライバはいずれも、制御回路20から出力された制御信号に基づいて動作する。
 (制御回路)
 制御回路20は、表示すべき画像を示す画像データに含まれる、各絵素についての輝度を示す輝度情報、および、各絵素についての色差を示す色差情報から、各画素についての階調値を算出する。ここで、絵素とは、相異なる複数の色を個別に表示する画素から構成される単位で、本実施形態においては、後述するように、1絵素は、赤色を表示する画素、緑色を表示する画素、および、青色を表示する画素から構成されている。
 また、制御回路20は、ゲートドライバ22が供給するゲート信号、および、ソースドライバ24が供給するデータ信号のタイミングを制御する。
 本実施形態においては、2D表示モードが選択されている場合、ゲートドライバ22は、各ゲートバスライン2に対して、スキャン方向が順方向となるように、ゲート信号を供給し、3D表示モードが選択されている場合、ゲートドライバ22は、各ゲートバスライン2に対して、スキャン方向が逆方向となるように、ゲート信号を供給する。
 ここで、スキャン方向が順方向である(順スキャンとも呼ぶ)とは、1番目のゲートバスライン21からN番目のゲートバスライン2Nに対して、順次ゲート信号を供給することを指し、スキャン方向が逆方向である(逆スキャンとも呼ぶ)とは、N番目のゲートバスライン2Nから1番目のゲートバスライン21に対して、順次ゲート信号を供給することを指す。
 したがって、スキャン方向が順方向である場合には、ゲートバスライン2nに対してゲート信号が供給された後に、ゲートバスライン2(n+1)に対してゲート信号が供給され、スキャン方向が逆方向である場合には、ゲートバスライン2nに対してゲート信号が供給された後に、ゲートバスライン2(n-1)に対してゲート信号が供給される。
 (液晶パネル100の周辺構成)
 図3の(a)は、液晶表示装置1における液晶パネル100の周辺の構成を示す分解斜視図である。図3の(a)に示すように、液晶表示装置1は、液晶パネル100の背面側にバックライトユニットBLUを有しており、液晶パネル100の正面側にPatterned Retarder200を有している。バックライトユニットBLU、液晶パネル100、制御回路20(図3の(a)においては図示せず)、各ドライバ(図3の(a)においては図示せず)、および、Patterned Retarder200は、背面ケースに格納される。また、Patterned Retarder200の正面側は、透明な保護パネル(図示せず)によってカバーされる。なお、以下では、液晶パネル100とPatterned Retarder200とを合わせて表示パネルと呼ぶこともある。
 バックライトユニットBLUは、液晶パネル100に対して、該液晶パネル100の背面からバックライトを供給する。バックライトユニットBLUは、例えば、白色を発光する複数のLED(Light Emitting Diode:発光ダイオード)を液晶パネル100の背面に略一様に配置する構成(直下型LEDの構成)とすることができる。この場合、バックライトユニットBLUは、拡散板を備える構成とし、上記複数のLEDが発光する光を、拡散板によって一様なバックライトとした後、液晶パネル100の背面に照射する構成とすることができる。これにより、バックライトの輝度ムラを抑制することができると共に、光の利用効率を高めることができるため消費電力を低減することができる。
 また、バックライトユニットBLUは、LEDおよび蛍光管などのバックライト用の光源を液晶パネル100のエッジ付近に配置する構成(エッジライト型の構成)としてもよい。この場合、バックライトユニットBLUは、拡散板の背面に、導光板、および、反射板をさらに備える構成とし、光源が発光する光を導光板および反射板によって一様なバックライトとした後、液晶パネル100の背面に照射する構成とすればよい。
 Patterned Retarder200は、ゲートバスラインと平行な方向を長手方向とする位相差板であって、互いに特性の異なる2種類の位相差板RRおよびRLから構成されている。ここで、位相差板RRは、直線偏光した光を右向きに円偏光した光に変換するものであり、位相差板RLは、直線偏光した光を左向きに円偏光した光に変換するものである。図3の(a)に示すように、奇数番目の水平走査線HL1、HL3、・・・によって画定される画素の正面側には、位相差板RRが配置され、偶数番目の水平走査線HL2、HL4、・・・によって画定される画素の正面側には、位相差板RLが配置されている。
 したがって、奇数番目のゲートバスラインによって画定される画素によって表示される画像は、Patterned Retarder200を透過した後、右向きに円偏光した光によって表され、偶数番目のゲートバスラインによって画定される画素によって表示される画像は、Patterned Retarder200を透過した後、左向きに円偏光した光によって表される。
 なお、位相差板RRおよび位相差板RLは、例えば、互いに光学軸の異なるλ/4波長板によって構成することができる。
 また、位相差板RRおよび位相差板RLは、より一般に、入射光から互いに異なる偏光状態の出射光を生成する光学板であると表現することができる。
 また、位相差板RRおよび位相差板RLの何れか一方を、第1の光学板とも称し、他方を第2の光学板とも称する。第1の光学板によって変換された光を第1の偏光状態の出射光とも称し、第2の光学板によって変換された光を第2の偏光状態の出射光とも称する。
 図3(b)は、本実施形態において用いられる3D用メガネ300を示している。図3(b)に示すように、3D用メガネ300は、右目用レンズと左目用レンズとを備えている。
 右目用レンズは、右向きに円偏光した光のみを透過するものであり、左目用レンズは、左向きに円偏光した光のみを透過するものである。したがって、ユーザは、当該3D用メガネ300を使用することによって、液晶表示装置1の表示する画像のうち、奇数番目のゲートバスラインによって画定される画素によって表示される画像を、右目のみによって観測し、偶数番目のゲートナスラインによって画定される画素によって表示される画像を、左目のみによって観測することができる。
 したがって、奇数番目のゲートバスラインによって画定される画素、および、偶数番目のゲートバスラインによって画定される画素を用いて、それぞれ、右目用画像、および、当該右目用画像と視点の異なる左目用画像を表示することによって、ユーザは当該画像を立体的に視認することができる。
 また、液晶表示装置1は、奇数番目のゲートバスラインによって画定される画素、および、偶数番目のゲートバスラインによって画定される画素の双方を用いて、2D画像を表示することもできる。この場合、ユーザは、3D用メガネ300を用いることなく、液晶表示装置1の表示する画像を観測すればよい。
 なお、本実施形態に用いられる3D用メガネ300は、アクティブシャッター方式に用いられる3D用メガネのような電気的な制御が不要なので、簡易な構成によって実現することができる。
 図3(c)は、本実施形態に係る液晶表示装置1を備えている液晶カラーテレビ受像機の概観図である。当該液晶カラーテレビ受像機の表示部には、液晶表示装置1が実装されている。本発明に係る液晶表示装置1は、液晶カラーテレビ受像機以外にも、例えば、ノートパソコン、各種ディスプレイ、携帯電話端末、および、携帯情報端末などにも用いることができる。
 (画素構造)
 図1は、本実施形態に係る液晶表示装置1の備える液晶パネル100の1絵素当たりについての、マルチ画素構造を有する画素の等価回路を、各ドライバ、および、制御回路20と共に示す図である。
 図1に示すように、液晶表示装置1の備える液晶パネル100には複数の画素が形成されており、液晶表示装置1は、各画素を3TFT駆動方式に相当する駆動方式によって駆動する。各画素はいずれも液晶層と、当該液晶層に電圧を印加する電極とを有し、行および列を有するマトリックス状に配列されている。なお、絵素とは、相異なる複数の色を個別に表示する画素から構成される単位で、本実施形態においては、1絵素は、赤色を表示するR画素8、緑色を表示するG画素10、および、青色を表示するB画素12から構成されている。
 図1に示すように、液晶表示装置1の備える液晶パネル100は、複数のゲートバスライン2、複数のソースバスライン4、複数のコモンバスライン5、複数のスイッチング素子TFT1~TFT3、複数の液晶容量Clc1~Clc2を備えている。
 複数のゲートバスライン2および複数のソースバスライン4は、図示しない絶縁膜を介して、互いに交差して形成されている。液晶表示装置1では、1つのゲートバスライン2と1つのソースバスライン4とによって画定される領域ごとに、赤色を表示するR画素8、緑色を表示するG画素10、および、青色を表示するB画素12の何れかが形成されている。また、R画素8、G画素10、および、B画素12は、ゲートバスライン2に沿って隣接して形成されている。これらの画素を組み合わせて用いることによって、所望のカラー画像を表示することができる。
 このように、液晶表示装置1が、R画素、G画素、および、B画素を備える構成を例に挙げ説明を行うが、本実施形態はこれに限定されるものではなく、例えば、液晶表示装置1は、R画素、G画素、および、B画素に加えて、黄色を表示するYe画素、および、白色を表示するW画素の何れか一方若しくは双方を備える構成としてもよく、そのような場合であっても、後述する効果を奏する。
 (明画素、および、暗画素)
 R画素8、G画素10、および、B画素12は、いずれも、液晶層に互いに異なる電圧を印加することができる2つの副画素を有している。図1に示すように、R画素8は、副画素8a、および、副画素8bを有しており、G画素10は、副画素10a、および、副画素10bを有しており、B画素12は、副画素12a、および、副画素12bを有している。以下では、後述する理由により、副画素8a、副画素10a、および、副画素12aを明画素と呼ぶこともあり、副画素8b、副画素10b、および、副画素12bを暗画素と呼ぶこともある。
 本実施形態においては、各絵素を構成する各画素は、ゲートバスライン2に沿って、R画素8、G画素10、B画素12の順に配置されている。また、各明画素は、ゲートバスライン2に平行な第1の直線上に配置されており、各暗画素は、ゲートバスライン2に平行な第2の直線上に配置されている。
 また、ゲートバスライン2nによって画定されるR画素8の暗画素8bと、ゲートバスライン2(n+1)によって画定されるR画素8の明画素8aとは、ゲートバスライン2に平行な境界を介して互いに隣接している。G画素10およびB画素12についても同様である。
 また、R画素8の暗画素8bとG画素10の暗画素10bとは、ソースバスライン4に平行な境界を介して互いに隣接し、G画素10の暗画素10bとB画素12の暗画素12bとは、ソースバスライン4に平行な境界を介して互いに隣接している。明画素についても同様である。
 (液晶容量)
 各画素の有する副画素は、液晶容量を有している。明画素は、液晶容量Clc1を有しており、暗画素は、液晶容量Clc2を有している。より具体的には、図1に示すように、R画素8の明画素8aは、液晶容量Clc1Rを有しており、暗画素8bは、液晶容量Clc2Rを有している。同様に、G画素10の明画素10aは、液晶容量Clc1Gを有しており、暗画素10bは、液晶容量Clc2Gを有している。同様に、B画素12の明画素12aは、液晶容量Clc1Bを有しており、暗画素12bは、液晶容量Clc2Bを有している。
 また、各液晶容量は、副画素電極と、液晶層と、該液晶層を介して該副画素電極に対向する対向電極とによって形成されている。
 (スイッチング素子TFT1~TFT2)
 R画素8、G画素10、および、B画素12には、いずれも、TFT(薄膜トランジスタ)1、および、TFT2がそれぞれ形成されている。TFT1~TFT2のゲート電極は共通のゲートバスライン2nに接続されており、TFT1~TFT2のソース電極は共通のソースバスライン4に接続されている。すなわち、図1に示すように、R画素8のTFT1R、および、TFT2Rのソース電極は、ソースバスライン4mに接続されている。同様に、G画素10のTFT1G、および、TFT2Gのソース電極は、ソースバスライン4(m+1)に接続されており、B画素12のTFT1B、および、TFT2Bのソース電極は、ソースバスライン4(m+2)に接続されている。また、TFT1、および、TFT2のドレイン電極は、それぞれ対応する副画素電極に接続されている。
 TFT1~TFT2、並びに、後述するTFT3は、それぞれ、自身の備えるゲート電極にハイレベルのゲート信号が印加されているとき、導通状態(オン状態)となり、自身の備えるゲート電極にローレベルのゲート信号が印加されているとき、非導通状態(オフ状態、遮断状態)となる。
 (スイッチング素子TFT3)
 また、R画素8、G画素10、および、B画素12の備える各暗画素には、TFT3が形成されている。より具体的には、R画素8の暗画素8bには、TFT3Rが形成され、G画素10の暗画素10bには、TFT3Gが形成され、B画素12の暗画素12bには、TFT3Bが形成されている。
 TFT3のゲート電極は、当該画素の前段のゲートバスライン、すなわちゲートバスライン2(n-1)に電気的に接続されている。各TFT3のドレイン電極は、各暗画素8b、10b、および12bの副画素電極にそれぞれ電気的に接続されている。また、各TFT3のソース電極は、対応するコモンバスライン5に接続されている。より具体的には、TFT3Rのソース電極は、コモンバスライン5mに接続され、TFT3Gのソース電極は、コモンバスライン5(m+1)に接続され、TFT3Bのソース電極は、コモンバスライン5(m+2)に接続されている。
 本実施形態の液晶表示装置1においては、スキャン方向が逆方向である場合に、ゲートバスライン2nが選択されて各明画素の液晶容量Clc1、および、各暗画素の液晶容量Clc2に電荷が蓄えられた後に、時間差で前段のゲートバスライン2(n-1)が選択され、TFT3がオン状態となることによって、各暗画素の副画素電極がコモンバスライン5と導通状態となる。
 したがって、スキャン方向が逆方向である場合には、前段のゲートバスライン2(n-1)が選択された後、各暗画素の有する液晶層に印加される電圧が低下し、各暗画素の有する液晶層の透過率が減少することになる。
 なお、上記の説明では、TFT3のゲート電極は、当該画像の前段のゲートバスライン2(n-1)に接続されているとしたが、本実施形態はこれに限定されるものではなく、一般に、当該画素の前段のゲートバスライン2(n-p)(pは1≦p<nを満たす自然数)に接続される構成とすることができる。
 (各副画素のレイアウト)
 続いて、図4を参照して、液晶パネル100における各副画素の具体的な構成について説明する。以下では、R画素8の構成について説明を行うが、G画素10およびB画素12についても同様の構成である。
 図4は、液晶パネル100におけるR画素8の具体的な構成を示す平面レイアウト図である。図4に示すように、ゲートバスライン2は、第1電極材料を用いて形成され、ソースバスライン4、および、コモンバスライン5は、第2電極材料を用いて形成されている。図4において、ECLC1R、および、ECLC2Rは、それぞれ、明画素8aの備える副画素電極、および、暗画素8bの備える副画素電極を表しており、それらの副画素電極は、第3電極材料を用いて形成されている。
 また、図4に示すように、ゲートバスライン2n上に、TFT1RおよびTFT2Rが形成されており、ゲートバスライン2(n-1)上に、TFT3Rが形成されている。また、各TFTのソース電極およびドレイン電極は、第2電極材料を用いて形成されている。特に図示はしないが、図4の紙面手前側には、各副画素に対応する液晶層が配置され、そのさらに手前側には、対向電極が配置される。
 (液晶表示装置1の基本動作)
 以下では、液晶表示装置1の備える液晶パネル100の基本的な駆動方法について、図5の(a)~(e)、図6の(a)~(e)、および、図7の(a)~(b)を参照して説明する。なお、以下では、まず、R画素8の駆動について説明を行い、その後、G画素10、および、B画素12の駆動について説明を行う。
 また、一般には、各液晶容量の値、および、各蓄積容量の値は、それぞれに印加される電圧への依存性を有するが、本実施形態においては本質的な事項ではないため、以下の説明ではそのような依存性を無視する。ただし、この前提は、本実施形態を限定するものではなく、そのような依存性がある場合に対しても、同様に適用することができる。
 また、以下では、簡単化のため、ソースバスラインから各副画素電極に対して、正極性の電圧が供給される場合について説明を行うが、ソースバスラインから各副画素電極に対して、負極性の電圧が供給される場合についても同様に考えることができる。
 (2D表示モードにおける液晶パネル100の駆動)
 まず、2D表示モードにおける液晶パネル100の駆動、すなわち、スキャン方向が順方向である場合の液晶パネル100の駆動について説明する。
 図5の(a)~(e)は、スキャン方向が順方向である場合の、液晶表示装置1における各電圧の波形およびタイミングを模式的に示したタイミングチャートである。
 図5の(a)は、ソースドライバ24がソースバスライン4に供給するデータ信号の電圧波形Vsを示しており、図5の(b)は、ゲートドライバ22がゲートバスライン2nに供給するゲート信号の電圧波形Vgnを示しており、図5の(c)は、ゲートドライバ22がゲートバスライン2(n+1)に供給するゲート信号の電圧波形Vg(n+1)を示しており、図5の(d)は、R画素8の備える明画素8aの副画素電極の電圧波形Vlc1Rを示しており、図5の(e)は、R画素8の備える暗画素8bの副画素電極の電圧波形Vlc2Rを示している。また、図中の破線は、対向電極の電圧波形COMMON(Vcom)を示している。
 (R画素8の駆動)
 まず、時刻T1において、ゲート信号の電圧Vgnが、VgL(ロー)からVgH(ハイ)に変化することにより、TFT1R、および、TFT2Rが同時に導通状態(オン状態)となる。これに伴い、明画素8aの副画素電極、および、暗画素8bの副画素電極に対し、ソースバスライン4を介してデータ信号の電圧が印加され、明画素8aの副画素電極の電圧Vlc1R、および、暗画素8bの副画素電極の電圧Vlc2Rは、時刻T1におけるデータ信号の電圧VsRへと変化し、
 Vlc1R=VsR   …(1a)
 Vlc2R=VsR   …(1b)
となる。
 ソースバスライン4を介して伝達されるデータ信号の電圧VsRは当該画素において表示すべき階調に対応する表示電圧であり、TFTがオン状態の間(「選択期間」ということもある。)に、対応する画素に書き込まれる。
 なお、当該選択期間において、TFT3Rはオフ状態である。
 続いて、時刻T2において、ゲート信号の電圧VgnがVgHからVgLに変化することにより、TFT1R、および、TFT2Rが同時に非導通状態(オフ状態)となる。これに伴い、明画素8aの副画素電極、および、暗画素8bの副画素電極は、全てソースバスライン4と電気的に絶縁される(この状態にある期間を「非選択期間」ということがある。)。
 なお、一般に、TFT1R、および、TFT2Rがオン状態からオフ状態に切り替わった直後、TFT1R、および、TFT2Rの有する寄生容量等の影響による引き込み現象(フィールドスルー現象とも呼ばれる)のために、それぞれの副画素電極の電圧Vlc1R、および、Vlc2Rは、それぞれ、ΔVd1R、および、ΔVd2Rだけ低下し、
 Vlc1R=VsR-ΔVd1R   …(2a)
 Vlc2R=VsR-ΔVd2R   …(2b)
となるが、以下の説明においては、このようなフィールドスルー現象による電圧降下の寄与を無視することにする。同様にTFT3におけるフィールドスルー現象の寄与についても無視することにする(実施形態2についても同様)。
 続いて、時刻T3において、ゲート信号の電圧Vg(n+1)が、VgLからVgHに変化し、時刻T4において、ゲート信号の電圧Vg(n+1)が、VgHからVgLに変化するが、副画素電極の電圧Vlc1R、および、Vlc2Rは、変化しない。
 以上の過程を経た後、スキャン方向が順方向である場合に明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧V1R_f、および、V2R_fは、
 V1R_f=VsR-Vcom   …(3a)
 V2R_f=VsR-Vcom   …(3b)
となる。
 このように、2D表示モードにおいては、明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧は、互いに等しくなる。
 したがって、2D表示モードにおいては、明画素8aおよび暗画素8bのそれぞれが呈する輝度は、互いに略等しい。
 (G画素10およびB画素12の駆動)
 G画素10についても同様の駆動が行われ、スキャン方向が順方向である場合に明画素10aおよび暗画素10bのそれぞれの液晶層に印加される実効電圧V1G_f、および、V2Gは_f、
 V1G_f=VsG-Vcom   …(4a)
 V2G_f=VsG-Vcom   …(4b)
となる。
 また、B画素12についても同様の駆動が行われ、スキャン方向が順方向である場合に明画素12aおよび暗画素12bのそれぞれの液晶層に印加される実効電圧V1B_f、および、V2B_fは、
 V1B_f=VsB-Vcom   …(5a)
 V2B_f=VsB-Vcom   …(5b)
となる。
 このように、2D表示モードにおいては、G画素10の備える明画素10aおよび暗画素10bのそれぞれが呈する輝度は、互いに略等しく、B画素12の備える明画素12aおよび暗画素12bのそれぞれが呈する輝度は、互いに略等しい。
 図7の(a)は、2D表示モードにおける、R画素8、G画素10、および、B画素12の備える各副画素の呈する輝度を模式的に示す図である。図7の(a)に示すように、2D表示モードにおいては、明画素8aと暗画素8bとは互いに略等しい輝度を呈し、明画素10aと暗画素10bとは互いに略等しい輝度を呈し、明画素12aと暗画素12bとは互いに略等しい輝度を呈する。
 (3D表示モードにおける液晶パネル100の駆動)
 続いて、3D表示モードにおける液晶パネル100の駆動、すなわち、スキャン方向が逆方向である場合の液晶パネル100の駆動について説明する。なお、以下では、コモンバスライン5に供給される電圧をVcom’と表すことにし、対向電極に供給される電圧をVcomと表すことにする。また、以下では、Vcom’≧Vcomであることを仮定して説明を行うが、これは本実施形態を限定するものではなく、Vcom’<Vcomであっても同様に考えることができる。
 図6の(a)~(e)は、スキャン方向が逆方向である場合の、液晶表示装置1における各電圧の波形およびタイミングを模式的に示したタイミングチャートである。
 図6の(a)は、ソースドライバ24がソースバスライン4に供給するデータ信号の電圧波形Vsを示しており、図6の(b)は、ゲートドライバ22がゲートバスライン2nに供給するゲート信号の電圧波形Vgnを示しており、図6の(c)は、ゲートドライバ22がゲートバスライン2(n-1)に供給するゲート信号の電圧波形Vg(n-1)を示しており、図6の(d)は、R画素8の備える明画素8aの副画素電極の電圧波形Vlc1Rを示しており、図6の(e)は、R画素8の備える暗画素8bの副画素電極の電圧波形Vlc2Rを示している。また、図中の破線は、対向電極の電圧波形COMMON(Vcom)を示している。
 (R画素8の駆動)
 まず、時刻T1’において、ゲート信号の電圧Vgnが、VgLからVgHに変化することにより、TFT1R、および、TFT2Rが同時にオン状態となる。これに伴い、明画素8aの副画素電極、および、暗画素8bの副画素電極に対し、ソースバスライン4を介してデータ信号の電圧が印加され、明画素8aの副画素電極の電圧Vlc1R、および、暗画素8bの副画素電極の電圧Vlc2Rは、時刻T1’におけるデータ信号の電圧VsRへと変化し、
 Vlc1R=VsR   …(6a)
 Vlc2R=VsR   …(6b)
となる。
 続いて、時刻T2’において、ゲート信号の電圧VgnがVgHからVgLに変化することにより、TFT1R、および、TFT2Rが同時にオフ状態となる。これに伴い、明画素8aの副画素電極、および、暗画素8bの副画素電極は、全てソースバスライン4と電気的に絶縁される。
 続いて、時刻T3’において、ゲート信号の電圧Vg(n-1)が、VgLからVgHに変化することにより、TFT3Rがオン状態となる。これに伴い、暗画素8bの副画素電極の電圧Vlc2Rは、コモンバスライン5の電圧Vcom’へと変化する。一方で、明画素8aの副画素電極の電圧Vlc1Rは変化しない。
 Vlc1R=VsR     …(8a)
 Vlc2R=Vcom’   …(8b)
 続いて、時刻T4’において、ゲート信号の電圧Vg(n-1)が、VgHからVgLに変化することにより、TFT3Rがオフ状態となる。
 以上の過程を経た後、スキャン方向が逆方向である場合に明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧V1R_b、および、V2R_bは、
 V1R_b=VsR-Vcom     …(9a)
 V2R_b=Vcom’-Vcom   …(9b)
となる。
 ここで、Vcom’-Vcomを、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素8bが、輝度を呈しないようにすることができる。例えば、Vcom’=Vcomのように設定することによって、暗画素8bが、輝度を呈しないようにすることができる。
 なお、閾値電圧Vthとは、液晶に印加される電圧を上昇させていったときに、液晶の配向が変化し始める電圧のことである。本実施形態のようにVAモードの液晶表示装置の有する画素は、該画素の備える液晶に印加される電圧が閾値電圧以下である場合には、輝度を呈することはなく、液晶に印加される電圧が閾値電圧を越えた場合に、輝度を呈し始める。
 このように、3D表示モードにおいては、R画素8の備える暗画素8bが輝度を呈しない構成とすることができる。
 (G画素10およびB画素12の駆動)
 G画素10についても同様の駆動が行われ、スキャン方向が逆方向である場合に明画素10aおよび暗画素10bのそれぞれの液晶層に印加される実効電圧V1G_b、および、V2G_bは、
 V1G_b=VsG-Vcom     …(10a)
 V2G_b=Vcom’-Vcom   …(10b)
となる。
 また、B画素12についても同様の駆動が行われ、スキャン方向が逆方向である場合に明画素12aおよび暗画素12bのそれぞれの液晶層に印加される実効電圧V1B_b、および、V2B_bは、
 V1B_b=VsB-Vcom     …(11a)
 V2B_b=Vcom’-Vcom   …(11b)
となる。
 R画素8と同様に、Vcom’-Vcomを、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素10bおよび暗画素12bが、輝度を呈しないようにすることができる。
 このように、3D表示モードにおいては、G画素10の備える暗画素10b、および、B画素12の備える暗画素12bは、輝度を呈しない構成とすることができる。
 図7の(b)は、3D表示モードにおける、R画素8、G画素10、および、B画素12の備える各副画素の呈する輝度を模式的に示す図である。図7の(b)に示すように、R画素8、G画素10、および、B画素12のそれぞれの備える暗画素8a、暗画素10b、および、暗画素12bは、3D表示モードにおいて輝度を呈しない。
 したがって、R画素8、G画素10、および、B画素12のそれぞれの備える暗画素は、3D表示モードにおいて、ブラックマトリックスとして機能することになる。
 (3D表示モードにおけるクロストーク抑制効果)
 以下では、3D表示モードが選択された場合の、液晶表示装置1によるクロストーク抑制効果について説明する。
 図8は、バックライトユニットBLU、液晶パネル100、および、Patterned Retarder200の、ソースバスライン4に平行な面を切断面とする断面図を例示的に示している。図8に示す例においては、液晶パネル100は、第1の偏光版100a、TFT-Glass100b、TFT基板100c、カラーフィルタ100d、CF-Glass100e、および、第2の偏光板100fを備えており、各画素のTFT、液晶容量、および、蓄積容量は、TFT基板100cに形成されている。
 バックライトユニットBLUから出射され、液晶パネル100を透過した光の偏光状態は、第2の偏光板100fの作用により、直線偏光となっている。
 Patterned Retarder200は、液晶パネル100に面する側に、当該直線偏光した光を右向きに円偏光した光に変換する位相差板RR、および、当該直線偏光した光を左向きに円偏光した光に変換する位相差板RLを備えている。また、位相差板RRと位相差板RLとの境界は、当該境界からTFT基板100cに下ろした垂線が暗画素と交わるように配置されている。
 また、位相差板RRと位相差板RLとの境界は、当該境界からTFT基板100cに下ろした垂線が、暗画素を縦方向に2等分する直線と交わるように配置されていることが好ましい。このような配置とすることにより、クロストークの低減効果を高めることができる。
 上述のように、3D表示モードにおいては、暗画素は、輝度を呈しないため、ブラックマトリックスとして機能することになる。
 図8に示すように、位相差板RLの背面に配置された明画素から出射される光のうち、該明画素と暗画素との境界付近から出射される光は、該光の伝播方向が、液晶パネルの法線方向から、液晶パネルの縦方向下向きにθ(theta)度以内である場合に、該位相差板RLを透過する。同様に、位相差板RRの背面に配置された明画素から出射される光のうち、該明画素と暗画素との境界付近から出射される光は、該光の伝播方向が、液晶パネルの法線方向から、液晶パネルの縦方向上向きにθ度以内である場合に、該位相差板RRを透過する。
 したがって、液晶表示装置1は、図8に示すように、液晶パネル100の法線方向と視線方向とのなす角が、液晶パネルの縦方向に沿ってθ度以内である場合に、クロストークの発生を抑制することができる。
 また、液晶表示装置1の備える暗画素は、2D表示モードにおいては、輝度を呈するため、暗画素に代えて、何れの表示モードにおいても輝度を呈しないブラックマトリックスを配置する構成に比べて、表示する画像の輝度が向上する。
 なお、本実施形態に係る液晶パネル100およびPatterned Retarder200の構成は、図8に示す例に限定されるものではない。例えば、位相差板RRと位相差板RLとの境界付近に、暗画素の縦方向の幅よりも小さい幅を有するブラックストライプを配置する構成としてもよい。このような構成においては、ブラックストライプが存在することによって、クロストークの抑制効果を向上させることができる。また、ブラックストライプの縦方向の幅は、暗画素の縦方向の幅よりも小さいので、暗画素に代えて、何れの表示モードにおいても輝度を呈しないブラックマトリックスを配置する構成に比べて、表示する画像の輝度を向上させることができる。
 以上のように、本実施形態に係る液晶表示装置1によれば、3D表示モードにおいて、各副画素の備える液晶層に対して共通のデータ電圧が印加された後に、暗画素の備える液晶層に印加される電圧を変化させることによって、当該暗画素をブラックマトリックスとして機能させることができる。一方で、暗画素と明画素とに対して、データ電圧を独立に供給する従来の構成においては、暗画素と明画素とに対して、各々データ電圧を供給するためのデータバスラインが必要になる。
 本実施形態に係る液晶表示装置1によれば、そのような従来の構成に比べて、データバスラインの本数を半分以下にすることができる。
 (3D表示モードについての付記事項)
 以上の説明においては、3D表示モードにおいて、液晶表示装置1の備える暗画素は輝度を呈しないものとしたが、本実施形態はこれに限定されるものではない。例えば、3D表示モードにおいて、暗画素の呈する輝度が所定の輝度以下となるように、コモンバスライン5に供給する電圧Vcom’を設定することによっても、クロストークを抑制することができる。
 図9の(a)~(d)は、暗画素の呈する輝度が所定の輝度以下となるようにコモンバスライン5に供給する電圧を設定する場合を説明するための図であって、(a)は、液晶パネル100、および、Patterned Retarder200の一部を示す断面図であり、(b)は、視線方向が、液晶パネル100の法線方向である場合に、観測者が観測する画像光を示す図であり、(c)は、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が、所定の角度β(beta)である場合に、観測者が観測する画像光を示す図であり、(d)は、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が、所定の角度βより大きい場合に、観測者が観測する画像光を示す図である。
 図9の(a)~(d)において、RBは、右目用画像を表示する暗画素を表しており、RAは、右目用画像を表示する明画素を表している。同様に、LBは、左目用画像を表示する暗画素を表しており、LAは、左目用画像を表示する明画素を表している。なお、暗画素RBおよび暗画素LBは、暗画素8c、暗画素10c、および、暗画素12cの何れかに対応しており、副画素RAおよび副画素LAは、明画素8a、明画素10a、および、明画素12aの何れかに対応している。
 以下の説明においては、図9の(a)に示すように、位相差板RRと位相差板RLとの境界は、当該境界からTFT基板100cに下ろした垂線が、暗画素を縦方向に2等分する直線と交わるように配置されているものとする。このような配置とすることにより、クロストークの低減効果を高めることができる。
 また、上記所定の角度βとは、図9の(c)に示すように、(1)明画素RAと暗画素RBとの境界、および、(2)位相差板RRと位相差板RLとの境界のうち当該暗画素RBに最も近い境界、の双方の境界を通る直線と、液晶パネル100の法線とのなす角度であって、液晶パネル100の縦方向に沿った角度のことである。なお、図9の(c)における角度βは、図8における角度θに対応するものである。
 まず、図9の(b)~(d)に示すように、暗画素RBから出射され、位相差板RLを透過した後の画像光の輝度をIRBLと表し、明画素LAから出射され、位相差板RLを透過した後の画像光の輝度をILALと表し、暗画素LBから出射され、位相差板RLを透過した後の画像光の輝度をILBLと表すことにし、明画素RAから出射され、位相差板RLを透過した後の画像光の輝度をIRALと表すことにする。
 ここで、輝度IRBL、輝度ILAL、輝度ILBL、および、輝度IRALは、それぞれ対応する副画素から出射され、位相差板を透過した後の画像光の実効的な輝度、すなわち、図4に示したタイミングチャートにおける時刻T4’以降での輝度であるとする。
 また、暗画素RBから出射され位相差板RLを透過した後の画像光は、クロストークの原因となる画像光であり、明画素LAから出射され位相差板RLを透過した後の画像光、および、暗画素LBから出射され位相差板RLを透過した後の画像光は、何れもクロストークの原因とならない画像光である。
 また、図9の(b)~(c)に示すように、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度がβ以下であるとき、輝度IRALは0であり、図9の(d)に示すように、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度がβより大きいとき、輝度IRALは一般に0でない。
 発明者は、実験により、32階調表示時に±3階調分以内のクロストークであれば、観測者がクロストークとして認識しないとの知見を得た。ここで、32階調表示時における±3階調分とは、20パーセントの輝度差に相当する。
 発明者によって得られた上記の知見によれば、液晶表示装置1においては、コモンバスライン5に供給される電圧Vcom’は、以下の不等式(A1)が満たされるように設定されることが好ましい。
 IRBL/(ILAL+ILBL)<0.2   …(A1)
 また、不等式(A1)は、最大階調においても、すなわち、各副画素に供給されるデータ電圧が最大値をとる場合にも満たされることが好ましい。
 換言すれば、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が上記β以下であるとき、液晶表示装置1は、液晶パネル100から当該視線方向に出射され位相差板RLを透過した後の画像光のうち、クロストークの原因となる画像光の輝度が、液晶パネル100から当該視線方向に出射され位相差板RLを透過した後の画像光のうち、クロストークの原因とならない画像光の輝度の20パーセント未満となるように各副画素を駆動することことが好ましい。
 同様に、視線方向と液晶パネル100の法線方向とのなす角度であって、液晶パネル100の縦方向に沿った角度が上記β以下であるとき、液晶表示装置1は、液晶パネル100から当該視線方向に出射され位相差板RRを透過した後の画像光のうち、クロストークの原因となる画像光の輝度が、液晶パネル100から当該視線方向に出射され位相差板RRを透過した後の画像光のうち、クロストークの原因とならない画像光の輝度の20パーセント未満となるように各副画素を駆動することことが好ましい。
 発明者は、位相差板RLおよび位相差板RRのうち、何れか一方の位相差板を透過した画像光であって、クロストークの原因となる画像光の輝度が、当該何れか一方の位相差板を透過した後の画像光であって、クロストークの原因とならない画像光の輝度の20パーセント未満である場合に、観測者はクロストークを知覚しないという知見を得た。
 したがって、上記の構成によれば、暗画素の呈する輝度がゼロでない場合であっても、観測者にとってクロストークが知覚されないことになる。
 また、位相差板RRおよび位相差板RLは、両者の透過率が略同一となるように形成することが可能であり、このような場合には、暗画素RBの呈する輝度が、副画素LAの呈する輝度の20パーセント未満であれば、輝度IRALが0となる視線方向において、不等式(A1)が満たされることになる。
 したがって、このような構成によっても、観測者にとってクロストークが知覚されないことになる。
 (各画素における副画素の数についての付記事項)
 以上の説明においては、R画素8、G画素10、および、B画素12が、それぞれ、2つの副画素(明画素、および、暗画素)を備える構成を例に挙げたが、本実施形態はこれに限定されるものではない。例えば、R画素8、G画素10、および、B画素12は、暗画素および明画素以外の副画素(中間画素とも呼ぶ)を備える構成としてもよい。ここで、中間画素は、2D表示モードおよび3D表示モードの双方のモードにおいて、明画素よりも低い輝度を呈する構成とすることが好ましい。このような構成とすることによって、2D表示モードおよび3D表示モードの双方のモードにおいて、視野角特性を向上させることができる。
 (ノーマリーホワイト型の液晶表示装置への適用について)
 ノーマリーホワイト型の液晶表示装置においては、各副画素の備える液晶層に印加される電圧の絶対値が大きいほど、当該副画素の呈する輝度は小さくなる。したがって、上述した液晶パネル100をノーマリーホワイト型の液晶表示装置に適用する場合には、例えば、3D表示モードにおいて、コモンバスライン5に供給される電圧Vcom’と対向電極の電圧Vcomとの差の絶対値を十分に大きくとり、3D表示モードにおいて各暗画素が輝度を呈しないような構成とすればよい。また、ノーマリーホワイト型の液晶表示装置に適用する場合にも、Vcom、および、Vcom’を、上述した数式(A1)が満たされるように設定する構成とすることができる。
 <実施形態1の変形例1>
 本実施形態における液晶パネル100の回路構成は、上述したものに限定されるものではない。以下では、本実施形態の第1の変形例について、図10の(a)~(b)を参照して説明する。なお、既に説明した部分については、同じ符号を付し、その説明を省略する。
 図10の(a)は、本変形例に係る液晶パネルの等価回路をR画素8について示す図である。図10の(a)に示すように、本変形例に係る液晶パネルは、既に説明した液晶パネル100のR画素8における構成に加えて、暗画素8bにおいて補助容量CARをさらに有している。ここで、補助容量CARは、TFT2Rのドレイン電極に対して、液晶容量Clc2Rと直列に接続されている。より具体的には、補助容量CARの一端は、TFT2Rのドレイン電極、および、TFT3Rのドレイン電極に接続され、補助容量CARの他の一端は、暗画素8bの備える副画素電極に接続されている。本変形例に係る液晶パネルのG画素10およびB画素12の構成も同様である。
 図10の(b)は、本変形例に係る液晶パネルにおけるR画素8の具体的な構成を示す平面レイアウト図である。図10の(b)に示すように、ゲートバスライン2は、第1電極材料を用いて形成され、ソースバスライン4、および、コモンバスライン5は、第2電極材料を用いて形成されている。図10の(b)において、ECLC1R、および、ECLC2Rは、それぞれ、明画素8aの備える副画素電極、および、暗画素8bの備える副画素電極を表しており、それらの副画素電極は、第3電極材料を用いて形成されている。
 また、図10の(b)に示すように、ゲートバスライン2n上に、TFT1RおよびTFT2Rが形成されており、ゲートバスライン2(n-1)上に、TFT3Rが形成されている。また、各TFTのソース電極およびドレイン電極は、第2電極材料を用いて形成されている。さらに、暗画素8bの備える副画素電極ECLC2Rの中央部には、副画素電極ECLC2R自身と、第2電極材料とによって補助容量CARが形成されている。ここで、補助容量CARを形成する副画素電極ECLC2Rの中央部と第2電極材料との間には層間絶縁膜を設けないことが好ましい。なお、副画素電極ECLC2Rは、第2電極材料よりも上層(紙面手前側)に形成されている。また、特に図示はしないが、図10の(b)の紙面手前側には、各副画素に対応する液晶層が配置され、そのさらに手前側には、対向電極が配置される。
 (本変形例に係る液晶パネルの駆動)
 本変形例に係る液晶パネルの駆動は、既に説明した液晶パネル100の駆動とほぼ同様であるが、以下の点において異なる。
 すなわち、本変形例に係る液晶パネルにおいては、補助容量CARの寄与により、明画素8aの備える副画素電極に印加される実効電圧と、暗画素8bの備える副画素電極に印加される実効電圧との間に電圧差が生じる。
 より具体的には、2D表示モードが選択された場合、すなわち、スキャン方向が順方向である場合に明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧V1R_f、および、V2R_fは、
 V1R_f=VsR-Vcom                   …(12a)
 V2R_f=(VsR-Vcom)×CAR/(CAR+Clc1R) …(12b)
となる。ここで、VsRは、TFT1RおよびTFT2Rがオン状態に変化した時点におけるデータ信号の電圧を表している。
 なお、スキャン方向が順方向である場合に、補助容量CARの両端に印加される実効電圧VCAR_fは、
 VCAR_f=(VsR-Vcom)×Clc1R/(CAR+Clc1R)
である。
 数式(12a)および(12b)から明らかなように、本変形例に係る液晶パネルにおいては、2D表示モードにおいて、暗画素8bの備える液晶層に印加される実効電圧は、明画素8aの備える液晶層に印加される実効電圧よりも小さくなっている。したがって、本変形例に係る液晶パネルにおいては、2D表示モードにおいて、暗画素8bは、明画素8aに比べて低い輝度を呈する。
 2D表示モードが選択された場合の、G画素10の備える明画素10aおよび暗画素10bのそれぞれの液晶層に印加される実効電圧、並びに、B画素12の備える明画素12aおよび暗画素12bのそれぞれの液晶層に印加される実効電圧についても同様である。
 このように、本変形例に係る液晶パネルにおいては、2D表示モードにおいて、暗画素および明画素のそれぞれが互いに異なる輝度を呈するため、視野角特性が改善されるという更なる効果を奏する。
 一方で、3D表示モードが選択された場合、すなわち、スキャン方向が逆方向である場合に明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧V1R_b、および、V2R_bは、
 V1R_b=VsR-Vcom                   …(13a)
 V2R_b=(Vcom’-Vcom)×CAR/(CAR+Clc1R)
 …(13b)
となる。ここで、Vcom’およびVcomは、すでに説明したように、それぞれ、コモンバスライン5および対向電極に供給される電圧を表している。
 なお、スキャン方向が逆方向である場合に、補助容量CARの両端に印加される実効電圧VCAR_bは、
 VCAR_b=(Vcom’-Vcom)×Clc1R/(CAR+Clc1R)
である。
 数式(13b)から明らかなように、(Vcom’-Vcom)×CAR/(CAR+Clc1R)を、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素8bが輝度を呈しないようにすることができる。
 3D表示モードが選択された場合の、G画素10の備える明画素10aおよび暗画素10bのそれぞれの液晶層に印加される実効電圧、並びに、B画素12の備える明画素12aおよび暗画素12bのそれぞれの液晶層に印加される実効電圧についても同様である。
 このように、本変形例に係る液晶パネルにおいては、2D表示モードにおいて、暗画素および明画素のそれぞれが互いに異なる輝度を呈することにより、視野角特性を改善しつつ、3D表示モードにおいて、各暗画素をブラックマトリックスとして機能させることができる。
 <実施形態1の変形例2>
 以下では、本実施形態の第2の変形例について、図11の(a)~(b)を参照して説明する。なお、既に説明した部分については、同じ符号を付し、その説明を省略する。
 図11の(a)は、本変形例に係る液晶パネルの等価回路をR画素8について示す図である。図11の(a)に示すように、本変形例に係る液晶パネルは、既に説明した液晶パネル100のR画素8における構成に加えて、暗画素8bにおいて補助容量CARをさらに有している。ここで、補助容量CARは、TFT2Rのドレイン電極に対して、液晶容量Clc2Rと直列に接続されている。また、補助容量CARの一端は、TFT2Rのドレイン電極に接続され、補助容量CARの他の一端は、暗画素8bの備える副画素電極に接続されている。また、実施形態1の変形例1の構成と異なり、TFT3Rのドレイン電極は、暗画素8bの備える副画素電極に接続されている。本変形例に係る液晶パネルのG画素10およびB画素12の構成も同様である。
 図11の(b)は、本変形例に係る液晶パネルにおけるR画素8の具体的な構成を示す平面レイアウト図である。図11の(b)に示すように、ゲートバスライン2は、第1電極材料を用いて形成され、ソースバスライン4、および、コモンバスライン5は、第2電極材料を用いて形成されている。図11の(b)において、ECLC1R、および、ECLC2Rは、それぞれ、明画素8aの備える副画素電極、および、暗画素8bの備える副画素電極を表しており、それらの副画素電極は、第3電極材料を用いて形成されている。
 また、図11の(b)に示すように、ゲートバスライン2n上に、TFT1RおよびTFT2Rが形成されており、ゲートバスライン2(n-1)上に、TFT3Rが形成されている。また、各TFTのソース電極およびドレイン電極は、第2電極材料を用いて形成されている。さらに、暗画素8bの備える副画素電極ECLC2Rの中央部には、副画素電極ECLC2R自身と、第2電極材料とによって補助容量CARが形成されている。また、実施形態1の変形例1の構成と異なり、TFT3Rのドレイン電極は、副画素電極ECLC2Rに接続されている。ここで、補助容量CARを形成する副画素電極ECLC2Rの中央部と第2電極材料との間には層間絶縁膜を設けないことが好ましい。なお、副画素電極ECLC2Rは、第2電極材料よりも上層(紙面手前側)に形成されている。また、特に図示はしないが、図11の(b)の紙面手前側には、各副画素に対応する液晶層が配置され、そのさらに手前側には、対向電極が配置される。
 (本変形例に係る液晶パネルの駆動)
 本変形例に係る液晶パネルの駆動は、既に説明した実施形態1の変形例1に係る液晶パネルの駆動とほぼ同様であるが、以下の点において異なる。
 すなわち、本変形例に係る液晶パネルにおいては、実施形態1の変形例1に係る液晶パネルと異なり、TFT3Rのドレイン電極が、暗画素8bの備える副画素電極に接続されているため、3D表示モードにおいて、明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧V1R_b、および、V2R_bは、
 V1R_b=VsR-Vcom       …(13a)
 V2R_b=Vcom’-Vcom     …(13b’)
となる。
 数式(13b’)から明らかなように、本変形例においては、Vcom’-Vcomを、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素8bが輝度を呈しないようにすることができる。G画素10およびB画素12についても同様である。
 このように、本変形例においても、3D表示モードにおいて、各暗画素をブラックマトリックスとして機能させることができる。
 なお、2D表示モードにおいて明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧は、実施形態1の変形例1の2D表示モードにおいて明画素8aおよび暗画素8bのそれぞれの液晶層に印加される実効電圧と同様である。
 したがって、本変形例においても、2D表示モードにおいて、暗画素および明画素のそれぞれが互いに異なる輝度を呈するため、視野角特性が改善される。
 なお、本変形例に係る液晶パネルにおいては、変形例1に係る液晶パネルに比べて、副画素電極がフローティングにならないという利点がある。
 〔実施形態2〕
 以下では、本発明の第2の実施形態について図12~図18を参照して説明する。以下の説明では、実施形態1と同様に、誘電異方性が負の液晶材料を用いた垂直配向型液晶表示装置(VA(Vertical Alignment)型の液晶表示装置)を例示するが、本発明はこれに限定されず、例えば、TN(Twisted Nematic)型やIPS(In-Plane Switching)型の液晶表示装置にも適用できる。また、以下の説明においては、液晶層に印加される電圧の絶対値が大きい程、液晶層の透過率が高くなるノーマリーブラック型の液晶表示装置を例示するが、本実施形態はこれに限定されるものではなく、液晶層に印加される電圧の絶対値が大きい程、液晶層の透過率が低くなるノーマリーホワイト型の液晶表示装置に対しても適用できる。
 (液晶表示装置1’の構成)
 本実施形態に係る液晶表示装置1’の構成について図12および図13の(a)~(b)を参照して説明する。液晶表示装置1’は、立体視不能な画像を表示する2D表示モード、および、立体視可能な画像を表示する3D表示モードの何れかのモードで動作する。液晶表示装置1’は、液晶表示装置1と同様に、ユーザにより、当該2つの表示モードの何れか一方を選択できるように構成してもよいし、表示すべき画像を示す画像データに関連付けられたモード情報を参照することによって、当該2つの表示モードの何れか一方を自動的に選択する構成としてもよい。なお、実施形態1においてすでに説明した部分については、同じ記号を付しその説明を省略する。
 図12は、本実施形態に係る液晶表示装置1’の構成を示す図である。図12に示すように、液晶表示装置1’は、液晶パネル100’、制御回路20’、ゲートドライバ22、ソースドライバ24、および、CSドライバ26を備えている。また、図12においては、液晶パネル100’における1絵素当たりについての、マルチ画素構造を有する画素の等価回路が示されている。
 図12に示すように、液晶表示装置1’は、液晶パネル100’において、複数のゲートバスライン2、複数のソースバスライン4、複数のCSバスライン(補助容量バスライン)61、複数のCSバスライン(補助容量バスライン)62、および、各ゲートバスラインと各ソースバスラインとによって画定される画素を備えている。図12において、CSバスライン61nは、n番目のCSバスライン61を示しており、CSバスライン62nは、n番目のCSバスライン62を示している。以下では、CSバスライン61とCSバスライン62とを合わせてCSバスライン6と表記することもある。
 (ドライバ)
 図12に示すように、液晶表示装置1’の備える液晶パネル100’には、各ゲートバスライン2にゲート信号を供給するゲートドライバ22と、各ソースバスライン4にデータ信号を供給するソースドライバ24と、各CSバスライン6に補助容量駆動信号(補助容量信号)(CS信号)を供給するCSドライバ26とが、それぞれ接続されている。これらのドライバはいずれも、制御回路20’から出力された制御信号に基づいて動作する。
 (制御回路20’)
 制御回路20’は、表示すべき画像を示す画像データに含まれる、各絵素についての輝度を示す輝度情報、および、各絵素についての色差を示す色差情報から、各画素についての階調値を算出する。
 また、制御回路20’は、ゲートドライバ22が供給するゲート信号、ソースドライバ24が供給するデータ信号、および、CSドライバ26が供給するCS信号のタイミングを制御する。
 ゲートドライバ22は、実施形態1と同様に、2D表示モードが選択されている場合、各ゲートバスライン2に対して、スキャン方向が順方向となるように、ゲート信号を供給し、3D表示モードが選択されている場合、各ゲートバスライン2に対して、スキャン方向が逆方向となるように、ゲート信号を供給する。
 また、本実施形態におけるCSドライバ26は、2D表示モードが選択されている場合、CSバスライン61とCSバスライン62とに対して、互いに逆位相の矩形信号を供給し、3D表示モードが選択されている場合、CSバスライン61とCSバスライン62とに対して、一定の電圧を供給する。
 (液晶パネル100’の周辺構成)
 液晶パネル100’の周辺構成については、図3の(a)~(c)に示した液晶パネル100の周辺構成と同様であるため、その説明を省略する。
 (画素構造)
 図12に示すように、液晶表示装置1’の備える液晶パネル100’には複数の画素が形成されており、液晶表示装置1’は、各画素を、2D表示モードにおいてはMPD(Multi Pixel Drive)方式に相当する駆動方式によって駆動し、3D表示モードにおいては、3TFT駆動方式に相当する駆動方式によって駆動する。各画素はいずれも液晶層と、当該液晶層に電圧を印加する電極とを有し、行および列を有するマトリックス状に配列されている。
 図12に示すように、液晶表示装置1’の備える液晶パネル100’は、複数のゲートバスライン2、複数のソースバスライン4、複数のCSバスライン61、複数のCSバスライン62、複数のスイッチング素子TFT1’~TFT3’、複数の液晶容量Clc1’~Clc2’を備えている。
 複数のゲートバスライン2および複数のソースバスライン4は、図示しない絶縁膜を介して、互いに交差して形成されている。液晶表示装置1’では、1つのゲートバスライン2と1つのソースバスライン4とによって画定される領域ごとに、赤色を表示するR画素8’、緑色を表示するG画素10’、および、青色を表示するB画素12’の何れかが形成されている。また、R画素8’、G画素10’、および、B画素12’は、ゲートバスライン2に沿って隣接して形成されている。これらの画素を組み合わせて用いることによって、所望のカラー画像を表示することができる。
 このように、液晶表示装置1’が、R画素、G画素、および、B画素を備える構成を例に挙げ説明を行うが、本実施形態はこれに限定されるものではなく、例えば、液晶表示装置1は、R画素、G画素、および、B画素に加えて、黄色を表示するYe画素、および、白色を表示するW画素の何れか一方若しくは双方を備える構成としてもよく、そのような場合であっても、後述する効果を奏する。
 (明画素、および、暗画素)
 R画素8’、G画素10’、および、B画素12’は、いずれも、液晶層に互いに異なる電圧を印加することができる2つの副画素を有している。図12に示すように、R画素8’は、副画素8a’、および、副画素8b’を有しており、G画素10’は、副画素10a’、および、副画素10b’を有しており、B画素12’は、副画素12a’、および、副画素12b’を有している。以下では、後述する理由により、副画素8a’、副画素10a’、および、副画素12a’を明画素と呼ぶこともあり、副画素8b’、副画素10b’、および、副画素12b’を暗画素と呼ぶこともある。
 本実施形態においては、各絵素を構成する各画素は、実施形態1と同様に、ゲートバスライン2に沿って、R画素8’、G画素10’、B画素12’の順に配置されている。また、各明画素は、ゲートバスライン2に平行な第1の直線上に配置されており、各暗画素は、ゲートバスライン2に平行な第2の直線上に配置されている。
 また、ゲートバスライン2nによって画定されるR画素8’の暗画素8b’と、ゲートバスライン2(n+1)によって画定されるR画素8’の明画素8a’とは、ゲートバスライン2に平行な境界を介して互いに隣接している。G画素10’およびB画素12’についても同様である。
 また、R画素8’の暗画素8b’とG画素10’の暗画素10b’とは、ソースバスライン4に平行な境界を介して互いに隣接し、G画素10’の暗画素10b’とB画素12’の暗画素12b’とは、ソースバスライン4に平行な境界を介して互いに隣接している。明画素についても同様である。
 (液晶容量)
 各画素の有する副画素は、液晶容量を有している。明画素は、液晶容量Clc1’を有しており、暗画素は、液晶容量Clc2’を有している。より具体的には、図12に示すように、R画素8’の明画素8a’は、液晶容量Clc1R’を有しており、暗画素8b’は、液晶容量Clc2R’を有している。同様に、G画素10’の明画素10a’は、液晶容量Clc1G’を有しており、暗画素10b’は、液晶容量Clc2G’を有している。同様に、B画素12’の明画素12a’は、液晶容量Clc1B’を有しており、暗画素12b’は、液晶容量Clc2B’を有している。
 また、各液晶容量は、副画素電極と、液晶層と、該液晶層を介して該副画素電極に対向する対向電極とによって形成されている。
 (スイッチング素子TFT1’~TFT2’)
 R画素8’、G画素10’、および、B画素12’には、いずれも、TFT(薄膜トランジスタ)1’、および、TFT2’がそれぞれ形成されている。TFT1’およびTFT2’の有する機能、および、TFT1’およびTFT2’の備える各電極の接続の態様は、実施形態1におけるTFT1およびTFT2と同様であるため、ここでは説明を省略する。
 (スイッチング素子TFT3’)
 また、R画素8’、G画素10’、および、B画素12’の備える各暗画素には、TFT3’が形成されている。より具体的には、R画素8’の暗画素8b’には、TFT3R’が形成され、G画素10’の暗画素10b’には、TFT3G’が形成され、B画素12’の暗画素12b’には、TFT3B’が形成されている。
 TFT3’のゲート電極は、当該画素の前段のゲートバスライン、すなわちゲートバスライン2(n-1)に電気的に接続されている。各TFT3’のドレイン電極は、各暗画素8b’、10b’、および12b’の副画素電極にそれぞれ電気的に接続されている。また、各TFT3’のソース電極は、CSバスライン62nに接続されている。
 (補助容量Ccs)
 また、R画素8’、G画素10’、および、B画素12’の備える各副画素には、補助容量Ccsが形成されている。各補助容量Ccsは、対応する副画素電極に接続された補助容量電極と、絶縁層を介して補助容量電極に対向する補助容量対向電極であって、対応するCSバスラインに接続された補助容量対向電極とによって形成されている。
 より具体的には、図12に示すように、補助容量Ccs1Rの補助容量電極は、液晶容量Clc1R’の副画素電極に接続され、補助容量Ccs1Rの補助容量対向電極は、CSバスライン61nに接続されている。同様に、補助容量Ccs2Rの補助容量電極は、液晶容量Clc2R’の副画素電極に接続され、補助容量Ccs2Rの補助容量対向電極は、CSバスライン62nに接続されている。図12に示す補助容量Ccs1G、Ccs2G、Ccs1B、およびCcs2Bについても同様である。
 なお、上記の説明では、TFT3’のゲート電極は、当該画像の前段のゲートバスライン2(n-1)に接続されているとしたが、本実施形態はこれに限定されるものではなく、一般に、当該画素の前段のゲートバスライン2(n-p)(pは1以上の整数)に接続される構成とすることができる。
 (各副画素のレイアウト)
 続いて、図13の(a)~(b)を参照して、液晶パネル100’における各副画素の具体的な構成について説明する。以下では、R画素8’の構成について説明を行うが、G画素10’およびB画素12’についても同様の構成である。
 図13の(a)は、液晶パネル100’におけるR画素8’の具体的な構成を示す平面レイアウト図である。図13の(a)に示すように、ゲートバスライン2、および、CSバスライン6は、第1電極材料を用いて形成され、ソースバスライン4は、第2電極材料を用いて形成されている。図13の(a)において、ECLC1R’、および、ECLC2R’は、それぞれ、明画素8a’の備える副画素電極、および、暗画素8b’の備える副画素電極を表しており、それらの副画素電極は、第3電極材料を用いて形成されている。
 また、図13の(a)に示すように、ゲートバスライン2n上に、TFT1R’およびTFT2R’が形成されており、ゲートバスライン2(n-1)上に、TFT3R’が形成されている。また、各TFT’のソース電極およびドレイン電極は、第2電極材料を用いて形成されている。
 さらに、暗画素8a’の備える副画素電極ECLC1R’の中央部付近には、CSバスライン61を構成する第1電極材料と、TFT1R’のドレイン電極に接続された第2電極材料とによって補助容量Ccs1Rが形成されている。また、暗画素8b’の備える副画素電極ECLC2R’の中央部付近には、CSバスライン62を構成する第1電極材料と、TFT2R’のドレイン電極に接続された第2電極材料とによって補助容量Ccs2Rが形成されている。なお、副画素電極ECLC1R’および副画素電極ECLC2R’は、第2電極材料よりも上層(紙面手前側)に形成されている。特に図示はしないが、図13の(a)の紙面手前側には、各副画素に対応する液晶層が配置され、そのさらに手前側には、対向電極が配置される。
 また、図13の(a)に示すように、第3電極材料の一部は、暗画素8b’の備える副画素電極ECLC2R’から絶縁されたコンタクト部Pconに利用されている。図13の(b)は、図13の(a)に示す切断面に沿ったコンタクト部Pconの断面図である。図13の(b)に示すように、第3電極材料は、コンタクト部Pconにおいて、第1電極材料と第2電極材料を電気的に接続するために用いられている。コンタクト部Pconによって、TFT3Rのソース電極とCSバスライン62nとが電気的に接続されている。
 (液晶表示装置1’の基本動作)
 以下では、液晶表示装置1’の備える液晶パネル100’の基本的な駆動方法について、図14の(a)~(g)、図15の(a)~(g)、および、図16の(a)~(b)を参照して説明する。なお、以下では、まず、R画素8’の駆動について説明を行い、その後、G画素10’、および、B画素12’の駆動について説明を行う。
 また、一般には、各液晶容量の値、および、各蓄積容量の値は、それぞれに印加される電圧への依存性を有するが、本実施形態においては本質的な事項ではないため、以下の説明ではそのような依存性を無視する。ただし、この前提は、本実施形態を限定するものではなく、そのような依存性がある場合に対しても、同様に適用することができる。
 また、以下では、簡単のため、ソースバスラインから各副画素電極に対して、正極性の電圧が供給される場合について説明を行うが、ソースバスラインから各副画素電極に対して、負極性の電圧が供給される場合についても同様に考えることができる。
 (2D表示モードにおける液晶パネル100’の駆動)
 まず、2D表示モードにおける液晶パネル100’の駆動、すなわち、スキャン方向が順方向である場合の液晶パネル100’の駆動について説明する。
 図14の(a)~(g)は、液晶パネル100’を駆動する際の各電圧の波形およびタイミングを模式的に示したタイミングチャートである。
 図14の(a)は、ソースドライバ24がソースバスライン4に供給するデータ信号の電圧波形Vsを示しており、図14の(b)は、CSドライバ26がCSバスライン61nに供給する補助容量駆動信号の電圧波形(すなわち、CSバスライン61nの電圧波形)Vcs1を示しており、図14の(c)はCSドライバ26がCSバスライン62nに供給する補助容量駆動信号の電圧波形(すなわち、CSバスライン62nの電圧波形)Vcs2を示しており、図14の(d)は、ゲートドライバ22がゲートバスライン2nに供給するゲート信号の電圧波形Vgnを示しており、図14の(e)は、ゲートドライバ22がゲートバスライン2(n+1)に供給するゲート信号の電圧波形Vg(n+1)を示しており、図14の(f)は、R画素8’の備える明画素8a’の副画素電極の電圧波形Vlc1R’を示しており、図14の(g)は、R画素8’の備える暗画素8b’の副画素電極の電圧波形Vlc2R’を示している。また、図中の破線は、対向電極の電圧波形COMMON(Vcom)を示している。
 (R画素8’の駆動)
 まず、時刻T11において、ゲート信号の電圧Vgnが、VgL(ロー)からVgH(ハイ)に変化することにより、TFT1R’、および、TFT2R’が同時に導通状態(オン状態)となる。これに伴い、明画素8a’の副画素電極、および、暗画素8b’の副画素電極に対し、ソースバスライン4を介してデータ信号の電圧が印加され、明画素8a’の副画素電極、および、暗画素8b’の副画素電極の何れの電圧も、時刻T11におけるデータ信号の電圧VsR’へと変化し、
 Vlc1R’=VsR’   …(14a)
 Vlc2R’=VsR’   …(14b)
となる。
 また、明画素8a’の補助容量Ccs1R’、および、暗画素8b’の補助容量Ccs2R’に対しても、ソースバスライン4を介してデータ信号の電圧が印加され、明画素8a’の補助容量電極、および、暗画素10b’の補助容量電極の何れの電圧も、データ信号の電圧VsR’へと変化する。
 続いて、時刻T12において、ゲート信号の電圧VgがVgHからVgLに変化することにより、TFT1R’、および、TFT2R’が同時に非導通状態(オフ状態)となる。これに伴い、明画素8a’の副画素電極、および、暗画素8b’の副画素電極、明画素8a’の補助容量電極、および、暗画素8b’の補助容量電極は、全てソースバスライン4と電気的に絶縁される。
 また、このとき、CSバスライン61nの電圧Vcs1、および、CSバスライン62nの電圧Vcs2は、
 Vcs1=Vcom-(1/2)Vad   …(16a)
 Vcs2=Vcom+(1/2)Vad   …(16b)
である。すなわち、ここで例示するCSバスライン61nおよび62nにそれぞれ供給される補助容量駆動信号の電圧Vcs1およびVcs2の波形は全幅がVadで、位相が互いに逆相(180°異なる)な矩形波(デューティ比は1:1)である。
 続いて、時刻T13において、補助容量Ccs1に接続されたCSバスライン61nの電圧Vcs1がVcom-(1/2)VadからVcom+(1/2)Vadに変化し、補助容量Ccs2に接続されたCSバスライン62nの電圧Vcs2がVcom+(1/2)VadからVcom-(1/2)Vadに変化する。それに伴い、明画素8a’の備える副画素電極の電圧Vlc1R’、および、暗画素8b’の備える副画素電極の電圧Vlc2R’は、
 Vlc1R’=VsR’+K1R×Vad   …(17a)
 Vlc2R’=VsR’-K2R×Vad   …(17b)
へ変化する。ここで、K1RおよびK2Rは、それぞれ、
 K1R=Ccs1R/(Clc1R’+Ccs1R)   …(18a)
 K2R=Ccs2R/(Clc2R’+Ccs2R)   …(18b)
である。
 続いて、ゲート信号の電圧Vg(n+1)が、時刻T14において、VgLからVgHに変化し、時刻T15において、VgHからVgLに変化するが、明画素8a’の備える副画素電極の電圧Vlc1R’、および、暗画素8b’の備える副画素電極の電圧Vlc2R’は、変化しない。
 続いて、時刻T16において、Vcs1がVcom+(1/2)VadからVcom-(1/2)Vadへ、Vcs2がVcom-(1/2)VadからVcom+(1/2)Vadへ変化し、Vlc1R’、Vlc2R’もまた、数式(17a)および数式(17b)によって表される値から、数式(15a)および(15b)によってそれぞれ表される値へと変化する。
 続いて、時刻T17において、Vcs1がVcom-(1/2)VadからVcom+(1/2)Vadへ、Vcs2がVcom+(1/2)VadからVcom-(1/2)Vadへ変化し、Vlc1R’、Vlc2R’もまた、数式(15a)および(15b)によって表される値から、数式(17a)および数式(17b)によってそれぞれ表される値へと変化する。
 上記T16およびT17の繰り返し間隔を、水平書き込み時間1Hの1倍とするか、2倍とするか、3倍とするかあるいはそれ以上とするかは液晶表示装置の駆動方法(極性反転方法等)または表示状態(ちらつき、表示のざらつき感等)を鑑みて適宜設定すればよい。この繰り返しは次に画素が書き換えられるとき、すなわちT11に等価な時間になるまで継続される。したがって、Vlc1RおよびVlc2Rの実効的な値は、
 Vlc1R’=VsR’+K1R×(1/2)Vad   …(19a)
 Vlc2R’=VsR’-K2R×(1/2)Vad   …(19b)
となる。
 よって、スキャン方向が順方向である場合に明画素8a’および暗画素8b’のそれぞれの液晶層に印加される実効電圧V1R_f’およびV2R_f’は、
 V1R_f’=Vlc1R’-Vcom   …(20a)
 V2R_f’=Vlc2R’-Vcom   …(20b)
すなわち、
 V1R_f’=VsR’+K1R×(1/2)Vad-Vcom   …(21a)
 V2R_f’=VsR’-K2R×(1/2)Vad-Vcom   …(21b)
となる。
 このように、2D表示モードにおいては、明画素8a’の液晶層に印加される実効電圧V1R_f’は、暗画素8b’の液晶層に印加される実効電圧V2R_f’よりも大きいので、明画素8a’の液晶層の透過率は、暗画素8b’の液晶層の透過率よりも大きくなる。したがって、2D表示モードにおいては、明画素8a’は、暗画素8b’よりも高い輝度を呈する。
 (G画素10’およびB画素12’の駆動)
 G画素10’についても同様の駆動が行われ、スキャン方向が順方向である場合に明画素10a’および暗画素10b’のそれぞれの液晶層に印加される実効電圧V1G_f’、および、V2G_f’は、
 V1G_f’=VsG’+K1G×(1/2)Vad-Vcom   …(22a)
 V2G_f’=VsG’-K2G×(1/2)Vad-Vcom   …(22b)
となる。ここで、K1GおよびK2Gは、それぞれ、
 K1G=Ccs1G/(Clc1G’+Ccs1G)   …(23a)
 K2G=Ccs2G/(Clc2G’+Ccs2G)   …(23b)
である。
 また、B画素12’についても同様の駆動が行われ、スキャン方向が順方向である場合に明画素12a’および暗画素12b’のそれぞれの液晶層に印加される実効電圧V1B_f’、および、V2B_f’は、
 V1B_f’=VsB’+K1B×(1/2)Vad-Vcom   …(24a)
 V2B_f’=VsB’-K2B×(1/2)Vad-Vcom   …(24b)
となる。ここで、K1BおよびK2Bは、それぞれ、
 K1B=Ccs1B/(Clc1B’+Ccs1B)   …(25a)
 K2B=Ccs2B/(Clc2B’+Ccs2B)   …(25b)
である。
 このように、2D表示モードにおいては、明画素10a’および明画素12a’の液晶層に印加される実効電圧V1G_f’およびV1B_f’は、それぞれ、暗画素10b’および暗画素12b’の液晶層に印加される実効電圧V2G_f’およびV2B_f’よりも大きいので、明画素10a’および明画素12a’の液晶層の透過率は、それぞれ、暗画素10b’および暗画素12b’の液晶層の透過率よりも大きくなる。したがって、2D表示モードにおいては、明画素10a’および明画素12a’は、それぞれ、暗画素10b’および暗画素12b’よりも高い輝度を呈する。
 図16の(a)は、2D表示モードにおける、R画素8’、G画素10’、および、B画素12’の備える各副画素の呈する輝度を模式的に示す図である。図16の(a)に示すように、2D表示モードにおいては、各明画素は、各暗画素よりも高い輝度を呈する。このように、2D表示モードにおいては、R画素8’、G画素10’、および、B画素12’のそれぞれにおいて、各副画素が互いに異なる輝度を呈するため、視野角特性が向上するという効果を奏する。
 (3D表示モードにおける液晶パネル100’の駆動)
 続いて、3D表示モードにおける液晶パネル100’の駆動、すなわち、スキャン方向が逆方向である場合の液晶パネル100’の駆動について説明する。なお、以下では、CSバスライン61nおよびCSバスライン62nに供給される信号は、共に一定の電圧Vcom’’であるとして説明を行う。また、対向電極に供給される電圧Vcom、並びに、CSバスライン61nおよびCSバスライン62nに供給される電圧Vcom’’は、Vcom’’≧Vcomを満たすものとして説明を行うが、これは本実施形態を限定するものではなく、Vcom’’<Vcomであっても同様に考えることができる。
 図15の(a)~(g)は、液晶パネル100’を駆動する際の各電圧の波形およびタイミングを模式的に示したタイミングチャートである。
 図15の(a)は、ソースドライバ24がソースバスライン4に供給するデータ信号の電圧波形Vsを示しており、図15の(b)は、CSドライバ26がCSバスライン61nに供給する補助容量駆動信号の電圧波形(すなわち、CSバスライン61nの電圧波形)Vcs1を示しており、図15の(c)はCSドライバ26がCSバスライン62nに供給する補助容量駆動信号の電圧波形(すなわち、CSバスライン62nの電圧波形)Vcs2を示しており、図15の(d)は、ゲートドライバ22がゲートバスライン2nに供給するゲート信号の電圧波形Vgnを示しており、図15の(e)は、ゲートドライバ22がゲートバスライン2(n-1)に供給するゲート信号の電圧波形Vg(n-1)を示しており、図15の(f)は、R画素8’の備える明画素8a’の副画素電極の電圧波形Vlc1R’を示しており、図15の(g)は、R画素8’の備える暗画素8b’の副画素電極の電圧波形Vlc2R’を示している。また、図中の破線は、対向電極の電圧波形COMMON(Vcom)を示している。
 (R画素8’の駆動)
 まず、時刻T11’において、ゲート信号の電圧Vgnが、VgLからVgHに変化することにより、TFT1R’、および、TFT2R’が同時にオン状態となる。これに伴い、明画素8a’の副画素電極、および、暗画素8b’の副画素電極に対し、ソースバスライン4を介してデータ信号の電圧が印加され、明画素8a’の副画素電極の電圧Vlc1R’、および、暗画素8b’の副画素電極の電圧Vlc2R’は、時刻T11’におけるデータ信号の電圧VsR’へと変化し、
 Vlc1R’=VsR’   …(26a)
 Vlc2R’=VsR’   …(26b)
となる。
 続いて、時刻T12’において、ゲート信号の電圧VgnがVgHからVgLに変化することにより、TFT1R’、および、TFT2R’が同時にオフ状態となる。これに伴い、明画素8a’の副画素電極、および、暗画素8b’の副画素電極は、全てソースバスライン4と電気的に絶縁される。
 続いて、時刻T13’において、ゲート信号の電圧Vg(n-1)が、VgLからVgHに変化することにより、TFT3R’がオン状態となる。これに伴い、暗画素8b’の副画素電極の電圧Vlc2R’は、CSバスライン62nの電圧Vcom’’へと変化する。一方で、明画素8a’の副画素電極の電圧Vlc1R’は変化しない。
 Vlc1R’=VsR’     …(28a)
 Vlc2R’=Vcom’’   …(28b)
 続いて、時刻T14’において、ゲート信号の電圧Vg(n-1)が、VgHからVgLに変化することにより、TFT3R’がオフ状態となる。
 以上の過程を経た後、スキャン方向が逆方向である場合に明画素8a’および暗画素8b’のそれぞれの液晶層に印加される実効電圧V1R_b’、および、V2R_b’は、
 V1R_b’=VsR’-Vcom     …(29a)
 V2R_b’=Vcom’’-Vcom   …(29b)
となる。
 ここで、Vcom’’-Vcomを、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素8b’が、輝度を呈しないようにすることができる。例えば、Vcom’’=Vcomのように設定することによって、暗画素8b’が、輝度を呈しないようにすることができる。
 このように、3D表示モードにおいては、R画素8’の備える暗画素8b’が輝度を呈しない構成とすることができる。
 (G画素10’およびB画素12’の駆動)
 G画素10’についても同様の駆動が行われ、スキャン方向が逆方向である場合に明画素10a’および暗画素10b’のそれぞれの液晶層に印加される実効電圧V1G_b’、および、V2G_b’は、
 V1G_b’=VsG’-Vcom     …(30a)
 V2G_b’=Vcom’’-Vcom   …(30b)
となる。
 また、B画素12’についても同様の駆動が行われ、スキャン方向が逆方向である場合に明画素12a’および暗画素12b’のそれぞれの液晶層に印加される実効電圧V1B_b’、および、V2B_b’は、
 V1B_b’=VsB’-Vcom     …(31a)
 V2B_b’=Vcom’’-Vcom   …(31b)
となる。
 R画素8’と同様に、Vcom’’-Vcomを、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素10b’および暗画素12b’が、輝度を呈しないようにすることができる。
 このように、3D表示モードにおいては、G画素10’の備える暗画素10b’、および、B画素12’の備える暗画素12b’は、輝度を呈しない構成とすることができる。
 図16の(b)は、3D表示モードにおける、R画素8’、G画素10’、および、B画素12’の備える各副画素の呈する輝度を模式的に示す図である。図16の(b)に示すように、R画素8’、G画素10’、および、B画素12’のそれぞれの備える暗画素8a’、暗画素10b’、および、暗画素12b’は、3D表示モードにおいて輝度を呈しない。
 したがって、R画素8’、G画素10’、および、B画素12’のそれぞれの備える暗画素は、3D表示モードにおいて、ブラックマトリックスとして機能することになる。
 (3D表示モードにおけるクロストーク抑制効果)
 上述のように、液晶パネル100’の備える各暗画素は、3D表示モードにおいて、ブラックマトリックスとして機能するため、実施形態1の液晶パネル100について説明した理由と同様の理由により、クロストークの発生を抑制することができる。
 また、液晶パネル100’の備える暗画素は、2D表示モードにおいては、輝度を呈するため、暗画素に代えて、何れの表示モードにおいても輝度を呈しないブラックマトリックスを配置する構成に比べて、表示する画像の輝度が向上する。
 以上のように、本実施形態に係る液晶表示装置1’によれば、3D表示モードにおいて、スキャン方向を逆方向とすることによって、各副画素の備える液晶層に対して共通のデータ電圧が印加された後に、各暗画素をブラックマトリックスとして機能させることができる。一方で、暗画素と明画素とに対して、データ電圧を独立に供給する従来の構成においては、暗画素と明画素とに対して、各々データ電圧を供給するためのデータバスラインが必要になる。
 本実施形態に係る液晶表示装置1’によれば、そのような従来の構成に比べて、データバスラインの本数を半分以下にすることができる。
 (3D表示モードについての付記事項)
 以上の説明においては、3D表示モードにおいて、液晶表示装置1’の備える暗画素は輝度を呈しないものとしたが、本実施形態はこれに限定されるものではない。例えば、3D表示モードにおいて、暗画素の呈する輝度が所定の輝度以下となるように、CSバスライン62nに供給する電圧Vcom’’を設定することによっても、クロストークを抑制することができる。
 すなわち、Vcom、および、Vcom’’を、実施形態1において説明した数式(A1)が満たされるように設定することによっても、クロストークを抑制することができる。
 より具体的な説明は、実施形態1の(3D表示モードについての付記事項)において行ったものと同様であるので、ここでは省略する。ただし、本実施形態においては、実施形態1の(3D表示モードについての付記事項)における「コモンバスライン5に供給される電圧Vcom’」を「CSバスライン62nに供給される電圧Vcom’’」と読み替えるものとする。
 また、上記の説明では、3D表示モードにおいてCSバスライン61nおよびCSバスライン62nに供給される信号は、共に一定の電圧Vcom’’であるとしたが、これは本実施形態を限定するものではない。
 例えば、CSバスライン62nに対しては、3D表示モードにおいて、暗画素の副画素電極に実効的に印加される電圧が液晶層の閾値電圧Vth以下となるような補助容量駆動信号を供給する構成としてもよい。また、CSバスライン61nに対しては、3D表示モードにおいても、図14の(b)に示した波形と同様の波形を有する補助容量駆動信号を供給する構成としてもよい。
 (各画素における副画素の数についての付記事項)
 以上の説明においては、R画素8’、G画素10’、および、B画素12’が、それぞれ、2つの副画素(明画素、および、暗画素)を備える構成を例に挙げたが、本実施形態はこれに限定されるものではない。例えば、R画素8’、G画素10’、および、B画素12’は、暗画素および明画素以外の副画素(中間画素とも呼ぶ)を備える構成としてもよい。ここで、中間画素は、2D表示モードおよび3D表示モードの双方のモードにおいて、明画素よりも低い輝度を呈する構成とすることが好ましい。このような構成とすることによって、2D表示モードおよび3D表示モードの双方のモードにおいて、視野角特性を向上させることができる。
 (ノーマリーホワイト型の液晶表示装置への適用について)
 ノーマリーホワイト型の液晶表示装置においては、各副画素の備える液晶層に印加される電圧の絶対値が大きいほど、当該副画素の呈する輝度は小さくなる。したがって、上述した液晶パネル100をノーマリーホワイト型の液晶表示装置に適用する場合には、例えば、3D表示モードにおいて、CSバスライン6に供給される電圧Vcom’’と対向電極の電圧Vcomとの差の絶対値を十分に大きくとり、3D表示モードにおいて各暗画素が輝度を呈しないような構成とすればよい。また、ノーマリーホワイト型の液晶表示装置に適用する場合にも、Vcom、および、Vcom’’を、実施形態1において説明した数式(A1)が満たされるように設定する構成とすることができる。
 <実施形態2の変形例1>
 本実施形態における液晶パネル100’の回路構成は、上述したものに限定されるものではない。以下では、本実施形態の第1の変形例について、図17の(a)~(b)を参照して説明する。なお、既に説明した部分については、同じ符号を付し、その説明を省略する。
 図17の(a)は、本変形例に係る液晶パネルの等価回路をR画素8’について示す図である。図17の(a)に示すように、本変形例に係る液晶パネルは、既に説明した液晶パネル100’の構成に加えて、実施形態1における液晶パネル100が備えているものと同様のコモンバスライン5を備えている。また、図示はしていないが、本変形例に係る液晶パネルは、液晶パネル100が備えているものと同様の定電圧源25を備えている。
 図17の(b)に示すように、本変形例に係る液晶パネルにおいては、TFT3R’のソース電極は、コモンバスライン5mに接続されている。本変形例に係る液晶パネルのG画素10’およびB画素12’の構成も同様である。
 図17(のb)は、本変形例に係る液晶パネルにおけるR画素8’の具体的な構成を示す平面レイアウト図である。図17の(b)に示すように、コモンバスライン5は、第2電極材料を用いて形成されており、TFT3Rのソース電極に接続されている。また、本変形例に係る液晶パネルにおいては、液晶パネル100’と異なり、コンタクト部Pconは不要である。したがって、本変形例に係る液晶パネルによれば、液晶パネル100’に比べて、各暗画素の構成が簡単になる。また、コンタクト部Pconが不要であるので、液晶パネル100’に比べて、各暗画素における副画素電極の面積を大きくとることができ、開口率が向上する。
 本変形例に係る液晶パネルにおけるR画素8’の他の構成については、液晶パネル100’と同様であるので、説明を省略する。なお、図17の(b)において、副画素電極ECLC2R’は、第2電極材料よりも上層(紙面手前側)に形成されている。また、特に図示はしないが、図17の(b)の紙面手前側には、各副画素に対応する液晶層が配置され、そのさらに手前側には、対向電極が配置される。
 (本変形例に係る液晶パネルの駆動)
 本変形例に係る液晶パネルの駆動は、既に説明した液晶パネル100’の駆動とほぼ同様であるが、以下の点において異なる。
 すなわち、本変形例に係る液晶パネルにおいては、3D表示モードが選択された場合、すなわち、スキャン方向が逆方向である場合に明画素8a’および暗画素8b’のそれぞれの液晶層に印加される実効電圧V1R_b’、および、V2R_b’は、
 V1R_b’=VsR’-Vcom    …(32a)
 V2R_b’=Vcom’-Vcom   …(32b)
となる。
 ここで、Vcom’は、コモンバスライン5に供給される電圧を表している。数式(32a)は、数式(29a)と同じである。一方で、数式(32b)に示すように、本変形例においては、V2R_b’は、コモンバスライン5の電圧Vcom’の関数となる。したがって、Vcom’-Vcomを、液晶層の閾値電圧Vth以下となるように設定することによって、暗画素8b’が輝度を呈しないようにすることができる。
 3D表示モードが選択された場合の、G画素10’の備える暗画素10b’の液晶層に印加される実効電圧、並びに、B画素12’の備える暗画素12b’の液晶層に印加される実効電圧についても同様である。
 このように、本変形例に係る液晶パネルにおいても、3D表示モードが選択された場合に、各暗画素をブラックマトリックスとして機能させることができる。
 <実施形態2の変形例2>
 以下では、本実施形態の第2の変形例について、図18の(a)~(b)を参照して説明する。なお、既に説明した部分については、同じ符号を付し、その説明を省略する。
 図18の(a)は、本変形例に係る液晶パネルの等価回路をR画素8’について示す図である。図18の(a)に示すように、本変形例に係る液晶パネルにおいては、m本目のCSバスライン62であるCSバスライン62mが、ソースバスライン4mと略平行に形成されている。また、CSバスライン62mには、TFT3R’のソース電極、および、補助容量Ccs2Rの補助容量対向電極が接続されている。その他の構成については、液晶パネル100’と同様である。
 また、本変形例に係る液晶パネルのG画素10’およびB画素12’の構成も、本変形例に係る液晶パネルのR画素8’と同様である。
 図18の(b)は、本変形例に係る液晶パネルにおけるR画素8’の具体的な構成を示す平面レイアウト図である。図18の(b)に示すように、CSバスライン62mは、第2電極材料を用いて形成されており、TFT3R’のソース電極、および、補助容量Ccs2Rの補助容量対向電極に接続されている。また、本変形例に係る液晶パネルにおいては、液晶パネル100’と異なり、コンタクト部Pconは不要である。したがって、本変形例に係る液晶パネルによれば、液晶パネル100’に比べて、各暗画素の構成が簡単になる。また、コンタクト部Pconが不要であるので、液晶パネル100’に比べて、各暗画素における副画素電極の面積を大きくとることができ、開口率が向上する。
 また、本変形例に係る液晶パネルにおいては、図18の(b)に示すように、補助容量Ccs2Rが、CSバスライン62mに沿って形成されている。本変形例に係る液晶パネルにおけるR画素8’の他の構成については、液晶パネル100’と同様であるので、説明を省略する。なお、図18の(b)において、副画素電極ECLC2R’は、第2電極材料よりも上層(紙面手前側)に形成されている。また、特に図示はしないが、図18の(b)の紙面手前側には、各副画素に対応する液晶層が配置され、そのさらに手前側には、対向電極が配置される。
 (本変形例に係る液晶パネルの駆動)
 本変形例に係る液晶パネルの駆動は、既に説明した液晶パネル100’の駆動とほぼ同様であるため、説明を省略する。ただし、CSバスライン62mには、(液晶表示装置1’の基本動作)において説明したCSバスライン62nと同様の電圧が供給されるものとする。
 本変形例に係る液晶パネルにおいても、3D表示モードが選択された場合に、各暗画素をブラックマトリックスとして機能させることができる。
 (実施形態1および実施形態2についての付記事項)
 実施形態1および実施形態2においては、n番目のゲートバスラインによって画定される画素におけるTFT3のゲート電極がn-1番目以前のゲートバスラインに接続され、2D表示モードにおいて順スキャンを行い、3D表示モードにおいて逆スキャンを行う液晶表示装置を例に挙げたが、上記実施形態はこれに限定されるものではない。
 例えば、上記実施形態において、n番目のゲートバスラインによって画定される画素におけるTFT3のゲート電極がn+1番目以降のゲートバスラインに接続される構成としてもよい。このような構成の場合、2D表示モードにおいて逆スキャンを行い、3D表示モードにおいて順スキャンを行うことによって、上述した効果と同じ効果を得ることができる。
 (付加事項)
 上述したように、本発明に係る液晶表示装置は、第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、N行M列(N及びMは自然数)の行列状に配置された複数の画素と、補助バスラインと、各行に配置されたゲートバスラインと、各列に配置されたデータバスラインと、前記複数の画素のうち第n行第m列(n及びmはそれぞれ1≦n≦N及び1≦m≦Mを満たす自然数)の画素について、複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、前記副画素毎に配置された入力トランジスタであって、前記副画素電極に接続されたドレイン電極と、第m列のデータバスラインに接続されたソース電極と、第n行のゲートバスラインに接続されたゲート電極とを有する入力トランジスタと、を有する液晶パネルと、入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、第n行第m列の画素についての複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素は、当該境界近傍副画素についての副画素電極に電気的に接続されたドレイン電極と、前記補助バスラインに接続されたソース電極と、第n-1行以前のゲートバスラインに接続されたゲート電極と、を備える出力トランジスタを更に有しており、第2の表示モードにおいては、第1行のゲートバスラインから第N行のゲートバスラインに対して、順次ゲート信号を供給し、第1の表示モードにおいては、第N行のゲートバスラインから第1行のゲートバスラインに対して、順次ゲート信号を供給する、ことを特徴としている。
 以上のように構成された本発明に係る液晶表示装置は、上記第2の表示モードにおいて、第1行のゲートバスラインから第N行のゲートバスラインに対して順次ゲート信号を供給することによって、すなわち、順方向にスキャンすることによって、上記データバスラインを介して各副画素電極に対して画素毎に共通のデータ電圧を印加する。これにより、各副画素が所望の輝度を呈することによって、画像が表示される。
 一方で、上記液晶表示装置は、上記第1の表示モードにおいては、第N行のゲートバスラインから第1行のゲートバスラインに対して順次ゲート信号を供給する、すなわち、逆方向にスキャンする。ここで、第n行に配置された画素における各副画素の副画素電極には、当該第n行のゲートバスラインにゲート信号が供給されたときに、当該画素について共通のデータ電圧が印加され、それに引き続き、第n-1行以前のゲートバスラインにゲート信号が供給されたときに、上記出力トランジスタがオン状態に変化することによって、当該各副画素のうち境界近傍副画素の副画素電極の電位が、上記補助バスラインの電位へと変化する。
 したがって、上記のように構成された本発明に係る液晶表示装置によれば、データバスラインの本数を増やすことなく、上記境界近傍副画素についての液晶層と、上記境界近傍副画素以外の副画素についての液晶層とに対して、互いに異なる電圧を印加することができる。また、上記補助バスラインの電位を適宜設定することによって、上記境界近傍副画素の呈する輝度を、上記境界近傍副画素以外の副画素の呈する輝度に比べて小さくすることができる。
 また、上記第1のモードにおいて、Patterned Retarder方式の立体視可能な画像を表示することにより、上述したクロストークの現象を抑制することができる。
 また、上記第2の表示モードにおいては、各画素における境界近傍副画素は、該画素における境界近傍副画素以外の副画素と同じ輝度を呈するので、上記第2のモードにおいて立体視不能な画像を表示することにより、立体視不能な画像を表示するときにも立体視可能な画像を表示するときにも輝度を呈しないブラックマトリックスを備える従来の構成に比べて、輝度の高い画像を表示することができる。
 また、本発明に係る液晶表示装置においては、前記第1の表示モードおよび前記第2の表示モードの双方において、前記補助バスラインに対して、一定の電圧を印加する、ことが好ましい。
 上記の構成によれば、上記補助バスラインに対して一定の電圧を印加するという簡単な構成によって、上記第1の表示モードにおけるクロストークの現象を抑制することができる。
 また、本発明に係る液晶表示装置においては、前記境界近傍副画素における入力トランジスタのドレイン電極は、補助容量を介して、前記境界近傍副画素における副画素電極に接続されている、ことが好ましい。
 上記の構成によれば、前記境界近傍副画素における入力トランジスタのドレイン電極は、補助容量を介して、上記境界近傍副画素における副画素電極に接続されているので、上記第1の表示モードおよび上記第2の表示モードの双方において、データバスラインから供給されるデータ電圧が、上記境界近傍副画素についての液晶層と、上記補助容量とに対して分配される。したがって、上記境界近傍副画素における副画素電極に印加される電圧の絶対値は、データバスラインから供給されるデータ電圧の絶対値よりも小さくなる。
 上記第2の表示モードにおいては、スキャン方向が順方向であるので、上記出力トランジスタがオン状態となっても、上記境界近傍副画素の液晶層に印加される電圧は変化しないの。したがって、上記の構成によれば、上記第2の表示モードにおいて、各画素における境界近傍画素と、該画素における境界近傍画素以外の副画素との間には輝度差が生じるので、視野角特性が向上する。
 一方で、上記第1の表示モードにおいては、スキャン方向が逆方向であるので、上記出力トランジスタがオン状態となると、上記境界近傍副画素の液晶層に印加される電圧は、上記対向電極の電位と上記補助バスラインの電位との電位差によって規定される電圧へと変化する。ここで、上記補助バスラインの電位を適宜設定することによって、上記境界近傍副画素の呈する輝度を、上記境界近傍副画素以外の副画素の呈する輝度に比べて小さくすることができるので、上記第1の表示モードにおけるクロストークの現象を抑制することができる。
 また、本発明に係る液晶表示装置においては、前記境界近傍副画素における出力トランジスタのドレイン電極は、前記補助容量を介して、前記境界近傍副画素における副画素電極に接続されている、ことが好ましい。
 上記の構成によれば、上記第1の表示モードおよび上記第2の表示モードの双方において、データバスラインから供給されるデータ電圧が、上記境界近傍副画素についての液晶層と、上記補助容量とに対して分配される。したがって、上記境界近傍副画素における副画素電極に印加される電圧の絶対値は、データバスラインから供給されるデータ電圧の絶対値よりも小さくなる。
 上記第2の表示モードにおいては、スキャン方向が順方向であるので、上記出力トランジスタがオン状態となっても、上記境界近傍副画素の液晶層に印加される電圧は変化しないの。したがって、上記の構成によれば、上記第2の表示モードにおいて、各画素における境界近傍画素と、該画素における境界近傍画素以外の副画素との間には輝度差が生じるので、視野角特性が向上する。
 一方で、上記第1の表示モードにおいては、スキャン方向が逆方向であるので、上記出力トランジスタがオン状態となると、上記境界近傍副画素の液晶層に印加される電圧は、上記対向電極の電位と上記補助バスラインの電位との電位差によって規定される電圧へと変化する。ここで、上記補助バスラインの電位を適宜設定することによって、上記境界近傍副画素の呈する輝度を、上記境界近傍副画素以外の副画素の呈する輝度に比べて小さくすることができるので、上記第1の表示モードにおけるクロストークの現象を抑制することができる。
 また、本発明に係る液晶表示装置においては、第1の補助容量バスライン、および、前記第1の補助容量バスラインと絶縁された第2の補助容量バスラインを更に備え、前記境界近傍副画素についての副画素電極は、第1の補助容量を介して前記第1の補助容量バスラインに接続されており、前記境界近傍副画素以外の副画素についての副画素電極は、第2の補助容量を介して前記第2の補助容量バスラインに接続されており、前記第2の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、互いに異なる波形の補助容量信号を供給し、前記第1の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、電圧レベルが一定の補助容量信号を供給する、ことが好ましい。
 上記の構成によれば、上記第2の表示モードにおいて、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、互いに異なる波形の補助容量信号を供給するので、上記境界近傍副画素についての液晶層に印加される実効電圧と、上記境界近傍画素以外の副画素についての液晶層に印加される実効電圧とは、互いに異なる。したがって、上記の構成によれば、上記第2の表示モードにおいて、各画素における境界近傍画素と、該画素における境界近傍画素以外の副画素との間には輝度差が生じるので、視野角特性が向上する。
 一方で、上記第1の表示モードにおいては、スキャン方向が逆方向であるので、上記出力トランジスタがオン状態となると、上記境界近傍副画素の液晶層に印加される電圧は、上記対向電極の電位と上記補助バスラインの電位との電位差によって規定される電圧へと変化する。ここで、上記補助バスラインの電位を適宜設定することによって、上記境界近傍副画素の呈する輝度を、上記境界近傍副画素以外の副画素の呈する輝度に比べて小さくすることができるので、上記第1の表示モードにおけるクロストークの現象を抑制することができる。
 また、本発明に係る液晶表示装置においては、前記補助バスラインは、第1の補助容量バスライン、および、前記第1の補助容量バスラインと絶縁された第2の補助容量バスラインより構成され、前記出力トランジスタのソース電極は、前記第1の補助容量バスラインに接続されており、前記境界近傍副画素についての副画素電極は、第1の補助容量を介して前記第1の補助容量バスラインに接続されており、前記境界近傍副画素以外の副画素についての副画素電極は、第2の補助容量を介して前記第2の補助容量バスラインに接続されており、前記第2の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、互いに波形の異なる補助容量信号を供給し、前記第1の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、一定電圧の補助容量信号を供給する、ことが好ましい。
 上記の構成によれば、上記第2の表示モードにおいて、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、互いに異なる波形の補助容量信号を供給するので、上記境界近傍副画素についての液晶層に印加される実効電圧と、上記境界近傍画素以外の副画素についての液晶層に印加される実効電圧とは、互いに異なる。したがって、上記の構成によれば、上記第2の表示モードにおいて、各画素における境界近傍画素と、該画素における境界近傍画素以外の副画素との間には輝度差が生じるので、視野角特性が向上する。
 一方で、上記第1の表示モードにおいては、スキャン方向が逆方向であるので、上記出力トランジスタがオン状態となると、上記境界近傍副画素の液晶層に印加される電圧は、上記対向電極の電位と上記補助バスラインの電位との電位差によって規定される電圧へと変化する。ここで、上記補助バスラインの電位を適宜設定することによって、上記境界近傍副画素の呈する輝度を、上記境界近傍副画素以外の副画素の呈する輝度に比べて小さくすることができるので、上記第1の表示モードにおけるクロストークの現象を抑制することができる。
 また、上記の構成によれば、前記補助バスラインは、第1の補助容量バスライン、および、前記第1の補助容量バスラインとは電気的に独立な第2の補助容量バスラインより構成されており、上記出力トランジスタのソース電極は、上記第1の補助容量バスラインに接続されているので、上記出力トランジスタのソース電極が上記第1の補助容量バスライン以外のバスラインに接続される構成に比べて、回路構成およびバスラインの構成を簡単なものにすることができる。
 また、本発明に係る液晶表示装置においては、上記第1のモードにおいて、前記各画素について、前記境界近傍副画素の呈する輝度の最大値は、前記境界近傍副画素以外の副画素の呈する輝度の最大値の20パーセント未満である、ことが好ましい。
 発明者は、前記境界近傍画素の呈する輝度の最大値が、前記境界近傍画素の呈する輝度の最大値の20パーセント未満である場合に、観測者は、前記境界近傍画素を黒画素として認識するとの知見を得た。
 上記の構成によれば、前記各画素について、前記境界近傍副画素の呈する輝度の最大値は、前記境界近傍副画素以外の副画素の呈する輝度の最大値の20パーセント未満であるため、観測者は、前記境界近傍画素を、黒画素、すなわち、ブラックマトリックスとして認識することになる。
 したがって、上記の構成によれば、前記境界近傍副画素をブラックマトリックスとして機能させることによって、クロストークの発生を効果的に抑制することができる。
 また、本発明に係る液晶表示装置においては、前記各画素について、前記境界近傍副画素と、前記境界近傍副画素に隣接する副画素との境界は、行方向に沿って形成されており、視線方向と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度が、前記境界近傍副画素と、該境界近傍副画素を含む画素において該境界近傍副画素に隣接する副画素との境界、および、前記第1の光学板と前記第2の光学板との境界のうち該境界近傍副画素に最も近い境界、の双方の境界を通る直線と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度以下である場合に、前記第1の表示モードにおいて、前記境界近傍副画素から前記視線方向に出射され、前記光学パネルにおける前記第1の光学板および前記第2の光学板の何れか一方の光学板を透過した画像光の輝度の最大値は、前記境界近傍副画素に対して行方向に沿った境界を介して隣接する画素から前記視線方向に出射され前記光学パネルにおける前記何れか一方の光学板を透過した画像光の輝度の最大値の20パーセント未満である、ことが好ましい。
 発明者は、また、前記境界近傍画素から出射された画像光であって、前記光学パネルにおける前記第1の光学板および前記第2の光学板の何れか一方の光学板を透過した画像光の輝度が、前記境界近傍副画素に対して行方向に沿った境界を介して隣接する画素から前記視線方向に出射され前記光学パネルにおける前記何れか一方の光学板を透過した画像光の輝度の最大値の20パーセント未満である場合に、観測者は、前記境界近傍画素を黒画素として認識するとの知見を得た。
 上記の構成によれば、観測者は、前記境界近傍画素を、黒画素、すなわち、ブラックマトリックスとして認識することになる。
 したがって、上記の構成によれば、前記境界近傍副画素をブラックマトリックスとして機能させることによって、クロストークの発生をより効果的に抑制することができる。
 また、本発明に係るディスプレイ装置は、上記液晶表示装置を備えているディスプレイ装置であって、前記第1の表示モードにおいて、立体視可能な画像を表示する、ことを特徴としている。
 上記のように構成されたディスプレイ装置によれば、前記第1の表示モードにおいて、立体視可能な画像を表示するので、クロストークの発生を抑制することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、Patterned Retarder方式を用いて、画像を立体視可能に表示する液晶表示装置に好適に適用することができる。
1、1’       液晶表示装置
100、100’    液晶パネル
200     Patterned Retarder(光学パネル)
2        ゲートバスライン
4        ソースバスライン
5        コモンバスライン(補助バスライン)
6         CSバスライン(補助バスライン、補助容量バスライン)
8、8’          R画素(画素)
8a、8a’    R画素の明画素(副画素)
8b、8b’    R画素の暗画素(副画素、境界近傍副画素)
10、10’        G画素(画素)
10a、10a’  G画素の明画素(副画素)
10b、10b’  G画素の暗画素(副画素、境界近傍副画素)
12、12’        B画素(画素)
12a、12a’  B画素の明画素(副画素)
12b、12b’  B画素の暗画素(副画素、境界近傍副画素)
TFT1R、TFT2R  薄膜トランジスタ(入力トランジスタ)
TFT3R        薄膜トランジスタ(出力トランジスタ)
TFT1G、TFT2G  薄膜トランジスタ(入力トランジスタ)
TFT3G        薄膜トランジスタ(出力トランジスタ)
TFT1B、TFT2B  薄膜トランジスタ(入力トランジスタ)
TFT3B        薄膜トランジスタ(出力トランジスタ)
Clc1R、Clc2R  液晶容量
Clc1G、Clc2G  液晶容量
Clc1B、Clc2B  液晶容量
Ccs1R、Ccs2R  補助容量
Ccs1G、Ccs2G  補助容量
Ccs1B、Ccs2B  補助容量
RR           位相差板
RL           位相差板
 

Claims (9)

  1.  第1の表示モードおよび第2の表示モードにより表示が可能な液晶表示装置であって、
     N行M列(N及びMは自然数)の行列状に配置された複数の画素と、補助バスラインと、各行に配置されたゲートバスラインと、各列に配置されたデータバスラインと、前記複数の画素のうち第n行第m列(n及びmはそれぞれ1≦n≦N及び1≦m≦Mを満たす自然数)の画素について、複数の副画素と、前記副画素毎に配置された副画素電極であって、液晶層を介して対向電極に対向する副画素電極と、前記副画素毎に配置された入力トランジスタであって、前記副画素電極に接続されたドレイン電極と、第m列のデータバスラインに接続されたソース電極と、第n行のゲートバスラインに接続されたゲート電極とを有する入力トランジスタと、を有する液晶パネルと、
     入射光から第1の偏光状態の出射光を生成する第1の光学板、および、入射光から前記第1の偏光状態とは異なる第2の偏光状態の出射光を生成する第2の光学板が、それぞれ、前記液晶パネルの奇数行および偶数行に対応する位置に形成されている光学パネルと、を備えている液晶表示装置において、
     第n行第m列の画素についての複数の副画素のうち、前記第1の光学板と前記第2の光学板との境界に最も近い副画素である境界近傍副画素は、当該境界近傍副画素についての副画素電極に電気的に接続されたドレイン電極と、前記補助バスラインに接続されたソース電極と、第n-1行以前のゲートバスラインに接続されたゲート電極と、を備える出力トランジスタを更に有しており、
     前記第2の表示モードにおいては、第1行のゲートバスラインから第N行のゲートバスラインに対して、順次ゲート信号を供給し、
     前記第1の表示モードにおいては、第N行のゲートバスラインから第1行のゲートバスラインに対して、順次ゲート信号を供給する、
    ことを特徴とする液晶表示装置。
  2.  前記第1の表示モードおよび前記第2の表示モードの双方において、前記補助バスラインに対して、一定の電圧を印加する、
    ことを特徴とする請求項1に記載の液晶表示装置。
  3.  前記境界近傍副画素における入力トランジスタのドレイン電極は、補助容量を介して、前記境界近傍副画素における副画素電極に接続されている、
    ことを特徴とする請求項1または2に記載の液晶表示装置。
  4.  前記境界近傍副画素における出力トランジスタのドレイン電極は、前記補助容量を介して、前記境界近傍副画素における副画素電極に接続されている、
    ことを特徴とする請求項3に記載の液晶表示装置。
  5.  第1の補助容量バスライン、および、前記第1の補助容量バスラインと絶縁された第2の補助容量バスラインを更に備え、
     前記境界近傍副画素についての副画素電極は、第1の補助容量を介して前記第1の補助容量バスラインに接続されており、
     前記境界近傍副画素以外の副画素についての副画素電極は、第2の補助容量を介して前記第2の補助容量バスラインに接続されており、
     前記第2の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、互いに異なる波形の補助容量信号を供給し、
     前記第1の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、電圧レベルが一定の補助容量信号を供給する、
    ことを特徴とする請求項1または2に記載の液晶表示装置。
  6.  前記補助バスラインは、第1の補助容量バスライン、および、前記第1の補助容量バスラインと絶縁された第2の補助容量バスラインより構成され、
     前記出力トランジスタのソース電極は、前記第1の補助容量バスラインに接続されており、
     前記境界近傍副画素についての副画素電極は、第1の補助容量を介して前記第1の補助容量バスラインに接続されており、
     前記境界近傍副画素以外の副画素についての副画素電極は、第2の補助容量を介して前記第2の補助容量バスラインに接続されており、
     前記第2の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、互いに波形の異なる補助容量信号を供給し、
     前記第1の表示モードにおいては、前記第1の補助容量バスラインと前記第2の補助容量バスラインとに対して、一定電圧の補助容量信号を供給する、
    ことを特徴とする請求項1に記載の液晶表示装置。
  7.  前記第1の表示モードにおいて、前記各画素について、前記境界近傍副画素の呈する輝度の最大値は、前記境界近傍副画素以外の副画素の呈する輝度の最大値の20パーセント未満である、
    ことを特徴とする請求項1から6の何れか1項に記載の液晶表示装置。
  8.  前記各画素について、前記境界近傍副画素と、前記境界近傍副画素に隣接する副画素との境界は、行方向に沿って形成されており、
     視線方向と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度が、
      前記境界近傍副画素と、該境界近傍副画素を含む画素において該境界近傍副画素に隣接する副画素との境界、および、
      前記第1の光学板と前記第2の光学板との境界のうち該境界近傍副画素に最も近い境界、
    の双方の境界を通る直線と前記液晶パネルの法線方向とのなす角を前記液晶パネルの法線方向および前記液晶パネルの列方向の双方に垂直な方向を法線方向とする平面に射影して得られる角度以下である場合に、
     前記第1の表示モードにおいて、前記境界近傍副画素から前記視線方向に出射され、前記光学パネルにおける前記第1の光学板および前記第2の光学板の何れか一方の光学板を透過した画像光の輝度の最大値は、前記境界近傍副画素に対して行方向に沿った境界を介して隣接する画素から前記視線方向に出射され前記光学パネルにおける前記何れか一方の光学板を透過した画像光の輝度の最大値の20パーセント未満である、
    ことを特徴とする請求項1から6の何れか1項に記載の液晶表示装置。
  9.  請求項1から8に記載の液晶表示装置を備えているディスプレイ装置であって、前記第1の表示モードにおいて、立体視可能な画像を表示する、
    ことを特徴とするディスプレイ装置。
PCT/JP2011/071134 2010-09-22 2011-09-15 液晶表示装置、および、ディスプレイ装置 WO2012039345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/823,146 US9013388B2 (en) 2010-09-22 2011-09-15 Liquid crystal display device and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-212601 2010-09-22
JP2010212601 2010-09-22

Publications (1)

Publication Number Publication Date
WO2012039345A1 true WO2012039345A1 (ja) 2012-03-29

Family

ID=45873832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071134 WO2012039345A1 (ja) 2010-09-22 2011-09-15 液晶表示装置、および、ディスプレイ装置

Country Status (2)

Country Link
US (1) US9013388B2 (ja)
WO (1) WO2012039345A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707527A (zh) * 2012-06-13 2012-10-03 深圳市华星光电技术有限公司 一种液晶显示面板及其阵列基板
CN102768437A (zh) * 2012-06-13 2012-11-07 深圳市华星光电技术有限公司 立体影像显示装置
JP2012234176A (ja) * 2011-04-28 2012-11-29 Lg Display Co Ltd 立体映像表示装置とその駆動方法
JP2013059027A (ja) * 2011-09-07 2013-03-28 Lg Display Co Ltd 立体映像表示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043408A1 (ja) * 2010-09-29 2012-04-05 シャープ株式会社 液晶表示装置、駆動方法、および、ディスプレイ装置
US9800862B2 (en) * 2012-06-12 2017-10-24 The Board Of Trustees Of The University Of Illinois System and methods for visualizing information
KR102490451B1 (ko) * 2015-08-11 2023-01-19 삼성디스플레이 주식회사 액정 표시 장치
KR102576283B1 (ko) * 2016-12-27 2023-09-08 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 표시 장치
CN108181745B (zh) * 2018-02-08 2020-08-25 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
US20240146899A1 (en) * 2022-11-02 2024-05-02 Athanos, Inc. Method and apparatus for synchronizing a peripheral device with display image frames

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078617A (ja) * 1998-09-01 2000-03-14 Sharp Corp 立体画像表示装置
JP2002196281A (ja) * 2000-12-27 2002-07-12 Sony Corp 画像分離装置
JP2005115276A (ja) * 2003-10-10 2005-04-28 Seiko Epson Corp 投射型表示装置及び投射型表示方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895303B1 (ko) * 2002-07-05 2009-05-07 삼성전자주식회사 액정 표시 장치 및 그 구동 방법
JP4571845B2 (ja) * 2004-11-08 2010-10-27 シャープ株式会社 液晶表示装置用基板及びそれを備えた液晶表示装置及びその駆動方法
KR101540072B1 (ko) * 2007-10-16 2015-07-28 삼성디스플레이 주식회사 액정표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078617A (ja) * 1998-09-01 2000-03-14 Sharp Corp 立体画像表示装置
JP2002196281A (ja) * 2000-12-27 2002-07-12 Sony Corp 画像分離装置
JP2005115276A (ja) * 2003-10-10 2005-04-28 Seiko Epson Corp 投射型表示装置及び投射型表示方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234176A (ja) * 2011-04-28 2012-11-29 Lg Display Co Ltd 立体映像表示装置とその駆動方法
JP2013059027A (ja) * 2011-09-07 2013-03-28 Lg Display Co Ltd 立体映像表示装置
CN102707527A (zh) * 2012-06-13 2012-10-03 深圳市华星光电技术有限公司 一种液晶显示面板及其阵列基板
CN102768437A (zh) * 2012-06-13 2012-11-07 深圳市华星光电技术有限公司 立体影像显示装置
WO2013185393A1 (zh) * 2012-06-13 2013-12-19 深圳市华星光电技术有限公司 立体影像显示装置
CN102768437B (zh) * 2012-06-13 2014-12-17 深圳市华星光电技术有限公司 立体影像显示装置
CN102707527B (zh) * 2012-06-13 2015-07-15 深圳市华星光电技术有限公司 一种液晶显示面板及其阵列基板

Also Published As

Publication number Publication date
US20130176198A1 (en) 2013-07-11
US9013388B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
WO2012039345A1 (ja) 液晶表示装置、および、ディスプレイ装置
US8976083B2 (en) Three-dimensional image display device and method for driving the same
US9171524B2 (en) Display device
US9190001B2 (en) Liquid crystal display device, display apparatus, and gate signal line driving method
KR102353522B1 (ko) 다중 시각 표시 장치
US20110234605A1 (en) Display having split sub-pixels for multiple image display functions
US20130057791A1 (en) Liquid-crystal display device
US9049436B2 (en) Three dimensional image display device using binocular parallax
US20130027525A1 (en) Liquid-crystal display device and three-dimensional display system
JP2012234176A (ja) 立体映像表示装置とその駆動方法
JP5425977B2 (ja) 映像表示装置
JP2009075392A (ja) 電気光学装置及びその駆動方法、並びに電子機器
KR20110104861A (ko) 영상표시장치
JP5583721B2 (ja) 立体映像表示装置
US8953106B2 (en) Display unit, barrier device, and method of driving display unit
US20130063332A1 (en) Display device, display method, and electronic apparatus
WO2012043408A1 (ja) 液晶表示装置、駆動方法、および、ディスプレイ装置
WO2013047099A1 (ja) 表示装置
KR101878483B1 (ko) 영상표시장치
KR20130020294A (ko) 영상표시장치
US8913109B2 (en) Stereoscopic image display apparatus
WO2012073795A1 (ja) 表示装置およびその駆動方法、並びに電子装置
JP2014053653A (ja) 表示装置および表示装置の駆動方法
KR20120070986A (ko) 영상표시장치
KR101948894B1 (ko) 입체영상 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP